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Abstract 

Chiral interactions of compounds with therapeutic interest and its study predicting and 

interpreting transport process across biological barriers represents one of the most 

important topics in research. This thesis is devoted to the study of chiral ion transfer at 

the interface between two immiscible electrolytes solutions (ITIES), as a promising 

method of simplifying chiral detection and separation. 

As a proof of concept, for the study of chiral compounds at liquid|liquid interface, three 

different approaches were used: i) chiral stationary phases based on modified 

cyclodextrins, AcαCD and AcβCD, ii) chiral acute phase protein, α1-acid-glycoprotein 

(AGP) and iii) thick film electrode modified with an ethylated cyclodextrin ferrocene 

(EtCDFc). The chiral selectors used, AcαCD, AcβCD, AGP and EtCDFc display complex 

three-dimensional structures that are capable of recognising specifically the enantiomers 

of a drug molecule, with different affinity. Cyclic voltammetry (CV) and differential pulse 

voltammetry (DPV) were used to investigate the enantioselective interaction between the 

chiral molecules. 

In the study of chiral ion transfer using AcαCD and AcβCD, as a chiral organic phase, it was 

observed that the two lipophilic CDs facilitated the transfer of ephedrine ions by the 

formation of inclusion complexes. The enantioselectivity was achieved as the complexes 

between the protonated ephedrine ions and the CDs lead two different signal responses 

as a result of different affinities in the complex formation. Furthermore, the positive 

enantiomer (+)EPH+ showed to be consistently the cation being transferred at less 

positive potentials suggesting that it binds preferentially with the chiral selectors, in 
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comparison with (-)EPH+, indicating that  its transfer is more facile.  The difference in 

stability constant between the (+)EPH+ and (-)EPH+ complexes was found to be 1.41±0.1 

for AcβCD and 1.20±0.1 for AcαCD. 

When investigating the chiral interactions between the AGP and the three basic drugs 

(propranolol, lidocaine and procaine hydrochloride), it was found, that the plasma protein 

binds to the protonated drugs with clear different affinities. The formation of a complex 

between the drugs and AGP was shown as a decrease in the CV and DPV responses, 

corresponding to the reduction in the transfer of the cationic drugs, as only the unbound 

(free) drug was able to be transferred across the liquid|liquid interface. The bound and 

unbound drug concentration was estimated in a different range of concentrations based 

on the responses obtained in the presence and absence of the protein. The differences in 

current responses, observable in the measurements, lead to chiral discrimination 

between R- and S-propranolol. Scatchard analysis was employed to calculate the 

association constant and the number of binding sites of the drugs with AGP. The 

calculated association constants were 2.7x105 M-1 for S- and 1.3x105 M-1 for R-propranolol, 

which were significantly higher than those for lidocaine, 1.2x104 M-1, and for procaine, 

8.4x103 M-1. This showed that AGP has more affinity for R- and S-propranolol than 

lidocaine or procaine hydrochloride. 

A thick film modified electrode with a chiral redox probe, ethylated ferrocene cyclodextrin 

(EtCDFc) was used to study chiral ion transfer across the liquid|liquid interface coupled 

to a redox reaction. EtCDFc has a dual role, a redox active moiety and a cyclodextrin 

moiety which is able to form chiral complexes. Thus, the redox reaction of EtCdF was 

accompanied by the complexation of mandelic acid enantiomers with the cyclodextrin 

part of EtCDFc, with the two reactions mutually influencing each other.  In addition the 

thick film ensured that the generated product of the molecular probe was within the 
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diffusion layer and away from the aqueous|organic solvent interface, so that the charge 

neutrality of the organic film was only maintained by the presence of ions from the 

aqueous phase.  

 
Keywords: Liquid|liquid interface, chiral discrimination, ion transfer, cyclodextrins, 

α1-acid-glycoprotein.  
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“Há quem passe a vida inteira lendo sem conseguir ir para além da leitura, ficam agarrados às páginas, não 

entendem que as palavras são só pedras colocadas para atravessarmos a corrente de um rio, e se estão ali é para 

podermos chegar à outra margem, pois o que importa é a outra margem.” 

 

“Some people spend their entire lives reading but never get beyond reading the words on the page, 

they do not understand that the words are merely stepping stones placed across a fast-flowing 

river, and the reason they are there is so that we can reach the farther shore, it's the other side that 

matters.” 

 

 

 

― José Saramago (1922-2010) 

Portuguese novelist and man of letter, Nobel Prize for literature in 1998 

 

http://www.goodreads.com/author/show/9810.Albert_Einstein
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Chapter 1 

Introduction 

 Chirality has always been an important issue for pharmaceutical research and industries, 

because most organic compounds and biological molecules, including many drugs and 

food additives, own chirality.1 The presence of asymmetric centre(s) in chiral compounds 

gives rise to optical activity that can be responsible for the different properties of the 

enantiomers.  

In pharmacology, chirality is an important fact in drug efficacy. About 56% of the drugs in 

use are chiral compounds, and about 88% of these chiral synthetic drugs are 

administrated as racemates.2,3 Although the S or R isomers have the same substituent 

atoms or groups, qualitatively or quantitatively may have similar or different 

pharmacological effects, which may relate to their stereoselective pharmacokinetics or 

pharmacodynamics. The differences in the enantiomer pharmacodynamic activity and 

pharmacokinetic property are related to their different affinity or intrinsic activity at 

receptor site, thus the body exhibits different physiological responses to different 

enantiomers. One enantiomer may produce the desired therapeutic activities, while the 

other may be inactive or exhibit serious side effects. The elucidation of chiral interactions 

represents a significant challenge for a number of applications including drug interactions 

and toxicity measurements. 
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In recent years, chiral detection and separation has been achieved by a variety of methods 

such as: liquid chromatography (LC),4–9 high pressure liquid chromatography (HPLC),7-9 

gas chromatography (GC),13–17 capillary electrophoresis (CE),18–21 nuclear magnetic 

resonance spectroscopy (NMR),13,22–26 circular dichroism (CD)27–29 and potentiometry.30–33 

While the chromatographic methods can be mostly used for the qualitative 

enatioanalysis,34 enantioselective potentiometry and amperometry (potentiometric 

membrane electrodes and amperometric biosensors) can be used with a high reliability 

for the quantitative enantioanalysis.35,36 All the enantioselective techniques share a 

common goal, to construct an effective chiral selective system by the presence of a chiral 

selector able to interact with both enantiomers although with different affinities. 

However, the selection of the chiral selector is still one of the most critical tasks in 

molecular recognition of enantiometric pairs.1  

In my PhD work, I characterized dynamics of chiral ion transport in the presence and 

absence of recognition events using liquid-liquid interface approaches as a challenging 

alternative to the commonly used techniques. Interactions at a liquid|liquid interface 

studied by ion-amperometric measurements, rather than potentiometric measurements, 

are more sensitive, allow access to the estimation of enantioselective Gibbs free energies 

of transfer between an aqueous and a lipophilic phase and can be adapted to enable 

separation and detection. 

The interface between two immiscible electrolyte solutions (ITIES) can be viewed as an 

artificial model of a cell membrane (Figure 1.1); it can be used to study phenomena of 

biological relevance by means of their electrochemical process. The unique properties of 

ITIES can be used to understand electrochemically controlled interfacial ion recognition 

and transfer, by the control of the interfacial potential.  
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Figure 1.1 – A schematic illustration of a simple model of the biological membrane. 

Reproduced with permission from Santos et al.37  

The purpose of the research presented in this thesis was to study the interaction between 

chiral molecules and ligands with high sensitivity, simplicity and low cost requirements, 

so that electrochemical approaches can be seen as an alternative method for the analysis 

of chiral compounds. Different chiral recognition events were examined qualitatively and 

quantitatively, demonstrating that the interfacial chiral interactions at liquid|liquid 

interface can be used as a sensing principle. Although, the focus of my research was 

primarily in the detection of mixtures of chiral enantiomers, the proof of concept was 

achieved with pure enantiomers. 

In chapter 2 is described the general theory of the charge transfer reactions at the ITIES 

and the outline of various methodologies that electrochemistry at liquid|liquid interface 

can offer for analytical purposes. It focuses on the interfacial structure and kinetics as well 

as the various applications of ITIES and recent advances in the field, which serves as a 

background of the concepts that were employed in the research presented in this thesis. 

Chapter 3 shows the experimental details of each of the experimental chapters. Materials, 

instrumentations and detailed experimental information are given. A description of the 

electrochemical techniques used is also given. 
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In chapter 4 the study of the discrimination between the enantiomers of a chiral molecule, 

ephedrine hydrochloride, is presented. Two different lipophilic chiral stationary phases, 

Hexakis(2,3,6-tri-O-Acetyl)--cyclodextrin (AcCD) and Heptakis(2,3,6-tri-O-Acetyl)-β-

cyclodextrin(AcβCD), to characterize the transfer of the chiral ions and the chiral 

interactions, were used. 

Chapter 5 shows the transfer of the enantiomers of a β-blocker, propranolol 

hydrochloride in the presence and the absence of a chiral acute phase plasma protein, 

α1-acid glycoprotein. The approach was extended to other molecules, anaesthetic drugs, 

lidocaine and procaine. 

The study of a chiral acid, mandelic acid, at modified thick electrode is shown in Chapter 

6. A modified thick electrode containing a cyclodextrin modified with ferrocene was used 

as a transducer to differentiate between the R- and S- enantiomers.   

In chapter 7 of this thesis are presented general conclusions, together with possible future 

work. Suggestions of further directions and improvements for the study of chiral 

interactions at liquid|liquid interface are discussed. 
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Chapter 2 

Fundamental aspects of electrochemistry at 

the liquid|liquid interface 

 This chapter presents an introduction to electrochemistry at liquid|liquid interfaces, 

which is an important aspect of this thesis. The structure, types and the various charge 

transfer reactions at the interface are detailed. 
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2.1 Introduction  

The interface between two immiscible liquids is a unique environment and has 

tremendous significance in the real world and life in general. The processes that occur at 

these interfaces underlie many important phenomena in chemistry and biology. The 

transport and exchange of mass across the liquid interface between lipid bilayer 

membranes and aqueous body fluids play key roles in life activity. All energy conversion 

processes in living organisms occur by nature at liquid interfaces.1,2  

Liquid|liquid interfaces, also named Interfaces between Two Immiscible Electrolyte 

Solutions (ITIES) are formed between two liquid solvents of low (ideally zero) mutual 

miscibility.3 One of these solvents is usually water, and the other is a polar solvent with 

moderate or high dielectric permittivity. The ITIES is by nature, a molecular interface 

characterised by very unique electrical, structural, dynamical and thermodynamic 

properties, which are different from those of the bulk liquids.1,2,4 

Electrochemical studies at liquid|liquid interfaces have evolved into a well-established 

scientific field during the past decades. Many traditional electrochemical experiments and 

theoretical approaches of interfacial chemistry have contributed much to the actual 

understanding of the phenomena occurring at the ITIES.   

