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Abstract 

Approaches to the core of the squalestatins 

Alison M. Reid 
Ph.D.1996 

The squalestatins are a new family of natural products which display potent 
cholesterol lowering effects. Common to all these natural products is the highly 
oxidised bicyclic core and the aim of this project was to achieve a concise synthetic 
route to this core unit. 
Initial studies were carried out using 2-benzyloxycyclohexanone as a model template. 
Following conversion to the 2-oxa-3-oxo-spiro<4.5>decan-6-one via addition of the 
dianion of 3-(para-tolylsulphonyl)propionic acid, coupling of a C(2) fragment was 
explored. Addition of carboethoxymethylenetriphenylphosphorane, followed by 
oxidation to the dial and protection as the acetonide led to the formation of 4-
Ethoxycarbonyl-(2,2-dimethyl-5" -oxodispiro[perhydro[ 1 ,3]dioxolane-4, I'
cyclohexane-2',2"-(5"-H-furan)]-5-yl. The alternative order of addition of the C(4) 
and C(2) units has also been undertaken. 
Manipulation of the ester group to a silyl ether afforded a less reactive functionality 
and C( 4) was manipulated to allow for the coupling of the next fragment to form the 
spiro lactone. The addition of the dianion of 3-(para-tolylsulphonyl)propionic acid to 
4-(tbutyldimethylsilyloxymethyl)-2,2-dimethyl-1 ,3-dioxa-spiro<4.5>decan-6-one 
failed and another route to the spiro lactone was explored. 
Form at ion of 4- (tbutyldimethylsilyloxymethyl)-2,2-dimethyl-1 ,3,7-trioxa
dispiro<4.0.4.4>tetradecan-8-one (I) was achieved by allylation at C(4) followed by 
hydroboration of the double bond and subsequent oxidation. The C(l) side chain 
could be added to the spiro lactone using allyl magnesium bromide without 
compromising the other functionality present. 
Acid treatment of 4-(tbutyldimethylsilyloxymethyl)-8-methoxy-2,2-dimethyl-8-
propyl-1 ,3, 7 -trioxa-dispiro<4.0.4.4>tetradecane (II) promoted deprotection of the 
acetonide followed by concomitant cyclisation to the desired 6-hydroxy-9-propyl-
8, 12-dioxatricyclo<7 .2.1.0>dodec-7-yl-1-methanol (Ill). This showed the viability of 
the retrosynthetic analysis as a route to core analogues of the squalestatins. 
Studies to the fully substituted core were commenced using cis-cyclohexadiene dial. 
The dial was protected as its p-anisaldehyde acetal before the formation of the Diels 
Alder adduct (IV) using 4-phenyl-1 ,3,5-triazolinone. However a lack of time 
prevented its manipulation to the a-alkoxy ketone species through Lewis Acid 
mediated cleavage of the acetal. 
In a second retrosynthetic plan 2-benzyloxycyclohexanone was coupled with methyl 
tetronate prepared following the procedure of Pelter. Preliminary studies towards the 
addition of the C(l) side chain have been undertaken and initial results seem 
promising. 
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Chapter 1 : Introduction and Background 

1.1 Introduction 

This thesis describes work directed towards a synthesis of the core unit of the 

squalestatins. These natural products belong to a group of fungal metabolites 

which have been found to inhibit squalene synthase, a key enzyme in the 

cholesterol biosynthetic pathway. Hence, the squalestatins have potential as 

therapeutic agents for a number of ailments including fungal diseases and 

hypercholesterolemia. 

R'(O)CO OH 
~ -. ... 

OH 
(1) 

Squalestatin 1 I Zaragozic acid A R= 

R'= 

Zaragozic acid 8 R = 

R'= 

Zaragozic acid C R = 

R'= 

Scheme 1.1.1 
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1.2 Isolation and Structure Analysis of Squalestatin 1 

1.2.1 Isolation 

Screening programmes were set up to aid the discovery of compounds which 

inhibit squalene synthase and, in 1992, workers at Glaxol and Merck2 

simultaneously reported the discovery of a new family of natural products which 

display picomolar inhibition of squalene synthase in cell cultures. 3 Glaxo named 

this new family Squalestatins because of their squalene synthase inhibitory 

effects and Merck named them Zaragozic Acids as the cultures were isolated 

from samples taken from the Jola River in Zaragoza, Spain. The squalestatins 

contain a highly oxidised bicyclic core unit, with a run of three contiguous 

carboxylic acids and differ only in the C(l) alkyl side chain and C( 6) 0-acyl side 

chain, Scheme 1.1.1. 

Isolation of the squalestatins was carried out through a four step procedure by 

taking advantage of their unusual amphipathic nature. Initial extraction was 

undertaken using a combination of water and methanol. Chromatography was 

then carried out, followed by the acidification and extraction of the protonated 

acids with dichloromethane. The strongly acidic nature of the squalestatins was 

exploited using anion exchange chromatography before final purification by 

HPLC. Altogether, from 23 litres of broth mixture, 24mg was purified by HPLC 

to afford squalestatin 1 as a pale yellow oil. 

1.2.2 Structure Determination 

A knowledge of the absolute stereochemistry of a compound is a prerequisite 

before studies can be carried out to fully understand the influence of the structure 

on biological activity. Merck research laboratories reported the initial chemistry 

and absolute stereochemistry in 1992.4 

The empirical formula of squalestatin 1 (C35H46014) was deduced from HR 

ElMS and 13C NMR analysis of its penta-TMS derivative. The tricarboxylic acid 

moiety was elucidated by FAB MS of the lithium adduct of a trilithium salt 

formed on spiking with lithium acetate. The 13C data and formula indicated 5 

2 



double bonds and 5 carboxylate/ester groups. The structures of the C(l) and C(6) 

side chains were elucidated from NMR studies of their respective acids after 

degradation by base hydrolysis.s Deuterium isotope induced 13C shifts ruled out 

the presence of a hemiketal function. 

The absolute stereochemistry of the core unit was established usmg CD 

measurements of a bisbromobenzoate derivative. From this, it was found that the 

configuration of C(3) and C(4) were both (S) and that of C(6) and C(7) were (R). 

Oxidative degradation of the C( 1) alkyl side chain suggested an (R) configuration 

at the C(5') atom. 0-methyl mandelate derivatives provided the evidence for the 

(S) configuration at C(4'). Confirmation of these stereochemical assignments was 

obtained through X-ray analysis of the easily prepared tetrakis(trimethylsilyl) and 

tri1butyl ester derivatives of squalestatin 1. As can be seen from Figure 1.2.1, this 

highly oxidised core unit exists as a six membered ring (C(l)-0(2)-C(3)-C(4)

C(5)-0(8)) in the chair conformation. Although this central core is not unique- it 

is present in a plant alkaloid6(2) and a shellfish toxin 7 (3), Figure 1.2.1, it has not 

previously been observed with such heavy substitution. 

HO 

HO 

Daphniphylline (2) Pectenotoxin-1 (3} 

Figure 1.2.1 

Overall, squalestatin 1 has nine stereogenic centres with six of them confined to 

the core unit. In summary, these centres have been defined C(l)(S), C(3)(S), 

C(4)(S), C(6)(R), C(7)(R), C(4')(S), C(5')(R), C(4")(S), C(6")(S) as decribed in 

Figure 1.2.2. 
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\ 
\. .< 

Figure 1.2.2 

This work also unveiled some of the chemical properties of squalestatin I. 

Selective removal of either the 4'-0-acetyl residue or the 4,6-dimethyl octenoyl 

residue was accomplished. In addition, it was observed that selective 

manipulation of the individual carboxyl functions was also feasible. The 

reactivity of carbomethoxy derivatives was found to be C(3l>C(5)>C(4) at least 

with respect to attack by small nucleophiles at the carbonyl carbon. The 

difference in reactivity could arise from a combination of steric factors and 

electronic assistance from the c-l hydroxyl group through hydrogen bonding with 

carbonyl oxygens of the esters at C(3) and C(5). 

1.3 Cholesterol and its Regulation 

1.3.1 Introduction 

Atherosclerosis and hypercholesterolemia affect a significant percentage of the 

population in the western world today. Furthermore, elevated serum cholesterol 

is well established as a risk factor for coronary disease and a number of studies 

have shown that reducing raised levels of serum cholesterol in man. leads to a 

reduction in the incidence of coronarv-rclatecl deaths. X Therefore much effort has 

been put into understanding and regulating the cholesterol biosynthetic pathway. 

This section will describe the approaches to the search of potent inhibitors of 

clwlcsternl. 



1.3.2 Cholesterol Biosynthesis 

Cholesterol is biosynthesised from the condensation of isoprene units to form 

long lipophilic chains which ultimately cyclise to form first lanosterol, then after 

a series of steps, cholesterol, Scheme l.3 .2. The isoprenoid pathway forms the 

building blocks to sterol synthesis and commences with the formation of malonyl 

Co A from acetyl CoA, Scheme I .3 .1.9 An aldol condensation produces 3-

hydroxy-3-methylglutaryl coenzymeA (HMGCoA) (4) and an enzyme known as 

HMGCoA reductase catalyses its reduction to mevalonic acid (5). This is known 

to be a rate limiting step in the isoprenoid pathway and drugs which inhibit this 

enzyme are well known as effective therapeutic agents for hypercholesterolemia. 

Manipulation of mevalonic acid produces isopentenyl pyrophosphate (IPP), a Cs 

building block in the synthesis of cholesterol. Isomerase catalyses the formation 

of dimethylallyl pyrophosphate (DMAPP) which is the Cs starter unit in the 

polyprenoid pathway. 

CH3COSCoA 

+ 
CH 2C02H 
I 
COSCoA 

Claisen 

/ 
~OPP 

Ha Hb 

+ 

0 CH3 OP 
i'i ~ .•• ~ -

-o~~"oPP 

isomerase 

Aldol 

HMGCoA 
synthase 

NADPH ! HMGCoA 

reductase 

2ATP 

Mevalonic Acid 
(5) 

~OPP 

5 

lsopentenyl pyrophosphate (lPP) 
(C5 building unit) 

Dimethylallyl pyrophosphate (DMAPP) 
(C5 starter unit) 

Scheme I .3 .I 



Scheme 1.3.2 shows the construction of cholesterol via the condensation of 

DMAPP units to an IPP starter unit. The addition of one molecule of DMAPP to 

one molecule of IPP forms geranyl pyrophosphate (6) upon the elimination of a 

pyrophosphat~ group. The pathway diverges at this point, with the possibility of 

chain extension through the addition of more DMAPP or manipulation to form 

monoterpenes such as dolichol and geraniol. Farnesyl pyrophosphate (FPP) (7), a 

C 1 5 chain, is formed from the addition of two DMAPP molecules to IPP. 

Squalene synthase is the enzyme which catalyses the head to head ligation of two 

FPP molecules to form squalene in the first committed step to cholesterol. 

6 
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------------------

1.3.3 Current Medicinal Chemical Approach 

Screening of fermentation cultures for natural products which inhibit specific 

enzymatic steps in the synthesis of cholesterol has resulted in discoveries of 

mevinolin 1 O (8) and compactin II (9), Figure I .3 .1. These compounds are potent 

inhibitors of HMGCoA reductase and are clinically established as highly 

effective cholesterol reducing agents in man. The lactone portion of these 

chemical structures bear a strong resemblance to HMGCoA and their mode of 

action is thought to involve mimicking HMGCoA. 

. · ,. 
~-

Mevinolin 
(8) 

Figure 1.3 .I 

HO~ ·· . 

Compactin 
(9) 

0 

The cholesterol biosynthetic pathway not only forms sterols but also produces 

dolichol, ubiquinone, the farnesyl group of heme A, prenylated proteins and the 

isopentyl side chain of isopentyl adenine. The pathways for the synthesis of these 

isoprenoids diverge from the synthesis of cholesterol after the formation of 

HMGCoA. Thus current therapeutic agents for the lowering of serum cholesterol 

will also inhibit the formation of other isoprenoids. Ideal candidates for the the 

control of hypercholesterolemia would be specific cholesterol inhibitors as these 

drugs often have to be prescribed for the rest of the patient's lifespan to ensure 

that toxic side effects will be as minimalised. 

The squalestatins are a new family of fungal metabolites that are picomolar 

inhibitors of an enzyme known as squalene synthase. The pathways for the 

synthesis of these other isoprenoids diverge from the synthesis of cholesterol 

8 



either at or before squalene synthase. This enzyme is involved in the first 

committed step to cholesterol and therefore poses an attractive target for the 

regulation of cholesterol biosynthesis. 

1.3.3 Biological Activity 

Squalestatin 1 was shown to be a potent, selective inhibitor of squalene synthase, 

a key enzyme in cholesterol biosynthesis3. As this is the first step after the 

pathway branches to other isoprene derived compounds, it has been proposed that 

a specific inhibition of squalene synthase should serve to inhibit cholesterol 

synthesis and not adversely affect the synthesis of other isoprenoids. Squalene 

synthase catalyses the head to head ligation of two molecules of farnesyl 

diphosphate to form first presqualene pyrophosphate, then squalene. Farnesyl 

pyrophospate (FPP), the substrate for squalene synthase is water soluble and may 

be readily metabolised. Thus squalene synthase inhibition of cholesterol 

biosynthesis is safe and specific. Inhibitors of this enzyme based on substrate 

analogues have been studied previously by Biller et a[I2 but these compounds 

have shown only weak inhibition of squalene synthase and were not suitable for 

evaluation in vivo, Figure 1.3.2. Squalestatin 1 has been shown to have an 

unusually high affinity for Ca2+ ions and readily inserts into model membranesl3. 

Ca2+ plays an important role in membrane stabilisation, in activating membrane 

bound enzymes and in triggering intracellular events. 

R= 

Figure 1.3.2 
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Initial studies on inhibition of squalene synthas~ by the squalestatins3 showed an 

ICso of -5nM in assays with SJ..LM FPP and a protein concentration of llOJ.Ig/ml. 

Only when_ the protein concentration was decreased by a factor of 50 did the 

inhibition by the squalestatins become independent of protein concentration. This 

activity suggests that the squalestatins are very potent reversible inhibitors. 

The squalestatins were shown to inhibit cholesterol synthesis in Hep G2 cells. 

These cells were incubated with the squalestatins and labelled with [3H] 

mevalonate. Cells were extracted to obtain a nonsaponifiable fraction, a FPP 

fraction and an organic acid fraction. The incorporation of [3H] mevanolate into 

cholesterol was shown to be inhibited upon the addition of the squalestatins and 

also showed a dose dependent decrease in cholesterol synthesis with ICso values 

ranging from 0.6-6J..LM within this new family of natural products. The 

disappearance of label from the usual nonsaponifiables was indicative of 

inhibition of cholesterol synthesis at a step prior to squalene synthesis, Figure 

1.3.3. 

8 ~ B 

0 6• 

~ 4t ~ 
g ~ 0 

2f· 1 ... (/'; 

QL_______..__ I 
0 ? 4 

~ ~ c 
u.. Q 
II..J~ 

HPLC analysis onhe nonsaponifiables labeled with [3H]mevalonate in Hep G2 cells were incubated with no 
additions (A) or with I O!lg of zaragozic acid A per ml (B). Fractions were collected every O.Smin and 3 H 
content of the fractions was determined. The retention times of squalene. lanosterol. farnesol and cholesterol 
standards are shown_ 

Figure 1.3.33 

Squalestatin 1 was also shown to inhibit hepatic cholesterol synthesis in mice 

with an EDso -0.2mg/kg. In contrast to Hep G2 cells, labelled farnesol was not 

detected in the mice. Furthermore, when squalestatin 1 was administered orally 

to marmosets, a species with a lipoprotein profile similar to that of man 14 , a 50% 

reduction in serum cholesterol was observed at a dose of I Omg/kg/day for 7 days. 

The squalestatin family of natural products show potent inhibition of squalene 

synthase both in vitro and in vivo. Squalene synthase catalyses a two step 



sequence m which presqualene pyrophosphate (10) is an intermediate. It is 

thought that the squalestatins inhibit squalene synthase, in part, by effectively 

mimicking the binding of presqualene pyrophosphate to the enzyme. Both 

structures contain two long hydrophobic side chains and a cyclic core with polar 

acidic functions, Figure 1.3.4. 

0 

Squalestatin 1 

Presqualene Pyrophosphate 

(1 0) 

Figure 1.3.4 

1.3.4 Toxicity 

Some brief reports on the toxicity of the zaragozic acids have been published. 

One possible consequence of blocking squalene synthase is that FPP accumulates, 

since it cannot be processed through the cholesterol pathway. The excess levels 

of FPP are rapidly catabolised to a range of farnesyl-derived dicarboxylic acids 

(FDDCAs) in the liver. Such dicarboxylic acids are then excreted in the urine. IS 

When rats were treated with a dosage of 15mg/kg per day of squalestatin 1 and a 

bile acid sequestrant, the levels of FDDCAs in the urine rapidly became very high 

and the animals became very moribound, a symptom of acidosis. Acidosis is a 

ll 



disease associated with abnormal pH serum levels. It was therefore suggetsted 

that the toxic side effects associated with squalestatin 1 are a result of the acidosis 

caused by massive overproduction of FDDCAs from an increase in FPP. 

However, the toxicity was totally eliminated by co-dosage with a HMGCoA 

reductase inhibitor. 

1.3.5 Structure Activity Relationships 

As part of the programme aimed at the discovery of potent cholesterol inhibitors, 

the key structural features responsible for the biological activity of the 

squalestatins were studied. Modifications of squalestatin 1 have been carried out 

to identify the requisite structural features responsible for biological activity. 

It was discoveredl6 that long chain analogues of the C(6) side chain were 

generally more potent than C(6) short chain derivatives with the optimal potency 

for squalene synthase inhibition obtained with 12 atom chain lengths. It has also 

been reported that replacement of the phenyl group with a tbutyl or cyclohexyl 

group in the C( I) side chain resulted in a significant loss of squalene synthase 

inhibitory activity .17 This could be attributed to the fact that the aromatic ring of 

squalestatin I may be providing additional binding to the enzyme, analogous to 

that provided by the double bond in the farnesyl chains of FPP. Loss of activity 

observed with shortening of the C(6) side chain is also consistent with the 

observation that truncated FPP analogues are poor inhibitors of squalene 

synthase. IS Replacement of the C(6) 0-acyl group with a hydroxyl group was 

well tolerated and squalene synthase inhibitory activity remained potentl. 

The role of the tricarboxylic acid moiety was elucidated by a group at Glaxol9 

and it was observed that inhibitory activity of both C(3) and C(4) mono methyl 

esters of squalestatin 1 retained potent enzyme inhibitory activity (ICso 7nM & 

4nM respectively). Furthermore, the C(3), C( 4) dimethyl ester also retained 

significant enzyme inhibitory activity. In contrast, however, the C(5) mono 

methyl ester showed no significant potency along with the C(3), C(5) and C(4), 
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C(5) dimethyl esters20. This data strongly suggests that the C(5) carboxylic acid 

is crucial for enzyme inhibitory activity to be retained. 

The C(6) hydroxyl analogue of squalestatin 1 was prepared by a group at Glaxo21 

and in vitro studies showed potent inhibitory activity. However, the 

corresponding C(3) and C(4) mono methyl esters showed a significant loss of 

potency. Again, the C(5) mono methyl ester showed no inhibition of squalene 

synthase. 

These results suggest that the C(6) side chain critically affects the in vitro 

squalene synthase inhibitory activity for modifications made in other parts of the 

molecule.22 

It has been proposed that analogues of squalestatin 1 mimic the biosynthetic 

intermediate presqualene pyrophosphate while the related C(6) hydroxyl 

derivatives are FPP mimics23. In both series, the highly functionalised 2,8-

dioxabicyclo[3.2.l]octane ring system acts as a diphosphate mimic. 

Potent squalene synthase inhibition is retained only in those analogues which 

possess C( 1) and C(6) substituents closely similar to those found in the natural 

product itself. 

1.4 Biosynthesis 

The biosynthesis of squalestatin 1 was elucidated by a group at Bristol University 

in collaboration with Glaxo24 through a variety of labelling experiments using 

13C and I4c isotopically enriched precursors. It was shown that squalestatin 1 is 

derived from two polyketide chains, Scheme 1.4.1. 
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Chain B 
____ _.A...._ __ ..., 

r - ' 
0 

~0 0 

)lo 

_____ ) 
v 

Chain A 

Scheme 1.4.1 

The first chain (chain A) forms the C(l) alkyl unit and core and is derived from 

the condensation of a benzoate group with five acetates in normal polyketide 

fashion. The terminal four carbon atoms (at C(3)- C(4)) appear to arise from the 

condensation of one succinate group although citric acid cannot be ruled out as a 

source of the tricarboxylic acid moiety (terminal six atoms). 

The aromatic starter unit is derived from the metabolism of phenylalanine with 

phenylalanine ammonia lyase (PAL) to form first, trans cinnamic acid, then 

benzoic acid, by ~-oxidation and truncation, Scheme 1.4.2. Such aromatic starter 

units are rare in polyketide biosynthesis.25 

uco_2_H _ __.. 
Scheme 1.4.2 

In chain B, the C(6) 0-acyl unit, ts generated from four acetate units. 

Interestingly, the branching methyl and methylene groups are formed by C-

methylation with L-methyl methionine rather than the incorporation of propionate 

into the polyketide pathway. 
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1.5 Previous Synthetic A1mroaches 

A large amount of interest in devising synthetic routes to squalestatin has arisen 

due to the potential of these fungal metabolites as therapeutic agents in the 

lowering of serum cholesterol. They also possess a wide range of antifungal 

activity.3 This raises the possibility of developing new antifungal agents targeted 

to the inhibition of fungal squalene synthase. This could prove useful as the 

number of immunosuppressed patients is on the increase due to the development 

of transplant operations. Drugs to combat opportunistic fungii are in great 

demand. 

Since the start of this project, three total syntheses and a number of partial 

syntheses26 of the squalestatins have been published. 

At the end of 1994, three total syntheses were published by Carreira et ai,27 

Nicolaou et al 28and Evans et af29 in collaboration with researchers at Merck, 

Sharp and Dohme. All three research groups introduce the C(6) 0-acyl side chain 

in the final step and all form the bicyclic core through a ketalisation step by acetal 

formation of a 4,6-dihydroxyketone using standard procedures. Apart from these 

aspects, the synthetic pathways differ. 

Evans et al chose to explore the synthesis of zaragozic acid C through an acyclic 

precursor assuming that internal ketalisation would lead to the desired ketal core 

unit rather than its structural isomer, Figure 1.5.1. 

Figure 1.5.1 
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The synthesis was initiated using a Lewis acid catalysed chiral aldol addition of a 

tartaric acid derivative (11) which served to make up the C(3), C( 4) and C(6), 

C(7) centres of the acyclic analogue of the core unit. Another critical step 

stereoselectively introduced the C(5) nucleophilic carboxylate fragment by means 

of a chelated Grignard addition to the ketone (12) outlined in Scheme 1.5.2a and 

Scheme 1.5.2b. 

(11) 

tsuo2c 
tsuo2c~-.--, 

OH 

0 OTBS 

~Ph 
OBn 

Scheme1.5.2a 

co2tsu 
tsuo2c 

Bn ---- C)o~uto cl0 
2 OBn 

Bn 

Scheme 1.5.2b 

The strategy which Carreira and coworkers followed for the preparation of 

zaragozic acid C involves initial removal of the C(6) 0-acyl and C( I) alkyl side 
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chains, Scheme 1.5.3. Treatment of (15), readily accessible from (14), with 

ethoxyvinyl lithium generated the ketone (16). Subsequent reaction with 

magnesium acetylide afforded the key tertiary alcohol in greater than 90% de. 

Further elaboration led to the protected hydroxyketone (17) with the other 

stereogenic centres being incorporated by Sharpless asymmetric dihydroxylation. 

In the final ketalisation step the diol (17) is cyclised under acidic conditions to 

give the dioxabicyclo[3.2.1]octane acetal. 

0 

HO:x:;O 
HO 

(14) 

OH 

-
OBn 

HJ OH 
HO ~ 

0 

(17) 

Et 
Et-j-o NMe2 

0~0 
OBn 

(15) 

Ph 

OPiv 

Ph 

---Et6XEt 
OBn 

Scheme 1.5.3 

The synthesis of squalestatin 1, carried out by Nicolaou, is summarised below, 

Scheme 1.5.4, with four of the five stereogenic centres constructed using 

Sharpless dihydroxylations. However, addition of a dithiane protected C( 1) side 

chain (18) forms the alcohol (19) in an unselective manner. These isomers must 

be separated by flash column chromatography. 

17 



1 
_rOSEM PMBOJ rOSEM 

Y _ ____,.,...PMBO~ 
C02Me C02Me 

PMBO ::;l + 
PMBO SnBu3 

PMBOJ rOSEM 

PMBO~O ------

PMBO l OH 

PMBO~OSEM 
Me02c" OH Me02C~ 0~ 

! 
OH 

TBDPSO~~?' OH 

O OSEM 

0 01 
(18) 

OTBDMS 

Ph (19) 

Scheme 1.5.4 

In a more recent report30 Armstrong et al published a short and stereoselective 

synthesis of the squalestatin core, again featuring the use of a double Sharpless 

asymmetric dihydroxylation reaction to control the stereochemistry. In this case, 

the reaction was carried out as a one pot synthesis and high stereoselectivity was 

achieved. 

The core unit was, as with Nicolaou, initially disconnected through the ketal, 

forming a linear core analogue (24), which, itself, was obtained through a double 
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Sharpless dihydroxylation of (22) with 76%ee. The diene (22) was synthesised 

from a Stille coupling between a stereodefined vinyl stannane (20) and a vinyl 

iodide (21) as outlined in Scheme 1.5.5, below. 

BnO 
OBn 11 

19 

ysn~u3 1~ BnO+ 
( 6sn 

__ .,..BnO~~~ 
~~?J 6sn 

(23) 

~ OBn 

OBn 

(20) (21) 

OBn 

(22) 

HO OH 

BnO~ 
BnO~ 

OH OBn 

(24) 

Scheme 1.5.5 

OBn j 
(1 
S SOHH 

OBn 

All three total syntheses are examples of modern, efficient natural product 

syntheses. The two research groups of Carreira and Nicolaou have been the first 

to cross the finish line in the race for the synthesis of the squalestatins with 

overall yields of l% in each case. Evans however, has formed each new 

stereogenic centre with high selectivity and completed the synthesis in only 21 

steps with an overall yield of 15%. Many partial syntheses of the squalestatins 

have been reported, some of which are dicussed below. 

The first synthesis of a novel 2,8-dioxabicyclo[3.2.l ]octane ring system, a key 

feature of the squalestatins, was carried out by Aggarwal and coworkers31 at the 

University of Sheffield. Here, the initial disconnection step was that of the ketal 

to give (25) followed by a disconnection that would require the addition of 

synthon (27) to the a-keto ester (26), Scheme 1.5.6. 



RQ OH 

H02c--Q-o 
H02c:pf~JR 

OH C02H 

(25) (26) (27) 

Scheme 1.5.6 

One such equivalent of the synthon was found to be the enolate of the acetonide 

of (S,S)-dimethyl tartrate (28). The anion was prepared by the use of 12-crown-4 

with LDA, upon addition to a 1,4 diketone (29) to form a mixture of isomeric 

products, Scheme 1.5.7. These were treated with acid and cyclisation ensued, 

resulting in a bicyclic core analogue, Scheme 1.5.6. It was discovered that due to 

thermodynamics, the product was formed as essentially one single isomer (30). 

(28) (29) 

Scheme 1.5.7 

Me02CR::._ 
OH C02Me 

(30) 

In 1994, Roberts32, in collaboration with a group at Glaxo, reported the synthesis 

of an analogue of the squalestatin core unit. Here, D-( + )-1 ,6-anhydrogalactose 

(31), a commercially available material, was converted into the butenolide (32) 

which was eventually converted into the dioxabicyclo[3.2.1]octane core (33), a 

major intermediate for the preparation of squalestatin I, via a late stage 

ketalisation step. An outline of this strategy is described in Scheme 1.5.8. 
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Bn:~g~ 
OR 

OBn 

HO~ RO 

0 OR 

OH OR 
0 

(31) (32) 

'R(O¥£ OBn HO OBn 

HO~ o · R /'' ._ RO '•·-
>.;. 0.-H02 O HOHO oi-OH C02H RO 

RO RO 
(33) 

Scheme 1.5.8 

A novel synthetic approach towards the core structure of the squalestatins was 

reported by Merck in 199433. The strategy used did not involve a ketalisation 

step as such, but was based on the tandem cyclisation-cycloaddition of 

dipolarophiles and carbonyl ylids. With this methodology it was possible to 

assemble bicyclic core analogues in a single step. The carbonyl ylids were 

generated from the respective diazo esters (34) in the presence of rhodium 

carboxylate and trapped with the appropriate dipolarophiles. In all of the cases 

studied, the reaction proceeded regio- and stereoselectively, resulting in a single 

cyclisation-cycloaddition product from each reaction. Although the cases 

yielding the "carboxylic version" of the core structure went smoothly, the low 

yield for formation of (35) with an oxygen in the 2-position was rather 

disappointing, Scheme 1.5.9. 
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dipolarophile 

Scheme 1.5.9 

1.6 Proposed Work 

1.6.1 Introduction 

l 
X Z -Ro2cNR· 

0 
(35) 

x = OSiMe3 
Z= H 

R,R' =Me 

The squalestatin family of natural products exhibit potent cholesterol lowering 

effects. It would threrefore be desirable to devise a synthesis towards these 

fungal metabolites which is easily adaptable for analogue synthesis. 

Consequently we, in line with previous approaches, have disconnected at the C( l) 

alkyl and C(6) 0-acyl side chains first. 

1.6.2 Restrosynthetic Plan A 

The tricarboxylic acid moiety is a key feature of the highly oxidised bicyclic core 

of squalestatin 1 but it was envisaged that these functional groups would prove 

difficult to handle. Consequently, we opted to mask the carboxylic acids as 

olefins as these could be easily cleaved by ozonolysis followed by an oxidative 

workup. Furthermore, tethering of two of the olefins to form a diene (36) and a 

Diels Alder reaction with a dieneophile would introduce a rigid tricyclic structure 

aiding stereochemical control (37). This intermediate can be formed through a 

triply convergent route from a lithioacrylate (40), an a-alkoxy lithium (39) and an 

a-alkoxy ketone (41) to allow for maximum variation. The ketone can be easily 

prepared from cis-cyclohexadiene diol (42). 

Early disconnection of the C( l) and C(6) side chains of the core unit of 

squalestatin should enable the production of a variety of analogues at a late stage 
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in the synthesis. With these points in mind, the retrosynthetic strategy outlined in 

Scheme 1.6. 1 was developed. 

( 1) 

(41) 

11 

O 
.... OH 

··'oH 

(42) 

(40) 

R'(O)CO 
~ ... 

OH R'02C, 
R'02C, ,N 

R c:=:::::;;:> 

HO 

(36) 

HO 

(37) 

+ 
OP 
. 0 

Li~ 

(39) (38) 

Scheme 1.6.1 

Asymmetry of the core unit could be incorporated either by using chlorobenzcnc 

as a substrate for Pseudomonas putida or through a desymmetrisation process 1•ia 

asymmetric cleavage of acetals using chiral Lewis acids to give compounds such 

as (43). Scheme 1.6.2. 

0) ~ 
0 

p~ 9P 
~H \__/ 

R 

(43) 

R~ag~n": i. !\IL, . RLi: oi. < lH protcl'll<lll 

Scheme 1.6.2 
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1.6.3 An Alternative Route 

Using the same strategy as above, the tethering of two olefins to form a cyclic 

diene and the subsequent Diels Alder reaction again forms a rigid tricyclic 

structure. This retrosynthesis differs from the previous approach by the fact that 

the Diels Alder adduct ( 46) does not contain the spiro ketal moiety as described 

previously (38). Thus the adduct can be approached through a doubly convergent 

route using the same protected form of cis-cyclohexadiene diol ( 41) and a 

tetronate derivative (47), Scheme 1.6.3. 

(1) 

{41) 

n 
O 

... ,OH 

.. ,,oH 

(42) 

PO OP 

.:==~> R02C~R 
~6 

-;;:: 
OH 

(44) 

(47) 

Scheme 1.6.3 

< 

> ==j"l 
NOH 

R02C. -....;:,:.N 
R02c· 

(45) 

PO 

==j"l 
NOH 

R02C. '----N 
R02c' 

(46) 

OP 

R 
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Initial studies were carried out using a simplified substrate to test each synthetic 

plan before studies to the fully substituted core unit were commenced. This work 

will be discussed in detail in the next chapter. 



Chapter 2 : Results and Discussion 

2.1 Introduction 

The principal aim of this project was the synthesis of the core unit of squalestatin 

1 (1), Figure 2.1.1 and its analogues. A retrosynthetic plan was developed and 

initial model studies were carried out to test its viability. 

R'(O)CQ,__ OH 

HC22C --2;-l
H02l;nr:-R 

HO C02H 

( 1) 

Figure 2.1.1 

( .-.. 2.A;_ 
R =., ...... lf T Ph 

R'=J~ 

With six stereogenic centres, stereoselective reactions were a major consideration 

in the proposed synthetic route to the bicyclic core. Key to the biological activity 

of squalestatin 1 is its tricarboxylic acid moiety. Since this functionality would 

be difficult to handle, we adopted the strategy of masking these carboxylate 

groups as olefins with easy recovery of the tricarboxylic acid moiety via 

ozonolysis. With these points in mind, the retrosynthetic strategy outlined in 

Scheme 1.6.1 was developed. 

The first step in the retrosynthesis of the core unit (1) chemically ties two of the 

equatorial carboxylic acids together to form diene (36) which can, in turn, be 

protected by Diels Alder addition of a diazene, forming compound (37). In 

addition to protecting the sensitive diene, it was thought that utilisation of this 

adduct would enable stereochemical control during synthetic manipulations. 
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(1) 

R'02c, 

R'02C~,N 
N H + 

/ 

OP 
0 

(41) 

n 
O

··''OH 

.. ,'OH 

(42} 

(40) 

(36} 

OP 
+ : 
Li~ 

(39) 

Scheme 1.6.1 

(37) 

R'02G,. n OR" 

R'02C:~ 

¢=:::J ~~~0 
OP OP 

(38) 

Early disconnection of the C(l) R group would also allow analogues to be made 

at a late stage of synthesis. Cleavage of the acetal (37) leads to the spirolactone 

(38) and further disconnection leads to the protected hydroxyketone (41) via 

disconnection of the two side chain units (39) and ( 40). The hydroxy ketone ( 41) 

can be obtained from the readily available, cis-cyclohexadiene diol (42) Initially, 

it was thought that the use of olefins as masking groups for the carboxylic acids 

might raise some synthetic obstacles, and to test these early steps a simplified 

structure (52) was adopted as a model target, Scheme 2.1.1. 
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~0 
OBn -----

cd;;=o ----- ~0 
(48) (49) (50) 

v{1R ~ 
~ c:::[)=o 

OHC02Me 0 

(52) (51) 

Scheme 2.1.1 

Thus, following this synthetic plan, we required access to 2-

benzyloxycyclohexanone (48) as an initial starting material. 

