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ABSTRACT 

The San Andreas fault system of California comprises dominantly right-lateral 
strike-slip faults and forms part of the Pacific-North American plate boundary. 
This fault system has been studied extensively using geological and geophysical 
methods since it was first brought into prominence by the 1906 M = 8~ San 
Francisco earthquake. 

Observations of surface deformation thought to define an earthquake deformation 
cycle have been inferred from terrestrial and space-based geodetic methods. The 
observed relative motion in these networks has also been used to constrain the 
distribution of motion across the plate boundary. 

Sites in three profiles extending across the fault system in the San Francisco bay 
region were measured up to 7 times between March 1990 and February 1993 using 
the Global Positioning System (GPS). The data were processed using the Bernese 
V3.2 software. The GPS data were combined with trilateration and VLBI data 
to create a spatially dense sample of the deformation field in the region. Ap
proximately 35±3 mm/yr of fault-parallel (N33°W) shear is distributed across a 
deforming zone that increases in width northwards from 60 to 100 km and in style 
from fault-concentrated deformation in the south to near-linear trends in the north. 
No systematic convergence upon the fault is observed. 

Both two- and three-dimensional models of dislocations in an elastic half-space 
were used to model the deformation and to investigate the effects of structural 
complexities such as a low-rigidity fault zone, the depth to which surface creep 
extends, geometrical complexities of the fault system and along-strike variations 
in slip rate. The models produce a remarkably close fit to the deformation despite 
such a rheologically simple Earth structure. Approximately half of the observed 
deformation is accommodated along faults to the east of the San Andreas fault. A 
zone of concentrated deformation across the San Andreas fault zone in the north 
of the region may be the result of a 1-2 km wide low-rigidity fault zone there. 
Surface creep rates, although highly variable, appear to increase to the south. An 
increase in depth of the surface creep zone to the south may also accompany this. 
The variations in slip rate at depth along strike are consistent with connectivity 
between the major faults of the system. 

Quasi-steady slip on discrete fault planes or shear zones may occur down to 2-3 
times the seismogenic depth and deformation rates are probably almost constant 
throughout much of the earthquake cycle. The present earthquake potential calcu
lated from the estimated slip rates indicate that several fault segments may have 
an earthquake potential equivalent in magnitude to the "characteristic" earthquake 
assumed for that segment. The estimates of relative motion indicate that defor
mation across the San Andreas fault system, plus that observed to the east of the 
Sierra Nevada mountains, can account for all of the Pacific-North American plate 
motion rate. 
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Chapter 1 

California and the San Andreas Fault 

System 

1.1 Introduction 

1.1.1 Definition of the San Andreas Fault System 

The term "San Andreas fault system" refers to the network of faults with predom

inantly right-lateral strike slip that together form the boundary, and accommodate 

most of the relative motion between, the North American and Pacific plates in 

California (Figure 1.1). The boundaries of this fault system are not well defined, 

but it is generally assumed that the term encompasses the set of faults along the 

western margin of California, on land and offshore. The northern terminus of the 

San Andreas fault system lies at Cape Mendocino where it forms a branch of the 

Mendocino triple junction. At its southeast end, the San Andreas fault system 

merges with a set of en-echelon transform faults separated by spreading centres 

in the Gulf of California. Further south these form a triple junction between the 

North American, Pacific, and Rivera plates. 

Within the fault system there are generally several "fault zones" which are complex 

zones of sheared rock typically a few kilometres wide and several hundreds of 

kilometres long that have developed over several million years. A fault zone may 

be subdivided into smaller elements such as "faults", "fault branches" and "fault 

strands". The San Andreas fault system consists primarily of the San Andreas, 

Hayward and Calaveras fault zones in central California (Figure 1.2) and the San 

Andreas, San Jacinto and Elsinore fault zones in southern California (Figure 1.3). 
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JUAN DE FUCA PLATE 

PACIFIC 
PLATE 

•._C. HAWAII 

--- PLATE BOUNDARY 

Figure 1.1: Plate tectonic framework. (A) Relation of North America to the global plate tectonic 

boundaries. Light shaded area indicates approximate area of map shown in B. (B) Simplified 

diagram showing the San Andreas fault system as a single element forming the complex boundary 

between the North American and Pacific plates. 
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Figure 1.2: The San Andreas fault system in northern California together with place names used 

in text. Red line indicates extent of fault rupture during the earthquake of 1906. F = fault , FZ 

= fault zone . 
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in text. F = fault, FZ = fault zone. 
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1.1.2 Principal Trends 

In general the San Andreas fault system trends at about N35° -40°W. In southern 

California, south of Bakersfield (Figure 1.3), the strike of the San Andreas fault 

changes sharply at what is known as the "big bend" region. South of the big bend, 

the fault strikes at about N60°W. In this region, the San Jacinto and Elsinore 

faults trend at about N50°W and lie southwest of the San Andreas fault. North 

of the big bend, up to the latitude of Hollister (Figure 1.2), the San Andreas 

fault system consists of the San Andreas fault only, which is relatively straight and 

narrow. North of Hollister, the fault strikes at about N50°W and the Calaveras and 

Hayward faults splay to the east with strikes of between N20°W and N35°W. West 

of the San Andreas fault, along the San Francisco Peninsula, the San Gregorio

Hosgri fault zone trends at approximately N20°W and joins the San Andreas fault 

at the southern tip of the Point Reyes peninsula. North of San Francisco bay are 

extensions of the Hayward and Calaveras faults. The Green Valley and Bartlett 

Springs faults extend the Calaveras fault and the Rodgers Creek and Maacama 

faults are the northward extensions of the Hayward fault. 

1.1.3 Geomorphic Expression 

On aerial photographs and satellite images, the San Andreas fault system appears 

as a very obvious scar across the landscape. From Point Arena south-eastwards, 

the San Andreas fault is conspicuous as a series of linear valleys and ridges passing 

through the Coast Ranges. Between Hollister (Figure 1.2) and the Carrizo plain 

(Figure 1.3) the fault trace crosses the Coast Ranges at a low angle, the mountain 

ridges of the latter trending at about 5° to 10° more westerly than the fault. Within 

the Carrizo plain, the surface expression of the San Andreas fault is well defined and 

narrow and offset streams are common. Further south, in the big bend region, the 

San Andreas fault passes through high mountains and so the surface trace rises to a 

high altitude. Around the Palmdale region the fault is marked by a distinct linear 

valley together with a contrast between the mountainous terrain of the Transverse 

Ranges to the west and the low relief region of the Mojave desert to the east. 

South of Palmdale the fault again cuts across the mountains at a low angle ~efore 

branching into numerous faults and becoming topographically complex. 

On a smaller scale various geomorphic features originate from both lateral and 

vertical movements between small fault-bounded blocks or slices. These include sag 

5 



ponds and depressions, deflected stream offsets, scarps, folds and pressure ridges. 

1.1.4 Historical Review 

Faults within the San Andreas fault system were first recognised by several ge

ologists in the 1890's (e.g., Lawson, 1895]. In that decade, geologists traced the 

fault zone for 400 miles south of San Francisco [Fairbanks, 1907, p. 324]. The San 

Francisco (M = 8.25) earthquake of 1906 stimulated much geophysical work and 

drew attention to the fault zone to the north of San Francisco. The name San 

Andreas, although previously used by Lawson (1895, p. 468] to describe a section 

of the fault along the San Francisco peninsula, was formally applied to the fault 

and fault zone by the time the final report of the State Earthquake Investigation 

Commission was published [Lawson, 1908]. Furthermore, that report provided a 

clear account of the fault characteristics and the role of the fault in causing the 

1906 earthquake. 

After documenting the location and features of the fault, geologists turned their 

attention for about the following 4 decades to extensive geological mapping of 

California (Crowell, 1962]. Much controversy ensued regarding the cumulative dis

placement along the fault, the principal direction of slip (i.e., whether movement 

was primarily strike- or dip-slip), and the age of the fault. For example, Noble 

(1927] described evidence for 39 km of right-lateral displacement, whereas up to 

120 km was advocated by Wallace (1949] and others. 

Hill and Dibblee (1953] produced a landmark paper where they assembled evidence 

for right-lateral offset along the San Andreas fault of up to 560 km. During the 

1960's the theories of sea-floor spreading and plate tectonics were being developed 

(e.g., Vine, 1966; Morgan, 1968; !sacks et al., 1968]. The findings of Hill and 

Dibblee (1953] and subsequent studies provided a basis for applying plate tectonic 

theory to the San Andreas fault system. The proposal that the San Andreas 

fault was a transform fault connecting two oceanic spreading ridges (Wilson, 1965] 

comprised a further breakthrough in understanding (Figure 1.4). McKenzie and 

Morgan (1969] and Atwater (1970] modified the theory of Wilson (1965] to account 

for triple junction migration and plate movements. 
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Figure 1.4: The role of the San Andreas fault system as a transform boundary between the Juan 

de Fuca ridge and the East Pacific Rise as first proposed by Wilson [1965]. SAFZ =San Andreas 

fault zone. 

1.1.5 Recent Plate Motion 

During the 1970's uncertainties in plate motions were reduced by refined plate 

tectonic models. Angular velocity vectors (Euler vectors) describing the average 

relative motions of rigid plates over the past few million years were derived by 

inverting a combination of ridge spreading rates, transform fault azimuths and 

earthquake slip vectors. The first comprehensive models were the RM2 model 

[Minster and Jordan, 1978] and the P071 model [Chase, 1978]. These models 

indicated a relative velocity between the Pacific and North American plates of 

approximately 56 mm/yr at N33°W. Geological studies of displacement during the 

last 2 Ma, however, gave an average slip rate of about 35 mm/yr for the San Andreas 

fault system [e.g., Sieh and Jahns, 1984]. The discrepancy between these two rates, 

7 
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Figure 1.5: Physiographic provinces of the western United States. OCR= Oregon Coast Range, 

KM = Klamath Mountains. 
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about 20 mm/yr, has been termed the "San Andreas discrepancy" [Minster and 

Jordan, 1984]. 

Two explanations have been proposed for the difference between the geological 

and the plate tectonic rates. First, displacement rates may have varied with time 

and the present-day slip rate may be higher than the geological rate. The rate 

has probably varied over time [Atwater and Molnar, 1973; Powell and Weldon, 

1992] and there have been major changes in the plate geometry since its inception 

at about 30 Ma. However these variations are probably too small to explain the 

large difference. The second, generally accepted explanation is that the Pacific

North American plate boundary is wide and extends from the continental margin 

eastwards across the Basin and Range province (Figure 1.5) [Atwater, 1970]. The 

"missing motion" is accommodated on many faults throughout the western United 

States, concentrated along a few faults outside the San Andreas fault system or by 

inelastic deformation of the crust. 

The most recent and best global plate model, NUVEL-1, uses new data acquired 

in the 1980's [DeMets et al., 1987a; 1987b; Stein et al., 1988; Gordon and DeMets, 

1989; Argus et al., 1989; DeMets et al., 1990]. This model predicts a relative 

velocity of 48 mm/yr at N33°W between the North American and Pacific plates. 

The model averages velocities over the time since paleomagnetic anomaly number 

2A, taken to be at 3.03 Ma on the time scale of Harland et al. [1982]. However, 

recent revision of this time scale suggests that this paleomagnetic reversal is several 

percent older [e.g., Hilgen, 1991] and as a result the NUVEL-1 rates must be scaled 

by a factor of 0.959 [Gordon, 1993; Feigl et al., 1993]. The new global plate model, 

"rescaled NUVEL-1" or "NUVEL-lA", predicts a Pacific-North American relative 

plate velocity of 46 mm/yr at N33°W. 

The rescaled NUVEL-1 velocity reduces the San Andreas discrepancy to around 

10-13 mm/yr at N24°W (Figure 1.6). If the discrepancy can be accounted for 

by deformations elsewhere, the total relative plate motion should equal the vector 

addition of the motions in the various provinces of the western U.S. i.e., the San 

Andreas fault system, the Basin and Range province and the continental margin 

of California. The motion of the San Andreas fault system is well known. How

ever, obtaining motions for the other regions is more difficult. The Basin and 

Range province is an 800-km broad region of predominantly normal and strike-slip 

faulting, resulting in parallel horst-and-graben structures, from the eastern edge 

of the Sierra Nevada in California to the Wasatch Mountain fault zone in Utah 

9 
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Figure 1.6 : Left, Velocity vectors for the San Andreas fault system at latitude 36°N . Slip along 

the San Andreas fault system takes up only a portion of the Pacific-North American plate motion 

as predicted by the rescaled NUVEL-1 plate model. The vector difference between the two (SAD , 

grey arrow) is called the San Andreas Discrepancy. Ellipses indicate 95% confidence limits . Right , 

vector difference between the San Andreas Discrepancy (SAD) and motion within the Basin and 

Range province (BAR). The difference between these two, 8 mmjyr at Nl7°E, is called the 

modified San Andreas discrepancy (MSAD) . 

(Figure 1.5) . The effect of fault movements in this region is crustal extension ori

entated roughly west-northwest-east-southeast [Thompson and Burke, 1974]. At 

the latitude of San Francisco the Basin and Range province has about 20 horst

and-graben structures. Although the direction of the vector representing motion in 

the Basin and Range is well known, estimating the rate of extension from geological 

data is difficult . Estimates based on geological and geophysical data range from 

1 mm/yr to > 20 mmjyr [Minster and Jordan, 1984; 1987]. The best geological 

rate estimates come from paleoseismology, the study of prehistoric earthquakes. 

Preliminary mapping suggests that extension across the Basin and Range province 

has not exceeded an average of 12 mm/yr over the past 12,000 years [Thompson and 

Burke, 1973; Wallace, 1984; Minster and Jordan , 1984; 1987]. In addition, work in 

the Mojave Desert-Death Valley region suggests the presence of the Eastern Cali

fornia Shear Zone (ECSZ) [Dokka and Travis, 1990a; 1990b]. This north-northwest 

trending shear zone may have carried 9% - 23% of the total relative plate motion 

since its inception at rv10 to 6 Ma, giving a slip rate of 6-12 mm/yr. 

Addition of motion in the Basin and Range province of 8 ±3 mm/yr at N64° ±10°W 

[Minster and Jordon , 1987] to motion along the San Andreas fault system gives a 
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modified discrepancy of 8 mm/yr at N17°E which must be accommodated within 

the western USA (Figure 1.6). However, given the uncertainty of the Basin and 

Range province extension vector, this modified discrepancy is at best a rough esti

mate. 

1.2 Initiation and Evolution of the San Andreas 

Fault System 

The theory of plate tectonics can be used to reconstruct the geological history of 

the San Andreas using the pattern and timing of magnetic anomalies in the north 

east Pacific ocean [Atwater, 1970]. There was once another plate lying between 

the North American and Pacific plates, the Farallon plate, McKenzie and Morgan 

[1969]. This plate was consumed by a subduction zone at its boundary with the 

North American plate. This indicates that spreading at the ridge was slower than 

the subduction so that eventually the ridge itself was consumed. The San An

dreas fault system was initiated during the late Oligocene (approximately 30 Ma) 

when the ridge impinged upon the subduction zone [McKenzie and Morgan, 1969; 

Atwater, 1970] and right-lateral relabve motion between the two plates started. 

The continental-margin transform lengthened with the simultaneous northward mi

gration of a transform-transform-trench triple junction and a southward migration 

of a ridge-trench-transform triple junction (Figure 1. 7). Outside these triple junc

tions subduction of the Farallon plate continued. Other evidence for subduction 

of the Farallon plate includes varied oceanic environments represented in the eu

geosynclinal terranes of California [Hamilton, 1969]. The rock juxtapositions agree 

with the model that these materials were scraped off against the North American 

continent as the oceanic Farallon plate was subducted beneath it. These former 

Mesozoic subduction zones are now seen as serpentinite belts separating profoundly 

different rock assemblages. 

The models are based mainly on kinematic considerations and oversimplify the 

geological history of the fault system. Dickinson [1981] produced a more realistic 

model of the evolution of the San Andreas faults system (Figure 1.8), with early 

transform motion occurring west of the present day San Andreas fault before the 

opening of the Gulf of California at around 4 to 6 Ma. 

Paleogeologic reconstructions indicate that four phases may be discerned after the 
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~ 

Figure 1.7: Schematic model of plate interactions assuming that the North American and Pacific 

plates moved with a constant relative velocity of 60 mmjyr parallel to the San Andreas fault 

system. Captions show the time represented by each !?ketch in millions of years before present 

and the distance that the North American plate must be displaced to reach its present position 

with respect to the Pacific plate. Initials represent cities, S = Seattle, SF = San Francisco, LA 

= Los Angeles, GS = Guaymas, MZ = Mazatlan. Thin lines are transform faults, thick lines are 

spreading centres, and hatched lines are subduction zones. From Atwater [1970]. 

intersection of the ridge and subduction zone [Powell and Weldon, 1992]. Onshore 

in California, the earliest phase was a period of transtensional deformation and 

volcanism between 26 and 22-20 Ma. In the second phase, between 20-17 Ma 

and 13-12 Ma, the proto-San Andreas fault in southern California accumulated 

100 to 110 km of displacement at an average rate of around 20 mm/yr. In the 

third phase, between 13-12 Ma and 6-4 Ma, faults such as the San Gabriel and 

San Gregorio-Hosgri developed southwest of the San Andreas fault but with more 

northerly strikes. These faults accumulated a displacement of 42-45 km at a rate 

of around 5 mm/yr. In the last phase, spreading in the Gulf of California initiated, 

and influenced the emergence of the San Andreas fault as the primary element 

between the migrating triple junctions, and acceleration of strike-slip motion. The 

San Gabriel fault was largely abandoned, although others such as the San Gregorio

Hosgri fault continued to slip. The slip rate on the San Andreas fault during this 

phase was about 35 mm/yr [e.g., Sieh and Jahns, 1984]. 
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1.3 The Geology of Central California 

1.3.1 Geologic Formations 

Central California consists of four geological/physiographic provinces: the Coast 

Ranges, the Great Valley, the Sierra Nevada and the western Basin and Range 

(Figure 1.5). In the San Francisco bay region there are four principal basement 

rock types: the Franciscan assemblage, the Coast Range Ophiolite, the Great Valley 

sequence and the Salinian block (Figures 1.9 and 1.10). 

The Franciscan assemblage is largely a melange of dismembered sequences of gray

wacke interbedded with dark shale and lesser amounts of mafic volcanic rocks, 

cherts and occasional limestones. Serpentinite and tectonic pods of blueschist also 

occur and generally separate blocks of the more coherent sequences. Scarce fossils 

in the Franciscan indicate a general age of Late Jurassic to Cretaceous, but dating 

of the chert and associated volcanics has yielded an early Jurassic age. The origin 

of the Franciscan melange is problematical, as much of the material has moved 

northward by up to 2000 km. The Franciscan is locally overlain by the Coast 

Range ophiolite and the Great Valley sequence and is separated from them, along 

the east side of the Coast Ranges, by the Coast Range thrust. This thrust has 

been inferred to dip eastward through the crust and may be a subduction suture 

zone [Hamilton, 1969]. The upper plate of the thrust (the Coast Range ophiolite 

and the Great Valley sequence) forms a. deformed, antiformal structure over the 

Franciscan formation in the Diablo Range except for several piercement structures 

(windows) which expose the lower plate of Franciscan rocks (Figure 1.10). The 

antiformal structure is truncated to its west by the Hayward and Calaveras faults 

in the north, and by the San Andreas fault in the south, and it narrows to the 

southeast as the San Andreas fault converges with the south end of the Great 

Valley. 

The Coast Range ophiolite represents oceanic crust on which much of the Great 

Valley sequence was deposited. The ophiolite is generally highly sheared, dis

membered, thinned and locally missing. Only a few localities display a complete 

sequence and these indicate a total stratigraphic thickness of 3 to 5 km. Isotopic 

ages of 165 to 153 Ma indicate that the ophiolite is middle-to-late Jurassic in age. 

Palaeontological and paleomagnetic evidence indicates an equatorial formation

latitude before subsequent transportation northward prior to accretion to the North 
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America plate and overlay of the Great Valley sequence. 

The Great Valley sequence consists of a large thickness of miogeosynclinal, interbed

ded shale, sandstone, mudstone and conglomerate of late Jurassic to Cretaceous 

age. It is markedly less deformed and more coherent than the Franciscan assem

blage. Its aggregate stratigraphic sequence is of the order of 12 km thick and it 

generally lies depositionally on the Great Valley ophiolite except where disrupted 

by faults. However, at the north and east end of the Great Valley, the Great Valley 

sequence onlaps the older basement terranes of the Klamath Mountains and the 

Sierra Nevada. The great thickness of clastic deposits indicates rapid erosion of 

the ancestral Klamath Mountains and Sierra Nevada to form submarine fans and 

turbidity deposits. 

The Salinian block generally forms the west wall of the San Andreas fault except 

in the region of the San Francisco peninsula where it is separated from the San 

Andreas by a small sliver of Franciscan assemblage. The principal formations of 

the Salinian block are granitic and metamorphic rocks locally overlain by upper 

Cretaceous and younger strata. The metamorphic rocks are generally medium to 

high grade gneiss, granofels and impure quartzite together with minor schists and 

marbles. These probably represent a metamorphosed, thinly bedded sequence of 

silt and sandstone. The plutonic rocks are mostly granite and tonalite but range 

in composition to gabbro. Plutonic activity commenced around 120-105 Ma in 

the northwest and migrated southeast over a period of 40 Ma. The basement of 

the Salinian block is similar in composition and age to parts of the Sierra Nevada 

batholith leading several investigators to conclude that the Salinian originally lay 

between the Sierra Nevada and the Peninsula Range and has been transported 

540 km north-westward along the San Andreas fault [Page, 1981; Ross, 1984]. 

More recent paleomagnetic studies support a northward displacement of around 

2500 km since the Cretaceous. 

The Sierra Nevada is a 600 x 150 km composite batholith of more than 100 distinct 

plutons that were emplaced mainly from 180 to 80 Ma. At around 10 Ma the 

Sierra Nevada, part of the greater Nevadan Mountains, had a lowland landscape 

with elevations possibly as high as 1800 m. Uplift of the range occurred in Late 

Cenozoic time primarily due to reactivation of the Sierra Nevada fault on the 

eastern edge of the Sierra Nevada as the entire block was tilted west. The vertical 

displacement on this fault is as much as 3350 m and the fault resembles faults of 

the Basin and Range province, of which it is probably the westernmost member. 
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The Franciscan assemblage, the Great Valley, and the Sierra Nevada are interpreted 

as an accretionary prism, a fore-arc basin and a magmatic arc related to the sub

duction regime in California prior to the development of the transform boundary 

[Dickinson, 1970]. 

1.3.2 Relation of Geologic Structure to Seismicity 

There are differences in seismic behaviour between several major segments of the 

San Andreas fault system [e.g., Allen, 1968; Wallace, 1970; Nason and Toche1·, 

1970]. Different segments are characterised by frequent, small magnitude earth

quakes, occasional, moderate magnitude earthquakes and aseismic fault creep. 

Other "locked" segments are characterised by infrequent earthquakes of large mag

nitude (e.g., the 1906 event) together with a lack of interseismic creep. The 

seismically-active regions show a remarkably close coincidence with the western 

faulted edge of the upper plate of the Coast Range thrust i.e., the Great Valley 

Sequence (Figure 1.9). The virtual restriction of creep and frequent seismic activ

ity to this structural intersection may be because seismic behaviour is influenced 

by some factor related to this intersection. The presence of the serpentiniferous 

Coast Range ophiolite at· the base of the upper plate may act as a lubricant to 

aid aseismic creep. Furthermore, the lower plate Franciscan assemblage may yield 

metamorphic fluids. Nat ural springs containing metamorphic (especially carbon 

dioxide rich) fluids are common in the Franciscan terrane and along faults between 

the Franciscan and Great Valley sequence. The Great Valley sequence may act as a 

hydraulic cap forcing migrating fluids towards the relatively permeable rock of the 

fault zone. This will decrease the effective confining pressure, reduce the frictional 

strength of the fault rocks and therefore increase the potential for aseismic creep 

[Irwin and Barnes, 1975]. 

1.3.3 Quaternary Deformation 

Quaternary deformation processes, faulting, folding and uplift, represent crustal 

movements that continue today in many places. Study of these processes provides 

an independent check and data where no historical deformation information is 

available. 

Evidence for Quaternary deformation comes principally from the observed displace-

18 



ment of strata or geomorphic features. If the deformation feature can be dated then 

an average deformation rate can be calculated. Dating of Quaternary deposits ul

timately depends on various forms of geochemical analyses. 

Figures 1.2 and 1.3 show faults along which Quaternary displacements have oc

curred [Jennings, 1975]. Although direct geologic evidence of Quaternary slip on 

faults in the San Andreas fault system is abundant, the age and cross-fault corre

lation of displaced stratigraphic markers is difficult and Quaternary slip rates are 

poorly constrained. Despite this, many Quaternary slip rates have now been de

termined. A summary of many of these rates is given by Clark et al. [1984] for the 

whole of California and by Kelson et al. [1992] for the San Francisco bay region. 

Throughout the fault system, the rate of right-lateral slip on northwesterly-trending 

faults typically exceeds, by an order of magnitude, geologically determined rates 

for other types of deformation such as uplift. The highest observed slip rate is 

34 mm/yr for the central creeping portion of the San Andreas fault between lati

tudes 35° 45' and 36° 30' where most of the slip has followed the San Andreas fault. 

North of latitude 36° 30' the rate of Quaternary slip along the San Andreas fault, 

10-20 mm/yr, is less than observed along the more southerly segments of the fault. 

Much of this slip deficit can be accounted for by distributed slip on active branch 

faults. Slip rates on some of these branches may equal or exceed the rate on nearby 

parts of the San Andreas fault. North of San Francisco bay, estimated slip rates 

for the San Andreas fault increase from 24±3 mm/yr at Point Reyes [Niemi and 

Hall, 1992] to 26±3 mm/yr at Point Arena [Prentice, 1989a, b) (Figure 1.2). 

Dominantly northwest-trending folds deform much of the region around the San 

Andreas fault system except for the relatively undeformed Sebastopol block [Fox, 

1983] between the San Andreas fault and the Hayward-Rodgers Creek-Maacama 

fault zone (Figure 1.2). The Sebastopol block is stable, in contrast with the Santa 

Rosa block to the east which is highly deformed [Fox, 1983]. Within the Santa 

Rosa block and other easterly parts of the Coast Ranges, Quaternary folding and 

faulting have left uplifted ridges and downwarped basins, the most striking basin 

being the southern arm of San Francisco bay. Rates of folding and uplift are best 

calculated for coastal regions where marine terraces between San Francisco and 

Monterey bay indicate uplift rates of about 0.2 mm/yr [Brown, 1990]. Measured 

uplift and subsidence rates average about 0.5 mm/yr. However no reliable estimates 

of vertical deformation are available for large parts of the fault system. 
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1.4 Geophysics in California 

1.4.1 Seismic Refraction and Reflection Studies 

Seismic refraction and reflection profiles together form a complementary set whose 

primary product is a model of the seismic P-wave velocity distribution in the crust 

and upper mantle. From this can be derived maps of crustal thickness and crustal 

cross sections that summarise the lithospheric structure and tectonics along the 

San Andreas fault system [Mooney and Weaver, 1989) (Figure 1.11). 

In central California the crust generally thickens eastward from about 24 km at the 

coast to 30 km in the central (Great) valley to 55 km underneath the Sierra Nevada 

before thinning to about 30 km in the Basin and Range province in Nevada. The 

crust along the San Andreas fault system is everywhere thinner than the 36 km 

crustal average for the conterminous United States [Braile et al., 1989). No obvious 

steps in crustal thickness are detected across the fault system. 

Seismic reflection and refraction profiles both indicate pronounced vertical,· upper 

crustal, low velocity zones 1 to 2 km wide and extending to depths of 8 km around 

faults at several sites in California [Healy and Peake, 1975; Feng and McEvilly, 

1983; Mooney and Colburn, 1985). Similar low velocity zones along faults in the 

northern Coast Ranges are also detected using three-dimensional velocity inversion 

of local earthquake arrival times [Eberhart-Phillips, 1986). 

On the basis of four seismic reflection and refraction profiles across the Coast 

Range-Great Valley transition, together with surface and borehole geology, gravity 

and magnetics, Wentworth et al. [1984, 1987) concluded tl).at the east margin 

of the Franciscan assemblage forms a tectonic wedge that overlies Great Valley 

basement (Figure 1.9). According to this interpretation, the Franciscan tectonic 

wedge was thrust north-eastward onto the Great Valley basement and uplifting the 

Great Valley sequence. This contrasts with earlier views of eastward subduction 

of the Franciscan along the Coast Range thrust, which was proposed to extend 

down to mantle depths [Bailey et al., 1964]. Uplift of the Franciscan assemblage 

and extension of the upper plate may have occurred during the Cretaceous and 

a tectonic wedge of Franciscan assemblage subsequently driven landward with the 

extended upper plate riding passively on top [Fuis and Mooney, 1990]. Modern 

thrust faulting and folding is still occurring as illustrated by the 1983 Coalinga 

earthquake [Eaton, 1990]. 
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Figure 1.11: Contour map of crustal thickness in km for California and adjacent regions derived 

from seismic refraction, seismic reflection, seismicity and gravity data. Estimated error is 10%. 

Adapted from Mooney and Weaver [1989] 
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1.4.2 Seismicity 

The high level of seismic activity along the San Andreas fault system (Figure 1.12) 

reflects brittle accommodation of the crust to the relative motion between the 

Pacific and North American plates. Although details of the seismicity pattern 

change over time, the broad pattern has remained stable throughout the entire 

history of instrumentally recorded earthquakes in California. 

Sections of the San Andreas system stand out on seismicity maps as northwest 

orientated zones of epicentres (Figure 1.12). However, another remarkable aspect 

of the seismicity pattern is the almost complete lack of seismicity along the section 

of the San Andreas fault that ruptured in the largest historical earthquake, the 

great 1906 earthquake (Figure 1.2). Similarly, low seismicity also characterises the 

ruptured segment of the great 1857 Fort Tejon earthquake in southern California. 

These two segments appear to be locked at present and show no evidence of aseismic 

slip (creep). In contrast, other segments exhibit aseismic shallow creep and frequent 

small to moderate earthquakes. 

On the basis of this seismicity pattern, the San Andreas fault system is subdivided 

into four major divisions [Allen, 1968) (1) the quiescent segment that slipped in 

1906, (2) branches forming the central California active (creeping) section, (3) 

the quiescent segment that slipped in 1857, and ( 4) branches forming the southern 

California active section. This pattern has persisted since reliable locations became 

available in the mid 1930's. The largest earthquake to occur in central California 

recently was the M=7.1, October 1989, Lorna Prieta earthquake which ruptured 

the southernmost 45 km of the 1906 break [Dietz and Ellsw01·th, 1990). In the San 

Francisco bay region, the boundary between the first two subdivisions can be seen. 

Densely aligned epicentres on the San Andreas fault up to latitude 37°10'N mark 

the south end of the 1906 break. Densely aligned epicentres follow the Calaveras 

fault northward to a point where the Hayward fault branches to the west and the 

Greenville fault branches to the east (Figure 1.2). Few epicentres lie along the 

northward extension of the Calaveras fault north of the branching point except for 

a diffuse cluster that coincides with the right stepping offset between the north end 

of the Calaveras fault and its continuation, the Concord fault. 

Although the epicentres of small earthquakes coincide closely with the geologically 

mapped traces in many places [Eaton et al., 1970) there are some exceptions. For 

example, in the region where the Calaveras fault branches from the main trace of 
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the San Andreas fault the epicentres lie a few kilometres west of the San Andreas 

fault and a few kilometres east of the Calaveras fault. Most of this offset can be 

attributed to a contrast in rock type and P-wave velocity across the faults resulting 

in systematic epicentral errors [Mayer-Rosa, 1973]. These offsets are reduced, but 

not eliminated, when a more appropriate crustal velocity model is used to calCulate 

locations. The remaining offsets may result from the deviation of the faults from 

vertical.· The relation of mapped surface faults to deep seated faults is also obscure 

at the intersection of the Hayward and Calaveras faults. The mapped surface 

traces of these faults do not intersect but overlap for about 60 km. Figure 1.12 

shows the seismicity in this region to be approximately below the trace of the less 

prominent Mission fault (Figure 1.2). The Mission fault seismicity then grades into 

the Hayward fault seismicity, so that the Mission fault appears to transfer strike

slip motion between the Hayward and Calaveras faults [Andrews et al., 1993]. 

The subparallel epicentre lineations in the Coast Ranges north of San Francisco 

bay and east of the 1906 break follow the Rodgers Creek-Healdsburg-Maacama, 

and the Green Valley-Bartlett springs fault zones. These zones are the northern 

extensions of the Hayward and Calaveras-Concord faults although an aseismic in

terval obscures the connections. The dense cluster of epicentres in the far north 

of Figure 1.12 represents industrially induced earthquake activity associated with 

The Geysers geothermal field [Eberhart-Phillips and Oppenheimer, 1984]. 

Cross sections highlight the across- and along-strike distribution of hypocentres 

with depth (Figures 1.12, 1.13, 1.14). The northernmost across-strike cross section 

(Figure 1.13a), shows the concentration of earthquakes around the Rodgers Creek 

and Green Valley faults. The San Andreas fault, part of the 1906 segment, is 

virtually aseismic. Further south, the San Andreas, Hayward and Calaveras faults 

are all clearly delineated by concentrations of hypocentres (Figure 1.13b). The 

Calaveras fault shows a wider distribution of hypocentres because of the chosen 

cross-section direction and the right step between the Calaveras and Concord fault. 

The broad distribution of seismicity across the San Andreas fault in the southern 

cross-section (Figure 1.13c) results from the abundant cloud of aftershocks following 

the 1989 Lorna Prieta earthquake, which occurred on a westward-dipping fault west 

of the 1906 break [Dietz and Ellsworth, 1990]. 

The maximum focal depths indicate the thickness of the seismogenic crust. Be

neath the San Andreas fault system they range from about 5 km beneath the 

Geysers geothermal field (north end of Hayward fault depth section, Figure 1.14a) 
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to just shallower than 20 km beneath San Pablo bay (east end of section B-B') and 

along the San Andreas fault where ruptured by the Lorna Prieta earthquake (Fig

ure 1.14e). In general, throughout central California, maximum focal depths range 

from 10 km to 15 km (Figure 1.14a-e). The increased maximum depth along the 

Lorna Prieta segment of the San Andreas fault was observed during that sequence. 

The main shock initiated at 18 km depth, which is substantially greater than the 

maximum depth of hypocentres determined prior to the event. 

The maximum focal depth along the San Andreas fault system is inversely corre

lated with surficial heat flow and the maximum depth of earthquakes indicates a 

temperature-dependent transition from brittle failure in the upper crust to aseis

mic, quasi-plastic flow in the lower crust and upper mantle [e.g., Sibson, 1983; 

Scholz, 1988]. For rocks typical of the upper crust, and deformation rates typical 

of the San Andreas fault system, the brittle-ductile transition occurs at rv 300°C 

[Sibson, 1983]. Along "mature" parts of the San Andreas fault system there is 

a strong correlation between the depth above which 90% of the earthquakes oc

cur and the 300° C isotherm [Miller and Furlong, 1988]. In central California the 

base of the seismogenic crust is everywhere shallower than the base of the crust 

(Figure 1.13) 

Most earthquakes that are located close to the surface traces of the San Andreas 

fault and its major branches have focal mechanisms. that are generally consistent 

with right-lateral strike slip movement (e.g., events 15, 16, 17, 19, 20, 23, 26-29, 34, 

36, 38, 45, 46, Figure 1.15). Exceptions to this pattern appear to be attributable 

either to regions of fault complexity such as the major bends in the San Andreas 

fault or, for smaller events close to but not on the major faults, varying conditions 

along the fault. Earthquakes occurring even a short distance off the faults of the 

San Andreas system show very different mechanisms. For example, there is a strong 

component of reverse slip at large angles to the local strike of the fault system for 

earthquakes on both sides of the Coast Ranges and especially along the Coast 

Ranges-Great Valley boundary (e.g., events 14, 21, 47-50, 54). 

1.4.3 Gravity and Magnetics 

The pattern of isostatic gravity anomalies in central California consists of alternat

ing highs and lows that trend subparallel to the major faults in the region. Isostatic 

residual gravity maps show gravity anomalies that remain after an isostatic cor-
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rection (to correct for structure below sea level) has been made to the Bouguer 

gravity field [Simpson et al., 1986]. 

High isostatic residuals in the coastal region occur over the exposed Salinian block 

southwest of the San Andreas fault and the Franciscan assemblage northeast of the 

fault. An adjacent low correlates with the Great Valley, where thick accumulations 

of low density Cenozoic sedimentary rocks cover the Great Valley sequence. The 

next parallel high occurs over the mafic granitic and metamorphic rocks of the 

Sierra Nevada. Shallower lows occur over certain large serpentinite bodies within 

the Franciscan assemblage, over felsic plutons in the granitic terranes of California 

and over a young concealed granitic pluton associated with The Geysers geothermal 

field [Griscom and J achens, 1990]. 

Magnetic anomalies in central California also show linear trends subparallel to the 

San Andreas fault system. A prominent magnetic high follows the Great Valley 

axis. To the west a smaller but still prominent high occurs over the western edge of 

the Great Valley, approximately overlying the position of the Coast Range fault and 

probably linked to tabular bodies of serpentinite within the Franciscan assemblage. 

Gravity lows along a fault may result from an increase in porosity by fracturing 

[Stierman, 1984]. However, some low velocity zones inferred from seismic data have 

no associated gravity low [e.g., Trehu and Wheeler 1987]. Macrofractures within 

a fault zone can cause large decreases in seismic velocity without an equivalent 

decrease in density as predicted from standard velocity-density relations [Griscom 

and Jachens, 1990]. Aeromagnetic data along the San Andreas fault from San 

Francisco and San Bernadino show that the creeping segment of the fault is char

acterised by broad aeromagnetic anomalies suggesting large concealed bodies of 

serpentinite [Hanna et al., 1972a, 1972b]. 

1.4.4 Stress and Heat Flow 

1.4.4.1 Stress 

Measurements of the magnitude and orientation of crustal stress in the vicinity of 

the San Andreas fault should provide the most direct evidence of the forces caus

ing interplate motion there. Data on principal stress orientations come from four 

main sources: earthquake focal mechanisms, elliptical well-bore enlargements or 

"breakouts", in situ stress measurements (primarily using the hydraulic fracturing 
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technique) and geological data [ Zoback and Zoback, 1980]. 

Stress measurements in central California have been described 'by Zoback and 

Zoback [1980], Zoback et al. [1987], Mount and Suppe [1987] and others. Mag

nitudes of in-situ stress measurements made to depths of 3 km indicate stress 

consistent with Mohr-Coulomb frictional faulting theory and laboratory derived 

coefficients of friction. Classical faulting theory predicts the direction of maximum 

horizontal compression ( IJHmax) to be 30° to 45° from the plane of a vertical strike

slip fault [Jaeger and Cook, 1969]. However, the orientation of IJHmax in central 

California is nearly perpendicular to the strike, particularly when stress indicators 

from right-lateral strike-slip focal mechanisms along the San Andreas fault sys

tem are ignored [Zoback et al., 1987]. This is supported by observed uplift of the 

Coast Ranges and current active reverse faulting and folding along nearly the entire 

length of the west side of the central Great Valley indicating geologically recent, 

San Andreas fault-normal compression. 

1.4.4.2 Heat Flow 

Heat flow measurements around the San Andreas fault zone [Lachenbruch and 

Sass, 1980] reveal several contrasting thermal regimes. Average heat flow is high 

(rv 2 HFU, rv 80 mWm-2
) throughout the segment of the Coast Ranges that 

encloses the San Andreas fault system. This broad anomaly falls off rapidly east

wards towards the Great Valley and north-westwards towards the Mendocino triple 

junction, about 200 km away. A localised region of high heat flow north of San 

Francisco is associated with the Geysers geothermal field. This broad thermal 

anomaly has been modelled as the migration of the Mendocino triple junction and . 

the truncation of subduction causing a "hole" in the lithosphere beneath which 

hot asthenosphere rises, resulting in an increase in surface heat flow by a factor 

of 2 within 4 Ma of the passage of the triple junction [Lachenbruch and Sass, 

1980; Zandt and Furlong, 1982]. After the initial upwelling of the asthenosphere 

into the hole, the lithosphere slowly cooled and thickened. This cooling resulted 

in a lowering of the geotherm and a decrease in surface heat flow and elevation 

away from the triple junction. Lithospheric strength as a function of time since 

Mendocino triple junction migration may be calculated [Furlong et al., 1989]. A 

low-strength region, whose lithospheric strength is less than 20% of the strength 

of thermally unperturbed lithosphere, extends from near Hollister northwards to 

past Point Arena (Figure 1.16). The predicted location of minimum strength, and 
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Figure 1.16: Region in Central California (shaded) where lithospheric strength is calculated to be 

less than 20% of the strength of thermally unperturbed lithosphere [From Furlong et a/. , 1989] 

therefore the preferred location of the plate boundary within the lower lithosphere, 

is east of the San Andreas fault and dips eastwards. However, dissipative heating 

due to distributed shear in the strong upper mantle on vertical planes parallel to 

the San Andreas fault could explain the source of excess heat flow in the Coast 

Ranges [Molnar, 1992]. 

Another feature of the thermal regime is the absence of any localised heat flow 

anomaly associated with the San Andreas or other faults that would be expected 

due to frictional heat generation from long-term, strike-slip motion [Brune et al, 

1969]. Heat flow measurements imply that the average frictional resistance to fault 

motion is no greater than about 20 MPa [Lachenbruch and Sass, 1981]. For the 

case of hydrostatic pore pressure, Byerlee's law [ Byerlee, 1978] predicts levels of 

shear stress of about 150 MPa at a depth of about 15 km for strike-slip faulting. 
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However, low permeability in the fault zone could lead to pore fluid pressures that 

are a significant fraction of the lithostatic pressure [Rice, 1992]. This would yield 

lower levels of shear stress in the fault zone and therefore no localised heat flow 

anomaly. 

1.4.4.3 The Stress-Heat Flow Paradox 

There is appreciable evidence that, while the frictional strength of the upper crust 

is high (iri general accordance with simple faulting theory and laboratory-derived 

coefficients of friction), the frictional resistance to motion along transform plate 

boundaries is extremely low. In addition, the orientation of principal horizontal 

stresses along the San Andreas fault system shows shear stresses acting on planes 

parallel to the San Andreas fault are extremely small. The observed direction 

of crustal compression i"u central California suggests that the direction of relative 

plate motion between the Pacific and North American plates is highly oblique to 

the San Andreas fault. However, the N35°-40°W fault strike in central California 

differs by only about 5° from the"' N35°W relative plate motion direction and this 

would result in essentially pure shear along the San Andreas and an approximately 

north-south direction of maximum horizontal compressive stress. 

Taken together the above evidence suggests that the San Andreas fault system 

is weak in a relative sense, in that the adjoining crust seems to be mechanically 

stronger. The fault may also be weak in an absolute sense since it may move under 

shear stresses far smaller than predicted by laboratory friction results unless the 

fault zone has a high permeability and pore fluid pressures are a significant fraction 

of the lithostatic pressure. 

If a transform plate boundary is considerably weaker than the adjacent crust then 

principal stresses may re-orientate themselves in order to minimise shear stresses on 

the planes parallel to the boundary [Zoback et al., 1987; Zoback, 1991]. In the case 

of a transpressional boundary such as the San Andreas, this re-orientation would 

lead to fault-normal compression. However, the orientations of principal stresses 

in the upper crust may be a consequence of the partitioning of oblique convergence 

into pure strike-slip along faults parallel to the boundary between rigid blocks and 

pure convergence on thrust faults that also have strikes parallel to the boundary 

[Molnar, 1992]. In this case, ignoring stress indicators from focal mechanisms 

along the major strike-slip faults whilst including focal mechanisms from adjacent 

thrust faults is biasing the interpretation of stress results. If the orientations are a 
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consequence of strain partitioning then these orientations provide less insight into 

the dynamics of crustal deformation than measurements of the full deformation 

gradient tensor obtained from geodesy. 

1.5 Summary 

The San Andreas fault system of California is a ( "'30 Ma years old) system of 

dominantly right-lateral, strike-slip faults that extends from the Gulf of California 

to Cape Mendocino and forms part of the boundary between the Pacific and North 

American plates. Global plate motion models indicate a relative velocity between 

the Pacific and North American plates of 46 mm/yr at N33°W. However, geological 

studies indicated a slip rate of only 35 mmjyr. The discrepancy, 10-13 mm/yr, is 

termed the San Andreas discrepancy. The missing motion is thought to be mainly 

concentrated in the Basin and Range province either distributed across many horst 

and graben features or predominantly in the western Basin and Range province 

along the Eastern California Shear Zone. The geologic assemblages in central 

California generally reflect the tectonic assemblages of an accretionary prism/fore

arc basin/magmatic arc relating to the subduction regime in California prior to the 

onset of the transform boundary. 

Geophysical studies have revealed many linear features within the system that 

can be directly related to mapped fault traces at the surface. Earthquake focal 

mechanisms show that whilst most earthquakes located on active faults show right

lateral strike slip mechanisms, many off-fault earthquakes within the Coast Ranges 

are consistent with reverse faulting on faults parallel to the general strike of the 

fault system. 

The magnitude and orientation of stress in the crust around the fault system and 

heat-flow measurements appear to reveal a paradox between these results and the

oretical considerations for strike-slip faults and laboratory experiments. Although 

not fully resolved, this paradox may imply a weak San Andreas fault, high pore fluid 

pressures and/or a bimodal distribution of stress orientations in the San Andreas 

fault system that was originally ignored. 
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Chapter 2 

Geodesy and Crustal Deformation 

the W"estern United States 

2.1 Overview 

• 
Ill 

Historically, geodesy has been- used for two purposes. First, geodesy is used to 

determine the size and shape of the Earth and the form of its external equipotential 

surfaces (scientific geodesy). Second it is used in the production of a primary 

framework of networks (primary arc) for horizontal and vertical ground control on 

which topographical and cadastral maps could be built (geodetic surveying). 

The use of geodesy for surveying purposes in California commenced in 1851-1887 

when a primary arc between San Francisco and Lake Tahoe was measured using 

triangulation. After the initial observation, San Francisco was destroyed in the 

1906 earthquake. The 2-4m of observed displacement along the 450-km long rup

tured segment disturbed this primary arc, and by July 1907 repair to the network 

had been completed. Differencing the pre- and post-earthquake station positions 

showed that crustal movements extended to many miles on either side of the fault 

[Hayford and Baldwin, 1907]. It was these results that led H. F. Reid to formulate 

his "elastic rebound" theory of earthquake genesis [Reid, 1910]. 

The value of geodesy for detecting crustal movements was recognised in a report on 

the 1906 earthquake (Lawson, 1908]. Deliberate investigation of crustal deformation 

then began in California with there-occupation in 1922-1928 of the sites observed in 

1906-1907, together with many more sites occupied in the previous century [Bowie 

1924, Bowie, 1928]. These sites were reoccupied approximately every decade until 

they were superseded by small networks across the San Andreas fault during the 

1940's. Displacements due to earthquakes in both California and Nevada were 

detected by triangulation networks, and a systematic movement of "' 50 mm/yr 
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was observed across the San Andreas fault [e.g., Whitten, 1956]. 

In the 1960's, the use of Electronic Distance Measurements (EDM) to conduct 

trilateration surveys enabled direct measurement of distance with at least an order 

of magnitude improvement in accuracy over triangulation. Improved modelling 

of atmospheric effects along EDM-measured lines increased precision further in 

the 1970's and trilateration surveys became firmly established as a major tool for 

studying tectonic processes on local and regional scales [Savage and Burford, 1973; 

Prescott et al., 1979, 1981; Savage, 1983]. EDM is limited to measuring line lengths 

between intervisible stations at spacings of less than"' 50 km [Savage and Prescott, 

1973]. Nevertheless, trilateration networks were widely established in the western 

United States over three decades in order to measure recent plate motions or crustal 

deformation (Figure 2.1). 

The use of space geodetic techniques (measurements using extraterrestrial objects) 

to monitor both inter- and intra-plate motions was first proposed in the late 1960's 

[Shapiro and Knight, 1970; Whitten, 1970]. About fifteen years were required to 

develop the capability of measuring lines up to the Earth's radius in length with a 

precision of one centimetre [Shapiro, 1983]. In the past decade, techniques such as 

Satellite Laser Ranging (SLR) [ Christodoulidis et al., 1985; Smith et al., 1990] and 

Very Long Baseline Interferometry (VLBI) [Herring et al., 1986; Clark et al., 1987] 

have provided precise measurements between points on a continental scale. These 

observations however, are restricted to relatively sparse networks by the cost of the 

methods and this limits their use in detailed studies of complex plate boundary 

systems. 

The launch, in 1978, of the first Global Positioning System (GPS) space vehicles 

(satellites) heralded the next advance in space geodetic measurements. GPS receiv

ing equipment is easily portable and the method thus does not suffer the logistic 

limitations of SLR and VLBI. The strength of GPS over terrestrial techniques is its 

ability to yield three-dimensional vector lengths (rather than line distances only) 

which are not intervisible. It has been widely used during the past decade (e.g., 

Figure 2.2) and the method will be covered in detail in Chapter 3. However, the 

results from previous GPS surveys are described in this chapter along with those 

from the other geodetic methods. 

Recently, another technique, Synthetic Aperture Radar interferometry (SAR) was 

introduced to crustal deformation studies with startling results when Massonet et 

al. [1993] produced a map of displacements that accompanied the magnitude 7.3 
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Figure 2.1: Trilateration stations measured by the US Geological Survey for crustal deformation 

studies in western North America using EDM since the 1960's. Over 2000 stations are plotted. 
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Figure 2.2: GPS stations measured by the US Geological Survey for crustal deformation studies 

in western North America since the late 1980's. 
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(Mw) Landers earthquake of June 28, 1992, containing some 300 million measured 

points. This can be compared with the coseismic displacement field mapped by 

Murray et al. [1993], using GPS, which contained just 28 points over the same 

area. However, SAR interferometry is still in its infancy and the problems of "un

interesting changes" caused by ground water content, vegetation and cloud cover, 

low precision ( rv 34 mm; adequate for coseismic displacement detection but at the 

signal level for aseismic deformation) and measurement of only one component of 

the deformation field (the component which points towards the satellite) have not 

yet been solved. 

2.2 Geodetic Methods 

2.2.1 Triangulation Su"rveys 

Triangulation is the determination of point positions by measurement of the angles 

between intervisible points using a theodolite. Angle measurements typically have a 

precision of about 0.1". However, atmospheric refraction associated with horizontal 

atmospheric density gradients results in more typical errors of 0.3-0.5" [Lambeck, 

1988). Line lengths are determined by the measurement of the lengths of one 

or more lines, and the use of these to determine the other distances. Although 

the accuracy of triangulation surveys is much lower than that of modern geodetic 

techniques, they have been used for a very long time, and the long time span of 

the observations has revealed the temporal evolution of the strain field around the 

San Andreas fault system during most of an earthquake "cycle" [Thatcher, 1983; 

Gilbert et al., 1993). 

2.2.2 Trilateration Surveys 

Trilateration surveys involve measurements of distance between stations to de

termine relative positions in the horizontal plane. Pulses of modulated light or 

microwaves of known frequency are emitted from a device at one end of the line to 

be measured and reflected back at the other end of the line. The returning pulse is 

compared with the emitted pulse and the phase difference measured. The distance 

is an integral number of wavelengths of the light pulse plus the phase difference. 

The integral number of wavelengths is calculated using measures of the phase dif-
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ference at other frequencies. The lengths of the lines measured are limited to about 

50 km by station intervisibility and attenuation of the signal. The expected error 

for EDM lines is u = J a2 + b2 L2 where L is the line length. a is a function of 

calibration and centering errors at the two stations. The length-dependent term 

b depends on errors in the atmospheric refractive index which in turn come from 

error in the average temperature used for the path. Typical values of a "' 1 em and 

b"' 10-6 cm-1 are achieved by measuring the pressure, water vapour pressure and 

temperature at the two ends of the line. Improved modelling of the atmospheric 

effects, by flying an aircraft along the line to measure atmospheric properties, can 

decrease b to about 2 parts in 107 [Savage and Prescott, 1973]. 

2.2.3 VLBI and SLR Surveys 

VLBI and SLR both rely on cumbersome, observatory-style equipment in order to 

measure changes in station position. These observations are, therefore, expensive 

to make and the number of observed sites very limited when compared to terres

trial geodetic techniques. VLBI and SLR experiments have generally concentrated 

on determining overall plate motions rather than small-scale crustal deformations. 

Most VLBI and SLR experiments relating to the western United States come under 

the auspices of the Crustal Dynamics Project (CDP) run by National Aeronautics 

and Space Administration (NASA). The CDP was formed in 1979 to apply space 

technology, in the form of VLBI and SLR, to the measurement of tectonic plate 

motions, regional crustal deformation, polar motion, Earth rotation and other phe

nomena associated with crustal movements [Coates et al., 1985]. 

In order to make an SLR measurement, the two-way travel time of a photon pulse 

from a laser at an observatory to corner cube reflectors on a satellite is measured. 

This travel time is converted into a range using the speed of light. Repeated range 

measurements are made to the satellite by a number of different stations. Each 

range is a constraint on the satellite orbit and the station location. The misclosures 

between a-priori predicted and observed ranges are minimised to yield the orbit and 

the three-dimensional coordinates of the tracking stations. The rate of change of 

the station positions over a long period of time reveal plate motions and local 

deformation. Errors in the velocities obtained by SLR are generally of the order of 

1-10 mm/yr. 

·In a VLBI experiment, two or more widely-separated radio telescopes simultane-
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ously observe and record nmse signals from extragalactic radio sources. These 

signals are cross-correlated in pairs to determine the delay (with respect to local 

station clocks) between their arrival at the two antennas and the rate of change of 

this delay. Generally observations are made at two frequencies, the X band (8.4 

GHz) and the S band (2.2 GHz) so that corrections for the dispersive effects of the 

ionosphere can be made. The delays and rates determined are used to estimate 

geodynamic parameters, including the positions of the radio telescopes and the 

orientation of the Earth in inertial space. Individual line-length vectors are defined 

in terms of a length, transverse and vertical component. Expected uncertainties 

in these components are in the region of 1-2 em on a 1000 km line and should 

scale proportionally with line length. The rates of change of these line components 

can then be used to calculate relative station velocities. Errors in the line rates of 

change are of the order of 1-10 mm/yr. Specific sets of line length component rate 

changes obtained from VLBI and SLR experiments under the CDP are regularly 

published. 

2.3 Crustal Deformation in California 

2.3.1 Introduction 

Geodetic networks for crustal deformation research in California are naturally con

~entrated along the San Andreas fault system (Figure 2.1 and 2.2). Other network 

locations are across the Garlock fault (Figure 1.3) and in Owens Valley on the 

California-Nevada border. About 100 years of triangulation, over 20 years of tri

lateration and about 10 years of GPS measurements have revealed a significant 

deformation field around the San Andreas fault system. The focus of this thesis is 

on the spatial pattern of interearthquake horizontal crustal movements in central 

California that results from relative motion between the Pacific and North Amer

ican plates. These movements supply the strain energy which is stored in crustal 

rocks and released in large earthquakes. Although observations of coseismic off

sets and anomalously rapid postseismic deformation have been detected by several 

networks, these observations are not considered in detail here. The deformation 

patterns of large strike-slip earthquakes are well-understood consequences of slip 

in the upper brittle crust. Examples of coseismic movements observed for specific 

California earthquakes are given, for example, by Lawson, [1908] (for the 1906 San 
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Francisco earthquake), Segall and Harris, [1987] (for the 1966 Parkfield earthquake) 

and Lisowski et al., 1990 (for the 1989 Lorna Prieta earthquake). 

2.3.2 Strain Rate Variations with Time 

Although the accuracy of triangulation surveys is much lower than that of modern 

geodetic techniques, the long time span of the observations has revealed the non

linear strain buildup within an earthquake cycle. 70 years of observations of the 

primary arc between San Francisco and Lake Tahoe were used to analyse the strain 

field associated with the 1906 rupture segment of the San Andreas fault [Gilbert et 

al., 1993]. Four triangulation surveys between 1922 and 1963 and one GPS survey 

in 1991 were used. Significant strain associated with the San Andreas fault system 

is measurable as far as the Great Valley (Figure 1.2) and in the 20-40 years follow

ing the 1906 earthquake high strain rates are suggested in both the Coast Ranges 

and the Great Valley regions. Furthermore, the results imply that the strain rate 

in the Coast Ranges does not decrease steadily throughout the earthquake cycle, 

but reaches a constant level with time. Data collected from along the rupture seg

ments of the 1906 and 1857 great earthquakes were combined to illustrate shear 

strain rates throughout a full earthquake cycle [Thatcher, 1983]. Although it may 

be incorrect to assume that the deformation cycle is similar in both regions, a tem

poral decline in the shear strain rate that persists for at least 30. years after the 

event is observed. Decaying strain rates have also been observed after other large 

earthquakes [e.g., Savage et al., 1994 (for the Lorna Prieta earthquake)]. 

2.3.3 Interseismic Strain Rates Along the San Andreas 

Fault System 

Strain-rate measurements which are consistent with temporally linear strain accu

mulation can be defined as the background interseismic rate. Principal interseismic 

strain rates determined from geodetic networks are displayed· in Figures 2.3 and 

2.4 and in Table 2.1. Some networks span a considerable area, and the strain may 

vary within that area. The strains shown are averages over the area of the network. 

In some cases this gives a false picture, for example, in areas where a significant 

amount of slip occurs as fault creep. In such areas movement is concentrated along 

the fault and not dispersed throughout the network. Dividing the such areas into 
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Figure 2.3: Principal strain rate axes determined from geodetic networks in the central California 

region. Area covered by each network is indicated by triangles. Thick strain rate axes indicate 

strain rates determined from larger networks (not indicated). See Table 2.1 for details. 
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Figure 2.4 : Principal strain rate axes determined from geodetic networks in southern California 

and western Nevada. Area covered by each network is indicated by triangles. Approximate 

extent of Eastern California shear zone is shown by shading. LP, Los Padres ; T , Tehachapi ; o, 

off-fault data; a, along-fault data; DV, Death Valley fault ; FC, Furnace Creek fault. Inset , shear 

strain rates (in pradfyr) calculated for subregions of the Anza networks plotted against distance 

perpendicular to the orientation of maximum shear strain for that network. Sources of data are 

given in Table 2.1 
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off-fault and on-fault subnetworks may provide a clearer picture. 

Along most of the San Andreas fault system the most significant and largest hor

izontal strain-rate component is shear. The orientation of maximum horizontal 

shear agrees very well with the surface strike of nearby faults. This agreement is 

maintained even along major changes of strike such as the big bend of the San 

Andreas fault in the Transverse Ranges (compare the Los Padre and Tehachapi 

networks, Figure 2.4) [Eberhart-Phillips et al., 1990; Lisowski et al., 1991; Gilbert 

et al., 1994]. Significant shear-strain rates are observed as far as about 100 km from 

the San Andreas fault system. In southern California, just north of the California

Mexico border, most of the crustal deformation is contained within a 40-60 km 

wide zone centred on the Imperial fault (Figure 1.3) [Lisowski et al., 1991]. To 

the northwest, the zone of appreciable shear-strain deformation (the "deformation 

zone") widens to greater than 100 km. In the Anza network (Figure 2.4, main dia

gram and inset), shear-strain rates calculated for 7 subnetworks show peaks across 

both the San Jacinto and San Andreas faults [King and Savage, 1983]. Shear strains 

are expected to peak at a fault that is locked, and therefore accumulating strain, 

in the upper brittle part of the crust.· The twin peaks in this network suggest that 

both the San Jacinto and San Andreas faults are accumulating strain. 

North of the big bend region, along the 160-km long central creeping section, a 

geodetically-derived displacement rate of 33 ± 1 mm/yr obtained for a 60-km wide 

network spanning the fault is close to the maximum fault-creep rate of 30 mmjyr 

measured using alignment arrays and wire extensometers. These data indicate 

that little strain is accumulating in the crustal blocks on .either side of the San 

Andreas fault in this segment. Most of the relative plate motion is accommodated 

by rigid-block translation across the San Andreas fault. 

North of the central creeping segment, in the San Francisco bay region, the defor

mation zone once again broadens. Significant shear-strain rates are observed across 

the seismically active Hayward and Calaveras faults (and their northern extensions, 

Figure 1.2) to the east of the San Andreas fault (Figure 2.3). In addition fault creep 

occurs along several segments of the Calaveras and Hayward faults (Figure 2.3). 