The studies at liquid|liquid interfaces using electrochemical methods started in the 

beginning of the last century by Nernst and Riesenfeld,5 who observed the transfer of ions 

during the passage of current through water-phenol-water interface. They were the first 

to investigate the effect of electric current flow across the ITIES.3 The interest in the field 

spread when Cremer6 pointed out in 1906 the analogy between water-oil-water systems 

with biological membranes and their surrounding electrolytes. The liquid|liquid interface 

became a model for the investigation of bioelectrical potentials and currents observed in 
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the living cells. In 1939, Verwey and Niessen7 introduced the first theoretical study on 

ITIES regarding the electrical double layer and potential distribution. This study 

represented a physical model of the ITIES as two back-to-back Gouy-Chapman8,9 diffuse 

layers.  

The 1970s were marked by two key contributions that made the field of ITIES an 

integrant part of electrochemistry. The first was an experimental method by Gavach10 for 

realizing that ITIES could be polarized and the Galvani potential difference between the 

two phases could be used as a driving force for the charge transfer reactions.11 The second 

contribution was by Koryta12 who has developed the concept of ideally polarized ITIES, 

demonstrating that the ITIES were polarisable in the same way as the interface between 

metallic electrodes and electrolyte solution. It was ensured that techniques commonly 

used for the measurement of electron transfer at solid|liquid interfaces could be applied 

in the study of ion transfer processes through ITIES, techniques such as: cyclic 

voltammetry,13 chronoamperometry,14 polarography,15 differential pulse stripping 

voltammetry16 and ac voltammetry.17  

Another important milestone was added by Samec et al.13,18–20 with the introduction of the 

four electrode potentiostat with iR drop compensation by means of a positive feedback 

loop. It opened a new route to use controlled potential techniques for the study of charge 

transfer reactions at the ITIES. Meanwhile, Koryta et al.21 established the theoretical 

background for a series of electrochemical cells and pioneered the study of facilitated ion 

transfer by ionophores. 

In 1986, Taylor and Girault22 introduced the micro sized ITIES by means of supporting the 

interface at the tip of a glass of a micropipette. Another method of fabricating a 

micro-ITIES was developed by Campbell and Girault23 in 1989, which developed a 

micro-hole, in a thin inert membrane using a UV laser photoablation to support the 
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interface. The micro-ITIES has been extensively employed in amperometric and 

potentiometric sensors.24–26  

More recently work on modified liquid|liquid interface with lipids27,28 and 

nanoparticles29–31 have been reported. Droplet electrodes32,33 and three-phase junctions34 

have made this field more popular and versatile. The electron transfer (ET) induced ion 

transfer (IT) reactions at three-phase junction have been employed to obtain a measure of 

lipophilicity (Log P) of different drugs at water-noctanol interfaces.33 

The study of electrochemical processes at liquid|liquid interface has progressed in a 

remarkable way in the last 30 years, and is of continuing interest to many researchers, 

because their relevance to such diverse applications. Examples include ion transport 

across biological membranes,35 drug delivery,36 behaviour of ion-selective electrodes with 

liquid membranes and similar sensors,37 extraction processes,38 phase transfer catalysis,39 

pharmacology,40,41 acid-base processes,42 charge transfer,43–46 adsorption-desorption,35 

complexation,47 modelling of interactions at biological cell membranes,48,49 solvation 

dynamics50, fundamental studies of the nature of such interface,51 and many applications 

in electroanalytical  chemistry.41,52–54 

2.2 Electrochemistry at ITIES 

Electrochemistry at the ITIES differs from the conventional electrochemical experiments 

in that the reaction under study occurs at a liquid|liquid interface rather than at a typical 

electrode|electrolyte interface. In order to describe the charge transfer reactions at 

liquid|liquid interface, the process at an electrode|electrolyte interface must first be 

considered.  

At an electrode|electrolyte interface, the interfacial potential difference arises from the 

difference in electronic energy between a redox couple present in solution and the 
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electrode. The metal can act as a source of electrons for the species in solution until the 

ionic levels of redox couple and the Fermi level55 of the metal electrode are at equilibrium. 

The result is that the metal loses (or gains) electron density; when the equilibrium is 

reached, there will be a difference in charge and therefore a difference in potential 

between the metal electrode and the solution.  

At liquid|liquid interface, the origin of the potential difference is due to the partitioning of 

the ions of a salt between the two phases. Girault and Schiffrin56 made a full treatment of 

the interfacial potential where they demonstrate that the solvation energies of the salt 

under examination, the distribution (or partition) coefficients of the salt and the electrical 

potentials which arise from the ionic partitioning, are fundamental properties that must 

be considered. In any case, the interfacial regions should be electrically neutral.  

The potential difference is the most characteristic feature of every interface and is highly 

dependent on the conditions of the thermodynamic equilibrium over the two phases. 

The main advantage of studies at liquid|liquid interface in comparison with conventional 

electrochemical experiments is that the study of charge transfer processes is not limited 

to the study of the electron transfer reactions. These charge transfer can be classified in 

three main categories: (i) ion transfer (IT), (ii) electron transfer (ET), (iii) facilitated ion 

transfer (FIT) reaction. Thus, a large number of ion transfer reactions important to 

biological systems which would be impossible to explore with conventional metal 

electrodes, can be studied using liquid|liquid electrochemistry. 
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2.3 Charge transfer reactions at the ITIES 

2.3.1 Ion transfer at the ITIES 

When two different immiscible liquids are brought in contact, a potential is established 

from the dipoles orientation in the vicinity of the interface and due to the existence of 

excess free charges. The charge carries of the two immiscible liquids will partition 

between the two phases (aqueous: w and organic: o) by transferring across the interface 

(Figure 2.1).  

 

Figure 2.1 – Transferring of Mz ion from the aqueous to the organic phase. The ionic 

charge is transferred from the aqueous phase at the potential    to the aqueous phase at 

the potential   . 

 This generates an interfacial region, in which the electrical field strength differs from zero 

so that a Galvani potential difference is established across the interface between two 

phases: 

  
                        

Where   is the inner (or Galvani potential) of the respective phase. Thus, two 

back-to-back space charged regions known as electric double layers are formed, one with 

an excess of anions, the other with an excess of cations so that the overall interfacial 

Water, 

Organic, 
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region is electrically neutral. At thermodynamic equilibrium, the equality of the 

electrochemical potential of species   in each phase is given by: 

 ̃ 
   ̃ 

            (2.2) 

The thermodynamic equilibrium is reached when the molar Gibbs energy for the species 

  is equal in both phases:  

      
     ̃ 

   ̃ 
              (2.3) 

The electrochemical potentials ( ̃ 
       ̃ 

   , represent the work required to transfer the 

ion  , from the vacuum into a phase, and can be divided into a chemical and electrical part: 

 ̃ 
    

      
                 

with 

  
    

          
                 

where   
    and   

  are the standard and chemical potentials in the water phase. R is the 

gas constant, T is the temperature,    is the charge of the species  , F is the Faraday 

constant.    is the bulk electrical potential of the water or inner potential (Galvani 

potential) and   
  is the activity of the species   in the electrified phase.  

At the liquid|liquid interface, the equilibrium condition (Eq. 2.2) is fulfilled and the 

following relationship can be obtained: 

  
          

      
    

          
      

                 

From Eq.(2.6) the  difference  in inner potential between the two phases can be expressed 

as: 

  
         

 

   
(  

      
   )  

  

   
  (

  
 

  
 )                 
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 where the difference of standard chemical potentials (  
      

     is equal to the 

standard Gibbs energy of transfer (      
       defined by the difference between the 

standard Gibbs energy of solvation of the ion   in each phase: 

      
              

            
      

      
             (2.8) 

The equation (2.7) can be rewritten, taking into account the standard Gibbs energy of 

transfer, defined as follow: 

  
   

      
     

   
 

  

   
  (

  
 

  
 )                

 

  
   

  represents the standard ion transfer potential, which is related to the standard 

Gibbs energy for the transfer of the ion   from the water (w) to the organic (o), defined 

through the equation: 

  
   

  
      

     

   
                 

It is important to mention that an ion transfer is characterised by   
   

  value, which is a 

me sure of the  o ’s re  t ve hy roph   c ty/hy rophob c ty  Subst tut  g the equ tion 

(2.10) into the equation (2.9) leads to the Nernst equation for an ion transfer reaction 

across ITIES, which is analogous to the classical Nernst equation applicable for electron 

transfer reactions at an electrode|electrolyte solution interface,  

  
     

   
  

  

   
  (

  
 

  
 )                  

For this reason, equation (2.11) is often called the Nernst equation for ion transfer at the 

ITIES, which governs the ions distribution at equilibrium between two electrified liquid 

phases. Since it is more convenient to work with concentrations rather than activities, 

equation (2.11) can be expressed in terms of concentrations. The standard transfer 



Fundamental aspects of liquid|liquid interface 

Chiral interactions and sensing at liquid|liquid interface                                                                      15 |  

potential    
   

   can be replaced by the formal potential of transfer (  
   

    in which the 

activity coefficients, γ (      c  , are included:  

  
     

   
   

  

   
  (

c 
 

c 
 )                           

where the formal potential of transfer is expressed as a function of the standard potential 

of transfer: 

  
   

     
   

  
  

   
  (

  
 

  
 )                 

2.3.2 Electron transfer at the ITIES 

Similar formalism can be applied to the case of heterogeneous electron transfer between 

redox couples across liquid|liquid interface. At the liquid|liquid interface electrons only 

can transfer from one chemical species located in one phase to a chemical species located 

in the other phase (Figure 2.2). In contrast to ion transfer reactions, electron transfer 

reactions are experimentally difficult to study at liquid|liquid interface because there are 

very few ideal systems.  

 

Figure 2.2 – Schematic diagram of a heterogeneous electron transfer reaction at the 

interface. The electronic charge is transferred from the organic phase at potential    to 

the aqueous phase at potential     

Water, 

Organic, 

+e

-e
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There are normally two requirements for such systems, (i) the potentials of the redox 

couples in both phases cannot be very different; (ii) the reactants and the products in the 

organic phase cannot be dissolved in the aqueous phase, and will not be transferred 

across the interface in their ionic forms. 