2.2 Preparation of 2-benzyloxycyclohexanone C 48)34, 35 

Desmaele34 has reported a synthesis of 2-benzyloxycyclohexanone through 

treatment of cyclohexene oxide (53) with the sodium salt of benzyl alcohol 

followed by oxidation with Jones' reagent, Scheme 2.2.1. However, in our hands 

the initial steps of this procedure led to problems in separation of the desired 

alcohol. This difficulty was overcome through use of excess cyclohexene oxide 

and thus the monoprotected diol (54) was obtained in 93% yield after purification 

by either vacuum distillation or flash chromatography. IR analysis showed a 

broad band at 3430cm-l characteristic of the hydroxyl functionality. The 

appearance of an AB quartet and a multiplet at 87.28-7.24 in the 1 H NMR was 

typical of a benzylic moiety. Subsequent oxidation to the desired alkoxy ketone 

(48) was attempted using both Jones' reagent and PCC, though these methods 

proved unsatisfactory. However, excellent yields (>90%) were achieved via 

Swern oxidation.35 
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~0 

(53) 

OH [:::::::f.osn _i_i ~ 

(54) 

0 

c::::fosn 

(48) 

Reagents: i. PhCH 20H, NaH; ii. Oxalyl chloride, DMSO, Et3N 

Scheme 2.2.1 

Disappearance of the OH stretch at 3479cm-l and the appearance of a strong 

absorption at 1723cm-l in the IR spectrum confirmed that the ketone (48) had 

been formed. The presence of a peak at 8210.6 in the 13C NMR spectrum is 

characteristic of the ketonic carbonyl group. Further evidence was obtained from 

CI-MS which showed a molecular ion peak at mlz 222 (M+NH4+, 94%). 

2.3 Preparation of the Spirolactone 

2.3.1 Introduction - Application of a Lithium Methacrylate Species 

A three carbon homoenolate equivalent (41) must now be synthesised to add to 

the carbonyl group of 2-benzyloxycyclohexanone (48) and the adduct 

subsequently cyclised to form the desired butenolide (55), Scheme 2.3.1. 

________ ._ ~0 
OBn 

(48) (41) (55) 

Scheme 2.3.1 

Methyl ~-methoxyacrylate (56) can be lithiated regioselectively at the ~- position 

to afford the nucleophile necessary for the formation of the spirolactone (55) and 

Schmidt et af36 have reported the application of a functionalised acrylate (57). 
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Kinetic lithiation of the f3- carbon, achieved by the addition of LDA at -90°C for 

2min, followed by addition of cyclohexanone resulted in the formation of the 

butenolide (58),37 Scheme 2.3.2. 

thermodynamic lithiation 

R 

OCH3 

-o 
-N) 

lH"iR' i, ii 

R H~ 

\__ kinetic lithiation 

(56) 

R = OCH3 
R'= OCH3 

{58) 

Reagents: i. LDA, -9o·c. 2min; ii. cyclohexanone 

R' Reaction 

conditions 

[OC/min] 

-OC2H5 LDA [-90/2] 

LDA [-90/20] 

LDA [-90/150] 

LDA [-90/300] 

-OC2H5 LDA [-113/10] 

-CN LDA [-76/60] 

Scheme 2.3.2 

Ratio 

f3:a 

95:5 

82: 18 

64:36 

57:43 

100:0 

0: 100 

It can be seen from the table above that changing the sbstituents on the acrylate 

can afford different ratios of a- and f3- lithiated species. Furthermore, these ratios 

can be manipulated by changing the temperature and length of deprotonation. 

Schmidt et af38 have also described in a more recent paper, the use of a chiral f3-

alkoxyacrylate (57) in the stereoselective synthesis of a (-) Vertinolide precursor 

30 



31 
(59), Scheme 2.3.3. In this case 64% de was observed and it was thought that this 

would be useful in asymmetric studies towards the fully substituted core of the 

squalestatins. 

i, ii 

(57) (59) 

Reagents: i. LDA, -IOO'C, 45min; ii. ethyllevulinate (60), -IOO'C to -60'C, lh 

(60) 

Scheme 2.3.3 

Selective deprotonation was achieved by the addition of LDA at -1 OOOC for 45 

min. Addition of the ketone (60) then afforded the Vertinolide precursor (59). 

2.3.2 Preparation of a Lithium Homoenolate 

The methodology of Schmidt, described above, was followed usmg 

cyclohexanone, Scheme 2.3.2. Deprotonation of the methacrylate (56) by LDA at 

-90°C for 2min followed by the addition of cyclohexanone at -90°C afforded only 

recovered starting materials upon work up and purification. Repeating the 

reaction at higher temperatures again resulted in the recovery of starting 

materials. As we were unable to repeat the chemistry of Schmidt it was decided 

to temporarily abandon this approach and examine other routes to afford access to 

the butenolide, see next Section. Later on in this project the formation of the 

ketone (56) was achieved (Section 2.6.3) and it was thought that the now more 



32 
experienced chemist would be able to attempted the addition of the ~-

methoxyacrylate anion to the ketone (61) to afford the butenolide (62), Scheme 

2.3.4. The methodology of Schmidt was repeated and deprotonation of the 

methoxyacrylate was attempted using LDA at -90°C for 2min. However, addition 

of the ketone (61) afforded only recovered starting materials upon work up and 

purification by column chromatography. The longer deprotonation time of 45min 

at the lower temperature of -1 OOOC was also employed for the addition of methyl 

acrylate (56) to the ketone (61). Again, product formation was not observed and 

flash column chromatography gave complete recovery of starting materials. 

i, ii 
X., 

(56) (62) 

Reagents: i. LOA, -90°C, 2min; ii. ketone (61) 

0 

~OTBDMS 
)\0 

(61) 

Scheme 2.3.4 

Obviously, there is a fine balance between kinetic and thermodynamic 

deprotonation so to avoid equilibration of these two species, the electrophilic 

addition process must be fast. One possible reason for the lack of reactivity 

between the ketone (61) and the lithio acrylate could be due to the fact that 

competing enolisation was taking place because of the basicity of the lithium 

anion. Hence, upon quenching and extracting only starting materials were 

recovered. 



2.3.3 Application of 3-(para -tolylsulphonyl)propionic acid (63) 

Following the failure of the above methodology, we next examined the use of 3-

(para-tolylsulphonyl)propionic acid (63) as the precursor to the formation of a 

related spiro compound (49). Najera et a/39 have reported the use of lithiated 3-

(para-tolylsulphonyl)propionic acid (64) as the required homoenolate equivalent 

by its addition to cyclohexanone en route to butenolide synthesis, Scheme 2.3.5. 

TsY'I(Oli _ii,_i_ii_.. Tsho· 
0 Li 0 t:::::::/' 0 p 

(63) (64) (65) 

c:J?o 
(66) 

Reagents: i. 2eq BuLi, THF, -7s·c; ii. cyclohexanone, -4o·c; iii. TFAA, -30T; iv. Et3N 

Scheme 2.3.5 

Formation of the dianion (64) was achieved by careful addition of butyl lithium to 

the acid (63) at -78°C. Cyclohexanone was added and the mixture warmed to 

-40°C for 2h before the addition of trifluoroacetic anhydride. After I h at -30°C, 

triethylamine was added and the reaction quenched with saturated NaHC03 to 

afford the butenolide (66). 

Following the procedure of Kamogawa et a[40 sodium 3-(para-

tolylsulphonyl)propionate was prepared by addition of acrylic acid (67) to sodium 

para-toluenesulphinate dihydrate in ethanol. Acidification of the sodium salt (68) 

and subsequent recrystallisation from hexane afforded the desired acid (63) in 
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70% yield, Scheme 2.3.6. The presence of doublets at 67.79 and 67.38 and a 

singlet at 62.42 in the 1 H NMR corresponded to the tosyl group. Concomitant 

loss of the olefinic protons at 66.64-5.95 associated with the acrylic acid was also 

observed. IR also showed the disappearance of a sharp peak at 1622cm- I 

corresponding to the double bond and formation of the acid (63) was confirmed 

by a molecular ion peak observed at m/z 246 (M+NH4+, 92%). 

Ts,,........-......... ..,ONa ii Ts,,........-......... ..,OH 
II _.,... II 
0 0 

(67) (68) (63) 

Reagents: i. TsNa.2H20, EtOH; ii. HCI 

Scheme 2.3.6 

With the acid in hand, formation of the butenolide (66) using cyclohexanone was 

attempted. Following the procedure of Najera, it was found that dianion 

formation was critically dependent upon the reaction conditions. In particular, it 

was necessary to ensure a vigorously anhydrous environment and, as mentioned 

in the literature, the Butyl lithium must be added very slowly, so as to prevent 

addition of the acid to itself. The butenolide (66) was obtained in only 16% yield 

due to the fact that addition of the dianion ( 64) to carbony 1 groups was a 

reversible process at temperatures above -40°C and keeping temperatures 

constant initially proved difficult, Scheme 2.3.5. 

Formation of the desired butenolide (66) by elimination of the tosylate group was 

achieved by addition of excess triethylamine ( 10 eq). 

It was decided to revert back to the use of the ketone ( 48) in model studies of 

spirolactone synthesis rather than the more precious precursor (61) used in the 

previous section (see Scheme 2.3.4). 
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Analogous reaction of the acid (63) with 2-benzyloxycyclohexanone (48) gave 

48% yield of the required adduct (69), Scheme 2.3.7, after treatment with 

trifluoroacetic anhydride. A mixture of isomers was obtained as well as 

substantial recovery of starting material ( 48) (50%) and flash chromatography 

was used to separate unreacted ketone (48) from the crude reaction mixture. One 

possible suggestion for the low conversion is that 2-benzyloxycyclohexanone 

(48) quenched the dianion through competing enolisation. Although the 

butenolide ( 49) formed by this method was not as functionalised as the previous 

attempt using methoxyacrylate, Scheme 2.3.4, the double bond of the a,~-

unsaturated lactone ( 49) could be manipulated towards the desired functionality 

(i.e. a diol) for the core unit of the squalestatins. 

(63) 

------'1~ TsY'f(OLi ii, iii 

Li 0 

(64) 

~0 
OBn 

(69) 

~0 
(49) 

Reagents: i. 2eq BuLi, THF, -78°C; ii. 48, -40°C; iii. TFAA. -30°C; iv. LOA 

{48) 

Scheme 2.3.7 

Subsequent elimination of the tosylate group was attempted by the addition of 

excess triethy I amine to the isomeric mixture. This resulted in low yields of the 



desired butenolide (49) (19%). Alternatively, the use of freshly distilled DBU41 

gave increased yields of the eliminated product ( 49) ( 40-50% ), though required 

longer reaction times. More recently, LOA was utilised and complete 

consumption of the sulphonyl lactone (69) was observed after only 12h. With 

this modification, the desired butenolide (49) was therefore obtained in a 33% 

overall yield as a 1.4: I mixture of isomers, Scheme 2.3.7. The appearance of two 

IH doublets in the IH NMR at 87.56, 86.02 (major isomer) and 87.12, 85.87 

(minor isomer) relating to the olefinic protons and an AB coupling at 84.46 

(major isomer) and 84.41 (minor isomer) of the benzyl moiety was observed. 13C 

NMR also showed peaks at 8171.3 (major isomer) and 8172.6 (minor isomer) 

corresponding to the lactone carbonyl. 

Although the overall yield for the lactone synthesis was 33%, the reaction 

proceeded cleanly and it was possible to recycle unreacted ketone ( 48) to obtain 

the butenolide (49) in multigram quantities. It was also hoped that the 

diastereoselectivity could be increased by the use of a bulkier alkoxy unit than the 

current benzyloxy group in the ketone. 

This method was not totally unsatisfactory and it became the method of choice 

but it was obviously desirable to look for less basic nucleophiles so as to reduce 

the competing enolisation effect. 

2.3.4 Application of Cerium Homoenolates 

Cerium homoenolates are known to be less basic than their lithium counterparts, 

but highly nucleophilic. These species have also been reported to add to ketones 

under mild conditions. The method of Greeves et af34, which involved the 

transmetallation of organolithium reagents was employed, Scheme 2.3.8. 

i, ii 
CeCI3 ----- RR'R"COH 

Reagents: i. RLi, -78'C; ii. R'R"CO 

Scheme 2.3.8 
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Special characteristics of organolanthanoids include high lipophilicity and strong 

nucleophilicity, but weak basicity for a carbonyl group. This last property was of 

special interest to us as one of the problems in using 2-benzyloxycyclohexanone 

(48) was that competing enolisation often took place when using very basic 

nucleophiles (vide supra). 

ii -- _Fbo o 
x .. ~'o' 

OBn 

(64) (70) (49) 

Reagents: i. CeC13, -78"C; ii. 48 

t:::::fo 
OBn 

(48) 

Scheme 2.3.9 

Cerium(III) chloride heptahydrate was finely ground and placed in a flask which 

was heated in vacuo to l35-l40°C/0.5mmHg for 16h. Argon was introduced into 

the flask which was then cooled in an ice bath before the addition of THF, 

followed by sonication at room temperature for 1 h. The resulting white slurry 

was cooled to -78oC and a solution of the organolithium (propionic acid dianion 

(64) ) in THF was added dropwise35. The reaction mixture was stirred for a 

further lh before adding 2-benzyloxycyclohexanone (48) and stirring for 40h at 

room temperature, Scheme 2.3.9. No addition was observed to have taken place 

and flash chromatography led to complete recovery of the ketone (48). We 

attributed this negative result to non-formation of the desired organocerium. 

Another method for the prod~ction of organocerium reagents has been reported 

by Fukuzawa et af36 who observed that direct reaction of ethyl 3-

bromopropionate with lanthanoid metals in THF produced lanthanoid ester 

homoenolates. These reacted with ketones to give y-lactones in good yields under 
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mild conditions, Scheme 2.3.10. The cerium homoenolate (71) was prepared by 

the addition of a solution of ethyl 3-bromopropionate (72) to cerium powder and 

iodine as illustrated. Formation of the cerium homoenolate was verified by IR 

analysis and addition of cyclohexanone afforded the desired lactone (73) in 55% 

yield. 

0 

Br~OEt 
(72) (71) (73) 

Reagents: i. Ln, 12; ii. cyclohexanone 

Ln =La, Ce, Nd, Sm 

Scheme 2.3.1 0 

In our hands however, we were unable to verifiy the formation of the cerium 

homoenolate, as the lanthanoid homoenolate (71) was extremely air and moisture 

sensitive and was therefore not isolated. Treatment of 2-

benzyloxycyclohexanone (48) with the resulting solution at room temperature did 

not afford the desired lactone (74), Scheme 2.3.11. The reaction was repeated 

several times, but without success. 

0 

Br~OEt 

(72) 

BrCe 0 

UOEt 

(71) 

Reagents: i. Ce, 12; ii. 48 

,0 
t::::::{ 

OBn 

(48) 

Scheme 2.3.11 

ii 
x~ cd?=o 

OBn 

(74) 



One possibility for the lack of formation of the desired product could be due to 

the fact that cerium homoenolates are very unstable and perhaps decomposition 

occurred before the ketone ( 48) could react. It was therefore desirable to search 

for a more stable metal homoenolate that would also react with ketones. Again 

there would be no functionality at the a-and ~- positions of the lactone (74) but 

this could have been overcome using selenium reagents to create an a,~-

unsaturated lactone which could subsquently be manipulated to a diol 

functionality (75), Scheme 2.3.12. 

~o ------• ~o ______ ._ Ho~o 
OBn OBn ~Or-

OBn 

(74) (49) (75) 

Reagents: i. PhSeCI, H202; ii. Os04, NMO, 1butanol 

Scheme 2.3.12 

2.3.5 Application of titanium homoenolates 

A survey of the literature for the preparation of homoenolate anions and their 

equivalents revealed that the use of titanium homoenolates45 could become a 

viable option. It has been found that the addition of (76) to a carbonyl compound 

is readily achieved in the presence of titanium(IV) chloride46. Further analysis 

showed the reactive species to be a titanium homoenolate (77), Scheme 2.3.13. 

These reagents are highly nucleophilic but react under mild conditions. 

Furthermore, the problem of the masking and unmasking procedures required by 

the "synthetic equivalents" approach47 is circumvented. 
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CI~OEt __ ___ 

0 

(78) (76) 

Reagents: i. Na. TMSCI; ii. TiCI4 

Scheme 2.3.13 

Nakamura and co-workers48 reported the preparation of the titanium homoenolate 

(77), Scheme 2.3.13. The silyloxycyclopropane (76), was obtained from the 

reductive silylation of ethyl 3-chloropropionate (78) by the addition of sodium 

sand and trimethylsilyl chloride. Careful addition of titanium(IV) chloride to the 

silyloxycyclopropane (76) afforded the desired homoenolate (77) which could be 

purified by recrystallisation under argon or prepared in situ and reacted directly 

with a ketone or aldehyde. 

Following the literature procedure, the precursor to the titanium homoenolate, 

trimethylsilyloxy-1-ethoxy cyclopropane, (76) was prepared by the addition of 

sodium sand and trimethylsilyl chloride. The addition of 4 equivalents of sodium 

sand rather than the recommended 2 equivalents was necessary as the scale of the 

reaction was very small. The product was dissolved in ether, filtered, 

concentrated and purified by careful distillation to afford the desired product (76) 

in 87% yield. I H NMR analysis revealed a (4H) multiplet at 30.9, characteristic 

of the cyclopropyl ring and a (9H) singlet at 30.2, indicative of the trimethylsilyl 

group. GC-MS also showed a molecular ion peak at m/z 101. 

With the cyclopropane (76) in hand, a model study to form 4-hydroxyhexanoic 

lactone (79) was conducted, Scheme 2.3.14. 

~0 
0 

(76} (79} 

Reagents: i. TiCI4, propionaldehyde 

Scheme 2.3.14 
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In this, the titanium homoenolate (77) was prepared in situ by the addition of 

titanium(IV) chloride to the silyloxypropane (76) followed by addition of 

propionaldehyde at -78 °C. The mixture was stirred at OOC for 1 h before 

quenching with water and extracting with benzene. TsOH was added and the 

mixture was heated to reflux for 16h to obtain the desired lactone (79) in 77% 

yield. 13C NMR showed a peak at 8177.6 corresponding to the carbonyl and IH 

NMR showed a (3H) triplet at 80.9 and a (IH) multiplet at 84.4 corresponding to 

the methyl group and the carbinol proton, respectively. IR showed a stretch at 

1772cm-1 indicating the presence of the lactone functionality and CI-MS 

contained a molecular ion peak at m/z 132 confirming that synthesis of the 

desired lactone (79) had been achieved. 

Familiar with this chemistry, we could now proceed with the synthesis of the 

spirolactone (74) using 2-benzyloxycyclohexanone (48) following the 

methodology of Nakamura et af37, Scheme 2.3.15. 

(76) 

_ ____:XIf-,.,... c:::[?o 
OBn 

(74) 

Reagents: i. TiCI4, 48 

t:::::t'o 
OBn 

(48) 

Scheme 2.3.15 

A solution of the silyloxycyclopropane (76) was added to a yellow suspension of 

titanium(IV) chloride and 2-benzyloxycyclohexanone (48) in DCM at -78°C. The 

resulting mixture was warmed to room temperature and stirred for 16h. However, 
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no addition occurred and purification by flash chromatography resulted m 

complete recovery of ketone ( 48). 

It was thought that the lack of reactivity of the titanium homoenolate (77) was 

due to its low nucleophilicity. Another potential problem with the use of this 

homoenolate was that chlorinated by-products have been shown to arise in 

reactions with enals38, Scheme 2.3.16. 

Scheme 2.3.16 

Nakamura has reported that replacing the electron withdrawing chlorine ligands, 

with alkoxides makes the homoenolate more nucleophilic and also reduces the 

formation of chlorinated by-products observed in reactions with enalsl3. For 

example, this ligand exchange was utilised in an addition to acetophenone where 

it was found that product formation increased by more than 30%. Furthermore, 

the addition of 0.5 eq of titanium(IV) isopropoxide also facilitated the reaction of 

cyclohexanone with the titanium homoenolate (77). Considering this result, it 

was envisaged that addition of a titanium(IV) alkoxide would similarly facilitate 

the addition reaction of the silyloxycyclopropane (7 6) to 2-

benzyloxycyclohexanone ( 48). Following the procedure for the addition of an 

alkoxide modified homoenolate 13, the addition of the 3 carbon unit (77) to 2-

benzyloxycyclohexanone (48) was attempted. 

Thus, a solution of titanium(IV) isopropoxide was added to a solution of purified 

titanium homoenolate (77) at OoC. After 5min, 2-benzyloxycyclohexanone ( 48) 

was added and the mixture quenched after 1 Omin. The reaction was repeated and 

this time warmed to room temperature after addition of the ketone (48) but in 

neither case was the formation of addition products observed. 
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OBn 

(76) (74) 

Reagents: i. Ti(O;Pr)4 , 48 

t:::::to 
OBn 

(48) 

Scheme 2.3.17 

It appeared to be that the titanium homoenolate was not reactive enough to afford 

the desired lactone (74). However, it has been reported that these homoenolates 

are very sensitive to steric interactions and the carbonyl used in this case contains 

a benzyloxy group in the a-position. As well as causing some degree of 

hindrance, the alkoxy moiety could also be deactivating the carbonyl group due to 

its electron withdrawing properties. 

2.3.6 Application of Radical Carboxylates 

Perusal of the literature revealed a paper by Heiba and Dessau39 which described 

a novel, one-step, synthesis of y-lactones by the use of manganic carboxylates. 

The general reaction, depicted in Scheme 2.3.18, consisted of the addition of a 

carboxylic acid (containing an a-hydrogen) to the double bond of an olefin. This 

proceeded in the presence of various metal oxidants (Mn(III), Ce(IV), V(V) ). 

Manganic acetate dihydrate was chosen as this could be readily prepared in situ 

by permanganate oxidation of manganese(II) acetate tetrahydrate. When 

synthesising the lactone, it was found advantageous to add 10-30% potassium 

acetate or another carboxylate salt to the reaction mixture. The addition of the 

acetate ion served to shorten the reaction time by raising the reflux temperature of 

43 



44 
the reaction mixture and also led to decreased formation of side products, 

resulting in higher lactone yields. 

Reagents: i. Mn(0Ach2H20, KOAc, AcOH 

Scheme 2.3.18 

The olefin needed to obtain lactone (74), Scheme 2.3.19 was the alkene (80) 

which was readily prepared by the addition of a Wittig reagent to the ketone ( 48). 

This Wittig reagent (81) was prepared from the related bromide salt, 

methyltriphenylphosphonium bromide40 upon deprotonation with butyl lithium. 

After stirring for 4h, a solution of 2-benzyloxycyclohexanone ( 48) was added and 

the mixture allowed to stir at room temperature for 20h, following which, 

purification by flash chromatography afforded the desired alkene (80) in 39% 

yield with 48% recovery of starting material (48). The alkene (74) was 

characterised by the loss of the ketone carbonyl peak at 8210.6 in the 13C NMR. 

I H NMR also showed the generation of two olefinic protons at 84.79 and 84.18. 

Addition of the methylene unit was confirmed by the presence of a molecular ion 

peak at m/z 202 in the El-MS. 

t:::::fo~n~ ~n~ ~ 
OBn 

(48) (80) (74) 

Reagents: i. Ph3P::oCH2 (81), ii. Mn(0Ach2H20, KOAc, AcOH 

Scheme 2.3.19 
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A solution of the olefin (80) in glacial acetic acid was heated to reflux in the 

presence of manganese acetate and potassium acetate, until the brown manganic 

colour disappeared. After 45h the solution was quenched with water, then 

purified by column chromatography to afford one single lactone isomer in 11% 

yield as a colourless oil, Scheme 2.3.19. This was characterised by the 

appearance of the lactone carbonyl at o174.4 in the Be NMR. HRMS also 

showed a value of 261.1491 corresponding to the theoretical mass of the lactone. 

The formation of the lactone is thought to proceed through a radical process, in 

which a carboxymethyl radical is generated, adds to the olefin and the product is 

subsequently oxidised by the metal oxidant, Scheme 2.3.20. Ring closure then 

affords the lactone. 

Scheme 2.3.20 

Although this procedure generated the desired lactone (7 4) the very harsh 

conditions, coupled with low yields would be of limited use in studies towards 

the fully substituted core of the squalestatins. Consequently, this method of 

lactonisation was not pursued further. 



2.3.7 Preparation of 2-benzyloxy-2-oxa-3-oxospiro<4.5>decan-6-one (51) 

~0 _______...~0 
OBn o 

(49) (51) (82) 

Scheme 2.3.21 

These results led to the conclusion that the formation of a spirolactone species 

(49) was best achieved using the methodology of Najera, Section 2.3.2. To allow 

elaboration towards a core analogue of the squalestatins the spiro lactone ( 49) had 

to be modified to permit stereoselective addition, Scheme 2.3.21. It should be 

noted that changing the functionality at the benzyl ether to a ketone would also 

eliminate the diastereomers present in the starting material (49). The benzyl ether 

(49) was therefore cleaved and the resulting alcohol oxidised to a ketone (51). It 

was initially hoped that the relative reactivity of the benzyl ether would be greater 

than that of the conjugated olefin, allowing selective reduction to occur. 

Palladium on carbon seemed the ideal catalyst to use but was unsuccessful. One 

possible reason for this could have been due to the fact that trace amounts of 

sulphur (from the tosyl elimination step) were still present. Use of the stronger 

reagent, palladium hydroxide, afforded the alcohol (50), albeit with concomitant 

reduction of the double bond. The reaction proceeded with a good yield of 87%. 

Appearance of a broad band at 3438cm-1 in the IR confirmed the presence of an 

alcohol functionality and the disappearance of the characterisic benzylic AB 

quartet in 1 H NMR confirmed loss of the benzyl group. Reduction of the double 

bond was also confirmed through the disappearance of the doublet at D6.0 in the 

1 H NMR spectrum. CI-MS concluded our evidence with a peak of I 00% for at 

mlz 188 corresponding to CgH1sN03. 
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Reagents: i. Pd(OH)z, H2, MeOH; ii.oxalyl chloride, DMSO, Et3N 

Scheme 2.3.22 

Oxidation of the secondary alcohol (50) to the ketone (51) was successfully 

achieved by using the now familiar procedure of Swern et af35 which proceeded 

with good yield (85% ), Scheme 2.3.22. IR showed loss of the OH stretching 

frequency at 3438cm-1 and the appearance of a carbonyl stretch at 1758cm-I. 

Elemental analysis confirmed the correct empirical formula and HRMS revealed 

the correct mass of 169.0865. 

Insertion of a 2 carbon unit was necessary to obtain (83) before ketalisation to 

afford a core analogue of the squalestatins (84), Scheme 2.3.23. 

~0 
0 

-----~ 

0 ii,iii 
-----~ ·--~ 

r---0--R 
~ 

(51) (83) (84) 

Reagents: i. C2 unit; ii. RMgX; iii. H30+ 

Scheme 2.3.23 

A study of the addition of the final 2 carbon unit to the ketone functionality was 

now possible and this work is discussed in the following section. 
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2.4 Addition of an a-Alkoxylithium Species 

2.4.1 Introduction 

OP 

Li~ 
(39) 

With the ketolactone (51) in hand it was neccessary to develop a method for the 

introduction of the C2 side chain. This formally requires the addition of an a-

alkoxylithium unit (39). The preparation of the lithium species (39) proved to be 

more difficult than expected but it was noted that an ester group could be used as 

a carboxylic acid equivalent instead of an olefin. Consequently preliminary 

studies using methyl glycolate were undertaken and are described below. 

2.4.2 Initial Studies usin& a Vinyl Dianion 

In 1977, Boeckmann and co-workers53 reported the preparation of dian ions 

derived from a-hydroxyesters (85) by reaction with LDA, Scheme 2.4.1. 

-
OH · A ~ 

Ph C02CH3 

0 OCH3 

Pr<o- ii --
(85) 

Reagents: i. LDA, -7s·c; ii. RX, -7s·c 

Scheme 2.4.1 

We opted to use 2-benzy loxycyclohexanone ( 48) as a test substrate to examine 

this procedure. The lithium reagent chosen was the lithium dianion of methyl 

glycolate (86), Scheme 2.4.2. Methyl glycolate (87) was prepared by methylation 

of glycolic acid (88). Several methods were studied54, with the most efficient 

being the addition of diazomethane55 to glycolic acid (88) with a yield of 26%.56 

lH NMR showed the appearance of a singlet at 83.63 related to the methyl group 
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of the ester. The IR spectrum also showed the disappearance of the OH stretch at 

3391 cm-1 corresponding to the acid moiety and a shift of absorption from 

1725cm-1 to 1741 cm-1 arising from the carbonyl stretch of the ester group. 

The cis-dianion of methyl glycolate was prepared by the addition of LOA at 

-78°C in THF. The mixture was stirred for I h before addition of the electrophile. 

Scheme 2.4.2. Cyclohexanone was used initially, since it should be more reactive 

than the a-alkoxyketone, 2-benzyloxycyclohexanone (48). The mixture was 

warmed to room temperature, but formation of the desired product was not 

observed. The reaction was repeated using a more hindered base, LHMDS, and a 

more reactive electrophile, benzaldehyde. Again, no reaction occurred, and 

starting materials were recovered by flash column chromatography. 

HO~OMe_-l~ q~OMe 
o 'u.--o 

ii _ r--H_l Jl 
X• f__-.::J Y 'OMe 

OH 

(88) (86) 

Rcat!Cilts: 1. 2cq LDA. · 7~{C: ii.cyclohcxanolll' 

Scheme 2.4.2 

It was thought that the formation of the dianion (86) was provmg to be the 

problematic step so studies using a species without an a-alkoxy group were 

carried out. The addition of ethyl acetate to the ketone (51) was successfully 

achieved via the usc of LHMDS. Scheme 2.4.3. Ethyl acetate was added to a 

solution of LHMDS in THF at -78°C. After 1 h a solution of ketone (51) was 

added and the reaction mixture warmed to room temperature and after a further 

2h the mixture was quenched by the addition of sat. NH4Cl. Purification by 

column chromatography yielded 14% of one single isomer of the adduct (89) as a 

L·nlourless oil. Analysis of l:lC NMR data showed peaks at 8176.~ and 8173.-1 

cnrrcsponding to tilL· lactone and ester carhonvl groups. rcSJ'L'ctively. \ 
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molecular ion peak was observed at mlz 274.1654 indicating that the desired 

compound (89) had been produced. 

~0 
0 

(51) 

~0 
OH OEt 

(89) 

Reagents: i. LHMDS, ethyl acetate, -78'C 

Scheme 2.4.3 

The low yield was surprising as complete consumption of starting materials was 

observed by tic. In order to determine the mass balance the aqueous layer 

generated during the work up of the reaction was acidified with HCl and 

extracted with ethyl acetate. Drying (MgS04) and concentrating afforded an 

additional compound which accounted for the mass balance and contained an OH 

stretch in the IR spectrum at 3455cm-1 corresponding to an acid group. 

Diazomethane was then used to methylate this acid. The appearance of a 3H 

singlet at 83.50 in the lH NMR suggested that methylation had occurred. A peak 

at 86.6 also suggested the presence of an olefinic proton. Furthermore, the IR 

spectrum showed the disappearance of the OH stretching mode at 3455cm-1. A 

molecular ion peak was observed at m/z 182 in the CI-MS. This evidence 

suggested that the ketolactone (51) had deprotonated, opening up the lactone to 

form the acid (90), Scheme 2.4.4. 

(51) 

CXI(-H_ii-l~ 
0 

(90) 

Reagents: i. LHMDS; ii. diazomethane 

Scheme 2.4.4 



51 
We considered that it might be better to protect the alcohol moiety of methyl 

glycolate (87) before deprotonating to form the anion. A paper by Yamamoto et 

a[4I reported a method for the stereoselective synthesis of silyl ketene acetals 

from a-hydroxyesters. It was shown that the Z-silyl ketene acetal (92) could be 

selectively prepared from the addition of LHMDS to silyloxy methyl glycolate 

(93), which was then trapped with TBDMS chloride, Scheme 2.4.5. 

0 

TBDMSO~ 
OMe 

(93) 

OTBDMS 

TBDMSO~O 
Me 

(92) 

Reagents: i. LHMDS, TBDMSCI, -78'C 

Scheme 2.4.5 

Thus, it was thought that the enolate of (93) could be trapped usmg 2-

benzyloxycyclohexanone ( 48) to form the addition product (94), Scheme 2.4.6. 

0 

HO~O 

(87) 

Me 

OH 0 
i,ii,iii~ 
----~xH·~~ I~~~ OMe 

OBnOTBDMS 

(94) 

Reagents: i. TBDMSCI, Imidazole; ii. LHMDS, -I OO'C; iii. 48 

t:::::fo 
OBn 

(48) 

Scheme 2.4.6 

Methyl glycolate (87) was protected as the silyl ether (93) by the addition of 

imidazole and TBDMS chloride. Following purification by flash column 

chromatography the desired ether (93) was isolated in 86%. Care was taken 

during removal of solvent as the silyl ether was found to be highly volatile. I H 
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NMR showed the presence of a 9H singlet at 80.91 and a 6H singlet at 80.09 

corresponding to the TBDMS group. Subsequent deprotonation was carried out 

by the addition of the silyl ether (9 3) to LHMDS at -1 OOOC. 2-

benzyloxycyclohexanone (48) was then added and the mixture warmed to room 

temperature. However product formation was not observed and the ketone ( 48) 

was recovered upon purification by flash column chromatography. Again, this 

was attributed to competing enolisation of the alkoxy ketone ( 48). 

With these disappointing results it was felt that the a-alkoxyenolates were too 

basic and this approach was discontinued. 

2.4.3 Addition of an Allyl Boron Reagent 

In the task of finding a suitably reactive a-alkoxyallyl lithium equivalent, boron 

chemistry was explored. B-allyl-9-BBN (95) was prepared in the hope that 

addition would occur selectively to 2-benzyloxycyclohexanone (48), Scheme 

2.4.7. 

i ii ~ 
9-BBN-.. 9-BBN-OMe-.. 9-BBN~ 

(96) (97) (95) 

Reagents: i. MeOH; ii. Allylmagnesium bromide, o·c 

Scheme 2.4.7 

The method employed followed the procedure of Brown and Racherla42 for the 

synthesis of lpczB-allyl. Thus, methanol was added to a cooled solution of 9-

BBN (96) at 0°C, then the solvents were removed. The resulting 9-BBN-OMe 

(97) was dissolved in ether and an ethereal solution of allylmagnesium bromide 

added. Purification by vacuum distillation (42°C, 0.5mmHg) afforded B-allyl-9-

BBN (95) as a colourless oil. This preparation permitted the synthesis of allyl 

borane reagents free of MgBr(OMe) or Mg2+ salts as the rate of reaction is 

reported to be retarded in the presence of these species. One suggestion for this 

rate suppression was that MgBr(OMe) complexes with the highly electrophilic 

boron atom. In doing so, the resulting complex becomes increasingly more stable 
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as the reaction temperature is lowered. Consequently, the rate of allylboration 

diminishes considerably at -78°C, in the presence of Mg2+ salts, due to the low 

concentration of the reactive boron species. A standard procedure for the 

allylboration of ketones was used43 . 2-benzyloxycyclohexanone (48) was added 

to a solution of B-allyl-9-BBN and the mixture stirred for 2h, after which, 

ethanolamine was added and the solution stirred for a further 1h. Purification by 

flash column chromatography afforded 13% of desired product (98) and 44% of 

recovered starting material (48), Scheme 2.4.8. The alcohol was characterised by 

analysis of I H NMR which showed the presence of three olefinic protons at 

65.91-5.79 (IH) and 65.11-5.03 (2H) and an AB quartet associated with the 

benzyl group. IR also showed the presence of a broad OH stretch at 3574cm-I. 