Small (up to 250 m) triangulation triangles are currently being used to measure 

fault creep in the San Francisco Bay region. About 24 sites have been measured 

every two to three months since 1979 [Galehouse, 1992a; b]. Creep rates are also 

measured using offset cultural features (curbs, fences, and buildings) [ Lienkaemper 

et al., 1991]. Creep rates of about 13 mm/yr have been measured on the southern 
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Table 2.1: Average Principal Strain Rates, Strike of Maximum Right-Lateral Shear, and Relative 

Plate Motion Measured Across Trilateration Networks Along the San Andreas Fault System 

Strike of 

Principal Strain Rates Maximum Relative 

il i2' Right Lateral Velocity 

Network J-LStrain/yr• J-LStrain/yr Shear deg.t mmfyr Reference 

Geyser 0.210 -0.180 N34.0°W ± 2.0° 24.01 [Prescott and Yu, 1986) 

Santa Rosa 0.190 -0.130 N32.9°W ± 1.9° 14.01 [Prescott and Yu, 1986) 

Napa 0.160 -0.010 N26.0°W ± 9.1 o 5.ol [Prescott and Yu, 1986) 

North San Francisco Bay 0.179 -0.158 N34.4°W ± 1.5° 31.0 [Lisowski et a/., 1991) 

Point Reyes 0.360 -0.280 N43.1 °W ± 2.3° 23.01 [Prescott and Yu, 1986) 

East Bay 0.135 -0.125 N35.0°W ± 4.0° 2.01 [Prescott et a/., 1981) 

Lake San Andreas 0.385 -0.225 N28.0°W ± 10.0° 2.01 [Prescott et al., 1981) 

South San Francisco Bay 0.169 -0.206 N31.0°W ± 1.6° 38.0 [Lisowski et a/., 1991) 

Calaveras 0.320 -0.300 N25.0°W ± 4.0° 4.01 [Prescott et a/., 1981) 

Radio Facility 0.455 -0.335 N47.0°W ± 6.0° 2.01 [Prescott et a/., 1981) 

Black Mountain 0.210 -0.350 N52.0°W ± 6.0° 2.01 [Prescott et a/., 1981) 

Monterey Bay 0.557 -0.593 N36.0°W ± 0.9° 38.0 [Lisowski et a/., 1991) 

Hollister (all data) 0.570 -0.670 N33.0°W ± 1.0° 23.01 [Savage et a/., 1979) 

Hollister (southwestem) -0.140 -0.220 N00.0°W ± 3.0° [Savage et a/., 1979) 

Hollister (central) 0.490 -0.160 N53.0°W ± 3.0° [Savage et a/., 1979) 

Hollister ( eastem) 0.180 -0.130 N61.0°W ± 3.0° [Savage et a/., 1iH9) 

Owens Valley 0.082 -0.039 N28.0°W ± 3.0° 6.01 [Savage and Lisowski, 1995) 

Excelsior (northem) 0.002 -0.004 N18.0°W ± 9.0° [Savage and Lisowski, 1984) 

Excelsior (central) 0.006 -0.000 N58.0°W ± 12.0° [Savage and Lisowski, 1984) 

Excelsior (southem) 0.008 -0.002 N53.0°W ± 14.0° [Savage and Lisowski, 1984) 

Yucca Mountain 0.010 -0.009 N45.0°W ± 24.0° [Savage et a/., 1994) 

Garlock 0.070 -0.110 N33.0°W ± 3.0° -12.01 [Savage et a/., 1990) 

Carrizo 0.126 -0.138 N43.3°W ± 2.9° 21.0 [Lisowski et a/., 1991) 

Tehachapi (along fault) 0.200 -0.185 N64.6°W ± 0.9° [Eberhart-Phillips et al., 1990) 

Tehachapi (off fault) 0.090 -0.100 N43.5°W ± 2.1 o [Eberhart-Phillips et a/., 1990) 

Tehachapi (all data) 0.150 -0.140 N59.6°W ± 0.8° 24.01 [Eberhart-Phillips et a/., 1990) 

Los Padres (along fault) 0.170 -0.170 N47.0°W ± 1.1° [Eberhart-Phillips et a/., 1990) 

Los Padres (off fault) 0.100 -0.080 N43.9°W ± 2.2° [Eberhart-Phillips et a/., 1990) 

Los Padres (all data) 0.145 -0.125 N46.7°W ± 0.9° 21.01 [Eberhart-Phillips et a/., 1990) 

Central Transverse 

Ranges 0.158 -0.151 N61.7°W ± 1.1° 18.0 [Lisowski et a/., 1991) 

Westem Transverse 

Ranges 0.125 -0.131 N54.4°W ± 1.4° 22.0 [Lisowski et al., 1991) 

Barstow 0.070 -0.060 N33.0°W ± 3.0° 6.01 [Savage et a/., 1990) 

W. Mojave ( deviatoric) 0.080 -0.080 N41.0°W ± 5.0° [Savage et al., 1990) 

E. Mojave ( deviatoric) 0.020 -0.020 N77.0°W ± 25.0° [Savage et al., 1990) 

Cajon 0.160 -0.190 N61.0°W ± 2.0° 12.01 [Savage et a/., 1986) 

Anza 0.150 -0.150 N46.0°W ± 1.0° [Savage et al., 1986) 

Anza-Joshua 0.113 -0.121 N44.6°W ± 1.1° 31.0 [Lisowski et a/., 1991) 

Salton 0.180 -0.160 N40.0°W ± 1.0° [Savage et a/., 1986) 

Salton 0.141 -0.131 N39.4°W ± 1.3° 37.0 [Lisowski et a/., 1991) 

• Extension reckoned positive. 

t Strike of maximum right-lateral shear is 45° clockwise of the axis of maximum principal extension rate (il). 

I Calculated by multiplying maximum horizontal shear rate by width of network perpendicular to strike of 

maximum right-lateral shear. 

Negative velocity for Garlock network represents left-lateral shear along the Garlock fault. 
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section of the Calaveras fault. Elsewhere, measured creep rates range from about 1 

to 9 mm/yr. To the north, around Point Arena, recent GPS results have indicated 

strain distributed throughout the Coast Ranges in a deformation zone similar to 

the northern San Francisco bay region [ J. Freymueller, personal communication, 

1993]. 

The integrated, right-lateral displacement rates for California are shown in Fig

ures 2.5 and 2.6. These rates constrain the portion of Pacific-North American 

plate motion accommodated across the San Andreas fault system. Maximum rates 

for networks spanning the whole of the fault system range from 31 to 37 mm/yr and 

average 35 mm/yr which is similar to the secular slip rate obtained from geologic 

studies. 

In addition to right-lateral shear strain, fault-normal compression has been detected 

at several geodetic networks with the Coast Ranges. Fault-normal contraction in 

the Parkfield region was inferred by Harris and Segall [1987] and Sung and Jackson 

[1989] from the misfit of trilateration data to their fault models. Strain rates in a 

network between the San Andreas fault and the Great Valley in central California 

displayed the orientation of maximum compressive strain (N16°E ± 13°) to be 

similar to the orientations of major fold structures in the region (N25°E) [Sauber 

et al., 1989]. The measured strain, although not significant at the 95% confidence 

limit, was attributed to compression across the folds with a shortening rate of 

around 6 mm/yr: Strain rates obtained from GPS lines spanning the eastern Santa 

Barbara Channel, the Ventura basin, the Los Angeles basin, and the Santa Maria 

Fold and Thrust Belt in southern California indicate a component of shortening, 

up to 5 mm/yr, superimposed on the expected shear strain [Donnellan et al., 1993]. 

No systematic convergence on the fault was observed between 1973 and 1989 in 

any of the USGS trilateration networks spanning the fault system (Salton, Anza

Joshua, Transverse Ranges, Carrizo, Monterey Bay, San Francisco Bay) [Lisowski 

et al., 1991]. 

2.3.4 Strain Rates Away from the San Andreas Fault 

System 

In addition to deformation measured along the San Andreas fault system, four 

geodetic networks in eastern California situated between the northern Owens Valley 

and the Transverse Ranges exhibit simple, right-lateral, shear-strain accumulation 
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Figure 2.5: Relative strike-slip displacement rates in central California. Values in millimetres per 

year. Arrows indicate orientation of maximum, right-lateral, shear strain. Lines indicate width 

of zone measured. See Table 2.1 for details. 
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Figure 2.6: Relative strike-slip displacement rates in southern California. Values in millimetres 

per year. Arrows indicate orientation of maximum, right-lateral, shear strain. Lines indicate 

width of zone measured. See Table 2.1 for details. 
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of 0.14 J-lrad/yr (Figure 2.4) [Savage et al., 1990]. In the White Mountains, just 

north of Owens Valley, small but resolvable strain rates have been measured. The 

orientation of the strain field indicates crustal extension perpendicular to the north

south trending normal faults in the area. To the east of Owens Valley, the Yucca 

Mountain geodetic network in Nevada (Figure 2.4), has shown no significant strain 

accumulation over the 1983-1993 interval [Savage et al., 1994]. 

2.3.5 Displacement Patterns in the San Francisco Bay 

Region 

Details of the deformation within this region are best shown by calculating individ

ual station velocities that are then resolved into components parallel and perpen

dicular to the trend of the fault system. Given the rate of change of length for each 

line in a trilateration network, station velocities relative to a point at the centre 

of the network can be determined using a method that minimises the displace

ments perpendicular to the fault in order to constrain rigid rotation of the network 

(Prescott, 1981 J. This provides an appropriate solution for a region deformed by 

tectonic shear. 

Figures 2. 7 and 2.8 show the fault-parallel component of velocity for two trilat

eration networks in the San Francisco bay region. In the Monterey bay region 

(Figures 2.3 and 2. 7), large offsets across the San Andreas and Calaveras faults 

indicates that a significant fraction of the relative plate motion is being accommo

dated by fault creep. However, velocity gradients in the blocks to the southwest, 

northeast and between the faults indicates some internal deformation that could 

result from locked zones on those faults planes. The integrated displacement rate 

across the profile, 38 ± 4 mm/yr [Lisowski et al., 1991], is consistent with the 

35 mmjyr of Pacific-North American plate motion attributed to the San Andreas 

fault system. This suggests that most of the deformation zone has been traversed 

by the network in the Monterey bay region. 

To the north, in the northern San Francisco bay region, 25 ± 6 mmjyr of relative 

motion is distributed over about 60 km in the east-west direction (Figure 2.8). 

To the southwest of the San Andreas fault, the velocity gradient appears to be 

very sma1l. To the northeast, between the San Andreas and Green Valley faults 

the. station-velocity profile shows a near-linear trend. Between these two trends, 

within a few km of the San Andreas fault, there is a rapid change in the velocity 
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gradient indicating a concentration of strain close to the fault. Only 0. 7 mm/yr of 

fault creep is reported at this locality [ Galehouse, 1992b] and creep therefore does 

not appear to explain the near-fault concentration of strain. The continuation of 

movement to the eastern edge ofthe profile suggests that the additional5-10 mm/yr 

of relative plate motion (35 mm/yr) is occurring further east. 

2.4 Plate Tectonics and the San Andreas 

Discrepancy 

In California, local, fault-crossing geodetic surveys have shown that about 35 

mm/yr of relative plate motion is accommodated by the San Andreas fault sys

tem. There is close agreement between the geodetic data and the findings from 

geological data which reflect the cumulative effects of many large earthquakes. 

This agreement between the geologic plate motions averaged over the past 2-3 Ma 

and the geodetically measured motions averaged over several years indicates that 

movement at this fault system has remained constant at least 2-3 Ma. Geodetically

derived estimates of plate motion are thus expected to compare well with global 

plate motion models derived from ridge spreading rates, transform fault azimuths 

and earthquake slip vectors. The use of ground-based geodetic surveys to measure 

plate motion is, however, limited in two ways. First, the accuracy of the inferred 

velocities is often too poor to make quantitatively useful comparisons. Second, 

geodetic networks are usually less than 100 kilometres wide and are too narrow to 

span most continental plate boundary zones. These limitations are overcome by 

space geodetic techniques which are capable of accurate measurements over very 

long distances. 

A velocity solution calculated using SLR results from Smith et al. (1990] and 

VLBI results summarised by Caprette et al. [1990] were compared with the rates 

predicted by the NUVEL-1 model [Robbins and Smith, 1990]. The slope of the 

linear fit is 0.966 ± 0.009 (1.007 ± 0.009 when accounting for the recently revised 

time scale). Therefore, the motion between plates appears to be steady over time 

spans differing by a factor of 1,000,000. 

With sites located throughout North America, VLBI and SLR data can provide 

constraints on the integrated rate of deformation across sections of the complex 

Pacific-North American plate boundary especially where geological information is 
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Figure 2.9: Calculated VLBI site velocities for western North America and their 95% confidence 

ellipses. The observation frame minimises the velocities of six sites in the interior of the North 

American plate (Ft. Davis, Texas; Flagstaff, Arizona; Platteville, Colorado; Yuma, Arizona; 

Westford, Massachusetts and Fairbanks, Alaska). PB, Pear Blossom. Vector marked NUVEL-lA 

indicates Pacific-North American motion as predicted by the NUVEL-lA plate model for central 

California (at latitude 36°N). Data from Ward [1990) 

sparse. VLBI sites situated along the central California coast have been found to 

move at the full Pacific rate consistent with NUVEL-lA predictions [Clark et al., 

1987; Kroger et al., 1987; Ward, 1990]. The VLBI station YUMA was found to 

be within the stable interior of the North American plate whereas Fort Ord and 

Vandenberg are within the stable interior of the Pacific plate (Figure 2.9) [Ward, 

1990]. The Euler vectors for deformation between several provinces within the 

western United States were constructed from the VLBI data set. Constructing 

VLBI plate models allows averaging of the bias and errors of individual site veloci

ties and enables the consistency of specific plate models with the VLBI data set as 

a whole to be quantified. In central California the plate motion ( 46.8 ± 0.5 mm/yr 

at N36°W ± 1 °) is accommodated by 38.6 ± 0.4 mm/yr at N36°W ± 1 o on the San 

Andreas fault system and 8.2 ± 0.4 mm/yr at N34°W ± 2° taken up to the east of 

the San Andreas fault, presumably in the Basin and Range province. This rate for 

Basin and Range deformation is consistent with previous geological estimates but 

trends 14-30° more northerly than associated direction estimates. Using a slightly 

larger VLBI data set the Euler vector for the Sierra Nevada microplate, located 
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fault takes up only a portion of the Pacific-North American plate motion as predicted by the 
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Ellipses indicate 95% confidence limits for Sierra Nevada-North America motion, Pacific-North 

American motion and San Andreas fault slip. 

between the San Andreas fault system and the Basin and Range province, rela

tive to the North American plate was determined [Argus and Gordon, 1990]. The 

Sierra Nevada-North America Euler vector suggests a velocity of 11 ± 1 mm/yr at 

N28°W ± 3° at Owens Valley (37.22°N). This velocity is not parallel to the aver

age direction of maximum Basin and Range extension of rv N60°W, but instead is 

nearly parallel to the strike of the Sierra Nevada-Basin and Range boundary along 

the Owens Valley. Using their VLBI-derived Euler vector for Sierra Nevada-North 

America motion, together with the NUVEL-1A Pacific-North America vector and 

the observed velocity along the San Andreas fault, a modified San Andreas dis

crepancy can be calculated (Figure 2.10) [Argus and Gordon, 1990]. The difference 

can be described at 36°N along the San Andreas fault by a vector of 4 ± 2 mtn/yr 

directed toward N13°W. 

Deformation measured at several geodetic networks in eastern California indicates 

shearing with negligible area change that can account for 3-8 mm/yr (and possibly 

12 mm/yr, Sauber et al., [1994]) of the plate motion attributed to the Basin and 

Range province. This motion is carried north-northwest from the Mojave desert 

along the Eastern California shear zone. North of the Garlock fault, the exact 
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position of the shear zone is unresolved. Using geodetic data, the shear zone 

deformation is proposed to transfer to the Owens Valley fault [Savage et al., 1990], 

whereas on the basis of geologic arguments the shear zone is connected to the Death 

Valley-Furnace Creek faults (100 km east of Owens Valley, Figure 2.3) [Dokka 

and Travis, 1990a, b]. The observed velocities of VLBI stations Owens Valley 

Radio Observatory (OVRO) and Mojave (10.0 ± 0.5 mm/yr at N38°W ± 3° and 

8.6 ± 0.4 mm/yr at N29°W ± 4° respectively, Dixon et al. [1993]) relative to 

the North American plate interior seem to require that the shear zone be east of 

these stations. If the deformation is concentrated solely along Owens Valley these 

velocities should be only a fraction of the relative motion assigned to the shear zone. 

The shear strain measured in Owens Valley seems to be too high to be outside of 

the shear zone proposed by Dokka and Travis [1990a, b]. The relative motion 

carried by the shear zone is probably transferred to the Death Valley-Furnace 

Creek and Owens Valley faults with 3 mm/yr occurring along the Owens Valley 

branch [Savage and Lisowski, 1995]. The accommodation of 8 mm/yr along the 

Eastern California shear zone alone can account for the San Andreas discrepancy 

up to a latitude of about 38°N. If the shear zone continues northwards then it must 

either be more diffuse or partition into movement north-northwest along the Sierra 

Nevada mountain front and more northerly along the Nevada seismic zone [Savage 

et al., 1990]. 

2.5 Summary 

The destruction, by the 1906 San Francisco earthquake, and subsequent repair of 

the transcontinental geodetic control network provided the first example of the use 

of geodetic surveying for the detection of crustal movements. Since then an increas

ing number of sites have been occupied specifically for the deliberate investigation 

of crustal deformation. More accurate surveying methods have been developed over 

time, from terrestrial techniques such as triangulation and trilateration to space 

techniques such as VLBI, SLR and GPS. These have been able to detect increas

ingly finer details of the distribution of crustal deformation over increasingly larger 

regions. 

Repeated surveys of geodetic networks in the western United States have revealed 

a significant deformation zone around the San Andreas fault system. This de

formation is primarily right-lateral shear with a maximum relative motion of 35-
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40 mm/yr across a 50-100 km wide zone. The orientation of maximum horizontal 

shear agrees with the surface strike of nearby faults. Smaller, but still resolvable, 

deformation has been measured away from this fault system, particularly along the 

Owens Valley in eastern California. 

In addition to measuring local, plate-boundary deformation, geodetic surveys, es

pecially the more recent space techniques with their ability to measure longer line 

lengths, have been able to help constrain the distribution of relative plate motion 

in the wide boundary between the Pacific and North American plates. In par

ticular, geodetic measurements are able to clarify the distribution of deformation 

where geological and other geophysical information is sparse or uncertain such as 

within the Basin and Range province. A significant proportion of the San Andreas 

discrepancy can be attributed to deformation along the Eastern California Shear 

Zone. 
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Chapter 3 

The Global Positioning System {GPS) 

3.1 Introduction 

GPS is a worldwide satellite-based tadionavigation system, that was developed by 

the United States Department of Defense (DoD) to "satisfy the requirements for 

the [U.S.] military forces to accurately determine their position, velocity and time 

in a common reference system, anywhere on or near the Earth on a continuous 

basis." [Wooden, 1985]. The primary goals were military, but civilian geodesists 

soon recognised the potential of GPS to produce precise relative positioning at the 

sub-centimetre level using a method not planned by the designers [Counselman and 

Shapiro, 1979; MacDoran1 1979, Bossler et al., 1980]. Such precision suits GPS to 

application to tectonic problems. 

GPS has many advantages over terrestrial and other space techniques. Unlike ter

restrial techniques, it does not require intervisibility between measurement points, 

thus making surveying much more flexible in rugged topography, amongst buildings 

or in bad weather. GPS data also yield more information. The three dimensional 

vector separation of points can be obtained, whereas no single terrestrial tech

nique can provide this information. VLBI and SLR, because they involve global 

networks, are powerful to study global plate motion, Earth orientation and large

scale, boundary-zone deformation [e.g. Christodoulidis et al., 1985; Kroger et al., 

1987; Clark et al., 1987]. However, these techniques are cumbersome and imprac

tical for detailed studies of plate boundary zones. Agreement between GPS- and 

VLBI-derived lines up to 2000 km long has been demonstrated at the several

centimetre level for lines in the western United States [Blewitt, 1989]. GPS can 

therefore provide, to a suitable accuracy, a kinematic description of crustal defor

mation in broad, complex, plate boundary zones at distances ranging from a few 

km to 1000 km or more. 
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3.2 Fundamentals of GPS Surveying 

3.2.1 The GPS Segments 

3.2.1.1 Introduction 

GPS can be thought of as consisting of three segments: The space segment consist

ing of space vehicles (hereinafter referred to as satellites) which broadcast signals, 

the ground-based control segment that maintains the system, and the user segment. 

3.2.1.2 The Space Segment 

The space segment comprises 21 satellites plus three operational spares in six orbital 

planes, i.e., four satellites in each plane. The satellites occupy near-circular orbits at 

20,200 km and inclination angle of 55° to the equator with a period of approximately 

12 hours. This configuration provides continuous, four-satellite (or more) coverage 

worldwide apart from polar regions. 

An oscillator on board each satellite generates two carrier signals known as 11 

and 12. The frequency of these signals are integer multiples of a fundamental fre

quency, f 0 , which is 10.23 MHz. These carriers are modulated to transmit binary 

information, performed by hi-phase modulation, to provide satellite identification 

codes, clock readings and orbital parameters. Two pseudo-random noise (PRN) 

codes are transmitted. A coarse acquisition (C/ A) code with a bit rate of fo/10 

is transmitted on 11 and repeated every millisecond. A precision (P) code with a 

bit rate of fo is transmitted on 11 and 12 and repeated every 266.4 days. Each 

satellite also transmits a navigation message containing its own orbital elements, 

clock corrections, the system time and status messages together with an almanac 

which provides approximate data for every active satellite. The navigation message 

is transmitted over a period of 30 seconds at a frequency of 50 Hz (Table 3.1 ). The 

various satellites all transmit on the same frequencies, but with different code as

signments. The broadcast signal has spread-spectrum characteristics which provide 

a large margin of resistance to interference. 

The two PRN codes allows GPS to provide two levels of real-time positioning ser

vice, a Standard Positioning Service (SPS) and a Precise Positioning Service (PPS). 

SPS is provided via the C /A code and navigation ·message and is planned to en-
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Table 3.1: Components of the satellite signal. From [Hoffmann- Wellenhof et a/., 1993]. 

Frequency 

Component MHz Wavelength 

Fundamental Frequency fo 10.23 

11 154fo 1575.42 19.0 em 

12 120fo 1227.60 24.0 em 

P code fo 10.23 rv 30m 

C/A code fo/10 1.023 rv 300m 

Navigation Message fo/204600 50.10-6 

able real-time horizontal positioning accuracy within 100 m at 95% probability. 

The PPS is intended for military positioning and is provided via the P code. PPS 

is denied to unauthorised (non-military) users by Selective Availability (SA) ~nd 

Anti~Spoofing (A-S). Selective Availability involves degrading the navigation mes

sage, orbit data and satellite clock frequency stability. Anti-Spoofing is switching 

off of the P code. Authorised military personnel then use the classified Y code. SA 

has been on sporadically since April1990, and A-S has been turned on permanently 

since October 1993. 

3.2.1.3 The Control Segment 

The control segment consists of five monitor stations at Hawaii, Kwajalein, Ascen

sion Island, Diego Garcia and Colorado Springs, three ground antennas at Ascen

sion Island, Diego Garcia and K wajalein, and a Master Control Station at Falcon 

Air Force Base in Colorado. The monitor stations, whose coordinates are known 

precisely, passively track all the GPS satellites in view. The information is used to 

determine orbits and to update the SV navigation messages. Updated information 

is transmitted to each satellite via the ground antennas. 

The tracking data are generally not available to the public arid independent civilian 

networks have been established for orbit determination purposes. Such networks 

include the Cooperative International GPS Network (CIGNET) [Chin, 1988], the 

International GPS Service for Geodynamics (IGS) [Mueller and Beutler, 1992] and 

the Southern California Permanent GPS Geodetic Array (PGGA) [Lindqwister et 

al., 1991]. The tracking stations are generally co-located at V1BI antennas. 
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3.2.1.4 The User Segment 

The user segment consists of GPS receiving equipment that provides positioning, 

vt;locity and precise timing to the user. The basic user equipment is comprised 

of antenna/pre-amplifier, receiver, microprocessor, power supply and input/output 

devices. The antenna, in most cases, has a broadbeam characteristic enabling it 

to receive signals from the zenith to the horizon for one or both frequencies. The 

actual position measured is the phase centre of the antenna which must be properly 

related to some position such as a survey mark. The receiver section contains the 

signal processing electronics and consists of several channels capable of tracking and 

measuring the GPS signal using a variety of approaches such as code correlation and 

carrier signal squaring. The microprocessor processes the incoming data, provides 

a link to the operator and controls any input/ouput devices. The most common 

output device is a tape recorder or disk drive used to record observations and other 

information extracted from the signal. When data is collected for post-processing, 

the receiver makes measurements at regular intervals which are known as epochs. 

3.2.2 Positioning from Space 

3.2.2.1 Absolute and Relative Point Positioning 

GPS can provide both absolute- and relative-point positions. Absolute point posi

tioning is the determination of a position with respect to a well defined coordinate 

system (Figure 3.1). The coordinates of a satellite relative to the centre of the 

Earth can be computed from orbital information. From this and the measured 

range vector between the satellite and the receiver the position of the receiver can 

be calculated. Absolute positioning is generally undertaken in real-time mode, that 

is receiver positions are calculated whilst receiving the satellite signals. 

Relative point positioning involves the simultaneous observation of a group of satel

lites by two or more receivers to obtain the three-dimensional vectors connecting 

all the receivers. These can be used to calculate the coordinates of the points if 

the location of one or more stations are known a priori. Relative positioning is 

generally not used in real-time mode hut instead the data is stored for processing 

at a later stage. The accuracy of relative positioning is far superior to that of 

absolute positioning because all the major errors can be made to cancel out at the 

data processing stage. 
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Figure 3.1: Principle of absolute point positioning 

3.2.2 .2 Ranging 

Positioning with GPS is achieved using ranging. The position vector of the receiver 

is obtained by measuring three, non-coplanar ranges to three satellites of known 

position. Ranging to three satellites places the receiver at two possible positions 

formed by the intersection of three spheres with the satellites at the centres and 

the appropriate ranges as radii . Knowledge that the receiver is on the surface of 

the Earth eliminates one of these positions. Positioning with GPS is achieved by 

one-way ranging i.e., the range is measured by the use of one way travel information 

of the signal from the satellite to the receiver. In the case of absolute, real-time 

positioning, ranges are calculated and processed in quasi-real time positioning by 

the receiver. In the case of relative positioning, receiver-calculated ranges are stored 

and post-processed at a later stage. The rest of this chapter will focus on relative 

positioning. 

3.2.3 Measurements 

In order to calculate receiver positions a GPS receiver makes pseudorange and 

carrier beat phase measurements. The basic measured quantity is the arrival time 

of the signal at the receiver. This is achieved by correlating a replica of the code 

(P or C/ A) generated in the receiver with the code received from the satellite 

(Figure 3.2a). The calculated range, p, between the satellite and the receiver is 
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then 

(3.1) 

where c is the speed of light, tr is the time the message is received at the re

ceiver and ts is the time the message was transmitted from the satellite. Errors in 

the receiver or satellite clocks contaminate these ranges which are therefore called 

"pseudoranges", p. For absolute positioning, obtaining the pseudorange to a fourth 

satellite is necessary to obtain a correction to the receiver clock. In addition to 

clock offsets there are delays in signal propagation through both the ionosphere and 

troposphere. Taking into account these delays the pseudorange equation becomes 

p = p + c(dt- dT) + dion + dtrop, (3.2) 

where dt and dT are the offsets from true GPS time of the satellite and receiver 

clocks and dion and dtrop are the corrections for ionospheric and tropospheric delays. 

The precision with which the correlation peak of pseudorange measurements can 

be measured is about 1% of the wavelength (i.e., the length of one bit of code). 

This yields a range measurement precision of 30 em for P-code measurements and 

3m for C/ A-code measurements. 

A carrier beat phase measurement is the observed difference or "beat" between the 

incoming, Doppler-shifted satellite carrier phase and a constant frequency gener-
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ated in the receiver 

(3.3) 

where ¢l(t) is the phase of the signal transmitted by the kth satellite at timet, and 

</>i(T) is the phase at the ith receiver at reception timeT (both expressed in cycles) 

(Figure 3.2b ). Including the effects of clock offsets and signal propagation delays 

giVes 

</>total=-(! /c)· P- J · (dt- dT)- (f /c)· (-dian+ dtrop), (3.4) 

from which the range, p, can be calculated. 

Since the carrier wavelengths are much shorter than the bit lengths of either codes 

(Table 3.1) the precision of carrier beat phase measurements is much higher than 

those for pseudorange ·measurements. For the 11 carrier signal the precision is 

about 2 mm. 

Carrier beat phase measurements have a fundamental disadvantage. The measured 

carrier beat phase, </>measured, is the number of phase cycles (the integer number plus 

the fractional part) from the initial epoch, t 0 , (when the receiver began recording) 

to epoch t, counted by the receiver. However, <!>total, in equation (3.4) is the total 

phase which includes an integer number of cycles, N, between the receiver and 

satellite at the initial epoch t 0 

</>total = </>measured + N (to)· (3.5) 

N is unknown and is referred to as the cycle ambiguity. One cycle ambiguity exists 

per satellite/receiver pair provided the receiver maintains continuous "lock" on the 

satellite during the observation session. The equation for the instantaneous carrier 

beat phase measurement for one satellite/receiver pair at one epoch may then be 

written as 

</>measured=-(! /c)· P- J · (dt- dT)- (f /c)· (-dian+ dtrop)- N, (3.6) 

Multiplying by the wavelength, A= cf j, of the carrier and defining the phase range 

<I> as 

<I> = - A</>tota/, (3.7) 

the carrier beat phase equation in length units is 

<I> = p + c( dt- dT) + ,\N- dian+ dtrop, (3.8) 

This observation equation can be compared with the pseudorange equation (3.2). 

Because the ionosphere causes non-linear dispersion of electromagnetic waves, the 
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group velbcity (associated with the code data) differs from the phase velocity (as

sociated with the phase data). As a result the effect of the ionosphere is to delay 

code measurements and to advance phase measurements, and thus the delay dion 

in equations (3.2) and (3.8) are equal in magnitude but opposite in sign. Unlike 

the ionosphere, the troposphere, at the frequencies used by GPS, is not dispersive 

so that the group and phase delays are equal. 

3.2.4 Error Sources Affecting GPS Positioning 

The code pseudoranges and carrier beat phase ranges are both affected by system

atic errors and random noise. Systematic errors, termed "biases", can be classified 

into three groups: satellite-, receiver-, and propagation/observation-biases. One 

way to quantify these biases is to project their influence into the range measure

ment and the sum is called the range bias. 

Satellite biases consist of errors in the broadcast satellite clock models and satellite 

ephemerides (orbits). Receiver biases mainly consist of errors in the receiver clock. 

Observation/propagation biases are those errors associated with the signal prop

agation such as ionospheric and tropospheric delays and errors dependent on the 

observation type such as the cycle ambiguity in carrier beat phase measurements 

(Table 3.2). The major observational errors are cycle slips and multipath. A cycle 

slip is a discontinuity of an integer number of cycles in the measured carrier beat 

phase resulting from a miscount in the GPS receiver (Figure 3.3). Cycle slips can 

be caused by obstructions of the satellite signal, a low signal-to-noise ratio, failure 

in the receiver software or malfunctioning satellite· oscillators. Multipath results 

from interference between radiowaves which have travelled between the satellite 

and receiver via two or more paths of different electrical length (e.g., by reflecting 

off buildings) [Bowditch, 1981]. 

The magnitude of the receiver position error obtained by GPS is dependent on the 

magnitude of the range bias and the geometric strength of the satellite configuration 

observed. The effect of satellite geometry can be expressed by the Geometric 

Dilution of Precision (GDOP). The value of GDOP is inversely proportional to the 

instantaneous volume of the body formed by the points of unit vectors from the 

user to the satellites. A low value of GDOP indicates a well distributed satellite 

configuration and correspondingly small errors in position. 
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Table 3.2: Contributions to the range bias [from Wells, 1987]. 

Bias Type 

Satellite clock 

Receiver clock 

Maximum Contribution 

300,000 m (decreases to 10 m if broadcast 

clock correction is used) 

10 - 100 m (Depending on type of receiver 

oscillator) 

Orbital 80 m for broadcast ephemerides 

Ionospheric delay 150 m at horizon (decreases to 50 m at 

the zenith) 

Tropospheric delay 20 m at 10° above horizon (decreases to 

2 m at the zenith) 

Carrier beat phase ambiguity anything 

Time 

Figure 3.3: Cycle slips in carrier beat phase measurements. Solid line indicates measured phase 

that has experienced several cycle slips (vertical steps). Dashed line represents measured phase 

after the cycle slips have been corrected. 
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3.2.5 Satellite Orbits and Reference Frames 

GPS positioning depends substantially on the knowledge of the satellite orbits. 

Any error in the determination of a satellite orbit will lead to an error in the 

estimated position of the receiver. From geometrical considerations the precision 

of an estimated survey line, as a fraction of its length, is roughly proportional to 

the fractional precision of the orbit used in the analysis [Murray, 1991]. In 1991, 

the broadcast orbit ephemerides provided about 1 part in 106 precisions on relative 

baselines, or an uncertainty of 1 em along a 10 km baseline, which is inadequate 

for monitoring crustal motion over a short time interval. 

A satellite orbiting the Earth is subject to a force due to the Earth's central, 

spherically-symmetric component of the gravitational field, and therefore follows 

Kepler's laws of motion (which are deduced from Newton's laws of motion and grav

itation). The equations of motion are best expressed in a quasi-inertial reference 

frame whose orientation remains fixed with respect to the stars but whose origin is 

defined as the Earths centre of mass, or geocentre. The satellite orbit will describe 

an ellipse with one focus at the geocentre. However, other forces acting on the 

satellite cause departures from this elliptical motion. Gravitational forces such as 

attractions from the Moon, Sun and other planets and the higher-order harmonics 

of the Earth's gravity field can be modelled with high accuracy for high-altitude 

satellites. Non-gravitational forces, such as atmospheric drag, solar radiation pres

sure, gas emission from the satellite, and magnetic forces, can be much harder to 

predict a priori. 

It is possible to deal with the problem of orbit determination whilst processing GPS 

data and several approaches may be used. The simplest approach is to assume that 

the broadcast ephemerides are correct and to hold the orbit fixed to those values 

during processing. An alternative approach is to begin with an estimate of the 

six Keplerian orbital elements at some initial epoch and numerically integrate the 

equations of motion using accurate models for various perturbing forces and re-

. suiting accelerations. To account for the somewhat unpredictable perturbing force 

from solar pressure radiation at least one (although more generally two) additional 

acceleration parameter is estimated along with the station coordinates in the anal

ysis. This is known as the force model approach. The third alternative is to assume 

a free orbit and estimate orbital biases at every epoch. 

The length of the orbit arc over which the equations are integrated may be only 
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a few hours (covering the observation period - short arc) or may extend up to 

several days (covering subsequent observation periods - multiday or long m·c). An 

improvement in orbit accuracy with arc length is not expected since at some point 

the model used to predict satellite motions will deteriorate because of systematic 

errors. However, the most successful strategies used for orbit determination have 

involved multiday arcs [Lichten and Border, 1987; Davis et al., 1989]. In rela

tive positioning the effects of certain systematic orbital errors will be removed or 

reduced thereby requiring less accurate orbital modelling. 

Station positions are described in a terrestrial reference frame which is fixed with 

respect to the Earths surface. A terrestrial reference frame has its origin at the 

geocentre and the orientation of the axes defined by a right-handed Cartesian 

system whose z-axis points north along the rotation axis and x-axis that points 

towards a prime meridian (generally the Greenwich Mean Astronomic Meridian). 

This, and the quasi-inertial reference frame of the satellites are related by the 

rotational motions of the Earth such as precession, nutation, polar motion, and 

by universal time. VLBI and SLR measurements define kinematically a near-ideal 

inertial reference frame and currently provide the most precise estimates of the 

Earth's variable rotation. 

One method to obtain higher accuracy GPS ephemerides is to tie the orbital system 

to the terrestrial reference frame. This is achieved by co-locating GPS receivers 

at VLBI and SLR sites. VLBI and SLR currently provide the most precise global 

estimates of relative site positions and velocities. If receivers from widely separated 

sites, whose coordinates have been independently determined from VLBI or SLR, 

are included in the analysis then the accuracy of the lines joining these "fiducial" 

sites will be transferred via estimated satellite ephemerides to the lines connect

ing the non-fiducial sites. Precisions of 2-4 parts in 109 have been estimated for 

continental-scale VLBI-determined baselines [e.g., Clark et al., 1987]. A precision 

of 4 parts in 109 would introduce an approximate uncertainty of 1 mm in a 200 km 

line. This is called the fiducial network technique. 

3.2.6 Reducing the Data 

The time evolution of the pseudorange or phase observables is primarily a function 

of the receiver site coordinates, satellite orbits, and the other biases detailed above. 

Although the primary parameters of concern in crustal deformation studies are the 
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relative site coordinates, other parameters in the model have to be either estimated, 

eliminated, or fixed to a well defined value in order to obtain the highest accuracy. 

Many of the error sources are· correlated amongst the signals received at several re

ceivers simultaneously. If these measurements are combined then various common 

biases can be eliminated or greatly reduced. Code pseudoranges and carrier beat 

phase ranges can be differenced between receivers, between satellites and between 

epochs to create single differences. Single differences can be combined further 

to produce double or triple differences (Figure 3.4). The most commonly-used 

single difference is the between-receiver combination. The between-receiver sin

gle difference pseudorange is derived by differencing two simultaneously measured 

pseudoranges (P or C/ A) to the same satellite to obtain 

Llp = Llp- C · fldT + fldion + Lldtrop, (3.9) 

tl is used here to indicate a between-receiver difference. The satellite clock error 

( dt) is identical at both receivers and therefore cancels out. tldion and fldtrop are 

the differential ionospheric and atmospheric corrections and tldT is the differential 

receiver clock correction. The corresponding between-receiver carrier beat phase 

single difference is 

Ll <P = Llp - C • fldT + )..flN - fldion + fldtrop, (3.10) 

Providing the line lengths are small compared to the altitude of the satellite then 

orbit errors and atmospheric delays also partially cancel. 

With observations by two receivers of two satellites at the same epoch a receiver

satellite double difference may be obtained. The observation equation is, for pseu

dorange measurements 

Ll Vp = Ll V p + Ll Vdion + Ll Vdtrop' (3.11) 

and for carrier beat phase measurements 

(3.12) 

where V indicates between-satellite differences. Double differences thus eliminate, 

or greatly reduce, both the receiver ( dT) and the satellite ( dt) clock errors. 

Differencing receiver-satellite double differences between epochs gives the receiver

satellite-time triple difference. The observation equations are 

8fl Vp = 8fl V p + DLl Vdion + DLl Vdtrop, (3.13) 
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Figure 3.4: Linear combinations of observations. Marked combinations indicate between receiver, 

satellite and epoch single differences. All dashed or all solid lines represent receiver-satellite 

double differences. All lines combined represent a receiver-satellite-time triple difference. 

and 

(3.14) 

The initial cycle ambiguity in the carrier beat phase measurements is thereby elim

inated. Triple differencing the data has the disadvantage of greatly reducing the 

number of observations and the signal to noise ratio, and point coordinate solutions 

are thus generally derived using double differences only, and calculating the value 

of N. 

Where dual frequency phase data are available linear combinations of the original 

carrier phases, <I> 1 and <I> 2 may also be used to isolate or reduce bias effects. They 

are also used to reduce computational time and aid in the estimation of certain 

parameters. Three examples of linear combinations of the dual frequency data are 

the ionosphere-free, geometry~free and wide-lane combinations. These, in conjunc

tion with the original carrier phases, give five data types that can be used in the 

processing of GPS data (Table 3.3) 

Dispersion in the ionosphere is frequency dependent. Therefore its effects can be 
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Table 3.3: Linear combinations of the carrier phases Ll and L2 used in the Bernese GPS Software 

Version 3.2 [From Rothacher et a/., 1990]. 

Wavelength Noise lonospher~ 

Carrier Description em L1 = 1 L1 = 1 

11 Actual Carrier 19.0 1.0 1.0 

12 Actual Carrier 24.0 1.0 1.6 

13 Ionosphere free 10.7 3.0 0.0 

14 Geometry free 5.4 1.4 0.6 

15 Wide Lane 86.2 5.0 1.3 

reduced by combining observations at the two frequencies to form the so-called 

ionosphere free combination, L3 • 

p p 
L3 = If~ fiL1- fl ~ fiL2, (3.15) 

where L 1 and L 2 are the phase ranges and f 1 and h are the two carrier frequencies. 

The effective wavelength of L 3 is ,\3 = c/(!1 +h)"' 10.7 em. This is shorter than 

the wavelengths of the two carrier phases, making resolution of the cycle ambiguities 

more complicated. In addition, this combination amplifies the noise, particularly 

multipath, by approximately a factor of 3. 

The L 4 , geometry-free combination, is defined as 

(3.16) 

where the ionospheric wavelength ,\4 = (,\2 - -\1 ) "' 5.4 em. This combination 

contains the effects of the ionosphere and cycle ambiguity parameters but is inde

pendent of receiver clock and geometry biases. The noise in L 4 is roughly 1.4 times 

that of L1 or L2 . 

The third linear combination, L5 is known as the wide-lane combination and is 

defined by 

(3.17) 

The phase range observable is 

(3.18) 

The wide-lane wavelength ,\5 = c(JI - h) "' 86.2 em is approximately 4 times 

greater that of the original carriers and therefore ambiguity resolution is easier. 
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When combining dual frequency phase data the linear combination also has corre

sponding initial cycle ambiguity. For the wide-lane combination NLs = NL1 - NL2 

where NLs is the wide-lane ambiguity and NLI and NL2 are the cycle ambiguities 

for the 11 and 12 carrier waves. In the case of the ionosphere-free combination 

the effects of the ionosphere are eliminated at the expense of the corresponding 

ambiguity NL3 being no longer an integer. 

There are numerous approaches to analysing GPS data, each involving different 

combinations of the techniques described above to overcome the main error sources 

in the model. Most GPS experiments result in overdetermined solutions where the 

number of data far exceeds the number of unknowns. These problems may be 

solved using some form of least-squares algorithm. That is, a best estimate, in a 

least-squares sense, is found for the remaining parameters from the available data 

(in whatever combined or uncombined form). Prior to the final solution, certain 

parameters may be estimated and fixed to some value using an iterative procedure. 

3.3 GPS in the San Francisco Bay Region 

In 1990, the USGS established and measured with GPS a set of 5 geodetic profiles 

spanning the San Francisco bay region (Figure 3.5). Between March 1990 and 

February 1993 they measured these profiles a total of 7 times using GPS, together 

with a few additional sites. The surveys between 1990 and mid-1991 were conducted 

using Texas Instrument (TI) 4100 dual frequency P-code receivers. These receivers 

replicate the P-code and can therefore make code and phase observations on both 

the 11 and 12 frequencies. They can record only four satellites simultaneously, 

if more than four satellites were visible then those four for which the GDOP was 

best were chosen. After mid-1991, Ashtech 1M-X II receivers were used. These 

receivers replicate the Cj A code only and measure the phase of the 12 carrier 

by use of the (codeless) squaring technique. The squaring technique consists of 

multiplying the 12 signal by itself to recover the phase of the carrier at one-half 

of the original wavelength. During a single observation session 3-5 stations within 

a profile were occupied for 4-6 hours with measurements taken at 30 s intervals. 

During the observation session air pressure, temperature and relative humidity 

near the station were recorded every few hours and the antenna height was typically 

measured three times. Information such as general weather conditions and possible 

recording/equipment malfunction were also recorded on a field log sheet. 
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Figure 3.5: USGS GPS profiles in the San Francisco bay region. Grey region (land higher than 

100 m) indicates approximate extent of the Coast Ranges and Sierra Nevada. 
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Figure 3.6: Fiducial sites operated by CIGNET, IGS and PGGA and used in the processing of 

the San Francisco bay region surveys. 

A single profile typically took several consecutive sessions to complete, which to

gether are termed a survey. In order to tie points together, at least one site (the 

"base" site) was occupied during the entire survey. The San Francisco bay pro

files were typically measured consecutively so that the individual profile surveys 

together with "network tie" surveys between adjacent profiles were made, so the 

profiles could be connected if required. 

In this study, data from the three northernmost profiles, North Bay, Golden Gate 

and South Bay profiles (Figure 3.5) were processed. A list of the stations with 

identifying codes and approximate positions are given in Table 3.4. Altogether the 

data set includes usable observations for 41 days and 16 individual surveys between 

March 1990 and February 1993. A summary of the site occupations together with 

the fiducial sites used is given in Table 3.5. 
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Table 3.4: List of Stations. 

Station Lat0 N Lon°W Height, m t Stamping 

North Bay Profile 

pt reyes hill 38 04 47.00 122 52 03.00 406.35 pt reyes hill 2 no. 5 1951 a 

pt reyes head 37 59 47.28 123 00 49.60 185.70 pt reyes head 3 1960 a 

pt reyes 38 06 12.60 122 56 12.00 -3.15 point reyes ncmn 1981 b 

ngs 38 05 14.31 122 48 45.52 10.72 1935 1987 b? 

me 38 05 33.55 122 44 11.56 30.62 nic c 

cord 38 11 09.57 122 35 43.03 2.20 cord c 

ado 38 14 11.12 122 31 38.89 48.10 ado c 

au 38 13 23.47 122 27 20.43 -29.08 air c 

hen 38 16 59.55 122 21 42.32 54.84 hen c 

hag 38 19 25.96 122 15 33.13 -5.03 hag c 

gor 38 19 52.25 122 06 52.59 72.49 gor c 

vaca 38 24 04.40 122 06 18.00 859.20 mt vaca 2 1976 d 

caml 38 25 00.05 121 59 40.96 35.99 caml c 

jackson 38 20 23.00 120 43 15.83 674.22 jackson 2 1958 c 

Golden Gate Profile 

ucberkeley 37 52 18.43 122 15 54.53 36.18 ucg 85 20 e? 

presidio 37 48 19.09 122 27 18.27 -29.64 JPL 1981 

navy 37 48 35.85 122 21 58.16 70.78 navy 1932 a 

bald peak 37 53 00.85 122 13 19.16 547.99 bald peak 1946(8) aff 

hills 37 56 12.83 122 07 41.64 420.20 hills f 

Central Bay Profile 

sweeney 37 36 33.99 122 27 29.00 354.06 sweeney rdg 1978 9 

palo 37 31 36.57 122 27 22.19 357.90 palo c 

p.e. 37 35 32.05 122 22 55.74 -21.32 unstamped g? 

chabot 37 43 26.82 122 07 09.08 212.88 chabot 3 1964 f 

s.l.b. 37 41 26.96 122 11 01.33 -28.99 s.l.b. c 

e.b. 37 42 34.90 122 09 04.41 -20.17 e.b. c 

castro 37 43 56.53 122 04 09.25 262.52 castro 2 1948 f 

rock 37 48 54.06 122 03 41.31 584.64 rock 2 1954 c 

xyz 37 48 05.09 121 57 11.81 219.96 xyz c 

diablo 37 52 54.67 121 54 53.10 1137.38 diablo ecc rm2 1962 h 

jobe 37 55 17.50 121 47 32.85 57.53 jobe c 

mmn 37 57 14.46 121 43 20.61 -3.85 minn c 

whale 37 30 32.82 122 30 14.03 24.86 unstamped ? 

Agencies: a USCGS - United States Coast and Geodetic Survey, b NGS- National 

Geodetic Survey, c USGS, d CDMG - California Division of Mines and Geology, 

e UCB- University of California, Berkeley, f EBMUD- ?, g NCER- National 

Center for Earthquake Research, h CDWR- Californian Division of Water Resources 

t Coordinates are geodetic with respect to WGS 84 ellipsoid. 
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Table 3.5: Site occupation index for the North Bay, Golden Gate and Central Bay GPS Profiles 

in the San Francisco bay region together with the fiducial sites used 

Survey Dates 

Mar -90 13-Mar 

May-90 

Jun-90 

Aug-90 

Sep-90 

Feb-91 

Mar-91 

Se~91 

Feb-92 

Jan--93 

14-Mar 

15-Mar 

16-Mar 

27-Aug 
28-Aug 
29-Aug 
~Aug 

04-Sep 

05-Sep 

06-Sep 
07-Sep 

22-Sep 

23-Sep 
24-Sep 
25-Sep 

2~ 

18-Feb 

19-Feb 

20-Feb 

21-Feb 

22-Feb 

26-Mar 

27-Mar 

28-Mar 

29-Mar 
30-Mar 
31-Mar 

16-Sep 

17-Sep 

18-Sep 

19-Sep 

20-Sep 

10-Feb 

11-Feb 

12-Feb 

13--Feb 
14-Feb 

16-Feb 

17-Feb 
18-Feb 

19-Feb 

20-Feb 

1D-Ian 

11-Jan 

12-Jan 

13-Jan 
14-Jan 

17-Jan 
18--Jan 
19.Jan 
20-Jan 

21-Jan 

Fiducial Sites North Bay Prome Golden Gate 
Profile 

Cenlral Bay Profile 
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Table 3.6: List of fiducial sites used in the processing of the San Francisco bay region surveys. 

Fiducial Lat0 N Lon°W Height 

Station 0 II 0 II mt 

Mojave 35 19 53.43 116 53 17.34 904.268 

Richmond 25 36 49.75 80 23 03.05 -16.505 

Westford 42 36 48.08 71 29 35.97 85.477 

Algonquin 45 57 20.88 78 04 16.91 200.873 

Penticton 49 19 21.43 119 37 29.94 542.190 

JPLMesa 34 12 17.34 118 10 23.59 423.977 

Goldstone 35 25 30.56 116 53 21.29 986.582 

t Coordinates in WGS 84 system. 

The North Bay profile (Figure 3.5) extends for 100 km from Point Reyes Head to 

the western edge of the Great Valley. This profile crosses all the known active faults 

within the San Andreas fault system including the San Andreas, Rodgers Creek 

and Green Valley faults. The Golden Gate profile is shorter, extending for 40 km 

from Presidio to Hills in the east bay, between the Hayward and Calaveras faults. 

The Central Bay profile extends eastwards from Whale (within the San Gregorio

Hosgri fault zone), across the San Andreas, Hayward and Calaveras faults, to the 

eastern edge of the Coast Ranges, a distance of 90 km. Data recorded at Jackson, 

east of the Great Valley, was included in the North Bay profile for the March 1990, 

May 1990, and September 1991 surveys. 

The three profiles are roughly perpendicular to the strike of the San Andreas fault. 

In networks of this design, a spurious network rotation would approximate the 

appearance of fault-parallel shear and a scale error would appear as contraction 

or extension across the faults. Such errors could result from bias in the satellite 

orbits or the reference frame. To eliminate this the fiducial network technique was 

used to obtain higher accuracy satellite orbits and maintain a consistent terrestrial 

reference frame. Data from several fixed, continuously operating GPS stations 

run by CIGNET, IGS and PGGA were included in the processing (Figure 3.6, 

Table 3.6). The equipment used at these permanent tracking stations included 

Minimac and Rogue receivers. 
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3.4 Data Analysis 

3.4.1 Introduction 

The data were processed using the Bernese Version 3.2 Software [Rothacher et 

al., 1990] with modifications implemented by the USGS [Davis et al., 1989]. The 

software consists of 37 programs that fall into five categories; Transfer, Orbit, 

Processing, Simulation and Service. The functional flow diagram for processing is 

outlined in Figure 3.7. The software uses the receiver-satellite double differences 

to calculate site coordinates and other parameters. 

3.4.2 Processing Procedure 

3.4.2.1 Data Transfer 

The code and phase data, satellite navigation messages and additional information 

are recorded in a binary, receiver-dependent format and must be converted into 

Bernese V3.2 format. The transfer part of the Bernese Software can convert from 

several receiver formats to or from RINEX (Receiver INdependent EXchange for

mat) [Gurtner et al., 1989]. The raw data are separated into files containing phase 

data, code pseudoranges and broadcast satellite ephemerides. 

3.4.2.2 Preprocessing and Orbit Modelling 

The broadcast satellite ephemerides from the fiducial and local sites were used 

to produce a continuous orbit spanning the observation period. The standard 

strategy used involved combining the data from a single survey into a single network 

coordinate solution. One continuous orbital arc spanning 5 observation sessions (a 

multiday arc) was required for this. If a survey lasted less than 3 days, fiducial 

data from previous and subsequent days were used to compute the full 5 day arc. 

The broadcast ephemerides were first checked for satellite shifts (changes in orbit) 

and outliers (programs BRDCHK, BRDTST). If a satellite shift occurred then 

either the orbital arc was split into two shorter arcs or the data for that satellite 

discarded from either before or after the shift. The screened ephemerides data were 

then transformed from the Earth fixed coordinate system into an inertial reference 
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Figure 3.7: Functional flow diagram for the Bernese GPS Software Version 3.2. Names in capital 

letters indicate individual programs. 
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frame (BRDTAB). Each satellite ephemeris was then treated as a data point to 

which a "standard" orbit, which accounts for gravitational attraction by the Sun 

and Moon and solar radiation pressure, was fitted (DEFSTD). 

The broadcast ephemerides were used along with the pseudorange data, previously 

checked for outliers (CODCHK), to estimate one receiver clock correction per 

epoch (CODSPP). For the fiducial sites measured with Minimac receivers this step 

was ignored as Minimac receivers automatically calculate and record the receiver 

clock correction. A set of independent between-receiver, single-difference, phase 

files were then created between the local sites and the fiducial sites separately 

(SNGDIF). One between-receiver single-difference file was created between the 

nearest fiducial site and the local base site to tie the local sites to the external 

reference frame. 

The next step involved removing cycle slips and outliers from the single differ

ence phase files. Two cycle-slip detection programs are available, OBSTST and 

MAUPRP. Both programs use the residuals from a triple difference solution for 

coordinates with fixed orbit parameters to detect and repair cycle slips. MAUPRP 

is the descendant of OBSTST arid was developed when difficulties were experi

enced in preprocessing dual frequency data recorded during periods of short-period 

ionospheric variation in the Iceland 1986 survey [Rothacher et al., 1988]. The ad

vantages of MAUPRP over OBSTST are higher automation and the ability to 

form and analyse all useful linear combinations in the same processing step. How

ever, from experience it was found that while MAUPRP decreased the amount of 

time spent preprocessing (the most time consuming stage of data processing), OB

STST, used in conjunction with a graphics package for examining the residuals, 

was more reliable. 

For fiducial lines, with lengths long enough for errors in the broadcast orbits to 

hinder cycle slip detection, an iterative technique was used. First, obvious cycle 

slips and outliers were removed, then a rough orbit adjustment was calculated using 

the parameter estimation program GPSEST. The adjusted orbit parameters were 

then used to update the standard orbit (UPDSTD). Only those satellites for 

which a statistically significant change in orbital parameters was calculated were 

updated. These improved orbits were used to scan for cycle slips a second time. 

Smaller slips were detectable since the residuals for the triple difference solution 

·were thereby reduced. This procedure was repeated until no further cycle slips or 

outliers in the fiducial or local data single-difference files were detected. 
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3.4.2.3 Ambiguity Resolution and Processing 

Once a value for a cycle ambiguity that is very close to an integer has been deter

mined, the ambiguity is said to be resolved or fixed [Counselman and Abbot, 1989]. 

Ambiguity resolution is not necessary for obtaining station positions, but can im

prove the results [Goad, 1985]. Coordinate solutions where the ambiguities are 

calculated as floating point numbers and not fixed to integers approach solutions 

with fixed ambiguities when observation times are long(>"' 5 hours) [Rothacher et 

al., 1989]. However, there are many ambiguity parameters in a typical survey (one 

per satellite per receiver per frequency), and resolving the ambiguities will enable 

them to be eliminated from the inversion and decrease the formal errors associated 

with the site coordinates. 

Ambiguities are resolved using the parameter estimation program GPSEST. They 

are intitially treated as free parameters together with the other parameters to be 

estimated which may be station coordinates, orbital parameters (up to 8 per satel

lite), receiver clock offsets, tropospheric models, ionosphere models and antenna 

height biases. The chosen parameters are estimated using a least-squares solution. 

A sigma-dependent strategy is used for the cycle ambiguities. If the error interval 

surrounding the estimated value contains exactly one integer then the ambiguity 

is said to be resolved. In order to resolve as many ambiguities as possible the fol

lowing strategy was employed. First, the wide-lane (15) ambiguities for the local 

sites were resolved, usually without difficulty. No attempt was made to resolve the 

ambiguities for the fiducial stations. The distances separating the fiducial sites was 

considered too large for successful resolution of ambiguities. In such cases it may 

be better not to fix an ambiguity than to risk fixing it to a wrong value. Next the 

15 ambiguities were held fixed and an attempt was made to resolve the 11 and 12 

ambiguities using the ionosphere-free (13) combination. Once as many ambiguities 

as possible had been resolved the point coordinates were estimated along with the 

remaining ambiguities, as floating point values. 

All the data from observation sessions on consecutive days were combined, includ

ing data from both fiducial and local sites. The coordinates of the local sites were 

left as free parameters whereas those of the fiducial sites were held fixed. The fixed 

coordinates of the fiducial sites were obtained from a CDP-V1BI solution in 1988 

and corrected for subsequent plate motions as appropriate. For each satellite the 

six Keplerian elements, and two solar radiation pressure corrections were included 

· as free parameters. A daily, average correction to the a-priori value for the tro-
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pospheric delay at the zenith was estimated for each site using the Saastamoinen 

[1972) troposphere model and the CfA-2.2 mapping function [Davis et al., 1985] 

for mapping the delays to lower elevation angles. A satellite cut-off elevation of 

15° was generally used. The advantage of estimating the parameters from all the 

sessions together in a simultaneous solution which includes all the local and fiducial 

data (as .opposed to using the improved orbit from the fiducial data only) is that 

the formal errors are propagated correctly, including contributions from ephemeris 

error [Lichten and Border, 1987). 

3.5 Summary 

GPS is an all-weather, space-based navigation system designed for accurate de

termination of user position, velocity and time anywhere on or near the Earth. 

The capability of GPS for accurate relative surveying has proved of great value 

for crustal deformation studies. The system consists of three segments, the space-, 

control- and user-segment. 

·The basic concept behind positioning with GPS is ranging. Two types of mea

surements are made, code and carrier-phase. Phase data offer the best potential 

for high-precision positioning. Both measurements are affected by similar error 

sources (biases) such as clock errors, satellite-orbit errors, and signal delay. Differ

encing and combining the data can eliminate or reduce various errors and enable 

the estimation of highly-accurate relative station positions. 

This study involved the processing of data from three USGS GPS profiles crossing 

the San Andreas fault system in the San Francisco bay region. The individual 

profiles were measured up to 7 times between March 1990 and February 1993. 

The data were processed using the Bernese Version 3.2 Software. Data from sepa

rate profiles and separated surveys were processed independently. In addition, data 

from a continental-scale fiducial network were included in the processing as part of 

the fiducial network technique that provides improved satellite orbit determination 

and a consistent reference frame. 
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Chapter 4 

Processing Results 

4.1 Introduction 

Deformation rates in the San Francisco bay region are of the order of a few em per 

year. A high accuracy of measurement is therefore required to detect this deforma

tion within a few years. In order to interpret the results of the GPS measurements 

in a meaningful way it is thus vital to correctly asses the true accuracy. 

4.2 Precision, Repeatability and Accuracy 

4.2.1 Introduction 

Precision is a measure of the scatter in the data used to estimate some parameter. 

One indicator of precision is repeatability, which is a measure of the scatter of 

independent estimates of a parameter. Accuracy is a measure of how close the 

result of the experiment is to the true value. In GPS, the precision of a line-length 

vector estimate is the formal error calculated in the estimation process and it is 

based on the scatter of the observed data. However formal errors based on the 

scatter of the data generally underestimate the true error as they do not account 

for systematic errors that are constant on the time scale of a single measurement 

session [Dixon, 1991]. Repeatability can be assessed by comparing the scatter in the 

calculated results for different measurement sessions, and accuracy can be assessed 

by comparing the GPS results to those obtained from some other more accurate 

technique (e.g., VLBI). Accuracy cannot be assessed for the results described in 

this thesis because the only GPS observations at VLBI sites were used in the 

solution for orbit determination as part of the fiducial network technique and the 
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site positions were therefore held fixed. Previous estimates of GPS accuracy in the 

western United States have shown that horizontal rates estimated using GPS agree 

to within one standard deviation ( rv 1 em) with those determined by VLBI [Larson 

and Agnew, 1991; Davis et al., 1989, Larson, 1993]. 

GPS surveys are generally conducted as a series of observation sessions over several 

days separated by months or years. Many errors are highly correlated over one sur

vey such as marker instability, multipath, satellite clock behaviour, fiducial network 

errors, receiver clock errors, atmospheric and ionospheric conditions and satellite 

orbit errors. These errors are thus not detectable in surveys involving observations 

spanning a few adjacent days. However they may vary over long time periods and 

thus be reflected in the results obtained from surveys separated by months. It 

is therefore helpful to assess the repeatability of the vectors estimated by GPS 

over the short- and long-term. Short-term repeatability can be estimated as the 

weighted variance about the mean of daily estimates, from a single survey. For a 

vector line-length component (north, east or up) the variance about the weighted 

mean IS 

N 

N 

....!:!.__""""' (y;-(y})2 
N-lL...J u 2 

i=J I 

( 4.1) Smean = 

L:2 
i=I I 

where N is the number of days, Yi is the estimate of the independent component 

on day i, (y) is the weighted mean of y/s and O"i is the (formal) standard error. 

However, in the processing procedure used here, all data from consecutive days were 

combined in a single solution (i.e., only one estimate for each line-length component 

during the survey was obtained), and the short-term repeatability (equation 4.1) 

could not be computed. 

Long-term repeatability is indicated by the scatter of the results of a series of GPS 

surveys performed over years after the effects of crustal deformation are subtracted. 

This will show the effects of errors that vary from survey to survey. For networks 

far from active deformational features, zero motion can be assumed and equation 

( 4.1) can be used. For networks deforming at a uniform rate the variance about 

a best-fit straight line is calculated [Larson and Agnew, 1991; Davis et al., 1989]. 

81 



This is defined as 
N 

Stine= N 

__!"!_"" (y;- ( a+bt;) )2 

N -2 L..; u 2 
i=l I 

( 4.2) 

2:::,}2 
i=l I 

where a and b are the intercept and slope of the best-fit straight line, and ti is the 

time of the ith measurement. The Reduced x2 (or x2 per degree of freedom, x~) 

statistic for the best-fit line is given as 

(4.3) 

x~ expresses the confidence that we may have in the result. In general, and if 

the data set is reasonably large, the closer that X~ approaches unity, the more 

statistically significant is the result. The magnitude of x~ is determined by the 

scatter in the observed parameters, the values assigned to the uncertainties l7i, 

and the appropriateness of the fitting function. Therefore a large X~ may indicate 

very scattered data, under-assigned uncertainties or the wrong form for the fitting 

function. If it is assumed· that the uncertainties are underestimated then the scatter 

can be accounted for by multiplying the uncertainties by jXi. 

The accuracy of an individual line-length estimate is dependent on several errors. 

Some of these errors are constant, whilst others will be dependent on the line 

length. A simple expression describing the accuracy of distance measurements is 

[Savage and Prescott, 1973; Savage, 1983] 

( 4.4) 

where 17 is the standard deviation and lis the line length. Equation ( 4.4) is derived 

for geodolite measurements where the instrument has a constant error a plus a 

length-dependent error b introduced by atmospheric refraction along the line. For 

geodolite data, a = 3 mm and b = 2 x 10-7
. Although this function has also been 

applied to GPS measurements [Hager et al., 1991] there is no reason to assume that 

this is rigorously appropriate. Error sources such as receiver noise, tripod set-up er

ror and multipath are independent of line length. These length-independent errors 

are typically at the level of 2 mm or less. Other sources of error are proportional 

to line length. Atmospheric errors are line-length dependent only up to a certain 

length, after which the error reaches a constant value as the atmospheric varia

tion between the two ends of the line becomes uncorrelated. Errors in estimating 

the orbits of satellites are almost linearly proportional to line-length. Orbit errors 
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contribute an error of lf3C7orb/ L where L is the receiver- satellite range, C7orb is the 

error in the satellite orbit and /3, a constant, which depends on the geometry of 

the network. With these factors in mind Dixon [1991] proposed the expression 

( 4.5) 

where a is the length-independent error, b is the tropospheric contribution to line

length error for lengths exceeding several tropospheric correlation lengths, A is the 

tropospheric correlation length, and cis the satellite orbit error. However, equation 

( 4.5) cannot be expressed as a sum of terms with the parameters appearing only 

as a coefficient of the line-length and error, therefore making estimation of the 

coefficients difficult. Larson and Agnew [1991] use the simple equation 

CJ =a+ bl, ( 4.6) 

in order to approximate the dependence of precision with length. 