The electron transfer occurs either by external polarization of the interface or by the 

interfacial potential difference and can be represented by the following reactions: 

  
    e

      
                  

  
      

     e
                  

    
      

        
      

                   

where   
  and   

  are the reactants in the aqueous and organic phases, respectively, and 

  
  and   

  are the corresponding products in the two phases,   is the number of electrons 

exchanged during the reaction. At the equilibrium, the electrochemical potentials of the 

reactants and products are equal2: 

   ̃  

     ̃  

     ̃  

     ̃  

                  

The electrochemical potentials of the reactants and products are equal, so the Gibbs 

energy for the reaction (2.16), when the latter is electrically driven, is given by: 

       
        ̃  

     ̃  
       ̃  

     ̃  

                     

As in the case of ion transfer, Eq. (2.6) can be written to express the electrochemical 

potentials of all chemical species, as follow:  

     

         

         

         

        ((
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(
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)      
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Equation (2.19) can be written to express the Galvani potential difference: 

  
         

  (   

       

   )    (   

       

   )

     
 

  

     
  ((

   

 

   

 )

  

(
   

 

   

 )

  

)                 

where   (   

       

   )    (   

       

   ) is equal to the standard Gibbs energy of reaction, which 

can also expressed in terms of standard redox potentials of O1/R1 couple in the aqueous 

phase and O2/R2 couple in the organic phase57,58 respectively, as:  

       
               /  

       /  

                      

where    /  

           /  

    are required to be expressed in the same potential scale, for 

example the standard hydrogen electrode (SHE) in water. 

Introducing the standard chemical potentials into Eq. (2.19), gives the Nernst equation for 

a heterogeneous electron transfer across the liquid|liquid interface: 
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)                 

where the standard electron transfer potential,   
    

   is defined as: 

  
    

  
  (   

       

   )    (   

       

   )

     
 

     /  

         /  

   

     
                 

The equation (2.22) governs the equilibrium concentrations of chemical species involved 

in an interfacial ET. Analogously to ion transfer reactions, Eq. (2.12) can be written in 

terms of concentrations: 
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2.4 Determination of Galvani potential differences 

The Gibbs energy of transfer of a single ionic species is not directly accessible 

experimentally, therefore an extra-thermodynamic approach has to be introduced, to 

make       
      amenable to direct measurement.  

The standard Gibbs energy of transfer of a salt MX from water to organic phase, where MX 

is completely dissociated in both phases and M+ and X- are solvated, is written as: 

       
      (   

       
   )  (   

       
   )                

This quantity can be expresses as the sum of the Gibbs energy of transfer of the ions M+ 

and X- by the following: 

       
             

             
                      

where        
      corresponds to the difference in the Gibbs energy of solvation of the 

neutral salt between the two phases and is, therefore, a measurable parameter. 

To est b  sh     o  c sc  e  m  y   ffere t  ssumpt o s h ve bee  suggeste    he ‘ A P’ 

is the most commonly approach used, which is based on the assumption that the standard 

Gibbs transfer energies of tetraphenylarsonium (TPAs+) cation and tetraphenylborate 

(TPB-) anion in an arbitrary pair of solvents are equal due to their similar sizes and 

shapes.59 The average radius of phenyl groups was found to be 4.2 A°.60 As a result, their 

energies of solvation would be very similar, represented as follow: 

          
               

      
 

 
           

                      

However, this assumption does not take into account the fact that the As-C and B-C bond 

lengths are not equivalent, which may result in different Gibbs energies of transfer.61,62  
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Girault and Schifrin63 proposed another approach to define the absolute potential scale. 

They suggested that the potential of zero charge (pzc) of a polarized liquid|liquid 

interface can be used to define Galvani potential scales, since the dipolar contribution of 

the Galvani potential difference at the potential of pzc is negligible. Using this approach, 

Shao et al.61 observed that the Gibbs energy of transfer of TPAs+ and TPB- were different, 

co f rm  g th t p c  ssumpt o   s more  ccur te th   the ‘ A P’  thus    ow  g 

reasonable estimates of the Gibbs energy of transfer of ions between immiscible solvents. 

Despite that, the ‘ A P’  ssumption is more widely used because the pzc approach should 

be determined for each system used to study the ITIES. Several authors have addressed 

experimental and theoretical approaches to evaluate standard Gibbs transfer energies of 

various ions transferring from water to different types of organic solvents.64–66 

In the presented work, the tetraphenylarsonium tetr phe y bor te  ‘ A P’   ppro ch 

was used for the evaluation of the formal Gibbs transfer energy of ions across the 

aqueous|organic interface, in terms of the voltammetric responses of ion transfer 

reactions.  

2.5 Polarisation of liquid|liquid interfaces 

When a potential difference is applied across a liquid|liquid interface, two extremes types 

of electrified interfaces can be distinguished, namely ideally polarisable and ideally 

non-polarisable.2,3,21 In the case of ideally polarisable ITIES, a large change in the potential 

difference across the interface give rise to a small current passing across it, whereas for 

ideally non-polarisable ITIES, a relatively high current can be passed by applying only a 

small difference across the interface.  

The polarisation of the ITIES is an ionic process, as ions are implicated in both regions 

which have a charge excess. One phase possesses an excess of positive charge which is 
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counterbalanced by an excess of negative charge, so the polarisability of the interface 

depends on the electrolytes for both phases. There are two ways to control the potential 

across the ITIES: (i) with an external circuit, when very hydrophilic and very hydrophobic 

electrolytes are present in aqueous and organic phases respectively (ideally polarisable 

interface), and (ii) by dissolving a single common ion in both aqueous and organic phases 

(non-polarisable interface). 

2.5.1 Ideally polarisable ITIES 

An ideally polarisable ITIES is when a strongly hydrophilic 1:1 electrolyte A   , dissolved 

in the aqueous phase and a strongly hydrophobic 1:1 electrolyte A     in the organic 

phase respectively are used.  The concentration of the hydrophilic salt in the organic 

phase is negligible compared with that of the hydrophobic salt and, conversely the 

concentration of the hydrophobic salt in water is negligible compared with that of the 

hydrophilic salt. Thermodynamically, the ideally polarized interface means that there is 

no common ionic species between the two phases and the polarisability of the ITIES 

depends on the Gibbs energy of transfer of the different salts. The interface is called 

polarised and the following system is considered:  

    A    w ‖A    o                     

According to the hydrophobicity scale and in terms of potential, the system can be 

represented by the following equations: 

  
    

 
    and    

    
 

                    

  
    

 
    and   
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ITIEs has been shown to behave nearly as an ideal condenser in the range of the potential 

differences,   
    

 
    

    
 

    
     

    
 

    
    

 
  12,67 it is to be noted that the 

previous splitting of current is not straightforward matter when the ion participates in 

both the transfer reaction and adsorption. However, this problem can be circumvented by 

performing the measurement of a charge transfer reaction in the presence of an excess of 

the supporting electrolyte. The ions of the supporting electrolyte, in a general case, 

A    in w and A    in o, are not easily transferred into the other phase, and they both 

ensure the high electric conductivity of the phases and the charging of the electric double 

layer. 

Under these conditions, the interface can be polarised using an external potential source 

without modifying the chemical composition of the adjacent phases. The application of a 

potential difference between the two phases demands a flow of an electrical current to 

establish a chemical equilibrium. 

2.5.2 Ideally non-polarisable ITIES 

An interface is termed non-polarisable when both phases have at least one common ion 

which is transferable across the interface. In this type of interface the current can pass in 

either direction but does not change the interfacial potential difference from the 

equilibrium value. This exists in the case of non-binary 1:1 electrolyte system 

  A 
   

  A 
   

   and is represented: 

    A    w ‖A    o                     

A 
  is the common ion and the anions   

  and   
  are sufficiently hydrophilic and 

hydrophobic to remain in their respective phases, so that A 
  is the only ion that can 
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transfer across the interface. As a result, the Galvani potential difference is only controlled 

by the activity of the ion A 
  in each phase: 

  
     

    
 

  
  

 
  (

   
 

 

 
  

 
 )                 

Considering the transfer of B1 and B2 negligible, the system can be described using the 

following equations: 

  
    

 
    and   

    
 

                     

  
    

 
    

    
 

    
    

 
                  

The Galvani potential difference across the interface is independent of the electrolyte 

concentration, and therefore cannot be controlled by a potentiostat. These non-polarised 

liquid|liquid interfaces are commonly used as organic reference electrode because they 

can form ion selective electrodes for organic ions. 

2.6 Potential window 

As it was mentioned previously, at an ideally polarised liquid|liquid interface, no faradaic 

process occurs, since all the components of the system are considered to have infinite 

standard Gibbs energy of transfer (Eq. 2.29 and 2.30). As ionic species have finite 

solubility in any electrolyte phase, the ideally polarise liquid|liquid interface can be 

 ef  e         m te  pote t    r  ge    so c   e   s ‘po  r s t o  r  ge’    gure       

meaning that the range of potentials can be controlled by a potentiostat and that the 

current is small enough to be considered negligible.  This region is also known as 

‘pote t    w   ow’      s   m te  by the support  g s  ts 68,69 
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Figure 2.3 – Schematic representation of the polarisation window for an interface 

between two immiscible electrolyte solutions. 

When the potential applied reaches high positive values, the cations A 
  or the anions   

  

gain a sufficient energy to transfer in to the adjacent phases. Analogously, negative 

potentials provide enough energy for   
  or A 

  to transfer in the other phase. In the case 

of electrode|electrolyte interfaces, the faradaic transfer processes can be studied under 

potentiostatic control only within the polarisation range.  

When an ion, whose formal transfer potential is intermediated between that of A 
  and   

 , 

is added to one of the phases, and a potential difference is applied, the transfer of this ion 

across the water|organic interface is induced. This flux of charges across the interface 

leads to a measurable current, which is recorded as a function of the applied potential. 

Such curves are called ionamperograms and are produced by reversible ion transfer 

reactions, similar to those obtained for electron transfer reactions at an 

electrode|electrolyte solution interface.  
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2.7 Interfacial structure and electrical double layers  

Electrical double layers exist at all the boundaries between two ionic or electrical 

conducting liquid phases. At the liquid|liquid interface, the electrical double layer is an 

interacting electrical region involving two extended regions where ionic species are 

distributed. The liquid|liquid interface is a heterogeneous environment and therefore a 

molecular interface with its own dynamical properties. It is composed of a thin (i.e. about 

1nm) mixed solvent layer and according to snapshots from molecular dynamics computer 

simulation, its local structure is greatly influenced by the presence of ionic charges.50,70 

The structure of the interface determines the distribution of the electrical potential in the 

interfacial region. In order to characterise the potential distribution at the ITIES, two 

models have been proposed, (i) the modified Verwey and Niessen7 and (ii) the mixed 

solvent layer.56 

2.7.1 Modified Verwey and Niessen model 

The first model of interfacial structure was introduced by Verwey and Niessen.7 The 

interfacial structure was represented by a space charge region in each phase, one 

containing an excess of the positive charge and the other phase an equal excess of 

negative charge. The space charge distribution was described by the Gouy-Chapman71,72 

as two diffuse back-to-back layers. Later Gavach et al.73 revised the model of Verwey and 

Niessen7, suggesting that the interface involves oriented dipoles of organic and water 

molecules. This description led to the concept of an ion-free compact layer at the surface 

of contact between the two immiscible phases. This compact layer is similar to inner layer 

existing at the electrode|electrolyte interface, which corresponds to the distance of the 

closest approach of the ions in solution, also called Outer Helmholtz Plane (OHP).74 At the 

liquid|liquid interface, this inner layer separates the two planes of the closest approach 
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(outer Helmholtz planes, OHP) for both aqueous and organic sides of the interface, as 

depicted in figure 2.4. 