Analogous reaction with allylmagnesium bromide afforded the allylated product 

(98) in 98% yield as a 1.3:1 mixture of isomers. In the allylboration reaction only 

the major isomer was obtained. 

The low product yield obtained from this reaction can be attributed to the low 

nucleophilicity of the allylboron combined with the low electrophilicity of the 

ketone ( 48). It was therefore decided not to pursue with the synthesis of an a-

alkoxyboron reagent as this would prove to be even less reactive. The 

corresponding stannanes, however, tend to be more nucleophilic and react with 

aldehydes to give addition products in high yields. The synthesis of such C3 

stannanes is described in the next section. 
OH 

9-BBN~ ~ 
(95) (98) 

Reagents: i. 48, ethanolamine 
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Scheme 2.4.8 



2.4.4 Preparation of a y-Alkoxy Stannane 

Another synthetic equivalent of the a-alkoxylithium is a y-alkoxystannane (99). 

This species adds to carbonyl groups via a six membered transition state (100)60, 

Scheme 2.4.9. Following this precedent we opted to investigate the potential of 

y-silyloxystannane (99) as such stannanes had been observed to react with a-

benzyloxyaldehydes, Scheme 2.4.9, although the corresponding reaction with 

ketones has not been reported. For example, Keck et af61 reported the addition 

of the y-alkoxystannane (99) to a-benzyloxyaldehydes (101) in the presence of 

magnesium bromide, Scheme 2.4.9. The products were obtained with 

diastereofacial selectivity consistent with 'chelation control' and syn disposition of 

substituents about the newly formed bond was found to be highly favoured. 

OTBDM 
0 

OBn ]@ ~H + 
~SnBu3 ~Q- •I/ - Sn 

'-· :--... 
OBn OTBDMS . 

H 

(101) (99) (100) 

~ 
OH 

~ 
OBn OTBDMS 

(102) 

Reagents: i. MgBrz.OEtz, -23 - O"C 

Scheme 2.4.9 

The stannane (99) was prepared using methodology reported by Keck,61 Scheme 

2.4.1 0. Allyl alcohol (103) was added to sodium hydride at 0°C, followed by 

TBDMS chloride. 62 The resulting mixture was stirred for 14h at room 

temperature. Extraction and purification by high vacuum transfer afforded the 
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desired silylether (104) in 89% yield. Its formation was characterised in the 1 H 

NMR by the appearance of a 9H singlet at 30.84 and a 6H singlet at 30.06 

relating to the silyl ether protecting group. In addition, the IR indicated the 

disappearance of a characteristic OH stretch indicating that protection had 

occurred successfully. 

~OH 

(103) 

--~~OTBDMS 

(104) 

ii ~Sn8u3 

OTBDMS 

(99) 

Reagents: i. NaH, TBDMSCI; ii. BuLi, HMPA, Bu3SnCI, -78°C 

Scheme 2.4.1 0 

Conversion to the stannane (99) was achieved by the addition of butyl lithium and 

HMPA to the silyl ether (104) and trapping of the resultant anion with tributyltin 

chloride. The reaction was warmed to room temperature, then quenched by the 

addition of sat. NH4Cl. Although the crude product could be could be used 

directly, in our hands the stannane (99) was purified by column chromatography 

giving the required compound in 78% yield. Formation of the stannane (99) was 

shown by the appearance of a large multiplet at 31.79-0.82 in the 1 H NMR 

corresponding to the tributyl tin moiety. A molecular ion peak was observed at 

mlz 403 in the El-MS, corresponding to loss of the tbutyl group. 

Following the procedure mentioned above, the stannane (99) was added to a 

mixture of magnesium bromide and 2-benzyloxycyclohexanone ( 48) in DCM at 

-23°C. No reaction was observed at this temperature, so the mixture was warmed 

to room temperature and stirred for 16h. Again, product formation was not 

observed. The reaction was heated to reflux for 6h but purification of the crude 

mixture by flash column chromatography led to complete recovery of starting 

materials. The reaction was repeated using benzaldehyde as the electrophile but 

also proved unsuccessful and again unreacted starting materials were recovered. 
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Allylation of benzaldehyde was carried out using allyl tributyltin (105) and 

magnesium bromide, Scheme 2.4.11, as it was thought that allyl tributyltin should 

be more reactive than the corresponding a-alkoxy stannane. After 16h at room 

temperature formation of a new compound was observed and the reaction was 

quenched with saturated NH4Cl. Purification was achieved by flash column 

chromatography affording 37% desired alcohol (106) and 24% recovered 

benzaldehyde. The appearance of multiplets at 85.79-5.68 (I H) and 85.12-5.06 

(2H) in the 1 H NMR correspond to the three olefinic protons and the presence of 

a broad OH stretch at 3603cm-l in the IR suggested that addition to the 

benzaldehyde had taken place. Furthermore, confirmation of the molecular 

structure (106) was obtained from El-MS which showed a peak at m/z 130. 

OH 

/ 
BusSn~ 

{105) > 
~ 

(106) 

OH 

~ 
(98) 

Reagents: i. benzaldehyde, MgBr2; ii. 48, TiCI4 ,-7s·c 

t::::::lo 
OBn 

(48) 

Scheme 2.4.11 

Allylation of 2-benzyloxycyclohexanone (48) with magnesium bromide failed but 

the use of titanium(IV) chloride, a stronger Lewis acid, gave 100% allylated 

product (98) after only 6h at -78oC. 2-Benzyloxycyclohexanone (48) was added 
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to a stirred solution of titanium(IV) chloride followed by the addition of allyl 

tributyltin at -78oC. After work up and chromatography, the desired homoallyl 

alcohol (98) was obtained in 100% yield and was characterised by an AB splitting 

pattern typical of the benzyl grouping and the presence of three multiplets in the 

olefinic region 85.82-4.95 in the I H NMR. IR showed the appearance of an 

alcohol moiety which, coupled with the loss of the carbonyl peak at 8210.6 in the 

nc NMR, suggested that addition at the carbonyl centre had taken place. 

The excellent yield obtained upon allylation of the ketone ( 48) with titanium(IV) 

chloride suggested that this Lewis acid could be ideal for the addition of the less 

reactive silyloxyallyl stannane (99) to 2-benzyloxycyclohexanone ( 48). This 

reaction was therefore carried out at -78°C but no product formation was 

observed. Furthermore, the silyloxyallyl stannane decomposed in the presence of 

titanium(IV) chloride at temperatures above -1 OOC and I H NMR showed the 

disappearance of the 9H and 6H singlets characteristic of the TBDMS group. 

Attempts to add silyloxyallyl stannane (99) to benzaldehyde in the presence of 

titanium(IV) chloride were also unsuccessful. Benzaldehyde was added to a 

solution of titanium(IV) chloride at -78°C and after 15min, a solution of stannane 

(99) was added. The reaction mixture turned black almost immediately. After 

purification by flash column, 1 H NMR analysis indicated decomposition of the 

stannane had occurred with the loss of a 9H singlet at 80.84 and a 6H singlet at 

80.06 corresponding to the loss of a TBDMS group. Concomitant with this 

observation, Keck also reported side reactions arising from the result of the 

relatively low nucleophilicity of the silyloxyallylstannanes, which require 

somewhat higher temperatures to be employed with these reagents than with 

equivalent allylbutylstannanes. Lewis acid mediated cleavage of acid sensitive 

groups (e.g. silyl ethers) can compete with the desired addition process. 

In our hands, attempts to add the silyloxystannane (99) to benzaldehyde in the 

presence various Lewis acids showed that a 'titanium blend' gave the highest yield 

of the ally lated product (107), Scheme 2.4.12. In this procedure a 1M solution of 

titanium(IV) chloride was added to a 1M solution of titanium(IV) isopropoxide in 
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DCM at -78 °C. The mixture was stirred for 1 h before the addition of 

benzaldehyde and then for a further 20min before quenching with saturated 

NaHC03. Purification by flash column yielded 27% of a colourless oil identified 

as the adduct (107). IR showed an OH stretch at 3550cm-1 and a peak at o-3.1 in 

the 13C NMR corresponded to a methyl attached to a silicon atom. The presence 

of three peaks in the olefinic region of the IH NMR suggested that allylation had 

occurred and a large peak at m/z 106 in the CI-MS corresponded to a 

fragmentation of the molecular ion at the silyl ether. 

~SnBu3 + 

OTBDMS 

(99) 

Reagents: i. TiCI4 , Ti(QiPr)4 

Scheme 2.4.12 

OH 

~ u bTBDMS 

(107) 

It was therefore decided to use the titanium blend for the addition of the stannane 

(99) to 2-benzyloxycyclohexanone (48), Scheme 2.4.13. However, at -78°C, 

there appeared to be no addition products forming and, upon warming the 

reaction slowly, decomposition of the stannane (99) occurred. The procedure was 

repeated a number of times, varying the reaction conditions, with the results 

summarised in Table 2.4.1, below. 

0 
~SnBu3 ,..___ ~ 
I, + t-:::._L OBn 

OTBDMS 

(99) (48) 

Reagents: i.Lewis acid (see table) 

Scheme 2.4.13 

OH 

~DMS 
OBn 

(108) 
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Lewis Acid Yield 

l.leq MgBr2a 

1.1 eq TiCl4a 

0.55eq TiCl4/ 

0.55eq Ti(OiPr)4a 

1.1eq TiCl4fTi(OiPr)4a 

1.1eq ChTi(OiPr)2a 

l.leq BBr3a 

l.leq BF3.0Et2a 

1.1eq AICI3a 

Temperature ( oC) 

-23 

-78 

-78- RT 

No reaction 

Stannane decomposition 

Stannane decomposition 

0 Stannane decomposition 

RT Stannane decomposition 

-78 Stannane decomposition 

-78- RT Stannane decomposition 

RT 18% 

Seq AICI3a -78- RT Stannane decomposition 

1.1eq AICl3b -78- RT 22% 

1.1 eq EtAICl2b -78- RT 12% 

3Lewis acid added to the ketone (48) before the addition of the stannane (99) at -78°C 

bLewis acid added to a solution of ketone ( 48) and stannane (99) at -78°C 

Table 2.4.1 

It was found that optimum conditions, in which aluminium(III) chloride was used 

as the Lewis acid yielded 22% of the desired product (108) as a single isomer. A 

solution of stannane (99) was added to a solution of 2-benzyloxycyclohexanone 

(48) at -78°C. After 15min aluminium(III) chloride was added and the mixture 

stirred for 5h. The reaction was then warmed to room temperature and quenched 

with saturated NaHC03. Purification was achieved through column 

chromatography to afford 22% of the desired colourless oil (108) and 54% 

recovered ketone (48), Scheme 2.4.13. TheIR spectum of (108) contained an OH 

stretch suggesting that the addition had occurred at the ketone centre. I H NMR 

showed the presence of three olefinic protons at 85.88 integrating for 1H and 



35.21, integrating for 2H. Peaks at() -3.5 and() -4.6 in the l3C NMR correspond 

to the methyl groups attached to the silicon atom. 

Although formation of the desired adduct (108) had been achieved, a more 

nucleophilic precursor might increase the 22% yield obtained from the addition of 

the y-alkoxy stannane (99) to 2-benzyloxycyclohexanone ( 48). A report by 

Chong44 showed that transmetallation of a-alkoxy stannanes to the equivalent 

alkoxy lithium was possible. This would be a more nucleophilic reagent which 

might afford higher yields upon addition to 2-benzyloxycyclohexanone (48). The 

preparation and addition of such a reagent is described in the following section. 

2.4.4 Applications of an a-Alkoxy Lithium 

Another alternative for the synthesis of an a-alkoxylithium (109) is the 

transmetallation of an a-alkoxystannane (110), Scheme 2.4.14, potentially 

available by the method outlined by Chong.63 

~SnBus 

O........._....OMe 

{109) 

~Li 
O........._....OMe 

(11 0) 

Reagents: i. BuLi, -7s·c 

Scheme 2.4.14 

It should also be noted that the terminal substitution on the alkene (109) is 

unimportant since this would be cleaved by ozonolysis in the final step towards 

the synthesis of the core unit of the squalestatins, Scheme 2.4.15. 
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Scheme 2.4.15 

The a.-alkoxystannane (109) was prepared using the procedure reported by 

Thomas et al ,64 Scheme 2.4.16. Tributy !tin hydride was added to a solution of 

LDA, at -78°C, with stirring. Crotonaldehyde (111) was then added dropwise to 

the mixture. The allyl alcohol (112) was isolated after quenching with saturated 

NH4Cl. Subsequent protection of the alcohol (112) was achieved by the addition 

of MOM chloride and diisopropylethylamine, affording the desired a.-

alkoxystannane (109) in 82% yield, after purification by flash chromatography. 

1 H NMR showed an AB splitting pattern corresponding to the two diastereotopic 

protons of the MOM group and a multiplet at 85.57 and 85.39 arising from the 

two alkenic protons of the product. 

~H 
0 

{111) 

~SnBus 

OH 

{112) 

ii ~SnBus 

O~OMe 

{109) 

Reagents: i. LDA, Bu3SnH, -78"C; ii. MOMCI, diisopropylethylamine 

Scheme 2.4.16 

Following Chong's described procedure for the transmetallation of stannanes,59 

butyl lithium was added to a solution of stannane (109) and allowed to stir for 

1 Omin. A solution of 2-benzyloxycyclohexanone ( 48) was then added and the 

reaction warmed to room temperature after 2h. Purification by column 
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chromatography yielded only a very small amount of product, Scheme 2.4.17, but 

this was subsequently improved by increasing the transmetallation time to 1 h 

affording the desired allylated product (113) in 13% yield as a single isomer. 

This was characterised by the presence of two AB quartets indicative of the 

MOM group and the benzyl group, respectively. A band at 1665cm-1 in theIR 

showed that the compound possessed an olefinic group and a stretch at 3488cm-1 

indicated the presence of the hydroxyl functionality. HRMS observed a mass of 

259.1698 identical to the calculated mass of the molecular ion. 

~SnBu3 _ ___.. ~Li ii 

o.......,.oMe o.......,.oMe 

(109) (11 0) 

Reagents: i. BuLi, -78"C, 4h; ii. 48 

.o 
t:::::1 

OBn 

(48) 

Scheme 2.4.17 

OBn 

(113) 

This reaction, however, was not enantioselective as the stannane contained one 

chiral centre which was not controlled, so was therefore generated as a racemic 

mixture. The addition of lithium tributyltin to the aldehyde (111) results in the 

formation of an enantiomeric mixture (112), Scheme 2.4.16. This could be 

overcome by the formation of the ketostannane (114) from the palladium 

catalysed addition of the acid chloride (115) to hexamethylditin, Scheme 2.4.18. 

This ketostannane (114) could then be stereoselectively reduced with a chiral 

reagent, for example, (R)- or (S)-BINAL, then protected to yield the 

corresponding a-alkoxystannane (116). 



ii, iii Ph~SnBu3 

OP 

(115) (114) (116) 

Reagents: i. hexamethylditin, (Ph3P)4Pd; ii. (S)-BINAL; iii. MOMCI, diisopropylethylamine 

Scheme 2.4.18 

Preparation of the stannane (114) has been reported65 and its formation is 

catalysed by a palladium (0) species. Tetrakis (triphenylphosphine) palladium (0) 

was found to be both expensive as well as air sensitive. Consequently, all 

attempts to produce the ketostannane were unsuccessful due to decomposition of 

the palladium reagent. 

Although the addition of the a-alkoxylithium (110) component proceeded with 

low yields, this is as yet unoptimised but as described below, it was discovered 

that simpler methodology could be used to achieve addition of the C2 unit. 

Although an increased number of steps was needed, an excellent overall yield 

was obtained. 

2.4.5 Alternative Preparation of a C2 Unit 

t:::::::(._ OBn 

0 

(48) 

J;::::::f OBn ~ 
,;~oEt 
OHOH 

(119) 

Reagents: i. Ph3P=CHC02Et (117), PhH; ii. Os04, NMO, tbutanol 

Scheme 2.4.19 

The addition of the Wittig reagent (117) to 2-benzyloxycyclohexanone ( 48) 

afforded the alkene (118) in 94% yield, characterised by the appearance of an 
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The addition of the Wittig reagent (117) to 2-benzyloxycyclohexanone ( 48) 

afforded the alkene (118) in 94% yield, characterised by the appearance of an 

olefinic lH singlet at 65.93 in the I H NMR. CI-MS also showed a large 

molecular ion peak at mlz 141. This, together with HRMS analysis which 

correlated with the calculated mass of 275.1647 provided firm evidence that the 

alkene (118) had indeed been synthesised. Furthermore a 8: I mixture of 

separable E and Z isomers was obtained. This was elucidated by analysis and 

comparison of alkene (126) which allowed for complete assignment of the alkene 

(118). Conversion of the major E isomer to the diol (119) was achieved upon 

heating to 30°C, in the presence of osmium(IV) oxide and NMQ45. Purification 

by column chromatography afforded the dial (119) in 100% yield as a colourless 

oil. I H NMR showed the disappearance of the olefinic proton at 65.93 and a 

broad band was observed at 3497cm-l in the IR spectrum corresponding to the 

OH stretch with no absorption in the alkenic region (~1655cm-1). HRMS 

observed a mass of 309.1702 which correlates with the calculated mass. 

Subsequent protection of the diol as the acetal (120) was achieved by heating the 

diol (119) at reflux with 2,2-dimethoxypropane and a catalytic quantity of 

trifluoroacetic acid in chloroform46. Molecular sieves were used to extract the 

water evolved upon protection, driving the equilibrium towards the formation of 

the acetonide. On large scale protection, the sieves were renewed periodically. 

Purification by flash column chromatography afforded the desired acetonide 

(120) in 97% yield. The disappearance of the broad band at 3497cm-I in the IR 

suggested that the diol had been protected as the acetal. Furthermore, the 

presence of two 3H singlets at 61.49 and 61.31 in the lH NMR correspond to the 

two methyl groups of the acetal and El-MS showed a molecular ion peak at m/z 

349 confirming that the acetonide (120) had been formed, Scheme 2.4.20. 
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Reagents: i. 2, 2 dirnethoxypropane, TFA, CHCI3 

Scheme 2.4.20 

The next step in the synthesis was to remove the benzyl ether (120) to allow 

further elaboration at this centre, Scheme 2.4.21. This was achieved by 

hydrogenolysis using palladium catalyst and hydrogen. Several catalysts were 

used47 from which it was found that palladium hydroxide was the most efficient, 

giving the desired alcohol (121) in 99% yield after purification by flash column 

chromatography. 1 H NMR showed the disappearance of a 5H multiplet at 87.36-

7.18 and the AB quartet relating to loss of the benzyl moiety. An absorption at 

3474cm-1 in theIR arose from the appearance ofthe OH group and MS showed a 

moleceular ion peak at mlz 258 corresponding to C13H2205. Initial oxidation to 

the ketone (122) was achieved using TP AP69. In this process, a catalytic amount 

of TPAP was added to a solution of the alcohol (121) and NMO. The mixture 

was stirred at room temperature for 1 Oh, then filtered and concentrated to afford 

the crude product (122). Purification by flash column chromatography gave the 

ketone (122) in 80% yield. It was, however, less expensive to conduct large scale 

oxidation of the ketone using Swern methodology which also gave an increased 

yield of 100%. IR showed the disappearance of the broad OH stretch at 3474cm-

1 which was replaced with a strong absorption at 1757cm-1 corresponding to the 

ketone. Two lH multiplets at 82.88-2.84 and 82.40-2.36 in the 1 H NMR 

corresponded to the two protons a- to the ketone. A peak at 8208.7 in the 13C 

NMR was also characteristic of the formation of the ketone (122). A HRMS 
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value of 257.1389 corresponded to the theoretical mass confirming that oxidation 

had occurred forming the desired ketone (122). 

~ 
OH 0 

~OEt VOEt 
ii 

O OEt 

)\ X X 
(120) (121) (122) 

Reagents: i. Pd(OHh. MeOH; ii. oxalyl chloride, DMSO, Et3N 

Scheme 2.4.21 

Methodology for the addition of a C2 unit had been achieved in excellent overall 

yield. It now remains to couple this with the C3 unit using Najera's39 chemistry, 

to form the spiro lactone. The order of addition of these two units is also 

considered and this work is described below in Section 2.4.7. 

2.4.6 Preparation of the Spirolactone (123) 

In order to form the spiro lactone (123) it was neccessary to form the dianion of 

3-(para-tolylsulphonyl) propionic acid (63) before addition to the ketone (122), 

Scheme 2.4.22. This was achieved by following the procedure of Najera and co-

workers which has been described previously in Section 2.3.3. 

i-iii 

(122) (123) 

Reagents: i. TsCH2CH2C02H, 2eq BuLi, -78T then 122, -40T; ii. TFAA, -30'C; iii. LDA, -78T- RT 

Scheme 2.4.22 
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Butyl lithium was added to a stirred solution of 3-(para-tolylsuphonyl)propionic 

acid (63) at -78"C. After l h a solution of the ketone (122) was added and the 

mixture stirred at -40°C for 30h, before trifluoroacetic anhydride was added and 

the reaction warmed to -30oC for 4h. Quenching with sat. NaHC03 afforded the 

sulphonyl lactone which was subsequently eliminated by the addition of LDA to 

afford the desired lactone (123) as a 1.3: I mixture of separable isomers in 35% 

overall yield. This was characterised by the presence of two peaks in the I3c 

NMR spectrum at 8171.9, 8168.7 (major isomer) and 8174.4, 8168.0 (minor 

isomer) corresponding to the lactone and ester carbonyl groups, respectively. 

Furthermore, the presence of two doublets in at 87 .52, 86.13 (major isomer) and 

87.54, 86.21 (minor isomer) in the IH NMR showed that formation of the a,~-

unsaturated lactone had been achieved. The HRMS value of 328.1760 for each 

isomer confirmed that the correct structure had been formed. 

The disappointing yield in this sequence was attributed to the competing 

enolisation which was postulated as being an important factor of this addition 

step. The only side product of this reaction was, however, the unreacted ketone 

(122) and this material could be recycled to give large amounts of the desired 

butenolide (123). It was thought that the selectivity of both the Wittig reaction 

and dihydroxylation of the double bond could be increased by forming the spiro 

lactone first before the formation of the alkene. 

2.4.6 Initial Selectivity Studies of the Ketolactone (51) 

~0- ~0 
0 

(51) 

Reagents: i. MeLi, -7s·c 

Scheme 2.4.23 

OH 

(124) 



In order to test the selectivity of nucleophilic addition to the ketolactone (51), 

methyl lithium was added to a solution of ketolactone (51) in THF at -78°C, 

Scheme 2.4.23. Purification yielded a mixture of diastereomeric products which 

proved difficult to separate. I H NMR showed the presence of two singlets in a 

ratio of 1.3: 1. These were separable with difficulty after repeated flash column 

chromatography. The 1 H NMR spectra showed a 3H singlet at b 1.24 for one 

isomer and 3H singlet at b 1.48 for the other. The appearance of an OH stretch at 

3497cm-l in theIR and nc NMR analysis showed the lactone (C=O, D177.4) to 

have remained intact. Further elaboration of the alcohol (124) to the ester (125) 

confirmed the addition of methyl lithium to the ketone position. This conversion 

was achieved by the addition of acetyl chloride and triethylamine to a solution of 

the lactone alcohol (124) to afford a 38% yield of the desired ester (125), Scheme 

2.4.24. Appearance of singlets at Dl.94 and D2.26 respectively corresponded to 

the acetate methyl groups. The formation of the ester (125) also facilitated the 

separation of the two isomers resulting from addition of methyl lithium. 

Preferential reactivity at the ketone centre was to be expected but the rather 

unselective manner of addition was disappointing. The reaction was repeated 

using methylmagnesium bromide but an identical mixture of isomers was 

obtained. 

~0 
OAc 

{124) (125) 

Reagents: i. AcCI, Et3N 

Scheme 2.4.24 
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2.4. 7 Preparation of the Spirolactone (82) from the Keto lactone (51) 

The Wittig methodology discussed in Section 2.4.6 was repeated using the 

ketolactone (51) in order to study the effect of the lactone on the selectivity of 

each reaction. The alkene (126) was obtained in a 12: I ratio of separable 

isomers, Scheme 2.4.25. Utilising the techniques of HETCOR, COSY and NOE 

difference spectroscopy enabled full assignment of I H and 13C NMRs, Figure 

2.4.1. Furthermore, it was found that, of the two diastereoisomers, the double 

bond of the major diastereomer existed in the (£) configuration. Comparative 

methods were used to analyse the isomeric ratio of the previous alkene (118) 

formed from 2-benzyloxycyclohexanone ( 48). HRMS value of 256.1549 

corresponds with the calculated mass for each isomer. Addition of a catalytic 

amount of osmium(IV) oxide to a solution of the alkene (126) and NMO in 

tbutanol afforded two unseparable diastereomeric dials (127) in 77% yield. I3c 

NMR showed 26 peaks concluding that two species must be present. The 

diastereomers were observed in a ratio of 2: 1, however we were unable to assign 

the configuration of the major isomer. A broad OH band at 3444cm-l in the IR 

suggested that the diol had been formed. The loss of the olefinic singlet at 85.9 

(major isomer) 85.60(minor isomer) in the 1 H NMR showed that the alkene 

moiety was no longer present. Protection of the diol (127) via the addition of 2,2-

dimethoxypropane in the presence of a catalytic amount of trifluoroacetic 

anhydride gave the desired acetal (82). A yield of 78% of one isomer was 

obtained after purification by flash chromatography. The disappearance of the 

broad band at 3444cm-l characteristic of the alcohol functionality indicated that 

protection had taken place. 1 H NMR also showed the presence of two 3H triplets 

at 81.53 and 81.37 corresponding to the two methyl groups of the acetal and El

MS also showed a large molecular ion peak at m/z 330. Overall, the selectivity of 

the addition reactions was increased slightly but the yields of each step remained 

similar. 
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(51) (127) 

(82) 

Reagents: i. Ph3P=CHC02Et (117), toluene, !lOT; ii. Os04 , NMO; iii. 22-dimethoxypropane, TFA, 
chloroform 

Scheme 2.4.25 

With the addition of the C2 and C3 units achieved, the next step in the synthesis 

was the addition of the C(l) side chain. This would functionalise the lactone at 

the carbonyl group to form a lactol. Initially, we opted to use methyl lithium or 

methyl magnesium reagents for this purpose but eventually an allyl reagent would 

be used as this could afford chain extension ultimately forming a variety of 

analogues of the squalestatins at a late stage in the synthesis. 

2.5 Functionalisation of the Lactone - Addition of a CCI) Side Chain 
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Scheme 2.5 .1 



2.5.1 Introduction 

The introduction of a C( I) alkyl group at a late stage in the synthesis was 

essential for the preparation of a number of core analogues without having to 

dramatically vary the core synthesis, Scheme 2.5.1. 

2.5.2 Attempted Addition of an Alkyl Lithium 

Preliminary studies were undertaken to determine whether the ester or lactone 

functionality of the butenolide (123) would be the most reactive to nucleophiles. 

It was thought that the lactone carbonyl would react first, due to the fact that there 

would be a certain amount of release of ring strain on converting this carbon to an 

sp3 configuration, Scheme 2.5.2 

OEt 
___________ ,.. 

0 0 

X 
(123) (128) 

Scheme 2.5.2 

However, the addition of 1.2 equivalents of methyl lithium resulted in the 

recovery of 59% starting material (123) and the isolation of an alcohol (129) in 

25% yield. After purification by flash column chromatography. 1 H NMR 

showed two 3H singlets at 81.24 and 81.15 corresponding to the two me thy I 

groups on the alcohol (129). Reaction of the ethyl ester was also characterised by 

the disappearance of an apparent 2H quartet at 84.22 and a 3H triplet at 81.31 in 

the 1 H NMR with the development of a strong OH stretch at 3496cm-1 in the IR. 

The presence of a carbonyl peak at 8158.9 in the 13C NMR corresponded to the 

lactone carbonyl and not the ester carbonyl which occurs at 8168.0 in the starting 
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material (123). The data suggests that the alkyl lithium had selectively added to 

the ester carbonyl rather than the lactone carbonyl, Scheme 2.5.3. Careful 

chromatography also yielded a small amount of ketone (130) in 9% yield. This 

was characterised in 13C NMR by the presence of two carbonyl peaks at 8207.6 

and 8157.3 corresponding to ketone and lactone carbonyls respectively. Once 

formed, (130) is obviously more reactive than an ester or lactone group and 

preferentially reacts with any available methyl lithium. This double methylation 

means that large amounts of starting material (123) will be recovered. Similar 

products were obtained from reaction of methyl lithium with the other lactone 

Isomer. 

OEt 
+ 

(123) (130) (129) 

Reagents: i. MeLi, -7s·c 

Scheme 2.5.3 

One reason for the lack of reactivity of the lactone carbonyl could be due to its 

conjugation which could be deactivating the carbonyl group. The double bond 

can be oxidised to form a diol through which Squalestatin 1 can be accessed by 

esterification of the C(6) side chain. To obtain this functionality, oxidation of the 

double bond was studied. Attempts to form an epoxide with tbutyl hydroperoxide 

and buty I lithium 70 were unsuccessful so it was decided to reduced the double 

bond instead forming a saturated structure and this was readily accomplished 

using palladium hydroxide (82), Scheme 2.5.4. 1 H NMR showed the 

disappearance of two IH doublets at 87.62, 86.13 (major isomer) and 87.51, 



86.41 (minor isomer) corresponding to the a- and ~- protons of the lactone. 

HRMS also showed peaks in the CI corresponding to the calculated masses of 

330.1917. Subsequent reaction with methyl lithium yielded the analogous 

alcohol (131) in 37% yield and starting material (82) in 52% yield as observed 

previously. Again, these were characterised by the disappearance of the ethyl 

ester in I H NMR {masked quartet and triplet at 84.28-4.08, 81.24 (major isomer) 

84.30-4.17, 81.3 (minor isomer)}. This was the case for both lactone isomers and 

studies with other nucleophiles such as methylmagnesium bromide yielded 

identical products. 

ox 
(123) 

(131) 

Me 
Me 

+ 

(82) 

ii 

(132) 

Reagents: i. Pd(OHh, MeOH; ii. MeLi, THF, -78·c 

Scheme 2.5.4 

This was rather disappointing as it called for a review of the synthetic plan. The 

use of an ester functionality as protection of a carboxylic acid was obviously too 
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reactive for our needs and the search for a less reactive protecting group was 

undertaken. 

2.6 Alternative Protection of a carboxylic acid 

2.6.1 Introduction 

Rather than devise a different synthesis to incorporate a less reactive protecting 

group for an acid, it was noted that the ester group could be reduced to an alcohol 

using DIBAL. Subsequent silyl protection would obtain a functionality stable to 

nucleophilic attack. 

2.6.2 Conversion of the Ester (120) to a Silyl Ether (133) 

DIBAL was added to a solution of the ester (120) in THF, Scheme 2.5.5. After 

the careful addition of methanol and water, celite was added and the mixture 

extracted with ethyl acetate. Purification by column chromatography afforded the 

desired alcohol (134) in 99% yield. Absence of a peak at 8170.2 in the 13C NMR 

indicated that the ester had been reduced in addition to disappearance of a masked 

2H quartet at 84.17-4.02 and a 3H triplet at 81.16 in the 1 H NMR. IR also 

showed the disappearance of the peak at 1744cm-1 corresponding to the ester 

functionality and the appearance of an OH stretch at 3455cm-1 confirmed that the 

ester (120) had been reduced to the alcohol (134). 

TMS protection of the alcohol (134) was achieved by the simple addition of TMS 

chloride and triethylamine using standard methodology?!. The appearance of a 

9H singlet at 80.06 indicated the formation of the silyl ether (135). IR also 

showed the loss of an OH stretching absorption at 3455cm-1. Subsequently, this 

protecting group proved too labile for our purposes so a sterically larger silyl 

group was used. Similar protection of the alcohol (134) with TBDMS chloride 

and imidazole48 gave the desired silyl ether (133) in 90% yield, Scheme 2.6.1. 

1 H NMR contained a 9H singlet at 80.87 arising from the tbutyl silyl group. MS 

showed a peak in the EI at m/z 420 corresponding to the molecular ion. HRMS 
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observed a mass of 420.2696 in accordance with the calculated mass for the 

proposed molecular ion. 

~OH 
ii/ 0

~ ~ 
(134) 

L::::/~ 1::::-r~ 
~ ~1"\ OTBDMS - 1\"' OTMS 0-A 0-A 

(135) (133) 

Reagents: i. DIBAL; ii. TMSCI, Et3N; iii. TBDMSCI, Imidazole 

Scheme 2.6.1 

2.6.3 Preparation of the Silyl Ketone (61) 

A solution of benzyl ether (135) was hydrogenated over palladium, Scheme 2.6.2. 

This method was previously found to be the most successful in forming the 

secondary alcohol. After purification, I H NMR showed the disappearance of the 

5H aromatic multiplet and the AB system relating to the benzylic moiety. 

However, analysis of the I H NMR spectrum also showed the disappearance of 

the 9H singlet corresponding to the silyl ether. Subjection of the TBDMS 

protected benzyl ether (133) to hydrogenation afforded an identical product. MS 

showed a molecular ion rn/z 216 indicating that the diol (136) had been formed. 
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To prove the assignment of the diol (136), Swern oxidation was carried out to 

produce a waxy solid which gave rise to a I H singlet at 89.67 in the I H NMR. 

This suggested that the compound isolated contained an aldehyde (137). 13C 

NMR also showed two carbonyl functionalities at 8208.9 and 8200.8, arising 

from the presence of the aldehyde and the ketone respectively, Scheme 2.6.2. 

This proved that the diol was indeed formed in the previous reduction. 

~OTMS 
0 0 ~ 

~5) i ~OH 
/ 0 0 

~OTBDMS A o;(:_ (136) 

~0 ________.. o-/_ 
(137) 

ii 

(133) 

Reagents: i. Pd(OHh, MeOH; ii. oxalyl chloride, DMSO, Et3N 

Scheme 2.6.2 

It is a well known fact that primary alcohols are more reactive than secondary 

alcohols so it was possible to selectively protect the primary alcohol leaving the 

secondary alcohol intact. Thus TBDMS chloride and imidazole were added to a 

solution of the diol (136) in DMF. After 20h the reaction was quenched, 

concentrated and purified by flash chromatography to afford the protected alcohol 

(138) as a white solid in 97% yield. The appearance of two very low frequency 

peaks at 80.93 (9H) and 80.08 (6H) in the I H NMR was indicative of the 

presence of a TBDMS ether, Scheme 2.6.3. 



(136) (138) 

~~ ~ ~I"\ OTBDMS 

oJ: 
(139) 

Reagents: i. TBDMSCI, imidazole; ii. Ac 20, DMAP, pyridine 

Scheme 2.6.3 

The secondary alcohol (138) was then protected as the acetate (139) to confirm 

the location of the silyl ether moiety. A solution of the alcohol (138), acetic 

anhydride, and DMAP in pyridine was stirred for 40h at room temperature. The 

crude oil was washed with a saturated aqueous copper sulphate solution to 

remove the pyridine. Purification by column chromatography gave 63% of the 

desired ester (139). This was characterised by the appearance of a 3H singlet at 

82.07 in the IH NMR corresponding to the methyl group and a multiplet at 83.97-

3.70 corresponding to the a-alkoxy proton. 13C NMR also showed a carbonyl 

peak at 8169.9 suggesting that acetylation had occurred. HRMS showed a mlz 

peak with a mass of 373.2410 in agreement with the theoretical mass. 