For the three GPS profiles studied here, the short- and long-term errors are esti

mated. To express the short-term precision, the formal standard deviations from 

the GPSEST solution are used and applied to equation (4.6). The long-term re

peatability is calculated using equation ( 4.2) and then applied to equation ( 4.6). 
The coefficients a and b in equation ( 4.6) are estimated using a least-squares algo

rithm. For the long-term repeatability the reduced x2 statistic is also calculated. 

4.2.2 Itesults 

4.2.2.1 Short-Term Precision 

The short-term precisions of the north-south, east-west, and vertical line-length 

components for each survey were summarised using equation (4.6) (Table 4.1). In 

addition, equation ( 4.6) was applied to all the results for each profile and to all 

the profiles combined. As an example, the short-term precisions of individual lines 

plotted as a function of line length for the February 1992 North Bay survey to

gether with the least-squares fit (solid line) are shown in Figure 4.1. There are 

no previous published estimates of short-term precision (although Larson and Ag

new, [1991] calculated short-term repeatability and called it short-term precision) 

and therefore these results are compared with previous estimates of short-term re

peatability. Previous estimates of short-term repeatability calculated from vectors 
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between stations in southern California separated by distances of 50-450 km [Lar

son and Agnew, 1991] are also plotted in Figure 4.1. Larson and Agnew, (1991] 

found a short-term repeatability of 1.9 mm + 0.6 x w-sz for the north-south com

ponent, 2.1 mm + 1.3 x w-sz in the east-west component and 17 mm + 0 l for the 

vertical component. In the case of the North Bay profile data, all three components 

show a line-length dependence (Figure 4.1 ). For the total combined, short-term 

precision (bottom, Table 4.1) the north-south component has the least dependence 

on line-length (0.4 x 10-8 1). The east-west component, with a precision of 1.0 mm 

+0.7 X 10-8[, has a larger line-length dependence than the north-south component. 

The precision of the vertical component is 8.0 mm +1.6 x w-sz. The results from 

the individual surveys shows that the greatest variation in length-dependent errors 

occurs in the vertical component, from -0.3 X 10-8[ to 43.2 X 10-8[ (last column, 

Table 4.1). 

The difference in line-length dependence between the two horizontal components 

can be explained partly by satellite geometry. Before full satellite coverage was 

available, the GPS constellation over California was orientated mainly north-south, 

giving better coverage in that direction and smaller errors in that component 

(Dixon, 1991]. As satellite coverage improves with time this difference should lessen. 

Variations of line-length dependence between individual surveys show that whilst 

the north-south precision tends to remain about the same, the east-west precision 

tends to approach that of the north-south by January 1993. The constant terms 

for both horizontal components are similar. 

The constant terms are about half those estimated for lines in southern California 

[Larson and Agnew, 1991] which were calculated using equation (4.1) for data 

from several consecutive days. As described above, the short-term precisions used 

here are based on the phase data scatter determined by the Bernese GPS solution 

and therefore these disagreements simply illustrate the well known fact that the 

precision calculated from the data scatter underestimate the actual repeatability 

and true accuracy. 

The vertical component is nearly an order of magnitude less precise than the hori

zontal components. No significant dependence on line-length was reported for the 

vertical component for GPS data collected in southern California [Blewitt, 1989; 

Larson and Agnew, 1991]. A line-length dependence of 6 X w-sz was reported 

for the vertical component for 14 stations in southern California [Dong and Bock, 

1989]. These differences were possibly the result of different fiducial networks used 
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Table 4.1: Summary of the short-term precisions of the GPS profiles. 

North East Up 

Survey a b X IQ-8 a b X IQ-8 a b X IQ-8 

Date mm mm mm mm mm mm 

North Bay Profile 

March 1990 1.4 0.9 1.5 1.3 11.9 5.9 

May 1990 1.0 0.2 1.0 0.6 9.7 0.0 

Sept. 1990 0.8 0.4 1.1 0.8 6.1 3.2 

March 1991 1.5 0.5 1.5 0.8 12.9 1.8 

Sept. 1991 1.4 0.2 0.9 0.8 9.8 0.1 

Feb. 1992 0.9 0.3 0.8 0.4 6.0 1.7 

Jan. 1993 0.7 0.2 0.6 0.2 4.4 1.5 

Combined 1.1 0.3 1.1 0.7 8.8 1.3 

Golden Gate Profile 

June 1990 0.9 0.4 1.1 0.5 8.2 3.1 

Sept. 1990 1.1 0.6 1.1 0.6 9.2 12.1 

Sept. 1991 1.3 14.4 0.7 17.2 12.3 43.2 

Feb. 1992 0.9 -0.1 8.1 -0.1 6.6 -0.2 

Jan. 1993 0.8 0.1 0.7 0.1 5.5 1.9 

Combined 1.1 0.0 1.0 0.4 8.7 2.1 

South Bay Profile 

Aug. 1990 1.0 0.3 1.2 0.8 7.2 2.1 

Feb. 1991 1.2 0.0 1.2 0.0 8.6 -0.3 

Feb. 1992 0.9 0.3 0.7 0.6 5.9 1.7 

Jan. 1993 0.9 0.3 0.7 0.4 6.0 1.7 

Combined 1.0 0.2 1.0 0.4 7.1 1.0 

All three profiles 

Combined 1.0 0.4 1.0 0.7 8.0 1.6 
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Figure 4.1: Short-term precision for individual lines of the February 1992 North Bay profile. The 

solid triangles are the formal standard deviations from the GPSEST solution. Solid lines are the 

least-squares best fits through the data. Dotted lines are the estimates of short-term repeatability 

derived by Larson and Agnew [1991]. 
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in the analyses [Larson et al., 1991]. However, except for the January 1993 surveys, 

the fiducial network used for the profiles studied in this thesis was kept the same 

and therefore cannot be responsible for the large variations calculated (Table 4.1). 

One of the largest sources of error in the vertical component is the effect of the 

nondispersive atmosphere, in particular the "wet" component of the tropospheric 

delay [ Tralli et al., 1988]. In this analysis a simple strategy was employed, which 

was to model the delay at the zenith by a single parameter for each day and for 

each site in the network. The zenith wet delay can vary by 20-50 mm over several 

hours [Davis et al. 1989]. Ignoring these variations can lead to significant errors in 

the vertical component. Tropospheric delay is probably the dominant error source 

for lines up to several hundred kilometres long, [equation ( 4.5); Figure 12, Dixon, 

1991]. The vertical error estimates reported by Larson and Agnew [1991] are for 

lines ranging in length from 50 to 400 km, the range where tropospheric errors no 

longer dominate, whereas lines in the San Francisco bay region profiles are in the 

range 5 to 165 km, where the troposphere is a large error source. 

4.2.2.2 Long-Term Repeatability 

Long-term repeatability of GPS interstation vectors from the profiles are sum

marised in Table 4.2 and Figure 4.2. The best-fit lines used in equation ( 4.2) are 

the weighted least-squares station velocities relative to a fixed site as described in 

Section 4.3 below. The long-term repeatabilities are plotted against line length in 

Figure 4.2 along with the best-fit lines (equation 4.6) through this data set and the 

relationship reported by Larson and Agnew [1991]. The long-term repeatability 

in the north-south was estimated using the data indicated by the solid triangles. 

A part from the longest line, the data shown by open triangles are all from the 

Central Bay profile. The time series for this profile indicate that the February 

1992 results are anomalous and probably in error. The longest line, Jackson-Cord, 

is also removed from the calculation. This line has an anomalously poor long-term 

repeatability in the north component which can be attributed to error in the first 

survey, March 1990. The long-term repeatability in the north-south is then 4 mm + 
2.2 x 10-8[. In the east-west direction, all the data were used and the repeatability 

is 4 mm + 3.5 x 10-8
/. The repeatability of the horizontal components are similar 

to estimates made by Larson and Agnew [1991] for southern California using the 

same calculation technique (straight dashed line, Figure 4.2). However in both 

directions the line-length dependent component estimated here is slightly larger 

than for their results. The maximum line length for the profiles is 150 km. 
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Table 4.2: Long-Term Repeatability of the GPS results. 

Obs. 

Stations Length North East X~ Vertical X~ Spant No. of 
--------------------
from relative to km mm mm mm yrs. Obs. 

Ado Cord 

Air Cord 

Nic Cord 

Ngs Cord 

Hen Cord 

Pt Reyes Hill Cord 

Pt Reyes Cord 

Hag Cord 

Pt Reyes Head Cord 

Gor Cord 

Vaca Cord 

Caml Cord 

Jackson Cord 

Bald 

Navy 

Hills 

Presidio 

P.E. 

Palo 

Whale 

S.L.B. 

E.B. 

Castro 

Rock 

Xyz 

Diablo 

Jobe . 

Ucberkeley 

Ucberkeley 

Ucberkeley 

Ucberkeley 

Sweeney 

Sweeney 

Sweeney 

Sweeney 

Sweeney 

Sweeney 

Sweeney 

Sweeney 

Sweeney 

Sweeney 

8 

13 

16 

22 

23 

27 

32 

33 

42 

45 

49 

58 

165 

North Bay Profile 

5.9 68.4 3.1 18.7 39.0 53.6 2.8 

5.2 70.9 2.7 21.0 29.0 42.1 2.8 

4.2 47.9 3.0 9.9 14.5 7.3 2.8 

4.8 61.2 5.5 82.2 26.9 38.3 2.8 

4.9 51.0 4.7 51.8 27.9 31.2 2.8 

4.6 34.6 2.2 8.1 38.9 46.4 2.8 

4.9 43.4 3.9 31.4 22.6 19.5 2.8 

4.8 67.2 7.1 147.0 37.6 74.8 2.8 

8.7 119.5 7.1 72.6 18.1 29.3 2.8 

4.4 34.6 8.2 123.8 32.7 35.5 2.8 

4.7 37.0 7.3 78.5 36.6 38.5 1.9 

5.9 69.2 8.4 141.9 25.9 24.1 2.8 

32.6 682.4 8.7 11.8 47.0 206.5 1.5 

Golden Gate Profile 

4 2.6 11.3 1.3 3.3 15.4 6.7 2.5 

11 6.1 57.3 6.9 84.3 28.7 19.2 2.5 

14 1.6 4.6 1.4 3.8 38.9 42.5 2.5 

18 6.0 42.5 8.1 87.2 13.9 3.4 2.5 

7 

9 

12 

26 

29 

37 

42 

49 

57 

68 

Central Bay Profile 

8.3 98.9 2.3 7.7 20.1 

1.6 67.5 5.6 54.6 14.6 

5.4 44.4 11.6 267.7 79.2 

3.6 18.2 3.9 24.3 75.8 

10.0 137.8 6.4 55.9 67.5 

9.7 123.4 5.1 31.4 28.6 

9.6 88.1 5.2 21.9 63.7 

12.7 178.6 5.7 27.1 79.8 

9.7 89.2 7.1 40.3 49.3 

13.8 192.0 4.6 16.9 50.7 

10.7 2.4 

6.8 2.4 

206.2 1.9 

162.4 2.4 

127.4 2.4 

23.2 2.4 

83.8 2.4 

146.2 1.5 

50.1 2.4 

56.8 2.4 

7 

7 

7 

6 

6 

7 

7 

5 
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Minn Sweeney 75 19.4 358.7 5.9 26.4 88.4 159.8 2.4 4 

t time in years between the first and last survey. 
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Figure 4.2: Long-term repeatability of interstation vector components for the San Francisco bay 

region profiles. Solid lines represent the least-squares best fits through the data_ Straight dashed 

line is the long-term repeatability calculated by Larson and Agnew [1991] for GPS stations in 

southern California_ Curved dashed line is the error model proposed by Dixon [1991] (equation 

4.5). Open triangles in the north-south component indicate data deleted when calculating the 

best-fit line. Open triangles in the vertical component are the long-term repeatabilities calculated 

assuming no vertical motion_ 
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The vertical component shows poorer repeatability than either horizontal com

ponent (31 mm + 23 x 10-8 1). If no motion in the vertical is assumed then an 

improved repeatability of 28 mm + 10 x 10-8 1 is obtained (compare open triangles 

and closed triangles in the vertical component of Figure 4.2). This is partially a 

result of different techniques used to calculate the two estimates. The results of 

the long-term repeatability assuming motion in the vertical were calculated whilst 

estimating the station velocities, which takes account of the full position covari

ance matrix for each survey. The long-term repeatability assuming no motion 

were only calculated using the partial covariance matrix for each line individually 

and therefore the least-squares and repeatability estimates are different. The error 

model proposed by Dixon [1991] (equation 4.5) agrees well with the data in the 

east-west component but overestimates the errors in the north-south and greatly 

underestimates them in the vertical. 

The long-term repeatability is approximately a factor of 4 worse than the short

term precision. This is a typical result and illustrates the effect of errors that vary 

systematically over a long time scale compared with a single survey. 

4.3 Estimation of Station Velocities 

4.3.1 Introduction 

Relative station velocities were obtained usmg a simple, weighted least-squares 

procedure. The Cartesian position of each station was assumed to vary linearly 

with time. A common station for all surveys was chosen, and then, for each sur

vey, the relative vectors of all other stations with respect to that common station 

were calculated. Then, for each station, a mean relative vector corresponding to 

the mean measurement time of the station, a linear rate of change and the corre

sponding uncertainties in the Cartesian components were estimated. The intersite 

relative vectors and corresponding variance-covariance matrix were then projected 

onto a Cartesian coordinate system located at one end of the line, whose north is 

coincident with the local north, and vertical with the normal to the ellipsoid. The 

uncertainties of the position and velocity estimates are determined by propagation 

of the full position covariances in the GPSEST solutions, with one exception neces

sary in order to accommodate singularities introduced by fixed stations which have 

zero position covariances. The fixed sites were downweighted by assigning 10 m 
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Table 4.3: Statistics determined from estimating station velocities. 

Number of Number of 

Fixed data parameters 

Profile Station used a estimatedb Vx'[ 
North Bay Cord 351 138 5.5 

Golden Gate Ucberkeley 150 99 4.9 

Central Bay Sweeney 177 108 7.2 

a = (I::: number of stations per survey - 1) x 3 

b = (:Z:::: number of common stations) x 3 + (:Z:::: number of 

stations in more than one survey) x 3 

variances to their position coordinates, which renders the solution non-singular and 

insensitive to the coordinates of the fixed sites. 

The reduced chi squared, x;, of the solution was also estimated. If the standard 

deviations calculated as part of the Bernese solutions correctly represent the long

term repeatability, then x; would be 1. The x~ obtained from various Bernese 

solutions provides a factor by which the Bernese formal standard deviations can 

be scaled so that x; is 1 i.e. anew = aotd/XI· The above method for calculating 

station velocities has the advantage that the least-squares procedure is always over

determined and therefore a solution is generally simple to calculate [Menke, 1984]. 

However, because there must be a common station for all the surveys, nearby 

networks cannot be combined to give an overall velocity solution unless they have 

a common station that has been measured during every survey of both networks. 

This may even be problematic in a single network as measurements are often lost 

through problems in the field. 

4.3.2 Results 

In obtaining the station velocities for the San Francisco bay region profiles, each 

profile was treated separately. The fixed station for each profile was chosen primar

ily on a basis of measurement frequency, that is, the station that had the greatest 

number of observations overall was chosen. A summary of the data used, number 

of parameters estimated, stations chosen as fixed sites and x; for the 3 profiles 

is given in Table 4.3. The station velocity standard deviations were rescaled by a 

factor of /Xi in order to obtain errors that reflect both precision and repeatability, 

and are the best possible estimates of accuracy available. 
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(N57°E) to the trend of the San Andreas fault as a function of time for the Golden Gate profile. 

Error bars represent the l<T scaled formal standard deviations. 

The changes in the fault-parallel (N33°W) and fault-normal (N57°E) line-length 

components relative to the fixed station as a function of time for the 3 profiles 

are shown in Figures 4.3 to 4.5. The data are well fit by a linear rate of change. 

The rate of fault-parallel displacement generally increases with the distance from 

the fixed station while the fault-normal displacements show little or no significant 

motion. 

The horizontal velocities relative to the fixed station for the 3 profiles are listed in 

Table 4.4 and shown as vectors in Figure 4.6. The dominant pattern exhibited in 

all three profiles is right-lateral shear parallel to the trend of the San Andreas fault 

system. The distribution of deformation is best shown by plotting the fault-parallel 

·and fault-normal velocities along a fault-perpendicular profile (Figures 4.7 to 4.9). 

The vertical velocities relative to their respective fixed point are shown as vectors 

along a fault-perpendicular profile in Figure 4.10. 

4.3.3 Discussion 

4.3.3.1 Fault-Normal Velocities 

Fault-normal velocity profiles in a region of shear-strain accumulation are expected 

to be mainly flat and featureless [Prescott, 1981]. The fault-normal (N57°E) ve

locities (Figures 4. 7b, 4.8b and 4.9b) for all three profiles indicate no systematic 

convergence upon the fault and are generally flat and featureless. Only the ve

locities of stations Nic and Vaca in the North Bay and s.l.b. in the Central Bay 
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Table 4.4: Average fault parallel (N33°W) and fault normal (N57°E) relative station velocities 

for the North Bay, Golden Gate and South Bay profiles for 1990 to 1993 

N5rE 

Distance N33°W N57°E 

Relative from fixed Velocity Velocity 

Station to station, km mmjyrt mmjyrt 

North Bay Profile 

Pt Reyes Head Cord -42.3 14.8 ± 1.6 -2.7 ± 1.4 

Pt Reyes Cord -30.1 8.6 ± 1.6 0.3 ± 1.4 

Pt Reyes Hill Cord -26.5 11.4 ± 1.6 0.0 ± 1.4 

Ngs Cord -22.0 5.7 ± 1.3 -1.2 ± 1.3 

Nic Cord -16.0 4.3 ± 1.5 3.4 ± 1.4 

Ado Cord 8.0 -2.3 ± 1.5 -0.4 ± 1.3 

Air Cord 12.5 -4.8 ± 1.2 0.7 ± 1.2 

Hen Cord 23.0 -11.3 ± 1.6 2.1 ± 1.6 

Hag Cord 33.0 -13.0 ± 1.4 0.2 ± 1.4 

Gor Cord 44.0 -19.6 ± 1.6 -1.0 ± 1.5 

Vaca Cord 48.9 -20.7 ± 2.6 -5.8 ± 2.3 

Caml Cord 58.0 -16.5 ± 1.7 1.9 ± 1.5 

Jackson Cord 146.1 -17.3 ± 6.0 6.4 ± 9.5 

Golden Gate Profile 

Presidio Ucberkeley -18.0 3.6 ± 2.3 1.0 ± 2.1 

Navy Ucberkeley -11.2 3.4 ± 2.3 -2.6 ± 2.1 

Bald Ucberkeley 3.9 -7.5 ± 2.1 -2.2 ± 2.1 

Hills Ucberkeley 14.0 -7.3 ± 2.1 -1.5 ± 2.1 

South Bay Profile 

Whale Sweeney -9.5 5.8 ± 2.9 1.4 ± 2.6 

Palo Sweeney -4.8 4.5 ± 2.1 1.6 ± 2.1 

p.e. Sweeney 4.6 -0.5 ± 2.3 1.8 ± 2.3 

s.l.b Sweeney 25.2 -10.2 ± 2.1 6.0 ± 2.1 

e.b. Sweeney 28.8 -12.7 ± 2.1 4.1 ± 2.1 

Castro Sweeney 36.2 -19.3 ± 2.1 -3.5 ± 2.0 

Rock Sweeney 41.8 -20.3 ± 3.0 -1.4 ± 2.9 

Xyz Sweeney 48.9 -18.7 ± 3.7 -5.8 ± 3.5 

Diablo Sweeney 56.6 -26.7 ± 2.8 -0.4 ± 2.6 

Jobe Sweeney 68.0 -26.3 ± 2.8 0.8 ± 2.6 

Minn Sweeney 75.2 -33.2 ± 2.8 -4.6 ± 2.7 

t Uncertainties are 1o-
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Figure 4.6: Horizontal relative velocities for the North Bay, Golden Gate and Central Bay profiles. 

95% confidence ellipses ("' 2.45u) are shown. 
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(Table 4.4) are significantly different from a null velocity at the 95% confidence 

level. Station positions are directly measured with GPS, and the fault-normal 

velocities are thus not dependent on any arbitrary assumptions about network ro

tations. This contrasts with trilateration surveying which was used prior to GPS. 

Trilateration velocities are ambiguous because the network lacks a tie to an external 

reference frame and, as a result, rigid-body motions (translations and rotations) 

of the network as a whole are not determined. Strain analysis of the 1973-1989 

trilateration data from the bay region, which is independent of reference frame, 

also indicates no regional contraction across the fault, and the GPS results confirm 

this finding. 

4.3.3.2 Fault-Parallel Velocities 

Fault-parallel velocity profiles in a region of shear-strain accumulation are expected 

to exhibit some form of sigmoidal shape (i.e. flattening of the velocity gradient at 

both ends of the profile) [Savage, 1990]. The fault-parallel (N33°W) velocities in 

general vary linearly along the profiles (Figures 4.7a, 4.8a and 4.9a). In the North 

Bay (Figure 4. 7a) the velocities are adequately described by a straight line with a 

gradient of -0.33 ± 0.04 ttstrain yr-1
. Only three stations differ from this straight 

line at the 2o- level. These are Point Reyes Hill, Gor and Jackson. The residual 

at Gor is almost significant at the 3o- level. The residual at Jackson however is 

significant at the 5o- level. This either indicates that the velocity of Jackson is 

incorrect or that the velocity gradient decreases to the east of the Green Valley 

fault. The NUVEL-1A-predicted North American-Pacific relative plate motion is 

46 mmjyr. The relative motion between Point Reyes Head and Jackson predicted 

by the straight line would be 63 mm/yr, 17 mm/yr greater than the expected 

deformation across the width of this plate boundary zone. Therefore it seems 

likely that the velocity gradient does decrease to the east of the Green Valley 

fault. The persistence of significant motion right to the western edge of the profile 

suggests that additional motion is being accommodated west of Point Reyes Head. 

A maximum of 36 ± 3 mm/yr of fault-parallel relative motion across the North 

Bay profile is observed, which is not significantly different than the 31 ± 3 mm/yr 

reported for the trilateration network by Lisowski et al. [1991]. 

The Golden Gate profile (Figure 4.8a) crosses only a small portion of the San 

Andreas fault system, the Hayward fault. A total of 11 ± 3 mm/yr of shear is 

detected and the best-fit straight line has a gradient of -0.37 ± 0.17 ttstrain yr- 1
. 
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However the velocity profile appears to be better described as a linear, right-lateral 

step offset across the Hayward fault with near-zero velocity gradients on either 

side. 

In the Central Bay profile (Figure 4.9a) the velocities appear to vary linearly with 

distance with a gradient of -0.44 ± 0.02 J.LStrain yr- 1
. This gradient is significantly 

greater than that of the North Bay profile. No decrease in the velocity gradient 

is apparent either to the west of the San Andreas fault or east of the Concord

Calaveras fault. A maximum of 39 ± 4 mm/yr of right lateral shear is detected on 

the Central Bay profile, which is consistent with the 35 ± 3 mm/yr estimated by 

Lisowski and Savage [1992) mainly from trilateration data. 

4.3.3.3 Vertical Velocities 

The relative vertical velocities for all three profiles are shown in Figure 4.10. Only 

one station, Jackson, has a relative velocity significant at greater than the 2u level. 

However, the calculated velocity of Jackson relative to Cord, -120 ± 22 mm/yr, ap

pears to be too large to be explained by tectonic deformation. Simple explanations 

for the large velocity determined may be an incorrect measurement of the antenna 

height during one survey or some error during processing. Although the velocities 

are insignificant, there does seem to be a positive correlation between those stations 

that show relative uplift and the highs in topography. Measured rates of uplift in 

the Coast Ranges around San Francisco bay are about 0.2 to 0.4 mm/yr [Brown, 

1990). 

4.4 Summary 

The data from 16 independent GPS surveys distributed between 3 profiles over a 

time span of around 2.8 years have been processed and analysed in order to measure 

crustal deformation rates in the San Francisco bay region. In order to interpret 

the results meaningfully the short-term precision and long-term repeatability were 

assessed. The short-term horizontal precision is about 1-2 mm in both horizontal 

components. The vertical short-term precision of about 8-10 mm is almost an 

order of magnitude worse than the horizontal components. Long-term horizontal 

repeatability has a constant bias of 4 mm, with a length dependence of 2.2 x 10-sz 

for the north-south and 3.5 x 10-sz for the east-west components. The vertical 
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measurements are much less repeatable than the horizontal measurements and are 

28 mm + 20 x I0-8
[ (assuming variation about a mean instead of about a best 

fitting line). 

CPS measurements in the bay region are of sufficient accuracy, in the horizontal 

components, to detect crustal deformation within a time span of less than 3 years. 

Velocities parallel to the trend of the San Andreas fault vary linearly along the 

profiles. The maximum, relative, right-lateral shear rates are 33 ± 2 mm/yr for 

the North Bay profile, 11 ± 3 mm/yr for the Golden Gate profile and 35 ± 3 mm/yr 

for the Central Bay profile. No significant convergence upon the fault is detected 

in any of the profiles. Apart from station Jackson, which is well outside the bay 

region the vertical velocities are not significant at the 2cr level. 
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Chapter 5 

Integration of Trilateration, VLBI and 

GPS Results 

5.1 Introduction 

The three GPS San Francisco bay region profiles, comprising 31 stations, provide an 

accurate description of the deformation field around the San Andreas fault system 

in the San Francisco bay region. However, these data represent only a portion of the 

total available geodetic information. Data from a century of triangulation, more 

than two decades of precise trilateration and other space geodetic techniques such 

as VLBI and SLR are available. Combining all the best geodetic information into 

one velocity solution provides the best possible picture of the spatial distribution 

of deformation in the region. In the San Francisco and Monterey bay region, 

measurements from three geodetic techniques, trilateration GPS and VLBI, are 

used to calculate the full velocity field (Figure 5.1). 

5.2 Method 

5.2.1 Introduction 

All station velocities estimated from geodetic data are arbitrary to some extent 

such that any additional motion generated by a rigid translation or rotation of the 

network cannot be detected. This ambiguity must also be resolved when combining 

the three different geodetic data sets. The translational ambiguity, which is often 

removed by either constraining the centre of mass of the network to zero velocity, 

fixing a station to zero velocity or minimising the velocities of a set of stations 
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Figure 5.1: Trilateration, GPS and VLBI points in the San Francisco and Monterey bay regions. 

Trilateration networks are shown by open triangles. The lines connecting stations indicate actual 

line lengths measured. Inverted solid triangles indicate GPS stations. VLBI stations are shown 

by open squares (FO, Fort Ord; P, Presidio; and PR, Point Reyes). Numbers 1-11 identify 

trilateration stations referred to in Figure 5.2. 
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assumed to move together, is not a serious problem for local crustal deformation 

studies where only motion within the network is required. The most convenient 

approach when studying relative motion between the Pacific and North American 

plates is to hold the interior of one of these plates fixed. 

The rotational ambiguity, especially in regions of simple shear, is more problemat

ical since simple shear may be an artefact of a wrong rotational constraint. The 

VLBI data, since it is used to define a precise terrestrial reference frame, is ide

ally suited to constrain both the translational and rotational ambiguities. VLBI 

stations, are deployed, albeit sparsely, across North America and the Pacific mar

gin and can therefore provide precise velocities relative to a fixed plate interior by 

minimising the velocities of stations in the interior of that plate. Fixing a reference 

plate also provides a rotational constraint. Since a terrestrial reference frame is 

usually defined by a set of station coordinates and velocities [Murmy, 1991] then 

the VLBI "global frame" station velocities can be chosen as an external reference 

frame for the GPS and trilateration data provided there are common stations. 

The three data sets are combined here by using the VLBI data to establish a global 

reference frame to which the GPS and trilateration data are tied. The changes in 

line length of trilateration data, the Cartesian station velocities from GPS derived 

in the Chapter 4 and the station velocities from VLBI, d are related to the "global 

frame" station velocities u by 

d = Gu+c, (5.1) 

where G is a matrix of linear trigonometric functions defined below for various 

geodetic data types and f is the positive definite measurement error matrix with 

zero mean. Obtaining relative site velocities is therefore a discrete inverse prob

lem where equation (5.1) is in explicit linear form [Menke, 1984]. Inverting equa

tion ( 5.1) is achieved using least-squares solutions since they are easy to compute 

and because they provide the maximum likelihood solution when the measurement 

errors fare normally distributed [Segall and Mathews, 1988]. 

Out of 122 stations there are a total of 10 common stations (Figure 5.1), that is, 

stations that have been surveyed by more than one technique. The trilateration 

network and the Central Bay GPS profile have no common sites with the VLBI 

data. However, since all three GPS profiles have common stations with the trilat

eration network, the North Bay and Golden Gate profiles provide a tie between 

the trilateration and VLBI, which subsequently provides a tie to the Central Bay 

profile. One VLBI site, Fort Ord (FO in Figure 5.1 ), is not part of a GPS profile 
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or the trilateration network. This is not a problem however since the trilateration 

sites are tied to the VLBI velocities via the ties further north. However, since the 

ties to the VLBI sites are in the north of the region, errors may accumulate in the 

network which may distort the displacement pattern. Therefore, the closest station 

to Fort Ord, is assumed to have the same "global frame" station velocity as Fort 

Ord. As a result the velocity solution may be slightly biased since the velocities 

should vary with distance from the fault and the closest trilateration station is 

approximately 5 km further from the San Andreas fault than Fort Ord. 

5.2.2 Trilateration Data and Observation Equations 

Since the early 1970's the USGS repeatedly surveyed trilateration networks in cen

tral California until the mid 1980's when the use of GPS began. This study uses 

the same trilateration data used by Lisowski et al. [1991] to calculate solutions 

for the San Francisco bay and Monterey bay regions. The network comprises 98 

stations and 300 lines, and the data set contains 2587 line-length measurements 

recorded mainly during the period 1973 - 1989 (Figure 5.1). 

Let L( a\ a 2
) be the length of the line connecting stations a1 and a2

, i.e., 

(5.2) 

where x, y and z are the station coordinates in the east, north and up directions 

respectively. The change in line length, 8L( a1
, a 2

) = L( a 1 + 8a1
, a2 + 8a2

)- L( a1
, a2

) 

can be approximated by taking the first two terms in the Taylor series expansion of 

L( a 1 + 8a\ a 2 + 8a2
), as long as the line length is large compared with the change 

in length. This gives 

In most cases the elevation difference between stations is small relative to the 

horizontal distances. If the vertical displacements are also small, the third term 

can be neglected. To obtain station velocities instead of displacements one can 

simply substitute for the appropriate terms by the corresponding time-dependent 

variables such that 
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Figure 5.2: Line length L minus a nominal constant L0 as a function of time for several lines in 

the north-bay trilateration network. The error bars represent one standard deviation on either 

side of the plotted point. The straight lines indicate least-squares linear fits to the data. Numbers 

beside station names are used to identify their positions in Figure 5.1. 

where /JL(t) is the rate of change in line length, L' is the mean line length, (x'2 -x'1
) 

and (y'2 
- y'1

) are the mean line length components and ( v; - v~J and ( v;- v~) are 

the relative velocity components. 
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For a network of N lines connecting M stations equation (5.1) will be of the form 

0 0 · · ·-sin (It -cos fit 0 ···sin Oj cos Oj · · · 
(5.5) 

where 0 is the line orientation measured clockwise from the y axis and u~ and u; are 

the M "global frame" velocities. The line rate changes (left hand side of equation 

5.5) in d are obtained by least-squares linear fits to the distance versus time plots 

for each line and examples of some plots are given in Figure 5.2. If the time series 

exhibits a clear coseismic step offset, the secular rate of change is estimated from 

a linear fit to either the pre-seismic or post-seismic observations together with a 

step offset at the time of the earthquake. 

5.2.3 GPS Data and Observation Equations 

The three GPS profiles, consisting of a total of 31 stations, described in Chapters 

3 and 4 were used. The relative velocity components, calculated in Chapter 4, are 

used as input into the inversion. For a network of M stations and M-1 independent 

relative vectors equation (5.1) will take the form 

-1 -1 

0 0 1 1 ... -1 -1 ... 
(5.6) 

where vt and vt are theM -1 relative velocity components and u~ and u; are the 

M "global frame" velocities. 
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5.2.4 VLBJ Data and Observation Equations 

Three sites in the San Francisco bay region have been measured using VLBI by 

the NASA Crustal Dynamics Project [Clark et al., 1987]. These VLBI stations 

are located at Point Reyes, Presidio and Fort Ord (Figure 5.1). The velocities of 

these and other VLBI stations measured relative to the stable interior of the North 

American plate were calculated by Ward [1990]. The velocities were calculated by 

reducing the line length velocities parallel to the line azimuth and line transverse 

velocities normal to the line azimuth from the GLB511 solution to a set of vector 

site velocities. The transverse velocities are tied to the Polaris - IRIS Earth orien

tation series [Robertson and Carter, 1985] derived using the assumption that the 

azimuth from Westford, Massachusetts to Richmond, Florida is fixed. The trans

verse velocities are therefore uncertain within a rigid body rotation of the whole 

network and hence a rotation can be subtracted from all the velocities without 

violating the VLBI observations. Ward [1990] removed the rigid body rotation of 

the network when calculating the site velocities by minimising the velocities of six 

interior North American stations. This is equivalent to the "stationary station" 

solution of Gu and Prescott [1986] and the "special station" solution of Segall and 

Mathews [1988]. These calculated velocities, relative to the (assumed) stable North 

American interior, are shown as arrows in Figure 2.9 and listed in _Table 5.1. In 

this case equation (5.1) forM sites becomes 

vi 
X 

ul 
X 

vi y ul y 

vj uJ 
X =I X (5.7) 

vJ uJ y y 

VM 
X 

UM 
X 

VM y UM y 

h ·1 . h Id t· . t . . j j d j j w ere IS t e en 1ty rna nx, I.e., vx = ux an vY = uy. 

5.2.5 Is the Velocity Field Constant Over Time? 

A fundamental assumption underlies the modelling done in this thesis. This as

sumption is that the elastic strain rate between major earthquakes is constant. This 
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Table 5.1: Velocities ofVLBI Stations Relative to the North American interior from Ward (1990] 

North Velocity East Velocity 

VLBI Station Longitude Latitude mmjyr mmjyr 

Fairbanks, Alaska -147.49 64.98 -2.4 ± 0.7 -1.0 ± 0.7 

Hatcreek, California -121.47 40.82 5.7 ± 0.4 -6.3 ± 0.4 

Kashima, Japan -219.33 35.95 2.4 ± 1.3 -2.7 ± 1.2 

Kauai, Hawaii -159.67 22.13 55.5 ± 1.0 -53.6 ± 0.9 

Kwajalein, Marshall Islands -192.52 9.40 45.3 ± 1.8 -60.9 ± 1.7 

Mojave, California -116.89 35.33 8.5 ± 0.4 -3.0 ± 0.3 

Vandenberg, California -120.62 34.56 37.5 ± 0.4 -30.1 ± 0.4 

Black Butte, California ~115.72 33.66 4.0 ± 1.1 -6.4 ± 0.9 

Deadman Lake, California -116.28 34.25 10.7 ± 2.9 -4.8 ± 2.8 

Ely, Nevada -114.84 39.29 1.4 ± 1.1 -2.7 ± 1.0 

Flagstaff, Arizona -111.63 35.21 -3.4 ± 1.1 -2.3 ± 1.1 

Fort Davis, Texas -103.95 30.64 1.3 ± 0.5 0.0 ± 0.3 

Fort Ord, California -121.77 36.67 39.7 ± 1.1 -26.0 ± 0.6 

JPL, California -118.17 34.21 26.1 ± 0.7 -23.1 ± 0.6 

Mammoth Lakes, California -118.94 37.64 7.8 ± 1.8 -12.3 ± 1.5 

Monument Peak, California -116.42 32.89 26.5 ± 0.7 -31.0 ± 0.6 

Owens Valley, California -118.29 37.23 9.3 ± 0.4 -4.7 ± 0.3 

Pearblossom, California -117.92 34.51 20.6 ± 0.6 -17.0 ± 0.7 

Pinyon Flat, California -116.46 33.61 18.1 ± 0.8 -17.9 ± 0.7 

Platteville, Colorado -104.73 40.18 -0.9 ± 0.6 0.4 ± 0.7 

Point Reyes, California -122.94 38.10 34.6 ± 1.0 -22.7 ± 0.7 

Presidio, California -122.45 37.81 26.1 ± 0.9 -21.3 ± 1.0 

Palos Verdes, California -118.40 33.74 28.1 ± 1.5 -26.4 ± 1.4 

Quincy, California -120.94 39.98 7.2 ± 0.8 -8.8 ± 0.9 

Santa Paula , California -119.00 34.39 22.1 ± 1.3 -31.0 ± 1.9 

Westford, Massachusetts -71.49 42.61 -3.6 ± 0.9 1.1 ± 0.5 

Yuma, Arizona -114.20 32.94 2.0 ± 0.8 -0.8 ± 0.7 

Quoted uncertainties are one standard deviation 
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assumption is implicit in fitting straight lines to the changes in line length with 

time determined using the three data types separately. The same assumption must 

also be made if the combination of the results is treated in the same way. However, 

the three data sets were not determined during the same time interval. Long-term 

variations in deformation rate may occur as a result of post-seismic viscoelastic 

transients that follow major earthquakes. The largest and most readily-discernible 

transients are of relatively short duration, a few years or less [Okada and Nagata, 

1953; Savage et al., 1994). 

A number of earthquakes have occurred in the San Francisco bay region during 

the time period spanned by the data. Previous studies suggest that geodetic strain 

accompanying earthquakes is undetectable at the levels of accuracy relevant here 

for magnitudes of around 5.0 or less [Savage and Kinoshita, 1971, Savage and 

Prescott, 1978b). The only events substantially larger than this in the San Francisco 

bay region during the monitoring period were the 1979 Coyote Lake (Ms=5.7), the 

1984 Morgan Hill (Ms=6.1) and the 1989 Lorna Prieta (Ms=7.1) events. Figure 5.3 

shows the timing of these earthquakes with respect to the observation intervals of 

the three data types used in the velocity solution. The epicentres of those events 

are show in Figure 5.4. 

·The Coyote Lake earthquake affects only the trilateration data to the south of 

the region [King et al., 1981) (Figure 5.3). A model for the coseismic deformation 

predicted displacements in excess of 20 mm for only four stations. No pre-seismic 

anomalies were detected. Post-seismic changes produced detectable changes in 

three lines. However for two of those lines the post-earthquake observations had 

a negligible effect on the overall rate calculated. The third line, although seem

ingly affected by afterslip, had few observations, with large uncertainties, and the 

afterslip again had little affect on the overall rate. 

The Morgan Hill earthquake produced coseismic offsets on many lines in the Mt. 

Hamilton area. The geodolite line Lorna Prieta to Hamilton, which crosses the 

Morgan Hill rupture zone, was part of a network which had been monitored roughly 

monthly since August 1981. Approximately 40 mm of coseismic offset on that line 

can be attributed to the Morgan Hill earthquake [Figure 3, Lisowski et al., 1990b; 

Bakun et al., 1984). However, no pre-seismic or post-seismic changes in rate affected 

the long term averaged rate. 

The most recent earthquake, the 1989 Lorna Prieta event, was the largest on the San 

Andreas fault since 1906. It provided an opportunity to measure how deformation 
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Figure 5.3: Timing of the three major earthquakes in the San Francisco bay region compared 

with the observation time intervals of the geodetic data. 

is distributed in space and time around a large earthquake. GPS, VLBI and tri-

. lateration data were used to determine a fault rupture model that accounts for the 

measured offsets [Lisowski et al., 1990a]. Geodetic data measured at frequent in

tervals prior to the earthquake were used to seek precursors to the event [Lisowski 

et al., 1990b]. Anomalous changes in rate for two of three frequently measured 

lines near Lorna Prieta preceded the earthquake. However, the rate for the third 

line and the only one to cross the imminent rupture zone showed no anomalous 

changes, bringing the possibility of a regional strain precursor into question. GPS 

data recorded since 1989 were used to study the effects of post-seismic transients 

[Savage et al., 1994]. Anomalies were only detectable in the fault-normal surface 

displacements for a profile crossing the projected surface plane of the coseismic 

rupture. The fault normal components of the nearest GPS profile in this survey, 

the Central Bay profile, show no significant affect (Figure 4.5). The Lorna Prieta 

earthquake therefore has no detectable effect on the GPS results used in this thesis. 

The geodetic observations thus suggest that a steady, linear strain rate can be 

assumed to dominate the deformation rates seen in the data. Theoretical con

siderations support this. For time periods that are short in comparison with the 

relaxation time of any viscous elements present in the system, the velocity field can 

be thought of as stationary, that is, independent of time [Prescott and Yu, 1986]. 

Thatcher [1983] calculated that peak strain rates (measured close to the fault), dur

ing the time interval of the geodetic measurements, would decline by only around 
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· 0.04 J.Lstrain/yr per decade. Average strain rates (calculated over the whole re

gion) would be expected to have even smaller changes in strain rate. However, 

Thatcher (1983] suggests that temporal declines in the deformation rate persist for 

decades following major earthquakes and because of this, no short term geode

tic observations will, except by happenstance, .reflect the long-term average over 

many earthquake cycles shown by geological data. Early in the cycle the rate will 

be higher than average, and later lower. Therefore, although elastic strain build

up measured over short time intervals may be assumed to be constant, fault slip 

rates determined by inversion of such data may reflect the behaviour of the fault 

segments at a particular time in their earthquake cycles rather than any average, 

long-term rate. 

5.3 Results 

5.3.1 The Velocity Field 

The velocity field produced by combjning GPS, trilateration and VLBI data in the 

San Francisco and Monterey bay reg~~s ~~~~~i~e io the "stable" North American 

plate ·interior is shown in Figure 5.t Theat'fit~£ the velocity solution to the data is 

indicated by the reduced x2 fit of f4. The dominant feature in the velocity field 

is the consistent northwesterly movement over the whole region coupled with an 

increase in amplitude of the motion from east to west. Indeed, at this scale, it is 

difficult to discern any other features. Stations west of the San Andreas and San 

Gregorio faults show velocities consistent with the rescaled NUVEL-1 Pacific-North 

American relative plate velocity [De· Mets et al., 1990]. However, the easternmost 

stations exhibit velocities that are inconsistent with being in the stable interior of 

the North American plate. The discrepancy, between those points and those in the 

stable interior is termed the "San Andreas Discrepancy" [Argus and G01·don, 1991] 

and can be attributed mainly to motion across the Great Basin (Section 1.1.5). 

The motion across the Great Basin at this latitude may be approximated by the 

10.0 ± 0.5 mm/yr N38°W velocity of the VLBI station OVRO (Figure 2.9) [Dixon 

et al., 1993, Table 3], located 300 km east of the San Andreas fault in Owens 

Valley. Station OVRO is within a tectonically active zone east of the Sierra Nevada 

Mountains (Figure 1.5) and its velocity is likely 1-2 mm/yr lower than points 

in the Sierra Nevada Mountains [Argus and Gordon, 1991]. In order to obtain 
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Figure 5.4: Velocity field in the San Francisco and Monterey bay regions relative to the North 

American plate interior, west of Colorado, which is assumed fixed. The ellipse at the end of each 

velocity vector represents the 95% confidence interval. The heavy arrow represents the rescaled 

NUVEL-1 Pacific- North American relative plate velocity for the region. The three stars indicate 

the epicentres of the Morgan Hill (1), Coyote Lake (2) and Lorna Prieta (3) earthquakes. 
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Figure 5.5: Velocity field in the San Francisco and Monterey bay regions . Velocities are relative 

to the VLBI site OVRO located 300 km east of San Francisco. The ellipse at the end of each 

velocity vector represents the 95% confidence interval. Diagonal lines separate four subregions 

described in the text. 
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position changes that represent deformation around the San Andreas fault system 

the motion of OVRO is subtracted from the site velocities. 

The resultant velocity field around the San Andreas fault system is shown in Fig

ure 5.5. The westernmost points move up to 35 mm/yr relative to the continent 

300 km inland from the coast. The easternmost stations in the network show very 

little motion relative to OVRO. Therefore, nearly all the deformation in northern 

California is concentrated in a ""100 km wide zone around the San Andreas fault 

system. 

The velocity field in Figure 5.5 has been divided into four subregions: north-bay, 

central-bay, south-bay and Monterey-bay. Because the GPS observations are re

stricted to the two northernmost subregions, the deformation in the south-bay and 

Monterey-bay subregions are derived purely from the trilateration data and are 

essentially the same as the results presented by Lisowski et al. [1991, Figures 6 

and 7]. The distribution of deformation across the fault system is best shown by 

projecting the station velocities onto profiles constructed perpendicular to the plate 

boundary (Figures 5.6 - 5.9). The parallel and perpendicular velocity components 

are plotted as a function of distance perpendicular to the plate boundary in the 

upper and lower parts of these Figures. The magnitude of deformation and width 

of the zone changes along the strike of the San Andreas fault system (i.e., from 

profile to profile). This along-strike variation shows the varying complexity of the 

fault system from south to north. 

Velocity profiles for the north-bay subregion are shown in Figure 5.6. The fault

parallel velocity profile (upper part of Figure 5.6) shows that about 32 ± 2 mm/yr 

of relative motion is detected by that part of the network. The most distinct feature 

of the profile is a linear trend with gradient -0.34 ± 0.01 f.LStrain/yr between the 

San Andreas and Green Valley faults. To the southwest of the San Andreas fault 

and northeast of the Green Valley fault the gradient appears to flatten out. This 

flattening at both ends of the profile suggests that the entire boundary zone has 

been spanned and that it is "" 120 km wide. There appear to be small offsets in the 

profile across both the San Andreas fault (3.3 ± 2.8 mm/yr) and the Green Valley 

fault (5.9 ± 3.0 mm/yr). No offset across the Rodgers Creek fault is indicated by 

the observations. The fault-normal velocity profile (lower part of Figure 5.6) shows 

no significant velocities for most of the stations and no systematic trend. 

The velocity profiles for the central-bay subregion are shown in Figure 5. 7. The 

profile of the fault-parallel velocity component shows a near-linear trend over most 
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Figure 5.6: Horizontal station velocities for the north-bay subregion resolved into components 

perpendicular (top) and parallel (bottom) to a N57°E profile and plotted as a function of distance 

along the profile. Error bars represent one standard deviation. 
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Figure 5.7: Horizontal station velocities for the central-bay subregion resolved into components 

perpendicular (top) and parallel (bottom) to a N57°E profile and plotted as a function of distance 

along the profile. Error bars represent one standard deviation. 
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Figure 5.8: Horizontal station velocities for the south-bay subregion resolved into components 

perpendicular (top) and parallel (bottom) to a N57°E profile and plotted as a function of distance 

along the profile. Error bars represent one standard deviation. 

of the profile (best-fit gradient of -0.38 ± 0.02 J.LStrain/yr). The three easternmost 

points of the profile show no significant motion with respect to OVRO at the 

2o- level and suggests that the gradient to the northeast of the Calaveras fault 

is zero. This suggests that the eastern edge of the deformation zone associated 

with the San Andreas fault system is covered by the profile. No flattening of the 

velocity gradient is evident at the southwestern end of the profile. Allowing for the 

flattening at the eastern end of the profile then the central portion of the profile 

between the San Andreas and Calaveras fault is fit by a best-fit line with a gradient 

of -0.41 ± 0.02 J.LStrain/yr. A total of 32 ± 2 mm/yr of plate motion is measured 

within a zone of ,...., 100 km wide. No obvious offsets can be detected across the 

three faults crossed by the profile. None of the stations have a velocity component 

in the fault-normal direction that exceeds 2 standard deviations. 

Figure 5.8 shows the velocity profiles for the south-bay subregion. All of the fault

parallel velocities in the south-bay subregion can be fit with a straight line of 

gradient -0.42± 0.02 J.LStrain/yr at the 3o- level. However, at the 2o- level the 

distribution of observation points are sparse such that any offsets that occur across 

any of the faults spanned by the profile are unresolvable. As for the north- and 

central-bay subregions the fault-normal profile shows no significant deviations from 

a zero velocity. However the negative offset in the fault-normal velocities indicates 
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Figure 5.9: Horizontal station velocities for the Monterey-bay subregion resolved into components 

perpendicular (top) and parallel (bottom) to a N57°E profile and plotted as a function of distance 

along the profile. Error bars represent one standard deviation. 

that all the stations are moving west with resp~ct to the chosen N33°W azimuth in 

this subregion. That offset is possibly an artefact of the bend of the San Andreas 

fault in the south-bay subregion (Figure 5.5). 

Velocity profiles for the Monterey-bay subregion are shown in Figure 5.9. The fault 

geometry in this region is relatively complex, with the Calaveras fault merging with 

the San Andreas fault in the south of the region (Figure 5.5). Both the fault-normal 

and the fault-parallel velocity components reflect this complexity. The fault-parallel 

velocity component is not satisfactorily described by a straight line. Large offsets 

occur across both the San Andreas fault (13.6 ± 3.1 mm/yr) and the Calaveras fault 

(11.7 ± 3.1 mm/yr). Within the blocks on either side, and between these faults, 

the observations show appreciable scatter and little internal deformation. Only the 

block to the southwest of the San Andreas fault has a significant velocity gradient 

(-0.11 ± 0.05 11strainjyr) which is less than one-third the gradient detected in the 

other subregions. The scatter is a result of projecting the station velocities onto 

a profile in an area where the San Andreas and Calaveras faults are not parallel. 

Thus for the stations in the north of the subregion the San Andreas fault is located 

further west and the Calaveras fault further east than is depicted in Figure 5.9. A 

total of 30 ± 3 mm/yr is detected over a width of rv 60 km. This is equal to an 

average gradient of -0.5 11strainjyr. The fault-normal velocity component shows 
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appreciable scatter but no net contraction perpendicular to the trend of the fault. 

5.3.2 The Velocity Gradient Tensor 

The velocities have been used to estimate the two-dimensional velocity gradient 

tensor [Malvern, 1969] for various triangles of the network using the program of 

Feigl et al. [1993]. The triangles are designated using "Delaunay triangulation" 

such that they are optimally close to equilateral [Watson, 1982]. The symmetric 

part of this tensor is the strain rate tensor, whilst the antisymmetric part gives 

a measure of the rate of rotation. The observed values of the symmetric part are 

shown in terms of their principal compressional and extensional axes for triangles 

with significant rates in Figure 5.10. Also shown are the average strain rate tensors 

calculated for the four subregions. These indicate the overall pattern of deformation 

in the region. 

Very high rates of strain occur in the south of the region. This corresponds to the 

Monterey-bay subregion where large offsets are detected across both the San An

dreas and Calaveras faults. For most of the triangles the strain rate shows nearly 

pure shear with the axes of principal compression directed north-northeast-south

southwest and the axes of principal extension normal to this. This is consistent 

with right-lateral shear along northwest striking planes. The rate of dilation, or 

change in area per unit area, is zero at the 2o- level for 98.7% of the triangles. 

The lack of significant dilation indicates that this area is not dominated by com

pressional or extensional deformation. Maximum shear-strain rates range from 

0.2 to 6.2 f-tStrain/yr for individual triangles and for the four subregions from 

0.3 f-lStrain/yr in the north-bay to 0.5 f-tStrain/yr in the Monterey-bay. The di

rection of maximum right-lateral shear for triangles where the uncertainty in the 

orientation of the axes are less than 30° are shown in Figure 5.11. Although there is 

much variation, the direction of maximum right-lateral shear generally agrees with 

the local fault strike. This is most evident for the Calaveras fault, and near the 

junction between the Calaveras and San Andreas faults. In contrast, the direction 

of maximum right-lateral shear for the average subregion strain tensors are around 

N31 °E to N36°E, consistent with the plate motion direction calculated from the 

NUVEL-1A model. 
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Figure 5.10: Principal axes of the horizontal strain-rate tensor in the San Francisco and Monterey 

bay regions, calculated from the combined horizontal velocity field shown in Figure 5.5. In 

each Delaunay triangle (dashed lines) , the inward pointing arrow represents compression and the 

outward pointing arrow represents extension. Large white strain rate tensors are the average 

rates calculated for the four subregions. If the uncertainty in the orientation of the axes is greater 

than 30° , and if neither principal strain rate is larger in magnitude than its uncertainty, then the 

axes are not plotted . 
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Figure 5.11: Orientation of maximum right-lateral shear in the San Francisco and Monterey bay 

regions, for the Delaunay triangles of Figure 5.10. This map is plotted in an oblique Mercator 

projection about the Pacific-North American pole of rotation. A horizontal line would indicate a 

shear direction parallel to the relative plate motion direction. 

5.4 Summary 

GPS data in the San Francisco bay region represent only a fraction of the total 

available geodetic data for calculating the deformation field. Combining different 

geodetic data using least squares solutions for the inverse of equation (5.1), yields 

a spatially dense sample of station velocities. The velocity field across the San 

Andreas fault system between latitudes 36°30' and 38°40' has been calculated us

ing trilateration, VLBI and GPS measurements. The measurements show about 

35 mm/yr of distributed right lateral shear relative to VLBI station OVRO in east

ern California. The width of the deforming zone increases from around 60 km in 

the south to over 100 km in the north. Fault-normal profiles of the fault-parallel 

component of velocity indicate a change in the distribution of shear from defor

mation concentrated on the faults in the south to distributed deformation in the 

north. Considering that the relative motion measured across the system is similar 

to geological estimates of slip rate and that motion between the plates appears to 

be steady over a long time then the data also indicate that the deformation due 

to the San Andreas fault system occurs primarily northeast of the San Andreas 
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fault. Little fault-normal motion is detected indicating no significant convergence 

across the faults. The local orientations of maximum right-lateral shear agree with 

the surface strikes of nearby faults whereas the orientations averaged over larger 

regions, i.e., the four subregions, agrees well with the plate-motion direction. 
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Chapter 6 

Geophysical Models of Crustal 

Deformation 

6.1 Introduction 

Surveying measurements made in California sample the surface deformation that 

results from relative, right-lateral translation of the Pacific and North American 

plates. Within a plate tectonic framework this motion can be approximated to con

tinuous translation of surface plates that are assumed to be rigid. However, vary

ing deformation rates provide evidence for a recurring sequence of interearthquake 

strain accumulation, coseismic strain release and postseismic readjustment, known 

as the earthquake deformation cycle. Observations along the San Andreas fault 

system also suggest a range of mechanical fault behaviour from planes completely 

locked from the surface throughout seismogenic depths (10-15 km) except for 

·abrupt slip in occasional large earthquakes, to free sliding planes at all depths 

with only minor seismicity. 

Most models for earthquakes involve some mechanism where shear stress gradually 

increases across a fault plane to failure level. At shallow depths corresponding 

to the seismogenic crust, the rocks behave in an elastic and brittle manner. The 

frictional strength of faults is thought to increase linearly with depth and faulting 

is thought to be controlled by Coulomb failure. The fault plane is usually locked 

so that stress accumulates and is released predominantly in the form of occasional 

large earthquakes. Below the brittle layer, where temperatures are sufficiently high, 

plastic, aseismic slip on a downward continuation of the fault zone, or distributed 

shear flow, occurs continuously. This aseismic deformation concentrates stress in 

the locked zone above. 

The process of strain accumulation and faulting for a transform fault is shown in 
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Figure 6.1. At the time of an earthquake, only that part of the fault slips which has 

not moved earlier aseismically and so slip does not extend into the lower, plastic 

layer. If the depth d is small then continuous, aseismic slip is observed, strain 

is released more or less continuously and the probability of large earthquakes is 

low. Fault segments where steady-state creep is observed at the surface but large 

earthquakes have been documented may indicate transitional behaviour. Fault 

segments may also slip f:t:eely in the upper few kilometres, be in locked frictional 

contact at mid-crustal depths and slip freely below. Because of the complexities 

observed in crustal deformation, many models have now been developed for strain 

accumulation and release on faults embedded in linear elastic, linear viscoelastic · 

or more complex structures. 

6.2 Models for Strike-Slip Faulting 

6.2.1 Models from Dislocation Theory 

Deformation along a strike-slip fault, where the fault is long and straight and the 

deformation uniform along strike is easy to model using a simple, two-dimensional 

model (Figure 6.2). The plane z = 0 represents the free surface of the Earth, and 

the fault lies in the x - z plane at y = 0. In an infinite, elastic space a discrete

dislocation model can be constructed using two parallel screw dislocations with 

equal and opposite Burger's vector b [ Weertman and Weertman, 1964; Savage, 

1980]. The faulted or slipped area is generally taken as the plane area joining the 

two dislocations. The displacement and stress field can be calculated from the 

superposition of the fields from the two screw dislocations parallel to the x-axis 

but with opposite Burger's vector at depths z = d1 and z = d2 • For an elastic 

half-space, the boundary condition imposed at the free surface can be satisfied by 

introducing in the lower half-space the field which would be generated by image 

dislocations at depths z = -d1 and z = -d2 in the absence of the free surface. The 

complete displacement field is then 

ux(Y, z) = 2~ [tan-
1 (z ~ dJ -tan-

1 (z! dJ -tan-
1 (z ~ dJ +tan-

1 (z! dJ]. 
. (6.1) 

At the free surface (z = 0) this can be simplified to 

(6.2) 
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Figure 6.1: Accumulation and release of strain along a strike-slip fault. The upper sketches 

illustrate the surface motion resulting from strain accumulation on a fault locked above depth d. 

The lower sketches illustrate the surface displacements after strain release/failure of the fault. 

Figure 6.2 : Orientation of the coordinate system relative to a fault in the x - z plane at y = 0 
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a) Simple Half-Space b) Modified Half-Space c) Lithosphere-Asthenosphere 
----.----~Y y y 

Elastic 

Z= D Z= D Z= H 

z z z 

Figure 6.3: (a) Simple elastic half-space, (b) modified elastic half-space, and (c) lithosphere

asthenosphere Earth models. The heavy vertical line segment represents the fault segment that 

ruptures seismically. From Lisowski et a/. [1991] 

The simplest model that approximates the deformation associated with a long, 

straight, strike-slip fault is shown in Figure 6.3a. The zero-order motion is rigid 

block motion, equal to the long-term average plate velocity, V, at the boundary. 

However , the upper portion of the fault (z < D) is locked and slips only during 

earthquakes by an amount VT at intervals of time T . In the interseismic period 

the surface deformation can be calculated by subtracting the amount that is taken 

up in earthquakes from the rigid plate motion. That is 

. ( ) v v [ -1 ( y ) -1 ( y )] ux y = =f 2 + -; tan d
1 

- tan dz . (6 .3) 

Setting d1 = 0 and d2 = D gives 

ux(y) = =f~ + ~ [±~-tan- 1 (~)], 
:r V ± V - V tan -1 (JL) 
'2 2 1r D ' 

- ~ tan- 1 (~)· (6.4) 

Equation (6.4) can also be obtained from equation (6.2) by setting d1 = D and 

d2 = oo and assuming the fault is slipping at a rate, V, at depth. However, although 

mathematically equivalent, these two methods for obtaining equation (6.4) illus-

trate different views of the same physical phenomena. The first method suggests 

slip deficit accumulating on a locked patch as a result of some loading mechanism 

at greater depth whereas the second method suggests slip on a freely-slipping zone 

beneath a locked patch . 
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Where two or more subparallel faults are responsible for the deformation, the total 

field can be obtained by summing the individual fields from each fault. In this case 

V is replaced by the slip deficit accumulating along each fault b or conversely by the 

deep-slip rate on each fault. The surface deformation produced by several screw 

dislocations is described completely by the dislocations themselves, and is inde

pendent of the position and orientation of the slipping surfaces at depth [Lisowski 

et al., 1991]. It is also possible that at depths where plastic behaviour occurs, the 

deformation is distributed evenly across a broad lateral zone [Prescott and Nur, 

1981; Lachenbruch and Sass, 1973]. This is the distributed shear case, and can be 

treated by distributing infinitesimal screw dislocations with Burger's vector density 

b/2w over a zone of width 2w at depth d. Replacing b with b/2w dy', y withy- y' 

in equation (6.2) and integrating over y' from -w to +w the result is 

. b [ _1 (y-w) _1 (y+w) d (d2
+(y-w)

2
)] ux(Y)= 21rw (y-w)tan -d- -(y+w)tan -d- -2ln d2 +(y+w)2 . 

(6.5) 

Although the distributed shear zone is modelled as lying within an elastic half

space, it is a reasonable approximation to the velocity distribution that would be 

produced from viscous tractions at the base of a brittle layer [Prescott and Yu, 

1986]. 

One complication that may be important when interpreting observations is the 

effect of structural inhomogeneity. The effect of layering in a half-space may be 

modelled using the method of images where the overall deformation is calculated as 

a large (essentially infinite) sum of terms that represent images of many dislocations 

in the half-space. The images are required to satisfy boundary conditions at the 

layer interfaces because of the contrasting elastic properties. The effect of horizontal 

layering was investigated by Rybicki [1971]. For geologically interesting cases, where 

the rigidity increases with depth, the displacements are concentrated closer to the 

fault compared with the homogeneous half-space case. A more interesting case 

of layering, that of an elastic layer over a viscoelastic half-space produces a time

dependent surface deformation [Nur and Mavko, 1974]. Lateral inhomogeneity has 

been studied by McHugh and Johnston [1977] and Rybicki and Kasahara [1977]. 

The effect of rigidity contrasts in vertical blocks is to concentrate deformation in 

the blocks of lower rigidity. 

The simple, two-dimensional, screw-dislocation model for strike-slip faulting lacks 

the ability to model the postseismic transients that follow large earthquakes [That

cher, 1983]. Two contrasting models of the earthquake deformation cycle on strike-
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slip faults that predict postseismic movements have been proposed. The first model 

(the modified elastic half-space model, Figure 6.3b) attributes postseismic defor

mation to exponentially-decaying aseismic slip on a downward continuation of the 

fault directly below the coseismic rupture. The slip rate is given by 

b = aVT[exp( -at)]/[1- exp( -aT)], (6.6) 

where t is time since the preceding earthquake and a is a time constant [ ThatcheT, 

1983]. The second model (the lithosphere-asthenosphere coupling model, Fig

ure 6.3c), assumes post-seismic viscoelastic relaxation in the asthenosphere. A 

method for calculating the total kinematic motion of the plates is proposed by 

Savage and ?Tescott [1978a]. The interseismic motion is the sum of (1) uniform 

block motion, (2) the elastic response to steady shallow "backslip", (3) the viscous 

response to the steady backslip, and ( 4) the viscoelastic response to prior periodic 

step offsets on the fault. 