 

Figure 2.4 – Modified Verwey and Niessen model of the ITIES and potential distribution 

across the liquid|liquid interface. OHPw and OHPo are the positions of ions in planes of 

closest approach for the water and organic phase respectively. 

In the modified Verwey and Niessen model, the Galvani potential difference   
   between 

the two phases is split into three contributions, according to the following: 

  
              

        
      

                       

 
where       

          P   and       
          P    are the potential 

difference across the diffuse layers in the organic and aqueous phases respectively and 

  
        is the potential difference across the inner layer. The explanation of this model 

relies on drop weight interfacial tension measurements73 which revealed that series of 

tetraalkylammonium ions showed no specific adsorption in the interfacial region. 

However, this was not the case for the tetrapentylammonium ion suggesting a specific 

adsorption of this species. 
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2.7.2 Mixed solvent layer model 

 Girault and Schiffrin56 introduced the concept of the mixed solvent layer as a model to 

describe the ITIES. The authors suggested that a continuous change in composition from 

one phase to the other was a more representative picture than of ion-free layer at the 

ITIES. From measurements of the surface tension of non-polarisable ITIES in the presence 

of various aqueous salts, they showed that the thickness of the ion-free layer varied with 

ionic size of the species dissolved in the aqueous phase was dependent on the polarity of 

the organic solvent. They suggested that both, mixed ionic and solvent layer, no more than 

of two or three molecular diameter thickness, were responsible for this effect. The 

essential consequence of this model is that the Galvani potential difference is spread 

within the two back-to-back diffusion layers with a minimal potential drop across the 

mixed solvent region, whereas all the difference in chemical potential is developed across 

the mixed solvent layer (Figure 2.5).  

 

Figure 2.5 – Schematic representation of the mixed solvent layer model. The potential 

distribution across the interfacial region and the evolution of the chemical potential in 

terms of Gibbs energy. 
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The mixed solvent layer model also considers the penetration of ions in the interfacial 

region, the degree of penetration depending on the ion hydrophilicity. This assumption 

has been confirmed for aqueous solutions of alkali metal cations in contact with organic 

solvent using capacitance measurements.75 Hydrophilic ions like potassium or chloride 

tend not to enter in the interfacial region as shown by positive excess concentration of 

water.  On the other hand, at the interface between two electrolytes having a common 

hydrophobic cation, this cation will freely penetrate the interface to such an extent as to 

be specifically adsorbed. It is expected that the variation of standard chemical potential 

which represents the Gibbs energy of transfer takes place within the mixed solvent 

layer.11,76 

2.8 Mass transport process for charge transfer reactions at ITIES 

The similarity with the classical Nernst equation for redox reactions on an electrode, 

which is limited by the mass transfer of the reactants to the electrode, or by the products 

away from the electrode, the ion transfer reactions across the ITIES is limited by the mass 

transfer of ions to the interface or away from it. This implies that the mass transport 

differential equations and the boundary conditions of redox reactions at the 

electrode|electrolyte interface can be directly transposed to the study of ion transfer 

reactions at the ITIES.52 As for electrode|electrolyte interfaces, three types of mass 

transport can occur at an ITIES, namely migration, convection and diffusion. In this 

manner, the mass transport of a species (i) is described by the Nernst-Plank equation: 

                                  

where the flux of   is equal to the sum of the migration flux       , the convection flux        

and the diffusion flux       .  For one dimension, the equation (2.36) has the following 

representation: 
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 c    t     t                  

where      t  is the flux of ions,   ,    c  are the charge, the diffusion coefficient and the 

concentration of the ion respectively.  
        

  
  is the concentration gradient (at a distance    

and time t), 
       

  
 represents the potential gradient (at a distance    and time t ) and 

    t  is the hydrodynamic velocity of the solution. 

Migration corresponds to the displacement of charged species under the influence of an 

electrical potential. It is the main mechanism permitting the passage of charge across the 

solution when the current is flowing. As migration is purely electrostatic, the charge may 

be carried by any ionic species in solution. Consequently, with a large concentration of 

supporting electrolyte, only a negligible quantity of electroactive species is transported by 

migration. The term  
  

  
  c    t 

       

  
  in equation (2.37) can be neglected, when the 

species   is in the presence of concentrated supporting electrolytes. 

Convection is the movement of species induced by the movement of the medium in which 

the species are present. This movement can be the result of temperature fluctuations or 

mechanical stirring. In most liquid|liquid interface experiments, the solutions are 

unstirred and the electrodes are static, so the movement of a species is not due to 

mechanical forces. The temperature is also constant in the time scale of the experiments, 

so that natural convection generally occurring in the bulk of the solution. Thus, the term 

c    t     t  in equation (2.37) is also negligible. 

Since migration and convection transports are negligible in most of the ITIES 

experiments, the movement of a species is limited to diffusion. This means that the 
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current, which is directly related to the flux    is thus governed by the arrival and removal 

of diffusing species at the interface. Accordingly, equation (2.36) becomes:  

                        

This type of mass transport is predominant in the liquid|liquid electrochemical 

experiments, since a concentration gradient is induced during the transfer of ions from 

one phase to another, in other words the movement of species is due to a chemical 

potential gradient where the species will move down this gradient to reach homogeneity 

through the solution. In reversible ion transfer reactions, the mass transport at the 

proximity of the interface is diffusion controlled, given by Eq. (2.38). In the same manner, 

the   ck’s seco     w  escr bes the v r  t o  of the co ce tr t o  of the spec es   at a 

location   with respect to time t, represented as follow: 

 c    t 

 t
   

  c    t 

   
                 

However the flux of species to an interface differs significantly with the geometry of this 

interface. 

2.8.1 Influence of the interfacial Geometry 

2.8.1.1 Macro ITIES 

For a macroscopic ITIES (interfacial diameter greater than 50µm), the interface is 

considered as a flat semi-infinite plane. In this case the diffusion is linear (Figure 2.6) and 

the expression of the flux reduces to only one dimension: 

     t     

 c    t 
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 he   ck’s equ t o s e p     th t the respo se of the system stems from the reso ut o  of 

the diffusion equations of the ion in the two adjacent phases: 

   
 

  
   

     
 

      and  
   

 

  
   

     
 

             (2.41) 

where   
  and   

  are the diffusion coefficients of species    in water and organic phase, 

respectively. By taking the interface as the origin, the current is then given by the flux of    

across the interface of area A. The current is directly proportional to the flux according to:  

     A  
 (

 c 
 

  
)
   

                 

where the boundary conditions are given by the Nernst equation Eq. (2.11) and the 

equality of the fluxes yields to: 

  
 (

 c 
 

  
)
   

    
 (

 c 
 

  
)
   

                   

 

Figure 2.6 – Schematic representation of the linear flux across a large ITIES. 

2.8.1.2 Micro ITIES 

When the size of an interface is reduced to micrometre dimensions, the diffusion 

characteristics alter significantly. The passage of ions across the micro interfaces 

(Figure 2.7) is characterised by limiting diffusion currents such as those obtained for 

(w)

(o)
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metallic microelectrodes, the major difference being that the diffusion coefficients of the 

ion in the two adjacent phases are not the same.  It changes from the linear to the nearly 

spherical diffusion due to edge effects. In the cases of micropipettes and micro-holes 

supported at a thick polymer film, the diffusion regime becomes asymmetric. If the 

  terf ce  s co s  ere  spher c    the  the   ck’s f rst   w m y be wr tte     spher c   

coordinates: 

     t     

 c  r t 

 r
                 

with r  being the radial distance of the surface from the centre of the sphere.  

Analogously to the macro interfaces, for a reversible charge transfer reaction, the 

distribution of the species     e r the   terf ce c     so be obt   e  from the   ck’s seco   

law of diffusion in spherical coordinates, i.e: 

 c  r t 

 t
   

  c  r t 

 r 
 

   

r

 c  r t 

 r
                 

The main consequence of the change in diffusional regime at a micro interface is the 

enhancement of the flux of species to the interface. In 1957, Reinmuth77 presented a 

correction factor by which was possible to correct the current obtained from the planar 

diffusion solution for a spherical diffusion to a solid electrode. Due to the similarity 

between the types of diffusion found at spherical and microdisc electrodes, approximate 

solutions for the diffusion to microdisc electrodes are derived for spherical diffusion and 

made it possible to apply to the micro-hole interfaces (Figure 2.7 b).78 It has thus been 

shown that the methodology developed for microdisc electrodes could be extended to the 

charge transfer reaction at micro-ITIES and that the current responses produced were of 

a steady-state type.23,78  
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The case of micro-ITIES supported at the tip of a micropipette, as depicted in Figure 2.7a) 

is rather interesting in the sense that the diffusion regime on both sides of the interface is 

asymmetric.22 The diffusion regime of a species entering the pipette is spherical,22,79 

whereas the diffusion from the inside the pipette is restricted by the walls of the pipette, 

resulting in linear diffusion 

a)  b)  

Figure 2.7 – Schematic illustration of spherical diffusion at micro-ITIES, a) hemispherical 

interface (micropipette type), b) spherical interface (micro-hole type). 

 

This type of system has been a tool for the determination of the species limiting the 

potential window, and it has also been employed for supporting phospholipid 

monolayers80 and for investigations on assisted ion transfer reactions26,81 and its 

kinetics.23,82 

2.9 Facilitated ion transfer at ITIES 

The partition of ions in a two-phase system that contains lipophilic ligand in organic 

phase is a fundamental process in ion-selective electrode of liquid membrane type, 

solvent extraction, and carrier-mediated transport of ions across artificial as well as 

biological membranes.83 At liquid|liquid interface, when an ion has relatively higher (or 

lower) Gibbs energy of transfer, its transfer normally appears outside of the potential 

window or very near the positive or negative end of the potential window. This can be the 

case of ions which are commonly used as a supporting electrolyte (e.g. Li+), can be 

(o)

(w)
(w)

(o)
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difficult to study the simple IT reaction directly. Nevertheless, their transfer may become 

observable when they form a complex with a ligand (or ionophore) dissolved in either the 

organic or in the aqueous phase. Such a transfer is named an assisted or facilitated ion 

transfer (FIT), and the general reaction can be written as: 

    
                 

                   

where      represents the ion to be transferred and    the ligand. 