Simple Swern oxidation of the remaining secondary alcohol afforded the ketone 

(61) in 69% yield, Scheme 2.6.4. IR showed the disappearance of the OH stretch 

at 3408cm-I and the appearance of a stretch at 1719cm-I corresponding to the 
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presence of a carbonyl group. HRMS showed a mlz peak with a mass of 

329.2148 identical to the calculated mass for the ketone (61). 

1::::::-T~ ...- ---r-" 
11 

OTBDMS r::::-7~ =-- ~'"' OTBDMS 

oJ: ----- oJ: 
(138) (61) 

Reagents: i. oxalyl chloride, DMSO, Et3N 

Scheme 2.6.4 

Formation of the ketone (61) was carried out employing this method affording 

good overall yield and further elaboration to the spirolactone was subsequently 

carried out (vide infra). 

2.6.4 Preparation of the Spirolactone 

The Najera methodology (Section 2.3.3) previously used to form the spirolactone 

was employed, Scheme 2.6.5. The dianion of the propionic acid (63) was formed 

upon the addition of two equivalents of nbutyl lithium. This, however, failed to 

add to the ketone (61) carbonyl. This disappointing result was rationalised by the 

fact that the addition step is sensitive to steric interactions and the silyl ether 

could possibly be too bulky to allow such an addition. 

(61) (140) 

Reagents: i. TsCH2CH2C~H, 2eq BuLi, -78"C; ii. 61, -4o·c, TFAA, -3o·c; LDA 

Scheme 2.6.5 
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Well known methodology49 was therefore used to form the saturated lactone 

(141), Scheme 2.6.6. Allylmagnesium bromide was added to a solution of the 

ketone (61) to form the alkene (142) as a 1.3: l mixture of separable isomers. The 

major isomer was characterised by an OH stretch at 3419cm-I in the IR and the 

presence of three olefinic protons, one as a multiplet at 65.95 and two at 65.06 in 

the I H NMR. The minor isomer differs spectroscopically by the presence of a I H 

multiplet at 04.35 corresponding to CHCH20Si. This occurs at 64.24 in the 

major isomer. HRMS value of 370.2539 corresponded identically with the 

calculated value for each isomer. The diastereomers were separated and 

subsequent reactions were carried out on each isomer individually. At this point 

we didn't know which was which but later results (vide infra) enabled us to 

determine that the major isomer was (142a) and the minor isomer was (142b ). 

Both were carried through the following steps concurrently, however in the 

interests of clarity only the process involving isomer (142a) (the one that worked) 

will be described in detail. 

~~ ,_..- --r--'n OTBDMS 

oJ: OTBDMS 

(61) (142) 

0 

+ -

00

0TBDMS iii OTBDMS~ ~~~~~ OA OTBDMS 

(141b) (141a) (143) 

Reagents: i. AllyiMgBr, THF, -78°C; ii. BH3.THF, H20 2; iii. PCC 

Scheme 2.6.6 
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Hydroboration of the major isomer (142a) with borane followed by oxidative 

workup with hydrogen peroxide afforded the diol (143a) in 63% yield. This was 

characterised by a large OH stretch at 3392cm-I in the IR spectrum with 

concomitant disappearance of the olefinic stretch at I640cm-I. Oxidation to the 

lactone via the lactol was explored using a number of oxidation processes 73. An 

optimised yield of 80% was obtained by using PCC74 as the oxidant. Formation 

of the lactol could be observed by tlc and isolation was possible but it was more 

convenient to drive the reaction to the formation of the lactone before purification 

by flash column chromatography. Purification was achieved by column 

chromatography and an IR spectrum was obtained showing the disappearance of 

the OH stretch at 3392cm-I. A peak at 3I76.6 in the 13C NMR corresponded to a 

lactone carbonyl group and elemental analysis confirmed that the lactone had 

indeed been formed. 

Although the lactone (141a) was obtained through a multi step process, the yields 

of each step were such that multigram scale preparation was possible. 

Incorporation of the less reactive silyl ether protecting group had been 

accomplished. It was now possible to proceed with the incorporation of the C( I) 

side chain by the addition of a magnesium reagent to the lactone. Nucleophilic 

attack should only occur at the lactone functionality unlike previous attempts to 

add a C(l) side chain (Section 2.5.2) where the more reactive ester functionality 

was also present. 

2.6.5 Functionalisation of the Lactone - Addition of a C(l) Allyl Unit 

Allylmagnesium bromide was added to a solution of lactone (141a). Almost 

immediately, tlc showed that starting material had been consumed and products 

formed. After purification by column chromatography, I H NMR showed a I.2: I 

mixture of unseparable diastereomers to be present, Scheme 2.6.7. Allylation 

was characterised by the presence of signals around 35-6 in the 1 H NMR, 

corresponding to the olefinic proton. These diastereomers are anomers (144a) of 

each other so cyclisation studies were carried out without further purification. 
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Only 200MHz I H NMR data was obtained as the molecule proved to be very 

unstable. Decomposition seemed to occur with migration of the double bond to 

form an allyl alcohol together with a number of unidentifiable products (see 

Scheme 2.7.4). 

OTBDMS 

(141a) (144a) 

Reagents: i. AllylMgBr, THF, -78·c 

Scheme 2.6.7 

The addition of a C( 1) side chain had been accomplished in excellent yields. 

Furthermore, the nature of this side chain should enable further elaboration to 

analogues of the squalestatins as the alkene (144a) can be oxidised to an aldehyde 

(145) which could undergo further addition reactions (146), Scheme 2.6.8. 

~ /-0 

·-----

(144a) (145) 
I 

: ii 
I 

l OH 

(146} 

Reagents: i. 0 3, DMS; ii. RMgBr 

Scheme 2.6.8 



Functionalisation of the lactone had been achieved so now ketalisation studies to 

form a core analogue of the squalestatins could be carried out and this work is 

described below. 

2. 7 Cyclisation Studies 

2. 7.1 Introduction 

With the lactol (144a) in hand it remained to test the ketalisation step to afford a 

core analogue of the squalestatins. Armstrong30 has carried out a number of 

experiments showing the possibility of forming bicyclic rings (147) other than the 

desired ketal (148) present in the bicyclic core of squalestatin 1, Scheme 2.7.1. 

Nicolaou has also noted this feature28. 

BnO 

cs~ 
s 

i, ii 
BnO + 

OBn 

(147) 

Reagents: i. Hg(CI04)2, CaC03, 5: I THF:H20, 30min; ii. 2% HCI, MeOH, RT, 10.5h 

Scheme 2. 7.1 
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As shown above, it is possible to form a variety of 5 and 6-memhered hicyclic 

rings but we undertook cyclisation studies on an analogue containing a 

cyclohexane ring. In our case, the cyclohexane ring would provide a 

conformationally more rigid core analogue. This group should serve to promote 

cyclisation to the desired product without the formation of isomeric side products 

due to restriction by the cyclohexane group. The desired product (149) also 

appeared to be the most thermodynamically feasible in our case, Scheme 2.7.2. 

·----..-

(144a) (149) 

Scheme 2.7.2 

It was hypothesised that, of the two possible lactone isomers formed (141 ), only 

one would have the correct stereochemistry to afford the core analogue. 

Furthermore, the unselective formation of two lactol isomers (144) upon 

allylation of the lactone (141), should not prove to be a problematic as they are 

anomers of each other. Interconversion of these anomers is possible during acid 

cyclisation of the isomeric mixture via an oxycarbenium ion intermediate (150a) 

and this should afford only one isomeric tricyclic structure, Figure 2.7.1. 

(144a) (150a) 

Figure 2.7.1 



The use of aqueous acid is a well known procedure for the deprotection of an 

acetal to its component diol and carbonyJ.SO In this case, concomitant cyclisation 

of the diol to the ketal (149) should then occur. 

Nicolaou et a[28 used this procedure in the ketalisation step towards the total 

synthesis of squalestatin 1 where methanolic HCl was used to deprotect the 

acetonide (151) and catalyse the cyclisation step necessary to obtain the bicyclic 

core (152) of squalestatin 1, Scheme 2.7.3 

''''OH 

(151) (152) 

Reagents: i. 2% HCI in MeOH, 68·c, 18h 

Scheme 2.7.3 

Surprisingly, following this precedent, the lactol (144a) failed to undergo 

cyclisation to the desired core analogue (149). In particular, the formation of an 

intractable mixture of compounds occurred. Crude 1 H NMR showed the 

disappearance of a multiplet at o5.89 corresponding the allylic proton and also 

two 3H singlets at 00.90 and o0.08 corresponding to the TBDMS group. The 

presence of two methyl peaks at o 1.42, o 1.34 (major isomer) suggested that the 

acetonide was unaffected by the reaction conditions. Variations of temperature 

did not produce any change in the crude 1 H NMR's obtained. 

Consequently we opted to use TsOH to catalyse the deprotection of the acetal 

(144a). This again, resulted in the formation of decomposition products. The 
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loss of the olefine signals in the 1 H NMR suggested that migration of the double 

bond was somehow linked to the decomposition. This and the formation of many 

unisolable compounds could be due to that fact that the glycosidic alcohol may be 

lost as water, forming the oxonium ion (150a) which, in turn, would be 

susceptible to intermolecular additions, Scheme 2.7.4. 

OTBDMS ox 
(144a) (150a) 

Scheme 2.7.4 

Rizzacasa et a[5I have used a ketalisation step in the production of a core 

analogue of squalestatin 1, Scheme 2.7.5. Here, the C1 side chain is also replaced 

by an allyl group (155), permitting further elaboration or extension of this chain. 

Deprotection of the TBDMS alcohol with concomitant cyclisation would afford 

the desired tricyclic analogue (156). A source of fluoride ions was used to 

remove the silyl ether protecting group and cyclisation occurred without the loss 

of the allylic moiety. It should, therefore, be possible to retain the allylic side 
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chain in our synthesis as long as strongly acidic conditions are avoided. This 

remains to be tested with compound (144a). 

PMBO 
~. 

HO 

OBn 

OMOM 
MOMO ·., 

4',,~ 

OTBDMS 
(155) 

Reagents: i. HF, MeCN, H20 

Scheme 2.7.5 

OPMB 

(156) 

The lack of cyclisation could also be due in part, to the fact that the cyclohexane 

ring restricts such a process. This would invalidate the retrosynthetic scheme as 

an accessible route to the core unit of the squalestatins. However, it seemed more 

probable that the allylic double bond was the problem so cyclisation studies were 

undertaken on a saturated analogue (vide infra). 

2. 7.2 Preparation of the Saturated Analo2ue 057) 

A sample of the lactols (144a) was hydrogenated under standard conditions using 

methanol as solvent, producing the methyl glycoside (158a) in 94% yield, 

Scheme 2.7.6, in which the glycosidic alcohol had been displaced by methanol 

during the reaction. I H NMR showed the presence of a lH triplet at 84.12 

corresponding to CHCH20Si and a 3H singlet at 03.18 corresponding to the 

methoxy group. Disappearance of the olefinic multiplet at o5.89 and the 

appearance of a triplet at 01.46 corresponding to the methyl terminal of the propyl 

side chain proved that the double bond had been reduced. Cyclisation studies 

were carried out without further purification. Using the procedure reported by 

Nicolaou et al (methanolic HCl), the reaction was warmed to 40°C for 12h 
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whereupon tlc showed the formation of one product only. Purification by flach 

column chromatography afforded 37% of the desired core anaologue (157). 13C 

NMR DEPT experiment showed the presence of one methyl, nine methylene and 

one methine carbon which corresponded exactly with the suggested structure. IR 

also showed the presence of hydroxyl functionality at 3690cm-1 and CI-MS 

showed a molecular ion peak at mlz 257. HRMS value also corrresponded with 

the calculated mass of 257.1753. The spectroscopic data corresponds well with 

that published for other analogues of the squalestatins. 31 

(144a) (158a) 

Reagents: i. Pd(OH)z, MeOH, H2; ii. 2% HCI, MeOH, 40T 

Scheme 2.7.6 

As mentioned earlier, this procedure was also carried out on the other isomer 

(142b) obtained from allylation of (61). This procedure was successful up to the 

final step when the desired cyclisation did not occur and only decomposition was 

observed. It was this difference in outcome that enabled us to determine which 

isomer of (142) was which. 
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This result proved the viability of the retrosynthetic plan and studies towards the 

fully substituted core were commenced. 

Obviously, the cyclohexane ring did not prevent cyclisation. Therefore, access to 

the fully substituted core through ozonolysis of a cyclohexadiene ring, Scheme 

2.7.7, should not pose a problem in the ketalisation step although this moiety 

would be flatter and more rigid than the cyclohexane group. 

R'(O)Cq 
"·· 

R'(O)CO 
.-:.. ... 

R i ·----..- R 

HO HO 

(36) ( 1) 

Reagent: i. 03, DMS 

Scheme 2.7.7 

Using the same strategy as descibed previously, an analogous retrosynthetic plan 

was developed to give a more direct route to the core unit of the squalestatins. 

2.8 An Alternative Route 

R 

(1) (44) 

ll 
MeO 

(42) (41) (47) 

Scheme 2.8.1 



2.8.1 Introduction 

The previous route, Scheme 2.1.1, appeared to provide access to the core unit of 

squalestatin 1 but difficulty was encountered in the attempt to synthesise a 

spirolactone moiety, See Scheme 2.1.1. Although successful, the yield of this 

step was optimised to only 33% and obviously it was desirable to devise a similar 

route to the squalestatins without encountering the spirolactone synthesis. Using 

a similar strategy it was observed that the alternative tethering of the C(3) and 

C( 4) olefins would afford a lactone ( 46) without the spirocyclic centre, Scheme 

2.8.1. 

Further disconnection generates a doubly convergent route from the tetronate 

derivative (47) and the a-alkoxy ketone (41). This could provide easier access to 

the core unit with a concomitant reduction in the number of synthetic steps. 

The methodology was again tested using cyclohexane diol rather than the more 

expensive cis--cyclohexadiene diol (42). Synthesis of the tetronate precursor was 

carried out and is described below. 

yyo-....../ 
0 0 

(160) 

Meo~0 
0 

(159) 

iii 

Yl(o-....../ 
OMe 0 

(161) 

Br~0-....../ 
OMe 0 

(162} 

Reagents: i. HC(0Me)3, HCI; ii. NBS; iii. ZnBr2 

Scheme 2.8.2 
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2.8.2 Preparation of the lactone (163) 

Formation of the tetronate (159) was accomplished usmg reported 

methodology52, Scheme 2.8.2, through a three step procedure. All intermediate 

compounds were unstable, so were used immediately. 

Trimethyl orthoformate was added to a solution of ethyl acetoacetate (160) in 

methanol and HCl catalysed the formation of ethyl 3-methoxybut-2-enoate (161) 

at l90°C. The mixture was immediately distilled through an efficient 

fractionating column to give the desired prodct (161), quantitatively. Subsequent 

bromination was achieved by the addition of N-bromosuccinimide at a 

temperature above I 00°C. Distillation gave the desired bromide (162) in 95% 

yield. Lewis acid catalysed cyclisation of the bromide (162) gave the tetronate 

(159). The brown solid obtained was purified by recrystallisation from a mixture 

of ethyl acetate in petrol. A melting point of 6TC (lit. 65°C) was obtained and a 

3H singlet at C>3.91 due to the methoxy group was apparent in the lH NMR. El-

MS also showed a molecular ion peak at m/z 114. This corresponded well with 

the published data. 

The tetronate was then used in addition studies to 2-benzyloxy cyclohexanone 

(48). Deprotonation of the tetronate was achieved using the methodology of 

Pelter et a(l5 by the careful addition of the tetronate (159) to a solution of butyl 

lithium in THF at -78 OC. It was also discovered that by reversing the addition of 

the reagents, that is the addition of butyl lithium to the tetronate, resulted in other 

addition by-products. 

A solution of 2-benzyloxycyclohexanone ( 48) was then added to the dienolate 

and the reaction warmed to room temperature for 12h. Purification by 

chromatography afforded the desired product as a 1.3:1 mixture of separable 

isomers with a combined yield of 54%, Scheme 2.8.3. This was characterised by 

lH NMR which showed the appearance of two lH singlets at ()5.12, ()5.06 (major 

isomer) and C>4.81, <>4.50 (minor isomer) corresponding to the two single protons 

attached to the tetronate group. A broad band in the IR spectrum at 3154cm-1 

shows the presence of an OH group and 13C NMR contains a carbonyl peak at 
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8182.1 In addition, a substantial amount of 2-benzyloxycyclohexanone ( 48) 

(33%) was recovered. One reason for this could be that the deprotonated 

tetronate is extracting a proton from the a position of the ketone ( 48) forming the 

enolate. Aqueous work up would protonate this species recovering the ketone 

(48). 

Meo~0 
0 

(159) 

MeO 

(163) 

Reagents: i. BuLi, -78"C, 4h, then 48 

t:::::fo 
OBn 

(48) 

Scheme 2.8.3 

The addition of the tetronate (159) to 2-benzyloxycyclohexanone (48) had been 

achieved and although the yield was only 53%, it was possible to recycle 

unreacted starting material to form large amounts of the desired alcohol. The 

next step in the synthesis would be to functionalise the carbonyl group through 

the addition of either organo lithium or magnesium reagents. 
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2.8.3 Functionalisation of the Tetro nate 

MeO MeO 

0 -------..-

(163) (164) 

Reagents: i. RMgBr 

Scheme 2.8.4 

With the addition of the tetronate (159) to the a-alkoxy ketone (48) 

accomplished, the next step was to functionalise the tetronate carbonyl group, 

Scheme 2.8.4. This proved to be more difficult than was first imagined. 

1.2 equivalents of allylmagnesium bromide was added to a solution of tetronate 

(163) in THF at -78oC. The solution was allowed to warm to room temperature 

for 4h and quenched. Purification by column chromatography resulted in the 

recovery of starting material (163) only. A white precipitate formed upon 

addition of the magnesium reagent. This could be due to quenching of the 

reagent by its abstraction of the alcohol proton. The reaction was repeated using 

2.2 equivalents of allylmagnesium bromide. However, again only starting 

material was recovered. The reaction was carried out varying the temperature 

and solvent conditions. 

Allylation did occur upon addition of 2 equivalents of magnesium reagent at 0°C. 

I H NMR showed a 2H multiplet at 85.80, characteristic of an allylic proton. 

However, MS showed a molecular ion peak at m/z 403, suggesting the desired 

product had not been formed but instead the lactone had opened and double 

allylation (165) had occurred, Scheme 2.8.5. 
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MeO 

I I 

OH OH 

(163) (164) (165) 

Reagents: i. Ally!MgBr 

Scheme 2.8.5 

To overcome the difficulty of functionalising the tetronate (163), protection of the 

alcohol was attempted. The addition of TMS chloride and triethylamine to the 

tetronate (163) afforded only recovered starting material (163) upon purification 

by flash column. Similar reaction with TMS triflate and triethylamine did not 

afford the protected alcohol (166). Tic showed complete consumption of starting 

material with the development of a single spot further up the plate. Analysis of 

spectral data showed the presence of two protons at 86.94 and 86.18 in the 

olefinic region as well as two lH singlets at 85.26 and 84.70 suggesting that the 

two isolated protons attached to the tetronate part of the molecule were still 

intact. There were no characteristic singlets between 80-1 typifying the presence 

of a trimethyl silyl protecting group. This suggested that elimination had 

occurred forming a double bond in the molecule. The fact that l H NMR showed 

two olefinic protons to be present suggested that elimination had occurred in the 

cyclohexane ring, Scheme 2.8.6. 
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MeO MeO 

0 0 

I 

OH 

(163) (166) (167) 

Reagents: i. TMSOTf, Et3N or TMSCI, Et3N 

Scheme 2.8.6 

It was thought that the lack of electrophilicity at the tetronate (163) carbonyl was 

due to the fact that it is a homologous ester and perhaps reduction of the double 

bond would allow for nucleophilic insertion. Palladium hydroxide was the 

catalyst used for the hydrogenation. This was the same method used for the 

cleavage of benzyl ethers and it was hoped that the reaction would be selective. 

This was indeed the case but it was the benzyl ether which was cleaved to form 

the diol (168), Scheme 2.8.7. Purification by flash chromatography afforded a 

white solid. I H NMR analysis showed the disappearance of the benzylic protons 

around B5. El-MS showed a molecular ion at m/z 229 proving the formation of 

the diol (168). Subsequent hydrogenation of the diol (168) did not afford 

reduction of the double bond. This was a little disappointing but there still 

remained the possibility of elaboration by protection of the diol as an acetal, 

Scheme 2.8.7. This work has yet to be carried out. 
MeO MeO 

0 0 ii 0 
__________ ._ 

I I 

OH OH 

(163) (168} (169} 

Reagents: i. Pd(OHh, MeOH; ii. 2, 2 dimethoxypropane, TFA 

Scheme 2.8.7 

0 
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Another method of manipulating the double bond of the tetronate was to oxidise 

the double bond to a diol. Attempts to form (170) were carried out using 

osmium(IV) oxide and NMO. The mixture was stirred for 18h but no reaction 

occurred and purification by column chromatography allowed complete recovery 

of starting material (163). Epoxidation of the double bond was also considered. 

The reagent chosen was mCPBA and this was added to a solution of tetronate in 

DCM. The mixture was stirred for 17h but tic showed no reaction to have taken 

place, Scheme 2.8.8. 

0 

I 

OH 

(163) 

i 
X• 

I 

OH 

(170) 

Reagents: i. Os04, NMO, tbutanol 

Scheme 2.8.8 

0 

A search was undertaken to find alternative methods for protection of the alcohol. 

It was noted that the methoxy functionality of the tetronate (163) was a ketone 

equivalent and attempts to form the acetal at this centre were carried out. A 

mixture of tetronate (163) and ethylene glycol was refluxed in benzene with an 

acid catalyst for 27h. Purification by flash column chromatography afforded only 

recovered starting material (163), Scheme 2.8.9. 



MeO 

0 

{163) 

i 
X• 

(171) 

0 

Reagents: i. ethylene diol, TFA 

Scheme 2.8.9 

The lack of reactivity of the double bond is a setback to this approach, though is 

probably related to its conjugation to the lactone carbonyl group. Because of 

time restrictions further investigation was not possible, however the addition of 

nucleophilic oxidising agents (eg hydrogen peroxide) to the a,~-unsaturated 

system should be studied. In addition, the successful mono addition of a 

nucleophile to the carbonyl group should be examined further. So far, discussion 

has been centred around testing the viability of the two retrosynthetic plans. This 

was attempted using 2-benzyloxycyclohexanone and studies towards the fully 

substituted core starting with cis-cyclohexadiene diol ( 42) will now be discussed. 

2.9 Studies Towards The Fully Substituted Core 

(1) 

Scheme 2.9.1 

+ 

OP 

Li~ 
(39) 
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2.9.1 Introduction 

Retrosynthetic plan A (see Section 2.1.1) was shown to be viable through the 

synthesis of a core analogue of the squalestatins. This synthesis was tested by 

using a cyclohexane diol model as a starting material rather than the more 

expensive cis-cyclohexadiene diol (42) needed for elaboration to the full 

substituted core unit. Cis-cyclohexadiene diol ( 42) is easily obtained from an 

oxidation process of benzene using Pseudomonas putida. 

The retrosynthetic scheme involves the protection of the diene moiety through a 

Diels Alder reaction with diazodicarboxylate ( 41), Scheme 2.9.1. However, a 

recent report published by Hudlicky 76 showed that the same diene could be 

efficiently protected by Diels Alder reaction with 4-phenyl-1 ,2,4-triazoline-3,5-

dione (172), Scheme 2.9.2. 

i.-iii. 

JvoR 
v .. ,'OR' 

vii. 

X~ .OR 
0-yN.:.~OR' 
PhNI{N 

0 ! iv.-vi. 

oyN. 

R = CH20CH2CH3 
R'= OTHS 
X= Cl or Br 

~OR 
N 

PhNI{ OTBDMS 

0 

Reagents: i. THSCI, Imidazole, OOC; ii. ClCHzOCHzCH3, EtN(iPr)z, OOC; 
iii. 4-phenyl-1,2,4-triazoline-3,5-dione, -60°C; iv. TBAF -55°C; v. TfzO, 
pyridine, OT; CsOAc, 18-crown-6, 70°C; KzC03; vi. TBSOTf, 
2,6-lutidine, OOC; vii. 2N KOH 

Scheme 2.9.2 
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The triazoline group was chosen for the cycloaddition step as the reaction is 

easily reversed under basic conditions to reveal the diene. This was a crucial 

requirement for the dienophile to be used in our synthetic plan. 

2.9.2 Preparation of the Diels Alder adduct 

The dienophile (172) was easily prepared upon the addition of dinitrogen 

tetroxide to 4-phenyl urazole (173)77, Scheme 2.9.3. Red crystals immediately 

formed and further purification, via sublimation, could be carried out but 

normally was not necessary. IR showed the appearance of a band at 1624cm-1 

corresponding to the triazoline double bond. In a model study, Diels Alder 

studies were carried out with the reaction of the triazolinone (172) with 

cyclohexadiene. In this, the addition of 1,4 cyclohexadiene to the triazolinone 

(172) was found to produce the Diels Alder adduct (174) at -78°C almost 

immediately, Scheme 2.9.3. A colour change from red to yellow was observed 

and a yield of 82% was obtained after recrystallisation from ethyl acetate and 

petrol. 1 H NMR studies showed the white crystals to contain two olefinic protons 

at 86.51 indicating that the desired Diels Alder reaction had taken place. 

Furthermore, CI-MS showed a large parent molecular ion peak at 256 and 

elemental analysis was found to be correct for the desired structure (174). 

0 0 

oyN.~ J\ N~ ii H~ NPh II NPh 
PhN N HNI( Nlf 11 

0 0 0 

(173) (172) (174) 

Reagents: i. N204, OT; ii. 1, 4 cyclohexadiene, -4o·c 

Scheme 2.9.3 



99 
With the success of the previous reaction it was possible for proceed with the 

addition of the triazoline group to cis-cyclohexadiene dial (42). This was 

achieved using the previous method. Cis-cyclohexadiene dial ( 42) was much less 

reactive than the equivalent diene but addition occurred upon raising the 

temperature of the reaction to -40°C. The solid (175) was purified by flash 

column chromatography but proved to be very insoluble in most organic solvents. 

This could possibly explain the low yield of 23%. Spectral data was obtained 

using DMSO as a deuterated solvent. 

0 

NJl 
II NPh N-n 

0 

(172) 

0-y-N.~H 
----.. PhNilN 

0 

(175) 

Reagents: i. cis-cyclohexadiene-2,3-diol (41), -4o·c 

Scheme 2.9.4 

The problem of low yield and the lack of solubility was solved by first protecting 

the dial as an acetal before carrying out the Diels Alder reaction. 

A recent paper by Grubbs et af?S shows the preparation of benzobarrelenes using 

cyclohexadiene dial. Here, cis-cyclohexadiene-2,3-diol ( 42) is protected in situ 

by the formation of an acetal (176) before reaction with a benzyne dienophile 

formed from (177), Scheme 2.9.5 



~OH 

~OH 

(42) (176) 

100 

(178) 

Reagents: i. PhCH(OMeh, PTSA; ii. anthrilic acid (177), isoamyl nitrite 

(177) 

Scheme 2.9.5 

Similar methodology to that reported by Grubbs was used to form an acetal from 

para-anisaldehyde dimethyl acetal. para-Anisaldehyde dimethyl acetal was 

chosen for the fact that the acetal formed is more reactive to cleavage than the 

benzaldehyde equivalent. Following reductive cleavage, the alcohol could 

subsequently be oxidised to a ketone allowing nucleophilic insertion of the C(2) 

or C(3) precursor of the synthetic scheme. 

Initially, p-anisaldehyde dimethyl acetal was added to cis -cyclohexadiene-2,3-

diol (42) in the presence of acid. The reaction was carried out at room 

temperature but this resulted in decomposition. The reaction was followed by 1 H 

NMR and showed the loss of a multiplet at 86.00 in the diol, corresponding to the 

proton on the alcohol bearing carbon. This was due to the fact that the cis

cyclohexadiene-2,3-diol (42) is sensitive to acid and easily eliminates water, re-

aromatising to form phenol. The reaction was repeated at -78°C but it wasn't until 

the mixture was warmed to -40°C that reaction took place. I H NMR showed the 

development of two 2H doublets at 87.80 and 86.95 and a singlet at 85.35. This 

was compared with the 1 H NMR of para-anisaldehyde. The acetal (179) was not 

isolated but the mixture was quenched by the addition of excess NaHC03 before 
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addition of the triazoline dienophile (172). Again, the Diels Alder reaction was 

carried out at -40°C and monitored by lH NMR, Scheme 2.9.6. 

O
,,,OH 

.,, 
OH 

(42) 

! ; 0,--()-oMe 

[0··''\ F\ OMe] ~ O~N~ 
"" ~ 0~ PhN,l 

0 
(179) (180) 

Reagents: i.para-anisaldehyde dimethyl acetal, PTSA, -40°C; ii. 172, -40°C 

0 
Jl 

~ NPh N, 
0 

(172) 

Scheme 2.9.6 

Purification of the Diels Alder adduct (180) by flash column chromatography 

afforded a 1.3:1 mixture of isomers in a 53% yield. Again the products formed 

were only sparingly soluble in ethyl acetate and yields were increased to 60% 

upon purification by recrystallisation. NOE and COSY showed that only two 

isomers were formed. There are a number of possible isomers but analysis of 

spectral data suggested that the isomers were formed at the acetal centre rather 

than the formation of exo and endo Diels Alder mixtures, Scheme 2.9.7. 
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major isomer (180) minor isomer (180) 

From analysis of NOE data 

Scheme 2.9.7 

Manipulation of the acetal (180) to afford deprotection of one alcohol (181) was 

desirable so that oxidation to the carbonyl (182) could be carried out and 

subsequent manipulation to the spiroenone could be attempted, Scheme 2.9.8. 

(180) (181) (182) 

Scheme 2.9.8 

2.9.3 Attempted Actetal Cleavaa:e 

Nicolaou et al 28, 79 showed that it was possible to cleave a similar acetal (183) by 

use of DIBAL, Scheme 2.9.9. 



MeO 

(183) 

Met( 

Reagents: i. 1.2eq DIBAL, -78- -22·c, 2h 

Scheme 2.9.9 

0 

This reaction was therefore carried out with the acetal (180) we had prepared 

earlier. The substrate cleaved by Nicolaou needed temperatures between -78 -

-22°C for the reaction to occur. The reaction conditions were varied extensively 

but without success. Table 2.9.1 shows the different attempts carried out to 

cleave the acetal with DIBAL. 

Nucleophile Lewis Acid Temperature CC) Result 

Ieq DIBAL -78 No reaction 

1.1eq DIBAL 0 No reaction 

2eq DIBAL RT No reaction 

1.1 eq Et3SiH l.leq TiCI4 -78-0 No reaction 

l.leq Et3SiH l.leq BF3.0Et2 -78-0 No reaction 

l.leq Et3SiH 2.5eq BF3.0Et2 0-RT No reaction 

IOeq Et3SiH 2.5eq BF3.0Et2 0-RT No reaction 

IOeq Me3SiH 2.5eq BF3.0Et2 0-RT No reaction 

l.leq AlH2Cl 0-RT No reaction 

l.leq ZnBH4 0-RT No reaction 

Table 2.9.1 
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Work is currently being carried out within our group to cleave acetals 

asymmetrically, therefore distinguishing between the two alcohol moieties. This 

route involves Lewis acid formation of an oxonium ion followed by nucleophilic 

cleavage to the alcohol and ether. 

The first Lewis acid to be used was titanium(IV) chloride with triethyl silane as 

the external nucleophile. A solution of titanium(IV) chloride was added to a 

solution of acetal in DCM. After lOmin triethylsilane was added and the reaction 

stirred for 6h. Tic showed that no reaction had occurred and purification by 

column chromatography allowed complete recovery of starting material (180). 

The reaction was repeated varying the temperature but without success. 

Titanium(IV) chloride was replaced with boron trifluoride and the reaction 

carried out. Again, the temperature was varied but no products were obtained. 

Increasing the amount of Lewis acid to 2.5 and 10 equivalents was also 

considered but no products were observed. It was noted, however, that, upon 

addition of the boron Lewis acid to a mixture of isomers, only one isomer was 

ever recovered. Addition of BF3.0Et2 to a 1:1 mixture of acetal isomers, without 

the addition of a nucleophile, confirmed this observation. This suggested that the 

oxonium ion (184) was indeed forming and isomerisation was taking place, 

Figure 2.9.1. 

~OMe 

~-r.:v 
o'1-N·~A 
PhN N 

11 
0 

(184) 

Figure 2.9.1 
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This result meant that the Lewis acid had formed the oxonium ion (184) but 

nucleophilic attack was not taking place. Addition of 10 equivalents of 

triethylsilane was then carried out but again only starting material was recovered. 

A more reactive form of silane is trimethylsilane and reactions were carried out 

using this nucleophile but to no avail. 

A typical procedure to cleave acetals is the use of aluminium dihydrogen 

chloride53. This reducing agent is prepared from the addition of lithium 

aluminium hydride to aluminium trichloride81. It was possible to make 

aluminium dihydrogen chloride in situ but unreacted lithium aluminium hydride 

could reduce the amide bonds present in the molecule (180). The reducing agent 

was therefore isolated before cleavage of the acetal (180) was attempted. 

Aluminium dihydrogen chloride was added to a solution of acetal in DCM and 

stirred for 10h. Purification by flash column chromatography yielded only 

recovered acetal. Another method for the cleavage of acetals is through the use 

of zinc borohydride82, prepared from the addition of zinc chloride to sodium 

borohydride. 83 The use of this reagent with TMS chloride is very effective in the 

reductive cleavage of acetals under mild conditions. The zinc reagent was added 

to a solution of acetal (180) closely followed by the addition of TMS chloride at 

OoC. The reaction was stirred at this temperature for 4h but no reaction occurred 

so the mixture was warmed to room temperature but no products were observed 

upon purification by flash column chromatography. Cerium ammonium nitrate is 

also a well known reagent for the ring opening of acetals.84 To a solution of the 

acetal (180) in acetonitrile and water ( 4: 1) was added eerie ammonium nitrate at 

0°C. The mixture was stirred for 15h however cleavage was not observed. The 

result of these experiments show reductive cleavage of the acetal (180) to be 

unsuccessful. An attempt to cleave the acetal (180) by an oxidative method was 

therefore carried out. Ozonolysis has been known to react smoothly with acetals 

to give the corresponding esters.85 A solution of acetal (180) in ethyl actetate 

was ozonised for IOmin at -78°C before dimethyl sulphide was added and the 
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resulting mixture warmed to room temperature. However decomposition 

occurred. The Diels Alder adduct (180) contains a strained double bond and it 

was this moiety that was found to be the more reactive resulting in decomposition 

products. I H NMR showed the presence of a singlet at 88.74 sugesting that the 

double bond had been oxidised to give an aldehyde. 

A report by Seeley et a[S6 discussed the cleavage of acetals by the use of N

bromosuccinimide and water. One drop of hydrobromic acid was added to a 

mixture of NBS and water at OOC before addition of the acetal (180). After 2h, 

the mixture was still red in colour so NaHC03 was added and the mixture stirred 

at room temperature for 23h. No product formation was observed and the acetal 

was recovered quantitatively by flash column chromatography. Although 

cleavage of the acetal (180) proved to be problematic, this could be overcome by 

considering the use of other acetals as protection for the diol moiety. 