Although geophysical observations of time-varying deformation rates do serve to 

limit some extreme models, no data sufficiently good to distinguish between these 

two models are available at present. Furthermore, it can be shown that the defor

mation for the simple lithosphere-asthenosphere model can be exactly reproduced 

by a selected distribution of slip on vertical faults in an elastic half-space at various 

depth intervals for infinite strike-slip faults [Savage, 1990] and this suggests that 

it may be very difficult to resolve this question using crustal deformation obser

vations. Except for the immediate postseismic period, the locking depth and slip 

rates derived from simple half-space models do not differ significantly from those 

obtained using more complicated Earth models [Savage, 1987]. Inversion of even 

high quality geodetic data for a distribution of slip at depth is highly unstable 

[ Weertman, 1965]. These results illustrate well the inherent extreme insensitivity 

of crustal deformation to Earth structure. 

For many strike-slip faults, variations in strike are too great to allow good de

formation modelling using two-dimensional geometries and so three-dimensional 

geometries must be used. These were first used by Steketee [1958] who adopted a 

mathematical model of a displacement dislocation surface, I;, i.e., one across which 

there is a discontinuity in some or all components of the displacement vector ui· 

The dislocation is assumed to be such that the discontinuity, .6.ui has the nature 

of a rigid body displacement satisfying the equations 

n .. 
tJ (6.7) 
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Figure 6.4: Geometry of the source model for three-dimensional faulting at depth. After Okada 

[1985]. 

where Ui and the rotation matrix nij are constants. Six sets of Green's function 

are required for the general solution of the problem of a dislocation in a semi

infinite medium, and were determined for a strike-slip fault by Steketee [1958]. The 

five sets of functions describing thrust faulting, normal faulting and dilation in 

three planes were derived by Maruyama [1964]. A complete set of closed analytical 

expressions for the surface displacements, strains and tilts due to shear and tensile 

faults in a half-space for point and finite rectangular sources was presented by 

Okada [1985]. The expressions are free from the singularities that were inherent 

in previous expressions [e.g., Maruyama, 1964] and are in compact form. The 

expressions for the horizontal surface deformation of a finite rectangular fault with 

length 2L, width W (Figure 6.4) and a strike-slip dislocation U1 are 

ul [ ~q -1 ~"' I. . ']II - 27r R(R+ry) +tan qR + 1 smv , 

Uy = ul [ fjq q cos 8 . J II 
- 27r R(R+ry) + R+ry +12 sm8 , (6.8) 

where II represents the substitution 

f(~, ry)ll = f(x + L,p)- f(x + L,p- W)- f(x- L,p) + f(x- L,p- W), 
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and 

I1 

I2 

h 

I4 

_fl_[~-e-] _sino Is 
A + fl cos 8 R + J cos 8 ' 

A : fl [- ln ( R + 1J)] - I 3 , 

fl [ 1 fj ] sin 8 -- ------ln(R+1J) +-I4, 
A + fl cos 8 R + d cos 8 

~~ [ln(R +d)- si_n 8 ln(R + 1J )] , /\ + fl cos u 

Is _fl __ 2_ tan_ 1 1J(X + q cos 8) + X(R +X) sin 8 (6.9) 
A + fl cos 8 e ( R + X) cos 8 ' 

with 

p y cos 8 + d sin 8, 

q ysin8- dcos8, 

y 1J cos 8 + q sin 8, 

J 1J sin 8 - q cos 8, 

R2 e + 172 + q2 = e + fj2 + J2, 
x2 e+l, (6.10) 

and A, fl are the Lame elastic moduli of the halfspace. For the case of a vertical, 

strike-slip fault, cos 8 = 0 (taking care of the two cases of sin 8 = ±1 ). Then 

fl ey 
2(A + fl) (R + 17)2' 

fl [ 1J y2 ] 
2( A + fl) R + 1J + ( R + 1J )2 - ln( R + 1J) ' 

fl y 

-A+flR+1J' 

fl e ------
A+flR+1]' 

(6.11) 

with R2 = ez + 17 2 + y 2
• In these expressions some terms become singular for special 

conditions and the following rules avoid them 

(i) when q = 0 set tan-1(e1JfqR) = 0 in equation (6.8) 

(ii) when~ = 0 set Is = 0 in equation (6.9) 

(iii) when R + 1J = 0 (occurs only when sin 8 < 0 and ~ = q = 0) set all the terms 

which contain R + 1J in their denominators to be zero in equations (6.8) to 

(6.11), and replace ln(R + 17) to -ln(R + 17) in equations (6.9) and (6.11). 
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Three-dimensional solutions for a rectangular, strike-slip fault in an elastic layer 

overlying a linearly-viscoelastic half-space have also been constructed both approx

imately [Rundle and Jackson, 1977) and exactly [e.g., Singh, 1970; Cohen, 1980, 

1982). 

6.2.2 Models using Two-Dimensional Edge Cracks 

Despite the complexities that can be incorporated into discrete dislocation models 

there are some restrictions. The presence of stress singularities at the dislocation 

lines is clearly unrealistic although this difficulty can be overcome by introducing a 

continuous distribution of dislocations. A further objection is that these dislocation 

models are semiempirical since the slip is imposed on the fault arbitrarily without 

satisfying any particular boundary condition on the stress. A two-dimensional, 

elastic, edge crack model (Figure 6.5b) was proposed by Turcotte and Spence [1974) 

to analyse near-fault surface deformation. Loading is from remote edges of surface 
' 

plates which are decoupled from the asthenosphere below and as a result the loading 

cannot be directly related to deep-seated motion which limits its application. This 

inconsistency was remedied by introducing a viscoelastic region beneath the elastic 

surface plate (Spence and Turcotte, 1979; Turcotte et al., 1979]. A vertical, strike

slip fault loaded by tractions at the base of the elastic plate (Figure 6.5a and b) 

was modelled by Li and Rice [1987) using a "line spring" approximation method. 

Li and Lim [1988] produced two new versions of the physical base-traction model 

in order to include geometric complexities such as shallow fault creep and parallel 

faults. These models combine features of both the modified elastic half-space and 

lithosphere-asthenosphere models. However, what is gained in realism of the Earth 

model is lost, due to mathematical complexity, in ability to include geometric fault 

variations. 

6.2.3 Comment on Structural Geometries 

The orientation of the maximum, near-field, right-lateral strain accumulation from 

published geodetic results throughout the San Andreas fault system has been used 

to place constraints on the geometries of fault-loading mechanisms [Gilbert et al., 

1994]. The orientation of maximum, shear-strain accumulation is better predicted 

by the orientation of the local faulting direction than by the regional plate mo

tion direction. This is clearest in the Big Bend region of the San Andreas fault 
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Figure 6.5: (a) Elastic lithosphere coupled to a viscoelastic asthenosphere driven by deep mantle 

movement. The shaded area indicates the shear zone sliding at constant resistive shear stress 

below a shallow locked brittle zone. (b) A cross-sectional view of the lithosphere at the plate 

boundary, modelled as a two-dimensional edge crack uncle~ stress. After Li and Rice (1987] 

(Figures 1.3, 2.4). Here, the maximum, right-lateral shear-strain orientation of 

N54.4°W is much closer to the local fault direction, N60°W, than the orientation 

of plate motion, N37°W. 

This form of strain localisation can be explained using both lithosphere-astheno

sphere models, which are dominated by horizontal layering of the crust, and mod

ified elastic half-space models which have predominantly vertical geometries. The 

lithosphere-asthenosphere models can accommodate the observed results only if 

the post-seismic relaxation time of the system is similar to the recurrence times of 

large earthquakes. However, studies have shown that this is generally not true for 

the San Andreas fault system [Thatcher, 1983]. 

Vertical geometries produce strain fields that are parallel to the fault direction 

at all times. Base-traction models show that strain concentration throughout the 
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earthquake cycle can occur if the elastic layer thickness is 2-3 times larger than the 

fault-locking depth. Geologic evidence from ancient transcurrent fault zones show 

that they extend into the middle and lower continental crust as ductile shear zones 

that mimic the surface patterns of strike-slip faulting presently active [Sibson, 1983; 

Gilbert et al., 1994]. These observations suggest that near-fault strain accumulation 

is a product of geometries dominated by vertical structures in continental crust. 

Models whose geometries are predominantly vertical are therefore favoured here 

for predicting surface deformations. 

6.3 Previous Models used in the San Francisco 

Bay Region 

Several different models have been used to explain the surface deformation pattern 

in the San Francisco bay region. Most assume that the data can be adequately 

. modelled using two dimensional models, with one axis vertical and the other normal 

to the general strike of the faults. 

Several estimates of interseismic slip rates and contrasting models have been pro

duced to describe the deformation in the northern San Francisco bay region [Prescott 

and Yu, 1986; Li and Rice, 1987; Kroger et al., 1987 and Lisowski et al., 1991]. The 

trilateration data from 4 networks measured by the USGS in the interval1972-1983 

were used along with data from VLBI measurements spanning .1980 to 1986. A 

series of five forward models were used to study the amount and distribution of slip 

at depth that is consistent with the surface observations (Figure 6.6) [Prescott and 

Yu, 1986]. The observations were poorly modelled with slip at depth on only the 

San Andreas fault (Figure 6.6, models A and B). A better fit was obtained for slip 

at depth on three faults (Figure 6.6, model C) or with motion distributed across the 

whole zone from the San Andreas fault to the Napa Valley fault (Figure 6.6 model 

D). The best model involved distributed slip, plus additional shallow slip between 

6 and 10 km depth on the San Andreas fault to account for the apparent increase 

in strain rate seen within the Point Reyes network (at -25 km along the profile) 

(Figure 6.6 model E). The distributed slip models were motivated by observations 

of heat :flow which suggest that the brittle, surface layer is transported by tractions 

at its base and is decoupled from material beneath [Lachenbruch and Sass, 1980]. 

Modelling of the thermal-mechanical evolution of tl)e plate boundary suggested 

135 



: r::·~>::<-<-~, ;:;_J :: cd~'·:: ~::::::.::.:.:: :l 
-60 -40 -20 0 20 40 -60 -40 -20 0 20 40 

: r.:·~::.:.~~:~;-,;; :n; :J • :: [~~~::: ~l:::'::::::':::] 
-60 -40 -20 0 20 40 -60 -40 -20 0 20 40 

~-< 40 __________ ]' 0 Model C 

jzor::::::~:.<:::-:::::::;~;] j-20 , !~ ~~ ~~,-
. 0 Q-40 

-60 -40 -20 0 20 40 -60 -40 -20 0 20 40 

: r:: ::-·-~ ::::-. ::~-:~ :n·_;J ::C~~~:::::: :;,~::.:.: · J 
-60 -40 -20 0 20 40 -60 -40 -20 0 20 40 

: r:: · :::: ... ::<~~ :~·_;J ::c~~~::· r: :~.~::::::. J 
-60 -40 -20 0 20 40 -60 -40 -20 0 20 40 

Distance (km) Distance (km) 

Figure 6.6: The interseismic deformation for various models for the northern San Francisco bay 

region. Superimposed on the theoretical profiles (dashed line) is the observed velocity profile 

(solid line). Right-hand column of plots show the models. Vertical lines indicate the location, 

depth and deep slip rate on the San Andreas (SA), Rodgers Creek (RC) a.nd West Napa (WN) 

faults. Horizontal lines indicate the width of uniformly distributed vertical shear from the plotted 

depth to infinity. Modified from Prescott and Yu [1986]. 

136 



SAF 
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Figure 6.7: Schematic diagram of the fault zone and lithosphere in the San Francisco bay region. 

The San Andreas fault (SAF) still serves as the principal surface boundary between the Pacific 

and North American plates. Below seismogenic depths the boundary is '""' 40 km east of the San 

Andreas fault. A sub-horizontal shear zone connects the San Andreas fault to the deep eastern 

segment and underlies the Sebastapol Block (SB). Recently formed faults lie above the deeper 

eastern plate-boundary segment. Modified from Furlong et al. [1989]. 

that the strength minimum at depth, beneath the brittle, surface layer is offset by 

approximately 40 km northeast of the San Andreas fault (Figure 6. 7) [Furlong et 

al. 1989). From this a model was proposed whereby the San Andreas fault is con

nected to a vertical shear zone at depth by distributed vertical shear underlying the 

Sebastapol block (Figure 6.8). In the central San Francisco bay region, distributed 

vertical shear connects the San Andreas fault to the vertical shear zone at depth 

. underneath the surface location of the. Hayward fault. Aseismic creep was included 

on the Hayward and Calaveras faults (Figure 6.9). Another model based on such 

a structure involved a slipping plate boundary represented by a screw dislocation 

25 km to the east of the San Andreas fault at a depth of 25 km [Lisowski et al., 

1991). The San Andreas fault was represented by a vertical zone of low rigidity (a 

consequence of past activity on the fault) separating blocks to the left and right 

of different rigidities (Figure 6.10). This model reproduces several features of the 

observations, e.g., the :flattening of the velocity profile to the west of, and the high 

strain rate across, the San Andreas fault. 

The observed deformation in the northern San Francisco bay region was modelled 

using theoretical curves from the physical base traction model [Li and Rice, 1987). 
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Figure 6.8: The interseismic deformation model for the northern San Francisco bay region of 

Furlong et a/. [1989]. Upper part shows the structure. Lower part shows the theoretical profile 

(line) and the observed velocity data(+) from Prescott and Yu [1986]. Faults creeping during 

observation period are shown as solid lines, the distributed shear zone as a ruled region arid locked 

faults as dashed lines. The slip rates used in the modelling are indicated. 

The parameters used (time since the previous earthquake, earthquake repeat time, 

overall plate velocity, locking depth, elastic pl~te thjckness and relaxation time) 

were deduced from seismological, geological and .strain-rate decay data. However 

the predicted profiles showed clear devi!:Ltions from the observed data west of the 

San Andreas fault and to the east of the West Napa fault (Figure 6.11). The misfit 

in the southwest block was attributed to a rigidity contrast across the San Andreas 

fault with the southwest block having a greater thickness-averaged rigidity than 

the northeast block. However, ignoring the effects of other sub-parallel faults in 

the region, and locating the mantle flow boundary directly underneath the San 

Andreas fault, will also have contributed to the misfit. 

138 



0 

,....... 10 s 
...:.=: ....._, 
..c 20 ...... 
0.. 
(]) 

0 30 

40 

,....... 20 
~ 
;:;.-.. a 

10 s ....._, 
...... s:: 
(]) 0 s 
(]) 
(.) 
~ -10 0.. en ...... 
0 -20 

-75 

+ 
+ 

-50 

~-~ 'liD) 
~ ~ ~'li~'li ~'li 

Ci 

+ 

-25 

+ + 

36 mm/yr 

+ 

0 

Distance (km) 

6mm/yr 

25 50 75 

Figure 6.9: The interseismic deformation model for the central San Francisco bay region of Furlong 

et a/. [1989]. Upper plot sho~s the structure. Lower plot shows the theoretical profile (line) and 

the observed velocity data(+) from Prescott et a/. [1981]. Faults creeping during observation 

period shown as solid lines, the distributed shear zone as a ruled region and locked faults as 

dashed lines. The slip rates used in the modelling are indicated. 

Two-dimensional, finite-element methods [e.g., Melosh and Raefsky, 1981] were 

used to model geodetic and VLBI data in the western United States [Kroger et al., 

1987]. The model was intended to approximate a lateral slice through a multiply

faulted transform system. The model simulated the time-dependent evolution of 

displacements and stress in an elastic lithosphere overlying a viscoelastic astheno

sphere. For the northern San Francisco bay region activity on the San Andreas 

fault was supplemented by the Rodgers Creek-Maacama fault (Figure 6.12). The 

location of the basal flow boundary, 30 km northeast of the San Andreas fault, 

was based on seismicity and extrapolation of a small circle about the Pacific-North 

American pole (which is located at 76.6°W, 49.6°N) that fits the fault system in 
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Figure 6.10: Normalised velocity v as a function of distance from the San Andreas fault for a 

half-space model in the case where the plate boundary is offset from the trace of the principal 

transform fault. The half-space is made up of two quarter-spaces separated by a 4 km wide 

fault zone, all with different rigidities. The heavy vertical line (iower plot) represents the plate 

boundary which slips at rate V. [From Lisowski et al., 1991]. 

central California. The VLBI velocity gradients were consistent with the model 

although the agreement would have been improved by a translation of the model 

origin roughly 20 km to the northeast (Figure 6.13). The results suggest that, in 

terms of present day tectonic motion, the fault zones east of the bay may be more 

significant than the San Andreas fault itself. The VLBI results were best explained 

by the models with a driving rate of 48 mm/yr although models with values of 56 

and 41 mm/yr could not be ruled out [Kroger et al. 1987]. 

In the central San Francisco bay region, along the Hayward and Calaveras faults, 

the lack of strain accumulation in the crust adjacent to the faults was modelled 

by rigid block motion with a slip rate of 7 ± 1 mm/yr across both faults [Prescott 

et al., 1981]. Half of the Calaveras fault slip was distributed over a 5-km wide 
I 

zone to account for the inelastic deformation of weak, near-surface material. Small 

trilateration networks from the San Francisco peninsula and networks further south 

were used to model the deformation of the San Andreas fault on the peninsula 

[Prescott et al., 1981]. The simplest model, a single screw dislocation in an elastic 

half space, yielded a slip rate of 12.2 mm/yr at a depth of 6.7 km. However, in order 
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Figure 6.11: Comparison of theoretical displacement rate profiles from the base-traction model 

[Li and Rice, 1987] to geodetic results [Prescott and Yu, 1986]. t, time since last earthquake, 

Tcy, earthquake repeat time; Ypt, plate boundary velocity; L, fault locking depth; H, elastic plate 

thickness; tr, relaxation time. 

to obtain this Prescott et al. [1981 J assumed that the network at the southern end 

of the peninsula was sufficiently broad to encompass all of the deformation from the 

San Andreas fault. If, however, the velocity at 20 km from the fault is constrained 

to be half of the total velocity of 12.2 mm/yr across the 40-km wide network, then 

a slip rate of 16.8 mm/yr at a depth of 9.2 km is obtained. This is more consistent 

with estimates of the thickness of the brittle crust from earthquake hypocentres 

and geologic slip rates for the peninsula. Best-fit models for a distributed shear 

zone at depth below the San Andreas fault were also calculated. The data are most 

consistent with a concentration of slip at depth near the San Andreas fault. A larger 

data set was used to address the problem of strain accumulation along the Hayward 

and Calaveras faults [Prescott and Lisowski, 1983]. After correcting for line-length 

changes due to surface creep, the strain accumulation rate was calculated and found 

to be below that of other areas along the fault system, suggesting that a large part 

of the strain in the area is being relieved by creep. However, the Hayward fault 

has ruptured in two moderate earthquakes (M "' 6.8) within the last century which 

indicates that strain is accumulating. 
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Stress activated fault zones 

~ 
San Andreas fault Rodgers Creek • Maacama faults 

Figure 6.12: Schematic diagram of the "out of plane", two-dimensional, finite-element model 

of the San Andreas fault [Kroger et a/., 1987]. Kinematic parameters are the rates of far-field 

boundary displacement. Geometric parameters control the number and activity of faults. Light

grey line shows the axis of the basal flow boundary and origin of the model. The stress and time 

scales are governed by the choices ofrheological parameters. Modified from Kroger eta/. [1987]. 

Using trilateration data across the San Francisco bay and the measured creep 

rate at the Hayward fault trace, a model of a fault in frictional contact implied a 

depth of 5 ± 1 km for the creeping zone (Figure 6.14) [Savage and Lisowski, 1993; 

Weertman, 1964]. 

The relative block motion and aseismic slip rates along the San Andreas fault 

system in the Hollister area were estimated by Thatcher (1979], Savage et al. (1979] 

and Matsu 'ura et al. (1986]. Data included triangulation, trilateration and one 

astronomical azimuth over the interval 1885 to 1976, trilateration data from the 

Hollister network surveyed by the USGS 1971-1978 and additional trilateration 

observations between 1978 and 1983. In this region the Calaveras fault diverges 

from the San Andreas and the fault system was approximated to three-dimensional 

fault geometries. The data were used to invert for slip rates on vertical, strike-slip 

segments divided into shallow and deep slip zones (Thatcher, 1979; Savage et al., 

1979]. A Bayesian inversion procedure to invert the geodetic data allows more 

parameters such as slip angle, dip angle, locking depth and rigid-block velocities to 

be resolved in addition to the usual slip rate [Matsu 'um et al., 1986]. Block motion 

was well resolved in the inversion and agreed well with geological observations of 

long-term slip rates. 
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Figure 6.13: Comparison of predicted displacements from the northern California finite-element 

models [Kroger et a/., 1987] with geodetic data [Prescott and Yu, 1986] and VLBI results. PR, 

Point Reyes, FO, Fort Ord, Ps, Presidio, HC, Hat Creek. VLBI results and model plots are 

relative to stationary North America (neglecting Basin and Range activity) and the VLBI station 

OVRO respectively. From Kroger et a/. [1987]. 

Two models for the whole San Francisco bay region have been studied. A regional 

dislocation model was used to test the hypothesis that the Hayward fault was 

locked at depth as opposed to creeping [Lienkaemper et al., 1991]. The velocities 

predicted were compared with the observed velocities from the San Francisco bay 

trilateration network [Lisowski et al., 1991]. The slip rates used in the model 

were derived from geological slip rates, historical creep rates and previous geodetic 

results. The fit from the models was good near the Hayward fault but the velocities 

were underestimated near the edges of the network. The excellent fit close to the 

Hayward fault was a consequence of the model coordinate solution used to calculate 

the velocities [Segall and Mathews, 1988]. In such a solution the velocities are 

calculated relative to the centre of mass of the network, and in the San Francisco 

bay network this is close to the Hayward fault. Since the observed and calculated 

velocities are relative to the same centre of mass, and misfit to the data will increase 

with distance from this point, the velocities should show good agreement in this 

region so long as reasonable estimates of the slip rate are used. From a total of 63 

observation stations, 60 gave nearly identical velocities ( ± 0.6 mm/yr) for the two 
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. Figure 6.14: Comparisons of predicted displacements for the central and southern San Francisco 

bay with geodetic data [Lisowski et al., 1991). Right-hand plots show model cross-sections showing 

the San Andreas, Hayward and Calaveras faults. The deeper segments of the faults indicated by 

heavy lines are modelled as slipping continuously at the rates indicated. The surface creeping 

segment of the Hayward fault is also indicated by a heavy line. Continuous lines in left-hand 

plots show the predicted profiles with (solid line) and without (dashed line) fault creep on the 

Hayward fault. Adapted from Savage and Lisowski [1993). 

hypotheses (locked and unlocked fault at depth). For the three that did not agree, 

the locked hypothesis provided a marginally better fit to the observed velocities. 

The second model for the whole San Francisco bay region explored the relation

ship of fault zone connectivity to slip rates on faults [Bilham and Bodin, 1992]. 

Faults were modelled as vertical, frictionless dislocations in an elastic plate of uni

form thickness. This plate was subjected to antisymmetric displacements that were 

consistent with the azimuth and rate of the inferred local plate vector. Boundary

element methods [Crouch and Starfield, 1989] were used to determine the slip rate 

along each fault that would minimise within-plate stresses. The calculated slip 

distribution depended on the way the fault segments were connected (Figure 6.15). 

The geological slip rates of faults in the San Francisco bay region were most con-
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Figure 6.15: The California plate boundary showing fault zones and boundary-element models 

for slip in the bay region (inset). Faults: M, Maacama; RC, Rodgers Creek; H, Hayward; SG, 

San Gregorio; Ho, Hosgri; R, Rinconada; SA, San Andreas; GV, Green Valley; C, Concord; Ca, 

Northern Calaveras; Cb, Central Calaveras; P, Pacines. Shaded regions show variations of slip 

rates estimated from the boundary-element models. Rates on the San Andreas fault are indicated 

but not drawn to avoid obscuring the eastern faults. Slip rates lower than observed characterise 

the isolated faults shown in (A). Increased fault zone connectivity modelled in (B) and (C) results 

in increased slip rates on the Hayward, Calaveras, and San Gregorio fault zones. The Mission 

fault links the Hayward and Calaveras faults. (B) and (C) differ only in the connectivity between 

the Maacama and Hayward fault zones and between the Calaveras and San Andreas fault zones. 

Values used in estimating probabilities of large earthquakes WGCEP (1990] are indicated in the 

margin to the right of (C). From Bilham and Bodin (1992]. 

sistent with connectivity between the Hayward, Calaveras and San Andreas fault 

zones (Figure 6.15c). 

6.4 Summary 

Geophysical observations of coseismic, postseismic and interseismic movements sug

gest that deformation is cyclic close to the San Andreas fault system and point to 

a range of mechanical behaviour along the system from fully locked at the surface 

to freely sliding. Most models of crustal deformation use dislocation theory and 

prescribe the deformation on the fault plane. Models of dislocation with two- and 

three-dimensional geometries in an elastic half space have been developed to include 

the effects of a more realistic Earth model. However, these models are restricted 
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by their semiempirical nature. A second class of models relate crustal movements 

to tectonic loading of the lithospheric plates. These are restricted to simple, two

dimensional structures because of the increase in mathematical complexity. The 

orientation of near-fault strain, together with geological evidence shows that the 

faulting is dominated by vertical geometries. Surface deformation is therefore most 

appropriately modelled by structures whose geometries are vertical and whose lock

ing depths are much less than the elastic-layer thickness. 

Despite advances in modelling, the analysis of actual observations is still mostly 

based upon the simplest assumption of an isotropic, homogeneous half space with 

a simple fault configuration. Most models developed for the San Francisco bay 

region are based on two-dimensional dislocation models in an elastic half space. 

Other modelling approaches for this region include base-traction, finite-element, 

three-dimensional dislocation, and boundary-element models. 
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Chapter 7 

Modelling the Deformation 

7.1 Introduction 

The discussions in the previous chapters suggest that most of the interseismic de

formation occurring in the San Francisco bay region can be explained by continuous 

relative motion between crustal blocks in the presence of stick-slip resistance in the 

upper, brittle zone. In addition, since the geodetic data provide no evidence of ve

locity variations with time, modelling may be restricted to elastic half space Earth 

models. However, I do not imply that the whole Earth really is elastic but only 

that for the present data set there is not necessarily a difference, from a kinematic, 

observational standpoint, between purely elastic models and those with viscous 

elements. 

7.2 The Fundamental Model 

I assume that the observed, surface deformation is due entirely to strain accumula

tion on right-lateral, vertical, strike-slip faults in an elastic half-space (Figure 7.1). 

Beneath some locking depth, D, which may be the base of the surface, brittle layer, 

continuous aseismic slip (hereinafter known as "slip at depth" or "deep slip") oc

curs on a downward continuation of the fault at a rate that is invariant over the 

geodetic observation period. Above this, the fault segment is either fully locked to 

the surface (Figure 7.1C) or locked to the base of a shallow surface creeping zone 

(Figure 7.1A). A shallow, surface creeping zone is included in the model where 

continuous fault slip at the surface ("surface creep") is observed at the fault trace. 

If this surface creeping zone extends throughout the brittle layer to the locking 

depth, slip on the fault is accommodated wholly by continuous slip and only small 
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Distance 

Figure 7.1: Schematic diagram for strike-slip faulting modes. (A) Fault is freely slipping in a 

shallow, surface creep zone to a depth d, and freely slipping beneath some locking depth D. The 

fault-parallel velocity profile shows some strain accumulation together with an offset at the fault 

trace. (B) Fault is slipping freely throughout the brittle layer (rigid block motion). The fault

parallel velocity field shows an offset at the fault trace. (C) Fault is freely slipping beneath some 

locking depth and locked up to the surface. The fault-parallel velocity field shows the effects of 

elastic-strain accumulation. 

amounts of elastic strain may accumulate (Figure 7.1B). This is thought to occur 

on the San Andreas fault between Parkfield and San Juan Bautista (Figure 1.2). 

However if the surface creeping zone is confined to shallow depths ( d < D, where d 

is the depth to which the shallow surface creeping zone extends) the fault is locked 

at mid-crustal depths and accumulates strain. 

Formulae for the displacement fields due to slip on finite and infinite fault planes 

(and shear zones) in an elastic half-space have been given in Chapter 6. In these 

equations the slip rate b is related to a component of velocity, v, at some point 

(e.g., the horizontal velocity parallel to the strike of the fault plane) by 

v = bU, (7.1) 
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where U is a function of the spatial orientation of the fault plane and the position of 

the observation point. For the more complicated case where n stations are affected 

by a system consisting of m fault segments then the velocity of the ith station is 

m 

vi= Lbku{ (7.2) 
k=l 

Equation (7.2) may be represented as a linear matrix equation of the form 

v=Ub, (7.3) 

where the velocity vector v is a n x 1 column vector, U is an n x m matrix of 

functions that are calculated from the fault geometries, and b is an m x 1 column 

vector whose values are the slip rates along them fault segments. Once the position 

and size of each active fault segment has been specified, the site motions are exact 
' linear functions of the slip rates on each fault segment. 

Measured geodetic data (e.g., trilateration, triangulation and GPS) are linear 

trigonometrical functions of the point motions, 

d=Av, (7.4) 

where d is an n x 1 column vector of the measured geodetic data and A is an 

n x n matrix of trigonometric functions that are dependent on the type of geodetic 

measurement. Equations (7.3) and (7.4) can be combined to link the observations 

and model by 

d=Gb, (7.5) 

where G, the displacement matrix, is the product of the two matrices A and U. 

Two approaches may be adopted towards modelling the deformation. The first 

is the forward (or simulation) approach. All model parameters are obtained from 

independent geological and geophysical investigations and are held fixed. This 

approach is not intended to fit rigorously the geodetic data but rather to test the 

agreement of independent estimates of the model parameters with the geodetic 

data. Second, the geodetic data may be inverted to estimate slip rates. This 

inverse problem has the desirable property of being linear and can thus be solved 

using a classical least squares procedure. 

Many features of the observed surface deformation may be reproduced using a 

simple, two-dimensional model with one axis vertical and the other normal to the 

general strike of the faults. This approach considers fault configurations which 
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are infinitely long, parallel and which neglect along-strike variations. Only the 

fault-parallel component of velocity is calculated, and the fault-normal component 

is assumed to be zero. Whilst the fault-normal velocity components (Figure 5.6 

to 5.9) are indeed very small, the fault-parallel components do show along-strike 

variation between the subregions as the fault system changes from being single

fault dominated in the south to being dominated by three principal fault~ in the 

north (Figure 1.2). In order to account for this, either separate, two-dimensional 

models for each subregion, or a regional dislocation model using three-dimensional 

fault geometries must be used. 

Two-dimensional models are both mathematically and geometrically simple and 

the inverse problem is over-determined and easy to formulate. Furthermore, the 

effects of additional complexities such as structural inhomogeneities are relatively 

straightforward to test. A three-dimensional model, whilst able to model best all 

the components of motion, requires many fault segments, including ones situated 

outside of the study region, in order to model locally-significant fault complexities 

al!d to eliminate edge effects. Inverting the geodetic data for model parameters us

ing a three-dimensional model is an ill-conditioned (or mixed-determined) problem 

since, in most cases, the stations are unevenly distributed and relatively sparse, the 

data noisy, and there are many parameters to estimate. A mixed-determined, lin

ear inverse problem can be reduced to an over-determined problem by the inclusion 

of a-priori model parameters [Jackson, 1979; Menke, 1984]. 

Both two-dimensional and three-dimensional models are used here. Forward and 

inverse models are first produced for the four subregions using the two-dimensional 

approach. The results from this work are then used as prior parameters (i.e., 

fixed) in a forward, three-dimensional model and as a-priori parameters (i.e., initial 

values) in an inverse, three-dimensional model. 

7.3 The Two-Dimensional Models 

7.3.1 The Data 

In order to minimise along-strike variations, the San Francisco and Monterey bay 

regions are divided into four subregions (Figure 5.5) for the purpose of modelling. 

Two-dimensional models only predict the fault-parallel velocity component and the 
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appropriate data are therefore the fault-parallel relative velocities (Figures 5.6 to 

5.9). Along-strike variations in relative motion within a subregion would appear as 

departures from the overall trend. Such variation is absent in all but the Monterey

bay subregion indicating no major changes in fault behaviour within the three most 

northerly subregions. Greater variation is to be expected in the Monterey-bay 

subregion since it spans the junction of the Calaveras and San Andreas faults. For 

this reason the Monterey-bay subregion has been further split into three parts, the 

northern, central and southern Monterey-bay subregions. 

The fault-parallel velocities relative to the VLBI site OVRO, in the Owens Valley 

(Figure 1.3) are used, in preference to velocities relative to some point within 

the fault system, to help constrain the far-field motion to the east of the fault 

system. An additional hypothetical point situated ~ 150 km to the west of the 

fault system and moving at 35 ± 2 mm/yr is used to constrain the far-field motion 

to the southwest. For a locking depth of around 10-12 km, 95% of the maximum 

relative velocity due to slip at depth on the San Andreas fault system is expected to 

occur between points at distances of x from the fault system, where x = ±12.7 D, 

where D is the fault locking depth, i.e., x = ±127 to 191 km. 

7 .3.2 Model Parameters 

7.3.2.1 Faults and Fault Geometries 

The distribution of seismicity in the San Francisco bay region (Figure 1.12) reveals 

many active faults. To simplify the model only faults which have time-averaged 

slip rates that exceed 1 mm/yr are used (class A and AA faults [Matsuda, 1975]). 

In the San Francisco bay region, class A and AA faults are the San Gregorio, San 

Andreas, Hayward, Rodgers Creek, Calaveras, Concord and Green Valley faults. 

The strike of the faults in the San Francisco bay region is constrained in the mod

elling to be N33°W. This direction is consistent with the strikes of the San Andreas 

fault northwards from the San Francisco peninsula and the Hayward and Rodgers 

Creek faults and almost parallel with the strike of the southern Calaveras fault. It 

is also consistent with the direction of predicted motion of the Pacific plate with 

respect to the North American plate from the NUVEL-1A plate-motion model and 

with the cumulative geologic slip vector across the fault system [Kelson et al., 

1992]. The fault segments are assumed to be located beneath their mapped surface 
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traces. Where a fault strike deviates substantially from N33°W such that its as

sumed location is substantially inaccurate, then a position for that fault is chosen 

that is optimum for the stations closest to the fault. 

7.3.2.2 Slip Rates 

Slip-rate estimates are made from the ages of offset geological features, the record 

of large historical earthquakes, previous results from geodetic measurements, data 

from creep-meters and offset cultural features (Sections 1.3.3, 1.1.5 and Chapter 2). 

These estimates are divided into those that indicate surface creep and those that 

indicate the slip rate at depth. For this simple, time-invariant model, geological 

slip-rate estimates which are averaged over many earthquake cycles are assumed to 

represent the deep-slip rate. Estimates from inversions of previous geodetic data 

where rigid block motion is assumed are interpreted either as surface creep rates or 

lower-bound, long-term slip rates, depending on whether significant surface creep 

on the fault occurs or not. 

A compilation of published slip-rate estimates is given listed in Table 7.1 and they 

are plotted as a function of distance along the individual faults which are assumed 

to strike at N33°W in Figure 7.2. These slip rates, in particular the surface-creep 

rates, appear to vary systematically along-strike rather than randomly and there

fore polynomials were fitted through the data. The number of polynomial terms 

used was minimised by using only terms that are significant i.e., the number of 

polynomial terms was increased until the reduction in the misfit between the poly

nomial and the data was not significant at the 1a- (68.3% confidence) level. These 

polynomials are not based on any physical model and are simply used empirically 

to quantify these rates. 

For each subregion, appropriate values that reflect the surface creep and long

term slip rates were calculated by taking the mean, within each subregion, of the 

polynomial fit. However there is one exception to this. The polynomial fit to the 

surface creep-rate data along the San Andreas fault is a line with zero slope and 

intercept of 0.6 mm/yr (Figure 7.2). Considerably more surface creep is detected 

along the San Andreas fault to the south of San Juan Bautista (at distances of 

-55 to 0 km, Figure 7.2) [Burford and Harsh, 1980] and therefore the surface creep 

rates for the Monterey-bay subregion are derived from the mean of those slip-rate 

data rather than the polynomial fit. For faults where the surface creep rate is 

less than 1 mm/yr the fault is assumed to exhibit no creep and the value is set 
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Table 7.1: Geologic and surface-creep rate information for the San Francisco bay region compiled 

from various sources. Start and end coordinates represent the fault extent over which the slip-rate 

estimate applies. If no end coordinates are specified then the slip-rate estimate applies to a single 

point on the fault. 

Start Start End End 

Longitude Latitude Longitude Latitude Slip 

Fault Code (oW) (oN) (ow) (oN) (mm/yr) Type Source 

Antioch ANTOl 121:47:31 37:59:05 1.7±1.7 SC:al. ar. Galehouse, 1992a, b 

Antioch ANT02 121:48:25 37:59:54 0.3 ± 0.3 SC:al. ar. Galehouse, 1992a, b 

Antioch ANT03 121:50:38 38:02:03 0.0 ± 0.0 LT J( elson et a/., 1992 

Antioch ANT04 121:50:38 38:02:03 0.0 ± 0.0 sc Kelson et a/., 1992 

Concord CONOl 122:01:44 37:57:42 3.5 ± 0.1 SC:al. ar. Galehouse, 1992a, b 

Concord CON02 122:02:20 37:59:06 2.6 ± 0.1 SC:al. ar. Galehouse, 1992a, b 

Green Valley GVAOI 122:05:00 38:10:00 5.0 LT,gl Frizzell and Brown, 1976 

Green Valley GVA02 122:08:02 38:11:19 5.5 ± 0.3 SC:al. ar. Galehouse, 1992a, b 

Greenville GREOl 121:36:50 37:37:43 0.6 ± 0.1 LT,gl Kelson et a/., 1992 

Hayward HAYOI 121:55:05 37:29:15 121:55:44 37:30:23 4.0 ± 0.5 SC:various Lienkaemper et al., 1991 

Hayward HAY02 121:56:31 37:29:56 -0.7 ± 0.2 SC:al. ar. Galehouse, 1992a, b t 

Hayward HAY03 121:55:00 37:30:00 122:07:42 37:44:00 9.0 ± 2.0 LT:various WGCEP, 1990 

Hayward HAY04 121:55:44 37:30:23 121:57:38 37:32:32 9.0 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY05 121:58:41 37:31:48 4.9 ± 0.1 SC:al. ar. Galehouse, 1992a, b 

Hayward HAY06 121:57:38 37:32:32 121:58:14 37:33:08 5.1 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY07 121:58:14 37:33:08 121:59:22 37:34:51 5.4 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY08 121:59:22 37:34:51 122:06:53 37:42:24 5.8 ± 0.5 SC:various Lienkaemper et al., 1991 

Hayward HAY09 122:00:54 37:34:51 4.6 ± 0.1 SC:al. ar. Galehouse, 1992a, b 

Hayward HAYIO 122:01:01 37:36:30 122:21:56 38:00:11 9.0 ± 2.0 LT:estimate Lienkaemper et a/., 1991 

Hayward HAY11 122:01:01 37:36:30 122:21:56 38:00:11 6.8 ± 1.0 LT,gd:rbm Prescott et a/., 1981 

Hayward HAY12 122:04:33 37:39:04 4.6 ± 0.1 SC:al. ar. Galehouse, 1992a, b 

Hayward HAY13 122:05:38 37:40:19 4.8 ± 0.1 SC:al. ar. Galehouse, 1992a, b 

Hayward HAY14 122:06:53 37:42:24 122:07:28 37:43:28 6.6 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY15 122:07:28 37:43:28 122:09:35 37:45:53 6.2 ± 0.5 SC:various Lienkaemper et al., 1991 

Hayward HAY16 122:07:42 37:44:00 122:25:00 38:07:00 9.0 ± 2.0 LT:various WGCEP, 1990 

Hayward HAYI7 122:09:35 37:45:53 122:11:18 37:47:41 4.0 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY18 122:11:18 37:47:41 122:12:38 37:49:45 4.0 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY19 122:12:38 37:49:45 122:14:28 37:51:38 4.7 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY20 122:14:28 37:51:38 122:18:07 37:56:14 5.8 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY21 122:18:07 37:56:14 122:19:32 37:57:24 6.1 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY22 122:19:32 37:57:24 122:21:56 38:00:11 5.6 ± 0.5 SC:various Lienkaemper et a/., 1991 

Hayward HAY23 122:19:55 37:58:04 4.3 ± 0.2 SC:al. ar. Galehouse, 1992a, b 

Hayward HAY24 122:21:56 38:00:11 122:26:42 38:06:04 2.8 ± 0.5 SC:various Lienkaemper et a/., 1991 

Maacama MACOl 123:21:00 39:25:00 5.0 SC:al. ar. Galehouse, 1992a, b 

Mission MISOI 121:48:54 37:27:06 122:01:01 37:36:30 9.0 ± 2.0 tr. jun. ki Andrews et al., 1993 

N. Calaveras NCAOI 121:48:54 37:27:06 8.0 ± 2.0 LT,gl K e/son et a/., 1992 

N. Calaveras NCA02 121:49:43 37:29:48 122:00:00 37:48:04 7.0 ± 1.0 LT,gd:net Prescott et a/., 1981 

N. Calaveras NCA03 121:49:43 37:29:48 122:00:00 37:48:04 2.6 ± 0.6 SC,gd:net Prescott et a/., 1981 

N. Calaveras NCA04 121:58:19 37:45:51 0.2 ± 0.1 SC:al. ar. Galehouse, 1992a, b 

Rodgers Creek RCROl 122:25:00 38:07:00 122:45:00 38:30:00 9.0 ± 2.0 LT:various WGCEP, 1990 

Rodgers Creek RCR02 122:32:42 38:16:12 0.0 ± 0.0 SC:al. ar. Galehouse, 1992a, b 

Rodgers Creek RCR03 122:32:00 38:17:00 2.1 - 5.8 LT,gl:min Budding et a/., 1991 

Rodgers Creek RCR04 122:41:52 38:26:09 0.0 ± 0.0 SC:al. ar. Galehouse, 1992a, b 

Rodgers Creek RCR05 122:43:00 38:30:00 8.0 ± 2.0 LT,gl Kelson et al., 1992 
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Table 7.1: (Continued) 

Start Start End End 

Longitude Latitude Longitude Latitude Slip 

Fault Code 

S. Calaveras SCAOl 121:24:14 36:49:28 7.1 ± 0.2 

S. Calaveras SCA02 121:23:53 36:49:49 121:48:54 37:27:06 7.0 ± 1.0 

S. Calaveras SCA03 121:23:53 36:49:49 121:48:54 37:27:06 17.0 ± 2.0 

S. Calaveras SCA04 121:23:53 36:49:49 121:48:54 37:27:06 14.4 ± 2.2 

S. Calaveras SCA05 121:23:53 36:49:49 121:48:54 37:27:06 14.9 ± 1.8 

S. Calaveras SCA06 121:23:53 36:49:49 12.0 ± 3.0 

Type Source 

SC:al. ar. Galehouse, 1992a, b 

LT,gd:rbm Prescott et a/., 1981 

LT,gd:rbm Savage et a/., 1979 

LT,gd:in.5 Savage et a/., 1979 

SC,gd:in.5 Savage et a/., 1979 

LT,gl f( elson et a/., 1992 

S. Calaveras SCA07 121:25:00 36:50:00 121:48:00 37:28:00 15.0 Speculation Herd, 1979 

S. Calaveras SCA08 121:25:01 36:50:45 q.4 ± 0.2 SC:al. ar. Galehouse, 1992a, b 

S. Calaveras SCA09 121:24:30 36:52:00 121:27:00 36:56:30 13.0 ± 10.0 LT,gd:in.6 Matsu'ura et a/., 1986 

S. Calaveras SCAOO 121:24:30 36:52:00 121:27:00 36:56:30 19.0 ± 10.0 SC,gd:in.6 Matsu'ura et a/., 1986 

S. Calaveras SCA11 121:27:00 36:56:30 121:30:00 37:02:00 13.0 ± 3.0 LT,gd:in.12 Matsu'ura eta/., 1986 

S. Calaveras SCA12 121:30:00 37:00:00 

S. Calaveras SCA13 121:35:00 37:08:00 

15.0 

1.4 - 7.1 

SC Nason, 1971 

LT,gl:rnin Nakata, 1977 

S. Calaveras SCA14 121:43:00 37:22:00 9.4 ± 0.4 LT,gd:net Prescott et a/., 1984 

S. Calaveras SCA15 121:18:00 36:42:00 121:24:30 36:52:00 13.0 ± 2.0 LT,gd:in.O Matsu'ura et al., 1986 

S. Calaveras SCA16 121:18:00 36:42:00 

S. Calaveras SCA17 121:25:48 36:54:36 

S. Calaveras SCA18 121:21:36 36:46:48 

S. Calaveras SCA19 121:08:24 36:36:00 

San Andreas SAN01 119:49:36 35:16:18 

San Andreas SAN02 121:10:24 36:34:54 

San Andreas SAN03 121:13:00 36:38:30 

San Andreas SAN04 121:13:00 36:38:30 

San Andreas SAN05 121:18:00 36:42:00 

San Andreas SAN06 121:18:00 36:42:00 

San Andreas SAN07 121:28:16 36:48:14 

San Andreas SAN08 121:28:16 36:48:14 

San Andreas SAN09 121:29:52 36:48:23 

San Andreas SAN10 121:32:45 36:50:11 

121:24:30 36:52:00 -5.0 ± 5.0 

121:32:24 37:06:00 14.0 ± 3.0 

121:27:00 36:54:00 12.0 ± 1.0 

121:21:36 36:46:48 13.0 ± 3.0 

33.0- 37.0 

30.0- 39.0 

121:18:00 36:42:00 37.0 ± 3.0 

121:18:00 36:42:00 17.0 ± 9.0 

SC,gd:in.O Matsu 'ura et al., 1986 

SC,gd:in.15 Thatcher, 1979 

SC,gd:in.15 Thatcher, 1979 

SC,gd:in.15 Thatcher, 1979 

LT,gl Clark et a/., 1984 

LT,~l Clark et a/., 1984 

LT,gd:in.11 Matsu'ura et a/., 1986 

SC,gd:in.11 Matsu 'ura et a/., 1986 

121:33:00 36:51:00 25.0 ± 3.0 LT,gd:in.11 Matsu'ura et al., 1986 

121:33:00 36:51:00 11.0 ± 5.0 SC,gd:in.11 Matsu'ura et a/., 1986 

22.0 ± 6.0 LT,gl Kelson et al., 1992 

11.0 ± 3.0 SC Kelson et a/., 1992 

14.5 ± 1.3 SC:al. ar. Galehouse, 1992a, b I 

-0.4 ± 0.3 SC:al. ar. Galehouse, 1992a, b I 

San Andreas SAN11 121:33:00 36:51:00 121:40:00 36:56:00 26.0 ± 3.0 LT,gd:in.9 Matsu'ura eta/., 1986 

San Andreas SAN12 121:33:00 36:51:00 121:40:00 36:56:00 0.0 ± 6.0 SC,gd:in.9 Matsu'ura eta/., 1986 

San Andreas SAN13 121:18:00 36:42:00 122:33:00 36:51:00 13.0 ± 2.0 LT,gd:rbm Savage et al., 1979 

San Andreas SAN14 121:18:00 36:42:00 122:33:00 36:51:00 22.2 ± 3.1 LT,gd:in.5 Savage eta/., 1979 

San Andreas SAN15 121:18:00 36:42:00 122:33:00 36:51:00 8.9 ± 1.5 SC,gd:in.5 Savage et a/., 1979 

San Andreas SAN16 121:44:00 36:58:00 122:01:00 37:12:00 33.0 ± 1.0 LT,gd:rbm Thatcher, 1979 

San Andreas SAN17 121:44:00 36:58:00 122:01:00 37:12:00 38.0 ± 3.0 LT,gd:in.15 Thatcher, 1979 

San Andreas SAN18 121:44:00 36:58:00 122:01:00 37:12:00 33.0 ± 2.0 LT,gd:in.10 Thatcher, 1979 

San Andreas SAN19 121:44:00 36:58:00 122:01:00 37:12:00 19.0 ± 4.0 LT:various WGCEP, 1990 

San Andreas SAN20 122:01:00 37:12:00 122:12:00 37:24:00 10.0- 30.0 LT,gl Cummings, 1968 

San Andreas SAN21 122:01:00 37:12:00 122:11:00 37:20:00 12.2 ± 4.0 LT,gd:net Prescott et al., 1981 

San Andreas SAN22 122:01:00 37:12:00 122:11:00 37:20:00 21.5 ± 1.3 LT,gd:in.10 Prescott et al., 1981 

San Andreas SAN23 122:01:00 37:12:00 122:11:00 37:20:00 13.3 ± 0.8 LT,gd:in.5 Prescott et a/., 1981 

San Andreas SAN24 122:01:00 37:12:00 122:11:00 37:20:00 35.9 ± 2.2 LT,gd:in.20 Prescott et al., 1981 

San Andreas SAN25 122:01:00 37:12:00 122:24:00 37:34:00 26.0- 32.0 LT,gd:in.14 WGCEP, 1990 

San Andreas SAN26 122:01:00 37:12:00 122:11:00 37:20:00 19.0 ± 4.0 LT:various WGCEP, 1990 

San Andreas SAN27 122:11:00 37:20:00 122:24:00 37:34:00 19.0 ± 4.0 LT:various WGCEP, 1990 

San Andreas SAN28 122:12:00 37:24:00 122:30:00 37:40:00 6.0- 22.0 LT,gl Addicott, 1969 
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Table 7.1: (Continued) 

Start Start End End 

Longitude Latitude Longitude Latitude Slip 

Fault Code ( 0 W) (0 N) ( 0 W) ( 0 N) (mm/yr) 

1.0 ± 0.3 

6.9- 12.0 

Type Source 

SC:al. ar. Galehouse, 1992a, b 

LT,gl:min? Clark et a/., 1984 

San Andreas SAN29 122:17:05 37:26:07 

San Andreas SAN30 122:19:54 37:29:18 

San Andreas SAN31 122:23:36 37:33:42 31.0- 48.0 LT,gl:max? Clark et a/., 1984 

San Andreas SAN35 

San Andreas SAN36 

San Andreas SAN37 

San Andreas SAN38 

San Andreas SAN39 

San Andreas SAN40 

San Andreas SAN41 

San Gregorio SGROI 

San Gregorio SGR02 

San Gregorio SGR03 

San Gregorio SGR04 

San Gregorio SGR05 

San Gregorio SGR06 

San Gregorio SGR07 

Vacaville VCAOl 

West Napa WNPOl 

122:24:00 37:35:00 

122:25:00 37:35:00 

122:25:00 37:35:00 

122:26:56 37:36:42 

122:46:01 38:02:36 

122:45:00 38:05:00 

123:45:00 38:50:00 

123:45:00 38:50:00 

122:18:12 37:07:06 

122:20:00 37:07:30 

122:20:00 37:07:30 

122:20:00 37:07:30 

122:21:50 37:14:18 

122:25:00 37:20:00 

122:29:16 37:30:24 

121:58:18 38:18:48 

122:18:07 38:16:49 

122:30:00 37:40:00 17.0 ± 10.0 LT,gl:min 

>12.0 LT,gl:min 

>7.5 LT,gl:min 

-0.1 ± 0.0 SC:al. ar. 

0.7 ± 0.1 SC:al. ar. 

24.0 ± 3.0 LT,gl:min 

26.0 ± 3.0 LT,gl:max 

1.0 ± 0.1 SC:al. ar. 

7.0 -11.0 LT,gl 

6.0- 11.0 LT,gl 

6.3- 13.0 LT,gl 

1.0 LT,gl 

0.0 ± 0.5 SC:al. ar. 

0.0 ± 0 sc 
0.0 ± 0.5 SC:al. ar. 

0.3- 4.0 LT,gl 

0.0 ± 0.4 SC:al. ar. 

Hall, 1984 

WGCEP, 1990 

Galehouse, 1992a, b 

Galehouse, 1992a, b 

Niemi and Hall, 1992 

Prentice, 1989 

Galehouse, 1992a, b 

Clark et al., 1984 

Weber and Cotton, 1981 

Weber and Lajoie, 1977 

Hamilton et al., 1979 

Galehouse, 1992a, b 

Kelson et al., 1992 

Galehouse, 1992a, b 

Clark et a/., 1984 

Galehouse, 1992a, b 

Codes used in type column: SC - surlace-creep rate; a!. ar. - alignment array; LT - Long-term; 

gl - geological; gd - from geodetic data; rbm - assuming rigid block motion across fault; 

tr. jun. ki. - triple junction kinematics; net - minimum estimate from total measured motion across a geodetic 

network; min- minimum; in. -from inversion (number after indicates locking depth); 

max - maximum; 

t creep rate estimates obtained after Lorna Prieta that may not represent the long-term average. 

to 0 mm/yr. Values of less than 1 mm/yr may be attributable to slip at depth 

rather than surface creep. If the surface-creep rate in a subregion is found to be 

larger than the deep-slip rate then both the creep and deep-slip rate are set to 

the mean of the two estimates. It seems unlikely that over a reasonable period 

of time the surface-creep rate will be larger than the deep-slip rate beneath. Any 

inconsistencies in the observations are more likely the result of temporal variations 

(different observational time-spans), measurement noise, or short-term variations 

that may preceed some tectonic event [e.g., Galehouse, 1992a, b]. The average 

surface-creep rates are used as prior (fixed) surface-creep rates for both the forward 

and inverse models and the averaged long-term slip rates are used as fixed deep-slip 

rates for the forward models. The rates used are listed in Table 7.2. 
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Figure 7.2: Deep-slip and surface-creep rates along the San Andreas, Hayward and Calaveras 

faults from various sources plotted as a function of distance in the direction N33°W. The origin 

is the point where each profile crosses 36°N. Vertical bars show ± 1 standard deviation errors. 

Horizontal bars indicate the projected extent over which the slip-rate estimates apply. Chains of 

dots represent the minimum-coefficient polynomial fit to the data (see text). Solid lines indicate 

the slip rates adopted for the four subregions studied in the two dimensional analysis. Chain of 

dots and solid lines are coincident for the deep-slip rate on the Hayward fault and the surface-creep 

rate on the San Andreas fault. See Table 7.1 for data. 
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7.3.2.3 Fault Depths 

The depth to the base of the brittle surface layer (the locking depth), where deep 

slip may be assumed to begin, can be constrained by the distribution of seismicity 

with depth. Histograms illustrating the depth distributions for well-located events 

along the major active faults within the area, normalised to percentages, are shown 

in Figure 7.3. The location of the sampling segments, the sample size and the 

depth above which 90% of the activity occurs (the 90% depths) are also indicated. 

The aftershock sequence following the 1989 Lorna Prieta earthquake is included in 

segments SA2 and SA3. There is some evidence that aftershocks propagate down 

some distance into the quasi-plastic regime [Sibson, 1983]. Hence, for segments 

SA2 and SA3, a depth of 12 km is· adopted as a cut-off depth, in agreement with 

those calculated for other areas. The statistical errors in the 90% depths can be 

estimated from the sampling frequency in each segment, and they are equal to 

d90 / fo where n is the number of samples in the segment and d90 is the 90% depth. 

The locking depths used for each subregion are also listed in Table 7.2. 

The maximum depth to which surface creep extends is harder to constrain. A 

relation between the creep rate at the surface trace of the fault, the depth to the 

bottom of the creeping zone, and the rate of stress accumulation on the fault in an 

elastic half-space was derived by [Savage and Lisowski, 1993]. A depth of 5 ±1 km 

to the base of the creeping zone on the Hayward fault was estimated from the 

measured surface creep rate (5 mm/yr) and the rate of stress increase on the upper 

fault trace calculated from a dislocation model based on geodetic measurements 

in the San Francisco bay region. Similar values (3-5 km) have been proposed 

for the depth of the creeping zone based on the distribution of microearthquakes 

along the fault zone [e.g., Lienkaemper et al., 1991]. The depth of creep on other 

faults within the area has been little investigated. Here the formula of Savage and 

Lisowski [1993] is used to calculate the depth of cteep for each fault that exhibits 

surface creep from the fixed and estimated parameters. The creep-rate distribution 

with depth is given by 

s(z) = 

(7.6) 

where T is the tectonic shear stress imposed by deep slip on adjacent faults, J-l is 

the rigidity of the half-space, b is the deep slip rate below the locking depth D on 
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Figure 7.3: Depth distributions of earthquakes in the San Francisco and Monterey bay regions 

(see map for locations). Bases of solid triangles indicate depths above which 90% of the activity 

occurs. This depth is specified along with the sample size at the base of each histogram. 
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Table 7.2: Fixed fault parameters and slip rates for each subregion of the San Francisco bay 

region 

Distance from Deep Locking Creep 

San Andreas Slip Rate Depth Rate 

Subregion Fault (km) (mm/yr) (km) (mm/yr) 

North-Bay 

San Andreas 0.0 21.9 12.2 ± 6.1 0.0 

Rodgers Creek 33.9 8.0 8.5 ± 0.7 0.0 

Green Valley 64.4 5.4 10.5 ± 0.7 5.4 

Central-Bay 

San Gregorio -10.3 3.6 11.7 ± 0.9 0.0 

San Andreas 0.0 20.8 10.0 ± 0.9 0.0 

Hayward 29.9 8.0 11.1 ± 1.1 4.5 

Calaveras 44.3 5.2 10.4 ± 0.5 2.0 

South-Bay 

San Gregorio -20.0 3.6 11.7 ± 0.9 0.0 

San Andreas 0.0 22.8 12.0 ± 1.0 0.0 

Calaveras 32.8 11.1 8.3 ± 0.4 7.2 

Monterey-Bay 

San Gregorio -48.0 3.6 11.7 ± 0.9 0.0 

(Northem part) San Andreas 0.0 24.0 11.9 ± 0.2 0.0 

Calaveras 17.1 14.9 8.2 ± 0.3 14.9 

San Gregorio -56.5 3.6 11.7 ± 0.9 0.0 

(Central part) San Andreas 0.0 24.8 11.9 ± 0.2 11.0 

Calaveras 8.2 14.3 8.2 ± 0.3 13.1 

Plate Boundary 4.1 38.0 8.5 ± 0.4 

(Southem part) San Gregorio -65.0 3.6 11.7 ± 0.9 0.0 

Plate Boundary 0.0 38.0 8.5 ± 0.2 15.0 

the fault that creeps and dis the depth to which surface creep extends. Therefore 

the measured creep rate at the surface (z = 0) is given by 

s(O) = 2(T/ JL)d + (2hj1r) tan-1 [df(D2
- d2

)
112

], (7.7) 

from which the depth d to which surface creep extends can be calculated. 
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7 .3.3 Modelling Procedure 

7.3.3.1 The Forward Calculation 

The displa~ement matrix, G that relates the fault-parallel velocities d, to the slip 

rates b in equation (7.5) is given by 

(7.8) 

where Yi is the position of the ith station, h and Dk are the position and locking 

depth of the kth fault and the origin is at the station whose velocity is fixed at zero. 

7.3.3.2 The Forward Model 

The forward models are based entirely on fixed model parameters that are estimated 

from independent geological and geophysical investigations. These make no use of 

the current geodetic data for estimating the model. The prior model parameters, 

fault position, deep slip rate, locking depth and surface creep rate used in the 

forward models are listed in Table 7.2 and explained in Section 7.3.2. The predicted 

displacements are derived in three stages. First, the displacements due to deep slip 

on the principal faults are found. Next, the depth to which surface creep extends 

is calculated from equation (7.7). Finally, the effects on the profile due to surface 

creep are superimposed onto the predicted displacements from slip at depth to give 

the complete predicted velocities. 

7.3.3.3 The Linear Inversion 

The inverse problem posed here is to estimate the deep slip rates from the observed 

site velocities. However, the depth to which surface creep extends is also unknown. 

Ideally this depth could be calculated simultaneously with the deep slip rates. 

Unfortunately the inverse problem would then become non-linear. To overcome 

this, the calculated depth to which creep extends, estimated from the fixed model 

parameters, could be used. If the fixed deep slip rates are significantly different 

from the true values, then this depth, and possibly the estimated slip rates at depth, 

would be incorrect. Alternatively, the slip rates at depth could be estimated from a 

linear inversion ignoring the effects of creep. Surface creep only significantly affects 

points close to the fault, and so ignoring these effects should make little difference 
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to the estimated slip rates at depth. The depth to which the surface creep zone 

extends can then be calculated from the fixed model parameters, together with 

the deep slip rates estimated from inversion, using equation (7. 7). If surface creep 

makes a major contribution to the site velocities, the slip rates at depth and the 

depth to which surface creep extends can be altered by trial and error to minimise 

the difference between the observed and calculated velocities. In the following 

models the depth extent of the surface-creep zone is calculated using the fixed 

locking depths, surface creep rates and fault positions, and the slip rates at depth 

estimated by the inversion. 

Due to the simplicity of these models, the number of data is greater than the number 

of unknowns and the matrix equation (7.5) is completely overdetermined. Therefore 

the slip rates at depth may be estimated using the method of least squares which 

minimises ( ei) 2
, the sum of the squares of the data misfit, where ei = d~bs - d~re 

and d~bs and d~re are the the observed and predicted relative site velocities. In 

order to account for the error associated with each individual observation point, a 

weighted least squares procedure is used. The solution is 

(7.9) 

where "best is an m x 1 column vector of estimated slip rates and Cd"1 is the inverse 

of the n x n matrix of the covariance of the velocity vectors. In addition, the 

uncertainties in the slip estimates are calculated using 

(7.10) 

where Chest is them X m covariance matrix of the estimated deep-slip rates. These 

uncertainties are conditional uncertainties mapped from the data uncertainties to 

the estimated model parameters. A more realistic assessment, used here, scales 

these uncertainties by the misfit of the model to the data. 

A positivity constraint is applied to the inversion in order to stop left-lateral (neg

ative) slip rates being predicted. If the best-fit model predicts a negative slip rate 

for a fault then that slip rate is constrained to zero and the inversion repeated 

without that fault included, since none of the class A and class AA faults in the 

San Francisco bay region exhibit left-lateral movement as indicated by earthquake 

focal mechanisms (Figure 1.15). 
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7.3.4 The North-Bay Subregion 

The observed displacement pattern in the northern subregion is modelled by dis

locations along the San Andreas, Rodgers Creek and Green Valley faults. The 

model faults are shown in plan view and cross-section in Figure 7.4. The surface 

projections of the San Andreas and Rodgers Creek faults coincide well with the 

mapped traces of these faults. The location of the Green Valley fault, which is 

not closely parallel to the general strike, is based on the location of the mapped 

surface trace within the southern part of the subregion, the location of the offset 

seen in the observed velocity profile (Figure 5.6) and the distribution of seismicity 

along the fault (Figures 1.12 and 1.13). The locus of surface creep is expected to 

be coincident with the surface trace and the observed velocity offset. However, the 

seismicity occurs primarily to the west of the mapped trace. To account for the 

apparent complexity of this fault, the creeping segment is offset about 4 km east 

of the deeper segment. 