The first study of assisted ion transfer reaction at polarised liquid|liquid interface was 

reported by Koryta in 1979.21 He demonstrated that the decrease in an ion Gibbs energy 

of transfer (Eq. 2.47) is due to a selective complexation with a ligand.2,21   

        
                               

where       is the complexation constant between the ion and the ligand. According to 

Eq. 2.10, a decrease of        
    yields the decrease of the transfer potential, as a result, the 

presence of the ionophore will shift the wave of a cation towards less positive potential, 

allowing the faradaic signal to be developed within the potential window. The effect of the 

ionophore on the ion transfer potential is shown in figure 2.8. 

 

Figure 2.8 – Non-assisted (dashed line) and assisted (solid line) transfer of an aqueous 

ion. 

polarisable range
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Since the work of Koryta21 various ionophores, natural or synthetic, such as 

valinomycin,84,85 dibenzo-18-crown-6,82,86 hydrophilic crown ethers87,88 and lithium 

selective ionophore ETH1810,87 have been used to facilitate cation transfer.52,89 Recently 

anion transfers have also been study.90,91 Molecules with acid-base properties can also be 

classified as undergoing a FIT reaction, the protonated base     can be regarded either 

as simple IT reaction or as a proton transfer facilitated by the conjugated acid.52 

A considerable effort has been dedicated to explain the mechanisms of facilitated transfer 

reactions. In 1991, Girault et al.81 proposed a new terminology for FIT reactions, which 

accurately describes the reaction mechanism. Depending on its nature, the ligand can be 

dissolved in the organic or in the aqueous phase, and four types of reaction mechanisms 

(Figure 2.9) can be distinguished: 

TIC: Transfer by interfacial complexation  

TID: Transfer by interfacial dissociation  

TOC: Transfer followed by organic phase complexation  

ACT: Aqueous complexation followed by the transfer of the complex  

The mechanism of facilitated ion transfer reactions depends on many factors such as the 

relative concentration of both the ion and ionophore in the two phases and the 

association constant for the complexation equilibrium between the two phases. The ACT 

mechanism was proposed by Lin et al.,92 who demonstrated that the assisted ion transfer 

reaction would occur via the diffusion of the ionophore, from the organic to the aqueous 

phase, followed by complexation in the aqueous phase and subsequent transfer. This 

mechanism is only viable if the ionophore is soluble in both phases.  Samec and Papoff,86 

and Kakutani et al,93 however, supported a TIC mechanism, which is favoured when the 

ratio of concentrations is such that the ion in the aqueous phase is in excess compared to 
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the ligand in the organic phase. Koryta21 on the other hand supported a TOC mechanism 

where the ion transfer is followed by complexation in the organic phase. TID mechanism 

is known as the symmetric mechanism of TIC. A large majority of the reactions studied 

follows a mechanism of transfer by interfacial complexation/dissociation (TIC/TID),81 

applicable for highly hydrophobic ligands.  

It is important to highlight that the type of mechanism involved depends mainly on the 

concentration ratios of the different species. For example, the assisted transfer reaction of 

an ion with an excess of ligand in the organic phase appears to follow a TIC mechanism 

than a TOC mechanism. 

  

  

Figure 2.9 – Schematic representation of the different mechanisms for the FIT reactions at 

a liquid|liquid interface, ( =ionophore (or ligand), =ion). 
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In 1991, Matsuda et al.88 proposed a general theoretical equation for the polarographic 

response of reversible facilitated ion transfer reactions, leading to a prediction of the 

half-wave potential dependence on the initial concentrations of both ion and ionophore. 

The equations obtained are difficult to be applied directly even for the simplest case of 1:1 

complexation. However they have been derived for two limiting cases: (i)      , where 

the mass transport is limited by that of the ligand, (ion concentration in excess), and  (ii) 

     , where the limiting current observed is controlled by the diffusion of the ion so 

that the current is proportional to the concentration of the ion. For higher stoichiometries, 

the evolution of the half-wave potential has been given only in the case of ligand excess.  

A model that describes the relation between the measured half-wave potential with the 

stoichiometry and the association constants of the reaction was recently proposed by 

Reymond et al.94,95 

When compared to simple IT reactions, FIT can offer several advantages. This type of 

reactions can not only provide the stoichiometric information between the ion and the 

ligand, thermodynamic and kinetic parameters, but also applications in selective 

amperometric ion sensors, solvent extraction, and carrier-mediated transport of ions 

across artificial as well as biological membranes.1,2,52  

2.9.1 Thermodynamics of assisted ion transfer at ITIES 

From a thermodynamic point of view, the association constant of the complex, 

(represented in reaction (2. 46)) in the aqueous and organic phases (  
 and   

   and also 

the distribution (partition) coefficient of the ligand (    can be defined as follows: 
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Considering that the diffusion coefficient of all the species are taken equal for each phase, 

and defining total concentrations of ion and ligand, respectively, the system can be 

defined according to Matsuda et al.88: 

    
         

      
                         

c   
   

    c   
    c    

         c    

    c 
    c    

                    

The mass balance equation can be expressed by: 

 c   
   

   

 t
     

  c   
   

   

   
     

 c    

   

 t
     

  c    

   

   
                

These equations can be integrated and particular solutions for the total concentrations, 

c   
   

    and c    

    obtained.  

All the species involved in the complexation reaction may be present in both phases. For 

that reason, several assumptions can be made in order to simplify the reaction scheme. 

(1) The ion concentration in the aqueous phase is in excess compared to that of the 

ionophore in the organic phase. 

(2) The partition coefficient of the ionophore is small enough such that the ionophore 

concentration in the aqueous phase can be neglected. 

(3) The complex formation in the organic phase is so high that the ion concentration 

in the organic phase can be neglected. 
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(4) Both the association constant and dissociation of      complex in the organic 

phase and the ion transfer reaction at the interface are very fast processes. 

In the case of a 1:1 ion-to-ligand stoichiometry of facilitated ion transfer reactions at 

ITIES, the Galvani potential difference for a reversible ion transfer follows the same 

guidelines as in section 2.3.1.  Hence, a Nernst equation for the transfer of 1:1 

complex     , with a neutral ligand can be written as: 

  
     

      
  

  

  
  (

     
 

     
 )    

     
  

  

  
  (

    
 

    
 )                   

Using Eq.(2.54) and the formal transfer potential, the equation can be written in terms of 

concentrations: 

  
      

     
     

   
  

  
  (

c    
 

c 
   

 c   
 )                 

where   
      

   is the formal potential of the ionic species      defined as a function of 

the formal Gibbs energy of transfer and the activity coefficient of the ion in the adjacent 

phases, as:95 

          
          

      
        

         
    

  

  
  (

     
 

     
 )                 

In the case where the ion concentration in the aqueous is in excess compared to that of 

the ligand,        the current response, corresponds to the diffusion of the ligand to the 

interface and to the diffusion of the ion-ligand complex away from it. Since     w  is in 

excess and its diffusion need not to be considered, the only diffusion species are      o  

and   o . In this case, the half-wave potential depends on the ion concentration given as 

follows: 

  
   /    

     
   

  

  
  (

  

     
)  
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 c   
 )                 
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At the half-wave potential of the FIT reaction, the following condition applies: 

(
c    
 

c 
 )

   

 (
  

 

     
 )

 / 

                 

where the index 0 indicates the concentration close to the interface. Eq. (2.57), then 

allows the calculation of the association constant        
   in the organic phase from the 

plot of the half-wave potential (  
   /   versus    c   

  , assuming that         , 

which is considering similar sizes of the two species.96 

On the other hand, when the ion transfer is assisted by the formation of 1:1 complex with 

the ligand present in the organic phase at an excess concentration,      , the half-wave 

potential shifts negatively by the value related to the stability constant,   
   of the complex 

in the organic phase, which can be determined by the following equation,54 

  
   /   

  

  
     

 c 
                   

Thus, the amperometric response of a series of ions can be tailored by selecting the 

suitable ligand yielding the most stable complex, which can be determined using Eq.(2.59) 

It is important to mention that the study of FIT has been beneficial from well understood 

potentiometric sensors. For instance, the choice of the ligand in many FIT systems was 

based on reported potentiometric sensors. The study of FIT will be beneficial for the 

development of new potentiometric sensors, hence from a voltammetric response, many 

important thermodynamic parameters can be obtained, such as association constant, 

stoichiometric ratio between the ligand and ion, and Gibbs energy of transfer. Also, it can 

provide valuable information if a new synthesized ligand can be used for a novel 

potentiometric sensor or not. If the FIT reaction can be observed within the potential 

window, it is possible that the ligand can be used for the new sensor of the ion.  
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2.10 Overview of micro-ITIES  

A micro-ITIES can be formed either at the tip of a pulled glass micropipette (the tip 

radius, r, typically of a few microns), single micro-hole or array of micro-holes in a thin 

polymer membrane.22,23,97 Taylor and Girault22 introduced the idea of miniaturization of 

liquid|liquid interfaces in 1986. They employed pulled glass micropipettes to support 

micrometre-sized liquid|liquid interfaces. Later, on the same group developed another 

approach to establish a micro-ITIES by fabricating a microhole in a thin inert membrane 

using an UV laser photoablation technique.23  

Similarly to solid|liquid electrochemistry, which were revolutionized by the introduction 

of micrometre sized electrodes, important advantages were also obtained by replacing a 

large liquid|liquid interface with micro-ITIES. Girault and co-workers demonstrated that a 

voltammograms recorded at a micro interface had characteristics similar to those of usual 

redox voltammograms recorded at a solid microelectrode:22–25,78,81,82,97,98  

(i) The ohmic drop potential inherent in voltammograms measurement at the 

micro ITIES is very small, because the current flowing through the interface is 

much smaller than that at a conventional interface (1-10 mm in diameter). 

Due to the low ohmic drop, studies of charge transfer are possible even when 

the concentrations of supporting electrolytes are low. The reduced effect of 

solution resistance allows the study of systems which were previously 

inaccessible. With regard to kinetic measurements, the use of micro-ITES 

significantly increases the mass-transfer rate. 

(ii) The current that arises from the charge transfer is controlled by spherical 

diffusion of the ion,99,100 which enhances the current hence improves the 

sensitivity of the voltammetry. 
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(iii) The time required to achieve a steady-state is short and can be obtained at a 

fairly fast scan rate such as 50mV s-1. 

Additionally, a micro liquid|liquid interface of a quite high mechanical stability, a 

reproducible size and geometry and a good handling can be obtained in a quite simple 

way for the determination of thermodynamic parameters and kinetic investigations.82  

The first study of ion (TEA+) transfer at the micro interface supported by a micropipette 

tip was done by Girault et al.,79 who also did simulations to explain the observed cyclic 

voltammograms and obtained a pseudo-analytical expression for the entire CV of a simple 

ion transfer at a micropipette. In the case of an ion transfer from outside to inside the 

pipette, the ingress takes place under steady-state conditions, similar to a redox reaction 

on a solid microdisc electrode. However, the egress occurs under linear diffusion due to 

size confined effect of the specific shape. The asymmetric diffusion field provides 

asymmetric voltammograms. 