2.1.0 Conclusion 

Model studies using 2-benzyloxycyclohexanone have shown that retrosynthetic 

plan A, Scheme 2.1.1, is a viable route to the core unit of the squalestatins. Work 

undertaken towards the fully substituted core has been slightly hindered due to 

the fact that the acetal (180) has proven difficult to cleave. Perhaps the use of a 

different protecting group for the cis-cyclohexadiene 2,3 diol would alleviate the 

problem. There is precedent in the literature for the preparation of the 

acetonide.76 The para-methoxybenzylidene functionality was chosen due to the 

fact that it is more reactive to nucleophiles allowing cleavage to occur readily, 

however, this has proven not to be the case with our substrate. Alternatively, 

chlorobenzene could be used as a substrate for Pseudomonas putida as again 

there is literature precedent for the selective protection of each alcohoJ.76 

With cleavage achieved, oxidation to the ketone should allow further addition and 

elaboration. Addition of an a-alkoxylithium equivalent could be carried out. The 

para methoxybenzylidene group could aid stereocontrol allowing selective 

addition to form the syn product. Alternatively, the propionic acid (63) could be 
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added to the ketone forming the spirolactone. Further reduction of the para 

methoxybenzyl ether to afford the alcohol, followed by oxidation to the ketone 

would enable elaboration of this carbonyl group. 

Functionalisation of the spirolactone would afford a variety of analogues at a late 

stage in the synthesis. 
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Chapter 3: Experimental 

3.1 Introduction 

All reactions were undertaken in an inert gas atmosphere of dry nitrogen or argon 

in pre dried glassware. Nuclear magnetic resonance (NMR) spectra were obtained 

on a Varian Gemini 200 (lH at 199.975 MHz, 13c at 50.289 MHz), Varian XL-

200 (IH at 200.057 MHz) and Varian VXR-400(s) (IH at 399.952 MHz, 13c at 

100.577 MHz), spectrometers with CDCl3 as sol vent (0 = 7.26 ) and are recorded 

in ppm (6 units) downfield of tetramethylsilane (0=0). Infra Red (IR) spectra 

were recorded on a Perkin Elmer FT -IR 1720X spectrometer. Low resolution 

mass spectra were recorded on a VG Analytical 7070E organic mass 

spectrometer, and gas chromatography - mass spectra (GC-MS) were recorded 

using a Hewlett Packard 5890 Series II gas chromatograph connected to a VG 

mass Lab trio 1000. Flash Column Chromatography was performed on silica (60-

240 mesh). Melting points were determined using Gallenkamp melting point 

apparatus and are uncorrected. All solvents were distilled prior to use following 

standard protocols. Petroleum ethers refer to the fraction boiling in the 40-60°C 

range unless otherwise stated. Butyl lithium used was 1.4M n-butyl lithium 

solution in hexanes unless otherwise stated. All Grignard reagents used were 

1.4M solutions in ether unless otherwise stated. 

3.2 Experimental Detail 

2-benzyloxycyclohexanoi34~ 

t::::::(_OH 
OBn 

Benzyl alcohol (9.50ml, 92mmol) was added to a stirred suspension of sodium 

hydride (4.90g of a 60% dispersion in oil, 122mmol) in DMF (IOOml) at OOC. 

After addition the mixture was stirred under argon at room temperature for 

60min. Cyclohexene oxide (53) (1 0.40ml, 102mmol) was then added and the 
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solution was heated at 80oC for 16h. When tic (12:1, petrol:ethyl acetate) 

indicated complete consumption of benzyl alcohol the reaction was quenched 

with water and extracted with ether. The combined organic extracts were washed 

with brine, dried (MgS04) and concentrated to afford a yellow oil which, when 

purified by fractional distillation, yielded 2-benzyloxycyclohexanol (54) (17 .8g, 

94.3%) ; b.p. 116-118oC/0.15mmHg ( 116°C, 0.15mmHglit.); Vmax (CDCl3 

solution) 3430 (OH), 2932, 2860, 1668, 1452, 1075cm-I; 8(1H)(200MHz) 7.28-

7.24 (5H, m, C6Hs), 4.65 & 4.48 (IH each, AB system J = 11.6Hz, OCH2C6Hs), 

3.48-3.32 (IH, m, CHOCH2C6Hs), 3.18-3.03 (lH, m, CHOH), 2.65 (lH, broad, 

OH_), 2.10-2.00 (IH, m, HCHCHOCH2C6Hs), 1.98-1.85 (lH, m, 

HCHCHOCH2C6Hs), 1.68-1.55 (2H, m, CH2CHOH), 1.27-1.05 (4H, m, 

CH2CH2CH2CHOH); 8(13C)(50MHz) 139.1 (Ar), 129.0 (Ar), 128.3 (Ar), 128.2 

(Ar), 84.0, 74.3, 71.3, 32.6, 29.7, 24.7, 24.5; MS (CI, (NH3)) mlz:224 (M+NH4+, 

100%), 207 (MH+, 9), 108 (C6H5CH20H+, 87), 91 (-CH2C6H5, 57). 

2-benzyloxycyclohexanone35 C 48) 
0 

~Bn 
Dimethyl sulphoxide (0.82ml, 11.65mmol) in DCM (3ml) was added dropwise, 

via cannula, to a solution of oxalyl chloride (0.51 ml, 5.825mmol) in DCM ( 40ml) 

cooled to -78T. After stirring for I Omin a solution of the alcohol (54) ( l.OOg, 

4.85mmol) in DCM (30ml) was added. The reaction mixture was stirred for a 

further 50min before triethylamine (3.44ml, 24.27mmol) was added and the 

reaction allowed to warm to room temperature. The resultant mixture was diluted 

with DCM and washed with 2M HCl, sat. NH4Cl, dried (MgS04) and 

concentrated to afford a yellow oil which was purified by flash column 

chromatography (8: I, petrol:ether) producing 0.89g (90.3%) of the desired 

ketone. V max (CDCl3 solution) 3031, 2866, 1723, 1497, 1112cm-I; 

8(1H)(200MHz) 7.45-7.25 (5H, m, C6Hs), 4.78 & 4.49 (IH each, AB system, J = 
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11.7Hz, OCH2C6Hs), 3.9 (lH, m, CH2CHOCH2C6Hs), 2.6-1.6 (8H, m, 

CH2CH2CH2CH2CO); o(l3C)(50MHz) 210.6 (C=O ketone), 138.5 (Ar), 128.9 

(Ar), 128.2 (Ar), 128.2 (Ar), 82.2, 72.1, 41.1, 35.1, 28.1, 23.6; MS (CI, (NH3)) 

m/z:222 (M+NH4+, 94%), 108 ( C6HsCH20H+, 100). 

3-(para-tolylsulphonyl)propionic acid40 (63) 

Ts~O 

OH 

A suspension of sodium para-toluene sulphinate dihydrate (10.50g, 50mmol) and 

acrylic acid (3.57ml, 50mmol) in ethanol (60ml) was stirred at room temperature 

for 12h to afford white crystals. These crystals were dissolved in water, acidified 

to pH4 and the solution was extracted with ethyl acetate. The combined organic 

extracts were then dried (MgS04) and concentrated to obtain white crystals of the 

desired acid. Purification by recrystallisation in DCM!hexane produced a yield of 

7.4g (70%) of the desired white crystals. Vmax (CDCl3 solution) 3687, 3048, 

2359, 1493, 1204, 1184cm-l; o(IH)(200MHz) 7.79 (2H, d, 1 =8Hz, C6H4), 7.38 

(2H, d, 1 =8Hz, C6H4), 3.35 (2H, t, 1 =8Hz, CH2CH2C02H), 2.73 (2H, t, 1 = 

8Hz, CH2C02H), 2.42 (3H, s, CH3); o(13C)(50MHz) 176.1 (C=O acid), 143.2, 

(Ar) 135.7, (Ar) 130.6 (Ar), 128.7 (Ar), 51.7, 28.2, 22.2; MS (CI, (NH3)) mlz 

246 (M+NH4+, 100%), 139 (CH3C6H4SO, 22). 

6-benzyloxy-2-oxa-3-oxo-spiro[ 4.5Jdec-4-ene39, 41 14.2} 

~0 
A solution of 3-(para-tolylsulphonyl)propionic acid (5.85g, 26.68mmol) in THF 

(300ml) was stirred at -78oC and butyl lithium (33.43ml, 53.51 mmol) was slowly 

added. The resulting yellow solution was stirred for 1 h before 2-

benzyloxycyclohexanone (48) (4.37g, 21.40mmol) in THF (50ml) was added and 
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the mixture allowed to warm to -40°C for 16h. Trifluoroacetic anhydride 

(7.18ml, 51.36mmol) was then added and the solution stirred for 4h at -30°C. 

The mixture was quenched with sat. NaHC03, extracted with ether, dried 

(MgS04) and concentrated. Purification by flash column chromatography (I: I, 

petrol: ether) gave 4.26g (48%) of tosyl diastereoisomers (69) and 2.18g (50%) 

recovered 2-benzyloxycyclohexanone (48). This mixture (69) was then 

redissolved in THF ( 1 OOml) and added to a 1M solution of LDA ( 12.35ml, 

12.35mmol) in THF at -78°C under argon and subsequently warmed to room 

temperature. After stirring for a further 12h, the reaction was quenched with sat. 

NH4Cl, extracted with ether, washed with sat. NaHC03, dried (MgS04) and 

concentrated to yield a yellow oil, which was purified by flash column 

chromatography (3:1, petrol : ether) resulting in 1.75g (66%) yield of two 

separable diastereoisomers of the desired oil ( 49). The overall yield of the two 

steps was calculated to be 33%. Major isomer: Ymax (CDCl3 solution) 2937, 

2859, 1756, 1496, 1453, 1262, 1207, 1160, 1097cm-l; 8(1H)(400MHz) 7.56 (lH, 

d, J = 5.6Hz, CH=CHCO), 7.29-7.19 (5H, m, C6fu), 6.02 (lH, d, J = 5.6Hz, 

CH=CHCO), 4.52 & 4.39 (lH each, AB system, J = 12Hz, OCH2C6Hs), 3.41 

(lH, m, HCOCH2C6Hs), 1.92-1.17 (8H, m, (CH2)4); 8(13C)(lOOMHz) 171.3 

(C=O), 157.4, 136.9 (Ar), 127.3 (Ar), 126.7 (Ar), 126.6 (Ar), 120.5, 89.3, 77.8, 

70.9, 31.3, 26.7, 21.2, 19.9; MS (CI, (NH3)) m/z 276 (M+NH4+, 100%), 259 

(MH+, 51); HRMS (CI, (NH3)) C16H22N03 m/z Calc. 276.1600; Found 

276.1600. Minor isomer: Ymax (CDCl3 solution) 2933,2867, 1767, 1494, 1450, 

1350, 1267, 1206, 1133, 1100cm-l; 8(1H)(400MHz) 7.24-7.14 (6H, m, C6Hs, 

CH=CHCO), 5.87 (lH, d, J = 5.6Hz, CH=CHC=O), 4.46 & 4.36 (1H each, AB 

system, J = 12Hz, OCH2C6Hs), 3.34 (lH, dd, J1 = 10.4Hz, 12 = 4.4Hz, 

HCOCH2C6Hs), 1.91-1.12 (8H, m, -(CH2)4-); 8(13C)(lOOMHz) 172.6 (C=O), 

157.8, 138.0 (Ar), 128.1 (Ar), 127.4 (Ar), 127.3 (Ar), 121.3, 90.2, 77.2, 71.1, 

33.8, 27.7, 23.2, 21.4; MS (CI, (NH3)) m/z 276 (M+NH4+, 100%), 259 (MH+, 

57); HRMS (CI, (NH3)) C16H22N03 mlz Calc. 276.1600; Found 276.1600. 



Attempted preparation of 6-benzyloxy-2-oxa-3-oxo-spiro<4.5>dec-4-ene42 (49) 

c:J?=o 
A solution of 3-(para-toylsulphonyl)propionic acid (63) (0.69g, 3.00mmol) in 

THF (lOml) was stirred at -78°C and butyl lithium (3.91ml, 6.00mmol) was 

added. The resulting yellow solution was stirred for 1 h whereupon anhydrous 

cerium(III) chloride (2.19g, 6.00mmol) was added and the solution stirred for a 

further lh. A solution of ketone (48) (0.50g, 2.45mmol) in THF (2ml) was then 

cooled to -78°C and added via cannula to the reaction mixture. The resulting 

solution was allowed to warm to -40°C and stirred for 30h before trifluoroacetic 

anhydride (0.85ml, 6.00mmol) was added and the mixture warmed to -30°C for 

4h. The mixture was quenched with sat. NaHC03, extracted with ether, dried 

(MgS04) and concentrated to afford only starting material (48). 

1-Ethoxy-1-trimethylsilyloxycyclopropane49 ~ 

Et0

6
0SiMe3 

A suspensiOn of sodium sand (0.37g, 16.10mmol) in ether (2ml) and 

trimethylsilyl chloride (0.51ml, 4.00mmol) was stirred vigorously. Ethyl 3-

chloropropionate (78) (0.50ml, 3.72mmol) was added at such a rate that 

continuous refluxing occurred. The mixture was stirred for a further 45min and 

filtered in vacuo. The filtrate was concentrated and purified by distillation (b.p. 

44-45°C, 12mmHg) to produce a colourless liquid (0.56g, 87.4%). Ymax (CDCb 

solution) 2975, 1436, 1310, 1225, 1062, 1012cm-l; b(lH)(200MHz) 3.66 (2H, q, 

1 = 7.1Hz, OCH2CH3), 1.17 (3H, t, 1 = 7.1Hz, OCH2CH3), 0.87 (4H, m, 

CH2CH2), 0.18 (9H, s, Si(CH3)3); b(13C)(50MHz) 87.3, 62.6, 16.3, 14.2, 1.0; MS 

(EI) m/z 101 (MH+, 15%), 73 (Si(CH3)3, 100%), 45 (OCH2CH3, 12). 
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Ethyl-3-( trichlorotitanio )propionate50 fl.Zl 
('l(OEt 

CI3T~O 

Silyloxycyclopropane (76) (0.50g, 2.87mmol) was added dropwise to a solution 

of titanium(IV) chloride (0.32ml, 2.87mmol) in hexane (6ml) at room 

temperature. The initial milky white suspension rapidly turned brown and deep 

purple coloured microcrystals precipitated. Evolution of heat continued for 

several minutes whereupon the supernatant was removed and the resulting 

crystals washed with hexane to afford the crude product 0. 73g (96.2%) which was 

used without further purification. 

4-hydroxyheptanoic lactone87 _.(12). 

~0 
0 

A solution of silyloxycyclopropane (76) (2.00g, 11.51mmol) in DCM (5ml) was 

added over a period of 5min to a thick yellow suspension of titanium(IV) chloride 

(2.06g, 10.50mmol) and propionaldehyde (0.71g, 12.2mmol) in DCM (7ml) at 

-78°C. The resulting dark brown solution was stirred for 15min at -78°C then for 

1 h at 0°C. The reaction was quenched by slow addition of water and the crude 

product consisted mainly of the expected lactone by 1 H NMR. Treatment of the 

crude lactone with para-toluene sulphonic acid hydrate (2.20g, 10.51 mmol) in 

benzene (5ml) at reflux gave, upon purification by flash column chromatography 

(9:1, petrol:ethyl acetate), 1.15g (87%) of the desired lactone. Vmax (CDCI3 

solution) 2970,2939,2881, 1772, 1461,1353, 1189,1175, 1130, 1017cm-l; 

8(1H)(200MHz) 4.4 (lH, m, HCO), 2.5 (2H, m, CfuCO), 2.3 (lH, m, 

HCHCH2CO), 1.9-1.6 (3H, m, -CH2CH3, HCHCH2CO), 0.9 (3H, t, J = 7.1Hz, 

CH3); 8(13C)(50MHz) 177.6 (C=O lactone), 82.2, 29.3, 28.2, 27.3, 9.2; MS (CI, 

(NH3)) m/z 132 (M+NH4+, 100%), 115 (MH+, 5). 
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Attempted Preparation of l-oxa-spiro<4.5>dec-6-benzyloxy-2-one50 ~ 

~0 
A solution of silyloxycyclopropane (76) (0.39g, 2.70mmol) in DCM (3ml) a 

-78°C was added over a period of 5min to a yellow suspension of titanium(IV) 

chloride (0.33ml, 2.94mmol), titanium(IV) isopropoxide (0.44ml, 1.47mmol) and 

2-benzyloxycyclohexanone (48) (0.50g, 2.45mmol) in DCM (20m1) at -78°C, 

under an atmosphere of nitrogen. The reaction mixture was stirred for 15min 

before warming to room temperature when tic (6: 1 petrol:ether) indicated that no 

reaction had occurred. After 50h the reaction was quenched by the addition of 

water, extracted with ether, dried (MgS04) and concentrated to afford only 

starting material ( 48). 

2-Benzyloxycyclohexylidene (80) 

c<n 
To a solution of methyltriphenylphosphonium iodide (2.38g, 5.88mmol) in THF 

(25ml) was added butyl lithium (3.67ml, 5.88mmol). After 4h a solution of 2-

benzyloxycyclohexanone (48) (l.Og, 4.9mmol) in THF (5ml) was added and the 

solution stirred for a further 20h. Upon filtration and concentration, a crude 

yellow oil was obtained. Purification by flash column chromatography (50; 1 

petrol:ether) afforded 0.467g, (39.3%) desired alkene (80) and 0.48g (48.4%) 

recovered starting material (48). Data for (80) YmaxCCDC13 solution) 2937, 2860, 

1601, 1091cm-I; 8(1H)(400MHz) 7.29-7.19 (5H, m, C6fi5 ), 4.18 (lH, br, 

C=CHH), 4.79 (lH, b, C=CHH), 4.50 & 4.31 (1H each, AB system, J = 12.4Hz, 

OCH2C6H5), 3.76 (lH, m, CHOCHzC6H5), 2.31-2.25 (lH m, HCHC=CH2), 

2.30-1.64 (lH, m, HCHC=CH2), 1.78-1.36 (6H, m, CH2CH2CH2CH2C=CH2); 

8(13C)(100MHz) 148.4 (C=CH2), 139.1 (Ar), 128.3 (Ar), 127.5 (Ar), 127.3 (Ar), 
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108.8, 79.0, 69.7, 45.2, 34.0, 32.3, 28.0; MS (EI) mlz 202 (M+, 18%), 91 

(CH2C6H5+, 100); HRMS (CI) C14H 180m/z Calc. 202.1358; Found 202.1358. 

1-oxa-spiro<4.5>dec-6-benzyloxy-2-one5IJW 

~0 
To a solution of alkene (80) (0.20g, 0.99mmol) in glacial acetic acid (9.9ml) was 

added manganese triacetate dihydrate (0.53g, 1.98mmol) and potasium acetate 

(2.97g). The reaction was heated at reflux for 45h whereupon it was allowed to 

cool to room temperature, diluted with water, extracted with ether, dried 

(MgS04) and concentrated to afford 0.029g ( 11.1%) of the desired product (74) 

as a single diastereoisomer and 0.57g (30.8%) recovered starting material (80) 

after purification by flash column chromatography (8: 1 petrol:ether). Data for 

(74) YmaxCKBr disc) 2937,2836, 1761 (C=O lactone), 1092cm-1; &:IH)(400MHz) 

7.34-7.26 (5H, m, C()li5), 4.59 & 4.53 (lH each, AB system 1 = 11.2Hz, 

OCH2C6H5), 3.48 (lH, dd, 11 = 10.4, 12 = 4.4Hz, CHOCH2C6H5), 2.71-2.63 

(lH, m, HCHC=O), 2.53-2.43 (2H, m, HCHC=O, HCHCH2C=O), 2.06-2.00 (lH, 

m, HCHCH2C=O), 1.85-1.66 (3H, m, CH2CHOCH2C6Hs, HCHCOC=O), 1 .46-

1.25 (5H, m, CH2CH2CH2CHOCH2C6H5, H CHCOC=O); o( 13C)(lOOMHz) 

174.4 (C=O lactone), 138.2 (Ar), 128.4 (Ar), 127.7 (Ar), 127.3 (Ar), 88.6, 81.2, 

72.1, 36.6, 29.5, 28.3, 27.0, 23.1, 22.2; MS (EI) mlz 261 (MH+, 32%), 170 (MH+

CH2C6H5, 100); HRMS (CI) C 16H2103mlz Calc. 261.1491; Found 261.1491. 

2-oxa-3-oxo-spiro<4.5>decan-6-ol (50) 

~0 
6-benzyloxy-2-oxa-3-oxospiro<4.5>dec-4-ene (49) (0.69g, 2.69mmol) was 

dissolved in methanol (20ml) and added, via cannula, to a suspension of 
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palladium hydroxide (0.29g, 0.27mmol) in methanol (5ml). The mixture was 

degassed and stirred vigorously for 6h under hydrogen. On completion of the 

reaction, (tlc ether), the mixture was filtered through celite, washed with 

methanol and concentrated to afford a yellow liquid. Upon purification by flash 

column chromatography (neat ether) 0.4g of a clear liquid was obtained to give 

an overall yield of 87.3% of a 1.3: l mixture of separable isomers. Major 

isomer: Vmax (CDCl3 solution) 3438, 2939, 2864, 2341, 1758, 1450, 1210cm-I; 

8(1H)(400MHz) 3.4 (lH, dd, J t = l0.4Hz, h =4Hz, CHOH), 2.72-2.32 (3H, m, 

-CHHCfuCO), 1.91-1.18 (9H, m, -(CH2)4CHHCO)); 8(13C)(lOOMHz) 177.7 

(C=O lactone), 87.7, 74.4, 35.9, 30.9, 30.3, 29.1, 23.4, 21.5; MS (CI, (NH3)) mlz 

188 (M+NH4+, 100%), 171 (MH+, 38); HRMS (CI, (NH3)) C9Ht 50 3 m/z Calc. 

171.1021 Found 171.1021. Minor isomer: 8(1H)(400MHz) 3.84 (lH, dd, J1 = 

lO.OHz, J2 = 4.0Hz, CHOH), 2.72-2.32 (3H, m, -CHHCH2CO), 1.91-1.20 (9H, 

m, -(CH2)4CHHCO). 

2-oxa-3-oxo-spiro<4.5>decan-6-one35 (51) 

c::[)=o 
0 

Dimethyl sulphoxide (0.87ml, l2.40mmol) in DCM (120ml) was added dropwise, 

via cannula, to a suspension of oxalyl chloride (0.54ml, 6.21 mmol) in DCM 

(60ml) at -78°C. After stirring for a further 10min, a solution of the alcohol (50) 

(0.88g, 5.17mmol) in DCM (50ml) was added. The resulting solution was then 

stirred for 50min before triethylamine (3.67ml, 25.9mmol) was added and the 

reaction warmed to room temperature. This mixture was diluted with DCM and 

washed with 2M HCl, sat. NaHC03 dried (MgS04) and concentrated to produce 

0.74g (85.0%) of the desired ketone after purification by flash column 

chromatography (2: 1, ether : petrol). Vmax (CDCl3 solution) 3544, 3422, 2944, 

2867, 1772 (C=O lactone) , 1722 (C=O ketone), 1420, 1319, 1250cm-I; 

8('H)(400MHz) 2.53 (2H, m, CfuC=O lactone), 2.39 (3H, m, CfuC=O, 
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HCHCH2C=O lactone), 2.04 (lH, m, HCHCH2C=O lactone), 1.8-1.6 (6H, m, 

(CH2)3CH2C=O); 8(13C)(lOOMHz) 205.7 (C=O ketone), 175.3 (C=O lactone), 

88.0, 38.5, 38.4, 28.7, 27.6, 26.2, 21.2; MS (EI) m/z 169 (MH+, 100%); HRMS 

(EI) C9H130 3 m/z Calc. 169.0865; Found 169.0865 

Ethyl l-oxa-2-oxospiro<4.5>dec-6-hydroxy-6-acetate53182l 

~0 
OH OEt 

Butyl lithium (0.89ml, 1.43mmol) was slowly added to a solution of 

hexamethyldisilazide (0.28ml, 1.31 mmol) in THF (2ml) at -78°C. The mixture 

was allowed to stir for 50min before a solution of ethyl acetate (0.12g, 1.19mmol) 

in THF (lOml) was added. The reaction mixture was allowed to stir for 1h 

whereupon a solution of 2-oxa-3-oxo-spiro<4.5>deca-6-one (51) (0.18g, 

1.07mmol) in THF (lOml) was added via cannula to the reaction mixture at 

-78aC. The solution was kept at constant temperature for 16h but tic (neat ether) 

indicated that no reaction had occured. The mixture was then allowed to warm to 

room temperature for 2h whereupon tic showed development of a new 

compound. The reaction was quenched with sat. NH4Cl, extracted with ether, 

washed with sat. NaHC03, dried and concentrated to afford a yellow oil whch, 

upon flash column chromatography (1 :2 petrol:ether) afforded 0.035g (13%) of 

the desired product (89) as a single isomer. Vmax(CDCI3 solution) 3479 (OH), 

2954, 2875, 1774 (C=O lactone), 1714 (C=O ester) cm-1; 8(1H)(400MHz) 4.17-

4.06 (2H, m, C02CH2CH3), 2.75-2.41 (6H, m, CH2CH2C=O, CH2C02Et), 1.80-

1.27 (8H, m, CH2CH2CH2CH2COH), 1.22 (3H, t, J = 7.2Hz, OCH2CH3); 

8(13C)(lOOM Hz) 176.8 (C=O lactone), 173.4 (C=O ester), 89.3 (C-0-C=O), 74.5 

(C-OH), 61.0, 37.2, 35.1, 34.9, 29.1, 28.1, 21.8, 13.9; MS (CI, (NH3)) m/z 274 

(M+NH4+, 100%), 257 (MH+, 38); HRMS (CI, (NH3)) C 13H24N05 m/z Calc. 

274.1654; Found 274.1654. 



Methyl 2-tbutyldimethylsilyloxy ethanoate 72 ~ 

0 
TBDMSO~ 

OMe 

A solution of methyl glycolate (88) (0.20g, 2.63mmol) , tbutyldimethylsilyl 

chloride (0.49g, 3.24mmol) and imidazole (0.90g, 6.75mmol) in DMF (3ml) was 

stirred at room temperature for lOh. The reaction was quenched with water, 

extracted with petrol, washed with sat. NH4Cl solution, dried (MgS04) and 

concentrated. This afforded a yellow oil which upon purification by flash column 

chromatography (12: 1, petrol:ethyl acetate) gave the desired product (0.53g, 

86.7% ). Vmax (CDCI3 solution) 2944, 2856, 1764 (C=O ester), 17 42, 14 72, 1436, 

1362, 1255, 1213, 1150cm-l; 8(1H)(400MHz) 4.24 (2H, s, -CH2), 3.72 (3H, s, 

OCH3), 0.9 (9H, s, SitBu), 0.09 (6H, s, Si(CH3)2); 8(13C)(lOOMHz) 172.0 (C=O 

ester), 62.1, 52.4, 26.2, 25.4, 25.3; MS (EI) m/z 147 (M+-tBu, 63%), 89 (M+

Si(CH3htBu, 1 00). 

B-allyl-9-BBN58~ 

9-BB~ 

9-BBN (96) (32.8ml, 1.7M solution, 55.76mmol) was added by syringe into a dry 

two necked round bottomed flask containing a stirrer bar. The THF was 

evaporated in vacuo to leave neat 9-BBN (2.0g, 16.4mmol). Next, anhydrous 

ether (17ml) was added and the resulting suspension cooled to OOC for 1 h. While 

stirring, similarly cooled anhydrous methanol (0.80ml, 19.7mmol) was added 

dropwise over a period of 0.5h. After evolution of hydrogen gas ceased, a clear 

solution was formed indicating methanolysis had taken place. Finally, ether and 
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excess methanol were evaporated in vacuo to leave 9-BBN-OMe (97). Ether 

( 16ml) was then added, the solution was stirred vigorously at OOC and 

allylmagnesium bromide(l7 .14ml, 14.40mmol) was added. Following 

completion of the addition, the reaction mixture was stirred vigorously for lh at 

25°C, whereupon the solvents were removed under vacuum (14mmHg) . The 
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residue was extracted with pentane and stirring was discontinued to allow salts 

formed to settle. The clear supernatant extract was transferred from the flask 

using a double ended needle with Kramer filter. Evaporation of pentane 

(14mmHg, I h; 2mmHg, 1h) afforded B-allyl-9BBN (95) in almost quantitative 

yield. Purification was achieved by distillation (b.p. 41.5-42°C, 0.5mmHg). 

1-allyl-1-hydroxy-2-benzyloxycyclohexane87 _(2ID. 
OH 

~ 
To an oven dried, nitrogen flushed, flame dried, round bottomed flask, was added 

B-allyl-9BBN (3.15ml, 3.15mmol) in pentane (3.15ml). To this stirred solution 

was added 2-benzyloxycyclohexanone (48) (0.64g, 3.15mmol) and the mixture 

allowed to stir for 2h whereupon ethanolamine (0.19ml, 3.15mmol) was added 

and the solution stirred for a further I h. The supernatant was then allowed to 

settle and was decanted. The precipitate was washed with pentane and the 

extracts were concentrated and purified by flash column chromatography (7: 1 

petrol:ether) to afford the alcohol (98) (O.I Og, 13.5%) and starting material ( 48) 

(0.28g, 44.3% ). Data for (98): YmaxCCDC13 solution) 3574, 3068, 2939, 2862, 

1431, 1090, 1074cm-l; ()(lH)(400MHz) 7.36-7.30 (5H, m, C()ll5), 5.9I-5.79 (IH, 

m, CH=CH2), 5.II-5.03 (2H, m, CH=CH2), 4.58 & 4.36 (IH each, AB system, J 

= 11.2Hz, OCH2C6H5), 3.27 (lH, dd, J 1 = 8.8Hz, J2 =4Hz, CHOCH2C6H5), 

2.45-2.29 (3H, m, CH2CH=CH2, HCHCHOCH2C6H5), 1.89-1.12 (8H, m, 

HCHCH2CH2CH2COH); ()(l3C)(IOOMHz) I38.5(Ar), I34.2 (CH=CH2), 128.3 

(Ar), 127.7 (Ar), 127.6 (Ar), 117.6 (CH=CH2), 80.1, 73.1, 70.6, 48.1, 34.2, 25.9, 

22.9, 21.2; MS (EI) m/z 246 (M+, 18%), 228 (M+-H20, 45%), 91 (CH2C6H5, 

100). 



1-allyl-1-hydroxy-2-benzyloxycyclohexane (98) 
OH 

~ 
To a stirred solution of 2-benzyloxycyclohexanone (48) (0.12g, 0.59mmol) in 

ether (5ml) at -78oC was slowly added allyl magnesiumbromide (0.08ml, 

0.59mmol). After 1.5h (tlc 10: 1 petrol:ether) the reaction was quenched with sat. 

NH4Cl, extracted with ether, dried (MgS04) and concentrated to afford a yellow 

oil which was subsequently purified by flash column chromatography ( 10: 1 

petrol:ether) to afford the alcohol (98) (0.16g, 98%). 

120 

1-allyl-1-hydroxy-2-benzyloxycyclohexane62 .i.28} 
OH 

~ 
To a stirred solution of titanium(IV) chloride (0.54ml, 0.54mmol) in DCM 

(2.5ml) at -78oC was added 2-benzyloxycyclohexanone ( 48) (0.1 g, 0.49mmol) in 

DCM (lml). After lOmin a solution of allyl stannane (105) (0.16ml, 0.54mmol) 

in DCM (0.5ml) was added and the mixture stirred for 6h. The reaction was then 

quenched with sat. NH4Cl, extracted with ether, dried (MgS04), and concentrated 

to afford 0.13 g, 100% desired product (98) after purification by flash column 

chromatography (10:1 petrol:ether). B(lH)(400MHz) 7.28-7.24 (5H, m, C£5), 

5.82-5.71 (lH, m, CH=CH2), 5.01-4.95 (2H m, CH=CH2), 4.58 & 4.36 (lH each, 

AB system, J = 11.6Hz, OCH2C6H5), 3.18 (lH, m, CHOCH2C6H5), 2.31-2.21 

(3H, m, CH 2CH=CH 2, HCHCHOCH2C6Hs ), 1.74-1.25 (8H, m, 

HCHCH2CH2CH2COH); B(l3C)(100MHz) 138.5 (CH=CH2), 134.2 (Ar), 128.3 

(Ar), 127.6 (Ar), 127.6 (Ar), 117.6 (CH=CH2), 80.0, 73.0, 70.6, 43.6, 34.2, 25.9, 

22.9, 21.2; MS (EI) m/z 246 (M+, 22%), 228 (M+-H20, 48), 91 (CH2C6Hs, 100). 



1Butyldimethylsilyloxyprop-2-ene62 (104) 
~OTBDMS 

To a stirred solution of sodium hydride (2.04g, 51mmol) in ether (160ml) was 

added allyl alcohol (103) (2.00g, 34.21 mmol) at 0°C. The reaction mixture was 

stirred at room temperature for 30min whereupon it was cooled to OOC and 
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tbutyldimethylsilylchloride (6.00g,40.80mmol) was added. The solution was then 

warmed to room temperature and stirred until tic (1 0:1 petrol:ether) indicated 

complete consumption of starting material. The reaction was quenched with 

water, extracted with ether, dried (MgS04) and concentrated to afford 5.20g 

(88.9%) of the desired colourless oil (104) after purification by high vacuum 

transfer. YmaxCCDC13 solution) 3083, 2956, 2930, 2857, 1255, 1136, 1073cm-1; 

o(lH)(400MHz) 5.85 (lH, ddt, 11 = 17.2Hz, 12 = 10.4Hz, 13 = 4.4Hz, CH=CH2), 

5.19 (lH, ddt, 11 = 17.2Hz, 12 = 3.6Hz, 13 = 1.6Hz, CH=CHH), 5.01 (lH, ddt, 11 

= 10.4Hz, 12 = 3.6Hz, 13 = 1.6Hz, CH=CHH), 4.10 (2H, dt, 11 = 4.4Hz, 12 = 

1.6Hz, CH20Si), 0.84 (9H, s, SitBu), 0.06 (6H, s, Si(CH3h); 8(13C)(lOOMHz) 

137.4 (CH=CH2), 113.9 (CH=CH2), 64.1 (CH20Si), 25.9 (SiC(CH3h), 25.6 

(SiC(CH3h), -5.3 (Si(CH3h); MS (EI) mlz 115 (M+-tBu, 45%). 

l=(!butyldimethylsilyloxy)allyl tributyltin61 J2.2). 