The predicted velocity profile with (solid line) and without (dashed line) the effects 

of creep on the Green Valley fault are shown for the forward model (Figure 7.5a) 

and for the best-fit model to the geodetic data (Figure 7.5b). Table 7.3 summarises 

the results of the forward and best-fit models for each subregion. A quantitative 

measure of the quality of the fit to the data is given by the reduced Chi-squared 

statistic X~ [Bevington and Robinson, 1992], given by 

(7.11) 

where v~bs is the observed, fault-parallel velocity, v~re IS the predicted velocity, 

CJi is the standard error for v~bs' N is the number of data points, and v = N -

M is the number of degrees of freedom where M is the number of adjustable 

model parameters. Values of x~ much larger than 1 indicate that the measurement 

errors cannot account for all of the data misfit, and suggest either an incorrect 

representation of the physical situation (incorrect model or model parameters) or 

incorrect estimates of the standard errors of the observed velocities. Very small 

values of X~ may imply either that measurement noise is being modelled or that the 

calculated errors are overestimated. The values for X~ for the forward and best-fit 

models with surface creep are 2.1 and 0.5 respectively. The best-fit model is thus 

consistent with the observed velocities and is an improvement over the forward 

model. 
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Figure 7.4: (a) Surface projections of the vertical, infinitely-long planes used to model the San 

Andreas, Rodgers Creek, and Green Valley faults in the north-bay subregion. The map is pro

jected so that vertical lines correspond to the direction N33°W. Solid lines represent positions of 

the slipping faults at depth. Dashed line represents the locus of the surface creep on the Green 

Valley fault. (b) Cross ~ection trending at N57°E across the north-bay subregion showing the 

idealised fault segments used to predict the deformation field. ? indicates unknown, prior to 

calculating, depth to base of the shallow surface creep zone on the Green Valley fault. 
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Figure 7.5: Fault-parallel relative velocities predicted for the north-bay subregion along a line 

trending N57°E by (a) the forward and (b) the best-fit models with (solid line) and without 

(dashed line) surface creep on the Green Valley fault. Superimposed on the theoretical profiles 

are the observed data. The error bars represent one standard deviation on either side of the 

plotted point. 
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Table 7.3: Slip rates at depth on the San Gregorio, San Andreas, Hayward, Rodgers Creek, 

Calaveras, Concord and Green Valley faults estimated from the geodetic data. Slip rates presented 

for the forward models are the fixed estimates adopted in Table 7.2. Also shown is a measure of 

the quality of the fit to the data given by the reduced Chi-squared statistic. 

Slip rate at depth, rrun/yr 

Hayward- Calaveras-

San San Rodgers Concord- Cumulative 

Gregorio Andreas Creek Green Valley Slip across 

Subregion Model Fault Fault Faults Faults Fault System x~ 0 

North-Bay Forward 21.9 8.0 5.4 35.3 2.1 

Best-fit 16.7 ± 1.4 12.3 ± 1.2 7.0 ± 0.7 36.0 ± 2.0 0.5 

Compliant fault 15.7 ± 0.7 13.1 ± 0.6 7.0 ± 0.4 35.8 ± 1.0 0.4 

Shear Zone 31.1 ± 0.4 0.9 

Central-Bay Forward 3.6 20.8 8.0 5.2 34.0 3.0 

Best-fit 0.6 ± 5.9 16.4 ± 5.7 12.2 ± 3.0 7.3 ± 1.9 36.5 ± 8.9 0.7 

Shear Zone 33.0 ± 0.8 1.4 

South-Bay Forward 3.6 22.8 11.1 37.5 3.6 

Best-fit 1 0.6 ± 5.1 13.5 ± 5.3 22.3 ± 2.3 36.4 ± 7.7 1.2 

Best-fit 2 0.0* 19.7 ± 3.7 17.6±2.7 37.3 ± 4.6 0.9 

Shear Zone 36.6 ± 1.2 2.0 

Monterey-Bay 

For.ward 3.6 24.0 14.9 42.5 1.4 

(Northern) Best-fit 0.0* 18.4 ± 3.0 18.2 ± 2.1 36.6 ± 3.7 0.7 

Shear Zone 37.0 ± 0.9 0.8 

Forward 3.6 38.ot 41.6 1.9 

(Central) Best-fit 0.0* 40.7 ± 1.4 t 40.7 ± 1.4 2.8 

Forward 3.6 38.ot 41.6 1.8 

(Southern) Best-fit 0.0* 38.2 ± 1.5 t 38.2 ± 1.5 1.3 
0 x~ for the models that include the effects of surface creep. 

* set to zero by positivity constraint. 

I indicates rates for the "plate boundary'' fault (see text). 
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Simple comparison of the two values of x~ does not reveal whether the improve

ment is statistically significant. To test whether the best-fit model is a significant 

improvement over the forward model an F-test is used [Bevington and Robinson, 

1992, p.205] where F is the ratio of X~ for the two models, that is 

2 

F = Xvl 
2 0 

Xv2 
(7.12) 

If the value ofF for the two candidate models is greater than some critical value 

that is dependent on the number of degrees of freedom then the improvement in 

x~ can be reasonably attributed to a significant difference between the models. 

For example, with 100 degrees of freedom, F must be greater than rv 1.4 to be 

significant at the 95% confidence level. The ratio F between the forward and 

best-fit model is 4.2 which is significant at a confidence level of 99.7%. 

The forward model predicts poorly the relative site velocities within the fault sys

tem. However, the model does present an acceptable fit to the relative velocities 

of the most westerly points, Farallon and Point Reyes Head indicating that the 

breadth of the deforming zone, which is related to the locking depth, and the 

summed slip rates at depth from the forward model are reasonably consistent with 

the geodetic data. Where the forward model is inconsistent with the data is in the 

distribution of motion throughout most of the deforming zone. 

The best-fit values for the slip rates at depth are given in Table 7.3, and they yield a 

cumulative deep slip rate of 36.0 ± 2.0 mm/yr across the whole San Andreas fault 

system. The depth to the base of the shallow, surface creep zone on the Green 

Valley fault is estimated to be 10 km using the fixed deep-slip rates and 9 km using 

the best-fit deep-slip rates. 

Both the best-fit model and the forward model fail to explain the apparent offset 

across the San Andreas fault (at 0 km, Figure 7.5) of 3 mm/yr. This offset could 

be accounted for either by a shallow locking depth, surface creep or low rigidity 

within the fault zone. The lack of seismicity and therefore the large uncertainty in 

the 90% depth estimate along this segment of the San Andreas fault would allow 

a much shallower locking depth than the 12.2 km used in the models. However, 

the offset is so localised that this is not a viable explanation unless in conjunction 

with this the present deep slip rate on the San Andreas fault is much smaller 

(corresponding to the size of the offset) than any geological estimates. Furthermore 

the depth to which coseismic slip extended during the 1906 earthquake is thought 

to be 10 ± 2 km, [Thatcher, 1975] close to the 90% depth estimate. Less than 

166 



40 sw NE 

35 

30 

25 
~ 
~ 20 a 15 s 

10 

5 

0 

-5 
-40 -20 0 20 40 60 80 

Distance from San Andreas fault (km) 

Figure 7.6: Fault-parallel, best-fit, relative velocities predicted for the north-bay subregion along 

a line trending N57°E using a model which includes the effects of a 1.5-km wide low-rigidity fault 

zone around the San Andreas fault. The zone has a rigidity contrast of 0.25 with respect to the 

surrounding quarter spaces. The predicted profile is shown with (solid line) and without (dashed 

line) the effects of surface creep on the Green Valley fault. Superimposed on the theoretical 

profiles are the observed data. The error bars represent one standard deviation errors. 

1 mm/yr of surface creep along the 1906 trace of the San Andreas fault is reported 

within this subregion (Table 7.1, Figure 7.2) and therefore surface creep across the 

main fault trace does not appear to be a viable explanation either. To the north 

of San Francisco bay, the San Andreas fault occupies a 0.5 to 1.5-km wide fault 

valley [Niemi and Hall, 1992]. Surface creep could occur on a number of subparallel 

traces within the valley with each trace contributing a small portion to the total 

offset seen. 

Material with low seismic velocities extending to at least 6 km depth has been 

identified along the San Andreas [Feng and McEvilly, 1983], Calaveras [Mooney 

and Colburn, 1985], Maacama and Healdsburg-Rodgers Creek [Eberhart-Phillips, 

1986] fault zones in central California. Shear wave velocity in the fault zones may 

be as low as half its value in the material outside the fault zones [Bakun and Bufe, 

1975] suggesting a shear modulus contrast of up to 0.25 [McHugh and Johnston, 

1977]. Figure 7.6 shows a best-fit model to the north-bay subregion using a more 

complex model (compliant fault model) which includes lateral inhomogeneity. A 
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Figure 7.7: Same as for Figure 7.6 except using a model with a vertical shear zone 65 km wide 

between the San Andreas and Green Valley faults, below a depth of 10 km. 

1.5-km wide, low-rigidity fault zone is located around the San Andreas fault. The 

zone has a rigidity contrast of 0.25 (the low end of realistic contrasts) with the 

surrounding material. Comparison of Figures 7.5 and 7.6 shows that the effect of 

the low-rigidity (compliant) fault zone is to concentrate deformation across the San 

Andreas fault. The x~ for this model is 0.4, which is a small improvement over 

the best-fit model using a homogeneous structure. The F-test indicates that this 

improvement is significant at the 75% confidence level. 

Another area where the models fail to explain the geodetic data adequately is 

around the Green Valley fault. The predicted curve for deformation without creep 

(e.g., Figure 7.6) fits the points to the immediate southwest of the Green Val

ley fault better than when surface creep is incorporated, though the latter curve 

predicts the data northeast of the fault best. 

To test whether the geodetic data are consistent with a model of distributed shear 

rather than deep slip localised on individual faults, a best-fit model for the data 

was calculated using equation (6.5). In this model, shear is distributed evenly 

across the fault system between the San Andreas and Green Valley faults below a 

depth of 10 km. As for the previous models, the locking depth of 10 km is based 

on the 90% depths. This depth is reasonable as it corresponds to the thickness of 
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Figure 7.8: Same as for Figure 7.4 except for the San Gregorio, San Andreas, Hayward, and 

Calaveras-Concord faults in the central-bay subregion. 

the locked layer in the modified half space model and the minimum depth of onset 

of viscoelasticity in lithosphere-asthenosphere type models. The best-fit model 

predicts 31.1 ± 0.4 mm/yr of relative, right-lateral motion across the fault system 

(Figure 7.7, Table 7.3). x~ for this model is 0.9, which is worse than that of the 

best-fit model for slip on the principal faults. The data in the southwestern half of 

the profile are most poorly fit by this model, which predicts velocities that are too 

low southwest of the San Andreas fault and too high to the northeast. 

7.3.5 The Central-Bay Subregion· 

The principal faults in the central-bay subregion are the San Gregorio, San An

dreas, Hayward and Calaveras-Concord faults. These faults, together with the 

idealised model faults, are show.n in plan view and cross section in Figure 7.8. The 
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surface projections of the model San Andreas and Hayward faults coincide well 

with their mapped traces. The location of the San Gregorio fault is chosen to be 

coincident with the mapped surface trace of that fault at Pillar Point between the 

two southwestern-most stations on the profile (Figure 7.8). The Calaveras-Concord 

fault is placed so that it separates the sites southwest of the surface trace from those 

to the northeast. Surface creep on the Hayward and Calaveras faults is assumed 

to occur immediately above the deep slipping fault planes. 

The predicted velocity profiles are shown in Figure 7.9 and the results are sum

marised in Table 7.3. The values of X~ for the forward and best-fit models with 

creep to the geodetic data are 3.0 and 0. 7 respectively and F is 4.3 which indicates 

an improvement significant at the 99% confidence level. 

x~ for the best-fit model without surface creep is 0.7 and the ratio F between the 

best-fit models with and without creep is 1.0. Therefore, assuming the rest of the 

model is correct, this analysis suggests that creep is equally likely to be occurring 

as to be not occurring. Surface creep that has been constant for decades has been 

documented along at least 66 km of the Hayward fault [Lienkaemper et al., 1991] 

(Figure 7.2) and along parts of the Calaveras-Concord fault [ Galehouse, 1992a, b]. 

This creep is however, not detectable in the geodetic data studied here probably 

because the noise level of the data is presently too large and the station spacing 

too broad. 

As is the case for the north-bay subregion, the data most poorly fit by the forward 

model are from points within the fault system indicating that the proportions of 

deep-slip assigned to the faults are distributed incorrectly. The depths to which the 

surface creep zones extend calculated from equation ( 7. 7) and the fixed parameters 

are 6.2 km for the Hayward fault and 3.9 km for the Calaveras fault. 

The best-fit values obtained for slip at depth are given in Table 7.3, and the cumu

lative slip rate at depth across the San Andreas fault system is 36.5 ± 8.9 mm/yr. 

As a consequence of the high uncertainties in the slip rates for individual faults (up 

to 5.9 mm/yr), the best-fit deep slip rates do not differ significantly from those of 

the forward model at the 1-2o- level. However, the estimates for the San Andreas, 

Hayward and Calaveras-Concord faults agree remarkably well with those obtained 

for the San Andreas, Rodgers Creek and Green Valley faults for the north-bay 

subregion. Surface creep is calculated to extend to 4. 7 km on the Hayward fault 

and 2.8 km on the Calaveras fault. 
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Figure 7.9: Same as Figure 7.5 except for central-bay subregion with (solid lines) and without 

(dashed lines) surface creep on the Hayward and Calaveras-Concord faults. 
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Small, San Andreas fault-crossing networks along the San Francisco peninsula in

dicate high strain rates, in agreement with the offset across that fault seen in the 

data for the north-bay subregion [Prescott et al., 1981]. However no fault-local 

offset is evident in the geodetic data for the central-bay subregion (Figure 7.9) and 

thus a low-rigidity zone around the San Andreas fault, although probably present, 

is not required by the data modelled here. 

In the case of the best-fit model, only two stations show residuals greater than one 

standard deviation. These are Castro (velocity misfit -3.3 ± 2. 7 mm/yr) and Minn 

(velocity misfit -8.9 ± 3.3 mm/yr ). Minnis the only station whose residual exceeds 

2 standard deviations. The calculated fault-parallel velocity of Minn is heavily 

dependent on the 1993 survey (Figure 4.5) and if this survey were disregarded 

the velocity calculated would be substantially less and more consistent with the 

modelled results. The measured velocity of station Minn may thus simply be in 

error. 

7.3.6 The South-Bay Subregion 

The south-bay subregion is mostly south of the junction between the Hayward 

and Calaveras faults. The fault system in this subregion is therefore considered to 

consist of the San Gregorio, San Andreas and Calaveras faults. The model faults 

used are shown in plan view and cross section in Figure 7.10. As only one station, 

Allison, is close to the junction of the Hayward and Calaveras faults, neglecting 

motion on the Hayward fault affects only one observation point. The model position 

of the San Gregorio fault is coincident with the mean position of its surface trace 

between the two southwestern-most points, Dump and Porn, located on either side 

of this fault. Similarly, for the San Andreas fault, which changes strike from N44°W 

to N36°W within this subregion, the model position is midway between the two 

closest stations. Most of the individual observation points close to the San Andreas 

fault are situated along the segment that strikes at N36°W and it is these close 

sites that are more sensitive to the fault position. A consequence of neglecting 

the change in strike in this simple model is that station Lorna, which is "' 4 km 

from the mapped surface trace of the San Andreas fault, is at least 10 km from the 

model fault and its velocity is expected to be poorly modelled. 

Figure 7.11 and Table 7.3 show the modelling results. Two best-fit velocity pro

files are shown in Figure 7.11b. The upper dashed and solid lines represent the 
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Figure 7.10: Same as Figure 7.4 except for the San Gregorio, San Andreas, and Calaveras faults 

in the south-bay subregion. Dashed line represents the position of surface creep on the Calaveras 

fault. 

best-fit model obtained from an inversion with all the observed velocities included 

(model 1 ). The lower dashed and solid lines represent the best-fit model with the 

velocities of stations Lorna and American omitted (model 2). Only three observa

tion points lie between the San Andreas and Calaveras faults. As a consequence, 

the inversion relies heavily on those points in distributing slip between the two 

faults. Because the model is unrealistic for stations Lorna and American, their 

exclusion from the inversion is justified. x~ for model 1 is 1.2. The slip rate at 

depth of 13.5 ± 5.3 mm/yr determined for the San Andreas fault is lower than 

the estimates obtained from the north-bay and central-bay subregions, but not 

significantly at the 1o- level. 

The slip rates for model 2 yield a X~ of 0.9, and are marginally more consistent 

with previous estimates of slip from the north- and central-bay subregions. Both 

173 



40 
35 (a) forward 
30 
25 ! 

~ 20 ~ ! 
~ ~ a 15 

-.:: ..... 
-...;; --s 10 -' ' 

5 
0 

-5 

-10 sw 
40 

NE 

35 (b) best-fit 
30 
25 

~ 20 ~ 

~ 15 
10 
5 
0 

-5 
-10 

-20 0 20 40 60 80 

Distance from San Andreas (krn) · 

Figure 7.11: Same as Figure 7.5 except for the south-bay subregion with (solid lines) and without 

(dashed lines) surface creep on the Calaveras fault. For explanation of (b) see text. 
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model 1 and model 2 are significant improvements over the forward model at a 

confidence level greater than 98%. The depth to which surface creep extends on 

the Calaveras fault is 6.4 km from the forward model, 3.9 km from best-fit model 

1 and 4.6 km from best-fit model 2. 

7.3. 7 The Monterey-Bay Subregion 

The Monterey-bay subregion has been subdivided into three parts in order to min

imise the effects of the significant three-dimensionality of this subregion. The model 

geometries for the northern, central and southern parts are shown in Figure 7.12. 

In the northern part, the model San Gregorio, San Andreas and Calaveras faults 

are located at the midpoints of the surface traces of the faults within that part. For 

the central and southern parts, the San Andreas and Calaveras faults are not sepa

rately distinguished. Instead, slip at depth is modelled as a single "plate boundary" 

fault midway between the surface traces of the two faults. This is because of the 

variable strikes of the two faults within this part, which cause slip rates obtained 

from an inversion to depend critically on the chosen fault positions. Furthermore, 

it is realistic to assume that distributed deformation occurs at .depth as motion is 

progressively transferred from the San Andreas fault to the Calaveras fault towards 

the north [Ellsworth, 1975]. The deep slip rate estimated for the "plate boundary" 

fault then approximately represents the sum of the slip on the two faults. The 

locking depth on this fault is restricted to 8.5 km, an average of the 90% depths 

dose to the junction of the San Andreas and Calaveras faults (Figure 7.3). Surface 

creep along the San Andreas and Calaveras faults is located where offsets occur in 

the observed velocity profiles. 

The predicted velocity profile for the northern part is shown in Figure 7.13. x~ 

for the forward and best-fit models with surface creep are 1.4 and 0.7 respectively. 

The F -ratio of 2.0 indicates an improvement on the forward model at a confidence 

level of 87%. The largest difference between the predicted velocities (and thus the 

residuals) of the forward and best-fit models is at the hypothetical Pacific plate 

site (not shown). The forward model over-predicts the velocity at this point by 

nearly 6 mm/yr. If the total relative motion across the San Andreas fault system 

at this latitude is larger than the 35 mm/yr prescribed then the improvement may 

not be so large. The depth to which surface creep extends on the Calaveras fault, 

calculated from the parameters of the forward model, is 7.7 km. No observation 

points disagree with the best-fit model at the 2o- level. The cumulative deep slip 
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Figure 7.12: (a) Same as for Figure 7 .4( a) except for the San Gregorio, San Andreas, and Calaveras 

faults in the northern, central and southern parts of the Monterey-bay subregion. Dashed lines 

represent the positions of the surface creep on the San Andreas and Calaveras faults. (b) to (d) 

Same as for Figure 7 .4(b) except for the northern, central and southern parts of the Monterey

bay subregion. In the central and southern subregions, slip at depth is approximated by a single 

"plate boundary" fault. 
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Figure 7.13: Same as for Figure 7.5 except for the northern part of the Monterey-bay subregion. 
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rate across the fault system estimated from the best-fit model is 36.6 ± 3. 7 mm/yr 

and the depth to which surface creep extends on the Calaveras fault, calculated 

from the parameters of this model, is 7.2 km. 

Figure 7.14 shows the predicted velocity profiles for the central part of the Monterey

bay subregion. For both the forward and best-fit models, the predicted profiles 

with creep are a substantial improvement over the profiles without creep. X~ for 

the forward and best-fit models with surface ~reep are 1.9 and 2.8 respectively. The 

best-fit model is therefore not an improvement over the forward model. The most 

probable explanation for this surprising result lies in the method used in the inver

sion. As explained above the effects of surface creep are ignored when calculating 

the best-fit slip rates at depth. This method is reasonable where surface creep 

accounts for a small part of the motion only. However, where the contribution of 

surface creep to the point velocities is large, inversion values of the slip rates at 

depth are biased. A more appropriate method for this case would therefore be 

to use repeated iterations to improve the fit. The depth extent of surface creep 

from the forward model is 5.8 km on the San Andreas fault and 6. 7 km on the 

Calaveras fault. From the best-fit model these depths are 5.3 km and 6.2 km. The 

slip rates obtained from the best-fit model are 0 mm/yr for the San Gregorio fault 

and 40.7 ± 1.4 mm/yr for the "plate boundary" fault. 

The predicted velocity profiles for the southern part of the Monterey-bay subregion 

are shown in Figure 7.15. As for the other parts of the subregion the predicted 

profiles that include surface creep are a significant improvement over those without. 

x~ for the forward and best-fit models with surface creep are 1.8 and 1.3. This 

improvement is only marginally significant ( 68%). The major difference between 

the two models is the slip rate at depth on the San Gregorio fault (Table 7.3). The 

slip rate for this fault is not well constrained by the data as there are no points close 

to the fault in the Monterey-bay subregion. However, in the central- and south-bay 

subregions (sections 7.3.5 and 7.3.6) where observation points do lie close to this 

fault the estimated slip rate is not significantly different from zero either. A slip 

rate of 0 mm/yr is therefore more consistent with the results from other subregions 

than the prior estimate of 3.6 mm/yr. For both the forward and best~fit models, 

the depth to which the surface creep zone extends is estimated to be 8.0 km. 
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Figure 7.14: Same as. for Figure 7.5 except for the central part of the Monterey-bay subregion 

with (solid lines) and without (dashed lines) surface creep on the San Andreas and Calaveras 

faults. 
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Figure 7.15: Same as for Figure 7.5 except for the southern part of the Monterey-bay subregion 

with (solid lines) and without (dashed lines) surface creep on the San Andreas fault. 
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7.4 The Three-Dimensional Model 

7 .4.1 The Data 

In contrast to the two-dimensional models described above, one regional three

dimensional model is able to model the deformation in the San Francisco and 

Monterey bay regions. This three-dimensional model is able to predict the full 

three-dimensional velocity field and there is no need to divide the region up into 

smaller sub-regions. The model is directly fit to the observed line-length change 

rates from the San Francisco bay trilateration network (Chapter 5) and the hori

zontal relative velocities from the GPS profiles (Chapter 4) rather than to relative 

velocities derived from these data. The trilateration data consists of 300 line-length 

change rates and the GPS data consist of 28 relative horizontal velocities (or 56 

observations). The vertical relative velocities from the GPS data are not included 

since their contribution to constraining the deformation is statistically insignificant 

due to their large uncertainties. In total there are 356 observations available for 

analysing the deformation in the San Francisco bay region. The uncertainties in 

the trilateration data are obtained from the residuals of the linear regression of the 

line-length estimates with time. The uncertainties in the GPS data are obtained 

from the least-squares inversion for the relative velocities (Chapter 4). In this 

modelling, each observation is weighted by the inverse of its standard deviation. 

7 .4.2 Model Parameters 

The surface creep rates compiled from the polynomial fits (Figure 7.2) and the slip 

rates at depth obtained from the best-fit two-dimensional models are used as fixed 

parameters in a forward model. These slip rates are also used as a-priori data in 

the three-dimensional inversion. For all models, the depth to the base of the brittle 

layer is calculated from the distribution of seismicity (Figure 7.3). 

The general geometry of the fault model is shown in Figure 7.16. The principal 

faults are digitised from the fault map of California [Jennings, 1975] and divided 

along strike into multiple segments averaging 10 km in length. In several cases 

assumptions had to be made as to the position of the faults because either the 

position of the fault is not clearly distinguished, there were several mapped traces 

or the fault was highly segmented. The results do not depend strongly on minor 
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Figure 7.16: Location of the fault segments (red lines and crosses) used to model the d~formation 

in the San Francisco and Monterey bay regions , superimposed on top of mapped surface traces. 

Triangles represent the positions of the geodetic stations. 
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changes in fault location for those faults which are locked to the base of the brittle 

layer but fault location can be important for faults that exhibit surface creep. 

Slip beneath the brittle layer on the principal faults is considered to be continu

ous along strike. That is, where mapped surface traces show offsets such as the 

right-stepping offset between the Hayward and Rodgers Creek faults and the right

stepping offset between the Northern Calaveras and Concord faults, a straight 

connection between the faults beneath the brittle layer is assumed (Figure 7.16). 

The few earthquakes within the right stepover between the Hayward and Rodgers 

Creek faults seem to deepen to the northeast and location of the deepest events sug

gest a straight connection at depth [Lienkaemper et al., 1991]. At the left stepover 

between the Calaveras and Hayward faults, earthquake activity occurs along the 

Mission fault (Figure 1.2) [Andrews et al., 1993]. Slip is thus considered to be 

transferred from the Southern Calaveras to the Hayward fault along the Mission 

fault and the Hayward fault to the south of the Mission fault is considered to be 

inactive apart from surface creep. 

At fault junctions such as the San Andreas-Calaveras, the Calaveras-Hayward and 

the San Gregorio-San Andreas, the faults at depth are assumed to be connected at a 

nodal point. The San Andreas-Calaveras junction near Hollister is a complex zone 

of subparallel faults. The San Andreas fault continues through the area without in

terruption and without significant splays to connect it with the subparallel faults to 

the northeast. The Calaveras fault is considered to be the principal member of these 

subparallel faults. It passes through the town of Hollister (Figure 1.2) and proba

bly continues southwards along the Paicines and San Benito faults. Transfer of slip 

between the San Andreas and Calaveras faults has been inferred to occur close to 

the Melendy Ranch (Figure 7.16) [Ellsworth, 1975]. Therefore the model Calaveras 

fault south of Hollister is projected along the strike of the Paicines and San Benito 

faults and connects with the San Andreas fault at Melendy Ranch. The northward 

continuation of the northern Calaveras fault comprises the Concord, Green Valley 

and Bartlett Springs faults [Castillo and Ellsworth, 1993]. The mapped surface 

traces of these faults show en-echelon steps (Figure 1.2), but earthquake epicentres 

show a continuous, straight connection at depth which the modelled fault follows. 

Where surface creep is observed the model fault locations are taken as the mapped 

surface traces. Appreciable creep on the San Andreas fault occurs only southeast 

of San Juan Bautista. On the Calaveras fault, creep increases significantly from 

Seventh Street in Hollister northwestwards to a maximum just north of Hollister 
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where it gradually decreases to virtually zero near the northwestern terminus of 

the fault [ Galehouse, 1992a, b ]. Creep is also detected on the Concord fault and 

the southwestern segment of the Green Valley fault. Whether creep continues 

or dies out further north along this fault is unknown but it is assumed here to 

decrease to zero. This affects the results little since these segments are all outside 

the modelled region. The spatial variation of surface creep along the Hayward 

fault has been extensively investigated and both the surface creep rates and fault 

segment coordinates used are taken from the regional dislocation model produced 

by Lienkaemper et al. [1991]. 

The depths to which surface creep extends calculated from the inverse two-dimen

sional models are used. The systematic variation of creep rate along the faults 

within each subregion was not accounted for in those models. Whether these 

var~ations are associated with equivalent variations in the depth of the creeping 

zone is not known. The principal relation between surface-creep rate, the depth 

extent of surface creep and the rate of stress accumulation (equation 7. 7) has 

not yet been extended to three-dimensional geometries and so the depth to which 

surface creep extends cannot be estimated here. The depths estimat~d within each 

subregion from the two-dimensional models can be regarded as approximations to 

the average true depths based on averages of the observed surface creep rate and 

calculated stress accumulation. Where fault segments cross the boundary between 

two subregions an average from the two subregions for the locking depth and depth 

to the base of the surface creep zone is adopted. Similarly, northwards along the 

Green Valley fault, the depth to the base of surface creep is tapered to zero along 

with the assigned slip rate. 

Beyond the region shown in Figure 7.16, additional segments following the general 

strike of the fault system (N33°W) are included for the San Andreas, Rodgers Creek 

and Green Valley faults to the north and the San Andreas and San Gregorio faults 

to the south. The slip rates are constrained to be identical with those on the closest 

segment. These faults are assigned semi-infinite lengths in order to eliminate edge 

effects. A table of the fault segments used in the three-dimensional model is given 

in Appendix A. 
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7 .4.3 Modelling Procedure 

7 .4.3.1 The Forward Calculation 

The exact form of the elements of the displacement matrix, G, are dependent on 

the type of geodetic data used. For trilateration data the rate of change of line 

length is given by 

(7.13) 

where zij is the rate of line-length change between the ith and ph stations and ()ij 

is the azimuth of the line clockwise from north. Equation (7.13) is valid under the 

condition that I vj -vi I~ Lij where Lij is the line length. This condition is always 

satisfied since line lengths are usually of the order of several kilometres and the 

magnitude of displacement less than a few metres. Substituting (7.2) into (7.13) 

giVes 

zij = f:bk[[u(x){- U(x)~] sinOij + [U(y){- U(y)~] cosfij], (7.14) 
k=l 

which can be written in the form of (7.5) with 

['J 
' 

[u(x){- U(x)~] sinOP + [U(y){- U(y)~] cosOP, 

where p indicates the line between stations i to j. 

For GPS data, the relative velocity of station j with respect to station i is 

m 

I:bk [u(x){- U(x)~], 
k=l 
m 

I:bk [u(y){- U(y)~], 
k=l 

which can be written in the form of (7.5) with 

d(x)ij V(x)ij, 

d(y)0 V(y)0 , 

G(x )ij,k 

G(y )ij,k 

U(x){- U(x)~, 

U(y)i- U(y)~. 

(7.15) 

(7.16) 

(7.17) 

The d( x ), d(y) and G( x ), G(y) indicate that there are two data for every measured 

GPS line. 
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For both trilateration and GPS data, the displacement vector Uk for vertical strike

slip faults is determined by eight parameters, 

(7.18) 

where (x 0 , Yo) are the coordinates of the origin of the fault segment, Lis the length 

of the fault segment, <Pis the strike of the fault segment, dis the depth of the upper 

fault edge, W is the vertical fault width and (xi, Yi) are the coordinates of the ith 

station. 

7.4.3.2 The Inversion Method 

In theory the inverse problem to find the solution to (7.5) is overdetermined if the 

number of data exceeds the number of unknown slip rates. However, in practice 

this may not be the case for real station-segment configurations. If the stations 

are unevenly distributed the slip rates of some segments may be overdetermined, 

but those of others undetermined either because there are no nearby points or be

cause lines cross more than one fault segment. This sort of problem is said to be 

mixed-determined [Menke, 1984]. Since the slip rates on individual fault segments 

can be thought of as representing a discretised continuous function of slip rate on 

an individual fault that varies with position, several segments can be combined to

gether and the resultant average slip rates thus rendered overdetermined. However 

combining segments will reduce the variance of the estimated parameters at the 

expense of resolution of smaller features. If the inverse problem is considered to 

be mixed-determined then it can be solved using weighted-damped least squares 

[Jackson, 1979; Menke, 1984]. The estimate of the solution is 

(7.19) 

where (b) is a column vector of a-priori values of the slip rates and W m is a 

matrix of weighting factors which quantifies some measure of simplicity. For a 

discretised continuous function such as slip rates, along-strike variations are likely 

to be gradual and the weighting matrix W m can be used to impose smoothness on 

the final result. 

7.4.3.3 Obtaining Station Velocities from the Predicted Data 

To facilitate comparison the predicted station velocities are best expressed in the 

same reference frame as the observations. This is achieved by calculating the 
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predicted trilateration line-length change rates and GPS relative velocities and then 

combining them with the observed VLBI velocities using the method presented 

in Chapter 5 for combining the different geodetic data types. Calculating the 

predicted station velocities in this manner, as opposed to simply estimating them 

in the modelling software, eliminates the calculation of the motion at the fixed 

point. If this fixed point is some distance away from the modelled fault syst~m 

then it is likely that it will be affected either by edge effects or effects from other 

unmodelled tectonic movement. For example, to correctly calculate the velocities 

relative to the VLBI station OVRO, the deformation due to the Owens Valley 

shear zone would have to be included in the model. The mechanisms involved 

in the deformation in Owens Valley are as yet unresolved [Savage and Lisowski, 

1995]. Using the same VLBI data to calculate the observed and predicted station 

velocities relative to some distant point eliminates this bias. 

7 .4.4 The Forward Model using the results from the Two

Dimensional Analysis 

The forward model uses the slip rates and the depths to which the surface creep 

zones extend from the best-fit two-dimensional models (Figure 7.17). Each coloured 

rectangle represents a modelled fault segment slipping at the rate indicated. The 

lower segments extend from the locking depths shown (upper edges of rectangles) to 

a depth of 9000 km. The choice of 9000 km is arbitrary, and any value large enough 

to be considered infinite with respect to the dimensions of the region modelled 

would suffice. The upper segments represent the shallow surface creeping zones. 

Figure 7.18 shows the observed and predicted site velocities relative to the VLBI 

station OVRO. In addition profiles for the four subregions are shown for the fault

parallel (Figure 7.19a-d) and the fault-normal (Figure 7.19e-h) cases. x~, calculated 

from the observed minus the predicted trilateration line-length changes and GPS 

relative velocities, is 5.8. However, since the geodetic network is geometrically re

dundant (i.e., the number of intersite observations is greater than the number of 

sites) some of the misfit may be attributable to measurement noise that is unac

counted for in the data uncertainties rather than misfit of the model [Segall and 

Mathews, 1988]. Geometric redundancy in the GPS observations has already been 

accounted for during the estimation of the relative site velocities (Chapter 4). No 

such scaling of the uncertainties in the trilateration data is performed. The average 

error found in fitting the line-length change rates by dislocation models was found 
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Figure 7.17: The San Andreas fault system showing fault segments and slip rates used in the 

forward modeL Top, perspective view of the fault system looking from the west. Box represents 

the upper 20 km of the elastic half-space in which the slipping fault segments are buried. The 

Californian coast is plotted at a depth of 20km. Bottom, along-strike depth sections of the 

individual faults . Each rectangle represents a single fault segment slipping at the rate indicated 

by the colour and number. The lower rectangles , extend from the locking depth sho~n (upper 

edge) to a depth of 9000 km. The upper rectangles represent zones of shallow surface creep. 
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to be twice the standard deviation in the rate for a subset of the data near Hollis

ter [Savage et al., 1979]. The uncertainties in the trilateration data are therefore 

rescaled by a factor of 2 prior to using them in the three-dimensional analysis. 

Selective reweighting of the trilateration data will attenuate the effect of outliers 

on any parameters estimated and should lead to an improvement in X~ at the ex

pense of increasing the uncertainties in the calculated slip rates. After scaling the 

uncertainties in the trilateration data, x~ becomes 1.6. 

Alternatively, x~ can be calculated from the derived relative velocities. In this case 

the uncertainties in the observed data have already been rescaled by the misfit due 

to geometrical redundancy (observational error). x~ calculated from the observed 

minus the predicted velocities is 0.95. 

The calculated fault-parallel velocity field (Figures 7.19a-d) agrees closely with the 

observed data. Much of the apparent scatter in the observed velocities, especially 

within the Monterey-bay subregion (Figure 7.19d), that cannot be modelled in 

the two-dimensional analysis, can be explained by along-strike complexities in the 

fault system. The largest residuals occur for sites located around the Green Valley 

fault in the north-bay subregion and sites between the San Andreas and Calaveras 

faults in the Monterey-bay subregion. The largest residual is at station Minn 

( -9.1± 3.3 mm/yr) already identified as an outlier (Figures 7.19b and 7.9). 

The residuals from the fault-normal velocity field are consistent with a normal 

distribution with zero mean but there appear to be systematic discrepancies within 

the subregions. In the north-bay subregion the observed fault-normal velocities are 

consistently greater than the predicted velocities (Figure 7.19e) whilst in the south

bay subregion they are consistently lower (Figure 7.19g). Significant changes in the 

predicted fault-normal velocities would require altering the strikes of the faults. The 

fault strikes are well-constrained by the surface traces and seismicity, and a more 

likely explanation for the discrepancy is a systematic direction bias between the 

trilateration and GPS results. 

In order to summarise the model misfit, strain rates are calculated from the residual 

horizontal velocity field and shown in terms of their principal axes in Figure 7.20. 

To the north and east of San Francisco bay the residual strain is dominated by com

pression or extension sub-perpendicular to the fault strike (e.g., at 1 in Figure 7.20). 

However, there are appears to be no systematic variation to the strain-rate pat

tern to suggest fault-normal effects. Fault-normal compression or extension in a 

region would appear as some form of sinusoid in a fault-normal velocity profile not 
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Figure 7.18: Comparison of the observed relative site velocities (black arrows) with thos~ predicted 

by the forward model (red arrows). Velocities are calculated relative to station OVRO, 300 km 

east of the fault system. Error ellipses are 95% confidence ellipses around observed velocities. 
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Figure 7.19: N33°W fault-parallel (a-d) and N57°E fault-normal (e-h) velocity profiles predicted 

for the four San Francisco and Monterey bay subregions by the forward model. Superimposed on 

the theoretical profiles are the observed data. The error bars represent one standard deviation. 
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as a systematic offset. The fault-normal compression and extension strain residu

als, like the systematic offset seen in the fault-normal velocity field, are probably 

the result of observational errors. Along the San Andreas fault near the Point 

Reyes peninsula, there is some residual shear-strain parallel to the fault strike (at 

2 in Figure 7.20). This may be attributed to the localised motion described in 

section 7.3.4, which may be the result of an unmodelled compliant fault zone or 

surface creep distributed throughout the fault valley. East of Monterey bay, the 

residuals cluster east of the San Andreas fault and again predominantly indicate 

compression or extension sub-perpendicular to the local fault strike. Between the 

San Andreas fault and the Calaveras fault (3 in Figure 7.20), three residuals show 

shear strain of about 1.2 f-lStrainjyr that is parallel to the strike of the Sargent fault. 

Shear strain of 1.2 f-lStrain/yr across a 5 km wide zone corresponds to 6 mm/yr of 

right-lateral motion. A possible explanation for these residuals is unmodelled slip 

on the Sargent fault. Slip of 3 mm/yr has been measured along this fault [P1·escott 

and Burford, 1976]. The large strain rate seen east of the Calaveras fault is from 

the Delaunay triangle between sites Brown, Bolsarm, and Pachecho. These are lo

cated almost in a straight line orientated along the shear direction of this residual. 

The strain-rate tensor is a function of both the magnitude and distribution of the 

deformation. ·This large residual is therefore a result of small areal extent rather 

than large residual deformation. 

7 .4.5 The Three-Dimensional Inversion 

The best-fit three-dimensional model was calculated using a weighted, damped, 

least-squares procedure. The slip rates used in the forward model were used here 

as a-priori rates for the inversion. Four segments extending from the surface to a· 

depth of 8 km along the Sargent fault from the Calaveras fault to the San Andreas 

fault, and one segment extending from the surface to 6.2 km depth at the southern 

end of the southern Calaveras fault were added to the model. The additional 

segment on the Calaveras fault is introduced to account for the creep of 6 mm/yr 

detected on the Paicines fault [Hm·sh and Pavoni, 1978]. Rather than attempting to 

calculate the slip rate on each segment, several neighbouring segments on the same 

fault were combined. The number of segments combined was chosen on the basis 

of trial and error such that along-strike slip variations could be resolved without 

the inversion becoming "unstable". This instability was characterised by slip rates 

fluctuating between left- and right-lateral slip on adjacent segments. 
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Slip rates on fault segments lying outside the network are poorly constrained by 

the data. In such cases the slip rates were either fixed at a specified value and not 

varied in the inversion or the segments were combined with neighbouring segments 

that are within the network. In addition, the surface-creep rates obtained from 

creep-meter measurements, alignment arrays etc., which are of higher quality than 

rates predicted by the geodetic data, were used to fix creep rates not estimated in 

the inversion. Exceptions to this are the surface creep zones along the southern end 

of the Calaveras fault and along the San Andreas fault near Hollister. These creep 

rates are estimated as they are constrained by a high concentration of line-length 

data and also exhibit large variability (Figure 7.2). An incorrect creep rate in this 

region could seriously degrade the inversion since surface creep plays a dominant 

role in the deformation here. Therefore it seems reasonable to estimate the creep 

rates. Altogether 25 slip rates are estimated in the inversion, 14 of which are slip 

rates at depth and 11 are surface creep rates. 

x~ from the best-fit model is 1.5 after scaling the trilateration errors (0.9 if cal

culated from the derived velocities). The F-test1 shows that the best-fit model 

is a significant improvement from the forward model at the 81% confidence level. 

The degree to which the model fits the data is illustrated by a histogram of nor

malised residuals (Figure 7.21 ). The histogram is approximately symmetric about 

zero although there is a slight bias towards overpredicting the motion. 71% of the 

predicted data lie within 1o- of the observed values and 90% within 2o-. These are 

close to the expected percentages for normally-distributed data with zero mean 

and correctly-assessed variances. 

The predicted velocities derived from the best-fit model are shown as horizontal 

vectors in Figure 7.22 and as profiles of the fault-parallel and fault-normal velocity 

components in Figure 7.23. As for the forward model, the best-fit model predicts 

poorly the fault-parallel relative velocities of sites around the Green Valley fault in 

the north-bay subregion (Figure 7.23a). There appears to be a systematic misfit 

such that the velocities of sites west of the fault are overestimated and those east of 

the fault are underestimated. The systematic offsets in the fault-normal velocities 

are still evident. However the misfit has been reduced slightly by the inversion. 

Relative vertical velocities were also predicted for the GPS sites and ranged within 

±0.3 mmjyr. 

1The F-test removes the ambiguity in the x; test by separating the effect of observational 

error from the model misfit and is therefore independent of the different methods used above for 

calculating X~- The F-test will be the same regardless of which x~ is used. 
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Figure 7.21: Histogram of the normalised residual distribution for the best-fit three-dimensional 

model. 

As for the forward model, the residual strain-rates were calculated to highlight 

model misfit (Figure 7.24). The largest reduction in the residuals, when compared 

with the forward model, occurs in the Monterey-bay subregion between the San 

Andreas and Calaveras faults and is probably a result of allowing surface creep on 

the Sargent fault. The surface creep rate on the Sargent fault was estimated to be 

2.1 ± 0.3 mm/yr, slightly lower than the measured value of 3 mm/yr [Prescott and 

Burford, 1976]. 

Fault-normal compression is seen in some of the residuals but it is highly variable 

and associated with an equal amount of fault-normal extension. Several residuals 

indicate right-lateral shear sub-parallel to the strike of the local faults. Some of 

these are located close to modelled faults and possibly indicate unmodelled shear

strain on that fault. For a right-lateral shear-strain residual this would indicate 

either a slip rate too low or a locking depth too deep. The residual shear strain 

along the Point Reyes peninsula may be once again associated with unmodelled 
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Figure 7.22: Same as Figure 7.18 except for the best-fit three-dimensional model. 
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Figure 7.23: Same as Figure 7.19 except for the best-fit three-dimensional model. 
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Figure 7.25: X~ as a function of locking depth for a series of inversion models. Triangles represent 

the estimated X~ for each inversion. Horizontal bars represent the forward and best-fit models 

whose locking depths are fixed using the 90% depths of seismicity. 

distributed surface creep or a compliant fault zone. Two shear-strain residuals are 

situated close to Vaca-Antioch fault just south of the northern arm of San Francisco 

bay. Geologic slip on this fault has been estimated at 0.3-4.0 mm/yr [Clark et al., 

1984] and the residuals may indicate unmodelled movement on this fault during 

the observation period. 

For comparison, a series of solutions were calculated whereby the locking depths 

on all the faults were varied from 5 to 30 km. In the cases where the locking 

depth was reduced to less than the estimated base of the surface creeping zone, 

the depth of surface creep was altered to the locking depth. Figure 7.25 shows the 

locking depth versus X~· There is clearly a minimum at a locking depth of 8 km. 

This minimum is lower than X~ for the forward model that has locking depths 

based on the 90% seismicity depths, but significantly higher than X~ for the best

fit model. The locking depth primarily effects the slip rate required to fit the data. 

For example, on the San Andreas fault near San Juan Bautista, a locking depth of 

8 km requires a deep slip rate of 15 ± 1.6 mmjyr, while a depth of 30 km requires 
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Table 7.4: Slip rates estimated in the three-dimensional inversion. Segment codes refer to those 

listed in Appendix A. 

Deep Slip Surface Creep 

Segment Rate Error Segment Rate Error 

Fault From To mm/yr mm/yr Fault From To mm/yr mm/yr 

San Gregorio 1.4 2.0 Sargent SRcl SRc4 2.1 0.3 

San Andreas SA4 SA8 17.6 1.3 San Andreas SAcS SAc7 12.3 1.3 

San Andreas SA9 SA13 1S.6 1.2 San Andreas SAc8 SAc8 11.1 0.4 

San Andreas SA14 SA17 16.7 1.4 San Andreas SAc9 SAc9 9.4 0.9 

San Andreas SA18 SA22 16.0 1.4 

San Andreas SA23 SA31 18.1 1.2 

Hayward HAl HA6 7.8 1.3 

Hayward HA7 HAll 9.4 1.3 

Rodgers Creek HA12 HA19 10.8 1.0 

S. Calaveras CAl CAS 23.3 1.1 S. Calaveras CAcb CAcb 3.7 1.4 

S. Calaveras CA6 CAlO 21.3 1.2 S. Calaveras CAca CAca 7.3 0.4 

S. Calaveras CAcl CAcl 14.3 o.s 
N. Calaveras CAll CA14 10.3 1.2 S. Calaveras CAc2 CAc2 16.9 0.8 

S. Calaveras CAc3 CAc3 1S.3 1.1 

Concord CAlS CA20 9.0 1.2 S. Calaveras CAc4 CAc4 13.1 1.3 

S. Calaveras CAcS CAc8 6.S 1.2 

Green Valley CA21 CA29 7.S 1.1 

a rate of 39.8 ± 4.5 mm/yr. The uncertainty in the estimated slip rate increases 

with locking depth, primarily because X~ increases with increasing depth and the 

variance is proportional to JXi, but also because surface-strain measurements are 

increasingly insensitive to the distribution of slip as depth increases. 

The 25 estimated slip rates are summarised in Table 7.4 and shown schematically 

in Figure 7.26. The slip rate on the San Andreas fault, north of the junction with 

the Calaveras fault, decreases northward from 18 mm/yr to about 16 mm/yr along 

the San Francisco peninsula. North of the junction with the San Gregorio fault, the 

slip rate increases to 18 mm/yr, presumably due to the transfer of 1-2 mm/yr of slip 

from the San Gregorio fault at their junction. Along the Southern Calaveras fault, 

the estimated deep slip rate is 21-23 mm/yr, up to 10 mmjyr greater than previous 

estimates along this segment. North of its junction with the Hayward fault, the 

slip rate on the northern Calaveras-Concord-Green Valley fault steadily decreases 

from 10 mm/yr to 7.5 mm/yr. The slip rate on the Hayward-Rodgers Creek fault 

appears to increase northwards from 7.8 to 9.4 mm/yr. Given the uncertainties in 

the slip rate, this indicates no significant change along fault-strike at a rate that is 
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Figure 7.26: Same as Figure 7.17 except showing the results of the three-dimensional inversion. 

Only slip rates estimated are displayed in the rectangles of the cross-sections. 
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consistent with previous estimates. Surface creep decreases northward on the San 

Andreas fault from 12 mm/yr north of the junction with the Calaveras fault to 

9 mm/yr just north of San Juan Bautista. Along the southern Calaveras fault, in 

the Hollister region, the surface creep rate increases from 4 mm/yr to a maximum 

of 17 mm/ yr 10 km north of Hollister, and then decreases to 6-7 mm/ yr along the 

rest of the fault. 

7.5 Summary 

Measured velocity fields in the San Francisco and Monterey bay regions were mod

elled using two- and three-dimensional models in an elastic half-space. In the 

two-dimensional analysis, the faults were assumed to be vertical, infinitely long 

and parallel. Only the fault-parallel component of the velocity field was studied, 

and fault-normal motion was assumed to be zero. The region was subdivided into 

four subregions in order to reduce the effect of the true three-dimensional variation. 

The Monterey-bay subregion was further subdivided into the northern, central and 

southern parts because of the extreme variation of fault strike there. Two ap

proaches were used. First, a forward model was calculated using fault slip rates 

based on estimates from published geologic and geophysical studies. Second, the 

slip rates at depth were estimated froin the geodetic data using a linear, weighted, 

least-squares procedure. In addition, the depth to which surface creep extends was 

estimated using both the prior and estimated deep-slip rates. 

Whilst most of the features in the fault-parallel velocity field are well-modelled by 

the two-dimensional model, the region clearly contains numerous fault segments 

with variable strike. For this reason a three-dimensional model incorporating many 

fault segments was developed. The positions of the faults were taken from their 

mapped surface traces. The locking depths were taken from the 90% seismicity 

depths, and the depths to which surface creep extends were taken from the results 

of the two-dimensional modelling. A forward model, using the slip rates from the 

best-fit two-dimensional model, produced a reasonable fit to the data. The residuals 

from this model highlighted the probability that unmodelled slip was occurring on 

the Sargent fault. A weighted, damped, least-squares inversion that also solved for 

surface creep on this fault resulted in a significant reduction in the residuals. 
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Chapter 8 

Discussion of the Results 

8.1 The GPS Results 

The GPS data processed from the North Bay, Golden Gate and Central Bay profiles 

were collected over a period of 3 years. The average, short-term precisions, using 

the formal errors from the Bernese GPS solutions, are 1-2 mm in the horizontal 

components and 8-10 mm in the vertical component. These precisions are about 

half those estimated from the scatter in the results for lines in southern California 

[Larson and Agnew, 1991]. Their small sizes illustrate the well known fact that 

precisions calculated purely from the scatter in the measured data underestimate 

the true accuracy. Long-term repeatability, obtained from the scatter of the cal

culated results about about a best-fit straight line, is 4-8 mm in the horizontal 

components and 30-50 mm in the vertical component. Typical scaled formal errors 

for the calculated relative velocities were "'2 mm/yr in the horizontal and up to 

22 mm/yr in the vertical. These uncertainties were determined by propagation 

of the full position covariances from each GPS solution, rescaled by the X~ fit of 

the data to the least-squares solution. Typical scaling factors for Bernese GPS 

solutions are around 5 [M. Murray, personal communication, 1993]. 

The smallest errors were found for the North Bay profile and the largest for the 

Central Bay profile, which is largely attributable to the number of surveys used 

to calculate the site velocities. 4-7 GPS surveys within a time span of 3 years are 

sufficient to allow the detection of horizontal crustal deformation. This is less than 

the"' 10 year time span required for terrestrial geodetic measurements. The vertical 

component is not sufficiently accurate to detect vertical motion in the short time 

span for which results are available at present. The measured relative horizontal 

velocities indicate shear flow about the fault system and the measured vertical 

velocities, although insignificant, mimic the Coast Range topography. 
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8.2 Integration of the Geodetic Data 

The results from the San Francisco bay region GPS profiles were integrated with 

previous trilateration surveys and VLBI data, using a least-squares procedure, to 

obtain spatially dense samples of crustal deformation that could be tied to an 

external reference frame, in this case, the stable interior of a plate. Integrating 

different geodetic data can only be achieved if there are sufficient sites in common. 

In the GPS, trilateration and VLBI data there are a total of 10 common sites that 

were surveyed by more than one technique. Unfortunately most of the ties are in 

the north of the region which could lead to a distortion of the deformation pattern 

in the south, and for this reason the closest trilateration point to the VLBI site Fort 

Ord was assigned the same VLBI velocity as Fort Ord (Section 5.2.1). This biased 

the velocities in the region slightly because the trilateration point is closer to the 

San Andreas fault than Fort Ord and therefore probably has a slightly different 

velocity. 

This method of combining the data is not the most rigorous of the techniques 

available. For example the "simultaneous reduction" technique used by DYN AP 

[Drew and Snay, 1989] is superior in theory because it uses the original data rather 

than the derived velocities and line-length change rates to estimate the parameters. 

However the relative simplicity of the former technique, the uncertainties in the 

data and the inability of the DYNAP program to output velocities, are the reasons 

why it was used for these data. Any substantial corruption of the results would 

appear in the calculated velocities as inconsistencies in the velocities or velocity 

gradients between adjacent sites observed with different techniques. That the ob

servational misfit was relatively low, (x~ of 1.4) and the velocities at adjacent sites 

consistent, are evidence that the method worked well. 

8.3 The San Andreas Discrepancy 

The geodetic measurements of crustal deformation in the San Francisco bay region 

can be used to constrain the partitioning of Pacific-North America relative plate 

motion. The maximum motion across the velocity profiles of Figures 5.6 to 5.9 

impose a lower bound on the relative plate motion across the San Andreas fault 

system since the network may not be wide enough to detect the entire zone of 

deformation. The total relative motion for the four velocity profiles ranges from 
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Figure 8.1: Horizontal site velocities for the San Francisco bay region and VLBI sites for the 

western United States from Ward [1990] resolved into components perpendicular (top) and par

allel (bottom) to the average, relative, Pacific-North American plate motion direction in central 

California (N35°W) plotted as a function of distance along a N55°E profile. Error bars represent 

one standard deviation 

30-34 ± 3 mm/yr. These are comparable with the geological slip rate for the San 

Andreas fault along the central portion of the fault system of 34 ± 3 mmjyr at 

N41 o ± 2° W [Minster and Jordan, 1984] but lower than the geologic slip rates 

across the fault system in the San Francisco bay region of 40-43 ± 4 at N31-

380 ± 6° W [Kelson et al., 1992]. The difference could be due to an insufficient 

width of the network, the effect of elastic stress accumulation and time-dependent 

complications due to the several orders of magnitude difference in time span be

tween the geodetic and the geologic observations. To account for elastic strain 

accumulation and the limited width of the network the total, cumulative slip rates 

across the fault calculated from the two-dimensional models can be compared with 

the geological estimates. From the best-fit models the cumulative slip rate at depth 

is approximately 36 ± 4 mm/yr (Table 7.3) which is within 1a of both geological 

estimates. 
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To map the distribution of relative plate motion across the western United States, 

the San Francisco bay region site velocities relative to the interior of North Amer

ica were used (Figure 5.4), together with the VLBI site velocities for the western 

United States (Figure 2.9; from Ward, 1990). Since both data sets are relative to 

the interior of North America then the VLBI data can provide extra control on the 

distribution of motion outside of the San Francisco bay region. The plate-motion 

parallel and plate-motion perpendicular velocity components are plotted as a func

tion of distance from the San Andreas fault perpendicular to the plate-motion 

direction in Figure 8.1. Throughout the western United States the plate-motion 

perpendicular velocities are scattered evenly about 0 mm/yr. No obvious system

atic effect occurs along any part of the profile. The plate-motion parallel velocities 

in the San Francisco bay region show a near-linear trend from 12 mm/yr in the east 

to about 46 mm/yr in the west. The VLBI data in southern California clearly define 

a separate trend that is a product of the more easterly position of the San Andreas 

fault and a broader distribution of the faults when compared with northern Califor

nia. If the northern-California velocity gradient continued eastwards then the full 

NUVEL-1A rate for Pacific-North America motion (46 ± 2 mm/y, N36° ± 2°W) 

would be reached within another 30-50 km east of the Coast Ranges. This is clearly 

incompatible with the deformation seen in Figure 8.1. Instead the gradient flattens 

out at around 10-12 mm/yr for approximately 250 km to the western edge of the 

Basin and Range province (VLBI sites between 200-250 km distance). To the east, 

the data are unable to distinguish whether the deformation is distributed through

out the Basin and Range province or concentrated along some specific zone. Sites 

west of the San Andreas fault are moving at a rate comparable to the predicted 

NUVEL-1A rate and so deformation appears to end abruptly within a few tens of 

kilometres west of the San Andreas fault system. 

Plotting site velocities as a function of distance is not the ideal way of characterising 

plate boundary deformation. Alternatively, the observed velocities for a series of 

stations in the western United States may be plotted relative to the interior of either 

plate. However, partitioning of relative motion is then affected by possible biases 

and errors of the velocities of the individual sites. A third method is to calculate 

Euler poles for several hypothetical "microplates" across the plate boundary upon 

which several (at least two) sites are situated [Argus and Gordon, 1990; Ward, 

1990]. In this approach the velocities of individual sites are averaged out. However, 

this approach assumes rigid plates. Since, in general, the plate boundaries coincide 

with the locations of major faults, velocities of stations close to the edge of the plate 

boundary wi11 be affected by strain accumulation. If the sites are well distributed 
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Figure 8.2: The six hypothetical "microplates" in the western United States used to characterise 

components of the Pacific-North American plate boundary deformation (NAM, North America; 

BAR, Basin and Range; GVSN, Green Valley-Sierra Nevada; ECR, Eastern Coast Ranges; WCR 

Western Coast Ranges; PAC, Pacific; SCA, Southern California). Grey polygon indicates the 

extent of the San Francisco bay G PS and trilateration networks and squares indicate the locations 

of VLBI sites used to calculate the Euler poles. The Euler poles for these plates are used to 

estimate integrated deformation rates along paths NAP, NBP and NCP. The Euler pole for SCA 

is estimated by Ward [1990]. 

across the plate then this bias will average out. In the case of this study, the 

sites are all distributed along one edge of the plate (west of the San Andreas fault 

system) and the results are likely to be biased. 

Nevertheless, the San Francisco bay region data, and the VLBI data from Ward 

[1990], have been used to find Euler poles for 6 hypothetical "microplates" across 

the western United States (Figure 8.2). From these, integrated deformation vectors 

along three paths between the North America plate and the Pacific plate (path NP) 

through 3 points A (38°N, 122.8°W), B (37.1 °N, 121.8°W) and C (36°N, 120.6°W) 

have been calculated (Figure 8.3). The Euler poles for plates NAM and BAR are 

the same as those calculated by Ward [1990] since no new information is available 

here. The Great Valley-Sierra Nevada ( GVSN) plate only contains one site which is 

insufficient to calculate a Euler pole. The sites along the western edge of the Coast 

Ranges are not included in the GVSN plate since their velocities are influenced 

by strain accumulation around the San Andreas fault system. Therefore GVSN is 

combined with the Basin and Range province (BAR) to estimate an average Euler 
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Figure 8.3: Summed plate motion vectors for the San Andreas fault system and deformation east 

of the fault system and a comparison to the NUVEL-lA prediction at points A, B and C. 

pole for deformation east of the San Andreas fault system. The area within the fault 

system has been divided into two hypothetical plates, the western Coast Ranges 

(WCR) and the eastern Coast Ranges (ECR). These can be equated with the 

Sebastapol and Santa Rosa blocks [Fox, 1983]. The addition of the San Francisco 

bay region data eliminates the bias in the results of Ward (1990] caused by including 

the Point Reyes VLBI site in a Northern California plate east of the San Andreas 

faulL Within the Pacific plate (PAC), only the westernmost sites are included to 

reduce the effects of strain accumulation. 

The relative motion vectors are summarised in Table 8.1. The summed plate mo

tion vectors at sites A, Band Care plotted in Figure 8,3 together with the predicted 

velocity from the NUVEL-1A model. The full Pacific-North America relative vec

tors agree to within 10" with the rates predicted by the NUVEL-1A model for all 

three points. The plate motion is divided up into 38-39 mm/yr across the San 

Andreas fault system and 8 mm/yr to the east of the San Andreas fault system. 

No deformation is required to the west of the fault system. The velocity to the east 

· of the San Andreas fault system is likely to be a few mm/yr higher than estimated 

because the VLBI stations at the western edge of the Basin and Range province are 

within tectonically active areas. For example, OVRO lies to the east of the mainly 

right-lateral Owens Valley fault zone and the normal-slip Independence fault and 

its velocity is estimated to be 1-2 mm/yr lower than if it were located in the Sierra 

Nevada Mountains [Argus and Gordon, 1991]. As a result the slip rate across the 

San Andreas fault is likely to be a few mm/yr lower than estimated. 
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Table 8.1: Summary of relative plate velocities at points A, B and C along the San Andreas fault 

system in central California together with the NUVEL-lA prediction. 

San W. Coast E. Coast 

Pacific- Andreas · Pacific- Ranges- Ranges- East of 

N. America Pacific- Fault W. Coast E. Coast East of SAPS-

Point (NUVEL-1A) N. America System Ranges ·Ranges SAFS N. America 

A 

38.0°N 46.2±1.4 47.0±0.4 38.9±0.6 13.8±0.6 13.5±0.6 11.6±0.6 8.2±0.4 

122.8°W N33°±2°W N33°±1°W N31°±1°W N29°±2°W N31°±2°W N35°±3°W N41° ± 3°W 

B 

37.1 °N 46.0±1.4 46.9±0.4 38.7±0.6 13.8±0.6 13.5±0.6 

121.8°W N34°±2°W N34°±1 °W N33°±1°W N30°±2°W N29°±3°W 

c 
36.0°N 45.9±1.4 46.6±0.4 38.4±0.5 

120.6°W N36°±2°W N35°±1°W N36°±1°W 

The N33°W direction of motion for the Basin and Range-Sierra Nevada relative to 

North America at point C is nearly parallel to the N30°~f0 W strike of the Eastern 

California Shear Zone [Dokka and Travis, 1990a; 1990b] and the geodetic estimate 

of N31 °W ± 3° for maximum right-lateral shear-strain accumulation in Owens 

Valley [Savage et al., 1990; Savage and Lisowski, 1995]. This has been taken as 

evidence that the Eastern California Shear Zone accommodates 60-100% of the 

relative plate motion east of the San Andreas fault system [ Dokka and Travis, 

1990b; Ward, 1990; Savage et al., 1990; Argus and Gordon, 1990; Feigl et al., 1993; 

Sauber et al., 1994]. However, to the north (points B and A) the deformation 

trends 4-8° degrees more westerly and aligns more closely to the models predicted 

by Minster and Jordan [1987] (see Chapter 2) which combined geodetic data with 

directional data from the Basin and Range province. 

This change in azimuth with latitude possibly reflects the changing importance in 

the type of deformation from primarily right-lateral shear in southern California to 

a combination of right-lateral shear and extension orientated N60-65°W in north

ern California, Nevada and Utah. Geodetic data have been unable to define the 

Eastern California Shear Zone to the north of Owens Valley [Savage and Lisowski, 

1984]. Across the Owens Valley, measured strain rates imply extension perpendic

ular to the valley axis and right-lateral shear across the axis. To the north, this 

deformation probably becomes more diffuse and possibly extends from the Sierra 

Nevada mountain front to the Nevada seismic zone which has been the locus of 

several large earthquakes this century [Ellsworth, 1990]. The focal mechanisms of 
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these earthquakes show an increasing proportion of dip-slip movement with respect 

to strike-slip movement with increasing latitude. 