Assuming that the orifice of a micropipette is like a disc, the mathematical formulations of 

the diffusion patterns for a micropipette and a metal microdisc electrode are very similar 

when the charge transfer is controlled by essentially spherical diffusion in the outside 

solution. The following empirical equation can be used to calculate the steady-state 

diffusion limiting current:82,101 

    A    r                 

where     is the steady state current obtained from the difference between the 

background current and the current at the plateau region of sigmoidal voltammogram.   

and   are the diffusion coefficient and the concentration of species responsible for the 

interfacial transfer process.  ,   and r are the Faraday constant, transferred charge and 

radius of the micropipette, respectively. The value correspondent to the difference 
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between a metal microdisc and a micropipette is the value of factor A. For a metal 

microdisc electrode  A is equal to 4, but for a micropipette A was found to be equal to 

      (for the water|1,2-dichloroethane interface) which is about 2.6 times bigger than 

that of a metal microdisc electrode. The large difference between this value and the factor 

4 can be attributed to two factors. One is related to the nature of the glass pipette which is 

hydrophilic and the aqueous solution can escape from the pipette and form a thin layer on 

its outer wall near the orifice. This results in a significant increase of the effective area of 

the ITIES, which becomes much larger than the geometrical area of the pipette orifice and 

therefore an increase in the diffusion current can be observed.101 This effect can be 

eliminated by making the outer pipette wall hydrophobic (section 3.1.2). Another factor 

contributing to the diffusion current to a pipette orifice is the additional flux from the 

back of the pipette due to small thickness of its wall, related to its unique shape.53 The 

thickness of the insulation sheath is much smaller than that of a metal microdisc 

electrode, i.e., its RG (RG=Rg/r, where Rg is the glass insulator + r) is much smaller 

(Figure 2.10). Thus, the diffusion from the back of the pipette makes the additional 

contribution for the increase of current. A glass micropipette usually has RG   2 and 

metal microdisc electrode has RG   10.102 

 

Figure 2.10 – Comparison of the thickness of the insulating sheath in a micropipette (left) 

and a metal microdisc electrode (right). 

The peak-shaped voltammograms can be obtained for the egress of ions from the pipette 

because the ion transfer out the pipette is controlled by a semi-infinitive linear diffusion. 

The voltammetric behaviours are similar to those obtained at a macro liquid|liquid 

r

Rg

r
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interface and it obeys the Randles-Sevč k re  t o ship. Its peak current is proportional to 

both the concentration and the square root of the scan rate.79 On the other hand, in a FIT 

reaction, the mass transport regime will be completely analogous to a microdisc electrode 

if the concentration of the ligand     in the organic phase is much less than the 

concentration of the ion, e.g.,           , a steady-state voltammograms will observed. 

Another important aspect of the asymmetric diffusion field of the micropipettes and the 

corresponding asymmetric voltammograms is that they can elucidate about which ion is 

the limiting one for a potential window and also verifying the different mechanism of FIT 

is involved in the reaction.53,97,103  

2.10.1 Application of micro-ITIES 

The advantages of the micro-ITIES, mentioned previously, brought the ideal design for 

electrochemical sensors and circumvented problems associated with large ITIES. Due to 

their size and low current flow, sensors based on micro-electrodes do not destroy the 

sample being monitored. Also, the fast time responses enhance the mass transport 

allowing time independent currents to be measured.  The micro-ITIES has found powerful 

applications in the detection of various ionic species including non-redox ions,104,105 

drugs106 as well as pharmaceutical compounds.107 Great improvements in the detection of 

hydrophilic ionic species including protons, alkali metal, heavy metal and other ions have 

been achieved by incorporating ionophores in one of the phases which selectively interact 

with the ions of interest.54,108–110  

Micro sized liquid|liquid interfaces can offer several advantages in comparison to 

potentiometric electrodes, which can arise from the selectivity obtained from the control 

of the interfacial potential, with the measured current being proportional to the sample 

concentration. It has also been shown to possess useful properties when used as a 
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transducer to follow enzymatic reactions. Urea and creatinine have been successfully 

assayed using such methodology.25 Several authors have also employed micro 

liquid|liquid interfaces as detectors for ion chromatography,111 liquid chromatography 

and capillary electrophoresis. 

2.11 Lipophilicity of ions 

Lipophilicity (or hydrophobicity) is a molecular property expressing the relative affinity 

of solutes for an aqueous and an organic, water-immiscible solvent. For this reason, 

lipophilicity encodes most of the intermolecular forces that can take place between a 

solute and a solvent, and represents the affinity of a molecule for a lipophilic environment. 

Is one of the most important physicochemical parameters associated with chemical 

compounds, several studies have been carried out to understand, evaluate, and predict 

this parameter.112   

Hydrophobicity governs numerous and different biological processes, such as, transport, 

distribution, and metabolism of biological molecules; molecular recognition; and protein 

folding. Therefore, the knowledge of a parameter that describes the behaviour of solutes 

(such as drugs) into polar and nonpolar phases is essential to predict their transport and 

activity. It has been traditionally accepted that ionisable compounds cross biological 

membranes only in their neutral form. However, recent studies113–115 suggest a significant 

passive (i.e. diffusion controlled)116 transfer of ions. As many drugs are organic 

compounds that are thus partially or largely ionized at physiological pH, membrane 

transport can be deeply affected by the lipophilicity of charged species. 

In practice, at liquid|liquid interface, passive transfer simply means partition across an 

interface, mediated by a potential-driven process,117 which is used to assess lipophilicity 

of ions. Thermodynamically, this parameter is defined as the ratio of the activity of the 
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species dissolved at equilibrium between two immiscible solvent phases, and it is often 

expresses on a logarithmic scale as  ogP, by the following: 

 ogP   og
  
 

  
                  

where the thermodynamic activity can be approximated by the concentration in diluted 

solutions. Therefore,  ogP reflects the difference in solvation energy between water and 

the organic adjacent phase, and it is directly related to the Gibbs energy of transfer. The 

interaction of a molecule of therapeutic interest with a biological membrane depends on 

the properties of both its charged and neutral forms. For neutral form of an ionisable 

compound    , the partition depends only on the molecular structure of the solute and on 

the nature of the two solvents.117,118 Its partition coefficient P is independent of    
   and 

is simply related to its standard Gibbs energy of transfer as defined by Eq.(2.62) 
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Although this quantity is constant for neutral solutes, in the case of ionic species, an 

additional condition is imposed by the electroneutrality condition of the two phases.119,120 

The partition coefficient of an ion,  ogP , depends on the Galvani potential difference 

across the interface.117 Thus,  ogP  can be defined by:  
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where  ogP 
  is the standard partition coefficient of the species  .  

The Eq. (2.63) shows that, contrary to the partition of neutral species for which  ogP  is a 

unique quantity related to its standard Gibbs energy of transfer, the partition of ionic 

species is potential dependent, and  ogP 
  represents the proportion of the ions present in 

each phase if the interface is not polarized. Thus, the formal transfer potential of an ion is 
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a direct measure of its partition coefficient. This quantity is thus directly related to the 

half-wave transfer potential of the ion,   
   / , and it can be directly deduced from e.g. 

cyclic voltammetry experiments. However, there is a downside of electrochemistry at 

ITIES, which is the number of solvents systems to which it can be applied. In order to 

interpret the lipophilicity of ionisable drugs in pharmaceutical terms, the thermodynamic 

parameters obtained at 1,2-dichloroethane and nitrobenzene have to be correlated to the 

octanol|water (correspondence established),121 because it is the system commonly used 

in pharmacology.  

2.11.1 Ionic partition diagrams 

The transfer behaviour of ionisable compounds depends on their degree of dissociation 

and hence on the pH of the aqueous phase. This potential-pH dependence can be 

presented by ionic partition diagrams, which consists in representing the domains of 

predominance of the various species as a function of applied potential and aqueous pH. 

In the case of a monoprotic acid AH, the partition between two phases can be represented 

in an ionic partition diagram as displayed in figure 2.11. 

A      A                  

 

Figure 2.11 – Ionic partition diagram for a hydrophilic monoacid. 
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From Figure (2.11) it can be seen that the ionic form is dependent on the pH of the 

aqueous solution and the Galvani potential. At p  p  
 , the anionic form is 

predominant. At Galvani potential more positive than the standard transfer potential, the 

anion is mainly in the aqueous phase, A 
 , while at smaller values than the standard 

transfer potential it is mainly in the organic phase, A 
 . The separation line 1 between 

these two zones is given by the Nernst equation for the anion: 
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 )                 

Its neutral form will be mainly in the aqueous phase, A  , and the separation line 

between the aqueous acid and the aqueous base (line 2) is given by: 

p  p  
                  

The separation line between the neutral acid in water and the base in the organic phase 

(line 3) can be obtained by including the acidic constant to the Eq.(2.65), which then 

gives: 
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For the case of a hydrophilic monobase, the ionic partition diagram can be represented as 

depicted in figure 2.12. 

                         

The corresponding acid dissociation constant in water is given by: 
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Figure 2.12 – Ionic partition diagram for a hydrophilic monobasic compound. 

 

As in the case of a hydrophilic monoprotic acid, a hydrophilic monobasic compound B, 

which can be protonated in acidic solutions to form,    , may be approached in the same 

way. The separation between aqueous and organic phases (line 1) is given by the Nernst 

equation: 
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As previously, line 2 is given by Eq. (2.66). At  p  p  
 , the only species present is      

The boundary between    and    
  (line 3), is defined by the neutral base in water and 

the acid form in the organic phase, and can be represented as follow: 
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 )                 

Measurements performed on hydrophilic compounds at the ITIES, using cyclic 

voltammetry can provide accurate determination of the transfer potentials from one 

liquid phase to another and thus allowing the estimation of the standard partition 

coefficients of the ionic species. It is important to mention that drug molecules can have 

more than one acidic or basic group and thus given more difficult ionic partition diagrams. 
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Chapter 3 

Experimental methodology 

The methods and materials used to produce the work presented in this thesis are 

reported in this chapter. The fabrication of the micropipettes that served as support for 

the liquid|liquid micro interfaces is described as well as the different set-up formats used. 