~SnBu3 

OTBDMS 

To a solution of tbutyldimethylsilylallyl ether (104) (0.50g, 2.90mmol) in THF 

(8ml) at -78°C was added tbutyl lithium (2.05ml, 3.49mmol) and HMPA (0.71ml, 

4.06mmol). After 15min tributyltin chloride (0.87ml, 3.20mmol) was added and 

a colour change from yellow to clear was observed. After an additional 15min 

the mixture was allowed to warm to room temperature and then poured onto 

hexane (lOml), washed with sat. NH4Cl, then water, dried (MgS04 ) and 

concentrated to afford 1.05g (78.2%) desired stannane after purification by 

distillation (195°C, 0.1mmHg). Ymax(CDC13 solution) 2955, 2926, 2854, 1586, 
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1251cm-I; ii(lH)(400MHz) 6.02 (lH, dt, 11 =6Hz, 12 = 1.2Hz, CH=CHOSi), 4.58 

(lH, td, 11 = 7.6Hz, 12 = 6Hz, CH=CHOSi), 2.63 (2H, d, J = 7.6Hz, 

CH2CH=CH), 1.79-0.82 (27H, m, (CH3CH2CH2CH2))Sn), 0.93 (9H, s, SitBu), 

0.11 (6H, s, Si(CH3h ); 8 (13C)(l OOMHz) 134.9 (SiOCH=CH), 109.0 

(SiOCH=CH), 29.2, 27.4, 26.9, 25.7 (SiC(CH3))), 13.7, 9.3, 5.6, -5.3 ( Si(CH3h); 

MS (EI) m/z 403 (M+-tBu, 40%), 115 (M+-Bu3SnCH2CH=CH, 40). 

1-phenyl but-3-en-1-ol62 (106) 
OH 

To a stirred solution of magnesium bromide (0.19g, 1.04mmol) in DCM (2ml) at 

-78 OC was added benzaldehyde (0.1 g, 0.94mmol) in DCM (1 ml) . After lOmin a 

solution of allyl stannane (105) (0.32ml, 1.04mmol) in DCM (lml) was added. 

After addition the mixture was allowed to warm to room temperature and stirred 

for 20h. The reaction was then quenched with sat. NH4CI, extracted with ether, 

dried (MgS04) and concentrated to afford 0.05g, 36.7% desired product (106) as 

a single isomer and 23.6% recovered benzaldehyde. Data for (106): Ymax(CDCI3 

solution) 3603, 3154, 3082, 2980, 2903, 1640, 1468, 1454, 1382cm-l; 

8(1H)(400MHz) 7.29-7.18 (5H, m, C6Hs), 5.79- 5.68 (lH, m, CH=CH2), 5.12-

5.06 (2H, m, CH=CH2), 4.69-4.66 (lH, m, CHOH), 2.47-2.42 (2H, m, 

CH2CH=CH2), 2.00 (lH, br, OH); 8(13C)(400MHz) 143.8 (CH=CH2), 134.4 

(Ar), 128.4 (Ar), 127.5 (Ar), 125.8 (Ar), 118.5 (CH=CH2), 73.3 (CHOH), 43.8 

(CH2CH=CH2); MS (EI) m/z 130 (M+-H20, 100%), 77 (M

CH(OH)CH2CH=CH2, 57). 



2.:.(tbutyl dimethylsilyloxy)-l-phenyl-but-3-en-l-ol88 (107) 

OHOTBDMS 

~ 

To a stirred solution of titanium(IV) chloride (0.52ml, 0.52mmol) in DCM (1 ml) 

at -78°C was added titanium(IV) isopropoxide (0.154ml, 0.52mmol) in DCM 

(lml). This was allowed to stir for lh at -78oC whereupon benzaldehyde (O.IOg, 

0.94mmol) in DCM (lml) was added. After lOmin a solution of stannane (99) 

(0.48g, 1.03mmol) in DCM (l ml) was added and the mixture was stirred for 

20min. The reaction was then quenched with sat. NH4Cl, extracted with ether, 
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dried (MgS04), and concentrated to afford 0.07g (27.3%) desired product (107) 

and 0.05g (53.6%) recovered benzaldehyde. Data for (107): YmaxCCDC13 

solution) 3550, 3086, 3033, 2955, 2930, 2886, 2857, 1256cm-I; 8(1H)(400MHz) 

7.33 (5H, m, C6H5)"' 5.78 (IH, m, CH=CH2), 5.13 (2H, m, CH=CH2), 4.49 (IH, 

m, HCOSi), 4.15 (lH, dd, J 1 = 6.4Hz, J2 = 5.6Hz, CHOH), 3.05 (l H, br, OH), 

0.91 (9H, s, OSitBu), 0.00 (3H, s, SiCH 3), -0.06 (3H, s, CH 3SiCH3); 

8(13C)(lOOMHz) 141.8, 138.8 (Ar), 129.2 (Ar), 128.8 (Ar), 128.2 (Ar), 118, 80.1, 

78.6, 27.0, 19.4, -3.1 ((CH3)Si(CH3)), -4.0 ((CH3)Si(CH3)); MS (CI, (NH3)) mlz 

106 (MH+-(CH3htBuSiO, CH2=CH2, 100); HRMS (CI, (NH3)) C16H2702Si m/z 

279.1780; Found 279.1780. 

2.:.(tbutyl dimethylsilyloxy)-l-cyclohexyl-2-methoxyphenyl-but-3-en-l-ol88 (108) 

~MS 
OBn 

To a stirred solution of aluminium trichloride (O.Olg, 0.49mmol) in DCM (2.5ml) 

at -78oC was added 2-benzyloxycyclohexanone (48) (O.lOg, 0.49mmol) in DCM 

(l ml) . After lOmin a solution of allyl stannane (99) (0.25g, 0.54mmol) in DCM 

( 1 ml) was added and the mixture was allowed to warm to room temperature and 

stirred for 20h. The solution was then quenched with sat. NH4Cl, extracted with 
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ether, dried (MgS04), and concentrated to afford 0.04g (22.0%) desired product 

(108) and 0.05g (51.4%) recovered starting material (48). Data for (108): 

Ymax(CDC13 solution) 3497, 3065, 3031, 2949, 2933, 2857, 1720, 1253, 1089, 

1073cm-I; 8(1H)(400MHz) 7.28 (5H, m, C6H5, 5.88 (lH, m, CH=CH2), 5.21 

(2H, m, CH=CH2), 4.64 & 4.42 (I H each, AB system, J = 11.2Hz, OCH2C4J_5), 

4.31 (1 H, d, J = 6.8Hz, HCOSi), 3.64 (IH, dd, J1 = 11.2Hz, J2 = 4.8Hz, 

CHOCH2C6H5 ), 2.26 (IH, br, OH.J 2.01-0.92 (8H, m, 

CH2CH2CH2CH2CHOCH2C6Hs ), 0.89 (9H, s, OSitB u ), 0.00 (3H, s, 

CH3SiCH3), -0.08 (3H, s, CH 3SiCH3); 8(13C)(lOOMHz) 138.9 (Ar), 137.9 

(CH=CH2), 128.3 (Ar), 127.4 (Ar), 127.3 (Ar), 117.3 (CH=CH2), 77.4, 75.7, 

75.3, 70.0, 28.5, 26.4, 26.0, 23.8, 20.5, 18.1, -3.5 ((CH3)Si(CH3)), -4.6 

((CH3)Si(CH3)). 

1-Methoxymethoxy-1-tributylstannanyl but-2-ene64 (109) 

~SnBu3 

o'-./o, 

Tributyltin hydride (26.5ml, IOOmmol) was added to a solution of LDA (1 OOml, 

l OOmmol) at OoC under an atmosphere of nitrogen. After 15min, the green 

solution was cooled to -78°C, and crotonaldehyde (111) (7g, lOOmmol) was 

added dropwise. The reaction was stirred for a further 5min, quenched by the 

addition of sat. NH4Cl, extracted with ethyl acetate, dried (MgS04) and warmed 

to 20oC. The mixture was partitioned between petrol (200ml) and water (200ml), 

and the organic phase separated, dried (MgS04) and concentrated under reduced 

pressure to leave the alcohol (112) as an unstable oil used immediately without 

purification. 

Diisopropylethylamine (35ml, 200mmol) was added to the stirred solution of 

butenol (112) (36g, IOOmmol) in DCM (250ml) at OOC and MOM chloride 

(11.5ml, 150mmol) was added. After I h, the reaction mixture was poured onto 

petrol (750ml) and the resulting mixture washed with ice cold 0.5M HCl, water, 

and sat. NaHC03. The organic phase was then dried (MgS04) and concentrated 
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under reduced pressure to leave 33g (82.2%) of the desired compound (109) as a 

pale yellow oil which could be used without further purification but flash column 

chromatography (30: 1 petrol:ether) was carried out for formal characterisation. 

Vmax(CDCl3 solution) 2955, 2924, 2871, 2853, 1463, 1376, 1016cm-l; 

6(1H)(400MHz) 5.57 (lH, m, HC=CHCOCH 20CH 3), 5.39 (lH, m, 

HC=CHCHOCH20CH 3), 4.67 & 4.49 (1H each, AB system, J = 6.2Hz, 

OCH20CH3), 4.56 (IH, d, J1 = 7.6Hz, HCOCH20CH3), 3.34 (3H, s, OCH3), 

1.70-0.82 (30H, m, Sn((CH2)3CH3)J, H3CCH=CH); 6(13C)(lOOMHz) 132.4, 

119.9, 95.0, 72.4, 55.3, 29.1, 27.4, 13.7, 9.1; MS (CI, (NH3)) m/z 362 (MH+

OCH3, 8% ), 308 (M+NJ4+ -(CH2)3CH3, 100). 

2-Benzyloxy-1-( 1-methoxymethoxy-but-2-enyl)-cyclohexanol6311..1Jl 

0/'..0/ 
OH 

_b. 

To a solution of stannane (109) (l.Og, 2.22mmol) in DME (15ml) was added n

butyl lithium ( 1.53ml, 2.44mmol) at -78°C and the mixture stirred for I h 

whereupon a solution of 2-benzyloxycycohexanone (48) (0.5g, 2.44mmol) in 

DME (5ml) cooled to -78°C was added. The mixture was then warmed to room 

temperature and stirred for a further 20h (tic 8:1 petrol:ether) when it was 

quenched with sat. NH4Cl, extracted with ethyl acetate, dried (MgS04) and 

concentrated to afford a yellow oil which was subsequently purified by flash 

column chromatography (10:1 petrol:ether) to afford 0.095g (13.3%) of the 

desired product (113). Vmax(CDC13 solution) 3488, 2954, 2940, 2859, 1665, 

1454, 1393, 1256, 1246cm-l; 6(1H)(400MHz) 7.31-7.19 (5H, m, C6H5), 6.06 

(1 H, d, J = 6.4Hz, CHOMOM), 4.68 & 4.59 (l H each, AB system, J = 6.4Hz, 

OCH20CH3), 4.54 & 4.39 (lH each, AB system, J = 11.2Hz, OCH2C6H5), 4.38 

(lH, m, CH=CHCH3), 3.38 (lH, m, CHOCH2C6H5), 3.25 (3H, s, OCH3), 3.22 

(IH, m, CH=CHCH3 ), 2.12 (1H, br, OH.J, 1.82-0.78 (8H, m, 
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CH2CH2CH2CH2COH), 0.94 (3H, d, J = 6.8Hz, CH=CHCH3); <5(13C)(IOOMHz) 

142.1 (CH=CHCH3), 139.0 (Ar), 128.2 (Ar), 127.5 (Ar), 127.3 (Ar), 111.2 

(CH=CHCH3), 96.1 (CHOMOM), 79.0, 74.8, 70.6, 55.6, 34.8, 29.8, 26.2, 23.0, 

21.0, 14.8; MS (CI, (NH3)) m/z 259 (MH+-OCH20CH3, 57%), 167 (M

OCH20CH3, -OCH2C6Hs, 100); HRMS (CI) C 17H230 2 m/z Calc. 259.1698; 

Found 259.1698. 

Ethyl 2-benzyloxycyclohexylidene acetate5411.1fu 

~ 
0~ 

A stirred solution of Wittig reagent (117) (13.10g, 37.68mmol) and 2-

benzyloxycyclohexanone (48) (3.83, 18.8mmol) in toluene (180ml) was heated at 

reflux for 40h when tlc (5: 1 petrol:ether) indicated that ( 48) was still present. The 

reaction was driven to completion by further addition of Wittig reagent (6.15g, 

18.80mmol). The mixture was then concentrated in vacuo and purified by flash 

column chromatography (5: 1 petrol:ether) to afford 4.82g (93.6%) of the desired 

product (118) as a mixture of Z:E isomers (1:8). Major isomer: m.p. 89°C; 

YmaxCCDC13 solution) 2939, 2863, 1708, 1652, 1448, 1216cm-I; ()(lH)(400MHz) 

7.38-7.34 (5H, m, C6H5), 5.93 (IH, s, CHC02Et), 4.58 & 4.49 (IH each, AB 

system J = 12Hz, OCH2C6Hs), 4.20 (2H, q, J = 6.8Hz, C02CH2CH3), 3.72 (IH, 

m, CHOCH2C6H5 ), 3.06 (lH, m, HCH=CHC0 2Et), 2.52 (lH, m, 

HCH=CHC02Et), 1.90- I .16 (6H, m, CH2CH2CH2CHOCH2C6H5), 1.22 (3H, t, J 

= 6.8Hz, C02CH2CH3); <5(13C)(IOOMHz) 166.7 (C=O ester), 161.1, 138.4 (Ar), 

128.3 (Ar), 127.5 (Ar), 127.4 (Ar), 113.0, 80.1, 70.4, 59.7, 34.9, 27.8, 27.3, 22.8, 

14.3; MS (CI, (NH3)) m/z 292 (M+NH4+, 32%), 275 (MH+, 100%); HRMS (CI, 

(NH3)) C17H2303 mlz Calc. 275.1647; Found 275.1647. 



Ethyl (2-benzyloxy-1-hydroxy-1-cyclohexyll-2-hydroxyacetate66ll.12l 
OBn 

~0~ 
OH 

To a stirred solution of the alkene (118) ( 4.82g, 17 .6mmol) in tbutanol (170m)) 

was added NMO (3.20g, 26.46mmol), osmium(IV) oxide (0.45g, 1.76mmol) and 

distilled water (0.03ml, 1.76mmol). The reaction was stirred, under nitrogen, at 
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room temperature. After 16h, tic (5: 1 petrol:ether) indicated complete 

consumption of (118) and an excess of sodium metabisulfite was added to the 

stirred solution. After a further 30min the reaction mixture was filtered through a 

pad of celite, washed with ethyl acetate and concentrated in vacuo to afford 

10.1 Og of a dark yellow oil which was purified by flash column chromatography 

(5: 1 petrol:ether) to afford 5.39g (100%) of the desired diol (119). YmaxCCDC13 

solution) 3497 (OH), 2941, 2856, 1722 (C=O ester), 1459, 1263, 1199cm-I; 

8(1H)(400MHz) 7.36-7.18 (5H, m, C6H5), 4.52 & 4.34 (lH each, AB system J = 

10.8Hz, OCH2C6H5), 4.25 (lH, br d, J = 8.4Hz, CHC02Et), 4.17 (2H, q, J = 

7.2Hz, C02CH2CH3), 3.57 (lH, s, CHOCH2C6H5), 3.55 (lH, br, OH), 2.77 (lH, 

br, OH), 1.87-1.29 (8H, m, CH2CH2CH2CH2CHOCH2C6H5), 1.23 (3H, t, J = 

7.2Hz, C02CH2CH3); 8(13C)(lOOMHz) 173.7 (C=O ester), 138.2 (Ar), 128.3 

(Ar), 127.7 (Ar), 127.6 (Ar), 77.8, 74.9, 73.7, 71.0, 61.4, 29.7, 24.3, 20.6, 19.5, 

14.1; MS (CI, (NH3)) mlz 326 (M+NH4+, 18%), 309 (MH+, 41), 108 

(OCH2C6Hs, 100); HRMS (CI, (NH3)) C17H25o5 mlz Calc. 309.1727; Found 

309.1702. 

4-Ethoxycarbonyl-6-benzyloxy-2.2-dimethyl-1 3-dioxa-spiro<4.5>decane67 (120) 
OBn 

~OEt 
)\o 
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Trifluoroacetic acid (0.14ml,l.76mmol) was added to a stirred solution of diol 

(119) (5.40g, 17.63mmol) and 2,2-dimethoxypropane (5.20ml, 52.81mmol) in 

chloroform ( 150ml). The reaction mixture was then heated to reflux in a sohxlet 

apparatus containing 4A molecular seives (on large scale the molecular sieves 

were replaced every 5h). After 10h the mixture was cooled to room temperature, 

quenched with sat. NaHC03 dried (MgS04) and concentrated. Purification by 

flash column chromatography (2: I petrol:ether) to yield 5.96g (97 .5%) of the 

desired product (120). Ymax 2939, 2865, 1744 (C=O ester), 1454, 1372, 1279, 

1224, 1201cm-1; 8(1H)(400MHz) 7.33-7.18 (5H, m, OCH2C6Hs), 4.60 (lH, s, 

CHC02CH2CH3), 4.61 & 4.41 (lH each, AB system, J = 11.6Hz, OCH2C6Hs), 

4.17-4.02 (2H, m, C02CH2CH3), 3.41 (lH, m, CHOCH2C6Hs), 1.86-1.34 (8H, 

m, CH2CH2CH2CH2CHOCH2C6Hs), 1.49 (3H, s, CH3CCH3), 1.31 (3H, s, 

CH3CCH3), 1.16 (3H, t, J = 7.2Hz, OCH2CH3); 8(13C)(IOOMHz) 170.2 (C=O 

ester), 138.7 (Ar), 128.1 (Ar), 127.3 (Ar), 127.2 (Ar), 110.8, 84.7, 81.0, 79.1, 

70.7, 60.8, 29.7, 28.7, 25.0, 21.6, 19.5, 14.0; MS (CI, (NH3)) m/z 349 (MH+, 

13%), 291 (MH+-(CH3)2CO, 100); HRMS (CI, (NH3)) C20H2905 mlz Calc. 

349.2015; Found 349.2015. 

4-Ethoxycarbonyl-2.2-Dimethyl-1 3-dioxa-spiro<4.5>decan-6-ol (121) 
OH 

%i0Et 
)\o 

To a solution of the benzyl ether (120) (0.22g, 0.63mmol) in methanol (6ml) was 

added palladium hydroxide (0.06g, 0.03mmol). This mixture was vigourously 

stirred under an atmosphere of hydrogen for 16h (tic 2:1 petrol:ether) whereupon 

the reaction mixture was filtered through a pad of celite and concentrated in 

vacuo producing a clear oil. Purification was achieved by flash column 

chromatography (tlc 2:1 petrol:ether) to afford 0.056g (99.2%) of the desired 

alcohol (121). YmaxCCDC13 solution) 3474 (OH), 2967, 2859, 1743 (C=O ester), 
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1710, 1216, 1188cm-I; o(IH)(400MHz) 4.48 (lH, s, CHC02Et), 4.28-4.20 (2H, 

m, C02CH2CH3 ), 3. 70 (1 H, m, CH OH), 1. 71-1.25 (8H, m, 

CH2CH2CH2CH2CHOH), 1.49 (3H, s, CH3CCH3), 1.32 (3H, s, CH3CCH3), 1.27 

(3H, t, J = 7.2Hz, OCH2CH3); 8(13C)(100M Hz) 170.3 (C=O ester), 109.9, 84.0, 

81.0, 72.7, 62.0, 29.3, 28.5, 27.7, 27.3, 21.1, 19.4, 14.1; MS (EI) mlz 258 (M+, 

11%), 243 (M+-CH3, 57), 59 ((CH3)2COH+, 100); HRMS (EI) C 13H220 5 mlz 

Calc. 258.1467; Found 258.1467. 

4-Ethoxycarbonyl-2.2-dimethyl-1 .3-dioxa-spiro<4.5>decan-6-one35 C122) 
0 

~OEt 
)\o 

A solution of dimethyl sulphoxide (1.32ml, 18.6mmol) in DCM (90ml) was 

added dropwise, via cannula, to a solution of oxalyl chloride (0.8ml, 9.3mmol) in 

DCM (80ml) at -78°C. After stirring for a further 10min, a solution of the alcohol 

(121) (2.0g, 7 .75mmol) in DCM (70ml) was added. The resulting solution was 

stirred for a further 50min before triethylamine (5.5ml, 38.8mmol) was added and 

the reaction allowed to warm to room temperature. The resulting mixture was 

diluted with DCM and washed with 2M HCl, sat. NaHC03, dried (MgS04) and 

concentrated to afford 1.97 g, (1 00%) of the desired ketone (122) obtained after 

purification by flash column chromatography (5: 1 petrol:ether). YmaxCCDCl3 

solution) 2953, 2869, 1757 (C=O ester), 1724 (C=O lactone), 1186, 1109cm-l; 

o(lH)(400MHz) 5.30 (lH, s, CHC02Et), 4.25-4.11 (2H, m, C02CH2CH3), 2.88-

2.84 (IH, m, HCHC=O), 2.40-2.36 (lH, m, HCHC=O) 2.10-1.58 (6H, m, 

CH2CH2CH2C=O), 1.56 (3H, s, CH3CCH3), 1.25 (3H, t, J = 7.2Hz, OCH2CH3), 

1.20 (3H, s, CH3CCH3); o(13C)(100M Hz) 208.7 (C=O ketone), 169.9 (C=O 

ester), 111.6, 87.1, 77.2, 75.3, 60.96, 38.7, 35.4, 27.6, 26.3, 21.2, 14.1; MS (CI, 

(NH3)) mlz 257 (MH+, 100%); HRMS (CI, (NH3)) C13H210s mlz Calc. 

257.1389; Found 257.1389. 



4-Ethoxycarbonyl-(2.2-dimethyl-5" -oxodispiro[perhydrofl .3Jdioxolane-4. 1'

cyclohexane-2',2"-(5"-H-furan)J-5-yJ39_(123) 
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To a stirred solution of 3-(para-toylsulphonyl)propionic acid (63) (0.86g, 

3.75mmol) in THF (40ml) was slowly added butyl lithium (4.88ml, 7.81mmol) at 

-78°C. The resulting yellow solution was stirred for lh whereupon a solution of 

ketone (122) (0.8g, 3.12mmol) in THF (8ml) was cooled to -78°C and added via 

cannula to the reaction mixture.The resulting solution was allowed to warm to 

-40oC and stirred for 30h before trifluoroacetic anhydride (1.05ml, 7.5mmol) was 

added and the mixture warmed to -30°C for 4h. The mixture was quenched with 

sat. NaHC03, extracted with ether, dried (MgS04) and concentrated to afford 

0.51g (35.2%) tosyl isomers, 0.37g (43%) ketone starting material (122) after 

purification by flash column chromatography (5: 1 petrol:ether). The mixture of 

tosyl isomers was then redissolved in THF, cooled to -78°C and added via 

cannula to a similarly cooled solution of LDA (1.31 ml, 1.31mmol) in THF (2ml). 

The resulting solution was then warmed to room temperature, stirred for 3h and 

quenched by addition of sat. NaHC03, extracted with ether, dried (MgS04) and 

concentrated to afford a yellow oil which was subsequently purified by flash 

column chromatography (1: 1 petrol:ether) to afford a 1.3:1 mixture of two 

separable isomers of the desired butenolide 0.18g (52%) as a white solid. Major 

isomer: m.p. 138oC; YmaxCCDC13 solution) 2992 (CH), 2844 (CH), 1740 (C=O 

lactone), 1220 (acetonide), 1102 (acetonide) cm-1; 8(lH)(400MHz) 7.62 (lH, d, J 

= 6Hz, CH=CHC=O), 6.13 (1 H, d, J = 6Hz, CH=CHC=O), 4.20-4.10 (2H, m, 

C02CH2CH3), 4.11 (lH, s, CHC02Et), 2.42-2.35 (lH, m, HCHCOC=O), 1.80-

1.32 (7H, m, CH2CH2CH2(H)CHCOC=0), 1.52 (3H, s, CH3CCH3), 1.47 (3H, s, 
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CH3CCH3), 1.27 (3H, t, J = 7.2Hz, OCH2CH3); o(l3C)(lOOMHz) 171.9 (C=O 

lactone), 168.7 (C=O ester), 157.3, 121.6, 111.5, 89.9, 84.5, 76.3, 61.4, 34.1, 

32.1, 28.8, 26.3, 25.1, 20.5, 14.1; MS (CI, (NH3)) m/z 328 (M+NH4+, 100% ); 

HRMS (CI, (NH3)) C16H26N06 m/z Calc. 328.1760; Found 328.1760. Minor 

isomer: m.p. 138-139°C; VmaxCCDC13 solution) 2991 (CH), 2942 (CH), 2868 

(CH), 1753 (C=O lactone), 1221 (acetonide), 1102 (acetonide) cm-1; 

o(lH)(400MHz) 7.54 (lH, d, J = 6Hz, CH=CHC=O), 6.21 (IH, d, J = 6Hz, 

CH=CHC=O), 4.22-4.12 (2H, m, C02CH2CH3), 4.22 (IH, s, CHC02Et), 2.08-

1.98 (lH, m, HCHCOC=O), 1.96-1.90 (lH, m, HCHCOC=O), 1.68-1.18 (6H, m, 

CH2CH2CH2CH2COC=O), 1.57 (3H, s, CH3CCH3), 1.38 (3H, s, CH3CCH3), 

1.31 (3H, t, J = 7.2Hz, OCH2CH3); o(13C)(lOOMHz) 174.4 (C=O lactone), 168.0 

(C=O ester), 157.5, 122.7, 110.6, 89.2, 83.3, 77.8, 61.6, 32.9, 29.7, 28.4, 26.9, 

21.0, 20.2, 13.9; MS (CI, (NH3)) m/z 328 (M+NH4+, 100%); HRMS (CI, (NH3)) 

C16H26N06 m/z Calc. 328.1760; Found 328.I760. 

l-oxa-spiro<4.5>dec-6-methyl-6-hydroxyl-2-one (124) 

0 

OH 

To a stirred solution of ketolactone (51) (0.10g, 0.60mmol) in ether (6ml) was 

added a solution of methyl lithium (0.47ml, 0.66mmol) at -78°C. The reaction 

was followed by tlc (2: I DCM:ether) . After I h the reaction was quenched with 

sat. NH4 Cl and extracted with ether. Purification by flash column 

chromatography (2: I DCM:ether) afforded 0.04g (38.9%) of (124) as a 4: 1 

mixture of diastereoisomers. Major isomer: VmaxCCDC13 solution) 3497 (OH), 

2492 (CH), 2866 (CH), 1729 (C=O lactone) cm-1; o(lH)(400MHz) 2.62-2.38 

(3H, m, HCHCH2C=0), 1.80-1.32 (IOH, m,___HCHCH 2C=O, 

CH2CH2CH2CH2COH), 1.24 (3H, s, CH3); o(l3C)(lOOMHz) I77.4 (C=O 

lactone), 90.0, 73.6, 36.7, 35.0, 29.2, 27.5, 23.1, 22.0, 21.9; MS (CI, (NH3)) m/z 
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202 (M+NH4+, 100%), 185 (MH+, 42); HRMS (CI, (NH3)) C 10H20N03 mlz 

Calc. 202.1443; Found 202.1443. 

1-oxa<4.5>dec-6-methyl-6-0-acyl-2-one (125) 

0 

OAc 

Acetyl chloride (0.03ml, 0.34mmol) and triethylamine (0.02ml, 0.02mmol) were 

added to a stirred solution of the alcohol (124) (0.06g, 0.23mmol) in DCM (2ml). 

The reaction mixture was allowed to stir at room temperature for 40h (tic 2: 1 

petrol:ether) after which the solution was quenched with water, extracted with 

DCM, dried (MgS04) and concentrated to afford 0.02g (38.5%) acetylated 

product (125) upon purification by flash column chromatography. Major 

isomer: YmaxCCDC13 solution) 2947 (CH), 2868 (CH), 2257, 1767 (C=O ester), 

1734cm-I (C=O lactone); o(lH)(400MHz) 2.57-2.40 (3H, m, HCHCH2C=0), 

1.94 (3H, s, CH3), 1.84-1.34 (9H, m, HCHCH2C=0, CH2CH2CH2CH2CO), 1.36 

(3H, s, CH3); 8(13C)(lOOMHz) 176.7 (C=O lactone), 169.4 (C=O ester), 88.0, 

84.7, 35.1, 31.7, 28.9, 28.8, 28.6, 22.4, 21.4, 18.3; MS (CI, (NH3)) m/z 244 

(M+NH4+, 100%), 227 (MH+, 96); HRMS (CI, (NH3)) C12H22N04 mlz Calc. 

244.1549; Found 244.1549. 

Ethoxycarbonyl-2-oxa-3-oxo-spiro<4.5>dec-6-ylidene (126) 

~0 
OEt 

The Wittig reagent (117) (0.46g, 1.31 mmol) was added to a solution of 2-oxa-3-

oxo-spiro<4.5>decan-6-one (51) (0.20g, 1.19mmol) in benzene (1 Oml) and the 

mixture refluxed at 80T for 12h. When tic (neat ether) indicated completion of 

the reaction , the mixture was filtered through celite to afford a yellow oil and 
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purification by flash column chromatography ( 1: 1 petrol:ether) afforded 0.19g 

(67%) of (126) as a 12:1 mixture of E:Z isomers and 0.06g (30%) recovered 

starting material. Data for (126): Vmax (CDCl3 solution) 2984, 2943, 2865, 2256, 

1774 (C=O lactone), 1710 (C=O ester), 1652, 1449, 1374, 1304, 1258, 1195, 

1166cm-l; O(IH)(400MHz) 5.9 (lH, s, =CH), 4.08 (2H, q, J = 7.2Hz, OCH2CH3) 

, 3.84 (1H, broad, HCHaxC=CH), 2.49 (2H, m, -CH2CO), 2.2 (2H, t, J =8Hz, 

CH2CH2CO) , 1.89 (2H, m, HCHeqC=CH, HCHax(CH2hC=C) , 1.80 (3H, m, 

(HCHeq)3CH2C=) , 1.52 (IH, m, HCHax(CH2)3C=) , 1.33 (1H, m, 

HaxCHCH2C=) , 1.21 (3H, t, J = 7.2Hz, OCH2CH3); o(l3C)(lOOMHz) 174.7 

(C=O ester), 165.4 (C=O lactone), 158.2, 110.9, 86.2, 59.0, 38.2, 30.3, 26.9, 25.9, 

25.6, 22.2, 13.1; MS (CI, (NH3)) m/z 256 (M+NH4+, 92%), 239 (MH+, 39), 195 

(MH+-OCH2CH3, 100); HRMS (CI, (NH3)) C13H22N04 m/z Calc. 256.1549; 

Found 256.1549. 

Ethyl [ 1-oxa-spiro<4.5>dec-6-hydroxy-2-onel-6-hydroxyacetate66 (127) 

0 

To a solution of alkene (126) (0.12g, 0.49mmol) in tbutanol (5ml) was added 

NMO (0.06g, 0.50mmol) and a catalytic amount of osmium(IV) oxide. This was 

stirred for 14h (tic ether) whereupon excess sodium metabisulfite was added and 

allowed to stir for 30min . The resulting mixture was filtered through celite, 

washed with ethyl acetate and concentrated to afford 0.21g of a yellow oil. 

Purification by flash column chromatography (1 :2, petrol:ether) obtained a clear 

liquid weighing 0.12g which gave a total yield of 77% of two unseparable 

diastereomers (127). Vmax (CDCl3 solution) 3444 (OH), 2944, 2867, 2356, 1739 

(C=O lactone), 1639 (C=O ester), 1444, 1367, 1256, 1211, 1089, 1016cm-l; 

o(lH)(400MHz) 4.32-4.09 (3H, m, OCH2CH3, C(OH)H), 3.45-3.05 (2H, broad 

s, 2 OH) , 2.80-2.45 (3H, m, HCH.axCOH, CfuCO) , 2.15-1.22 (12H, m, 
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-(CH2bHeqCHCOH, CfuCH2CO, OCH2C.l:b) ; ()(13C)(lOOMHz) 177.4 (C=O 

lactone), 175.9 (C=O lactone), 173.2 (C=O ester), 172.0 (C=O ester), 90.1, 89.3, 

76.2, 75.3, 74.1, 73.3, 62.4, 62.2, 36.4, 34.8, 31.7, 31.4, 28.9, 28.7, 28.4, 27.1, 

22.2, 21.2, 20.3, 20.0, 14.3, 14.1; MS (CI, (NH3)) m/z 290 (M+NH4+, 100%), 

272 (M+, 39); HRMS (CI, (NH3)) C13H24N06 m/z Calc. 290.1604; Found 

290.1604. 

4-Ethoxycarbonyl-2.2.dimethyl-1 .3. 7 -trioxa-dispiro<4.0.4.4>tetradecan-8-one 

(82) 

Trifluoroacetic acid (0.02g, 0.021mmol) was added to a stirred solution of diol 

(127) (0.05g, 0.21mmol) and 2,2-dimethoxypropane (0.05ml, 0.25mmol) in 

chloroform (20ml). The reaction mixture was then heated at reflux using sohxlet 

apparatus containing 4A molecular seives. After 1 Oh tic analysis (neat ether) 

indicated the reaction to be complete and the mixture was cooled to room 

temperature, quenched with sat. NaHC03, dried (MgS04) and concentrated. 

Purification by flash column chromatography (2: 1 petrol:ether) yielded 0.051 g, 

78% desired product (82). VmaxCCDC13 solution) 1783 (C=O lactone), 1756 

(C=O ester), 1733, 1383, 1211cm-I; ()(1H)(400MHz) 4.64 (lH, s, CHC02Et), 

4.32-4.14 (2H, m, C02CH2CH3), 2.72-2.46 (3H, m, CHCH2CO), 2.00-1.28 (9H, 

m, CH2CH2CH2CH20CHCH2CO), 1.53 (3H, s, CH3CCH3), 1.37 (3H, s, 

CH3CCH3), 1.30 (3H, t, J = 7.2Hz, OCH2CH3); ()(13C)(400M Hz) 176.3 (C=O 

lactone), 170.0 (C=O ester), 111.0, 87.8, 86.8, 77.8, 61.5, 35.9, 30.9, 29.3, 29.0, 

28.7, 27.0, 21.2, 21.0, 14.0; MS (CI, (NH3)) mlz 330 (M+NH4+, 100%), 313 

(MH+, 18); HRMS (CI, (NH3)) C16H 28N06 mlz Calc. 330.1916; Found 

330.1917. 



4-Ethoxycarbonyl-2.2.dimethyl-1 .3. 7 -trioxa-dispiro<4.0.4.4>tetradecan-8-one 

(82) (Major isomer) 

135 

The major isomer of butenolide (123) (0.13g, 0.41 mmol) was dissolved in 

methanol (2ml) and added, via cannula, to a suspension of palladium hydroxide 

(4mg, 0.08mmol) in methanol (2ml). The mixture was degassed and stirred 

vigorously for 6h under hydrogen. When tic (3:2 petrol:ether) showed complete 

consumption of the butenolide (123) the reaction mixture was filtered through a 

pad of celite, washed with methanol and concentrated to afford a yellow liquid 

which was purified by flash column chromatography (3:2 petrol:ether) to afford 

88mg (68.8%) of the desired saturated lactone (82). m.p. 9TC; Vmax(CDC13 

solution) 2989, 2940, 2868, 1767 (C=O lactone), 1725 (C=O ester), 1219, 1131, 

1382, 1372cm-l; B(IH)(400MHz) 4.50 (lH, s, CHC02Et), 4.30-4.17 (2H, m, 

C02CH2CH3), 2.67-2.61 (2H, m, HCHCH2CO), 2.51-2.41 (1H, m, 

HCHCH2CO), 2.15-2.04 (2H, m, HCHCH2CO, CHCOC=O), 1.84-1.26 (7H, m, 

CH2CH2CH2HCHCOCO), 1.51 (3H, s, CH3CCH3), 1.46 (3H, s, CH3CCH3), 

1.30 (3H, t, J = 7.2Hz, OCH2CH3); ()(13C)(lOOMHz) 176.2 (C=O lactone), 169.9 

(C=O ester), 111.4, 87.7, 86.7, 61.6, 33.6, 31.1, 28.8, 28.5, 26.9, 26.3, 22.0, 20.2, 

14.1; MS (CI, (NH3))mlz 330 (M+NH4+, 38%), 313 (MH+, 49), 272 (MH+

OCH2CH3, 100); HRMS (CI, (NH3)) C 16H28N06 m/z Calc. 330.1916; Found 

330.1917. 