These estimates of relative motion between hypothetical "microplates" indicate 

that the San Andreas discrepancy can be resolved to within the uncertainties of 

the global plate motion model NUVEL-1A. Motion on structures offshore of the 

central California coast is no longer required to explain the discrepancy although 

a few mm/yr of motion is allowed by the uncertainties. The discrepancy can be 

attributed wholly to motion in the Basin and Range province, in particular, the 

Eastern California Shear Zone. I£75-100% ofthe 10-12 mm/yr attributed to motion 

east of the San Andreas fault system is accommodated in the Eastern California 

Shear Zone (and its more diffuse northern extension) then only 0-3 mm/yr is re

quired on faults in the eastern half of the Basin and Range province. This motion 

may be distributed between many faults in the province or along one fault such as 

the Wasatch fault forming the eastern edge of the province. This prediction may 

be tested when the Basin and Range CPS network [Foulger, 1994] is resurveyed in 

the future. That the style and location of the major components of deformation in 

the Pacific-North America boundary vary along its length precludes the use of one 

vector diagram to summarise the motion. Several vector diagrams along different 

paths or a table of Euler vectors are a more complete description of the style of de

formation. The azimuthof motion across the San Andreas fault system (Table 8.1) 

trends slightly more northerly than the strike of the faults in the San Francisco 

bay region. This may indicate a small component of shortening perpendicular to 

the faults of up to rv2 mm/yr. 

8.4 Deformation in the San Francisco Bay 

Region 

8.4.1 Two- versus Three-Dimensional Models 

The fault-parallel component of the geodetically-observed deformation field along 

the San Andreas fault system can be adequately modelled using two-dimensio:q.al 

elastic dislocation models involving slip at depth approximately below each of the 

active faults. However, two-dimensional models are unable to describe the fault

normal component of deformation and are inadequate where the faults are not 
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parallel to one another. In the south-bay subregion, the San Andreas fault changes 

strike from N44°-36°W. Neglecting this change in strike and including all sites in the 

inversion resulted in slip-rate estimates for the San Andreas and Calaveras faults 

that differed by up to 6 mm/yr from slip rates estimated using data that omitted 

two sites that were not well represented by the chosen fault strike and position 

(Table 7.3). The variation of fault strike in the Monterey-bay subregion required 

splitting of that subregion into three separate parts in order to minimise the ge

ometric variation and provide reasonable fits to the data. Nevertheless, despite 

the obvious geometrical inadequacies, two-dimensional models do offer some ad

vantages for the modelling of deformation across a fault system. Two-dimensional 

models are more tractable mathematically, and it is easier to invert for various pa

rameters and include structural and rheological complexities, for example, lateral 

inhomogeneities, shear zones and time dependence. 

The three-dimensional model is able to predict both the fault-parallel, fault-normal 

and the vertical deformation associated with a geometrically complex fault system. 

The results of the three-dimensional models show that much of the detail in the 

deformation, which could be attributed to noise in the two-dimensional models, can 

be explained as resulting from the three-dimensional nature of the fault system. 

Three-dimensional models are better for exploring the changes in the deformation 

along fault strike, the effect of smaller, discontinuous faults and fault complex

ities such as bends and offsets. However, three-dimensional models are harder 

to formulate and extend to incorporate structural and rheological complexities. A 

comparison between the slip rates estimated using the two-dimensional models and 

those estimated using the three-dimensional model is given in Section 8.4.9. 

8.4.2 Lateral Inhomogeneities 

Despite the absence of fault creep along the San Andreas fault north of San Juan 

Bautista, the fault-parallel velocity component exhibits a steep gradient across 

the fault in the north-bay subregion (Figure 5.6). Several explanations have been 

proposed to explain this offset [Lisowski et al., 1991] such as a shallow locking 

depth, previously undetected surface creep along the main fault trace, a low-rigidity 

(compliant) fault zone or surface creep on a number of subparallel traces within 

the fault valley. A shallow locking depth and surface creep on the main fault trace 

have previously been discounted as possibilities. Low rigidity within the 1-2 km 

wide fault zone does produce the required concentration of deformation across the 
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fault (Figure 7.6). However, distributed surface creep would also produce the same 

distribution of motion, and indeed these two processes have the same effect from 

the point of view of relatively sparse surveying measurements. The low-velocity 

zone, concentrated deformation and 1-2 km wide fault zone together suggest that 

lateral inhomogeneity influences the deformation close to the fault. However, if 

low rigidity is the sole cause for the observed offset then some explanation must 

be found for why an offset is absent around the Rodgers Creek fault which has a 

similar low-rigidity zone associated with it [Eberhart-Phillips, 1986]. Perhaps that 

velocity contrast is lower, the zone smaller in width and the slip rate lower making 

the offset undetectable with the current data. 

8.4.3 The Green Valley Fault 

The models fit poorly the observed geodetic data around the Green Valley fault. 

In the case of the two-dimensional models, numerous models were tested, varying 

the position of both the fault at depth and the surface creep zone but none were 

entirely successful. 

Although most of this complexity is accounted for in the three-dimensional model, 

the fit is still inadequate (Figure 7.23) and of particular note is the asymetry of the 

misfit about the offset. The surface traces of faults to the north of San Francisco 

bay and east of the San Andreas fault are more complex than their southern coun

terparts which is indicative of a young fault [Castillo and Ellsworth, 1993]. Within 

the north-bay subregion the Cordelia fault branches out from the Green Valley 

fault (Figure 7.4) [Helley and Herd, 1977] and creep on the Green Valley fault 

appears to die out in the north. Seismicity along the Calaveras-Concord-Green 

Valley-Bartlett Springs fault zones defines a fault plane that is near vertical along 

the Calaveras fault and dipping 50° to 75° to the northeast along the Green Valley 

and Bartlett Springs fault. A dip to the northeast of the Green Valley fault could 

explain the observed asymmetry in the velocity profile. 

8.4.4 The Shallow, Surface, Creeping Zone 

The depth to which surface creep extends has implications for seismic risk. If 

the entire seismogenic layer creeps at the plate rate then little or no strain would 

accumulate and the fault would present a low seismic risk. However if surface 
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creep is confined to shallow depths and the fault is locked at greater depths, it 

accumulates stress. The depth to which surface creep extends increases to the 

south along with the creep rates. 

The depth to which surface creep extends was calculated using both the prior 

slip rates and those estimated in the least-squares inversions. The best-fit slip 

rates at depth were estimated from the geodetic data assuming that surface creep 

on near-vertical faults, which produces a symmetrical deformation field that only 

significantly affects points close to the fault, can be ignored. This assumption 

appears valid only if the surface creep is small in comparison to the slip rate at 

depth and is unlikely to bias either the estimate of depth or the slip rate at depth. 

Where surface creep is considered significant a more appropriate method may be 

to calculate the depth to which surface creep extends and the slip rate at depth 

simultaneously using a least-squares iterative procedure. 

8.4.5 Fault Locking Depths 

During the modelling the fault locking depths were constrained using the distri

bution of seismicity with depth (Figure 7.3). It is widely accepted that there is 

a strong correlation between the base of the seismogenic layer and the transition 

from dominantly brittle to dominantly ductile behaviour [Meissner and Strehlau, 

1982; Sibson, 1983; Scholz, 1988]. This transition can be interpreted as the base of 

the locked layer and the depth beneath·which steady aseismic slip occurs (slip at 

depth). 

Inverting the geodetic data for locking depth as well as other parameters is rela

tively straightforward [e.g., Matsu'ura et al., 1986]. Whether the estimated depths 

are reliable is, however, the subject of speculation. I believe that 90% depths 

in seismicity are a better indicator of locking depths than those determined from 

geodetic data, which are relatively insensitive to the distribution of slip at depth 

[ Weertman, 1965]. An example of where an anomalous locking depth would result 

from the geodetic data is along the San Andreas fault in the north-bay subregion. 

The steep velocity gradient across this fault, which is probably due to low rigid

ity within the fault zone, would yield a shallow locking depth and a very low slip 

rate for the San Andreas fault, together with an large increase (to rv30 mm/yr) 

in the slip rate estimated for the Rodgers Creek fault, to compensate for the ef

fect of a lower slip rate on the San Andreas fault. Whilst a shallow locking depth 
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and low slip rate on the San Andreas fault cannot be rejected, especially for fault 

segments late in their earthquake cycle [Li and Rice, 1987; Tse and Rice, 1986), 

the predicted three-fold increase on the Rodgers Creek fault compared to previ

ous, long-term historical rates seems unlikely especially since it is also late in its 

earthquake cycle. 

The three-dimensional model showed that a least-squares inversion using locking 

depths based on the 90% seismicity depths produced a significantly better fit than 

any inversion where the locking depths on all the faults were set to some arbitrary 

value (Figure 7.25). 90% seismicity depths do appear to indicate some fundamental 

transition depth between brittle behaviour above and more ductile behaviour below 

which is modelled as continuous aseismic slip at depth. 

8.4.6 Shear Zones at Depth 

It has been proposed that the plate boundary at depth is better represented by 

a broad shear zone than by discrete slip planes [Prescott and Nur, 1981]. To test 

this a series of shear zones were considered that extended across the fault system 

beneath some locking depth. The locking depths were set to the average 90% 

depths in the region, but deeper or shallower depths did not furnish better fits. 

The fits of the shear zone models to the data were generally significantly better 

than the forward models but significantly worse than the best-fit models. Although 

the shear-zone model describes the deformation field within the errors, it cannot 

account for the second-order sinuousity in the velocity profiles (compare Figures 7.5 

and 7.7) which suggests some concentration of strain around each fault. However 

the presence of a shear zone at depth could not necessarily be rejected by the data. 

The use of a "mixed model" [Gilbert et al., 1994] could account for the misfit. 

In such a model the predicted motion results from the superposition of slip along 

faults beneath the seismogenic layer and tractions at the base of the elastic layer 

due to motion in a viscoelastic substratum. This model is similar to the base 

traction model [Li and Rice, 1987] when the base of the elastic layer is at least 2-3 

times deeper than the fault locking depth. However, surface deformation becomes 

increasingly insensitive to variations in slip distribution as depth increases and this 

lack of resolution prevents meaningful inversion of surface data to estimate the 

relative motion across a shear zone at depths of greater than about 30 km. The 

results obtained here are most consistent with models where vertical geometries 
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are dominant and extend far below the brittle-plastic transition. 

8.4. 7 Fault-Normal Compression 

The search for evidence of fault-normal contraction across the fault system was 

prompted by estimates of a significant component of fault-normal motion in past 

studies of the modified San Andreas discrepancy (see Chapters 1 and 2), the low 

shear strength attributed to the fault system [Mount and Suppe, 1987; Zoback et al., 

1987] and late Cenozoic shortening across the Coast Ranges in southern California, 

estimated to be between 9 and 15 mm/yr [Namson and Davis, 1988; Argus and 

Gordon, 1991]. However, more recent estimates for motion perpendicular to the 

Pacific-North America plate boundary have revised that estimate downward to 

around 2 ± 2 mm/yr [Argus and Gordon, 1991] or less (see section 8.3). 

Spatially-uniform, fault-normal compression was found necessary to fit the trilat

eration measurements across the San Andreas fault near Parkfield (Figure 1.2) 

[Harris and Segall, 1987]. However, if such compression was required by the San 

Francisco bay region data studied here, but left unmodelled, the residuals would 

highlight an almost uniaxial regional compression field (e.g., as observed across the 

Santa Barbara channel and Ventura Basin in southern California by Feigl et al. 

[1993]). The horizontal strain-rate tensors calculated for the residual velocity field 

from the best-fit three dimensional model (Figure 7.24) provide no convincing evi

dence for compression across the fault system. There appears to be no reason why 

deformation associated with convergence should concentrate around a near-vertical 

fault such as the San Andreas fault that is hardly, if at all, capable of accommo

dating compression across it [Lisowski et al., 1991]. A more likely candidate for 

accommodating convergence would be the Coast Range thrust along the eastern 

edge of the Coast Ranges, and the search for fault-normal compression in the Coast 

Ranges should concentrate on sites along its eastern edge. 

8.4.8 The Vertical Component of Deformation 

Maximum uplift/subsidence rates in the San Francisco bay region, predicted by 

the three-dimensional model, are of the order of 0.2 mm/yr, similar in magnitude 

to geological uplift/subsidence rates. The similarity in magnitude of these rates 

suggests that most of the uplift and subsidence in the area could be explained as the 
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result of local interactions between active faults (i.e., bends and offsets) without the 

need to invoke widespread, systematic fault-normal compression across the region. 

Some additional uplift may occur along more easterly parts of the Coast Ranges 

due to motion along the Coast Range thrust. This would be consistent with the 

higher summit elevations in the eastern Coast Ranges and the highly deformed 

nature of the Santa Rosa block [Fox, 1983], east of the Hayward-Rodgers Creek 

fault, compared to the Sebastapol block to the west. 

For GPS measurements, a typical error in the vertical is ± 20 mm/yr. Significant 

vertical rates of rv 0.2 mm/yr will thus be detectable only over I'V 100 years. Al

though not very encouraging, the accuracy in the vertical in future surveys should 

improve with better modelling of the tropospheric path delay and from perma

nent GPS sites where antenna-height mismeasurement errors are eliminated. In 

that case, it may be possible to use GPS to study the vertical deformation field 

in the future. At the present, levelling surveys appear to be the most appropriate 

technique for studying the vertical deformation field. 

8.4.9 Comparison of Calculated Slip Rates to Other 

Modelling Results 

Comparing the estimated slip rates with those predicted using the boundary ele

ment method of Bilham and Bodin [1992] can provide constraints on the amount of 

connectivity between the active faults within the system. The estimated slip rates 

are most consistent with some form of connectivity between all of the class A and 

class AA faults within the region. That is, the estimated slip rates agree best with 

those predicted from geometric considerations, if there is connectivity between the 

San Andreas and Calaveras faults near Hollister, the Hayward and Calaveras faults 

(along the Mission fault) near Calaveras reservoir, the San Gregorio and San An

dreas faults near Point Reyes (Figure 6.15c) and the Rodgers Creek and Maacama 

faults near Santa Rosa (Figure 6.15b ). However, the agreement between rates along 

the Calaveras-Concord-Green Valley faults is very poor. Slip rates obtained for the 

Calaveras branch of the fault system would increase if that branch was extended 

northwards [Bilham and Bodin, 1992]. Increasing the slip rates on the Calaveras 

branch would improve the agreement between the two. slip-rate estimates and this 

suggests that the Calaveras continues northwards as opposed to terminating just 

north of San Francisco bay. 
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There is a slight bias between the slip rates estimated from the two- and three

dimensional models, resulting in an overestimate for the two-dimensional slip-rate 

estimates for the Hayward-Rodgers Creek fault and an underestimate along the 

Calaveras-Concord-Green Valley faults, compared with the three-dimensional re

sults. This bias is within the uncertainties of the estimate and is presumably 

a direct result of simplification of the fault system to parallel faults in the two

dimensional model. However, the slip rates estimated from the two-dimensional 

models provide good initial parameters in the three-dimensional model. 

The slip rates at depth and the surface creep rates along the fault system in the 

Hollister region have been previously estimated using trilateration and triangula

tion data (See Chapter 6, Savage et al., 1979; Thatcher, 1979; Matsu 'ura et al., 

1986). Those results agree poorly with those estimated here. The older estimate 

for slip on the San Andreas fault just north of its junction with the Calaveras 

fault is 4-20 mm/yr greater than the estimate from the three-dimensional inver

sion. However, the 38 ± 3 mm/yr estimated by Thatcher [1979] was affected by the 

use of only one fault plane to represent the combined effects of the San Andreas 

and Calaveras faults, and is more comparable to, and consistent with, the two

dimensional "plate boundary" slip rate of 38.2 ± 1.5 mm/yr calculated here for 

the southern part of the Monterey-bay subregion (Table 7.3). The earlier estimates 

for the southern Calaveras fault are 9-10 mm/yr lower than the present estimate. 

These differences may be related to the more simplified fault geometries and the 

smaller data sets used in the earlier models. 

A more complicated method, using a Bayesian inverse procedure, to calculate many 

fault parameters including fault width, dip angle and slip angle was attempted by 

Matsu 'ura et al. [1986]. In theory this allows greater freedom during the inver

sion and removes the assumptions of vertical fault planes and only pure strike-slip 

motion. Alternatively it could be viewed that freeing more parameters can result 

in modelling noise in the data. The present models aim not to produce a detailed 

model of one small area but a reasonable regional model. The results are more 

consistent alo:rig fault strike than those of Matsu 'ura et al. [1986], and are free 

from the apparent contradictions of that work such as changes in slip sense from 

right- to left-lateral along the Sargent fault and estimated fault dips that are not 

consistent with the dip of the fault plane as defined by earthquake hypocentres. 
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8.4.10 Time Dependent Complications 

In the models presented, the Earth is represented as an elastic half space and strain 

accumulation between large earthquakes as a result of faults slipping with uniform 

velocity below some locking depth. In this model there is no provision for variation 

in the strain rate with time. Whilst elastic behaviour of the crust is demonstrated 

over short periods of time (e.g., the coseismic response) nonelastic behaviour occurs 

over longer periods. One of the most widely cited pieces of evidence for nonelastic 

behaviour is the observed postglacial rebound in Scandinavia. One of the predic

tions of the viscoelastic model is that slip rates estimated using an elastic half space 

approximation would be expected to change with time, and reflect the position of 

that fault in its earthquake cycle. Early on in the cycle, relatively high slip rates 

would be derived, while late in the cycle they would fall and be lower than the 

geological rate. 

The estimated slip rates at depth (Tables 7.3 and 7.4) generally differ significantly 

from the predominantly geologically-derived prior slip rates (Tables 7.1 and 7.2). 

The slip rates estimated for the San Andreas and San Gregorio faults are lower 

than the prior estimates and the slip rates estimated for the Hayward-Rodgers 

Creek and Calaveras-Concord-Green Valley faults are higher. 

Observations of the time-dependent behaviour of crustal deformation near a fault 

are generally restricted to the immediate postseismic period (a few months to 

years following an earthquake). Two end-member mechanisms have been invoked: 

accelerated aseismic slip on the fault beneath the seismogenic layer (the modified 

half-space model, Figure 6.3b) and coupling between the elastic layer and viscoelas

tic half space (the lithosphere-asthenosphere model, Figure 6.3c) (see Chapter 6). 

It is highly unlikely that surface observations of deformation and two-dimensional 

models will be able to distinguish between the two mechanisms [Savage, 1990] and 

it is probable that the true behaviour of the earth lies somewhere between the 

two. However, the observations presented earlier and results from other studies 

may weigh more heavily in favour of one or other mechanism dominating. 

A "mixed" model where vertical structures are dominant and both mechanisms 

are present was proposed on the basis of observations of strain localisation and 

orientation [Gilbert et al., 1994]. They considered the base traction model [Li and 

Rice, 1987] to be the closest approximation to their interpretation. 

Theoretical models produced by the base traction model were compared with ob-
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served trilateration data north of San Francisco bay [Li and Rice, 1987] (see also 

Chapter 6). Their model did not produce an acceptable fit to the data (Figure 6.5). 

The discrepancy was attributed to either changes in lithosphere thickness across 

the San Andreas fault or the effects of several subparallel faults. No obvious steps 

have been detected across the fault system from other geophysical studies (see sec

tion 1.4). An extension to the base traction model was presented by Li and Lim 

[1988] to account for two or more subparallel faults. Unfortunately they did not 

attempt to model the observed data in the San Francisco bay region. 

Using the extended base traction model Li and Lim [1988] modelled the observed 

surface deformation for the Salton Sea-Coachella Valley region that includes three 

subparallel faults. They found that available geologic, geodetic and seismicity data 

did not provide tight constraints on the model parameters and that the disagree

ment between the modelling results and the observed deformation suggested that 

southern California is tectonically different from central and northern California in 

.the sense that it may have a larger relaxation time, smaller elastic plate thickness 

or a shallower locked zone. 

Similar conclusions were presented from analysis of a 100-year geodetic record 

from northern Califoniia between· San Francisco and Lake Tahoe [Gilbert et al., 

1993]. Those results showed that the majority of deformation associated with the 

San Andreas fault system was confined to the Coast Range region and that the 

strain rate there does not continue to decrease throughout the cycle but instead 

reaches a steady-state level in later intervals (in this case 40 years since the 1906 

San Francisco earthquake). They postulated that their re~ults required a thicker 

lithosphere (> 20 km) and larger relaxation times (> 5-30 years) than usually 

assumed. In light of these observations, southern California may not be so different 

from central and northern California. 

That such a simple model as the elastic half space should predict the observed de

formation is remarkable, especially since the slip rates estimated appear realistic. 

This has been demonstrated along many parts of the San Andreas fault system (see 

section 6.3). These models predict the observed deformation without the require

ment of a complex slip distribution at depth to duplicate the viscoelastic response 

of a lithosphere-asthenosphere model [Savage, 1990]. These models successfully 

predict the approximate width of the deforming zone and the localisation of strain 

around each fault. 

The San Andreas fault in the north-bay subregion is used as an example to test 
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Table 8.2: Parameters for the San Andreas fault in northern California for the base traction 

model. 

Parameter Value Reference 

Plate velocity Vpl 24±3 mm/yr Neimi and Hall [1992] 

Elastic plate thickness H 30.0±10 km Thatcher [1983]; Gilbert et a/., [1993] 

Gilbert et a/. [1994] 

Fault locking depth L 12.2±6.1 km Figure 7.3 

Earthquake repeat time Tcy 220.0±40 yr. Neimi and Hall [1992] 

Relaxation time tr 14.0 years Li and Rice [1987] 

Time since least earthquake t "'87 years Previous earthquake 1906 

15 

---
10 Elastic model 

Base traction model 

5 ' 
' 

0 

-5 ' ' 
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Figure 8.4: Comparison of the velocity profile across the San Andreas fault north of San Francisco 

bay calculated using the estimated slip rate from the best-fit, two-dimensional, elastic half-space 

model, and the base traction model using parameters quoted in Table 8.2. 

220 



the fit of the base traction model. This model should be able to reproduce the 

observed deformation across this fault with a similarly good fit as the purely elas

tic model. A comparison between the velocity profile across the San Andreas fault 

predicted by the best-fitting elastic model and the base traction model is shown in 

Figure 8.4. If the fault separation is sufficiently large with respect to the thickness 

of the elastic layer, then interaction between the faults is weak and predictions 

of surface deformation can be approximated by the superposition of the velocities 

calculated for each fault [Li and Lim, 1988]. The parameters chosen for the base 

traction model are provided in Table 8.2. These values were chosen to be consistent 

with available geological and geophysical evidence. However the uncertainties in 

these values are large. Within 15 km of the fault the base traction model compares 

favourably with the elastic model. However beyond 15 km the base traction model 

predicts too much motion. Assuming that VP1 represents the long-term slip rate on 

the fault, and that the lower rate predicted by the elastic model (16.7 ± 1.4 mm/yr) 

is a result of the fault being almost mid-way through its earthquake cycle, then 

the fit can be improved by a combination of increasing the thickness of the litho

sphere (elastic layer), increasing the relaxation time and possibly decreasing the 

locking depth. However there is some trade-off between these parameters such as 

increasing the relaxation time and lithosphere thickness. Furthermore, increasing 

the relaxation time and lithosphere thickness broadens the deformation field such 

that a significant proportion of the deformation lies outside the "'100 km width of 

the Coast Ranges. Since the only site sufficiently far away from the Coast Ranges 

is Jackson, which has a high uncertainty associated with its velocity, the results 

cannot eliminate such a broad zone of deformation. That the maximum relative 

motion across the profiles (35-38 mm/yr) is very close to the maximum expected 

across the San Andreas fault system ( rv38 mm/yr) suggests, however, that only a 

minor amount of movement is expected outside the Coast Ranges. It is not clear 

therefore that both the near- and far-field distribution of deformation, predicted 

well by the elastic model, can both be simultaneously matched by altering the 

values of the parameters in the base traction model. 

The fit could be improved if Yp1 is reduced to a similar value to that predicted by 

the elastic model. The only other change needed to produce a reasonable fit to the 

data is an increase in the relaxation time to at least half the earthquake repeat 

time. If this is correct then the slip rates estimated using the elastic models are 

reasonable approximations to the long-term rate. However, an explanation is then 

required as to why the geological rates are generally significantly different from the 

estimated slip rates. 
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One feature that is common to most observed deformation rates in California is 

that the motion is nearly linear in time except for the coseismic and immediate 

postseismic response (up to about 30 years). This has also been demonstrated else

where, for example, at subduction zones [Savage, 1995]. Lithosphere-asthenosphere 

models, the modified half-space model and the presently available "mixed" models 

(e.g., base traction model) all predict changes in the observed rates throughout 

the earthquake cycle. Time-dependent effects can be decreased in the interseismic 

period by increasing the asthenosphere relaxation time, introducing a more com

plex Earth rheology with layers of varying viscoelastic properties or by requiring 

that there is continuous slip on the down-dip extension of the fault plane that is 

quasi-steady over the earthquake cycle. 

Increasing the relaxation time increases the time over which the viscoelastic effects 

take place. However, as a result, the time dependence early on in the cycle, during 

the postseismic period, would be less pronounced and inconsistent with geodetic ob

servations [Thatcher, 1983]. Many studies suggest that the Earth is more complex 

[e.g., Meissner and Strehlau, 1982] than a simple elastic layer over a viscoelastic 

half space and that rock rheology is better represented by a power law as opposed 

to a linear viscoelastic relationship [e.g., Kirby, 1983). The effects of vertically lay

ered power-law viscoelastic rheology were investigated using a finite-element model 

of the San Andreas fault in central and southern California [Williams and Richard

son, 1991]. Several different layering schemes were used, using laboratory results 

on rock rheology to define the layer properties. These nonlinear models all pre

dicted a smaller time dependence than the linear viscoelastic models. However, 

in all cases the inclusion of continuous aseismic slip at depth provided a better fit 

to the observed strain rate than the corresponding model which did not include 

asesimic slip. 

Although the fault plane beneath the locked layer is allowed to slip in response to 

the imposed stress from an earthquake in the modified half-space and base traction 

models, the slip rate is predicted to diminish gradually to zero throughout the 

earthquake cycle. In the base traction model 70% of the total postseismic slip 

on the fault plane occurs within the first half of the cycle. If, however, the fault 

plane slips at a steady rate consistent with the average rate, and is only modestly 

perturbed by the earthquakes occurring above, as predicted by Tse and Rice [1986) 

(e.g., Figure 8.5) then the observed surface deformation, after rapid post seismic 

motion would be linear throughout the rest of the cycle. This simple modification, 

which is equivalent to the approach of Savage and Prescott [1978), could reproduce 

222 



ln(VN,) 
-5 0 5 10 15 20 

0 
Time Interval 

A to B 2.5 sees. 
K Bto C 1.2 days 

Cto D 76.6 days 
Dto E 3.6 yrs. 

10 Eto F 24.1 yrs. 
FtoG 42.4 yrs. 
G to H 11.7 yrs. 
H to I 1.7 yrs. 
I toJ 1.3 hrs. 
J to K 4.2 sees. 

20 
Tcy = 83.8 yrs. 

C2L40LOO 

30 

Depth (km) 

Figure 8.5: Plot of logarithm of normalised slip rate versus depth. Each line represents a constant 

time, and the time intervals between some lines are listed on the right. Zero on the horizontal 

axis indicates a slip rate equal to the plate driving rate. Quasi-steady slip from 20 km downwards 

occurs throughout the earthquake cycle. From Tse and Rice (1986]. 

the basic features seen in the results without requiring model parameters different 

from previous estimates. The surface deformation would be largely governed by 

steady slip beneath the seismogenic layer as envisaged in the elastic models but the· 

time dependence would also be significant in the intermediate postseismic period. 

Interseismic slip rates estimated from elastic models would reflect this quasi-steady 

slip rate at depth but would not necessarily reflect the geologically inferred rate. 

A conceptual model can be proposed based on the above observations (Figure 8.6). 

In this model the Earth structure consists of several horizontal layers with varying 

power law viscoelastic rheologies. At increasingly greater depths the effective re

laxation time decreases and the material behaves as a fluid on an earthquake-cycle 

time scale. Along strike-slip faults, an upper, seismogenic, frictional regime gives 

way at depth to a quasi-plastic regime where largely aseismic, continuous shearing 

is localised within vertical zones that continue down to 2-3 times the seismogenic 

· thickness. These zones probably broaden with depth to a width of about 20 km at 

depths of 30-35 km [Gilbert et al., 1994]. Slip on these vertical zones is relatively 

stable even at shallower levels. Transient, postseismic deformation after a large 

earthquake results from stress relaxation in the viscoelastic layers and increased 

aseismic slip below the coseismic fault plane that returns to a stable rate after 

time. 
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Figure 8.6: A schematic cross section across a transform boundary. The Earth structure consists 

of several horizontal layers with varying power-law viscoelastic rheologies. The effective relaxation 

time decreases with depth from greater than, to less than, earthquake-cycle time scales. In the 

upper brittle layer, relative motion is dominated by earthquakes on discrete fault planes. Below 

the brittle layer motion is accommodated over a zone that gradually broadens with depth. At 

depths of around 2-3 times the seismogenic depth these discrete zones merge to form a wide zone 

in which the medium behaves as a fluid on an earthquake-cycle time scale. 

At the present level of accuracy of surface deformation measurements, elastic mod

els provide an adequate first-order approximation to the interseismic deformation. 

This is because the major influence on the surface deformation is the behaviour 

of the lithosphere which appears to be, over short time periods, relatively time

independent. However, there are major shortcomings to using the elastic model 

approach. These models cannot be used to predict the depth to which aseismic slip 

at depth continues as discrete planes, the variation in surface deformation through

out the whole earthquake cycle or to constrain variations in Earth composition with 

depth. However they may act as quantitative descriptions of how strain accumu

lation is partitioned between the major faults in a system. To understand the 

processes related to repeated earthquakes along transform boundaries a more real

istic three-dimensional model of the San Francisco bay region should be developed 

that includes features of the structure and rheology described above. The model 

should preferably be dynamic instead of purely kinematic, in the sense that slip 

on the faults are derived from the boundary conditions applied rather than being 

specified. Such a complex model is likely to require finite element techniques. 
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8.5 Earthquake Potential 

The San Francisco bay geodetic data provide a means for assessing the potential 

for future earthquakes in the region. Earthquakes occur as a result of steady 

accumulation of strain in the Earth's crust which is eventually released by failure 

along a fault plane. Strain accumulation along interplate boundaries occurs as a 

result of steady relative plate motions that are more or less constant over geological 

periods of time. For steady relative motion across the plate boundary to occur, 

slip on the fault throughout the thickness of the plate must ultimately reach the 

same total amount. Assuming that the slip rate at depth calculated in the three

dimensional models reasonably represents the long-term or secular slip rate, then, 

at any depth above the seismogenic depth a slip rate deficit accumulates that is 

the difference between the total long-term slip and the surface creep. Where the 

fault does not creep in a shallow, surface zone, i.e., where the fault is fully locked, 

then a slip deficit is accumulating at the long-term slip rate. 

The slip-rate deficit can be converted to the rate of accumulation of potential 

seismic moment using the derivative of the relationship Mo = J.LUA [Aki, 1966], 

where Mo is the seismic moment, J.l is the modulus or rigidity (assumed to be 

3 x 1010 Nm-2
), A is the fault area and u is the average slip over area A. Figures 8.7 

to 8.9 show the slip-rate deficit, the rate of accumulation of seismic moment for 

a 5 x 5 km square and the history of large earthquake occurrence as a function 

of position along each fault for the San Andreas, Hayward and Calaveras faults. 

Where the time of the previous large earthquake on a fault segment is known 

the total seismic moment accumulated since then can be calculated. From the 

relation logMo = 1.5M + 9 [Hanks and Kanamori, 1979] the equivalent earthquake 

magnitude M can be found for a given rupture area. 

Each fault has been divided into segments based on the pattern of past-seismicity 

found there and its "characteristic" earthquake [Schwartz and Coppersmith, 1984]. 

For recent and larger earthquakes (e.g., the 1984 Morgan Hill and 1989 Lorna 

Prieta events) the extent of the rupture segment is well documented from various 

data such as the length of surface break, geodetic data and aftershock sequences. 

For older and more moderate earthquakes the segment size is based either on 

prominent geometric irregularities along the fault (e.g., bends or offsets) or using 

the relationship [Shimazaki, 1986], 

log L = 0.524log M 0 - 12.44, (8.1) 
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Figure 8.7: Slip-rate deficit and rate of accumulation of seismic moment per 5 x 5 km square (top 

and bottom) and past history of earthquakes, M > 5, (centre) along the San Andreas fault as a 

function of distance along that fault. Star , earthquake of magnitude M ~ 7; circle, 6 ~ M < 7; 

triangle, 5 < M < 6. Horizontal bar denotes approximate length ofrupture zone. Dashed vertical 

lines divide fault into segments based on "characteristic" earthquakes. 

for Mo ~ 7.5 x 1024 N m (M ~ 6.6) and 

log L = 0.281log M 0 - 5.98, (8.2) 

for M0 < 7.5 x 1024 N m (M < 6.6). For small to moderate earthquakes the rupture 

width is proportional to rupture length. For an M = 5.1 earthquake the rupture 

area is expected to be approximately 5 x 5 km square. For larger earthquakes the 

rupture width is constrained by the thickness of the seismogenic layer. 

The present earthquake potential for the San Francisco bay region is summarised in 

Table 8.3 based on the results of the best-fit three-dimensional model. It must be 

emphasised that almost every variable in the calculations is a rough estimate and 

therefore the results are subject to considerable numerical uncertainty quite apart 

from any theoretical considerations. Theoretical shortcomings may arise from two 
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Table 8.3: Predicted earthquake potential for fault segments in the San Francisco bay regiOn 

based on the slip-rate deficit calculated from the slip rates estimated in the three-dimensional 

best-fit model. 

Potential Potential 

Potential Maximum Maximum 

Magnitude Magnitude Magnitude 

Last Earthquake For Whole in Ill 

Fault M>5 Characteristic Segment 5kmx 5km 1kmx1km 

Segment Year M Magnitude Rupture Square Square 

San Andreas Fault 

I 1885 6.2 6 6.5 6.0 5.1 

II 1972 5.1 5 5.6 4.7 

III 1961 5.6 5 5.6 4.7 

IV 1960 5.0 5 5.7 4.8 

v 1963 5.4 5 5.7 4.8 

VI 1989 7.0 7 6.0 5.2 4.2 

VII 1906 8.25 7 6.8 6.0 5.1 

VIII 1906 8.25 7 6.8 6.0 5.1 

IX 1906 8.25 7-8 6.8 6.0 5.1 

X 1906 8.25 7-8 6.8 6.1 5.1 

XI 1906 8.25 7-8 6.8 6.1 5.1 

XII 1906 8.25 7-8 6.8 6.1 5.1 

Hayward-Rodgers Creek Fault 

1868 6.8 6 6.5 5.9 5.0 

II 1836 6.8 6 6.8 6.0 5.1 

III 1898? 6.2 6 6.5 5.9 5.0 

IV 1893 5.1 6 6.5 5.9 5.0 

v ? ? ? ? ? ? 

Va 1969 5.7 ? 5.9 5.5 4.6 

Vb ? ? ? ? ? ? 

VI ? ? ? ? ? ? 

Calaveras- Concord- Green Valley Fault 

1974 5.2 5 5.6 4.7 

I 1911 5.0 5 5.9 5.0 

II 1949 5.2 5-6 5.9 5.0 

III 1979 5.7 5 5.5 4.6 

IV 1984 6.1 6 6.0 5.4 4.5 

v ? ? 5? ? ? ? 

VI 1988 5.1 5 5.3 4.4 

VII 1989 5.2 5 5.2 4.3 

VIII ? ? 5 ? ? ? 

Ixt 1903? 5.5? 5? 5.9 5.0 

rxt 1864 5.7 5? 6.0 5.1 

X 1955 5.4 5? 5.6 4.7 

XI ? ? ? ? ? ? 

t - Two estimates given for this segment. It is unknown 

whether the 1903 event is associated with this fault. 

227 



0 

i -5 

~ -10 

~ -15 

-20 

0 

i -5 
-6 -10 

g -15 

-20 

Healdsburg 

Rate of Accumulation 
of Seismic Moment 

per 5km x 5km square 
x 1015Nm/yr 

0 1.5 3 4.5 6 7.5 

0 1 2 3 4 5 6 7 8 9 10 11 

Santa 
Rosa 

Slip Deficit, mm/yr 
San 

Pablo Point 
Napa Bay Pinole Oakland 

Richmond 
Dis[ance (km) 

-170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 

II 
1111111 .... 1 .. 111 

Figure 8.8: Same as Figure 8.6 except for the Hayward-Rodgers Creek faults. 

of the main concepts in seismic hazard assessment, "characteristic earthquakes" 

and "seismic gaps" which are presently under scrutiny [Jackson and Kagan, 1995; 

Kagan and Jackson, 1995]. For segments with a characteristic earthquake of mag

nitude less than 6, the potential magnitude for whole-segment rupture is omitted 

from Table 8.3 since that segment is not expected to rupture through the entire 

seisrnogenic layer in one earthquake. 

Whilst it seems from Table 8.3 that almost every fault segment currently has the 

potential to rupture with a magnitude 5 or larger earthquake, even for segments 

that have ruptured recently the concern may be misplaced. Take, for example, the 

Lorna Prieta segment (VI on San Andreas fault, Figure 8. 7). The present potential 

on this segment is equivalent to an M 6.0 earthquake despite it being only 5 years 

since the 1989 earthquake. However, it will take this segment , assuming the present 

slip rate, a further 150-200 years to reach a potential magnitude of 7.0. During 

this time some of the strain accumulated may may be released in smaller M 5 

earthquakes similar to theM 5.5 (1914) and M 5.3 (1967) events on this segment 
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Figure 8.9: Same as Figure 8.6 except for Calaveras-Concord-Green Valley faults. 

between the last two "characteristic" earthquakes. 

The fault segments considered to have the greatest potential for a "characteristic" 

earthquake within the coming decades are segments I-IV, VII and VIII along the 

San Andreas fault, all the segments of the Hayward-Rodgers Creek fault (in partic

ular segment II), and segments I-III, IX, X on the Calaveras-Concord-Green Valley 

fault. Segments I-V on the San Andreas fault may be considered to be worst-case 

estimates since these segments are along the creeping section of the San Andreas 

fault along which some of the strain may be relieved by more frequent but smaller 

(M 3-4) earthquakes that are not plotted in Figure 8.7. However segment III has 

been identified as a gap in recent, small-magnitude seismicity that may correspond 

to a locked patch capable of producing larger (M ""'5) earthquakes [King et a/., 

1990]. Four of the segments identified above (segments VII/VIII on the. San An

dreas fault and segments I, II and III on the Hayward fault) have previously been 

identified as having a probability in the range 0.2 to 0.3 of producing a magnitude 

"'"' 7 earthquake in the next 30 years [ WGCEP, 1990]. Segments II and VII have 
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previously been identified as the most likely sites for the next M > 5 earthquake on 

the Calaveras fault (equivalent to the zones I and VI of Oppenheimer et al. [1990]). 

8.6 Summary of the Main Conclusions 

1. The deformation revealed by the three San Francisco bay GPS profiles is of 

sufficiently high accuracy to detect shear flow about the San Andreas fault system. 

The vertical component is not sufficiently accurate to detect uplift or subsidence 

in the San Francisco bay region at the present. 

2. Combining the GPS results with trilateration and VLBI data yields a spatially 

dense sample of crustal deformation that can be tied to an external reference frame. 

3. The westernmost points of the network have velocities relative to the stable 

interior of the North American plate that are consistent with the NUVEL-1A pre

diction. 35-38 mm/yr out of the total 46 mm/yr is accommodated along the San 

Aandreas fault system. The remaining 8-11 mm/yr is accommodated along struc

tures east of the fault system, particularly the Eastern California Shear Zone. De

formation east of the fault system changes from predominantly strike-slip parallel 

to the plate motion direction in southern California to a combination of strike-slip 

and extension in northern California. 

4. A northeast-dipping fault plane along the Green Valley fault as defined by 

seismicity could explain the observed asymmetric offset in the velocity profile across 

that fault in the north-bay subregion. 

5. Low-rigidity within the 1-2 km wide San Andreas fault zone may explain the 

concentrated deformation close to that fault in the north-bay subregion. 

6. Fault locking depths which indicate the transition depth between dominantly 

brittle behaviour above and dominatly ductile behaviour below may be constrained 

by the depths above which 90% of the seismicity occurs (the seismogenic depth). 

7. Surface creep rates along the San Andreas, Calaveras, Hayward, Concord and 

Green Valley faults vary considerably along strike. Maximum surface creep rates 

occur along the Calaveras and San Andreas faults in the south of the region. High 

creep rates in the south may indicate that the depth to which surface creep extends 

is close to sesimogenic depths. Lower rates in the north may indicate a locked zone 
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at depth which is presently accumulating strain. 

8. The observed surface deformation is most consistent with slip below seismogenic 

depths occuring on discrete fault planes rather than broad shear zones. 

9. No significant fault-normal compression is detected across the fault system. The 

small amount of motion allowed by the uncertainties is likely to be concentrated 

in the eastern Coast Ranges along the Coast Range thrust. 

10. The estimated slip rates from the best-fit, three-dimensional model are most 

consistent with connectivity between all of the class A and AA faults in the system 

and with the Calaveras-Concord-Green Valley faults continuing north to connect 

with the Bartlett Springs fault. 

11. Quasi-steady, aseismic slip on discrete fault planes probably occurs down to 

depths of around 2-3 times the seismogenic depth. This, coupled with horizontally 

layered, power-law viscoelastic rheology of the Earth may account for the almost 

linear in time deformation rates measured excluding the coseismic and postseismic 

responses. 

12. The estimated slip rates can be used to calculate the present earthquake 

potential on fault segments in the region. Several segments, in particular those 

along the Hayward-Rodgers Creek fault, have a potential close to or above the 

magnitude of the "characteristic earthquake" for those segments and have therefore 

the greatest potential for a large earthquake in the near future. 

8. 7 Suggestions for Future Work 

· • Continued resurveying of the San Francisco GPS profiles in order to increase the 

accuracy of the observed surface deformation, to constrain second-order deforma

tion features, and to search for temporal variations in the surface deformation rates. 

In particular to test the hypothesis that the deformation is linear in time except 

for the coseismic and immediate postseismic response or whether rates continue to 

decline throughout the earthquake cycle. 

• Add more points along the eastern edge of the Coast Ranges to detect possible 

thrust motion on the Coast Range thrust. 

• Add or reoccupy more sites east of the Coast Ranges to help constrain the eastern 
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edge of the deforming zone around the San Andreas fault system and to search for 

a broadening of the zone with time. 

• Reoccupation, with GPS, of the small (several kilometre wide) fault-crossing 

networks that were previously measured with trilateration to obtain more recent 

estimates of fault creep, and for the investigation of compliant fault zones. 

• Include the results from the South Bay, Lorna Prieta and the Farallon Islands 

GPS networks into the integrated deformation field and the dislocation models. 

• Include the creep rates measured by triao.gulation [ Galehouse, 1992] into the 

regional model. 

• Investigate the connectivity of the Calaveras-Concord-Green Valley faults to the 

Bartlett Springs fault to the north. 

• Produce a three-dimensional model that includes viscoelastic rheologies. Investi

gate further the effects of linear versus power-law viscoelastic rheologies, continuous 

aseismic slip at depth, and the transition, with depth, from discrete fault planes to 

shear zones. This may be acheived using finite element techniques. 

• Investigate the limits of elastic dislocation models for predicting/modelling in

terseismic deformation. 
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Appendix A 

Table A.l: Segments used for the San Francisco Bay three-dimensional model. 

Depth Slip 

Start End Width, Top, Rate*, 

Segment Longitude Latitude Longitude Latitude km km mm/yr 

Free fault segments 

San Gregorio fault - slip at depth 

SGa 00 -120°41 '37.31" 34 ° 51 '24.94" 9000.0 11.7 0.0 

SGb -120°41 '37.31" 34°51'24.94" -121°11 '24.06" 35°39'36.15" 9000.0 11.7 0.0 

SGc -121°11'24.06" 35°39'36.15" -121 °54'20.85" 36°19'31.33" 9000.0 11.7 0.0 

SGl -121 °54'20.85" 36°19'31.33" -121 °56'18.55" 36°24'39.38" 9000.0 11.7 0.0 

SG2 -121 °56'18.55" 36°24'39.38" -121 °58'51.66" 36°29'55.27" 9000.0 11.7 0.0 

SG3 -121 °58'51.66" 36°29'55.27" -122°02'39.45" 36°34'40.18" 9000.0 11.7 0.0 

SG4 -122°02'39.45" 36°34'40.18" -122°05'45.47" 36°39'39.07" 9000.0 11.7 0.0 

SG5 -122°05'45.47" 36°39'39.07" -122°08'07.21" 36°45'02.06" 9000.0 11.7 0.0 

SG6 -122°08'07.21" 36°45'02.06" -122°09' 58.56" 36° 50'28. 76" 9000.0 11.7 0.0 

SG7 -122°09'58.56" 36°50'28.76" -122°12'39.28" 36°55'35.76" 9000.0 11.7 0.0 

SG8 -122°12'39.28" 36°55'35.76" -122°15'04.81" 37°00'46.47" 9000.0 11.7 0.0 

SG9 -122°15'04.81" 37°00'46.47" -122°17'15.15" 37°06'08.99" 9000.0 11.7 0.0 

SGlO -122°17'15.15" 37°06'08.99" -122°20'00.00" 37°11 '25.05" 9000.0 11.7 0.0 

SG11 -122°20'00.00" 37°11 '25.05" -122°23'00.00" 37°16'36.70" 9000.0 11.7 0.0 

SG12 -122°23'00.00" 37°16'36.70" -122°24'20.39" 37°21'46.98" 9000.0 11.7 0.0 

SG13 -122°24'20.39" 37°21 '46.98" -122°26'56.00" 37°27'16.05" 9000.0 11.7 0.0 

SG14 -122°26'56.00" 37°27'16.05" -122°30'31.13" 37° 31 '56.37" 9000.0 11.7 0.0 

SG15 -122°30'31.13" 37°31'56.37" -122°33'06.79" 37°36'52.50" 9000.0 11.7 0.0 

SG16 -122°33'06.79" 37°36'52.50" -122°34'53.08" 37°42'06.38" 9000.0 11.7 0.0 

SG17 -122°34'53.08" 37°42'06.38" -122°37'40.12" 37°46'38.73" 9000.0 11.7 0.0 

SG18 -122°37'40.12" 37°46'38.73" -122°39'54.26" 37°54'24.37" 9000.0 11.7 0.0 

San Andreas fault - slip at depth 

SA4 -121 °10'46.40" 36°34'48.00" -121 °15'29.87" 36°38'48.08" 9000.0 8.8 19.0 

SA5 -121 °15'29.87" 36°38'48.08" -121 °20'34.84" 36°42'50.68" 9000.0 8.8 19.0 

SA6 -121 °20'34.84" 36°42'50.68" -121 °25'05.00" 36° 46'13.34" 9000.0 8.8 19.0 

SA7 -121 °25'05.00" 36°46'13.34" . -121°31 '20.23" 36° 50'03.33" 9000.0 10.4 19.0 

SA8 -121°31 '20.23" 36° 50'03.33" -121 °36'29.01" 36°54'00.24" 9000.0 12.0 18.4 

SA9 -121 °36'29.01" 36°54'00.24" -121°41 '51.69" 36°57'50.85" 9000.0 12.0 18.4 

SA10 -121°41 '51.69" 36°57'50.85" -121 °46'33.90" 37°02'04.60" 9000.0 12.0 18.4 
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Segment 

SA11 

SA12 

SA13 

SA14 

SA15 

SA16 

SA17 

SA18 

SA19 

SA20 

SA21 

SA22 

SA23 

SA24 

SA25 

SA26 

SA27 

SA28 

SA29 

SA30 

SA31 

SAcS 

SAc6 

SAc7 

SAc8 

SAc9 

HAl 

HA2 

HA3 

HA4 

HAS 

HA6 

HA7 

HA8 

HA9 

HAlO 

Table A.l: (Continued) 

Start End 

Longitude Latitude Longitude Latitude 

San Andreas fault - slip at depth (continued) 

-121 °46'33.90" 37°02'04.60" -121 °52'38.36" 37°05'18.30" 

-121 °52'38.36" 37°05'18.30" -121 °57'40.80" 37°09'03.28" 

-121 °57'40.80" 37°09'03.28" -122°02'38.18" 37°13'19.43" 

-122°02'38.18" 37°13'19.43" -122°07'25.45" 37°17'22.20" 

-122°07'25.45" 37°17'22.20" -122°11 '51.19" 37°21 '39.90" 

-122°11'51.19" 37°21'39.90" -122°15'54.17" 37°25'49.29" 

-122°15'54.17" 37°25'49.29" -122°20'05.99" 37°30'11.53" 

-122°20'05.99" 37°30'11.53" -122°23'57.57" 37°34'49.65" 

-122°23'57.57" 37°34'49.65" -122°28'06.87" 37°39'27.47" 

-122°28'06.87" 37°39'27.47" -122°31 '45.79" 37°43'52.94" 

-122°31 '45.79" 37°43'52.94" -122°35'41.16" 37°48'38.22" 

-122°35'41.16" 37°48'38.22" -122°39'54.26" 37°54'24.37" 

-122°39'54.26" 37°54'24.37" -122°45'00.00" 37°58'54.95" 

-122°45'00.00" 37°58'54.95" -122°48'30.00" 38°03'34.25" 

-122°48'30.00" 38°03'34.25" -122°52'55.00" 38°08'03.26" 

-122°52'55.00" 38°08'03.26" -122°56'50.00" 38°12'31.99" 

-122°56'50.00" 38°12'31.99" -123°00'48.00" 38°17'00.45" 

-123°00'48.00" 38°17'00.45" -123°04'30.00" 38°21'31.62" 

-123°04'30.00" 38°21'31.62" -123°07'33.29" 38°25'39.60" 

-123°07'33.29" 38°25'39.60" -123°13'49.13" 38°31 '43.69" 

-123°13'49.13" 38°31 '43.69" 00 

San Andreas fault - surface creep 

-·121 °10'46.40" 36°34'48.00" -121 °15'29.87" 36°38'48.08" 

-121 °15'29.87" 36°38'48.08" -121 °20'34.84" 36°42'50.68" 

-121 °20'34.84" 36°42'50.68" -121 °25'05.00" 36°46'13.34" 

-121 °25'05.00" 36°46'13.34" -121°31 '20.23" 36° 50'03.33" 

-121°31'20.23" 36°50'03.33" -121°36'29.01" 36°54'00.24" 

Hayward-Rodgers Creek fault - slip at depth 

-121 °47'39.70" 37°26'32.33" -121 °52'38.36" 37°30'38.76" 

-121 °52'38.36" 37°30'38.76" -121 °57'33.21" 37°34'37.57" 

-121 °57'33.21" 37°34'37.57" -122°01'52.63" 37°37'51.88" 

-122°01'52.63" 37°37'51.88" -122°06'53.00" 37°42'24.00" 

-122°06'53.00" 37°42'24.00" -122°11'18.00" 37°47'41.00" 

-122°11 '18.00" 37°47'41.00" -122°14'28.00" 37° 51 '38.00" 

-122°14'28.00" 37°51 '38.00" -122°18'07.00" 37° 56'14.00" 

-122°18'07.00" 37°56'14.00" -122°21 '38.37" 38°01 '16.14" 

-122°21 '38.37" 38°01 '16.14" -122°24'21.61" 38°06'07 .29" 

-122°24'21.61" 38°06'07.29" -122°27'23.84" 38°10'57.12" 
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Width, 

km 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

8.0 

8.0 

8.0 

8.0 

8.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

Depth Slip 

Top, 

km 

12.0 

12.0 

12.0 

12.0 

11.0 

10.0 

8.9 

8.9 

8.9 

10.5 

12.0 

12.0 

12.1 

12.2 

12.2 

12.2 

12.2 

12.2 

12.2 

12.2 

12.2 

0.0 

0.0 

0.0 

0.0 

0.0 

9.0 

9.0 

10.1 

11.1 

11.1 

11.1 

11.1 

9.8 

8.5 

8.5 

Rate, 

mmfyr 

18.4 

19.7 

19.7 

19.7 

19.7 

19.7 

16.4 

16.4 

16.4 

16.4 

16.4 

16.4 

16.7 

16.7 

16.7 

16.7 

16.7 

16.7 

16.7 

16.7 

16.7 

15.0 

15.0 

15.0 

11.0 

4.0 

12.2 

12.2 

12.2 

12.2 

12.2 

12.2 

12.2 

12.2 

12.3 

12.3 



Segment 

HAll 

HA12 

HA13 

HA14 

HA15 

HA16 

HA17 

HA18 

HA19 

CAl 

CA2 

CA4 

CAS 

CA6 

CA7 

CAS 

CA9 

CAlO 

CAll 

CA12 

CA13 

CA14 

CA15 

CA16 

CA17 

CA18 

CA19 

CA20 

CA21 

CA22 

CA23 

CA24 

CA25 

CA26 

CA27 

CA28 

CA29 

Table A.l: (Continued) 

Start End 

Longitude Latitude Longitude Latitude 

Width, 

km 

Hayward-Rodgers Creek fault - slip at depth (continued) 

-122°27'23.84" 38°10'57.12" -122°32'00.00" 38°15'21.68" 9000.0 

9000.0 

-122°36'42.00" 38°19'52.95" -122°40'30.00" 38°24'49.83" 9000.0 

-122°40'30.00" 38°24'49.83" -122°43'52.00" 38°29'51.34" 9000.0 

-122°43'52.00" 38°29'51.34" -122°46'30.00" 38°34'39.57" 9000.0 

-122°46'30.00" 38°34'39.57" -122°48'50.82" 38°39'29.47" 9000.0 

-122°48'50.82" 38°39'29.47" -122°52'18.35" 38°44'14.09" 9000.0 

-122°52'18.35" 38°44'14.09" -122°57'05.62" 38°49'53.82" 9000.0 

-122°57'05.62" 38°49'53.82" CX) 9000.0 

Calaveras- Concord- Green Valley fault - slip at depth 

-121 °10'46.40" 36°34'48.00" -121 °14'43.04" 36°39'28.86" 9000.0 

-121 °14'43.04" 

-121 °18'37.16" 

-121 °27'45.10" 

-121°31 '02.51" 

-121 °34'32.58" 

-121 °38'38.08" 

-121 °41'44.ll" 

-121 °44'55.19" 

-121 °47'39.70" 

-121 °50'20.41" 

-121 °52'10.00" 

-121 °55'26.66" 

-121 °57'45.86" 

-122°00'27.84" 

-122°02'28.06" 

-122°04'29.55" 

-122°08'00.00" 

-122°09'30.00" 

-122°09'42.12" 

-122°13'10.00" 

-122°15'30.00" 

-122°17'30.00" 

-122°20'15.00" 

-122°21'43.43" 

-122°25'09.70" 

-122°58'27.48" 

36°39'28.86" -121 °18'37.16" 

36°44'01.98" -121 °27'45.10" 

36°59'01.93" -121°31 '02.51" 

37°04'05.30" -121 °34'32.58" 

37°08'43.01" -121 °38'38.08" 

37°13'50.80" -121°41 '44.ll" 

37°18'40.04" -121 °44'55.19" 

37°23'26.95" -121 °47'39.70" 

37°26'32.33" -121 °50'20.41" 

37°31 '46.29" -121 °52'10.00" 

37°37'04.57" -121 °55'26.66" 

37°41 '56.33" -121 °57'45.86" 

37°47'13.87" -122°00'27.84" 

37° 52'11.99" -122°02'28.06" 

37°57'41.82" -122°04'29.55" 

38°02'46.22" -122°08'00.00" 

38°08'07.26" -122°09'30.00" 

38°13'12.93" -122°09'42.12" 

38°18'54.14" -122°13'10.00" 

38°23'59.04" -122°15'30.00" 

38°29'27.46" -122°17'30.00" 

38°34'45.53" -122°20'15.00" 

38°39'35.43" -122°21 '43.43" 

38°44'50.76" -122°25'09.70" 

38°49'39.97" -122°58'27.48" 

39°30'44.96" -123°32'57.21" 

CX) 
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36°44'01.98" 

36°59'01.93" 

37°04'05.30" 

37°08'43.01" 

37°13'50.80" 

37°18'40.04" 

37°23'26.95" 

37°26'32.33" 

37°31 '46.29" 

37°37'04.57" 

37°41 '56.33" 

37°47'13.87" 

37°52'll.99" 

37° 57'41.82" 

38°02'46.22" 

38°08'07.26" 

38°13'12.93" 

38°18'54.14" 

38°23'59.04" 

38°29'27.46" 

38°34'45.53" 

38°39'35.43" 

38°44'50.76" 

38° 49'39.97" 

39°30'44.96" 

40°14'11.90" 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

9000.0 

Depth Slip 

Top, 

km 

8.5 

8.5 

8.5 

8.5 

8.5 

8.5 

8.5 

8.5 

8.5 

8.1 

8.1 

8.4 

8.6 

8.2 

7.9 

7.9 

9.0 

9.0 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

10.4 

Rate, 

mm/yr 

12.3 

12.3 

12.3 

12.3 

12.3 

12.3 

12.3 

12.3 

12.3 

19.0 

19.0 

19.0 

18.2 

18.2 

17.6 

17.6 

17.6 

17.6 

7.3 

7.3 

7.3 

7.3 

7.3 

7.3 

7.3 

7.3 

7.0 

7.0 

7.0 

7.0 

7.0 

7.0 

7.0 

7.0 

7.0 

7.0 

7.0 



Segment 

CAcbl 

CAca 

CAcl 

CAc2 

CAc3 

CAc4 

CAc5 

CAc6 

CAc7 

CAc8 

SRclt 

SRc2t 

SRc3t 

SRc4t 

SAc 

SAd 

SAl 

SA2 

SA3 

SAcl 

SAc2 

SAc3 

SAc4 

HAcl 

HAc2 

HAc3 

HAc4 

HAc5 

HAc6 

HAc7 

HAc8 

HAc9 

Table A.l: (Continued) 

Start End 

Longitude Latitude Longitude Latitude 

Width, 

km 

Calaveras- Concord- Green Valley fault - surface creep 

-121 °20'34.84" 36°42'50.68" -121 °22'56.58" 36°48'27.69" 6.2 

6.2 

6.2 

6.2 

7.2 

7.2 

7.2 

4.6 

4.6 

4.6 

-121 °22'56.58" 36°48'27.69" -121 °24'21.81" 36°51'20.98" 

-121 °24'21.81" 36°51'20.98" -121 °25'23.37" 36°53'52.11" 

-121 °25'23.37" 36°53'52.11" -121 °27'45.10" 36°59'01.93" 

-121 °27'45.10" 36°59'01.93" -121°31 '02.51" 37°04'05.30" 

-121°31 '02.51" 37°04'05.30" -121 °34'32.58" 37°08'43.01" 

-121 °34'32.58" 37°08'43.01" -121 °38'38.08" 37°13'50.80" 

-121 °38'38.08" 37°13'50.80" -121°41 '44.11" 37°18'40.04" 

-121 °41'44.11" 37°18'40.04" -121 °44'55.19" 37°23'26.95" 

-121 °44'55.19" 37°23'26.95" -121 °47'39.70" 37°26'32.33" 

Sargent fault - surface creep 

-121 °22'56.58" 36°48'27.69" -121 °30'17.41" 36° 54'23.13" 

-121 °30'17.41" 36°54'23.13" -121 °35'10.11" 

-121 °35'10.11" 36°55'47.25" -121 °44'56.31" 

-121 °44'56.31" 37°03'46.08" -121 °55'46.42" 

36°55'47.25" 

37°03'46.08" 

37°07'45.49" 

Fixed fault segments 

San Andreas fault - slip at depth 

8.0 

8.0 

8.0 

8.0 

00 -120°15'36.94" 35°43'10.52" 9000.0 

-120°15'36.94" 35°43'10.52" -120°59'42.03" 36°24'04.60" 9000.0 

-120°59'42.03" 36°24' 4.60" -121 °02'31.60" 36°26'21.65" 9000.0 

-121 °02'31.60" 36°26'21.65" -121 °06'16.86" 36°30'49.41" 9000.0 

-121 °06'16.86" 36°30'49.41" -121 °10'46.40" 36°34'48.00" 9000.0 

San Andreas fault - surface creep 

-120°15'36.94" 35°43'10.52" -120°59'42.03" 36°24'04.60" 

-120°59'42.03" 

-121 °02'31.60" 

-121 °06'16.86" 

36°24'04.60" -121 °02'31.60" 

36°26'21.65" -121 °06'16.86" 

36°30'49.41" -121 °10'46.40" 

36°26'21.65" 

36°30'49.41" 

36°34'48.00" 

Hayward-Rodgers Creek fault - surface creep 

-121 °55'05.00" 37°29'15.00" -121 °55'44.00" 37°30'23.00" 

-121 °55'44.00" 37°30'23.00" -121 °57'38.00" 37°32'32.00" 

-121 °57'38.00" 37°32'32.00" -l21 °58'14.00" 37°33'08.00" 

-121 °58'14.00" 37°33'08.00" -121 °59'22.00" 37°34'51.00" 

-121 °59'22.00" 37°34'51.00" -122°06'53.00" 37°42'24.00" 

-122°06'53.00" 37°42'24.00" -122°07'28.00" 37°43'28.00" 

-122°07'28.00" 37°43'28.00" -122°09'35.00" 37°45'53.00" 

-122°09'35.00" 37°45'53.00" -122°11 '18.00" 37°47'41.00" 

-l22°ll'18.00" 37°47'41.00" -122°12'38.00" 37°49'45.00" 
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8.8 

8.8 

8.8 

8.4 

4.5 

9.0 

4.7 

4.7 

4.7 

4.7 

4.7 

4.7 

4.7 

Depth Slip 

Top, 

km 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

8.8 

8.8 

8.8 

8.8 

8.8 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Rate, 

mm/yr 

6.3 

8.4 

12.1 

15.7 

17.8 

17.3 

15.1 

12.0 

8.7 

6.1 

2.3 

2.3 

2.3 

2.3 

38.0 

38.0 

38.0 

38.0 

38.0 

28.0 

28.0 

27.0 

32.0 

4.0 

9.0 

5.1 

5.4 

5.8 

6.6 

6.2 

4.0 

4.0 



Table A.l: (Continued) 

Depth Slip 

Start End Width, Top, Rate, 

Segment Longitude Latitude Longitude Latitude km km mm/yr 

Hayward-Rodgers Creek fault - surface creep (continued} 

HAclO -122°12'38.00" 37°49'45.00" -122°14'28.00" 37° 51 '38.00" 4.7 0.0 4.7 

HAcll -122°14'28.00" 37°51 '38.00" -122°18'07.00" 37°56'14.00" 4.7 0.0 5.8 

HAcl2 -122°18'07.00" 37°56'14.00" -122°19'32.00" 37° 57'24.00" 4.7 0.0 6.1 

HAcl3 -122°19'32.00" 37°57'24.00" -122°21 '56.00" 38°00'11.00" 4.7 0.0 5.6 

HAc14 -122°21 '56.00" 38°00'11.00" -122°26'42.00" 38°06'04.00" 2.4 0.0 2.8 

Calaveras- Concord- Green Valley fault - surface creep 

CAc9 -121 °47'39.70" 37°26'32.33" -121 °50'20.41" 37° 31 '46.29" 4.6 0.0 3.9 

CAclO -121 °50'20.41" 37°31 '46.29" -121 °52'07.98" 37°37'04.57" 3.7 0.0 1.9 

CAcll -121 °52'07.98" 37°37'04.57" -121 °55'26.66" 37°41 '56.33" 2.8 0.0 0.7 

CAcl2 -121 °55'26.66" 37°41 '56.33" -121 °59'00.00" 37°47'13.87" 2.8 0.0 0.4 

CAcl3 -121 °58'00.00" 37°52'44.08" -122°02'00.00" 37°57'35.81" 2.8 0.0 1.9 

CAc14 -122°02'00.00" 37° 57'35.81" -122°04'29.55" 38°02'46.22" 2.8 0.0 3.4 

CAc15 -122°04 '29.55" 38°02'46.22" -122°06'00.00" 38°08'17.26" 2.8 0.0 4.8 

CAcl6 -122°06'00.00" 38°08'17.26" -122°08'00.00" 38°13'38.89" 5.9 0.0 5.6 

CAc17 -122°08'00.00" 38°13'38.89" -122°08'00.00" 38°18'47.16" 9.0 0.0 5.6 

CAcl8 -122°08'00.00" 38°18'47.16" -122°08'30.00" 38°24'13.98" 9.0 0.0 5.6 

CAcl9 -122°08'30.00" 38°24 '13.98" -122°11 '30.00" 38°28'57.63" 7.5 0.0 4.2 

CAc20 -122°11 '30.00" 38°28'57.63" -122°15'00.00" 38°33'54.87" 6.0 0.0 1.5 

CAc21 -122°15'00.00" 38°33'54.87" -122°18'00.00" 38°38'41.85" 4.5 0.0 0.0 

CAc22 -122°18'00.00" 38°38'41.85" -122°19'00.00" 38°44'03.18" 3.0 0.0 0.0 

CAc23 -122°19'00.00" 38°44'03.18" -122°21'00.00" 38°49'30.07" 1.5 0.0 0.0 

t - not used in the forward three-dimensional model. 