The three electrode system used with a working electrode modified by thick layer is also 

described in detail. The reagents and chemicals are listed together with the respective 

supplier and the preparation of the organic supporting electrolytes. Background 

information of the electrochemical techniques employed and details of the conditions 

used in the measurements performed for the study of charge transfer, are also reported. 
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3.1. Electrochemical apparatus for the study of ion transfer at the ITIES 

The electrochemical measurements employed for the study of ion transfer were 

performed at a micro liquid|liquid interface. The micro dimension of the interface, formed 

by the tip of the micropipette, allows the electrochemical measurements to be made in a 

two electrode configuration (Figure 3.1),1 as the currents are in the nanoampere range it 

does not disturb the potential of the reference electrode.   

 

Figure 3.1 – Representation of a two electrode cell, (counter and reference are tied 

together). 

 

The potential applied between the two electrodes was controlled using an IVIUM 

CompactStat (Ivium Technologies, Netherlands). All experiments were performed at room 

temperature (21±2°C) and inside a Faraday cage to minimise any background noise.  

As a convention, positive currents are assigned to cations transferring from the aqueous 

to the organic phase or from anions transferring from the organic to the aqueous phase. 

Similarly, anions transferring from the aqueous to the organic phase and cations 

transferring from the organic to the aqueous phase are assigned as a negative current. 

3.1.2 Micropipette electrodes 

The pipettes of different radii were made from borosilicate capillaries of 1.5mm outer 

diameter and 1.0mm inner diameter (Harvard Apparatus Ltd, UK). The puller used in the 
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experiments was Flaming/Brown micropipette puller (model P-97, Sutter Instrument Co. 

Novato, US). The shape of the micropipette and the diameter of its orifice were controlled 

by proper choice of the Puller’s parameters, which are: heat, pull, velocity, delay, time, and 

pressure. Since the ohmic resistance of a pipet is largely determined by the length of the 

narrow shaft leading to the orifice,2–4 a pulling program (Figure 3.2) was develop to 

produce reproducible pipets with a short shank and a flat orifice in order to minimize the 

resistive potential drop inside the narrow shaft. 

 

Figure 3.2 – Illustration of the pulling of a capillary glass, by controlling the different 

program settings (Heat, Pull, Time and Pressure).  

The micropipette tips quality and geometry were inspected using an Environmental 

Scanning Electron Microscope (ESEM). The tip diameters were determined from the 

images taken (Figure 3.3) with an error of ±1μm. 

a)    b)  

Figure 3.3 – ESEM images of a 10±1 μm radius micropipette tip, a) side view b) front 

view. 
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The micropipettes were filled by back-filling with a syringe and a fine needle, the tip of the 

pipette was previously filled by capillary action. The two different customised cells used 

where chosen in accordance to the filling solution of the micropipette.  

3.1.2.1 Micropipettes filled with aqueous analyte solution 

 For experiments with aqueous solution inside the micropipette (Figure 3.4), the outer 

wall was silinized in order to prevent any escape of the filling solution.5 This was done by 

immersing the tips in a solution of trimethylchlorosilane while a flow of argon was passed 

through the pipette from the back. In this procedure it is very important to avoid 

salinization of the inner wall of the pipette, otherwise, when performing the 

measurements, the outer solution (organic) can be drawn inside. The set-up to perform 

the measurements was composed of a glass U-tube, containing a small volume of organic 

phase in contact with the organic reference solution, similar to the one used by Beattie et 

al.4  

 

Figure 3.4 – Representation of the cell configuration used for studies at a micro 

liquid|liquid interface using a glass capillary filled with aqueous solution.  
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A layer of an aqueous solution was used to cover the organic phase to avoid evaporation 

during measurements. The tip was positioned as close as possible to the organic reference 

solution in order to minimise the ohmic drop effect from the organic phase. A micro 

liquid|liquid interface was thus formed at the entrance of the micropipette tip.  

When an organic reference solution was not used in the experiments, the set-up is 

represented in figure 3.5. The potential was controlled with Ag|AgCl electrode placed 

inside the micropipette and a non-aqueous electrode, Ag|AgTPB, in the organic solution.  

 

Figure 3.5 – Illustration of the set-up used for experiments without organic reference 

solution.  

3.1.2.2 Micropipettes filled with organic solution 

For experiments were the micropipette was filled with organic solution (Figure 3.6), its 

inner wall was silinized to make it hydrophobic. This was done by dipping the tip of the 

micropipette in a solution of trimethylchlorosilane, which penetrated inside the pipet. The 

solution was removed from the pipette after approximately 30 minutes using a small 

syringe, and the salinized pipet was allowed to dry in the air overnight. In this procedure, 

both inner and outer walls became salinized. Shao and Mirkin5 have shown that the 

voltammetric responses of organic filled pipettes with inner walls or both inner and outer 

walls salinized were practically identical.  
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Figure 3.6 – Cell design for the micro ITIES experiments with micropipette filled with 

organic solution. 

3.2 Electrochemical apparatus for the study of ion transfer using a modified 

thick layer electrode  

The ion transfer studies using a thick film modified electrode were performed using an 

IVIUM CompactStat in a three electrode configuration (Figure 3.7).6 As reference 

electrode, an Ag|AgCl (3M KCl, E=0.208V vs. SHE), a platinum flag was used a counter 

electrode and a glassy carbon (GC) as working electrode (area=0.07cm2). 

 

Figure 3.7 – Representation of a three electrode electrochemical cell. 
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The drop coating method was used to prepare the modified CG electrode. In order to 

deposit a steady thick film onto the electrode surface, a special design was required, as 

shown in figure 3.8. The GC electrode was surrounded with a silicon cap with a 2.2mm 

diameter and a 5mm depth. A small volume of 25μL of the organic solution containing the 

redox probe and the electrolyte was placed on the surface of a freshly polished working 

electrode with the help of an Eppendorf pipette. The electrode was then turned over and 

immersed immediately in an aqueous solution. Any air bubbles in the organic film were 

avoided by a careful dipping operation. 

 

Figure 3.8 – Special design used for the measurement of ion transfer by a thick layer 

modified electrode. 

Before used in the experiments the GC electrode surface was cleaned using alumina 

powder (0.3μm) solution, in an 8 figure pattern, for approximately two minutes. The 

electrode was rinsed with deionised water and dried under a slow stream of argon. The 

activation of the glassy carbon electrode was checked in a solution of 1mM ferrocyanide 

in 100mM KNO3, as depicted in figure 3.9. 
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Figure 3.9 – Cyclic voltammogram of 1mM ferrocyanide in 100 mM KNO3 with a freshly 

polished glassy carbon electrode. Scan rate: 50 mV s-1. 

3.3 Reference electrodes 

By definition a reference electrode is an electrode for which the Galvani potential 

difference between the metal and the solution (       is constant. For it to be stable, 

only a negligible current can be allowed to pass through the reference electrode, not to 

disturb the conditions for equilibrium. 

The silver|silver chloride (Ag|AgCl) electrode is by far the most common type of aqueous 

reference electrode used in research and industry due to its simple construction, 

inexpensive design, and non-toxic components. The simplicity of the Ag|AgCl reference 

electrode lends itself to micro fabrication as well as incorporation in sensors. The 

potential is determined by the reaction  
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The Ag|AgCl reference electrodes, placed inside the pipettes, for the studies at 

liquid|liquid, were made of high-purity silver wire with 0.25mm diameter (99.9%, Sigma 

UK) by anodic AgCl coating. A cleaned silver wire was chlorodised by placing it in a 

solution of KCl 3M and applying a potential of 2V for approximately 30 minutes. The 

resultant current flow produces an insoluble layer on the silver wire with a brown colour. 

The Ag|AgCl reference electrodes were rinsed and directly plunged in aqueous solution 

containing chloride, to ensure that the potential of interface was maintained constant. 

The reference electrodes for the organic phase were constructed as follows: an Ag|AgCl 

electrode was immersed in an aqueous solution of chloride, which is in contact with the 

organic phase, known as the organic phase reference solution. This reference solution 

contained a cation which was common in the organic phase, as well. In this study the 

cation in the reference solution was TBA+ or BTPPA+ which coincides with the cation of 

the organic electrolyte salt TBA+TPB- or BTPPA+TPBCl- respectively, containing similar 

concentrations of the corresponding anion as supporting electrolyte.  Where the reference 

solution and organic phase meet, a reference interface forms, the common ion to both 

solutions equilibrates between the two phases and produces an interfacial potential. 

Therefore, the potential applied by the potentiostat corresponds to the sum of the 

interfacial potential, the potential of the two reference electrodes and the potential of the 

reference interface.  

In the case where reference electrodes were directly inserted in organic solution, i.e. 

without the use of organic reference solution, silver wires were coated with AgTPB via 

anodization in aqueous solution of KTPB at +1.0V vs. Ag|AgCl for approximately 30 

minutes, according to published procedures.7,8  
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3.4 Chemicals 

All salts and drugs used were of reagent grade and used as received unless indicated 

otherwise. The material safety data sheet (MSDS) for each compound was read prior to 

use and appropriate precautions were taken where necessary.  All aqueous solutions 

were prepared using deionized water (Sartorius Arium 611 ultrapure water system 

(resistivity of not less than 18.2 MΩ cm), from a Milli-Q system (Watford, UK). 

3.4.1 Electrolytes  

The supporting electrolyte ions have two roles in electrochemical experiments: 1) they 

carry charge, which is beneficial as migration can be neglected when solving the 

corresponding transport problem for ion transfer across the interface; 2) they set the 

limits for the applicable, polarisable range,   
    which is called the potential window. The 

potential window increases with increasing hydrophobicity of the organic base electrolyte 

ions for a given aqueous base electrolyte. The study of ion transfer reactions is limited to 

those that occur within the potential window (see section 2.8).  

3.4.1.1 Aqueous Supporting Electrolytes  

The aqueous salts used as electrolytes were bis(triphenylphosphoranylidene) ammonium 

chloride (99% BTPPACl, Aldrich), potassium tetrakis(4-chlorophenyl-borate) (99% 

KTPBCl, Fluka), lithium chloride (98% LiCl, Fluka), tetrabuthylammonium chloride (98% 

TBACl, Sigma). 

 3.4.1.2 Organic Supporting Electrolytes 

The organic salts used as electrolytes were tetrabuthylammonium tetraphenylborate 

(99% TBATPB, Sigma) and bis(triphenylphosphoranylidene) ammonium tetrakis 
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(4-chlorophenyl)borate (99.9% BTPPATPBCl). BTPPATPBCl was prepared by metathesis 

of equimolar quantities of potassium tetrakis(4-chlorophenyl-borate) (KTPBCl) and 

bis(triphenylphosphoranylidene) ammonium chloride (BTPPACl).9  The two salts were 

dissolved separately in a 2:1 methanol/water mixture and then gently mixed together. 

The resulting precipitate was filtered under vacuum, washed with water and placed in the 

dessicator to dry overnight. The salt was then recrystallized by its dissolution in acetone 

and dried under vacuum before use.  