4-Ethoxycarbonyl-2.2.dimethyl-1 .3. 7 -trioxa-dispiro<4.0.4.4>tetradecan-8-one 

(82) (Minor isomer) 

136 

The minor isomer of butenolide (123) (0.036g, 0.12mmol) was dissolved in 

methanol (1 ml) and added, via cannula, to a suspension of palladium hydroxide 

(0.0012g, 0.024mmol) in methanol (lml). The vessel was then degassed and a 

hydrogen balloon fitted to the top of the flask. The mixture was stirred 

vigorously for 6h. When tlc indicated complete consumption of starting material 

the mixture was filtered through a pad of celite, washed with methanol and 

concentrated to afford a yellow liquid which was purified by flash column 

chromatography (2: 1 petrol:ether) to afford the saturated lactone (82) (0.03g, 

80.6%) as a white solid. m.p. 9TC; VmaxCCDC13 solution) 2988 (CH), 2869 

(CH), 2941 (CH), 1770 (C=O lactone), 1751 (C=O ester), 1383, 1374, 1211, 

1095cm-I; o(l H)(400MHz) 4.59 (IH, s, CHC0 2Et), 4.28-4.08 (2H, m, 

C02CH2CH3), 2.68-2.35 (3H, m, CHCH2CO), 1.96-1.18 (9H, m, 

CH2CH2CH2CH2CCHCH2CO), 1.48 (3H, s, CH3CCH3), 1.31 (3H, s, 

CH3CCH3), 1.24 (3H, t, J = 7.2Hz, OCH2CH3); o(l3C)(lOOMHz) 176.5 (C=O 

lactone), 169.2 (C=O ester), 111.4, 87.0, 86.5, 61.5, 35.9, 30.9, 29.3, 29.0, 28.7, 

27.0, 21.2, 21.0, 14.0; MS (CI, (NH3)) m/z 330 (M+NH4+, 100%), 272 (MH+

(CH3hC, 45); HRMS (CI, (NH3)) C16H2sN06 m/z Calc. 330.1916; Found 

330.1917. 
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1-(2, 2-dimethyl-5"-oxodispiro[perhydro[l. 3ldioxolane-4. I' cyclohexane-2', 2"-

(5"-H-furanll-5-y})-1-methyl-1-methanol Cl29) 

1-(2, 2-dimethyl-5"-oxodispiro[perhydro[l. 3ldioxolane-4, 1' cyclohexane-2', 2"-

To a stirred solution of the major isomer of butenolide (123) (0.64g, 0.21mmol) 

in THF (2ml) at -78oC was slowly added methylmagnesium bromide (0.18ml, 

0.23mmol) . After 2h (tic 1:1 petrol:ether) the reaction was quenched with sat. 

NH4CI, extracted with ether, dried (MgS04) and concentrated to afford a yellow 

oil which was subsequently purified by flash column chromatography ( 1: 1 

petrol:ether) to afford 0.005g (8.8%) of the ketone (130), 0.016g (25.4%) of the 

alcohol (129) and 0.038g (58.8%) recovered starting material (123). Alcohol 

(129): m.p. 147-148°C; VmaxCCDC13 solution) 3496 (OH), 2987 (CH), 2940 (CH), 

2848 (CH), 1754 (C=O lactone), 1226 (acetonide), 1032 (acetonide) cm-1; 

o(IH)(400MHz) 7.68 (lH, d, J =6Hz, CH=CHC=O), 6.08 (lH, d, J = 6Hz, 

CH=CHC=O), 3.47 (lH, s, CHC(OH)Me2), 2.52 (lH, m, HCHCOC=O), 2.16 

(lH, m, H__CHCOC=O), 1.92 (lH, br, OH), 1.81-1.15 (6H, m, 

CH2CH2CH2CH2COC=O), 1.46 (3H, s, CH3CCH3), 1.45 (3H, s, CH3CCH3), 

1.24 (3H, s, CH3C(OH)CH3), 1.15 (3H, s, CH3C(OH)CH3); o(i3C)(lOOMHz) 

174.5 (C=O lactone), 158.9, 121.0, 107.4, 90.8, 84.7, 80.9, 71.0, 35.1, 32.2, 29.4, 

29.1, 28.9, 26.2, 23.3, 20.6; MS (CI, (NH3)) m/z 314 (M+NH4+, 57%), 279 

(MH+-H20, 100); HRMS (CI, (NH3)) C16H2gNOs m/z Calc. 314.1967; Found 

314.1967. Ketone (130): m.p. 85-86°C; VmaxCCDC13 solution) 2956 (CH), 2908 

(CH), 2848 (CH), 1746 (C=O lactone), 1718 (C=O ketone), 1102 (acetonide), 

1038 (acetonide) cm-1; O(IH)(400MHz) 7.68 (lH, d, J =6Hz, CH=CHC=O), 6.12 

(IH, d, J = 6Hz, CH=CHC=O), 3.95 (lH, s, CHC(O)Me), 2.45 (IH, m, 

HCH__COC=O), 2.24 (3H, s, C=OCH__3 ), 1.78-1.12 (6H, m, 
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CH2CH2CH2CH2COC=O), 1.55 (3H, s, CH3CCH3), 1.49 (3H, s, CH3CCH3); 

8(13C)(lOOMHz) 207.6 (C=O ketone), 174.2 (C=O lactone), 157.3 (CH=CH, 

120.0, 109.5, 88.7, 83.6, 80.3, 33.3, 30.8, 28.0, 27.7, 25.0, 22.2, 19.3; MS (CI, 

(NH3)) m/z 298 (M+NH4+, 100%), 281 (MH+, 50); HRMS (CI, (NH3)) 

C,sH28NOs mlz Calc. 298.1654; Found 298.1654. 

2.2-Dimethyl-1 .3.7-trioxa-dispiro<4.0.4.4>tetradecane-1-ethanone (131) (Major 

isomer) 

To a stirred solution of lactone (82) [derived from the major isomer of (123)] 

(0.80g, 0.26mmol) in THF (2ml) at -78°C was slowly added methylmagnesium 

bromide (0.25ml, 0.31 mmol). After 2h (tic 1: 1 petrol:ether) the reaction was 

quenched with sat. NH4Cl, extracted with ether, dried (MgS04) and concentrated 

to afford a yellow oil which was subsequently purified by flash column 

chromatography (1: 1 petrol:ether) to afford 7mg (6.8%) of the alcohol (131) and 

69mg (85.6%) starting material (82). Data for (131): YmaxCCDCl3 solution) 2918, 

2849, 1763 (C=O lactone), 1717 (C=O ketone), 1220, 1133; 8(1H)(400MHz) 4.20 

(1 H, s, CHCO(OH)Me2), 2.66-2.52 (2H, m, CH 2C=O), 2.18-1.98 (2H, m, 

CH2CH2C=0), 1.78-1.22 (8H, m, CH2CH2CH2CH2COC=O), 1.55 (3H, s, 

CH3CCH3), 1.47 (3H, s, CH3CCH3), 1.43 (3H, s, HOC(CH3)CH3), 1.25 (3H, s, 

HOC(CH3)CH3); 8(13C)(lOOMHz) 176.2 (C=O lactone), 124.5, 109.1, 86.3, 

85.5, 81.2, 33.1, 29.9, 29.3, 28.7, 28.1, 27.7, 25.5, 25.0, 21.1, 19.0; MS (CI, 

(NH3)) m/z 283 (MH+, 18%), 115 (MH+-(CH3hCOC(OH)(CH3h, 100); HRMS 

(CI, (NH3)) C15H2305 m/z Calc. 283.1545; Found 283.1545. 
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2.2-Dimethyl-1 .3.7 -trioxa-dispiro<4.0.4.4>tetradecane-1-ethanol (131) (Minor 

isomer) 

To a stirred solution of butenolide (82) (25mg, 0.08mmol) in THF (lml) at -78°C 

was slowly added methyl magnesiumbromide (0.08ml, 0.10mmol). After 0.5h 

(tic 1:1 petrol:ether) the reaction was quenched with sat. NH4Cl, extracted with 

ether, dried (MgS04) and concentrated to afford a yellow oil which was 

subsequently purified by flash column chromatography (1: 1 petrol:ether) to 

afford 8mg (36.8%) of the alcohol (131) and 0.013g (62.5%) starting material 

(82). Data for (131): Ymax(CDC13 solution) 3579 (OH), 2985, 2936, 1765 (C=O 

lactone), 1381, 1372, 1219, 1159cm-l; o(IH)(400MHz) 3.66 (IH, s, 

CHC(OH)(CH3h), 2.67-2.39 (3H, m, HCHCH2C=O), 2.00-1.14 (9H, m, 

CH2CH2CH2CH2CHCHCH2C=O), 1.48 (3H, s, CH3CCH3), 1.41 (3H, s, 

C(OH)CH3), 1.31(3H, s, CH3CCH3), 1.27 (3H, s, CH3CCH3; o( 13C)(lOOMHz) 

176.5 (C=O lactone), 106.5, 86.7, 84.6, 84.3, 71.4, 37.4, 30.0, 29.7, 29.0, 28.8, 

28.4, 27.7, 26.7, 21.0, 20.5; MS (CI, (NH3)) mlz 283 (MH+, 100); HRMS (CI, 

(NH3)) C16H2305 mlz Calc. 283.1545; Found 283.1545. 

6-Benzyloxy-4-hydroxymethyl-2.2-dimethyl-1 .3-dioxa-spiro<4.5>decane (134) 

[::::::"[ OBn 

~ ~OH 
00 

~ 
To a stirred solution of ester (120) (0.25g, 0. 72mmol) in THF (1 Oml) was added 

DIDAL (1.58ml, 1.58mmol) at -78°C. After 1h the mixture was allowed to warm 

to room temperature and stirring was continued for a further I h. The mixture was 
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then cooled to -78°C and methanol (0.16g, 5.04mmol) was added. Again, the 

mixture was warmed to room temperature and water (0.09ml, 5.04mmol) then 

celite was added. This was then filtered, washed with ethyl acetate and 

concentrated to afford the desired alcohol (0.217g, 99% ) after purification by 

flash column chromatography (4: 1 petrol:ether) . YmaxCCDC13 solution) 3455, 

2983,2935, 2862, 1249, 1217, 1061, 1085cm-l; 8(lH)(400MHz) 7.29-7.23 (5H, 

m, C£5), 4.58 & 4.31 (1 H each, AB system, J 1 = 11.2Hz, OCH2C6H5), 3.83 

(lH, t, J = 6.4Hz, CHCH 20H), 3.63 (2H, br, CH20H), 3.33 (lH, m, 

CHOCH2C6H5 ), 2.83 (1H, br, OH.J, 1.91-1.36 (8H, m, 

CH2CH2CH2CH2CHOCH2C6H5 ), 1.36(3H, s, CH3CCH3 ), 1.24 (3H, s, 

CH3CCH3); 8(l3C)(lOOMHz) 137.3 (Ar), 128.5 (Ar), 128.1 (Ar), 128.0 (Ar), 

107.7, 83.4, 81.5, 79.6, 63.4, 60.8, 28.6, 27.2, 26.8, 24.6, 20.6 (CH3CCH3), 19.3 

(CH3CCH3); MS (CI, (NH3)) mlz 306 (M+, 22%), 141 (M+-(CH3hC(O)O, 

CH2C6H5, 100); HRMS (CI, (NH3)) C18H2604 m/z Calc. 307.1909; Found 

307.1909. 

6-Benzyloxy -4-C trimethylsilyloxymethyl)-2.2-dimethyl-1 .3-dioxa

spiro<4.5>decane55 (135) 
OBn 

~OTMS 
~0 

To a stirred solution of alcohol (134) (0.18g, 0.59mmol) in THF (6ml) was added 

triethylamine (0.09ml, 0.65mmol) and trimethylsilyl chloride (0.12ml, 0.97mmol) 

. Immediately a colour change from clear to white occurred and tlc (2: 1 

petrol:ether) showed consumption of starting material so the reaction was 

quenched with sat. NH4Cl, extracted with ether, dried (MgS04) and concentrated 

to afford 0.13g (60.4%) of the desired colourless oil (135) after purification by 

flash column chromatography (16: 1 petrol:ether). v maxCCDC13 solution) 2984, 

2936, 2863, 1249, 1216, 1155, 1086, l06lcm-l; 8(1H)(400MHz) 7.35-7.27 (5H, 
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m, C6fi5), 4.58 & 4.30 (lH each, AB system, J = 11.2Hz, OCH2C6H5), 3.94 (2H, 

m, CH20TMS), 3.60 (1 H, dd, J 1 = 11.6Hz, J2 = 9.6Hz, CHCH20TMS), 3.41 

( 1 H, m, CHOCH2C6H5), 1.98-1.37 (8H, m, CH2CH2CH2CH2CHOCH2C6H5), 

1.46 (3H, s, CH3CCH3), 1.34 (3H, s, CH3CCH3), 0.06 (9H, s, Si(CH3h); 

8(13C)(lOOMHz) 139.1 (Ar), 129.5 (Ar), 128.2 (Ar), 128.3 (Ar), 107.9, 85.3, 

81.2, 80.4, 70.1, 63.1, 28.9, 27.4, 26.9, 24.9, 20.6 (CH3CCH3), 19.3 (CH3CCH3), 

-1.5 (Si(CH3h); MS (EI) m/z 378 (M+, 38%), 213 (M+-(CH3hSi, OCH2C6H5, 

37), 91 (CH2C6H5+, 100); HRMS (EI) C21H340 4Si mlz Calc. 378.2226; Found 

378.2226. 

6-Benzyloxy-4-(!butyldimethylsilyloxymethyl)-2.2-dimethyl-1 .3-dioxa

spiro<4.5>decane 72 (133) 
OBn 

~OTBDMS 
~0 

Imidazole (0.27g 2.05mmol) and tbutyldimethylsilyl chloride (0.15g, 0.98mmol) 

were added to a stirred solution of alcohol (134) (0.25g, 0.82mmol) in DMF 

(4ml). Tlc (4: 1 petrol:ether) showed consumption of starting material after 20h 

so the reaction was quenched with sat. NH4CI, extracted with ether, dried 

(MgS04) and concentrated in vacuo. Purification by flash column 

chromatography (30: 1 petrol:ether) afforded 0.29g (89.9%) of the desired 

compound (133). Ymax(CDC13 solution) 2931, 2882, 2858, 1253, 1211, 1190, 

1087, 1063cm-I; 8(1H)(400MHz) 7.34-7.31 (5H, m, OCH2C6H5), 4.63 & 4.37 

(lH each, AB system, J = 11.6Hz, OCH2C6H5), 3.96 (2H, m, CH20Si), 3.66 (lH, 

m, CHOCH2C6H5 ), 3.41 (lH, m, CHCH20Si), 1.97-1.23 (8H, m, 

CH2CH2CH2CH2CHOCH2C6H5), 1.44 (3H, s, CH3CCH3), 1.32 (3H, s, 

CH3CCH3), 0.87 (9H,s, SitBu), 0.03 (3H, s, Si(CH3)CH3), 0.01 (3H, s, 

Si(CH3)CH3); 8(13C)(lOOMHz) 138.7 (Ar), 128.2 (Ar), 127.4 (Ar), 127.3 (Ar), 

107.6, 84.7, 80.3, 79.5, 70.1, 63.7, 28.9, 27.4, 26.9, 26.0, 25.9, 25.0, 20.7, 17.6, 
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-5.3 (Si(CH3)CH3), -5.3 (Si(CH3)CH3); MS (EI) m/z 420 (M+, 28%), 255 (M+-

(CH3h1BuSiOCH2, OCH2C6H5 , 68), 91 (CH2C6H5+, 100); HRMS (EI) 

C24H4o04Si m/z Calc. 420.2696; Found 420.2696. 

4-hydroxymethyl-2.2-dimethyl-1 .3-dioxa-spiro<4.5>decan-6-ol (136) 

L:::::::l OH 

~ 6-('oH 
~0 

The benzyl ether (135) (O.lOg, 0.264mmol) was dissolved in methanol (2ml) and 

added, via cannula, to a suspension of palladium hydroxide (0.006g, 0.053mmol) 

in methanol (1 ml). The mixture was degassed and stirred vigorously for 12h 

under hydrogen. The reaction mixture was filtered through a pad of celite, 

washed with methanol and concentrated yielding a yellow liquid which was 

purified by flash column chromatography 4:1 petrol:ether) to afford 0.03g 

(61.4%) of the diol (136) as a white solid. m.p. 86oC; YmaxCCDC13 solution) 3367 

(OH), 2987, 2939, 2865, 2253, 1245, 1219cm-I; 8(1H)(400MHz) 3.87 (lH, m, 

CHOH), 3.75-3.57 (5H, m, CHCH20H, CHOH), 1.83-1.22 (8H, m, 

CH2CH2CH2CH2CHOH), 1.36 (3H, s, CH3CCH3), 1.28 (3H, s, CH3CCH3); 

8(13C)(lOOMHz) 107.8 (C(CH3h), 82.6, 82.2 (COC(CH3h). 72.3, 59.9, 29.9, 

28.5, 26.8, 26.1, 20.5, 19.2; MS (CI, (NH3)) rnlz 216 (M+, 8%), 141 (MH+

(CH3)2C(O)O, 100); HRMS (CI, (NH3)) C 11H24N04 m/z Calc. 234.1705; Found 

234.1705. 

4-Hydroxymethyl-2.2-dimethyl-1 .3-dioxa-spiro<4.5>decan-6-ol (136) 

L:::::::l OH 

~ 6-('oH 
~0 



143 
The benzyl ether (133) (0.25g, 0.82mmol) was dissolved in methanol (6ml) and 

added, via cannula, to a suspension of palladium hydroxide (0.043g, 0.082mmol) 

in methanol (2ml) . The vessel was then degassed and a hydrogen balloon fitted 

to the top of the flask. The mixture was stirred vigorously for 2h before the 

mixture was filtered through a pad of celite, washed with methanol and 

concentrated to afford a yellow liquid which was purified by flash column 

chromatography (4: I petrol:ether) to afford 0.172g (97.1%) of the diol (136) as a 

white solid. Data as before. 

4-Formyl-2.2-dimethyl-1 .3-dioxa-spiro<4.5>decan-6-one35 (137) 

~0 
00 

A 
Dimethyl sulphoxide (0.06ml, 0.84mmol) in DCM (8ml) was added dropwise, via 

cannula, to a solution of oxalyl chloride (0.04ml, 0.42mmol) in DCM (4ml) at 

-78°C. After stirring for a further 10min, a solution of the diol (136) (0.08g, 

0.35mmol) in DCM (3ml) was added. The solution was stirred for a further 

50min before triethylamine (0.25ml, 1.76mmol) was added and the reaction 

allowed to warm to room temperature. The resulting mixture was diluted with 

DCM and washed with 2M HCl sat. NaHC03. Drying (MgS04), concentrating 

and purification by flash column chromatography (5: 1 petrol:ether) afforded the 

keto aldehyde (137) (0.07g, 92.1 %). VmaxCCDC13 solution) 2987, 2939, 2867, 

1743 (C=O ketone), 1722 (C=O aldehyde) cm-1; ()(lH)(400MHz) 9.67 (lH, d, J = 

1.6Hz, CHO), 5.13 (lH, d, J = 1.6Hz, CHCHO), 2.94 (lH, m, HCHC=O), 2.43 

(IH, m, HCHC=O), 2.18-1.14 (6H, m, CH2CH2CH2CH2C=O), 1.50 (3H, s, 

CH3CCH3), 1.22 (3H, s, CH3CCH3); o(l3C)(lOOMHz) 208.9 (C=O aldehyde), 

200.8 (C=O ketone), 111.5, 87.6, 80.2, 39.9, 35.9, 28.2, 27.9, 26.1, 21.1; MS (CI, 

(NH3)) m/z 230 (M+NH4+, 46%), 213 (MH+, 100); HRMS (CI, (NH3)) 

C11H1704 m/z Calc. 213.1127 Found 213.1127. 



±_(lbutyldimethylsilyloxymethyl)-2.2-dimethyl-1 .3-dioxa-spiro<4.5>decan-6-

ol72(138) 
OH 

~OTBDMS 
_;o 

Imidazole (0.18g, 1.36mmol) and tbutyldimethylsilylchloride (0.115g, 0.75mmol) 

was added to a stirred solution of the diol (136) (0.15g, 0.68mmol) in DMF 

(6ml). Tic (4: 1 petrol:ether) showed consumption of starting material after 20h 

so the reaction was quenched with sat. NH4Cl, extracted with ether, dried 

(MgS04) and concentrated to afford 0.218g (97 .1%) of the desired compound 

144 

(138) after purification by flash column chromatography (10: 1 petrol:ether). 

Ymax(CDC13 solution) 3408 (OH), 2934, 2888, 2864, 1470, 1374, 1254cm-1; 

3(1H)(400MHz) 3.90-3.86 (2H, m, CH20Si), 3.84 (lH, br, OH), 3.66 (lH, t, J = 

10.8Hz, CHCH2 OSi), 3.57 (lH, m, CH_OH), 1.76-1.32 (8H, m, 

CH2CH2CH2CH2CHOH), 1.42 (3H, s, CH3CCH3), 1.35 (3H, s, CH3CCH3), 0.93 

(9H, s, SitBu), 0.08 (6H, s, Si(CH3h); 3(13C)(lOOMHz) 107.8, 83.1, 82.3, 72.0, 

60.6, 45.2, 29.1, 28.5, 26.7, 25.8, 20.7, 19.2, 18.3, -5.6 ((CH3)Si(CH3)), -5.7 

((CH3)Si(CH3)); MS (CI, (NH3)) mlz 331 (MH+, 2%), 273 (M+-tBu, 100); 

HRMS (CI, (NH3)) C17H350 4Si m/z Calc. 331.2304; Found 331.2304. 

6-Acetoxy-4-(tbutyldimethylsilyloxymethyl)-2.2-dimethyl-1 .3-dioxa

spiro<4.5>decane56 (139) 
OAc 

~OTBDMS _;o 
To a stirred solution of alcohol (138) (0.05g, 0.13mmol) in pyridine (1 ml) was 

added acetic anhydride (0.02ml, 0.19mmol) and DMAP (0.002g, 0.0 13mmol) and 
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stirring was continued for 40h (tic 4:1 petrol:ether). The reaction was quenched 

with sat. NH4Cl, extracted with ether, washed with CuS04 solution to remove 

pyridine, dried (MgS04) and concentrated to afford 0.028g (62.6%) of the 

acetylated product (139) after purification by flash column chromatography (30: 1 

petrol:ether). m.p. 79°C; VmaxCCDCl3 solution) 2958, 2932, 2860, 1734 (C=O 

ester), 1372, 1245cm-1; o(IH)(400MHz) 4.76 (lH, m, CHOC(O)CH3), 3.97-3.70 

(3H, m, CH20Si, CHCH20Si), 2.07 (3H, s, OC(O)CH3), 1.82-1.80 (2H, m, 

CH2CHOC(O)CH3), 1.61-1.35 (6H, m, CH2CH2CH2CH2CHOC(O)CH3), 1.43 

(3H, s, CH3CCH3), 1.35 (3H, s, CH3CCH3), 0.90 (9H, s, SitBu), 0.07 (6H, s, 

Si(CH3h); o(13C)(lOOMHz) 169.9 (C=O ester), 108.0, 83.4, 80.1, 75.3, 63.2, 

28.8, 28.1, 27.1, 26.8, 26.0, 21.4, 20.6, 19.9, 18.5, -5.1 ((CH3)Si(CH3)), -5.72 

((CH3)Si(CH3)); MS (CI, (NH3)) mlz 315 (M+-tBu, 40%), 255 (MH+

(CH3htBuSiO, 100); HRMS (CI, (NH3)) C19H3sOsSi m/z Calc. 373.2410; 

Found 373.2410. 

±::.(lbutyldimethylsilyloxymethyl)-2,2-dimethyl-1 .3-dioxa-spiro<4.5>decan-6-

one35 C61) 
0 

~OTBDMS 
~0 

Dimethyl sulphoxide (0.05ml, 0.79mmol) in DCM (8ml) was added dropwise, 

via cannula, to a solution of oxalyl chloride (0.04ml, 0.40mmol) in DCM (4ml) 

at -78oC. After stirring for a further lOmin, a solution of the alcohol (138) 

(0.1 Og, 0.33mmol) in DCM (3ml) was added. The solution was stirred for a 

further 50min before triethylamine (0.24ml, 1.66mmol) was added and the 

reaction allowed to warm to room temperature. The resulting mixture was 

diluted with DCM and washed with 2M HCl, sat. NaHC03, dried (MgS04) and 

concentrated to afford 0.074g (68.9%) of the desired ketone (61) as a waxy solid 
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and O.Olg (13.4%) recovered starting material (138) obtained after purification 

by flash column chromatography (30: 1 petrol:ether). 

±..(1butyldimethylsilyloxymethyl)-2.2-dimethyl-1 .3-dioxa-spiro<4. 5>decan -6-

one69 ill} 

0 

~OTBDMS 
00 

~ 
To a solution of alcohol (138) (0.160g, 0.41mmol) in DCM (4ml) was added 4A 

molecular seives (0.25g), NMO (0.074g, 0.61mmol) and TPAP (0.014g, 

0.041 mmol). The mixture was allowed to stir for 50h after which it was filtered 

through a pad of celite, washed with DCM and concentrated to afford 0.054g 

(34.5%) desired product (61) and 0.09g (64.3%) recovered starting material (138) 

after purification by flash column chromatography (30: 1 petrol:ether). Data for 

(61): m.p. 39-40°C; Ymax(CDCl3 solution) 2951,2930,2857, 1719 (C=O ketone), 

1372, 1255cm-l; ()(IH)(400MHz) 4.66 (lH, t, J =6Hz, CHCH20Si), 3.70 (2H, d, 

J =6Hz, CH20Si), 2.87 (lH, dt, J 1 =20Hz, 12 =6Hz, HCHC=O) 2.39-2.34 lH, 

m, HCHC=O) 2.19-1.90 (3H, m, HCHCH2C=O, CH2COC(CH3h), 1.72-1.58 

(3H, m, CH2(H)CHCH2C=O), 1.43 (3H, s, CH3CCH3), 1.24 (3H, s, CH3CCH3), 

0.87 (9H, s, SitBu), 0.07 (3H, s, (CH 3)Si(CH3)) 0.07 (3H, s, (CH3)Si(CH3); 

()(13C)(lOOMHz) 210.3 (C=O ketone), 108.78, 85.5, 76.1, 61.7, 39.6, 34.2, 28.5, 

27.7, 28.0, 25.8, 21.0, 18.2,, -5.4 ((CH3)Si(CH3)), -5.4 ((CH3)Si(CH3)); MS (CI, 

(NH3)) m/z 329 (MH+, 55%), 271 (M+-tBu, 100); HRMS (CI, (NH3)) 

C 17H3304Si mlz Calc. 329.2148; Found 329.2148. 
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Attempted Preparation of 1-(lButyldimethylsilyloxymethyl)-2,2-dimethyl-5"-

oxodispiro[perhydro[l,3ldioxolane-4,1'-cyclohexane-2',2"-(5"-H-furan)J-5-ane39 

To a stirred solution of 3-(para-toylsulphonyl)propionic acid (63) (0.73g, 

3.22mmol) in THF (20ml) was slowly added butyl lithium (4.19ml, 6.70mmol) at 

-78°C. The resulting yellow solution was stirred for 1 h whereupon a solution of 

ketone (63) (0.8g, 2.68mmol) in THF (8ml) was cooled to -78oC and added via 

cannula to the reaction mixture. The resulting solution was allowed to warm to 

-40°C and stirred for 30h before trifluoroacetic anhydride (1.05ml, 7.5mmol) was 

added and the mixture warmed to -30oC for 4h. The mixture was quenched with 

sat. NaHC03, extracted with ether, dried (MgS04) and concentrated to afford 

only ketone starting material (61) after purification by flash column 

chromatography (30: 1 petrol:ether). 

6-allyl-4-C1butyl-dimethylsilanoxymethy})-2,2-dimethyl-1 ,3-dioxa

spiro<4.5>decan-6-oJ57 (142) 

To a stirred solution of ketone (61) (O.lOg, 0.30mmol) in ether (3ml) at -78oC was 

slowly added allylmagnesium bromide (0.44ml, 0.37mmol). After lh (tic 10:1 

petrol:ether) the reaction was quenched with sat. NH4Cl, extracted with ether, 

dried (MgS04) and concentrated to afford a yellow oil which was subsequently 

purified by flash column chromatography (30: 1 petrol:ether) to afford the desired 
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product as a 1.3: I mixture of separable isomers (142) (0.108g, 97 .I%). Major 

isomer (142a): m.p. 44°C; VmaxCCDC13 solution) 3419, 2981, 2933, 2859, 1640, 

1380, 1369, 1074, 1216cm-1; 8(1H)(400MHz) 5.95 (lH, m, CH=CH2), 5.06 (2H, 

m, CH=CH2), 4.24 (IH, m, CHCH20Si), 3.82 (lH, m, HCHCH=CH2), 3.69-3.64 

(2H, m, CH 20Si), 2.42-2.40 (2H, m, HCHC(OH)(H)CHCH=CH2), 1.80-1.20 

(7H, m, CH2CH2CH2(H)CHCOH), 1.41 (3H, s, CH3CCH3), 1.37 (3H, s, 

CH3CCH3), 0.88 (9H, s, SitBu), 0.13 (6H, s, Si(CH3h); 8(13C)(IOOMHz) 135.0 

(CH=CH2), 117.3 (CH=CH2), 107.3, 85.4, 76.6, 71.8, 60.7, 41.3, 33.2, 28.6, 27.I, 

26.7, 25.8, 20.6, 20.3, 18.2, 1.0, -5.4 ((CH3)Si(CH3)); MS (CI, (NH3)) m/z 371 

(MH+, 18%), 277 (MH+-(CH3h1BuSiO, 100); HRMS (EI) C20H380Si mlz Calc. 

370.2539; Found 370.2539. Minor isomer (142b): m.p. 42°C; Vmax(CDC13 

solution) 3480, 2983, 2934, 2859, 1640, 1378, 1369, 1258, 1086cm-l; 

()(1H)(400MHz) 5.95 (IH, m, CH=CH2), 5.06 (2H, m, CH=CH2), 4.35 (IH, m, 

CHCH20Si), 3.76 (2H, m, CH20Si), 3.69-3.64 (2H, m, CH2CH=CH2), 2.23 (3H, 

m, CH2CH=CH2,HCHCOH), 1.82-1.20 (7H, m, CH2CH2CH2(H)CHCOH), 1.43 

(3H, s, CH3CCH3), 1.40 (3H, s, CH3CCH3), 0.89 (9H, s, Si1Bu), 0.07 (3H, s, 

CH3Si(CH3), 0.06 (3H, s, CH3Si(CH3); 8( 13C)(lOOMHz) 133.9 (CH=CH2), 

117.5 (CH=CH2), 107.1, 86.5, 78.1, 74.5, 63.0, 37.3, 34.6, 29.1, 28.9, 26.9, 25.9, 

22.5, 20.5, 1.0, -5.2 ((CH3)Si(CH3)), -5.3 ((CH3)Si(CH3)); MS (CI, (NH3)) m/z 

371 (MH+, I23%), 277 (MH+-(CH3htBuSiO, 100); HRMS (EI) C20H380Si m/z 

Calc. 370.2539; Found 370.2539. 

±.(.lbutyldimethylsilyloxymethyl)-6-(3-hydroxypropy})-2,2-dimethyl-I .3-dioxa

spiro<4.5>decan-6-ol (143a) 
OH 
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Borane.THF complex (0.14ml, 0.14mmol) was added dropwise to a stirred, 

cooled (OoC) solution of alkene (142a) (0.048g, 0.13mmol) in THF (lml). The 

reaction was then stirred at room temperature for 2.5h when tic (4: 1 petrol: ether) 

indicated that the alkene (142a) had been consumed. The mixture was then 

cooled to OOC and 3M NaOH (0.05ml, 0.14mmol) then hydrogen peroxide 

(0.06ml, 0.48mmol) were added dropwise such that the reaction temperature did 

not exceed 35°C. On completion of the addition, the reaction was heated at reflux 

for lh, cooled to room temperature, quenched with sat. NH4Cl, extracted with 

ether, dried (MgS04) and concentrated to afford 0.032g (63.2%) of the desired 

product (143a) after purification by flash column chromatography (4: 1 

petrol:ether). Major isomer (143a): YmaxCCDC13 solution) 3392, 2952, 2860, 

1255, 1216, 1077, 840cm-l; o(lH)(400MHz) 4.28 (lH, dd, J 1 = 6.4Hz, J2 =4Hz, 

CHCH20Si), 3.77-3.58 (4H, m, CH20Si, C(OH)CH2CH2CH20H), 2.80 (lH, br, 

OH), 2.45 (lH, br, C(OH)(CH2)}0H), 1.90 (IH, m, HCHC(OH)(CH2hOH), 

1.76-1.10 (11H, m, CH2CH2CH2C(H)HCCH2CH2CH20H), 1.43 (3H, s, 

CH3CCH3), 1.38 (3H, s, CH3CCH3), 0.88 (9H, s, SitBu), 0.07 (6H, s, Si(CH3h); 

o(BC)(lOOMHz) 107.1, 85.5, 78.3, 72.8, 63.4, 63.1, 33.9, 29.1, 29.0, 28.8, 26.9, 

26.2, 26.0, 22.7, 20.5, 18.4, -5.1 ((CH3)Si(CH3)), -5.3 ((CH3)Si(CH3)); MS (CI, 

(NH3)) m/z 331 (MH+-(CH2hOH, 26%), 313 (MH+-H20, 45), 199 (MH+

(CH3htBuSiO, (CH2hOH, 100); HRMS (EI) C20H400 5Si mlz Calc. 388.2645; 

Found 388.2645. In a similar manner (142b) gave the minor isomer (143b). 

Minor isomer (143b): YmaxCCDC13 solution) 3415, 2937, 2859, 1248, 1075, 

1124, 837cm-l;o(lH)(400MHz) 4.29 (lH, dd, J 1 =9.6Hz,J2 =4Hz, 

CHCH20Si), 4.30-3.52 (4H, m, CH20Si, C(OH)CH2CH2CH20H), 4.10 (IH, br, 

OHJ, 3.25 (1 H, br, C(OH)(CH2)} OH), 1.98-1.36 (12H, m, 

CH2CH2CH2CH2CCH2CH2CH20H), 1.41 (3H, s, CH3CCH3), 1.36 (3H, s, 

CH3CCH3), 0.92 (9H, s, SitBu), 0.13 (6H, s, Si(CH3h); o(l3C)(100MHz) 107.1, 

85.5, 78.3, 72.8, 63.4, 63.1, 33.9, 29.1, 29.0, 28.8, 26.9, 26.2, 26.0, 22.7, 20.5, 

18.4, -5.1 ((CH3)Si(CH3)), -5.3 ((CH3)Si(CH3)); MS (CI, (NH3)) mlz 331 (MH+-
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(CH2hOH, 24% ), 313 (MH+ -H20, 1 00), 199 (MH+ -(CH3htBuSiO, (CH2)30H, 

56); HRMS (CI) C20H400 5Si m/z Calc. 388.2645; Found 388.2645. 