* - Slip rates indicated are those used in the forward three-dimensional model and as initial values 

in the inversion. 

oo - fault segment is semi-infinite in length with an azimuth of N33°W. 
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Appendix B 

Table B.l: Velocities relative the the VLBI site OVRO located 300 km east of San Francisco from 

the integration of VLBI, trilateration and GPS results. 

Longitude Latitude Yeast Vnorth O'east Unorth Cor. Station 

-122.42917 37.86167 -11.3 14.8 2.0 1.4 0.1443 angel 

-122.73350 38.19367 -9.8 18.0 2.0 1.7 0.2190 antonio 

-122.39900 38.27433 -4.7 8.8 2.0 1.8 0.0501 arrow 

-122.22066 37.88383 -6.7 9.2 1.8 1.3 -0.0743 bald ecc 

-122.73200 37.94117 -15.4 23.2 3.4 1.7 0.5197 bolinas 

-121.91367 37.88200 -4.1 2.2 1.9 1.4 0.0022 diablo 2 

-123.00083 37.69933 -17.6 26.8 2.5 1.9 -0.1698 far all on 

-122.12717 37.93700 -4.8 6.8 1.8 1.4 -0.0596 hills 

-122.13017 38.12433 -3.9 5.0 1.9 1.6 -0.0976 lopez 

-122.76500 38.08067 -12.0 20.0 2.1 1.5 0.1700 nicasio 

-122.57883 38.34583 -5.2 12.5 2.0 1.9 0.1528 petaluma 

-121.95450 . 38.20267 0.0 -0.5 1.9 1.7 -0.1854 potrero 

-122.41500 37.95883 -11.1 13.1 1.9 1.5 0.0905 san pablo 

-122.49650 38.23200 -6.6 12.2 1.9 1.7 0.0663 sleepy 

-122.60616 38.06150 -10.2 16.7 1.9 1.5 0.1254 stinger 

-122.45750 37.61000 -15.2 21.3 1.8 1.8 6.0990 sweeney 

-122.59450 37.92367 -11.9 18.9 1.9 1.5 0.1859 tam 3 

-122.21567 38.26433 -3.7 4.4 1.9 1.8 -0.0145 tulucay 

-122.82050 38.03950 -15.4 24.7 2.2 1.6 0.0814 wittenec 

-122.31750 38.29450 -3.9 6.7 2.0 1.9 0.0256 dan 

-122.44366 38.37650 -2.8 10.2 2.0 2.0 0.0989 hooker 

-122.29083 38.42433 -0.2 5.1 1.9 2.1 0.0276 rector 

-122.28433 38.15467 -6.5 7.5 1.9 2.2 -0.0597 slaught 

-122.86383 38.34783 -10.6 17.7 2.2 2.0 0.3230 burnside 

-122.78416 38.06617 -12.2 20.8 2,1 1.5 0.1445 garcia 

-122.83000 38.13350 -10.6 20.7 2.0 1.8 0.1567 mill 

-122.79733 38.04483 -14.3 19.9 2.6 1.9 -0.1471 seic 

-122.76984 38.05100 -12.6 19.9 2.1 1.5 0.1660 tacloma 

-122.79450 38.08550 -11.1 20.9 2.1 1.6 0.1749 tomasi 

-122.70983 38.53833 -5.5 11.7 2.0 2.7 0.2495 mark 

-122.67367 38.40067 -7.2 13.4 2.1 2.2 0.2767 taylor 

-122.86916 38.48017 -7.9 16.8 2.2 2.5 0.4030 trenton 

-122.63233 38.66950 -5.4 8.1 2.5 4.5 -0.1797 helena 

-122.81167 38.60083 -6.9 12.7 2.3 3.7 0.4264 weston 

-121.87016 37.49900 -6.2 7.1 1.9 1.8 0.1439 allison 
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Longitude 

-121.86483 

-122.09300 

-122.14684 

-122.29984 

-122.27167 

-121.82850 

-122.39883 

-122.19417 

-121.84333 

-122.19867 

-122.37666 

-122.09367 

-122.06033 

-122.17050 

Latitude 

37.28767 

37.22267 

37.31750 

37.22583 

37.45700 

37.74117 

37.24383 

37.14767 

37.11117 

37.32017 

37.30917 

37.55383 

37.81500 

37.81116 

-121.92133 37.62017 

-121.83667 . 37.63117 

-121.99384 37.73833 

-121.45367 37.62617 

-121.61916 

-121.64200 

-121.55483 

-121.37383 

-121.40750 

-121.72383 

-121.64300 

-121.82317 

-121.79784 

-121.81917 

-121.66700 

-121.51550 

-121.22217 

-121.36533 

-121.26283 

-121.44700 

-121.42583 

-121.51733 

-121.57684 

-121.35616 

-121.39283 

-121.32383 

-121.50300 

-121.61517 

-121.55883 

-121.40067 

-121.40600 

-121.49583 

-121.57867 

-121.45233 

37.60583 

37.34184 

37.47750 

37.50850 

37.32233 

37.51117 

36.93100 

36.91100 

36.74917 

37.00834 

37.13300 

37.11500 

36.73817 

36.65667 

36.87833 

37.02033 

36.94067 

36.82267 

36.75717 

36.92583 

36.97933 

36.83183 

36.75717 

36.97983 

36.82050 

36.89333 

36.85583 

36.80917 

36.82200 

36.87233 

Table B.l: (Continued) 

-12.6 

-17.5 

-14.3 

-19.7 

-14.2 

-4.5 

-19.9 

-18.8 

-15.3 

-16.0 

-18.6 

-10.7 

-7.1 

-7.5 

-6.1 

-4.9 

-6.5 

-1.8 

-1.6 

-2.4 

-2.1 

-1.1 

-1.8 

-2.6 

-15.4 

-18.9 

-21.2 

-15.6 

-14.5 

-9.1 

-4.3 

-19.2 

-3.9 

-7.0 

-9.8 

-20.2 

-18.7 

-5.5 

-5.9 

-6.4 

-20.3 

-14.9 

-20.2 

-7.2 

-4.2 

-19.8 

-19.9 

-11.1 

15.1 

19.8 

17.2 

23.2 

18.4 

3.5 

24.9 

23.2 

18.1 

19.7 

24.8 

12.0 

6.0 

8.1 

7.4 

4.2 

6.2 

-3.3 

-1.2 

1.0 

-2.4 

-3.9 

-4.3 

1.3 

20.3 

26.1 

26.9 

22.6 

13.8 

0.1 

4.2 

28.2 

7.6 

0.8 

-0.8 

26.0 

24.1 

1.5 

0.5 

4.4 

25.9 

14.8 

23.8 

2.5 

7.4 

26.4 

24.1 

16.9 
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Ueast 

2.0 

2.1 

2.0 

2.2 

2.0 

2.1 

2.8 

2.1 

2.0 

2.0 

2.6 

1.9 

1.9 

2.0 

2.0 

2.1 

1.9 

2.6 

2.3 

2.2 

2.3 

2.8 

2.6 

2.1 

2.1 

2.3 

2.3 

2.1 

2.2 

2.4 

3.7 

2.9 

3.7 

2.4 

2.4 

2.2 

2.3 

2.7 

2.6 

3.0 

2.2 

2.2 

2.2 

2.5 

2.5 

2.2 

2.2 

2.3 

Cf north 

2.3 

2.3 

2.1 

2.2 

1.8 

1.6 

2.3 

2.4 

2.5 

2.1 

2.2 

1.7 

1.5 

1.4 

1.8 

1.7 

1.5 

1.9 

1.9 

2.1 

1.8 

1.9 

2.2 

1.8 

2.7 

2.6 

2.4 

2.9 

2.5 

2.6 

2.6 

3.1 

2.7 

3.0 

2.5 

2.3 

2.6 

2.5 

2.7 

2.3 

2.4 

2.7 

2.3 

2.4 

2.3 

2.4 

2.3 

2.3 

Cor. 

0.1944 

0.1281 

-0.0414 

-0.0850 

0.0315 

0.1207 

-0.0676 

-0.0382 

0.2299 

0.0238 

-0.0140 

0.0370 

0.0058 

-0.0064 

0.1212 

0.1333 

0.0844 

0.0833 

0.1843 

0.2759 

0.2453 

0.1989 

0.4089 

0.1879 

0.2092 

0.3731 

0.2044 

0.3491 

0.3152 

0.3519 

0.4947 

0.5090 

0.1048 

-0.0383 

0.0209 

0.2136 

0.0771 

-0.0263 

-0.0903 

0.2353 

0.2914 

0.3523 

0.2146 

0.0972 

0.1533 

0.2498 

0.2076 

0.1726 

Station 

amen can 

biel 

bmtrf 

butano 

crossrm1 

doolan 2 

dump 

eagle rk 

lorna use 

m.indego 

porn 

rdhillec 

rock 2 

skyline 

sunol 2 

vem 

weidem 2 

corral 

cranerm1 

hamilton 

mochoecc 

mt oso 

mt stake 

rose2rm5 

chamber 

gal 

mulligan 

vargo 

!lag as 

sheeprrri2 

browns 

mcvail 

bolsarm2 

canada 

church 

cross 

dusty 

fairview 

felipe 

foothill 

fremont 

gilroy 

hi way 

hollair 

hollis 

holt 

juan 

knob 



Longitude 

-121.29333 

-121.49300 

-121.44600 

-121.28667 

-121.38067 

-121.43533 

-121.47034 

-121.52100 

-121.48367 

-121.51517 

-121.77167 

-122.45084 

-122.45500 

-121.77333 

-122.10300 

-122.86867 

-123.01483 

-122.52750 

-122.45567 

-121.99467 

-122.59534 

-122.11467 

-122.25916 

-122.36183 

-120.72100 

-122.81267 

-122.73650 

-122.93667 

-122.36617 

-122.26517 

-122.50383 

-122.15117 

-122.45617 

-122.38216 

-122.18367 

-122.06917 

-121.95333 

-121.79250 

-121.72234 

Latitude 

36.91533 

36.84117 

36.79617 

37.00783 

36.81783 

36.84150 

36.77666 

36.90617 

36.93550 

36.78367 

36.58967 

37.73917 

37.80533 

36.66983 

38.39783 

38.07967 

37.99633 

38.23650 

38.22317 

38.41667 

38.18600 

38.33117 

38.32383 

38.28316 

38.33967 

38.08733 

38.09267 

38.10350 

37.81000 

37.87183 

37.50917 

37.70967 

37.52683 

37.59217 

37.69083 

37.73233 

37.80133 

37.92150 

37.95400 

Table B.l: (Continued) 

-5.1 

-14.0 

-10.1 

-5.6 

-6.7 

-10.8 

-19.8 

-16.7 

-12.4 

-19.2 

-23.3 

-13.7 

-11.5 

-21.8 

-0.9 

-13.9 

-17.9 

-7.4 

-5.1 

2.3 

-8.3 

1.6 

-1.0 

-0.4 

6.5 

-12.4 

-7.8 

-14.3 

-12.9 

-8.9 

-17.2 

-4.9 

-16.3 

-13.4 

-4.6 

-7.6 

-9.9 

-0.2 

-1.0 

2.8 

17.9 

19.7 

1.5 

11.4 

19.2 

26.1 

17.2 

14.5 

26.3 

27.8 

17.2 

17.8 

29.2 

-1.1 

25.1 

26.4 

14.0 

12.6 

3.4 

16.2 

-0.8 

5.4 

7.8 

5.2 

20.3 

21.7 

23.8 

16.3 

14.9 

26.9 

12.9 

25.9 

21.9 

16.0 

3.2 

2.6 

-0.2 

-9.1 

<J east 

3.2 

2.3 

2.4 

3.2 

2.6 

2.4 

2.3 

2.2 

2.3 

2.2 

2.3 

1.8 

2.1 

3.4 

1.9 

2.1 

2.3 

2.5 

2.4 

2.6 

2.0 

2.5 

2.5 

2.6 

5.6 

2.4 

2.5 

2.1 

3.0 

2.1 

3.4 

2.8 

2.7 

2.8 

2.8 

2.7 

3.9 

3.2 

3.2 

Unorth 

2.5 

2.4 

2.4 

2.9 

2.3 

2.3 

2.4 

2.4 

2.5 

2.4 

1.9 

-1.2 

1.4 

2.0 

2.1 

1.5 

1.5 

2.1 

1.9 

2.2 

1.5 

2.2 

2.1 

2.2 

10.1 

2.0 

2.1 

1.3 

2.8 

1.6 

3.1 

2.7 

2.8 

3.0 

2.7 

2.8 

4.1 

3.3 

3.4 

Velocities are in millimeters per year 

Cor. 

-0.0727 

0.2544 

0.2910 

-0.3157 

0.2600 

0.2087 

0.2863 

0.2346 

0.1286 

0.2425 

0.0548 

-0.0203 

-0.0058 

0.0000 

-0.0810 

0.2213 

0.1104 

0.0739 

0.0991 

0.0708 

0.1223 

0.0632 

0.0739 

0.0708 

0.0065 

0.0772 

0.0644 

0.0623 

-0.0089 

-0.0354 

0.0273 

0.0325 

0.0272 

0.0483 

0.0325 

0.0358 

0.0235 

0.0189 

0.0247 

Cor., correlation component between east and north components 
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Station 

lone t 

morse 

oak 

pacheco 

pereira2 

picket 

sandy 

sargent 

shore 

yates79 

brush 2 

davidson 

presidio 

fort ord 

mt vaca 

pt reyes 

ptreyhd3 

ado 

air 

caml 

cord 

gor 

hag 

hen 

jackson 

ngs 

rue 

pt rvlbi 

navy 

ucberk 

whale 

e.b. 

palo 

p.e. 

s.l.b. 

castro 

xyz 

jobe 

minn 



Appendix C 

Source Code, Explanation and Input 

Files for BMODEL and SSELF 

C.l Program : BMODEL 

C.l.l Introduction 

Program BMODEL calculates fault-parallel displacements for two-dimensional 
(i.e. infinite in length) faults or shear zones using a series of screw dislocations em
bedded in an elastic half-space. Both forward models and inversions from observed 
fault-parallel velocities to estimate slip rates can be performed. Slip rates are es
timated using a linear, weighted, least-squares inversion. All calculated velocities 
are fixed relative to some point (at 0 km). 

BMODEL accepts two options on the command line e.g. bmodel-Iinput -Ooutput 
where input is the input file and output is the output file. If no input file is specified 
the default name is bmodel. inp. If no output file is specified the results default to 
the screen. 
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C.1.2 Input File 

An example input file is shown below: 

No of stations --> 12 
No of faults --> 4 
L Squares (0/1) -> 1 

-59.26 14.0 2.3 -2.0 2.2 farallon 
-30.10 9.6 1.5 -0.9 1.9 pt rvlbi 
-23.39 6.4 2.3 -3.0 2.3 seic 
-21.13 6.0 1.6 -0.8 2.0 garcia 
-15.80 4.2 1.5 -1.5 1.9 tam 3 
-2.35 0.3 2.0 0.7 2.7 trenton 
12.50 -4.8 2.0 0.7 2.4 air 
19.76 -8.2 1.8 -1.0 2.0 arrow 
30.39 -11.8 1.8 -2.4 1.7 lopez 
33.00 -13.0 2.1 0.2 2.5 hag 
48.92 -18.5 2.1 -3.2 1.9 mt vaca 
57.99 -16.5 2.2 1.9 2.6 caml 

pos (km) slip top bottom width 

****·*** ***·** ***·*** ****·** ****·* 
-24.00 20.00 12.000 30.0. 0.0 
-24.00 20.00 12.000 30.0 60.0 

9.6 10.00 0.001 30.0 0.0 
9.6 8.00 30.000 -999.0 0.0 

The first three lines indicate the number of velocities you have, the number of faults 
to model and whether you require a least-squares inversion ( 1) or a forward model 
(0). The next lines (12 in the example file) include the position, fault-parallel veloc
ity, standard deviation and station name with the format (f9. 2, 2f7. 1, 16x, a15). 
Note that the last two number columns relating to the fault-normal velocities are 
not used. The fault parameters (beneath the row of stars) are unformatted. The 
second column, slip, is only used if a forward model is required. A value of 0.0 is 
not allowed in the third and fourth columns, set it to 0.001 instead. -999.0 in the 
third column indicates that the fault extends to infinity. Setting any value other 
than 0.0 in the fourth (width) column indicates that you require a shear zone of a 
certain width centred around the position given in the first (position) column. 
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C.1.3 Source Code 

c• 
program bmodel 

cc 
cc name 
cc 

bmodcl 

cc JlU1POSC calculates displacement for infinite length 

cc faults or shear zones using screw dislocation. 
cc This program calculates slip on the faults. 

cc 
cc sr called : getarg gctopt lfit grea>s dgcmm 

cc fchisq gaussj covsn 

cc 
cc remarks : getarg and getopt arc from the utilsubs.f 

cc from the program dispinvl written by P. Segall 

cc lfit covsn and gaussj are based on routines in 
cc numerical recipes in fortran 
cc dgemm is pan of the blas'lapack library 

cc (which is incorporated into the nag library?) 

cc 
cc 
cc author : S.D.P. Williams 

cc 
cc version : 1.0 
cc 
cc created : 12105/93 

cc 
cc copyright : S. Williams 

cc 1993 Dcpl of Geological Sciences 

cc 
cc 
c• 

university of Durham 
Durllam 

declarations 

implicit none 

integer maxfh 
integer maxsta 

parameter (maxflt - 10) 

parameter (maxsta - 50) 

integer j.kJ 
integer lnoutlcas.ndat 

? ·integer iargc. nfiUtsta 
integer lista(maxflt*3) 

integer indcx(maxflt*3). 
integer nfit.iadd 

real"8 g(maxsta.maxflt) 

'· rcat•S grow(maxfh) 
real•& u(maxftt) 

real•& spos(maxsta) 

rcat•s sv~l(maxsta) 
real•& serr(maxsta) 

reaJ•8 prcd(maxsta)

real•& chisq.n:hisq 

real"8 dof 
real•& nnns.omc(maxsta) 

real"& pi.small 

real•& cocff(maxftt"4) 

real"8 covar(maxftt,maxftt) 

. character" I ldummy .ans 
charactcr"l5 snamc(maxsta).modcl(2) 

charactcr"40 infil.outfil.arg 

~~-----------
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c 

dala pil3.141592653589793d()l 

modcl(l )-1'orward' 
modcl(2)-'l..east Squares' 

smaii•I.O 

c •·• Get input fearures 

c 

outfil-'•' 
infit-'•' 
lnout- 6 

do j-UaigcO 

call gctaig(j.arg) 

if (arg(l:2).eq.'-l') then 

infil-.arg(3:1cn(aig)) 

else if(aig(l:2~eq.'-0') then 

outfil-aig(3:1cn(aig)) 

cndif 
cnddo 

if(infil(l: I ).cq.'"') then 
infil- 'bmodcl.inp' 

open(unit-1 O.filc- 'bmodcl.inp • .status-' old· .err-999) 

else 

open( unit• I O.filc-infil.status- 'old' .err-999) 

endif 

if(outfil(l:l).cq.'"') then 

lnout- 6 

else 

lnout- 12 

opcn(unit-lnoulfi lc-outfil) 

cndif 

c - Read from input fi lc 

c 

read(IO.'(I9x.i2)') ndat 

nsta-ndat+ 1 
read(IO.'(I9x.i2)') nflt 

read(l0.'(19x.il)') leas 

do k-l.ndat 

read(JO. '(19.2.2n.l.l6x.ai5)'J 

. spos(k).svcl(k).scrr(k).snamc(k) 

enddo 

rcad(JO.•) 

read(IO.•) 

read(JO.•) 

doj-l.nflt 

read( I o:(f8.3.1 xJ6.2.1 x.f6.2.1 x.n .2. I x.f6.1 )') 

read(IO.•) 

. coeff(j•4-3).u(j).coeff(j•4-2).coeff(j•4- I ).coeff(j"4) 

enddo. 

closc(IO) 

c ··· Fonning default liSI 

10 nfit-nftt 

do j-l.nflt 

lista(j)-j 

cnddo 

do j-I.nftt 

do 1-l.nflt 

if(lista(l):eq.j) then 

indcx(j)-1 

• endif 

cnddo 



wrire(O, '(i2.2x.f7 3.2x.i2) ') 

• j.u(j),index(j) 

enddo 
call getop!('New Coefficient UstT, 

'y/n'.'n'.ans) 

if(ans.eq.'y') then 

do j-l,nftt 

lista(j)-0 

enddo 
wrire(O, '(a)') 

. 'Input new coefficients (0 to end)' 

k-1 

20 rcad(S.'(i2)') iadd 

if(iadd.gt.O.and,iadd.le.nflt) then 

lista(k)-iadd 

k-k+l 

goto 20 

else if(iadd.eq.O) then 

nfit-k-1 

goto 30 

else 

write(O.'(a)') 'That coefficient is not valid' 

goto 20 

cndif 

endif 

30 if(nfit.eq.O.or.nfit.gt.ndat) then 

wrire(O.'(a)') 'Invalid number in list' 

goto!O 

endif 

dof-ndat-nfit 

c 
c ~- Do least squares inversion 

_ if(leas.eq.l ) then 

call lfit(spos.svel.scrr.ndat.u.nfttJista, 

nfit.covar.max.flt.chisq,cocfO 
endif 

c ~- Calculate final predicted velocities 

do k-I.ndat 

call greens(spos(k).grow,nftt,cocff) 

doj-l.nftt 

g(kj)-grow(j) 

cnddo 
enddo 

call dgemm('N','N'.ndat,l,nftt.LdO,g. 

maxsta.u.maxftt.O.dO.prcd. 

max.sta) 

c -- Output Rcsul~ 

writc(lnout. '(a6.2x.4(a I 0,2x),a IS)·) 

. 'D km '.'observed '.'obs. error'. 

. 'calculaled', 

. ' obs-cal ':station name ' 
do k-I.ndat 

writc(lnout. '(f6.!,2x.4(fl 0.4.2x).a IS)') 

. spos(k),svcl(k),scrr(k).prcd(k), 

. svcl(k)-prcd(k),snamc(k) 

if(lnout.nc.6) then 

writc(6, '(f6.1.2x.4(fl 0.4.2x).a IS)') 

. spos(k).svcl(k~scll\k).pred(k); 

. svcl(k)-prcd(k),snamc(k) 

endif 

cnddo 
if(lcas.eq.O) nfit-o 

call fchisq(ndat.nfit.maxsta.svcl.prcd.scrr. 
omc.chisq.n:hisq.nrms) 

writc(lnout.'(a)') " 

writc(lnout.'(a,i4)') 'dof: '.ndat-nfit 

':"ritc(lnout,'(a)') " 

writc(lnout. '(a.fl 0.4.afl 0.4) ') 

. 'Chi Squared : • .chisq. 

. 'Reduced Chi Squared: ',rchisq 

writ;(lnout. '(a)') " 

writc(lnout, '(al2.2x.a IS)') 

. 'Model Type :',model(lcas+l) 

wrile(lnout,'(a)') 

• 'Predicled fault slip rares' 

writc(lnout,'(a8,lx,2(a6,1x))') 

• • ftt pos'.' slip'.' error' 

do j-l,nftt 

write(lnout. '(183,1 x,6(18.2,1 x))') 

• coeff(j*4-3).u(j).sqrt(coV31(jJ)), 
. coeff(j*4-2),coeff(j•4-!),coeff(j•4) 

enddo 

stop 

999 write(6,'(a30,2x.aiS)') 

. 'Error. Input file not found : • ,infil 

end 

subroutine covsn(covar.ncvm.ma.Iista.mfit) 

implicit n:al•8 (a-h.o-z) 

dimension covar(ncvm,ncvm)Jista(mfit) 

do 12 j-l,ma-1 
do II i-j+ I ,rna 

covar(ij)-0. 

II continue 

12 continue 

13 

14 

IS 

16 

do 14 i-I.mfit-1 

do 13 j-i+l.mfit 

if(lista(j).gt.lista(i)) then 

covar(lista(j)Jista(i))-covar(ij) 

else 

covar(lista(i),lista(j))-covar(ij) 

cndif 

continue 
continue 

swap-covar( 1.1) 

do IS j-I.rna 

covar( I j)-covar(jj) 

covar(jj)-0. 

continue 
co,·ar(lista(I )Jista( I )}-swap 

do 16 j-2.mfit 

covar(lista(j),lista(j))-covar( I.j) 

continue 
do 18 j-2.ma 

do 17 i-Ij-1 

covar(ij)-covar(j.i) 

17 continue 
18 continue 

return 

end 

subroutine fchisq(nptsJltcnn.mdpts.obs.calc.crr. 
omc.chi2,rchi2.nonn) 

implicit none 

integer npts.nterm.mdpts 
integer k.nfrcc 

n:al"8 obs(mdpts),calc(mdptS) 

real"8 cll\mdp!S).omc(mdpts) 

n:al"8 chi2.rt:hi2,norm 

chi2...().d0 

do k-I.npts 

omc(k)-obs(k)-calc(k) 

chi2-<:hi2-+{omc(kYcll\k))""2 

enddo 
nfrec-npts-ntenn 
if(nfrce.lc.O) then 

rchil-Q.O 

norm-().0 

goto 10 

endif 

rchi2~hi2'nfrec 

norm-sqn(rchi2) 

10 n:rurn 
end 

SUBROtJllNE GAUSSJ(A.KI\1' .B.M.MP) 

implicit n:al"8 (a-h.o-z) 

PARAMETER (NMAX-50) 

Dl~IE~SION A(l\1' J\'P).B(NP.~IP).IPIV(NMAX)JNDXR(N'MAX)JNDXC(NMAX) 

DO II l-Ux 

!PIV(J}-0 

li CO~TIKUE 

·-··-J----- _____ ,... ... -- ... -~-
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DO 221-1.N· 
BIG-0. 

DO 13 J-1.N 
IF(IPIV(J).NE.1)1llEN 

DO 12 K-1.N 
IF (IPIV(K).EQ.O) TIIEN 

IF (ABS(A(J,K)).GE.BIG)TIIEN 

BIG-ABS(A(J,K)) 

IROW-J 
ICOL-K 

END IF 
ELSE IF (IPIV(K).GT.I) TIIEN 

PAUSE 'Singular manix' 
END IF 

12 CONTINUE 

END IF 

13 CONTINUE 
IPIV(ICOL)-IPIV(ICOL)+l 

IF (!ROW .NE.ICOL) TIIEN 
DO 141..-J.N· 

DUM-A(IROWJ..) 

A(IROW J..)-A(ICOLJ..) 

A(ICOUJ-DUM 

14 CONTINUE 

DO 15 L-1.M 

DUM-B(IROWJ..) 

B(IROW J..)-B(ICOLJ..) 
B(ICOU)-DUM 

15 CONTINUE 
END IF 
!NDXR(l)-IROW 

!NDXC(l)-ICOL 

IF (A(ICOLJCOL).EQ.O.) PAUSE 'Singular manix.' 
P1V!NV-l JA(ICOL.!COL) 

A(ICOUCOL)-1. 

DO 16L-1.N 
A(ICOLJ..)-A(ICOU)'PIV1NV 

16 COI\'TINUE 
DO 17 1..-l,M 

B(ICOLJ..)-B(ICOLl.)'P!VINV 

17 COl\ 'TINUE 
D021 LL-1.N 

IF(LLNE.1COL)TIIEN 

DUM-A(LL!COL) 
A(ll.JCOL)-0. 

DO 18 L-l.N 
A(ll.J..)-A(LLl.}-A(ICOLl.)'DUM 

18 CONTINUE 

DO 19L-l.M 
B(LLl.)-B(Il.J..}-B(!COLl.)'DUM 

19 CONTINUE 
END IF 

21 COI\'TINUE 
22 CONTINUE 

23 

DO 24 L-N.l.·l 
IF(INDXR(L).NE.INDXC(L))TiiEN 

DO 23 K-l.N 
DUM-A(K.INDXR(L)) 

A(K.INDXR(L))-A(K.INDXC(L)) 
A(K.INDXC(L)J-DUM 

CO:-o'llNUE 
El\"DIF 

24 cmm.NUE 
REn!R.'< 
El\'D 

subroutine grecns(x.p.np.param) 

cc This subroutine calculates the greens function 
cc for either a infinite fauh at depth. infinite 
cc fauh segment, shear zone, or shear zone segment 
cc for usc in the program bmodcl 
cc 
cc x - site position 

cc p- greens function for each fault 
cc np - number of fault 

cc param - cocfficicms needed 

implicit none 

integer npj 

real'S x.p(np).param(np'4) 

real'S xx(IOO) 

real'S dp<(IOO).dpb(IOO) 

real'S fullwidth(lOO).hw(IOO) 

real'S wka.wkb 

real'S b.c.d.c 
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real'S pi 

data pil3.14159265.3589793d(){ 

do j-IJ!p 
hw(j)-param(j'4)12.d0 

fullwidth(j)-param(j'4) 
dpb(j)-param(j"4-l) 
clp<())-param(j'4-2) 
xx(j)-param(j'4-3) 

enddo 

do j-IJ!p 
b-xx(j) 

c-clp<()1 

d-dpb(J1 
e-trw(J1 
if (fullwidth(J1.eq.QO) then 

if (uq.O.O.and.c.eq.O.O) lhen 
p(j)-().dO 

el<e 

if(dJL0.0) then 
p(j}-awl(-b'c}-atan((x-b)lc) 

p(j)-p(j)lpi 

else 
p(j)-atan(-b'c}-atan((x-b)lc}-atan( -I>' d)+ 

atan((x·bYd) 

p(j)-p(jYpi 
endif 

endif 

else 

if(d.ILO.O) lhcn 

p(j)-(x·b-e)'atan((x·b-e)/c}-(x-l>+<:)'atan((x·I>+<:)/G) 

-{cn)'log((c••2+{x-b-e)''2)1(c"2+{x·l>+<:)"2)) 

-{ -b-e)'aran(( -b-e)lc)+(e-b)'atan((c-b}'c)+ 

ccnJ'Iog((c"2+{-b-e)"2)1(c"2+{c-b)"2)) 
p(jJ-p(j)/(2. pi • c) 

else 
wlca-(x·b-e)'atan((x·b-e)/c}-(x·l>+<:)'aun((x.IJ.K:)Ic) 

-<cn)'log((c"2+{x-b-e)''2)1(c"2+(x-b-+<:)''2)) 

-{-b-e)'atan((-b-e)lc)+(e-b)'all!ll((c-b)lc)+ 

(ci2)'log((c"2+{-b-e)"2)1(c"2+{c·b)"2)) 

wka-wl;al(2'pi'c) 

wl:b-(x·b-e)'atan((x·b-e)/d}-(x·l>+<:)'atan((x·l>+<:)/d) 

-{d'2)'log((d''2+{x-b-e)''2)1(d''2+(x·l>+<:)''2)) 

-{·b-e)'atan((-b-e)/d)+(e-b)'aWI((e·bYd)+ 

(d'2)"log((d''2+{-b-e)"2)1(d''2+{c·b)"2)) 
wlt-.... ·kb'(1•pi•e) 

p(j)-wlca·wkb 

endif 

endif 
cnddo 

return 
end 

subroutine 1fir(,.)·.sig.ndata.a.ma.lista.mfit.eovar.ncvm.chisq. 
•cocff) 

implicit n:.aJ•8 {a-h.o-z) 
·parameter (m::ux-50) 

dimension x(ndata).y(ndata).sig(ndata).a(ma).lista(ma). 

rovar(ncvm.nn·m).bcta(mma.J.).afunc(mma.x.) 
dimension cocff(ncvm•4) 
ll-mfit+l 
do 12 j-I.ma 
ihit~ 

do II k-l.mfi1 

if (lis~>(k).cq.j) ihit-ihit+ I 

11 continue 
if (ihit.eq.O) then 

lista(kk)-j 

l<K-kk-1 

else if (ihiLgt.l) then 

pause 'improper set in lista' 

cndif 
12 continue 

if (l<K.nc.(ma-1)) pau,;c "improper«:! in lista· 

do 14j-l.mfil 

do 13 k-l.mfit 

co,·ar(j.k)-0. 

13 continue 
bcta(j)-0. 

14 continue 
do 18 i-1.nda:o 

call grecn>(x(i).afunc.ma.cocft) 

ym-y(i) 
if(m:~t.lLma) L"len 

do 15 j-mtit-l.ma 



ym-ym-a(lista(j))~afunc(lista(j)) 

15 continue 
cndif 
sig2i-1Jsig(i) .. 2 
do 17 j-l.mfit 

wt-afunc(lisU.(j))*sig2i 

do 16 k-lj 
covar(j.k)-covar{j.k)+wt•afunc(lista(k)) 

16 continue 
beta(jH>cta(j)+ym•wt 

17 continue 
IS continue 

if (mfiLgt. I) then 
do 21j-2.mfit 

do 19 k-lj-1 
covar(kj)-covar{j.k) 

19 continue 
21 continue 

endif 
call gaussj(covar.mfit.ncvm.beta.l.l) 
do 22 j-l.mfit 

a(lista(j))-beta(j) 

22 continue 
chisq..O. 
do 24 i-l.ndata 

call grecns(x(i).afunc.ma.cocf!) 

sum..O. 
do 23 j-l.ma 

sum-sum+a(j)•afunc(j) 

23 continue 
chisq-chisq-+{(y(i)-sum)lsig(i))••2 

24 continue 
call covsn(covar .ncvm.ma.lista.mfil) 
rerum 
end 
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C.2 Program : SSELF 

C.2.1 Introduction 

Program SSELF computes the horizontal displacements at the surface of an elas
tic half space due to a finite vertical strike slip fault with given orientation and 
dimensions. The displacement is calculated at specified coordinates corresponding 
to given GPS and/or trilateration data points and is output in the form of GPS 
relative velocities and/or trilateration line-length changes. The program requires 
up to four input files and produces several output files. SSELF is also interactive, 
asking several questions relating to the input data and input/output files. 

C.2.2 Input Files 

C.2.2.1 Dislocation Geometry File 

This is used to specify the parameters of the individual fault segments to be used 
in the model. Several segments can be combined to produce a single fault i.e. a set 
of segments that are treated as one and as such have one slip rate assigned and/or 
estimated to them. Fixed fault segments can also be assigned. The slip rates on 
these segments are not estimated when performing a least-squares inversion. An 
example input file is: 

•start coordinates end coordinates vidth depth slip err seg 

••••••••.•••• , ••••••.••••••••••••.•••• , •• ** ••.••••••••.••••••••••••••••• 
-120 41 37.3092 34 51 24.9372 -119 38 41.6940 32 58 4.1628 9000.0 11.7 0.00 0.60 SGa 

-120 41 37.3092 34 51 24.9372 -121 11 24.0612 35 39 36.1476 9000.0 11.7 0.00 0.60 SGb 

-121 11 24.0612 35 39 36.1476 -121 54 20.8548 36 19 31.3284 9000.0 11.7 0.00 0.60 SGc 

* 
-121 10 46.4016 36 34 48.0036 -121 15 29.8656 36 38 48.0804 9000.0 08.8 19.0 3.00 SA4 

-121 15 29.8656 36 38 48.0804 -121 20 34.8396 36 42 50.6772 9000.0 08.8 19.0 3.00 SA5 

-121 20 34.8396 36 42 50.6772 -121 25 5.0000 36 46 13.3428 9000.0 08.8 19.0 3.00 SA6 

* 
-121 36 29.0052 36 54 0.2376 -121 41 51.6948 36 57 50.8500 9000.0 12.0 18.4 4.60 SA9 

-121 41 51.6948 36 57 50.8500 -121 46 33.8952 37 2 4.5996 9000.0 12.0 18.4 4.60 SA10 

-121 46 33.8952 37 2 4.5996 -121 52 38.3556 37 5 18.3012 9000.0 12.0 18.4 4.60 SA11 

* 
fixed 

-120 15 36.9396 35 43 10.5168 -119 34 47.2620 35 2 47.2344 9000.0 08.8 38.0 0.10 SAc 

-120 15 36.9396 35 43 10.5168 -120 59 42.0252 36 24 4.6044 9000.0 08.8 38.0 0.10 SAd 

-120 59 42.0252 36 24 4.6044 -121 2 31.5996 36 26 21.6528 9000.0 08.8 38.0 0.10 SAl 

-121 2 31.5996 36 26 21.6528 -121 6 16.8552 36 30 49.4136 9000.0 08.8 38.0 0.10 SA2 

The lines in this input file are in free format. The start and end coordinates 
(columns 1-12) refer to the longitudes and latitudes (in degrees, minutes and sec-
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onds) of the end-points of each segment. Note, if a segment is to be made semi
infinite in length then only the start coordinates matter. Be careful to choose the 
correct start or end point for semi-infinite segments. Width (column 13) indicates 
the down-dip width of the segment. The bottom of the segment is at depth + 
width. Column 14, depth, indicates the depth from the surface to the top of the 
segment. Column 15, slip, indicates either the prior estimate for the slip rate (to 
be used in some of the inversion methods) or the slip rate for the forward model. 
Column 16, is the assigned error estimate for the slip rate in column 15. Column 
17, seg, is an identifying code for each segment e.g. SG = San Gregorio etc. Indi
vidual stars on separate lines slip the individual segments up into segments to be 
combined as mentioned above. Segments listed after the line marked "fixed" are 
fixed segments whose slip rates are not estimated in any inversion. 

C.2.2.2 Station coordinate file 

This file lists the coordinates of all the stations that you wish to calculate displace
ments for (both GPS and trilateration data). The file may be a general coordinate 
file containing more station coordinates than actually used. The station coordinate 
file should be in Menlo Park format. An example of this file is: 

bayn angel n 37 51 42. -122 25 45. n 238.05 bb unstamped USCGS mark 

bayn antonio a 38 11 36.954 -122 44 00.866 a 356.80 bb 'antonio 1930' USGS 

bayn arrow a 38 16 27.329 -122 23 56.532 h 297.36 bb 'arrowhead 1929' USCGS 

bayn bald ecc p 37 53 01.6723 -122 13 14.6659 n 583.10 aa 'bald ecc 1977' RCER 

gps mt vaca 38 23 52.36246-122 06 10.52698 820.7210 e 

gps pt reyes 38 04 46.95540-122 52 07.42314 374.4860 e 

gps ptreyhd3 37 59 47.05731-123 00 53.66235 152.1800 e 

The format of this file is (6x,a8 ,5x, i2, 1x, i2, 1x,f8. 5, i4, 1x, i2, 1x,f8. 5). 

C.2.2.3 Line Length Data File 

This is an optional input file containing trilateration data results in Menlo Park 
format. An example of this file is: 

rate arrow dan 0.000 5 7434.628-0.0005 0.0005 72.9 

rate arrow hooker 0.000 5 12006.525 0.0007 0.0008 341.3 

rate arrow rector 0.000 7 19165.043-0.0006 0.0005 29.6 

rate arrov slaught 0.000 4 16648.361 0.0004 0.0011 143.1 

rate arrow tulucay 0.000 8 16077.902 0.0014 0.0006 93.9 

rate dan hooker 0.000 6 14300.937 0.0013 0.0004 309.6 

The format of this file is (13x, a8, 1x, a8, t44 ,f10. 3, t54, f7 .4, 1x,f6 .4, t69 ,f5 .1). 
The last four columns indicate the line-length, change in line length, the standard 
deviation, and the lines' azimuth (angle of the second station from the first, clock
wise from north). 
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C.2.2.4 GPS Data File 

This is an optional input file containing GPS data results in DISPINVL format 
(written by Paul Segall). An example of this file is: 

'palo 

'p.e. 

's.l.b. ' 

'e.b. 

'slleeney ' 

'slleeney ' 

'slleeney ' 

'slleeney ' 

-.0011 0.0022 0.0046 0.0020 0.0037 0.0148 

0.0018 0.0024 0.0006 0.0022 -.0017 0.0162 

0.0106 0.0021 -.0053 0.0021 0.0037 0.0148 

0.0103 0.0021 -.0084 0.0021 0.0066 0.0151 

This file is in free format. The numerical columns indicate (in order) Ve, ue, Vn, 
Un, Vu, Uu in metres. Note that the vertical velocities are not used in the program. 

C.2.3 Options in Program 

Once the program is running there are several options/questions. Questions that 
need a brief explanation are 

• trilateration data available? - do you want to include trilateration data in 
the inversion. 

• GPS data available? - do you want to include GPS data in the inversion. 

• Do you want fault segments printed? Prints out a file of the fault segments 
(latitude and longitude) in a format suitable for plotting with GMT or other 
plotting package. 

• Output line length change vs azimuth? - Allows you to specify an extra 
output file containing the observed and predicted line-length changes and 
the azimuth of the line. 

• Make end faults very long? - This option allows you to make some fault 
segments semi-infinite in length. This is useful for eliminating edge effects. 
If you answer 'y' then you are presented with a table of which segments you 
require to make semi-infinite. 

• Output graphics file? - Allows the user the option to print a file containing 
information for plotting three-dimensional pictures of the fault model. 

In the program there are six possible modeling methods 

• Forward model 

• Weighted least squares inversion 

• Weighted damped least squares inversion 
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• Weighted Minimum length inversion 

• Stochastic inversion 

• Singular value decomposition 

See Menke [1984] for a description of the different methods. The stochastic inver
sion uses flatness or smoothing between adjacent segments (an additional menu 
allows the user to select which segments are physically adjacent) as a type of a 
priori information. The stochastic inversion was used in the thesis. An additional 
option in the weighted least squares inversion allows the user to place a positivity 
constraint on the estimated slip rates (see Menke [1984]). However, at the present, 
this option does not seem to work. 

C.2.4 Output files 

Many output files are printed including some optional ones described above. The 
most important of these are the general output file which is mostly self-explanatory 
and output files that can be used as input into DISPINVL which combines dif
ferent geodetic data. The DISPINVL output files are in the same format as the 
line-length and GPS data input files but instead include the predicted line-length 
changes and relative velocities. 
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C.2.5 Source Code 

program sself 

cc 

cc name 
cc 

sself 

cc purpose calculating 3d deformation using okada 's equations 
cc for: strike slip fault 

cc 
cc sr called : poly44,gfvstr,dummy,fchisq,dpoinv,dgemm,dgemv, 
cc srectf,getint,gctopt,gctfile2,norman. 
cc lsinv ,pls,wdlsinv,mlinv,stocinv ,svdinv, 
cc add,sub 

cc 
cc remarks : This version allows the usc of four different 
cc inversion schemes as described in Mcnke(Geophysical 
cc Data Analysis, Discrete Inverse Theory] 

cc or just a forward mOOel to be calculated 
cc Subroutines norman, srectf are courtesy of Y.Okada 

cc Subroutines dgemm, dgemv, dpoinv, and dgesvd are 
cc from the bias and lapack libraries which are 
cc also included in the nag library (I think!) 
cc Subroutines getopt, getfile2. getint are from 
cc the utilsubs.f library from P. Segall's dispinvl program 
cc Subroutine poly44 also came from P. Segall's dispnvl 
cc Subroutines pls.add and sub are from W. Menke's book 
cc Pan of the subroutine svdinv may have come from 
cc somewhere else but I cant remember! 
cc 
cc author S.D.P. Williams 

cc 
cc version 1.0 
cc 
cc created 1995 

cc 

cc copyright : S. Williams 
cc 1995 Dept. of Geological Sciences 

cc 
cc 
c* 

University of Durham 
Durl!am 

declarations 

implicit none 

integer ij,k,l,flnum,nflt,n 
integer mpar,m.nsta 
integer ndata,mseg 
integer uot,ust,ugm,udt 
integer numll,numgps,free,nfree 
integer ilatd,ilond,ilatm,ilonm 
integer add,sfll,sft2,answer,ierr 

parameter (mpar - 360) 

parameter (ftnum - 10) 

integer nseg(mpar) 
integer iseg(mpar) 

real*8 Iatf(mpar,2,3).lonf(mpar,2,3) 
real*8 lat(3 ),lon(3),staloc(mpar,2) 

real*8 ftat(mpar,2),fton(mpar,2) 
real*S slat,slon 
real*8 xftt(mpar,2),yftt(mpar,2) 

real*8 xl,x2,yl,y2,theta,xx,yy 

real*S al,a2,a3,u ll,u 12,u2l,u22,u3I,u32 

reai*S bl,b2,b3,bigu,ux,uy 

real*8 xsta(mpar),ysta(mpar) 

real*8 len(mpar),d(mpar) 

reai*S w(mpar),xstart(mpar),xprior(mpar) 

real*8 dcp(mpar),dx,dy,dtr 

reai*S origin(2) 

real*S smallJon _ sum,lat_ sum 

real*8 pi,alp,azimuth 

real*8 toscc(3) 

real*8 xav.xbdav,xtmp(mpar),Xbdtmp(mpar),trnpg(mpar,mpar) 

reai*S xbd(mpar),gbar(mpar,mpar).dbar(mpar) 

reai*S gech(mpar),gesd(mpar).gnch(mpar).gnsd(mpar) 
real*8 guch(mpar),gusd(mpar) 

real*S llch(mpar),llsd(mpar),distan,azi(mpar) 

reai*S yo(mpar),stdy(mpar) 
real*8 yobs(mpar),yfxd(mpar) 

real*8 covd(mpar,mpar) 

reai*S g(mpar,mpar).gup(mpar,mpar) 
real*S crchis,cchis,cnnns 
reai*S yc(mpar),yf(mpar),yu(mpar) 

real*8 omc(mpar) 
reai*S covxn(mpar,mpar),xn(mpar) 
real*8 covm(mpar,mpar) 

reai*S gp(mpar,mpar),dp(mpar,mpar),e(mpar) 
reai*S wm(mpar.mpar),matd(mpar,mpar),matdt(mpar.mpar) 

character*8 gpssn(2,mpar),llsn(2.mpar),sta(mpar) 
character•90 line 
character*32 ofile,filenm,dlcnm,dname 
character* I dataop(6).pos 

character*5 sname(mpar) 
data pi/3.141592653589793d01 

data tosec/3600.0d0,60.d0,I.d0/ 
data smalVO.Id-01/ 

uot-10 
ust•ll 

udt-12 

ugm-13 
dtr- datan(l.Od0)145.0d0 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- read input information and open output fi Ies --- c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

Call getfile2(uot,'Outpnt file name','out','formatted', 
+ ofile) 

call getopt('trilateration data available?' ,'yin ','n ',dataop(l )) 
call getopt('GPS vector data available? ','y/n','n',dataop(2)) 

call getopt('Do you want fault segments printed ? '. 
+ 'yin' ,'n' ,dataop(3)) 

if (dataop(l).eq.'y') then 

call getopt('Output line length change vs azimuth ? '. 
+ 'y/n','n',dataop(4)) 

endif 

if(dataop( I ).eq.'n '.and.dataop(2).eq. 'n ') then 
write(O,*) 'No input data ...... .' 

write(O,*) 'exiting ..... : 
stop 

endif 

Call getfile2(ust,'Station coordinate file name','in', 
+ 'formatted',filenm) 

Call getfile2(ugm,'Dislocation geometry file name','in', 

+ 'formatted',dlcnm) 

call getopt('Make end faults very long ?','y/n','n'.dataop(6)) 

ccccccccccccccccccccccccccc 
c --- Read input data --- c 

ccccccccccccccccccccccccccc 
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if(dataop(1).eq.'y') then 
call getfi1e2(udt,'line length data file name', 

+ 'in', 'formatted' ,dname) 
j-1 
read(udt,l O,end-20) llsn(l j),llsn(2,j),distan.llchO),llsdO), 

+ aziO) 
I 0 format( 13x,a8,1 x,a8,t44,fl 0.3,!54,!7.4,1 x,f6.4,t69,f5.1) 

llchU)-llchU)*l.d03 

llsdUHisdU)*I.d03 
j-j+l 
goto 5 

20 numll- j-1 
close(udt) 

endif 

if(dataop(2).eq.'y') then 

call getfile2(udt,'gps vector data file name','in', 
+ 'formatted',dname) 

j-1 
25 read(udt,• ,end-30) gpssn(1,j),gpssn(2j),gechO),gesdU). 

+ gnchU).gnsdU).guchO),gusdU) 

gechU)-gechU)*l.d03 
gesdO)-gesdU)*1.d03 

gnchU)-gnchU)*l.d03 

gnsdUJ-gnsdUJ*l.d03 
guchO)-guchO)*l.d03 
gusdUJ-gusdU)*l.d03 

j-j+l 
goto 25 

30 numgps - j-1 
close(udt) 

endif 

ndata-numll+(numgps*2) 

j-1 
35 read(ust,40,end-45) staU),ilatd,ilatm,lat(3), 

+ ilond,ilonm,lon(3) 

40 format( 6x,a8,5x,i2,1 x,i2,1 x,18.5,i4,lx,i2,1 x,ffi.S) 

lat(l )-real(ilatd) 
lat(2)-real(ilatm) 
Ion( I )-real(ilond) 

lon(2)-real(ilonm) 
stalocU,1 )-abs(lat( I ))+lat(2)/60.dO+lat(3)13600.d0 

stalocU.1 )-sign(stalocU.1 ),lat( I)) 
stalocU.2)-abs(lon(l ))+lon(2)160.dO+Ion(3 )13600.d0 

stalocU.2)-sign(stalocU.2),lon( 1)) 
j-j+l 

goto 35 
45 nsta-j-1 

close(ust) 

ccccccccccccccccccccccccccccccccccccccccccccc 
c --- Read in dislocation geometry file --- c 
ccccccccccecccccccccccccccccccccccccccccccccc 

read(ugm,'(a)') line 

read(ugm,'(a)') line 
1-1 

free-0 

nflt-1 
nseg(nflt)-1 

50 read(ugm,'(a)',end-100) line 

if(line(I :5).eq.'fixed') then 

nfree-1-1 
free-! 

nflt-nflt-1 
goto 50 

else if(line(l:l).eq.'*') then 

nseg(nflt)-nseg(nflt)-1 
nflt-nflt+l 

nseg(nftt)-1 
goto 50 

else if(line(I: l).eq.'#') then 

goto 50 

endif 

read(line,*) 

+ (lonf(l,l,i),i-1,3), 

+ (latf(l,l,i),i-1,3), 

+ (lonf(l,2,i),i-1,3), 

+ (latf(l,2,i),i-1,3), 

+ w(l),dep(l),xstart(l),xbd(l), 

+ sname(I) 

if(frec.eq.O) then 

nseg(nflt)-nseg(nflt)+ I 
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endif 

xprior(l)-xstart(l) 
d(l)-w(l)+dep(l) 

do m-1,2 

flat(l,m) - O.dO 
flon(l,m) - O.dO 

do n-1.3 
flat(l,m)-

+ flat(l,m) + abs(latf(l,n'.,n))*tosec(n) 

fton(l.m)-
fton(l,m) + abs(lonf(l,m,n))*tosec(n) 

enddo 

ftat(l,m)- sign(flat(l,m),latf(l,m,l)) 

ftat(I.m)- flat(l,m)ltosec(l) 

flon(l,m) - sign(fton(l,m),lonf(l,m,l)) 

fton(l.m) - flon(l,m)ltosec(I) 
enddo 

1-1+1 

goto 50 

100 close(ugm) 

mseg-1-1 

iseg(I)-1 

do j-2,nflt 

isegU)-isegU-1 )+nsegU-1) 

enddo 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Let centre of mass of station file be origin for x,y --- c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

Ion_ sum-D.dO 
lat_sum..().dO 

do j-I,nsta 
lat _ sum-lat_ sum+stalocU.I) 

Ion_ sum-Ion _sum+staloc0.2) 
enddo 
origin( 1 )-(Ion_ sum/nsta) 
origin(2)-(lat_ sum/nsta) 

write(uot,*) 'Origin is at ' 
write(uot,'(fl2.5,2x.f12.5)') origin(l).origin(2) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Convert latl1ong for faults and stations to x-y(km) --- c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

write(uot,*) 'Station positions' 
do j-l,nsta 

call poly44(origin,stalocU,2),stalocU.I ), 
+ xstaU),ystaU)) 

write(uot, '(2(ffi.3,1 x),1 x,a8,1 x,2(fl2.5 ,I x)) ') 

+ xstaU),ystaU).staU). 
+ stalocU.2),sralocU.I) 
enddo 
write(uot,*) .. 
do I-1,mseg 
do m-1,2 

call poly44(origin,flon(l,m),flat(l,m), 
+ xflt(l,m),yftt(l,m)) 

enddo 

enddo 

ccccccccccccccccccccccccccccccccccc 
c --- Compute fault constants -- c 
ccccccccccccccccccccccccccccccccccc 

do 1-I,mseg 
dx-xflt(l,2)-xflt(1,1) 
dy-yftt(l,2)-yftt(l,l) 

len(l)-sqrt(dx**2 + dy**2) 
azi(l)-atan2(dy,dx) 

write(uot, '(5(ffi.3,Ix),f5.1 )') 

+ xftt(l,1),yftt(l,l), 

+ xftt(l,2),yflt(l,2), 

+ len(l),azi(l)/dtr 

enddo 

write(uot,'(a)') " 

if(dataop(6).eq.'y') then 

writc(uot,'(a)') 'Faults whose lengths have been increased' 

do l-I,mseg,4 

write(6,'(4(i3,1x,a4,3x))') (l+j.sname(l+j).j-0,3) 

enddo 

write(6,*) " 



write(6,*) 'Enter end faults (0 to finish)' 
Ill rcad(5,*) i 

if(i.ne.O) then 
if(i.gt.mseg) goto Ill 
len(i)-l.d06 

if(azi(i).gt.O.dO) azi(i)-123.d0*dtr 
if(azi(i).le.O.dO) azi(i)--57.d0*dtr 
writc(uot, '(i3, I x,5(f8.3, I x),f5.1, I x,a4) ') 

+ i,xftt(l,l),yflt(l,l), 
+ xftt(l,2),yftt(l,2), 

+ len(l),azi(l)/dtr,sname(i) 

goto II I 
endif 

write(uot,'(a)') " 

endif 

cccccccccccccccccccccccccccccccccccccccccccccc 
c --- Start calculating greens functions --- c 
ccccccccccccccccccccccccccccccccccccccccccccc 

if(dataop(l).eq.'y') then 

write(O,*) 'Calculating p.ds for line length data' 

do j•l,numll 
sftl-0 

sft2-0 

do k•l,nsta 
if(llsn(lj).eq.sta(k)) then 

xl-xsta(k) 
yl-ysta(k) 

sfll·l 
endif 

enddo 
do k-l,nsta 
if(llsn(2j).eq.sta(k)) then 

x2-xsta(k) 
y2-ysta(k) 

sft2·1 
end if 

enddo 
if(sfll.eq.O.or.sfl2.eq.O) then 
write(O,'(a,$)')'Unable to find station(s). ' 

if(sfll.eq.O) write(O,'(a8,lx,$)') llsn(lj) 

if(sfl2.eq.O) write(O,'(a8,lx,$)') llsn(2j) 
write(O,*)" 

stop 
endif 
theta-atan2(y2-yl ,x2-x I) 

yo(j)-IIch(j) 

cccccccccccccccccccccccccccccccc 
c --- Multiply st.dev. by 2. - c 
c --- If required ! - c 
cccccccccccccccccccccccccccccccc 

stdy(j)-llsd(j)*2 
covd(jj)-(Usd(j)*2)**2 

stdy(j)-llsd(j) 

do I- l,mseg 
xx•(x 1-xflt(l,l ))*dcos(azi(l)) + (yl-yflt(l,l))*dsin(azi(l)) 

yy--(x 1-xflt(l,l))*dsin(azi(l)) + (yl-yflt(l, I ))*deos(azi(l)) 

call srcctf(alp,xx,yy ,d(I),len(I), w(I), l.dO,O.dO, 
+ -l.dO,O.dO,O.dO,a l,a2,a3,u \l,u\2,u2\,u22,u3\,u32) 

ux-al*cos(azi(l))-a2*sin(azi(l)) 
uy-al*sin(azi(l))+a2*cos(azi(I)) 
a l-ux 
a2-uy 

xx-(x2-xflt(l,l))*deos(azi(l)) + (y2-yftt(I,l))*dsin(azi(l)) 
yy•-(x2-xflt(I,l))*dsin(azi(I)) + (y2-yflt(l,l))*deos(azi(l)) 

call srectf(alp,xx,yy ,d(l),len(l), w(l), l.dO,O.dO, 
+ -l.dO,O.dO,O.dO,bl,b2,b3,u II ,u 12,u21 ,u22,u31 ,u32) 

ux-bl•cos(azi(l))-b2*sin(azi(l)) 

uy-bl*sin(azi(l))+b2*cos(azi(l)) 

bl-ux 

b2-uy 

bigu-(bl-al)*cos(theta)+(b2-a2)*sin(theta) 

g(j,l)- bigu 

enddo 

enddo 

endif 

if(dataop(2).cq.'y') then 

add-0 

if(dataop(l).cq.'y') add•nurnll 
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write(O,*) 'Calculating p.ds for gps data' 
do j-1 ,numgps 
sftl-0 
sfl2-0 

do k-I,nsta 
if(gpssn(l ,j).eq.sta(k)) then 
xl-xsta(k) 

yl•ysta(k) 

sfll-1 
endif 

enddo 
do k-l,nsta 

if(gpssn(2j).eq.sta(k)) then 
x2•xsta(k) 

y2-ysta(k) 

sfl2·1 
end if 

enddo 
if(sfll.eq.O.or.sfl2.cq.O) then 

writc(O,'(a,$)')'Unablc to find station(s). ' 
if(sfll.cq.O) write(O,'(aS,Ix,$)') llsn(lj) 

if(sfl2.cq.O) write(O,'(a8,1 x,$)') llsn(2j) 
write(O,*)" 

stop 
end if 

yo(add+j*2-l) - gnch(j) 

yo(add+j*2) - gcch(j) 

stdy(add+j*2-l) - gnsd(j) 

stdy(add+j*2) - gesd(j) 
covd(add+j*2-l ,add+j*2-l )-gnsd(j)**2 
covd(add+j*2,add+j*2) •gesd(j)**2 
do 1-l,mseg 

xx-(x 1-xflt(I, I ))*deos(azi(l)) + (yl-yflt(l,l))*dsin(azi(l)) 
yy--(xl-xflt(l,l))*dsin(azi(l)) + (yl-yflt(l,l ))*dcos(azi(l)) 
call srcctf(alp,xx,yy ,d(l)Jen(l), w(l), I.dO,O.dO, 

+ -l.dO,O.dO,O.dO,a I ,a2,a3 ,u II ,u 12,u21 ,u22,u31 ,u32) 

xx-(x2-xflt(l,l ))*dcos(azi(l)) + (y2-yftt(l,l ))*dsin(azi(l)) 

yy--(<2-xflt(l, I ))*dsin(azi(l)) + (y2-yflt(l, I ))*dcos(azi(l)) 
call srcctf(alp,xx,yy ,d(l),Ien(l), w(l), l.dO,O.dO, 

+ -l.dO,O.dO,O.dO,bl ,b2,b3,u II,ul2,u21 ,u22,u31 ,u32) 

g(add+j*2-l ,1)-(al-b I )*dsin(azi(l))+(a2-b2)*deos(azi(l)) 
g(add+ j*2,1) -(a 1-b I )*dcos(azi(l))-(a2-b2)*dsin(azi(l)) 
gup(j,l)-a3-b3 

enddo 
enddo 

endif 

ccccccccccccccccccccccccccccccccccccc 
c --- Calculating forward model --- c 
ccccccccccccccccccccccccccccccccccccc 

do j-l,ndata 
yf(j)-O.dO 

do l•l,rnseg 

yf(j)-yf(j)+g(j,l)*xstart(l) 

enddo 
enddo 
do j-l,numgps 
yu(j)-O.dO 

do l•l,rnscg 
yu(j)-yu(j)+gup(j,l)*xstart(I) 

enddo 
enddo 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Remove fixed fault segments from observed data ·- c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

if(mseg.ge.nfrce+ I) then 

if(dataop(3).eq.'y') then 

open(unit-20,file- 'fixed_ scgm ') 
write(20,'(a)') '>' 

end if 

write(uot,'(a)') 'Fixed fault segments : ',rnseg-nfrcc-1 

do j-nfrce+ I ,mseg 

write(uo~ '(i3, I x,4(f9.4, I x).2(f6.1.1 x),2(f5.2, I x)) ') 