1.:(1butyldimethylsilyloxymethy})-2.2-dimethyl-1 .3. 7 -trioxa

dispiro<4.0.4.4>tetradecan-8-one 74 (141) 

To a stirred solution of diol (143a) (0.035g, 0.09mmol) was added pyridinium 

chlorochromate (0.03g, 0.14mmol) and alumina (0.15g) after which stirring was 

continued for 12h whereupon pyridinium chlorochromate (0.03g, 0.14mmol) was 

again added. After a further 4h the reaction mixture was filtered through a pad of 

celite, the organic solution was then washed with water, dried (MgS04) and 

concentrated to afford 0.028g (79.9%) of the desired product (141a) after 

purification by flash column chromatography ( 4:1 petrol:ether). Major isomer 

(141a): m.p. 64oC; Ymax(CDC13 solution) 2990, 2935, 2858, 1768 (C=O lactone), 

1251, 1463, 1158, 1018cm-I; 8(1H)(400MHz) 4.15 (IH, m, CHCH20Si), 3.88 

(2H, m, CH 20Si), 2.58 (3H, m, HCHCH2C=0), 2.0-1.90 (lH, m, 

HCHCH 2C=O), 1.90-1.80 (lH, m, HCHCOC(CH3h), 1.78-1.45 (7H, m, 

CH2CH2CH2C(H)HCOC(CH3h), 1.42 (3H, s, CH 3CCH3), 1.34 (3H, s, 

CH3CCH3), 0.89 (9H, s, SitBu), 0.07 (6H, s, Si(CH3h); 8(13C)(lOOMHz) 176.6 

(C=O lactone), 107.6, 87.3, 83.8, 79.8, 62.7, 36.1, 30.0, 29.2, 29.0, 28.8, 26.9, 

25.9, 21.2, 20.7, 18.4, -5.3 ((CH3)Si(CH3)), -5.3 ((CH3)Si(CH3)); MS (CI, 

(NH3)) mlz 402 (M+NH4+, 82%), 253 (M+-(CH3htBuSiO, 100); HRMS (CI) 

C2oH4oN05Si m/z Calc. 385.2410; Found 385.2410. In a similar manner (143b) 

gave the minor isomer (14lb). Minor isomer (14lb): m.p. 66-6TC; 

YmaxCCDC13 solution) 2996, 2956, 2930, 2894, 2858, 1767 (C=O lactone), 1465, 

1252, 1158, 1020cm-I; 8(1H)(400MHz) 4.07 (lH, dd, J 1 = 6.8 Hz, 12 =6Hz, 
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CHCH20Si), 3.81 (lH, dd, J1 =12Hz, h =6Hz, HCHOSi), 3.71 (lH, dd, J1 = 

12Hz, J2 = 6.8Hz, HCHOSi), 2.55-2.43 (3H, m, HCHCH2C=0), 2.12-1.94 (lH, 

m, HCHCH2C=0), 1.90-1.82 (lH, m, HCHCOC(CH3h), 1.81-1.37 (7H, m, 

CH2CH2CH2C(H)HCOC(CH3h), 1.34 (3H, s, CH 3CCH3 ), 1.27 (3H, s, 

CH3CCH3), 0.82 (9H, s, SitBu), 0.06 (6H, s, Si(CH3h); ()(13C)(100MHz) 176.5 

(C=O lactone), 107.6, 87.3, 83.8, 65.9, 62.8, 36.1, 30.0, 29.2, 29.0, 28.9, 26.9, 

25.9, 21.2, 20.7, 18.4, -5.3 ((CH3)Si(CH3)), -5.3 ((CH3)Si(CH3)); MS (CI, 

(NH3)) mlz 402 (M+NH4+, 21 %), 253 (M+-(CH3htBuSi, 100); HRMS (CI) 

C20H4oN05Si m/z Calc. 385.2410; Found 385.2410; Analysis Found: C, 62.13%; 

H, 9.38%. C20H360sSi requires C, 62.46%; H, 9.43%. 

8-Ally1-4-(1butylbimethylsilyloxymethyl)-2,2-dimethyl-1 ,3, 7 -trioxa

dispiro<4.0.4.4>tetradecan-8-ol C144a) 

To a stirred solution of lactone (141a) (0.034g, 0.09mmol) in ether (0.5ml) at 

-78oC was slowly added allylmagnesium bromide (0.11ml, 0.086mmol). After 

0.5h (tic 2:1 petrol:ether) the reaction was quenched with sat. NH4CI, extracted 

with ether, dried (MgS04) and concentrated to afford a yellow oil which was 

subsequently purified by flash column chromatography (3: 1 petrol:ether) to 

afford 0.037g (95.6%) of the desired product (144a) as a 1.3:1 mixture of 

unseparable isomers. 
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1.:_(1butyl bimethylsilyloxymethyl)-8-methoxy-2.2-dimethyl-8-propyl-1.3. 7 -trioxa

dispiro<4.0.4.4>tetradecane C158a) 

The alkene (144a) (0.058g, 0.14mmol) was dissolved in methanol (l ml) and 

added, via cannula, to a suspension of palladium hydroxide (0.00 1 g, 

0.0014mmol) in methanol (1 ml). The mixture was degassed and stirred 

vigorously for 2h under hydrogen. On completion of the reaction (tic 4: 1 

petrol:ether) the reaction mixture was filtered through a pad of celite, washed 

with methanol and concentrated to afford a yellow liquid which was purified by 

flash column chromatography (2: 1 petrol:ether) to afford 0.057 g (94.2%) of the 

methyl acetal (158a) as a colourless oil. 

6-Hydroxy-9-propyl-8. 12-dioxatricyclo<7 .2.1.0>dodec-7 -yl-1-methanoJ28 (157) 

OH 

To a stirred solution of propyllactol (158a) (0.052, 0.12mmol) in methanol was 

added 12M HCl (0.06ml, 0.72mmol) at OoC and the reaction mixture allowed to 

warm to room temperature. This was then heated to reflux for 12h whereupon the 

reaction was quenched with sat. NH4CI, extracted with ether, dried (MgS04) and 

concentrated to afford a yellow oil which was subsequently purified by flash 

column chromatography (2: 1 petrol:ether) to afford 0.011g (36.9%) of the desired 

product (157) as a white solid. m.p. 79oC; VmaxCCDCI3 solution) 2958, 2932, 

2844, 1676, 1596, 1211, 1190, 1077cm-I; O(lH)(400MHz) 4.29 (lH, dd, J1 = 

5.9Hz, J2 = 3.0Hz, CHOCCH2CH2CH3), 3.50 (2H, m, CH20H), 2.07 (IH, m, 

-OCC(H)HCH2C-), 1.93 (2H, m, -OCC(H)HC(H)HC-), 1.68 (6H, m, OH, OH, 
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-OCC(H)HCH2C-, CH2CH2CH3, CH2C(H)HCOH), 1.53-1.42 (9H, m, 

CH2CH2CH2C(H)HCOH, CH2CH3 ), 0.93 (3H, t, J = 5.9Hz, CH3); 

c(l3C)(lOOMHz) 108, 83.5, 78.3, 69.1, 63.1, 39.5, 33.4, 33.1, 24.8, 21.1, 20.3, 

16.7, 14.2; MS (CI, (NH3)) m/z 257 (MH+, 100%), 239 (MH+-H20, 100); HRMS 

(CI) C14H250 4m/z Calc. 257.1753; Found 257.1753. 

3Methoxybut-2-enoate75 061) 

To a stirred solution of ethyl acetoacetate (160) (6.5g, 50mmol) and freshly 

distilled timethyl orthoformate (5.3g, 50mmol) in methanol (5ml) was added 12M 

HCl (0.03ml, 0.36mmol). The mixture was immediately distilled through an 

efficient fractionating column (lit. bpt 188-193°C) to form ethyl 3-methoxybut-2-

enoate (161) (7.2g, 100%). This was subsequently used without further 

purification. 

Ethyl4-bromo-3-methoxybut-2-enoate75 062) 

Ethyl 3-methoxybut-2-enoate (161) (7.2g, 43mmol) was heated to 100-115oC 

And was vigorously stirred while N-bromosuccinimide (7.5g, 43mmol) was 

added in small portions, the temperature during the addition being kept at 1 OOOC. 

When addition was complete, the mixture was cooled to 70-80°C and vigorously 

stirred while water (12.5ml, 12.5mmol) was added. The aqueous layer was 

separated and the organic later was washed with water, dried (MgS04) filtered 

and distilled (lit. bpt 134-139/30mmHg) to give the desired bromide (162) (8.9g, 

95.5%). 



Methyl tetronate 75 (159) 

A mixture of the bromide (162) (8.9g, 41 mmol), anhydrous zinc bromide 

(0.035g, 0.15mmol) and dry p-xylene (7ml) was heated at reflux for 8h, after 
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which the solvent was removed under reduced pressure. A 2:8 (v:v) mixture of 

chloroform and ether (29ml) was added to the residue and the mixture was well 

swirled, decanted and set aside for 18h between -20-00C. Methyl tetronate (0.7g, 

15.0% ), was seperated as white crystals. The filtrate was evaporated under 

reduced pressure and a second crop of methyl tetronate was obtained using 

ether/petrol as recrystallising solvent. m.p. 6TC; YmaxCCDC13 solution) 3154, 

3134, 2984, 2942, 2872, 1785, 1745, 1636, 1243, 1056cm-I; o(IH)(400MHz) 

5.12 (lH, s, C=CHC=O), 4.64 (2H, s, CH2COC=O), 3.91 (3H, s, OCH3); 

o(I3C)(lOOMHz) 180.3 (C=O), 173.3 (C=CHC=O), 88.8 (C=CHC=O), 67.7 

(H2COC=O), 59.4 (OCH3); MS (EI) m/z 114 (M+, 70%), 69 (M+-C02H, 100). 

5-(1-Hydroxy-2-benzyloxy-cyclohexyD-4-methoxy-5H-furan-2-one75 (163) 
MeO 

0 

To a stirred solution of butyl lithium (l.lml, 1.76mmol) in THF (lOml) at -78°C 

was added a cooled solution of tetronate (159) and the mixture stirred for 4h 

before the addition of 2-benzyloxycyclohexanone (48) (0.294g, 1.44mmol) in 

THF (2ml) at -78°C. The mixture allowed to warm to room temperature and after 

12h (tic 6:1 petrol:ether) the reaction was quenched with sat. NH4Cl, extracted 

with ethyl acetate, dried (MgS04) and concentrated to afford a yellow oil which 

was subsequently purified by flash column chromatography (6: 1 petrol:ether) to 

afford the desired product (163) (0.242g, 53.9%) existing as a 1.3:1 mixture of 

isomers. Major isomer: YmaxCCDC13 solution) 3154, 3132, 3032, 2941, 2864, 
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1794, 1749, 1626, 1244, 1053cm-l; ()(IH)(400MHz) 7.34 (5H, m, C6H5), 5.12 

(lH, s, C=CHC=O), 5.06 (lH, s, HCOC=O), 4.66 & 4.55 (lH each, AB system, J 

= 11.2Hz, OCH2C6H5), 3.89 (3H, s, OCH3), 3.69 (lH, m, CHOCH2C6H5), 2.56 

(l H, br, OHJ, 1.92-1.26 (8H, m, CH2CH2CH2CH2CHOCH2C6Hs); 

()(13C)(lOOMHz) 182.1 (C=O), 172.3 (C=CHC=O), 138.1 (Ar), 128.4 (Ar), 127.9 

(Ar), 127.8 (Ar), 90.1 (C=CHC=O), 79.7, 78.2, 74.5, 71.3 (H2COC=0), 59.7 

(OCH3), 28.1, 26.0, 23.5, 20.0; MS (CI, (NH3)) mlz 319 (MH+, 7%), 253 (MH+

(CH2)4CH(OH)CH(OCH2C6H5)-, 1 00); HRMS (CI) C 18H 2305 mlz Calc. 

319.1545; Found 319.1545. Minor isomer: Ymax(CDC13 solution) 3562,2943, 

2864, 1746, 1625, 1354, 1243cm-I; ()(1H)(400MHz) 7.38-7.23 (5H, m, C6Hs), 

4.81 (lH, s, CHC=O), 4.50 (lH, s, CHCOH), 4.41 & 4.30 (lH each, AB system, 

J1 = 10.8Hz, OCH2C6Hs), 3.45 (lH, m, CHOCH2C6Hs), 3.24 (3H, s, OCH3), 

2.94 (lH, br, OH), 2.09-1.12 (8H, m, (Cfu)4COH); (13C)(400MHz) 182.9 

(C=O), 172.5 (C=CHC=O), 137.9 (Ar), 128.3 (Ar), 128.1 (Ar), 127.8 (Ar), 87 

(C=CHC=O), 81.6, 76.2, 76.1, 70.4 (H2COC=O), 58.8 (OCH3), 33.9, 26.0, 23.4, 

20.2; MS (CI, (NH3)) m/z 336 (M+NH4+, 38%), 319 (MH+, 87), 222 (M+NH4+

CH20C(O)CH=C(OCH3)-), 132 (M+NH4+-(CH2)4CH(OH)CH(OCH2C6H5)-, 

100); HRMS (CI) C1gH2305 mlz Calc. 319.1545; Found 319.1545. 

Attempted Allylation of Tetronate (163) (165) 

MeO 

To a stirred solution of tetronate (153) (O.IOg, 0.33mmol) in ether (5ml) at -78°C 

was slowly added allylmagnesium bromide (0.40ml, 0.40mmol). After 4h (tic 

10: 1 petrol:ether) the reaction was quenched with sat. NH4Cl, extracted with 

ether, dried (MgS04) and concentrated to afford a yellow oil which was 

subsequently purified by flash column chromatography (1 0: 1 petrol: ether) to 

afford a mixture of compounds including di-allylated products. 
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Attempted Preparation of 5-( 1-Trimethylsilyloxy-2-benzyloxy-cyclohexyl)-4-

methoxy-5H-furan-2-one58 (166) 
MeO 

To a solution of alcohol (163) (0.09g, 0.29mmol) in THF (3ml) was added 

triethylamine (0.05ml, 0.35mmol) and trimethylsilyl triflate (0.07ml, 0.35mmol) 

at 0°C. The mixture was then allowed to warm to room temperature and followed 

by tlc (2: 1 petrol:ethyl acetate). After 2h the mixture was quenched with water, 

extracted with ethyl acetate, dried (MgS04) and concentrated to afford O.Olg of 

an alkene (167) upon flash column chromatography (2: 1 petrol:ethyl acetate). 

Attempted Preparation of 5-0-Trimethylsilyloxy-2-benzyloxy-cyclohexyl)-4-

methoxy-SH-furan-2-one (166) 

0 

To a solution of alcohol (163) (0.12g, 0.37mmol) in THF (3ml) was added 

triethylamine (0.05ml, 0.40mmol) and trimethylsilyl chloride (0.07ml, 0.59mmol) 

at 0°C. The mixture was then allowed to warm to room temperature and followed 

by tlc (2: 1 petrol:ethyl acetate). There was no reaction after 4h so the mixture 

was quenched with water, extracted with ethyl acetate, dried (MgS04) and 

concentrated to afford 0.09g (73.2%) recovered starting material (163) upon flash 

column chromatography (2: 1 petrol:ethyl acetate). 
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5-( 1 .2-dihydroxy-cyclohexyl)-4-methoxy-5H -furan-2-one (168) 

MeO 

0 

The tetronate (163) (0.05g, O.l5mmol) was dissolved in methanol (lml) and 

added, via cannula, to a suspension of palladium hydroxide (0.002g, 0.03mmol) 

in methanol ( l ml). The mixture was degassed and stirred vigorously for 2h under 

hydrogen. The mixture was filtered through a pad of celite, washed with 

methanol and concentrated to afford a yellow liquid which was purified by flash 

column chromatography (ethyl acetate) to afford the diol (168) (0.029g, 84.8%) 

as a waxy solid. Major isomer: m.p. 156°C; YmaxCKBr disc) 3531 (OH), 3431 

(OH), 2939,2855, 1724 (C=O), 1619 (C=C) cm-1; o(lH)(400MHz) 5.10 (lH, s, 

C=CHC=O), 4.89 (lH, s, HCOC=O), 3.90 (3H, s, OCH3), 3.64 (IH, m, CHOH), 

2.70 (lH, br, HOCCOC=O), 2.13 (lH, br d, J 1 = 6.8Hz, 

HOCHC(OH)C(H)OC=O), 1.82-1.04 (8H, m, CH2CH2CH2CH2COH); 

o(l3C)(lOOMHz) 181.3 (C=O), 171.9 (C=CHC=O), 89.5 (C=CHC=O), 82.4, 

74.5, 70.3 (HCOC=O), 59.6 (OCH3), 31.3, 30.4, 23.8, 19.8; MS (EI) m/z 229 

(MH+, 13%), 115 (MH+-(CH2)4C(H(OH)CH(OH)-, 100); HRMS (EI) 

C11H 170smlz Calc. 229.1076; Found 229.1076. 

Attempted Preparation of (170) 

A catalytic amount of osmium(IV) oxide (0.03ml, 0.03mmol), water (0.03ml, 

0.03mmol) and NMO (0.05g, 0.41mmol) was added to a solution of tetronate 

(163) in tbutanol (lml). The mixture was stirred at 30oC for 16h however no 

reaction was shown to have taken place (tic 2:1 petrol:ethyl acetate) so excess 

sodium metabisufite was added and the mixture stirred for 0.5h. The slurry was 
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filtered through a pad of celite and concentrated to afford a yellow oil which was 

purified by flash column chromatography to afford 0.07g (82.8%) recovered 

starting material (163). 

Attempted Preparation of (171) 

0 

PTSA (3mg, 0.02mmol) was added to a mixture of tetronate (163) (0.05g, 

0.16mmol) and ethylene glycol (0.02g, 0.31 mmol) in benzene (2ml). The 

mixture was heated to reflux for 27h however no reaction occurred (tic 2:1 

petrol:ethyl acetate) and the reaction was quenched with sat. NaHC03, extracted 

with ethyl acetate, dried (MgS04) and concentrated to afford only recovered 

starting material (163). 

4-Phenyl-1 .2.4-triazoline-3.5-dione 77 (172) 
0 

NJ{, 
II N-Ph N-n 

0 

Gaseous nitrogen tetroxide was passed through a narrow tube to a cold (OOC) 

slurry of 4-phenyl urazole (173) ( l.Og, 8.54mmol) and anhydrous sodium 

sulphate (16.0g, 113mmol) in DCM (50ml) until all the urazole had dissolved. 

The solution was maintained at OOC during the reaction then it was filtered, 

washed with DCM and concentrated to afford 0.99g, 95.6% desired product (172) 

which was used without further purification. Ymax (KBr disc) 2945, 2940, 1738 

(C=O); 8(1H)(400MHz) 7.51-7.38 (6H, m, C6H5 ); 8(13C)(IOOMHz) 157.7 

(C=O), 129.9 (Ar), 129.5 (Ar), 129.4 (Ar), 123.9 (Ar). 



4-Phenyl-2.4.6-triaza-tricyclo<5.2.2.02,6>undec-8-ene-3.5-dione 76 (174) 

~-Nyo 
}-N.,Ph 

0 

To a solution of 1 ,4-cyclohexadiene (0.14g, 1.7mmol) in DCM (1 ml) at -78°C 

was added a cooled solution of triazolinone (172) (0.15g, 0.86mmol) in DCM 

(5ml). Almost immediately a colour change from deep red to yellow was 

observed, whereupon the mixture was concentrated to afford 0.18g (82.1%) 

desired product (174) after recrystallisation from ethyl acetate/petrol. m.p. 177-

159 

179oC; Ymax(KBr disc) 2958,2928,2856, 1764 (C=O), 1705 (C=C), 1497, 1410, 

1261cm-l; 8(1H)(400MHz) 7.44-7.34 (5H, m, C6H5), 6.51 (2H, m, CH=CID, 

4.96 (2H, m, 2CHN), 2.21 (2H, m, HCHHCH), 1.61 (2H, m, HCHHCH); 

8(13C)(lOOMHz) 171.0 (C=O), 160.8 (C=O), 136.7 (Ar), 128.6 (Ar), 128.2 (Ar), 

122.6 (Ar), 118.0, 113.8, 89.9, 59.2, 25.5, 24.7; MS (CI, (NH3)) m/z 273 

(M+NH4+, 96%), 256 (MH+, 100); HRMS (CI) C14H14N302m/z Calc. 256.1086; 

Found 256.1086.; Analysis Found: C, 65.69%; H, 5.20%; N, 16.54%. 

C14Hl3N302 requires C, 65.87%; H, 5.13%; N, 16.46%. 

10. 11-Dihydroxy-4-phenyl-2.4.6-triaza-tricyclo<5.2.2.02,6>undec-8-ene-3.5-

dione76 (175) 

To a stirred solution of cis-cyclohexadiene diol ( 42) (0.55ml, 0.89mmol) in DCM 

(I ml) was added the triazolinone (172) (0.23g, 1.33mmol) in DCM (5ml) at 

-40°C. The reaction was monitored by nmr and after 2h the mixture was 

concentrated to afford 0.058g (22.6%) desired diol (175) as a white solid after 

purification by flash column chromatography (neat ethyl acetate). m.p. 228°C; 
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YmaxCKBr disc) 3276 (OH), 1768, 1704, 1610, 1496, 1413, 1278cm- 1; 

8(1H)(400MHz) 7.49-7.37 (5H, m, C6H5), 6.51 (2H, m, CH=CH), 5.30 (2H, m, 

2HCN), 4.77 (2H, m, 2CHOH), 3.78 (2H, br, 20H); 8(13C)(IOOMHz) 170.3 

(C=O), 154.3 (C=O), 131.7, 130.3 (Ar), 129.0 (Ar), 128.1 (Ar), 126.0 (Ar), 61.5, 

55.9; MS (EI) m/z 287 (M+, 16%), 227 (M+-(CH20Hh, 100); HRMS (EI 

C14H13N304m/z Calc. 287.0910; Found 287.0910. 

1 0-( 4-methoxyphenyn-4-phenyl-9. 11-dioxa-2.4.6-

triazatetracyclo<5.5.2.02...6..o8.12>tetradec-13-ene-3.5-dione76,78 (180) 

MeO~ 
V'\--o 

~.Nyo 
}-N .. Ph 

0 

To a solution of para-anisaldehyde dimethyl acetal (0.89g, 4.89mmol) and cis

cyclohexadiene diol (42) (0.55ml, 0.89mmol) in deuterated chloroform (0.6ml) 

was added para-toluene sulphonic acid (0.017g, 0.089mol) at -78°C. The mixture 

was allowed to warm to -40oC wherupon aliquots were removed and quenched 

with NaHC03 then analysed by NMR. After 1.5h the reaction had gone to 

completion and NaHC03 (0.0 15g, 0.17mmol) was added before the addition of 

the triazolinone (172) (0.23g, 1.33mmol) in DCM (5ml) at -40°C. Again the 

reaction was monitored by nmr and after a further 2h the mixture was 

concentrated to afford (0.217g, 60.2%) of a mixture of isomers (1.3:1) after 

recrystallisation from ethyl acetate/petrol. Major isomer: m.p. 207-209°C; 

YmaxCKBr disc) 2966, 2940, 2896, 1772 (C=O), 1716 (C=C), 1406, 1176, 

1139cm-l; 8(1H)(400MHz) 7.45- 7.24 (5H, m, C6H5), 7.33 (2H, d, J = 8.8Hz, 

Ar), 6.88 (2H, d, J = 8.8Hz, Ar), 6.53 (2H, t, J = 3.6Hz, CH=CH), 5.76 (IH, s, 

ArCH(O)O), 5.27 (2H, m, 2CHN), 4.70 (2H, m, 2CHOC), 3.79 (3H, s, OCH3); 

8(13C)(lOOMHz) 161.0 (C=O), 155.6 (C=O), 131.1, 130.1, 129.2, 128.7, 127.4, 
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126.8, 125.5, 113.8, 105.6, 74.7, 74.0, 55.3, 52.2; MS (CI, (NH3)) m/z 423 

(M+NH4+, 23%), 406 (MH+, 11), 137 (MH+-(CH3)zC(O)O, 100); HRMS (CI) 

C22H24N40sm/z Calc. 423.1668; Found 423.1668.; Analysis Found: C, 64.99%; 

H, 4.73%; N, 10.37%. C22H 1gN305 requires C, 65.18%; H, 4.72%; N, 10.36%. 



Appendix 
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i. all research colloquia, seminars and lectures arranged by the Department 

of Chemistry during the period of the author's residence as a postgraduate 

student; 

ii. lectures organised by Durham University Chemical Society; 

iii. details of the postgraduate induction course; and 

iv. all research conferences attended and papers presented by the author 

during the period when research for the thesis was carried out. 

Colloquia, Lectures and Seminars From Invited Speakers 

1993-1996 

September 13 Prof. Dr. A D. Schluter, Freie Universitat Berlin, Germany* 

Synthesis and Characterisation of Molecular Rods and Ribbons. 

September 13 Prof. K. J. Wynne, Office of Naval Research, Washington, U.S.A 

Polymer Suiface Design for Minimal Adhesion 

September 14 Prof. J. M. DeSimone, University of North Carolina, Chapel Hill, 

U.S.A 

Homogeneous and Heterogeneous Polymerisations in 

Enviromentally Responsible Carbon Dioxide. 

September 28 Prof. H. Ila., North Eastern University, India* 

October 4 

Synthetic Strategies for Cyclopentanoids via OxoKetene 

Dithiacetals. 

Prof. F. J. Feher, University of California at Irvine 

Bridging the Gap between Suifaces and Solution with 

Sessilquioxanes. 



October 14 Dr. P. Hubberstey, University of Nottingham* 

Alkali Metals: Alchemist's Nightmare, Biochemist's Puzzle and 

Technologist's Dream. 

October 20 Dr. P. Quayle, Unversity of Manchester* 

Aspects of Aqueous Romp Chemistry. 

October 23 Prof. R. Adams , University of S. Carolina* 
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The Chemistry of Metal Carbonyl Cluster Complexes Containing 

Platinum and Iron, Ruthenium or Osmium and the Development of 

a Cluster Based Alkyne Hydrogenating Catalyst. 

October 27 Dr. R. A. L. Jones , Cavendish Laboratory* 

'Perambulating Polymers'. 

November 10 Prof. M. N. R. Ashfold, University of Bristol 

High-Resolution Photofragment Translational Spectroscopy: A 

New Way to Watch Photodissociation. 

November 17 Dr. A. Parker , Laser Support Facility 

Applications of Time Resolved Resonance Raman Spectroscopy to 

Chemical and Biochemical Problems. 

November 24 Dr. P. G. Bruce , University of St. Andrews* 

Synthesis and Applications of Inorganic Materials. 

December 1 Prof. M. A. McKervey , Queens University, Belfast* 

Functionlised Calixerenes. 

December 8 Prof. 0. Meth-Cohen, Sunderland University* 

Friedel's Folly Revisited. 

December 16 Prof. R. F. Hudson, University of Kent 

Close Encounters of the Second Kind. 

1994 

January 26 Prof. J. Evans, University of Southhampton* 

Shining Light on Catalysts. 



February 2 

February 9 

Dr. A. Masters, University of Manchester* 

Modelling Water Without Using Pair Potentials. 

Prof. D. Young, University of Sussex* 

Chemical and Biological Studies on the Coenzyme Tetrahydrofolic 

Acid. 

February 16 Prof. K. H. Theopold, University of Delaware, U.S.A 

Paramagnetic Chromium Alkyls: Synthesis and Reactivity. 

February 23 Prof. P.M. Maitlis , University of Sheffield* 

Why Rodium in Homogenous Catalysis. 

March 2 

March 9 

March 10 

March 25 

Imaging 

April28 

May 12 

October 5 

Dr. C. Hunter, University of Sheffield* 

Non Covalent Interactions between Aromatic Molecules. 

Prof. F. Wilkinson, Loughborough University of Technology 

Nanosecond and Picosecond Laser Flash Photolysis. 

Prof. S.V. Ley, University of Cambridge* 

New Methods for Organic Synthesis. 

Dr. J. Dilworth, University of Essex 

Technetium and Rhenium Compounds with Applications as 

Agents. 

Prof. R. J. Gillespie, McMaster University, Canada* 

The Molecular Structure of some Metal Fluorides and 

OxoFluorides: Apparent Exceptions to the VSEPR Model. 

Prof. D. A. Humphreys, McMaster University, Canada 

Bringing Knowledge to Life 

Prof. N. L. Owen, Brigham Young University, Utah, USA 

Determining Molecular Structure - the INADEQUATE NMR way 

October 19 Prof. N. Bartlett, University of California* 

Some Aspects of Ag(Il) and Ag(III) Chemistry 
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November 2 Dr P. G. Edwards, University of Wales, Cardiff* 

The Manipulation of Electronic and Structural Diversity in Metal 

Complexes - New Ligands 

November 3 Prof. B. F. G. Johnson, Edinburgh University* 

Arene- Metal Clusters- DUCS Lecture 

November 9 Dr J. P. S. Badyal, University of Durham 

Chemistry at Suifaces, A Demonstration Lecture 

November 9 Dr G. Hogarth, University College, London* 

New Vistas in Metal Imido Chemistry 

November 10 Dr M. Block, Zeneca Pharmaceuticals, Macclesfield* 

Large Scale Manufacture of the Thromboxane Antagonist 

Synthase Inhibitor ZD 1542 

November I6 Prof. M. Page, University of Huddersfield* 

Four Membered Rings and b-Lactamase 

November 23 Dr J. M. J. Williams, University of Loughborough* 

New Approaches to Asymmetric Catalysis 

December 7 Prof. D. Briggs, ICI and University of Durham 

Suiface Mass Spectrometry 

1995 

January II 

January I8 

January 25 

February I 

Prof. P. Parsons, University of Reading* 

Applications of Tandem Reactions in Organic Synthesis 

Dr G. Rumbles, Imperial College, London 

Real or Imaginary 3rd Order non-Linear Optical Materials 

Dr D. A. Roberts, Zeneca Pharmaceuticals* 

The Design and Synthesis of Inhibitors of the Renin-Angiotensin 

System 

Dr T. Cosgrove, Bristol University 

Polymers do it at Inteifaces 



February 8 
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Dr D. O'Hare, Oxford University 

Synthesis and Solid State Properties of Poly-, Oligo- and 

Multidecker Metallocenes 

February 22 Prof. E. Schaumann, University of Clausthal* 

March I 

October II 

October I3 

October I8 

October 25 

Silicon and Sulphur Mediated Ring-opening Reactions of Epoxide 

Dr M. Rosseinsky, Oxford University 

Fullerene Intercalation Chemistry 

Prof. P. Lugar, Frei Univ Berlin, FRG 

Low Temperature Crystallography 

Prof. R. Schmultzer, Univ Braunschwieg, FRG 

Calixarene-Phosphorus Chemistry: A New Dimension in 

Phosphorus Chemistry 

Prof. A. Alexakis, Univ. Pierre et Marie Curie, Paris* 

Synthetic and Analytical Uses of Chiral Diamines 

Dr.D.Martin Davies, University of Northumbria* 

Chemical reactions in organised systems. 

November I Prof. W. Motherwell, UCL London* 

New Reactions for Organic Synthesis 

November 3 Dr B. Langlois, University Claude Bernard-Lyon* 

Radical Anionic and Psuedo Cationic Trifluoromethylation 

November 8 Dr. D. Craig, Imperial College, London* 

New Stategies for the Assembly of Heterocyclic Systems 

November 15 Dr Andrea Sella, UCL, London 

Chemistry of Lanthanides with Polypyrazoylborate Ligands 

November 17 Prof. David Bergbreiter, Texas A&M, USA 

Design of Smart Catalysts, Substrates and Surfaces from Simple 

Polymers 



November 22 Prof. I Soutar, Lancaster University 

A Water of Glass? Luminescence Studies of Water-Soluble 

Polymers. 

November 29 Prof. Dennis Tuck, University of Windsor, Ontario, Canada 

New Indium Coordination Chemistry 

December 8 Professor M.T. Reetz, Max Planck Institut, Mulheim* 

Perkin Regional Meeting 

1996 

January 10 

January 17 

January 24 

January 31 

February 7 

Dr Bill Henderson, Waikato University, NZ* 

Electrospray Mass Spectrometry - a new sporting technique 

Prof. J. W. Emsley, Southampton University 

Liquid Crystals: More than Meets the Eye 

Dr Alan Armstrong, Nottingham Univesity* 

Alkene Oxidation and Natural Product Synthesis 

Dr J. Penfold, Rutherford Appleton Laboratory, 

Soft Soap and Surfaces 

Dr R.B. Moody, Exeter University* 

Nitrosations, Nitrations and Oxidations with Nitrous Acid 

February 12 Dr Paul Pringle, University of Bristol 

Catalytic Self-Replication of Phosphines on Platinum( 0) 

February 14 Dr J. Rohr, Univ Gottingen, FRG* 
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Goals and Aspects of Biosynthetic Studies on Low Molecular 

Weight Natural Products 

February 21 Dr C R Pulham, Univ. Edinburgh 

Heavy Metal Hydrides - an exploration of the chemistry of 

stannanes and plumbanes 

February 28 Prof. E. W. Randall, Queen Mary & Westfield College 

New Perspectives in NMR Imaging 



March 6 

March 7 

March 12 

March 13 

April30 
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Dr Richard Whitby, Univ of Southampton* 

New approaches to chiral catalysts: Induction of planar and metal 

centred asymmetry 

Dr D.S. Wright, University of Cambridge 

Synthetic Applications of Me2N-p-Block Metal Reagents 

RSC Endowed Lecture -Prof. V. Balzani, Univ of Bologna 

Supramolecular Photochemistry 

Prof. Dave Garner, Manchester University 

Mushrooming in Chemistry 

Dr L.D.Pettit, Chairman, IUPAC Commission of Equilibrium Data 

pH-metric studies using very small quantities of uncertain purity 

Invited specially for the graduate training programme. 

* Those attended by the author. 



First Year Induction Courses 
This course consists of a series of one hour lectures on the services available in 

the department. 

Departmental Organisation -

Safety Matters -

Electrical Appliances -

Chromatography and Microanalysis -

Absorptiometry and Inorganic Analysis -

Library Facilities-

Mass Spectroscopy -

Nuclear Magnetic Resonance Spectroscopy -

Glass-blowing Techniques -

Research Conferences Attended 

December 1993 

December 19934 

Modem Aspects of Stereochemistry 

Sheffield University 

Modem Aspects of Stereochemistry 

Sheffield University 

Dr. E.J.F. Ross 

Dr. G.M. Brooke 

Mr. B. T. Barker 

Mr. T.F. Holmes 

Mr. R. Coult 

Mr. R.B. Woodward 

Dr. M. Jones 

Dr. R.S. Matthews 

Mr. R. Hart and 

Mr. G. Haswell 

September 1995 gth RSC-SCI Medicinal Chemistry Symposium 

Cambridge. 

July 1996 BOSS-6 
Gent, Belgium. 
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