+ j,flon(j, I ),flatU, I ),flonQ,2),flat(j,2),wQ),dQ), 

+ xstart(j),xbd(j) 

if(dataop(3).cq.'y') then 

write(20,'(f9.4,2x,f9.4)') 

+ flon(j,I),Hat(j,I) 

write(20,'(f9.4,2x,f9.4)') 

+ HonQ,2),Hat(j,2) 



write(20,'(a)') '>' 
endif 

enddo 

if(dataop(3).eq.'y') closc(20) 

write(O,'(a)') 'Removing fixed fault segments .... .' 
do j-l,ndata 
yfxd(j)-D.dO 
yobs(j)-yo(j) 
do 1-nfree+ l,mseg 
yfxd(j)-yfxd(j)+xstart(l)*g(j,l) 
yo(j)-yo(j)-xstart(l)*g(j,l) 

enddo 
enddo 
else 
do j-l,ndata 
yfxd(j)..O.dO 
yobs(j)-yo(j) 

enddo 
endif 

ccccccccccccccccccccccccccccccccccccccccccccc 
c --- Combine columns of the [g] matrix --- c 
ccccccccccccccccccccccccccccccccccccccccccccc 

write(uot,'(a,i3)') 'Free fault segments: ',nflt 
if(dataop(3).eq.'y') then 
open(unit-20,file-'free _ segm ') 
write(20,'(a)') '>' 

endif 
do j-l,nflt 
do k-iseg(j),iseg(j)+nseg(j)-1 
write(uot,' (i3,1 x,4(f9.4,1 x),2(f6.1,1 x),2(f5.2,1 x))') 

+ k,flon(k,l ),1\at(k,l ),flon(k,2),flat(k,2), w(k),d(k), 
+ xstart(k),xbd(k) 

if(dataop(3).eq.'y') then 
write(20,'(f9.4,2x,f9.4)') 

+ flon(k,l),flat(k,l) 
write(20, '(f9.4,2x,f9.4)') 

+ tlon(k,2),1\at(l<,2) 
write(20,'(a)') '>' 

endif 
enddo 
write(uot,'(a)') " 

enddo 
if(dataop(3).eq. 'y') close(20) 

write(O,'(a)') 'Combining columns of the ]g] matrix' 

do 1-I.nflt 
do j-l,ndata 
tmpg(j,l)-O.dO 
do k-iseg(l),iseg(l)+nseg(l)-1 
tmpg(j,l)-tmpg(j,l)+g(j,k) 

enddo 
enddo 

enddo 

cccccccccccccccccccccccccccc 
c ~-- clear matrix [g] --- c 
cccccccccccccccccccccccccccc 

do j-l,mpar 
do 1-l,mpar 
g(j,l)-O.dO 

enddo 
enddo 

do j-l,ndata 
do 1-I,nl\t 
g(j,l)-tmpg(j,l) 

enddo 
enddo 

doj-l,nflt 
xav..O.dO 
xbdav-D.dO 
do k-iseg(j),iscg(j)+nscg(j)-1 

xav-xav+xstart(k) 

xbdav-xbdav+xbd(k) 
enddo 
xtmp(j)-xav/nscg(j) 
xbdtmp(j)-xbdav/nseg(j) 

enddo 

do j-l,nflt 

xbd(j)-xbdtmp(j) 

273 

xstart(j)-xtmp(j) 
enddo 

write(O,'(a)') 'Done • 

ccccccccccccccccccccccccccc 
c --- Begin Inversion --- c 
ccccccccccccccccccccccccccc 

do 1-l.nflt 
covm(l,l)-xbd(l)**2 

enddo 

cccccccccccccccccccccccccccccc 
c --- Generalise problem --- c 
cccccccccccccccccccccccccccccc 

do j-l,ndata 
dbar(j)-yo(j)lsqrt(covd(jj)) 
do k-l,nflt 
gbar(j,k)-g(j,k)lsqrt(covd(jj)) 

enddo 
enddo 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Weighted Damped or Weighted linear inversion? -- c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

!50 write(6,'(a)') 'I. Forward model ' 
write(6,'(a)') " 
write(6,'(a)') '2. Weighted least squares inve"ion' 
write(6,'(a)') " 
write(6,'(a)') '3. Weighted damped least squares inve"ion ' 
write(6,'(a)') " 
write(6,'(a)') '4. Weighted Minimum length inve"ion' 
write(6,'(a)') " 
write(6,'(a)') '5. Stochastic inversion' 

write(6,'(a)') " 
write(6,'(a)') '6. Singular value decomposition' 

call getint('Select method ',2,answer) 

if(answer.eq.I) then 

continue 

else if (answer.eq.2) then 

call getopt('With or without positivity? ','y/n','y',pos) 

if(pos.eq.'n') then 

call lsinv(gbar,dbar,xn,covxn,ndata.nflt,mpar) 

else 

call pls(gbar,xn.dbar,ndata,nflt.mpar,mpar.gp,dp,e,mpar, 
+ mpar,O.OOOOOI,ierr) 

endif 

else if (answer.eq.3) then 

call wdlsinv(g,yo,covd.xstart,covm,xn,covxn,ndata.nflt,mpar) 

else if (answer.eq.4) then 

call mlinv(gbar,dbar.xn.covxn,ndata,nflt.mpar) 

else if (answer.eq.S) then 

write(6, '(a)') 'using flatness as prior information' 
write(6,*)" 
doj-I,nflt 
write(6,'(i3,lx.a4.a.a4)') j,sname(iscg(j)),' to ', 

+ sname(iscg(j)+nscg(j)-1) 

enddo ,_, 
write(6,*) " 

write(6,*) 'Enter adjacent faults for weighting (0 0 to finish) ' 

200 read(5, *) i,j 
if(i.nc.O.and.j.ne.O) then 

if(i.gt.nHt.or.j.gt.nflt) goto 200 
matd(l.i)--l.dO 
matdt(i,l)--l.dO 
matd(lj)-l.dO 

matdt(j,l)-l.dO 

1-1+1 



goto 200 
cndif 

call dgemm('N', 'N' ,nftt,nftt,l-l,I.dO,matdt,mpar ,matd,mpar, 
+ O.dO,wm,mpar) 

call stocinv(gbar,dbar,xstart,covm,xn,covxn,ndata,nftt,mpar,wm) 

else if (answcr.eq.6) then 

call svdinv(gbar,dbar,xstart,covm,xn,covxn,ndata.nflt,mpar) 

else 

write(6,'(a)') " 
write(6,'(a)') 'Unrecognised number ' 
write(6,'(a)') " 
goto 150 

endif 

cccccccccccccccccccccccccccccc 
c --- Inversion finished --- c 
cccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Check wether inversion has predicted negative slip rates --- c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccCcccccccc 

if(answer.ne.l) then 
do k-l,nftt 
if(xn(k).lt.O.O) then 
write(O,'(a,i3)') 'Negative slip rate for ',k 

end if 
enddo 

ccccccccccccccccccccccccccccccccccccccc 
c --- Calculate predicted motions --- c 
ccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccc 
c --- from inversion --- c 
cccccccccccccccccccccccccc 

call dgemm('N','N',ndata,l,nftt,l.dO,g, 
mpar,xn,mpar,O.dO,yc, 
mpar) 

cccccccccccccccccccccccccccccccccccccccccccccc 
c --- add back effects of fixed segments --- c 
cccccccccccccccccccccccccccccccccccccccccccccc 

do j-l,ndata 
ycU)-ycU)+yfxdU) 

enddo 

call fchisq(ndata,nftt,mpar,yobs,yc, 
stdy,omc,cchis,crchis,cnnns) 

else 

do j-I.ndata 

ycUJ-yfUJ 
enddo 

call fchisq(ndata,O,mpar,yobs,yc, 
stdy,omc,cchis,crchis,cnnns) 

end if 
ccccccccccccccccccccccccccccc 
c --- Print Out Results --- c 
ccccccccccccccccccccccccccccc 

writc(uot,'(4x,3(a6,2x))') 
+ 'Obs. ','Calc. ','Rcsid.' 
write(uot,'(4x,3(a6,2x))') 

+ ·------·.·------·.·------· 
do j-l,ndata 
write(uot,'(i3,lx,3(f6.4,2x))') 

+ j,yobsU)Il.d03,ycU)II.d03, 

+ (yobsU)-ycUJ)Il.d03 
write(30,305) 

+ yobsU),ycU),stdyUJ,(yobsU)-ycUJ)**2J(stdyUJ**2) 
305 format(4(f6.l,lx)) 

enddo 

il"(dataop(l).eq.'y') then 

do j-l,numll 
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do k-l,nsta 
if(llsn(l,j).cq.sta(k)) then 
x 1-staloc(k,l) 
yl-staloc(k,2) 

endif 
enddo 
do k-l,nsta 
if(llsn(2,j).cq.sta(k)) then 
x2-staloc(k,l) 
y2-staloc(k,2) 

cndif 
cnddo 
write(30,300) 

+ yobsU),ycU).stdyU).(yobsU)-ycUJ)**2J(stdyU)**2), 
c + llsn( I j),llsn(2j) 
300 format(4(f6.l,lx),a8,lx,a8) 

enddo 
endif 

writc(uot,'(a)') " 
write(uot, '(a, I x,fl2.5,1 x,fl2.5) ') 

+ 'Chi Square : ',cchis,crchis 
write(uot,'(a)') " 

if(answer.ne.l) then 
write(uot,'(a)') 'Slip Rates' 
write(uot,'(a3,a4,a4,a4,a6,2x,a6,2x,a6)') 

+ 'No ','Fit ','Fit', 
+ ' Orig.' ,' Calc.',' Error' 

do k-I,nftt 
write(uot, '(i2,1 x,a4,a,a4,3(f6.2,2x))') 

+ k,snarne(iseg(k)),' to '. 
+ snarnc(iseg(k)+nseg(k)-1), 
+ xstart(k),xn(k),sqrt(covxn(k,k)) 

enddo 
endif 

ccccccccccccccccccccccccccccccccccccc 
c --- Output til~ for dispinvl --- c 
ccccccccccccccccccccccccccccccccccccc 

if (dataop(l).cq.'y') then 
open(unit-23,file-'model.geod') 
write(O,*) 'Writing model line length data' 
do j-I,numll 
do k-l,nsta 
if(llsn(lj).cq.sta(k)) then 
xl-xsta(k) 
yl-ysta(k) 

endif 
enddo 
do k-I,nsta 
if(llsn(2j).cq.sta(k)) then 
x2-xsta(k) 
y2-ysta(k) 

endif 
enddo 
azimuth-atan2(x2-x l,y2-y I )ldtr 
call norman(azimuth,360.d0) 
distan -sqrt((x2-xl)**2 + (y2-yl)**2)*l.d03 
write(23,120) 'model + ',llsn(Ij),llsn(2,j),O.OOO,l, 

+ distan,ycU)II.d03,0.0005,azimuth 
if(dataop(4).cq.'y') then 
write(I8,'(f5.1,1 x,3(n.4,1 x))') azimuth,ycU)II.d03, 

+ llchUJ.llsctUJ 
endif 

120 format( a 13,a8,1 x,a8,3x,f6.3,i4,fl 0.3,n .4,1 x,f6.4,1 x,f5.1) 

enddo 
close(23) 

end if 
if(dataop(2).eq.'y') then 
open(unit-24,file-'model.gps') 
add-0 
if(dataop(l).cq.'y') add-numll 
write(O,*) 'Writing model gps data' 
do j-l,numgps 
do k-I,nsta 
if(gpssn(lj).eq.sta(k)) then 

slat-staloc(k,l) 
slon-staloc(k,2) 

endif 
enddo 
write(24, '(I x,2(al,a8,a 1,6x),3(2x,f6.4,1 x,f6.4))') 

+ char(39),gpssn( I j),char(39),char(39),gpssn(2j),char(39), 

+ yc(add+j*2)1I.d03,0.0005,yc(add+j*2-l )/l.d03,0.0005,0.0,0.000 
write(25, '(fl2.5,fl2.5,2xfl .2,a8,2x,a8) ') 

+ slon,slat,yuUJ,gpssn( I j),gpssn(2j) 



enddo 
closc(24) 

endif 

ccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Write out fault file for graphics progs --- c 
ccccccccccccccccccccccccccccccccccccccccccccccccccc 

if(answer.ne.l) then 

call getopt('output graphics file ?','y/n','y' ,dataop(5)) 

if(dataop(5).eq.'y') then 

do i-I.nHt 
do k-iscg(j),iscgU)+nscg(j)-1 

write(23,500) int(lonf(k,l,l)), 

+ int(lonf(k, I ,2)),lonf(k, I ,3 ), 
+ int(latf(k, I ,I )),int(latf(k, I ,2)),latf(k,l ,3), 

+ int(lonf(k,2, I )),int(lonf(k,2,2) ),lonf(k,2,3 ), 

+ int(latf(k,2, I )),int(latf(k,2,2)),latf(k,2,3 ), 
+ w(k),dep(k),xn(j),sqrt(covxn(jj)),sname(k) 

enddo 
enddo 
if(mseg.ge.nfree+ I) then 

do k-l,nfree+l,mscg 
write(23,500) int(lonf(k,l,l)), 

+ int(lonf(k, I ,2)),lonf(k, I ,3 ), 

+ int(latf(k, I, I )),int(latf(k, I ,2)),latf(k, I ,3), 

+ int(lonf(k,2, I )),int(lonf(k,2,2) ),lonf(k,2,3), 
+ int(latf(k,2,l)),int(latf(k,2,2)),latf(k,2,3), 

+ w(k),dep(k),xprior(k),O.O,sname(k) 

enddo 
endif 
endif 
endif 

500 format(2(i4,i3,f8.4,i3,i3,f8.4, I x).f6.1 ,f5.l.f5 .2, 
+ f6.2,lx,a4) 

999 stop 

2000 print*, 'Error in reading station file' 

stop 
end 

subroutine dummy(Hnum,n) 

ccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- reads unwanted lines in an input file --- c 
ccccccccccccccccccccccccccccccccccccccccccccccccc 

integer n,j,flnum 
do j-l,n 

read(Hnum, *) 

enddo 

return 
end 

cccccccccccccccccccccccccccccccc 
c --- normalize the angle --- c 
cccccccccccccccccccccccccccccccc 

subroutine norman(ang,n) 

input 
n : normalizing range 

input/output 
ang : angle normalized within (0 - n) 

real*8 n,b,ang 
b-n 

I if(ang.lt.O.) then 

ang-ang+b 

go to l 

elscif(ang.gt.b) then 

ang-ang-b 

go to l 

endif 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccc 
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c --- General least squares inversion -- c 
ccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine lsinv(g,d.m,covm.ndata.npar,mpar) 

implicit none 

INPIIT 

iilteger ndata,npar,mpar 

real*8 g(mpar,mpar).d(mpar) 

OUTPIIT 

real*8 m(mpar),covm(mpar,mpar) 

INTERNAL 

integer j,k,ipar 

parameter (ipar-360) 

real*S gt(ipar,ipar) 
real*S check(ipar),worka(ipar.ipar) 

real*S gmg(ipar,ipar) 

do j-I.ndata 

do k-I,npar 
gt(kj)-g(j,k) 

enddo 
enddo 

call dgemm('N','N' .npar,npar.ndata.l.dO, 
+ gt,ipar,g,mpar,O.dO, 
+ work.a,ipar) 

call dpoinv(npar,worka,ipar,check) 

do j-l,npar 
do k-I,npar 
covm(j,k)-worka(j,k) 

enddo 

enddo 

call dgemm('N' ,'N' ,npar,ndata,npar,l.dO, 

+ worka,ipar,gt.ipar,O.dO. 
+ gmg,ipar) 

call dgemv('N' ,npar,ndata.l.dO, 
+ gmg,ipar,d.I,O.dO,m,l) 

return 
end 

ccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- General minimum length inversion -- c 
ccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine mlinv(g,d,m,covm,ndata.npar,mpar) 

implicit none 

INPIIT 

integer ndata,npar,mpar 

real*S g(mpar,mpar),d(mpar) 

OUTPIIT 

real*S m(mpar),covm(mpar,mpar) 

INTERNAL 

integer j,k.ipar 

parameter (ipar-360) 

real*S gt(ipar.ipar) 

real*8 check(ipar),worka(ipar,ipar) 

real*8 gmg(ipar.ipar) 

do j-I,ndata 

do k-l,npar 

gt(kj)-g(j.k) 

enddo 

enddo 



call dgemm('N', 'N' ,ndata,ndata,npar,l.dO, 

+ g,ipar,gt,ipar,O.dO, 
+ worka,ipar) 

call dpoinv(ndata,worka,ipar,check) 

call dgemm('N' ,'N' ,npar,ndata,ndata,l.dO, 

+ gt,ipar,worka.ipar,O.dO, 
+ gmg,ipar) 

call ctgemv('N',npar,ndata,l.dO, 
+ gmg,ipar,d,I,O.dO,m,l) 

return 
end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Least squares inversion with positivity constraint --- c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine pls(g,xm,d,n,m.nst,mst,gp,dp,e,npst,mpst,ierr) 

implicit none 

integer n, m, nst, mst, npst, mpst, ierr 
integer i,j,k,iadd.izmin,nlist 

reai•S g(nst,mst), xm(mst), d(nst), test 

real*8 dp(npsl), e(npst), gp(npst,mpst) 

real*8 t,alfa,gmax.zmin 

integer list(360),itr(360),igp(360),mcur 

rcal*8 grade(360), z(360) 

real*8 u(360) 

common /plscom/ mcur, itr, igp 
common /ucom/ u 

test - 0.00000 I 

do i-1, n 
dp(i)- d(i) 

enddo 
mcur- 0 
do i-l,m 
itr(i)-0 
igp(i)...{) 

xm(i)-{).0 
z(i)-0.0 

cnddo 

do i-1, 3*m 

doj-1, n 

eUJ- dU) 
do k-1, m 

eU) - eG) - gQ,k)*xm(k) 
enddo 

enddo 

doj-1, m 

gradeQ)-0.0 

do k-1, n 
gradeQ) - gradeG) + g(kj)*e(k) 

enddo 

end if 

zmin- 0.0 
izmin- 0 
doj-1, m 
if (itr(j). ne. 0 .and. z(j). It. zmin) then 

izmin-j 
zmin- z(j) 

end if 
enddo 

if(zmin.ge.-test) then 
do k-1, m 

if (itr(k).ne.O) then 

xm(k)- z(k) 

endif 

enddo 

else 

doj-1, m 

alfa- l.e30 

do k-1. m 
if (itr(k).ne.O) then 

t - xm(k) I (xm(k}-z(k)) 
if (t.lt.alfa) then 

alfa-t 
end if 

end if 
enddo 

do k-1, m 

if (itr(k). ne. 0) then 
xm(k)-xm(k}+alfa•(z(k}-xm(k)) 

end if 
enddo 

nlist...{) 

do k-1, m 
if (itr(k).ne.O.and.xm(k).le.test) then 
nlist-nlist+ I 
list(nlist)-k 

end if 
enddo 

do k-1, nlist 
call sub(g,z,d,n,m,mst,nst,gp,dp,mpst, 

npst,test,list(k),ierr) 
if(ierr.ne.O) then 
print* ,"after sub" 
return 

end if 
enddo 

zmin- 0.0 
izmin- 0 
dok-I,m 
if (itr(k).ne.O.and.z(k).le.zmin) then 

izmin-k 
zmin-z(k) 

end if 
enddo 
if(izmin.eq.O.or.zmin.gt.-test) then 
goto 15 

end if 

enddo enddo 
15 continue 

gmax...{).O end if 

iadd - 0 enddo 
doj-1, m 

if( itr(j).eq.O.and.gradeQ).gt.gmax ) then 

iadd - j ierr-2 

gmax - gradeG) return 
endif end 

enddo 

if(gmax.Ie.O.O) then 

ierr-0 
print*,"gmax<O" 
return 

endif 

call add(g,z,d,n,m,mst,nst,gp,dp,mpst,npst,test,iadd,ierr) 

if(ierr.ne.O) then 

print* ,"after add" 
return 
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subroutine add(g,xm,d,n,m,ns~mst,gp,dp,npst,mpst,test,iv,ierr) 

implicit none 

integer n. m, nst, mst, npst. mpst, ierr 
integer iv ,ij.k: 

rcal*8 g(nst,mst), xm(mst), d(nst), test, gp(npst,mpst). dp(npst) 

real*8 alfa,beta,gama,t 



real*8 u(360) 

integer itr(360),igp(360),mcur 

common /plscom/ mcur, itr, igp 
common /ucornl u 

if(iv.lt.l.or.iv.gt.m) then 
print*,"iv<l or iv>m 11 

ierr-1 
return 

endif 

if(itr(iv).ne,O) then 

print* ,"itr(iv).ne.O" 
ierr-1 
return 

end if 

mcur - mcur + I 
igp(mcur)-iv 
itr(iv)-mcur 

do i-1, n 
gp(i,iv)- g(i,iv) 

enddo 

do j-1, mcur-1 
k- igp(j) 
beta - -u(k) • gp(j,k) 
gama- O.dO 
do i-j,n 
gama- gama + gp(i,iv)*gp(i,k) 

enddo 

gama - gama I beta 
do i-j,n 
gp(i,iv) - gp(i,iv) - gama*gp(i,k) 

enddo 
end.do 

if(n.gt.mcur) then 
alfa- O.dO 
do i-mcur, n 
alfa- alfa + gp(i,iv)**2 

enddo 

alfa - sqrt( alfa ) 

if(gp(mcur,iv).lt.O.dO) then 
alfa- -alfa 

end if 

u(iv) - -alfa 
t - gp(mcur,iv) + alfa 

it( abs(t) .It. test ) then 
ierr-1 
print* ,"abs(t)<test" 
print* ,abs(t),test 
return 

end if 

gp(mcur,iv) - t 
beta- -u(iv) * gp(mcur,iv) 
gama- O.dO 

do i- mcur, n 
gama- gama + dp(i)*gp(i,iv) 

enddo 

gama - gama I beta 

do i - mcur, n . 
dp(i) - dp(i) - gama*gp(i,iv) 

enddo 

else 
u(iv) - gp(mcur,iv) 

end if 

do i-mcur,l,-1 

t- dp(i) 
do j-i+ l,mcur 
k- igpQ) 

t - t - gp(i,k) • xm(k) 
enddo 

xm(igp(i)) - t I u(igp(i)) 
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enddo 

return 
end 

subroutine sub(g,xm,d,n,m,nst,mst,gp,dp.npst,mpst,test.iv,ierr) 

implicit none 

integer n, m, nst, mst, npst, mpst, ierr 
integer i,iv.ncur,ntr,kj,jj,kk 

real*S g(nst,mst), xm(mst), d(nst), test, gp(npst,mpst), dp(npst) 
real*S beta,gama,alfa,t 
rea1*8 u(360) 

integer itr(360),igp(360),mcur 

common /plscom/ mcur, itr, igp 
common /ucom/ u 

if( iv.lt.1 .or. iv.gt.m) then 
print* ,"iv<loriv>m" 
ierr-1 
return 

end if 

ntr- itr( iv) 
if( ntr .eq. 0 ) then 
print* ,"ntr-0" 
ierr- 1 
return 

end if 

do i-ntr+ 1, mcur 
k- igp(i) 
do j-1, n 

gpQ.k) - gU.kl 
enddo 

enddo 

do i-1, n 
dp(i)- d(i) 

enddo 

do j-1, ntr-1 
k- igpQ) 
beta - -u(k) • gp(j,k) 

do jj-ntr+ I, ncur 

kk- igp(jj) 
gama- O.dO 
do i-j, n 
gama - gama + gp(i,kk)*gp(i,k) 

enddo 
gama - gama I beta 
do i-j, n 

gp(i,kk) - gp(i,kk)- gama*gp(i,k) 
enddo 

enddo 

gama- O.dO 
do i-j, n 
gama - gama + dp(i)*gp(i.k) 

enddo 
gama - gama I beta 
do i-j, n 

dp(i) - dp(i)- gama*gp(i,k) 
enddo 

enddo 

do i-ntt+ 1, mcur 
igp(i-1)- igp(i) 
itr(igp(i-1))- i-1 

enddo 

itr(iv)- 0 

igp(mcur) - 0 
mcur - mcur - I 
do j - ntr, mcur 

a1fa- O.dO 
k- igp(j) 

do i-j. n 

alfa - alfa + gp(i,k)**2 

enddo 

alfa - sqn( alfa ) 
if( gp(j,k) .It. O.dO ) then 



alfa- -alfa 
end if 
u(k)- -alfa 
t - gp(j,k) + alfa 
if( abs(t) .lt. test ) then 
print*, ''abs(t)<test'' 
print* ,abs(t),test 
ierr-1 
return 

end if 
gp(j,k) - t 
beta - -u(k) • gp(j,k) 

do .ii- j+l, mcur 
kk- igp(jj) 
gama- O.dO 

do i-j. n 
gama - gama + gp(i,kk)*gp(i,k) 

enddo 
gama - gama I beta 
do i-j, n 
gp(i,kk) - gp(i,kk) - gama*gp(i,k) 

enddo 
enddo 

gama- O.dO 

do i -j. n 
gama - gama + dp(i)*gp(i,k) 

enddo 

gama - gama I beta 
do i- j, n 
dp(i) - dp(i) - gama*gp(i,k) 

enddo 
enddo 

xm(iv) - O.dO 
do i-mcur,l,-1 
t- dp(i) 
do j-i+ l,mcur 
k- igp(j) 
t - t - gp(i,k) • xm(k) 

enddo 
xm(igp(i)) - t I u(igp(i)) 

enddo 

return 
end 

cccccccccccccccccccccccccccccccccccccccc 
c --- Singular value decomJX>sition --- c 
cccccccccccccccccccccccccccccccccccccccc 

subroutine svdinv(g,d.xs,covxs,m,covm,ndata.npar,mpar) 

implicit none 

INPUT 

integer nctata,npar,mpar 

real*8 g(mpar,mpar),d(mpar) 
real*8 xs(mpar),covxs(mpar,mpar) 

OliTPUT 

rcal*8 m(mpar),covm(mpar,mpar) 

INTERNAL 

integer ij,k,ipar .info,p 

character* 1 ans 

parameter (ipar-360) 

real*8 uval(ipar),u(ipar,ipar) 
real*8 vt(ipar,ipar)junk(l0096) 
real*8 vlmbda(ipar,ipar) 
real*8 uvalinv(ipar),gmg(ipar,ipar) 
real*8 ident(ipar,ipar),r(ipar,ipar) 

real*8 worka(ipar,ipar) 

call dgesvd(' A'.' A' ,ndata,npar,g,mpar, 
uval,u,ipar,vt,ipar,junk,l0096, 
info) 

do j-l,npar 
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write(6, '(i3,2x,fl 0.4)') j,uval(j) 
enddo 

write(6.'(a,$)') 'Number of Eigenvalues to retain · 
read(5,*) p 

doj-I,p 
uvalinv(j)-l.dOiuval(j) 
do k-I,npar 
vlmbda(kj) - uvalinv(j)*vt(j,k) 

cnddo 
enddo 

do i-I.npar 
do j-I,ndata 
gmg(i,j) - O.dO 
do k-I.p 
gmg(ij) - gmg(i,j)+vlmbda(i,k)*u(j,k) 

enddo 
enddo 

enddo 

do i-I.npar 
m(i)- O.dO 
do j-l,ndata 
m(i)-m(i)+gmg(ij)*d(j) 

enddo 
enddo 

do k-I.npar 
covm(k,k)-O.dO 
do j-I,ndata 
covm(k,k)- covm(k,k) + gmg(k,j)*gmg(kj) 

enddo 
enddo 

write(6,'(a)') 'Do you want minmimise the vectors' 
write(6.'(a,$)') 'with respect to the a priori ? ' 
read(5,*) ans 

if (ans.eq.'y') then 

doj-I,p 
do k-l,p 
ident(j,k)-O.dO 

enddo 
ident(jj)-l.dO 

enddo 

do i-I.npar 
do j-I,npar 
r(i,j)- O.dO 
do k-I,p 
r(ij) - r(i,j)+vt(kj)*vt(k,j) 

enddo 
enddo 

enddo 

do k-I,npar 

do j-I.npar 
worka(kj) - ident(kj)-r(kj) 

enddo 
enddo 

do k-I,npar 
do j-I,npar 
m(k)-m(k)+worka(kj)*xs(j) 

enddo 
enddo 

remember to add in estimate for covariance 

endif 

return 

end 

cccccccccccccccccccccccccccccccccccccc 
c --- weighted generaHzed inverse --- c 
cccccccccccccccccccccccccccccccccccccc 

subroutine wdlsinv(g.d,covd.m,covm,xn,covxn.ndata.npar.mpar) 

implicit none 



INPUT 

integer ndata,npar,mpar 

rcai*S g(mpar,mpar),d(mpar),covd(mpar,mpar) 
reai*S m(mpar),covm(mpar,mpar) 

OUTPUT 

rcai*S xn(mpar),covxn(mpar,mpar) 

INTERNAL 

integer j,k,ipar,l 

parameter (ipar-360) 

reai*S chcck(ipar),worka(ipar,ipar) 
reai*S workb(ipar,ipar) 
reai*S workbinv(ipar,ipar) 

reai*S workc(ipar),workd(ipar),worke(ipar,ipar) 

reai*S workf(ipar,ipar) 

reai*S workg(ipar),workh(ipar,ipar) 
reai*S ident(ipar,ipar),worki(ipar,ipar) 

reai•S workj(ipar,ipar),workk(ipar,ipar) 

reai*S workl(ipar,ipar),workm(ipar,ipar) 

cccccccccccccccccccccccccccccccccccccc 
c --- Calculate : Worka-G*[Covm] --- c 

cccccccccccccccccccccccccccccccccccccc 

call dgemm('N','N',ndata,npar,npar,l.dO, 

g,mpar,covm,mpar, 
O.dO,worka,ipar) 

cccccccccccccccccccccccccccccccccccccc 
c --- Calculate : Workb-Worka*G' --- c 
cccccccccccccccccccccccccccccccccccccc 

call dgemm('N', 'T' ,ndata,ndata,npar,l.dO, 
worka,ipar,g,mpar, 
O.dO,workb,ipar) 

cccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Calculate : workb- {[covd]+G[Covm]G'} --- c 
cccccccccccccccccccccccccccccccccccccccccccccccccc 

do j-l,ndata 
do 1-l,ndata 
workb(j,J)-workb(j,l)+covd(j,J) 

workbinv(j,l)-workb(j,l) 

enddo 
enddo 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c ---Calculate: workbinv- {[covd]+G[Covm]G'}'-1 --- c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dpoinv(ndata,workbinv,ipar,check) 

ccccccccccccccccccccccccccccccccccccccccccccccc 
c ·-- Calculate : G<m> : workc - g*m ~-- c 
ccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemv('N',ndata,npar,J.dO,g,mpar, 

m,l,O.dO,workc,l) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Calculate : dobs-G<m> : workd - svel - workc --~ c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do j-l,ndata 
workd(j)-d(j}-workc(j) 

enddo 

ccccccccccccccccccccccccccccccccccccccccccccccccc 
c -~- Calculate : [Covmj*G : worke - covm"'g --- c 
ccccccccccccccccccccccccccccccccccccccccccccccccc 

call dgcmm('N','T'.npar,ndata,npar,l.dO, 

covm,mpar,g,mpar,O.dO,worke, 

ipar) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c ---Calculate: [Covm}G*{[covd]+G[Covm]G'}'-1 : G'-g --- c 

c --- world - worke*workbinv --- c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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call dgemm('N' ,'N' ,npar,ndata,ndata, !.dO. 
worke,ipar,workbinv,ipar,O.dO, 
workf,ipar) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c ---Calculate: G'-g[dobs-G<m>]: workg- workf"workd --- c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemv('N',npar,ndata,l.dO.workf.ipar, 
workd,l,O.dO, workg,l) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c ---Calculate: <m>t{]'-g[dobs-G<m>]: xn- xnstart+workg-- c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do k-l,npar 
xn(k)-m(k}+workg(k) 

enddo 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c -~~ Begin Calculating Covariance of slip estimates --- c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccc 
c -- Calculate : G' -gG : workh - workf*g --- c 

ccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemm('N' ,'N' ,npar,npar,ndata,l.dO, 

workf,ipar,g,mpar,O.dO, 
workh,ipar) 

ccccccccccccccccccccccccccccccccccc 
Form an Identity matrix -- c 

ccccccccccccccccccccccccccccccccccc 

do k-l,npar 

do 1-l,npar 
ident(k.I)-O.dO 

enddo 
ident(k,k)-l.dO 

enddo 

ccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate : [1-R] : worki - ident - workh --- c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do k-l,npar 

do 1-l,npar 
worki(k,J)-ident(k,l}-workh(k,l) 

enddo 
enddo 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate : [I-RJ[Covm] : workj- world • covm -- c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemm( 'N','N',npar,npar,npar,l.dO, 

worki,ipar,covm,mpar,O.dO,workj,ipar) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate : [1-RJ[Covm][I-R]' : workk- workj • world' -- c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemm('N','N',npar,npar,npar,J.dO, 

worki.ipar,covm,mpar,O.dO,workj,ipar) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate : [I-RJ[Covm][I-R]' : workk- workj • worki' --- c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemm('N', 'T',npar,npar.npar,l.dO. 
workj,ipar,worki,ipar,O.dO,workk,ipar) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate: G'-g[covd]: work!- workf • covd --- c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemm('N' ,'N' .npar.ndata,ndata,l.dO, 

workf,ipar,covd,mpar,O.dO,workl,ipar) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate: G'-g[covd]G'-g': workm- workl • workf --- c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemm('N' ,'T' ,npar ,npar,ndata.l.dO, 

workl,ipar, workf,ipar,O.dO, workm.ipar) 



cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate: G'-g[covd]G'-g'+[l-R][Covm][J-R]' -- c 
covxn - workm + work.k 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do k-l,npar 
do 1-l,npar 
covxn(k,J)-workm(k,l)+workk(k,J) 

enddo 
enddo 

cccccccccccccccccccccccccccccccccccccc 
c --- Finish generalised inverse _..:_ c 
cccccccccccccccccccccccccccccccccccccc 

return 
end 

subroutine stocinv(g,d,xs.covxs.m.covm.ndata.npar,mpar,wm) 

implicit none 

INPUT 

integer ndata,npar,mpar 

reai*S g(mpar,mpar),d(mpar) 
reai*S xs(mpar),wm(mpar,mpar) 
real"'8 covxs(mpar,mpar) 

OUTPUT 

reai*S m(mpar),covm(mpar,mpar) 

IN1ERNAL 

integer j,k,ipar,l 

parameter (ipar-360) 

reai*S gt(ipar,ipar) 
reai*S worka(ipar,ipar) 
reai*S workb(ipar),workc(ipar) 
rcai*S workd(ipar),check(ipar) 
reai*S gmg(ipar,ipar) 
reai*S workh(ipar,ipar),ident(ipar,ipar) 
reai*S worki(ipar,ipar) 
reai*S workk(ipar,ipar) 
real*S workm(ipar ,ipar) 

do j•l,ndata 
do k•l,npar 

gt(k,jl-gO.kl 
enddo 

enddo 

call dgemm('N','N' ,npar,npar,ndata,l.dO, 
+ gt,ipar,g,mpar,O.dO, 
+ worka,ipar) 

do j• I ,ndata 
do k•l,npar 
workaO,k)•workaO,k)+wmO.k) 

enddo 
enddo 

call dpoinv(npar,worka,ipar,check) 

call dgemm('N','N',npar,ndata,npar,l.dO, 
+ worka,ipar,gt,ipar,O.dO, 
+ gmg.ipar) 

call dgemv('N',ndata,npar,l.dO, 
+ g,mpar ,xs, I ,O.dO, workb, I) 

do j- I ,ndata 
workc0)-d0)-workb0) 

enddo 

call dgemv('N' ,npar ,ndata,l.dO, 
+ gmg,ipar, workc,l,O.dO, workd,l) 

do j•l,npar 

mO)-xsO)+workdO) 
cnddo 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c --- Begin Calculating Covariance of slip estimates --- c 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccc 
c -- Calculate : GA -gG : workh - workf*g --- c 
ccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemm('N', 'N' ,npar,npar,ndata,l.dO, 
gmg,ipar,g,mpar,O.dO, 
workh,ipar) 

ccccccccccccccccccccccccccccccccccc 
Form an Identity matrix --- c 

ccccccccccccccccccccccccccccccccccc 

do k-l,npar 
do 1-l.npar 
ident(k,J)..O.dO 

cnddo 
ident(k.k)·l.dO 

enddo 

ccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate : [1-R] : worki- ident- workh --- c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do k-l,npar 
do l•l,npar 
worki(k,l}-ident(k,l)-workh(k,l) 

enddo 
enddo 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate : [1-R][Covm][I-R]' : workk- workj • worki' --- c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dgemm('N','T',npar,npar,npar,l.dO, 
worki,ipar,worki,ipar,O.dO,workk,ipar) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate : a· -g[ covd ]G' -g' : workm - work! • workf' -- c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

call dgcmm('N' ,'T',npar,npar,ndata,l.dO, 
gmg,ipar,gmg,ipar,O.dO,workm,ipar) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
Calculate: G'-gG'-g'+[l-R][Covm][I-R]': covxn- workm + workk --- c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

do k-l,npar 
do l•l,npar 
covm(k,l)-workm(k,l)+workk(k,l) 

enddo 
enddo 

return 
end 

subroutine poly44(ori,lon,lat,x,y) 

c polyconic projection of point lat-p2, diff long-il from arbitrary 
central meridian. lat of arbitrary origin is pl. x-dist from em 
along lat p2. y-<iist from pi to p2. x,y in meters. 
pi ,p2,and il in seconds. 

implicit none 

reai*S il,la,ip,ipr,pr,pl,p2 
real*8 arcone,esq.aO.a2,a4,a6,a8 
rcal*8 sinp2,cosp2,theta.a,cot.x,y 
reai*B ori(2),1on,lat 

data arconc,csq,la,a0,a2,a4,a6,a8/4.8481368e-6,6.7686580e-3, 
+ 6378206.4,6367399.7,32433.888,34.4187 .. 0454.6.0e-5/ 

pl-ori(2)*3600.d0 
p2-lat*3600.d0 
il-(lon-ori(l))*3600.d0 

ip-p2-pl 
sinp2-sin(p2*arcone) 

cosp2-cos(p2*arcone) 
theta•il*sinp2 

a-sqrt( 1.0-( esq*(2. *sinp2)))/(la *arc one) 
cot-cosp2/sinp2 
x=(cot*sin(theta*arcone)V(a•arcone) 
ipr-ip*arcone 
pr-((p2+p I )12.)*arcone 
y- a0*ipr-(a2*cos(2.*pr)*sin(ipr))+(a4*cos(4.*pr)*sin(2.*ipr))-



* (a6*cos(6. *pr)*sin(3. *ipr))+a8*cos(8. *pr}*sin(4.*ipr) 
x-x/I.d03 
y-yll.d03 
return 
end 
subroutine fchisq(npts,merm,mdpts,obs,calc,err, 

omc,chi2,rchi2,norm) 

implicit none 

integer npts,nterm,mdpts 
integer k,nfree 

real*8 obs(mdpts),calc(mdpts) 
rcal*8 crr(mdpts),omc(mdpts) 
real*S chi2,rchi2,nonn 

chi2..0.d0 
do k-I.npts 
omc(k)-obs(k)-calc(k) 
chi2-chi2+(omc(k)lerr(k))**2 

enddo 
nfree-npts·nterm 
if(nfrcc.lc.O) then 
rchi2..0.0 
nonn-0.0 
goto 10 

endif 
rchi2-chi21nfree 
nonn-sqrt(rchi2) 

10 return 
end 

c******************************************************************** 
c***** 
c***** surface displacement,strain,tilt due to rectangular fault ***** 
c***** in a scmiinfinite medium (Okada,l985: BSSA,75,1135·1154) ***** 
c***** coded by y.okada ... jan 1985 ***** 
c***** 
c******************************************************************** 

subroutine sreclf(alp,x,y ,dep,al,aw ,sd,cd,disll,disl2,disl3, 
ul,u2,u3,ull,ul2,u21,u22,u31,u32) 

c***** 
c***** input 
c***** alp : medium constant myu/(Jamda+myu) 
c***** x,y : coordinate of station 
c***** dcp : source depth 
c***** al,aw : length and width of fault 
c***** sd,cd : sin,cos of dip--angle 
c••••• (cd..O.dO, sd-+1-I.dO should he given for vertical fault) 
c***** disll,disl2,disl3 : strike·, dip-- and tensile·dislocation 
c***** 
c***** output 
c***** u 1, u2, u3 : displacement ( unit- unit of disl 
c***** ul l,ul2,u2l,u22: strain (unit- unit of disl/ 
c***** u3l,u32 :tilt unit of x,y ... aw) 
c***** 
c***** subroutine used ... srcctg 
c***** 

implicit real*8 (a-h,o-z) 
dimension u(9),du(9) 
data to, fl I O.dO, !.dO I 

c*"'*** 
p - y*cd + dep*sd 
q - y*sd · dep*cd 

c***** 
do Ill! i-1,9 

I III u(i)-fO 
c***** 

do 5555 k-1,2 
if(k.cq.l) ct-p 
if(k.eq.2) et-p-aw 
do 4444 j-1,2 
ifU.eq.l) xi-x 
ifU.eq.2) xi-x-al 
jk-j+k 
ifUk.ne.3) sign- fl 
ifUk.eq.3) sign--fl 
call srectg(alp,xi,et,q,sd,cd,disll,disl2,disl3, 

du( I ),du(2),du(3),du( 4),du{5),du(6),du(7),du(8),du(9)) 
do 3333 i-1,9 
u(i)-u(i)+sign*du(i) 

3333 continue 
4444 continue 
5555 continue 

ul -u(l) 
u2 -u(2) 
u3 -u(3) 
ull-u(4) 

281 

~ 

ul2-u(5) 
u2I-u(6) 
u22-u(7) 
u3I-u(8) 
u32-u(9) 
return 
end 

c******************************************************************* 
c***** ***** 
c***** indefinite integral of surface displacement,strain,tilt 
c***.. due to finite fault (Okada,I985: BSSA,75.1135-1154) ••••• 
c***** 
c***** 

coded by y.okada ... jan 1985 ••••• 

***** 
c*****************•************************************************* 

subroutine srectg(alp,xi,et,q,sd.cd,disll,disl2,disl3, 
u l,u2,u3,u ll,u 12,u2l,u22,u3I,u32) 

c***** 
c***** input 
c***** alp : medium constant myuf(lamda+myu) 
c***** xi,et,q : fault coordinate 
c* .. ** sd,cd : sin,cos of dip--angle 
c••••• (cd..O.dO, sd-+1-I.dO should he given for vertical fault) 
c***** disll,disl2,disl3 :strike·, dip-- and tensile--dislocation 
c***** 
c***** output 
c*,..** ul, u2, u3 :displacement (unit- unit of disl 
c***** ul 1,ul2,u21,u22: strain (unit- unit of d.isl/ 
c*"*** u3I,u32 : tilt unit of xi,ct,q ) 
c***** 

implicit real*S (a·h,o-z) 
data to,fl,f2/ O.dO, I.dO, 2.d0 I 
pi2-6.283185307179586d0 

c***** 
xi2-xi*xi 
et2-ct*ct 
q2-q*q 
r2-xi2+et2+q2 
r -dsqn(r2) 
r3-r*r2 
d -ct*sd·q*cd 
y -ct*cd+q*sd 
ret-r+ct 
if(ret.It.to) ret-to 
rd -r+d 
nd-fli(r*rd) 

c***** 
if( q .ne.to) tt- datan( xi*cli{q*r) ) 
if( q .eq.to) II - to 
if(retne.to) re - fliret 
if(ret.eq.to) re - to 
if(retne.to) die- diog(ret) 
if(reteq.to) dle--dlog(r-et) 
rrx-fll(r*(r+xi)) 
ne-re/r 
axi-=(f2*r+xi)*rrx*rrxlr 
aet-(f2*r+et)*rre*rrclr 
if(cd.eq.to) go to 20 

c***** 
c***** inclined fault 
c***** 

td-sdicd 
x -dsqn(xi2+q2) 
if(xi.eq.to) aS-to 
if(xi.ne.to) 

•as- alp*f2icd*datan( (et*(x+q*cd)+x*(r+x)*sd) I (xi*(r+x)*cd)) 
a4- alp'cd*( dlog(rd) . sd*dle ) 
a3- alp*(ylrd/cd . die)+ td*a4 
al~-alp'cd*xiird · td*a5 
c 1- alp'cd*xi*(rrd • sd*rre) 
c3- alp'cd*(q*rre . y*rrd) 
bl- alp'cd*(xi2*rrd · fl)lrd · td*c3 
b2- alp'cd*xi*y*rrdird · td*cl 
go to 30 

c***** 
c***** vertical fault 
c***** 

20 rd2-rd*rd 
al-alp'f2*xi*qlrd2 
a3- alp'f2*( elird + y*qlrd2 ·die ) 
a4-alp*qlrd 
a5--alp*xi*sdird 
bl- alp'f2* q lrd2*(f2*xi2*rrd • fl) 
b2- alp'f2*xi*sdird2*(f2*q2 *nd. fl) 
cl- alp*xi*q*rrd/rd 
c3- alp*sdird*(xi2*nd · fl) 

c***** 
30 a2--alp*dle · a3 

b3--alp*xi*rre · b2 



b4--alp*( cd/r + q*sd*rrc ) - bl 
c2- alp*( -sdlr + q*cd*rre ) - c3 

c***** 
ul -10 
u2 -10 
u3 -10 
ull-10 
u12-10 
u21-10 
u22-IO 
u31-IO 
u32-10 

c-------------------c--- strike-slip contribution --c------------------
if(disll.cq.IO) go to 200 
un-disll/pi2 
req-rre*q 
ul-ul-un*(req*xi+ tt +al*sd) 
u2 -u2 - un*( req*y + q*cd*re + a2*sd ) 
u3 -u3 - un*( req*d + q*sd*re + a4*sd ) 
ull-ull+ un*( xi2*q*act- bl*sd) 
ul2-ul2+ un*( xi2*xi*( d/(et2+q2)/r3- act*sd)- b2*sd) 
u21-u21+ un*( xi*qlr3*cd + (xi*q2*aet- b2)*sd) 
u22-u22+ un*( y *q/r3*cd + (q*sd*(q2*aet-f2*rre) 

-(xii+et2)1r3*cd - b4)*sd ) 
u31-u3I+ un*(-xi*q2*aet*cd + (xi*qlr3- cl)*sd) 
u32-u32+ un*( d*qlr3*cd + (xi2*q*act*cd- sdlr + y*qlr3 - c2)*sd ) 

c--. c--- dip-slip contribution 

c--------
200 if(disl2.eq.IO) go to 300 

un-disl2/pi2 
sdcd-sd*cd 
ul -ul- un*( qlr - a3*sdcd) 
u2 -u2 - un*( y*q*rrx + cd*tt - at *sdcd ) 
u3 -u3 - un*( d*q*rrx + sd*tt - a5*sdcd ) 
ull-ull+ un*( xi*qlr3 + b3*sdcd) 
ul2-ul2+ un*( y *q/r3- sdlr + bl*sdcd) 
u21-u21+ un*( y *q/r3 + q*cd*rre + bl*sdcd) 
u22-u22+ un*( y*y*q*axi - {f2*y*rrx + xi*cd*rre)*sd + b2*sdcd) 
u31-u31+ un*( d *q/r3 + q*sd*rre + c3*sdcd) 
u32-u32+ un*( y*d*q*axi- (f2*d*rrx + xi*sd*ne)*sd + cl*sdcd) 

c------
c-- terisile-fault contribution c----

300 if(disl3.eq.IO) go to 900 
un-disl3/pi2 
sdsd-sd*sd 
ul -ul + un*( q2*rre - a3*sdsd) 
u2 -u2 + un*(-d*q*rrx - sd*(xi*q*rre - tt) - at *sdsd) 
u3 -u3 + un*( y*q*rrx + cd*(xi*q*rre - tt) - a5*sdsd ) 
ull-ull- un*( xi*q2*act + b3*sdsd) 
ul2-ul2- un*(-d*qlr3- xi2*q*act*sd + bl*sdsd) 
u21-u21- un*( q2*(cd/r3 + q*aet*sd) + bl*sdsd) 
u22-u22- un*((y*cd-d*sd)*q2*axi - f2*q*sd*cd*rrx 

- (xi*q2*aet - b2)*sdsd ) 
u31-u31- un*( q2*(sdlr3- q*act*cd) + c3*sdsd) 
u32-u32- un*((y*sd+d*cd)*q2*axi + xi*q2*aet*sd*cd 

- (f2*q*rrx- cl)*sdsd) 
c***** 

900 return 
end 

282 
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sume an arbitrary rotation of the network as a wholP. 
The GPS network extends farther northeast than the 
trilateration network, but there is little deformation 
apparent in this area. Indeed, there is no additional 
movement as far east as Jackson, 170 km from the San 
Andreas fault. The trilateration network includes a site 
on Farallon Islands, 30 km southwest of the GPS site 
Point Reyes Head and 40 km from the San Andreas 
fault. A flattening in the velocity field west of Point 
Reyes Head is indicated by the trilateration data, with 
only 1.5 ± 1.1 mm/yr of motion occurring between Point 
Reyes Head and Farallon Islands. We observe a total 
of 33 ± 2 mm/yr of fault-parallel relative plate motion 
across the GPS network, which is not significantly dif
ferent than the 31 ± 3 mm/yr reported for the trilater
ation network by Lisowski et al. [1991]. 

The deformation within the GPS network is evenly 
distributed southwest and northeast of the Rodgers 
Creek fault. This broadly distributed deformation with 
concentrations of strain around the faults could simply 
be explained as a result of loading of the San Andreas, 
Rodgers Creek, and Green Valley faults by continuous 
slip at depth on the faults. As discussed by Lisowski 
et al. [1991], the surface velocity field can be reproduced 
by a wide-range of fault models depending on assump
tions about fault geometry and elastic properties of the 
crust. 'Ne do not present a fault model here. In the 
future we plan to combine the GPS and trilateration 
data to infer slip on the faults. 

The 33 ± 2 mm/yr of deformation within the profile is 
significantly less than the full plate motion rate at this 
latitude (46-47 mm/yr N33°W [De Mets et al., 1990; 
Gordon, 1993; Robaudo and Harrison, 1993]). The de
forming zone along this plate boundary extends well 
into the interior of North America, and motion is par
titioned between the San Andreas fault system and de
formation across the Great Basin. The motion across 
the Great Basin at this latitude is approximated by the 
10.0 ± 0.5 mm/yr N38°W velocity of the VLBI station 
OVRO [Dixon et al., 1993, Table 3], locatecl200 km east 
of the San Andreas fault. Station OVRO is within a tec
tonically active zone east of the Sierra Nevada Moun
tains and its velocity is likely 1-2 mm/yr lower than it 
would be if it were located in the Sierra Nevada Moun
tains [A r9us and Gordon, 1991]. The part of the motion 
accommodated by the San Andreas fault zone is then 
about 34-37 mm/yr. This motion can be accounted for 
by the 33 ± 2 mm/yr rate of shearing of the GPS net
work plus the 1.5 ± 1.1 mm/yr rate of shearing offshore 
of the GPS network. The geodetic data suggest that 
the full Pacific plate rate of motion is obtained near the 
Farallon Islands and little deformation occurs between 
the Great Valley and the Sierra Nevada Iviountains. 

Conclusion 

We present results from 7 GPS surveys within the 
time span of 2.8 years that provide significant relative 
displacements across a 100-km-long profile crossing the 
San Andreas fault system in the North Bay area. Mo
tion parallel to the trend of the San Andreas fault is dis-

tributecl across the profile. No significant convergence 
upon the fault vvas detected. Fault-parallel velocity gra
dients decrease near the ends of the profile, suggesting 
that nearly all of the deformation associated with the 
San Andreas fault system is captured within the profile. 
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GPS measured rates of deformation in the northern San 
Francisco Bay region, California, 1990-1993 
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Abstract. A 100-km-long, 13-station profile extending 
across the San Andreas fault system north of San Fran
cisco Bay was measured 7 times between March 1990 
and January 1993 with the Global Positioning System 
(GPS). The data have been processed using the Bernese 
Version 3.2 software. Data from a continental-scale 
fiducial network were included in the solutions to aiel 
orbit improvement and provide a consistent reference 
frame. We find 33 ± 2 mm/yr of fault-parallel (N33°W) 
shear evenly distributed southwest and northeast of the 
Rodgers Creek fault and a near linear velocity gradi
ent across the profile. The profile spans most of the 
zone of active deformation associated with the San An
dreas fault system. Shear is negligible at the east end 
of the profile near the Great Valley. Additional shear of 
a few millimeters per year is likely beyond Point Reyes 
Head, the west end of the profile. We observe no sys
tematic convergence upon the fault. The GPS mea
sured velocities are similar to those derived previously 
from trilateration. The velocity change across the GPS 
profile (31-35 mm/yr) plus that west of the profile (0-
3 mm/yr) and that observed with VLBI east of the 
Sierra Nevada Mountains (rv10-12 mm/yr) accounts for 
the North American-Pacific: plate rate (46-47 mmjyr). 

Introduction 

The San Andreas fault system north of San Francisco 
Bay consists of several near parallel faults. The prin
cipal active fault is the San Andreas but faults farther 
to the east (Rodgers Creek and Green Valley) have de
veloped within the last 2-4 Ma [ H elley and Herd, 1 977] 
and now accommodate a significant fraction of plate 
motion. 

Geodetic surveys used to determine deformation in 
the region date back to around 1860. The initial sur
veys used triangulation methods. Since the early 1970's 
the U.S. Geological Survey (USGS) has repeatedly mea
sured distances between geodetic stations in the San 
Francisco Bay area using a Geodolite, a laser distance 
measuring instrument. Lisowski et al. [1991] found 
31 ± 3 mm/yr of fault parallel motion distributed across 
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a 115-km-wicle trilateration network in the North Bay 
region and no significant convergence upon the fault. 
These rates, however, are based on an arbitrary as
sumption about unmeasured rotation of the trilatera
tion network as a whole. During the mid-1980's Geodo
lite surveys began to be replaced by Global Position
ing System (GPS) observations of relative position. In 
1990, the USGS established and measured with GPS a 
set of geodetic profiles spanning the San Francisco Bay 
Region. One of these, the North Bay profile (Figure 1), 
extends for 100 km from Point Reyes Head to the west
ern edge of the Great Valley. Possible network rotation 
is directly measured with GPS. We find that the GPS 
observed pattern and rate of deformation are in good 
agreement with those previously estimated by Lisowski 
et al. [1991]. 

Data 

Between March 1990 and February 1993, the USGS 
measured the North Bay profile 7 times using GPS. The 
first 4 surveys were conducted with TI-4100 dual fre
quency P-cocle receivers, and the last 3 surveys with 
Ashtech LM-XII receivers (C/A code on L1 and code-
less on L2). Each survey consisted of 4 observation 
sessions and during each session 3-5 of the 13 stations 
were occupied for 4-6 hours. One station, Corel, was 
occupied during each session. Data recorded at station 
Jackson (Figure 1 inset) were included in the Tv! arch 
1990, May 1990, and September 1991 surveys. The data 
were processed using the Bernese Version 3.2 Software 
[ Rothacher et al., 1990], with modifications and addi
tions to the programs implemented by the USGS [Davis 
et al., 1989]. 

The North Bay profile extends in nearly a straight 
line perpendicular to the strike of the San Andreas 
fault, across the maximum shear strain gradients as
sociated with tectonic loading of the San Andreas and 
nearby faults. In a network of this design, a spurious 
network rotation could approximate the appearance of 
shear strain and a scale error would appear as contrac
tion or extension across the faults. Such errors could re
sult from error in the satellite orbits or reference frame. 
We use the fiducial network concept to obtain higher 
accuracy GPS satellite orbits and maintain a consistent 
terrestrial reference frame. Data from several fixed GPS 
stations operated by the Cooperative International GPS 
Network (CIGNET), the International GPS Service for 
Geodynamics (IGS) or the Southern California Perma
nent ~etic Array (PGGA) are included in our 
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-122° 30' -120° 40' -120° 30' 

Figure 1. Map showing major faults, North Bay profile CPS stations, and 1990-1993 site 
velocities relative to station Cord. Velocities are tipped with 95% confidence ellipses. Faults are 
from Herd and Helley [1976] and Helley and Herd [1977]. 

solutions. These fixed stations are colocated with Very 
Long Baseline Interferometry (VLBI) antennas whose 
coordinates and velocities, derived from extragalactic 
quasar radio sources, define a precise terrestrial refer-

Table 1. Site Occupation Index for North Bay CPS 
Surveys and Fiducial Stations Used in the Processing 

90.2 90.4 90.7 91.2 91.7 92.1 93.0 

Local Stations 
Cord 
Ngs 
Pt Reyes 
Pt Reyes Head 
Pt Reyes Hill 
Ado 
Air 
Hen 
Nic 
Cam! 
Cor 
Hag 
Mt Vaca 
Jackson 
Fiducial Stations 
Mojave 
Richmond 
Westford 
Algonquin 
Penticton 
JPLMesa 
Goldstone 
Richmond:2 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

0 

0 

0 

• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 

0 

0 

0 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

0 

0 

0 

• 
• 
• 
• 
• 
• 
• 
• 
• 

• 

• 

0 
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0 

• Dual frequency, P - code receiver 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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0 

o Dual frequency receiver, no P - code 

0 

0 

0 

0 

0 
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0 

0 

0 

0 

0 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

• 
• 
• 
• 
• 

ence frame [Ma et al., 1993]. A summary of the site 
occupation together with the fiducial sites used is given 
in Table 1. 

The standard strategy used to process the North Bay 
data is similar to that described by Davis et al. [1989]. 
Phase ambiguities for the local sites were resolved where 
possible. No attempt was made at resolving the ambi
guities for the fiducial sites. The coordinates of the local 
stations were left as free parameters. 

Table 2. 1990 to 1993 Average Fault Parallel (N33°) 
and Fault Normal (N57°E) Station Velocities Relative 
to Station Cord. 

Station 

N57°E 
Distance 

from Cord, 
km 

Pt Reyes Head 
Pt Reyes 

-42.3 
-30.1 

Pt Reyes Hill 
Ngs 
Nic 
Ado 
Air 
Hen 
Hag 
Cor 
Vaca 
Cam! 
Jackson 

-26.5 
-22.0 
-16.0 

8.0 
12.5 
23.0 
33.0 
44.0 
48.9 
58.0 

146.1 

N33°W 
Velo
city, 

mm/yrt 

14.8 ± 1.6 
8.6 ± 1.6 

11.4 ± 1.6 
5.7 ± 1.3 
4.3 ± 1.5 

( -2.3 ± 1.5) 
-4.8 ± 1.2 

-11.3 ± 1.6 
-13.0 ±'"1.4 
-19.6 ± 1.6 
-20.7 ± 2.6 
-16.5 ± 1.7 
-17.3±6.0 

N57°E 
Velo
city, 

mm/yrt 

( -2.7 ± 1.4) 
( -0.3 ± 1.4) 

(0.0 ± 1.4) 
(-1.2±1.3) 

3.4 ± 1.4 
( -0.4 ± 1.3) 

(0.7 ± 1.2) 
(2.1 ± 1.6) 
(0.2 ± 1.4) 

(-1.0±1.5) 
-5.8 ± 2.3 
(1.9 ± 1.5) 
(6.4 ± 9.5) 

tuncertainties are 10', bracketed rates are not signif
icant at 95% confidence. 
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Figure 2. Changes in displacement relative to station 
Cord (a) parallel (N33°W) and (b) normal (N57°E) to 
the trend of the San Andreas fault as a function of time. 
Error bars represent one standard deviation. 

Results _ 

We obtain site velocities using a simple least squares 
procedure. The north, east, and up baseline compo
nents relative to a common site are calculated from the 
CPS position solutions. A linear rate of change in the 
three componeBts is then calculated. The uncertain
ties are determined by propagation of the full position 
covariances. The errors quoted in this paper are the for
mal standard deviations obtained from the Bernese so
lutions increased by a factor of 5. This factor brings the 
formal errors into agreement with the long-term scatter 
in the data and with CPS error estimates given by Lar
son and Agnew [1991]. The horizontal velocities relative 
to the station Cord are listed in Table 2 and shown as 
vectors in Figure 1. 

The changes in the fault-parallel (N33°W) and fault
normal (N5TE) displacements relative to station Cord 
as a function of time are shown for several stations in 
Figure 2. The data are well fit by a linear rate of change. 
The rate of fault-parallel displacement (Figure 2a) gen
erally increases with the distance from Cord, while the 
fault-normal displacements (Figure 2b) show little or 
no significant motion. The distribution of deformation 

.. across the network is best shown by projecting the rates 
of fault-parallel and fault-normal displacements onto a 
profile constructed perpendicular to the local strike of 
the San Andreas fault (Figure 3). 

Discussion 

Fault-Normal Velocities 

The CPS measured fault-normal (N57°E) velocities 
(Figure 3b) indicate no systematic convergence upon 
the fault. Only the velocities of stations Nic and Vaca 
are significantly different from a null velocity at the 95% 
confidence level. No systematic convergence upon the 
fault was observed between 1973 and 1989 in a trilater
ation network spanning the same area [Lisowski et al., 

1991, Figure 15]. The trilateration velocities, how
ever, are ambiguous, because the network lacks a tie 
to an external reference frame and, as a result, rigid
body motions (translations and rotations) of the net
work as a whole are not determined. The trilateration 
velocities are from a particular solution (the so-called 
"outer-coordinate" solution) that adds a network ro
tation that minimizes the velocities perpendicular to 
the fault [Prescott, 1981]. This provides an appropri
ate solution for a region deformed by tectonic shear. 
Strain analysis of the trilateration data, which is inde
pendent of the choice of reference frame, also indicates 
no regional contraction across the fault. Positions are 
directly measured with CPS and our fault-normal ve
locities are not biased by arbitrary assumptions about 
network rotations. Our CPS results and results from 
trilateration surveys suggest that convergence upon the 
San Andreas fault is less than a few millimeters per 
year. 

Fault-Parallel Velocities 

The CPS measured fault-parallel (N33°W) velocities 
decrease at nearly a constant rate across the profile 
and flatten to the east of the Green Valley fault (Fig
ure 3a). Vve observe steeper velocity gradients across 
the San Andreas and Green Valley faults, but these fea
tures are not well defined because the sites are widely 
spaced. The relative velocities and gradients in the ve
locity field are consistent with those derived by Lisowski 
et al. [1991] from trilateration data. As previously dis
cussed, the CPS relative velocities are directly mea
sured, whereas those derived from trilateration data as-
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Figure 3. Station velocities relative to Cord resolved 
into components (a) parallel and (b) normal to the local 
trend (N33°W) of the San Andreas fault plotted as a 
function of distance from the fault. Error bars represent 
one standard deviation. 