3.4.2 Cyclodextrins 

Hexakis(2,3,6-tri-O-Acetyl)--cyclodextrin(AcCD), (99% Cyclolab), Heptakis(2,3,6-tri-O-

Acetyl)-β-cyclodextrin(AcβCD), (99% Cyclolab). The structures of the two macrocycles 

are presented in figure 3.10. 

a) b) 

 

 

Figure 3.10 – Planar structure of a) AcCD and b) AcβCD. 
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Ferroceneacetamido-6A-deoxy-heptakis-(2,3-di-O-ethyl)-6B,6C,6D,6E,6F-hexa-O-ethyl-β-

cyclodextrin, (EtCDFc), was synthetized in department of chemistry at Durham 

University.10 The structure of EtCDFc is presented in figure 3.11. 

 

Figure 3.11– Planar structure of EtCDFc. 

3.4.3 Other chemicals 

Trimethylchlorosilane (Sigma), potassium chloride (99.5% KCl, Sigma), potassium 

phosphate dibasic (Sigma), potassium phosphate monobasic (Sigma), hydrochloric acid 

(37% HCl, Sigma), sodium hydroxide (98% NaOH, Sigma), lithium hydroxide (98% LiOH, 

Sigma).  

3.4.4 Solvents 

There are large numbers of solvents that have been tested for their suitability for 

liquid|liquid phase experiments. In order to choose the appropriate solvent for the ITIES 

studies there are three requirements, which have been commonly considered: 
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(i) The solubilities of the solvent in water must be very small, 

(ii) The solvent must be sufficiently polar to promote sufficient dissociation of the 

supporting electrolyte and thus keeping enough conductivity of the solution, 

(iii) The density of the solvent should differ significantly from that of aqueous phase in 

order to get a physically stable liquid|liquid interface. 

At the present, the most commonly used organic solvents for performing the studies of 

charge transfer at liquid|liquid interface are nitrobenzene (NB) and 1,2-dichloroethane 

(1,2-DCE), even though the first is a carcinogenic and is the latter is highly toxic. The 

current alternatives to 1,2-DCE and NB are o-NPOE (relatively expensive), 

o-dichlorobenzene (not carcinogenic, but very toxic) and the ketones of Cheng et al.11,12 

which has the advantage of being low in toxicity but has an unsatisfactory potential 

window for various studies, such as drug transfer, where a wide potential window is 

needed. o-NPOE has also some disadvantages, which is a density very close to that of 

water (1.041g.cm-3)13 which makes it difficult to form a well-defined interface in a 

standard four electrode cell. Also the high viscosity (12.35-13.8 mPa s) in comparison 

with NB (1.795 mPa s) and 1,2-DCE (0.779 mPa s) may difficult the diffusion of species 

and thus decreasing the rate of the interfacial process.13 

In this work, 1,2-DCE14 was the organic solvent chosen and was handled with all 

necessary precautions, to avoid any inhalation or skin contact.  

3.5 Experimental techniques 

There are various electrochemical techniques that can be used for the detection of 

analytes, all of which have advantages and disadvantages. This section outlines the 

electrochemical techniques used, cyclic voltammetry (CV) and differential pulse 

voltammetry (DPV). 
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3.5.1 Cyclic voltammetry 

Cyclic voltammetry (CV) is known to be a useful and powerful technique for the 

investigation of the electrochemical behaviour of a system. It is often the first experiment 

performed in electroanalytical studies due to its simplicity, speed and relatively simple 

interpretation, which makes it a very versatile technique. CV is part of the potential-sweep 

techniques group. These involve varying the applied electrode potential as a function of 

time (Figure 3.12), at a particular rate, while measuring the resulting current. 

 

Figure 3.12 – Triangular potential waveform of cyclic voltammetry. 

3.5.1.1 Large ITIES 

CV was first used for the investigation of charge transfer at liquidliquid interfaces by 

Samec et al.,15  who successfully employed a four electrode system with IR drop 

compensation, in the study of  the tetraalkylammonium ion transfer.  

The cyclic voltammograms of a reversible ion transfer reaction (Figure 3.13) exhibits 

similar features to a reversible electron reaction process at a metal electrode|electrolyte 

interface.15–17 When the potential that is applied approaches the formal transfer potential 

of the ionic species, the flux of ions across the interface increases, resulting in a rise of the 
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current. When higher potentials are reached, the interfacial/surface concentration drops 

nearly to zero; the mass transfer of species reaches a maximum and then it declines as the 

depletion effect sets in. This results in a peaked current-potential curve, as shown in 

figure 3.13. The current follows a decrease of t1/2 as given by the Cottrell equation 

(Eq. 3.3).6  

     
        

        
                 

When the sweep is reversed, the same phenomena occurs, resulting in a curve of same 

appearance of the forward scan but with a negative current, as the direction of the ionic 

flux is inverted compared to the forward scan. All this processes yields a voltammogram, 

the shape of which is dependent on the size of the interface: a peak shape in the case of 

large interfaces or a sigmoidal shape for micro interfaces (see sections 2.7.1.2 and 2.13). 

The current measured during this process can be normalised to the interface area and 

referred to as the current density, which is then plotted against the applied potential.  

 

Figure 3.13 – Theoretical cyclic voltammogram for a single charged ion transfer reaction 

across a macro liquid|liquid interface.    
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From the sweep-rate dependence of the voltammetric data, several quantitative 

properties of the charge-transfer reaction can be determined. However, it is in qualitative 

mechanistic investigations that sweep techniques like cyclic voltammetry are most useful. 

This technique is very convenient for determining whether a simple electrochemical 

reaction is limited by diffusion (reversible systems) or limited by kinetics (irreversible 

systems) or partially limited by kinetics (quasi-reversible systems).6 The diagnostic test 

for a reversible transfer process is the separation of forward and reverse peak currents 

(  
        

  respectiely),        given by:  

        
    

  
  

 
                           

n is the number of electrons exchanged or the charge of ions to be transferred. The 

analysis of ion transfer process is similar to that of redox reactions, and the expression of 

the peak current for ion transfer reactions is given by the Randles-Sevcik equation,6 

                                                       

which at 298K can be simplified to: 

                                            

where    is the peak current (A), A is the area of the ITIES (cm2), R and F are the gas and 

Faraday constants, z, C and D, are the charge, the bulk concentration (mol cm-3) and the 

diffusion coefficient of the ion (cm s-1), respectively, T is the absolute temperature (K), υ 

the scan rate (V s-1), and t, the time (s). By varying the scan rate and maintaining all the 

other factors constant, the Eq. (3.6) allows then the evaluation of the diffusion coefficient 

of the transferring ion.18  
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It is also important to note that the applied potential difference between two reference 

electrodes depends on the nature of the electrodes used. It is therefore necessary to 

convert the scale of applied potential      to the Galvani scale. This can be achieved by 

internally referencing each measurement with transferring ions such as TMA+ for which 

the formal transfer potential is already known in most solvent systems: 

     
                       

An essential application of CV at the ITIES is the determination of the formal transfer 

potential of ions,   
   

    For a reversible ion transfer reaction at a large planar interface, 

the formal potential can be expressed in terms of the half-wave potential,    
        by:  

  
   

   
   

   
   

  

   
  (

  
 

  
 )

   

                

 The    
         differs substantially from the standard transfer potential as the diffusion 

characteristics of the ion are different in the aqueous and the organic phase. 

Experimentally,    
        is considered equal to the mid-peak potential and is directly 

deduced from the voltammograms: 

  
   

   
   

     
    (

   
     

      
     

   

 
)    

     
    

   
     

 
             

where    
      corresponds to the peak-to-peak separation. 

Concerning the ratio of the diffusion coefficients in both phases (Eq. 3.6), this term is 

usually approximated to the inverse ratio of the solvents viscosities,  , by the application 

of Walden’s rule,6 since the diffusion coefficients in the organic phase are rarely known 

due to experimental difficulties. 
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For the experiments reported in this thesis, two reference ions were used, TMA+ and 

TEA+. The formal potential of TMA+ and TEA+ has been determined as +160 mV9,19 and 

+52 mV9 respectively, using the ‘TATP’ assumption (see section 2.4 ), TMA+ or TEA+ where 

added to the water phase after each experiment in order to reference all the observed 

reversible half-wave potentials,   
   

   
, deduced from the voltammograms. The 

logarithm of the ratio of the diffusion coefficients in both phases is neglected in this study. 

When using TMA+ ions as an internal reference, the measured half wave potential and the 

formal transfer potential for the ion under study and the reference are simply related 

using Eq. 3.11.  

  
   

  
   

      
  

   
  

    
   

   
   

   
                   

3.5.1.2 Micro ITIES 

The cyclic voltammogram presented in Figure 3.14 yields the current flowing through a 

micro interface supported at a micropipette tip in response to the applied potential, 

associated with the electrochemical cell (scheme 2.1). With 1,2-DCE as organic solvent, a 

potential range of approximately 0.8V is obtained when the electrolytes LiCl and 

BTPPATPBCl are used in the water and organic phases, respectively. The interface is 

considered polarised within this potential range, where only little current flows, mostly 

due to the charging current of the interface.  

 

Scheme 2.1 – Schematic representation of the blank electrochemical cell. 
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The current rise is associated with the transfer of Li+ and TPBCl- at positive potentials and 

Cl- or BTPPA+ at negative potentials. The relative contribution of the lipophilic anion and 

hydrophilic cation depends on the racking of these ions on the scale of the Gibbs energies 

of transfer.20 Since both are similar, both ions contribute to the observed background 

current, (Figure 3.14, dashed line). 

 

Figure 3.14 – Cyclic voltammograms in the absence (dashed line) or in the presence (full 

line) of TMA+ at a aqueous|1,2-DCE interface supported at a micropipette tip 

(radius=20.1±1μm). 

Several salts can be used as aqueous and organic electrolytes, yielding various potential 

windows, meaning that the potential window can be expanded by using a more 

hydrophobic and hydrophilic supporting electrolytes in the organic and aqueous phase, 

respectively. 

3.5.2 Differential pulse voltammetry 

In order to increase speed and sensitivity, many forms of potential modulation have been 

tried over the years.  Differential pulse voltammetry (DPV), normal pulse voltammetry 

(NPV) and square wave voltammetry (SWV) are the most commonly used pulse 

techniques. The basis of all pulse voltammetric techniques is the difference in the rate of 
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the decay of the charging and the faradaic currents following a potential step, also known 

as pulse. The ultimate aim of the pulse techniques is to lower the detection limit of the 

voltammetric measurements by increasing the ratio between the faradaic and 

non-faradaic current.  DPV, particularly, has become widely used because of its high 

sensitivity and general applicability,21 as its operation results in a very effective correction 

of the charging background current. In this technique, the potential wave consists of small 

pulse of constant amplitude superimposed upon a staircase wave form (Figure 3.15).  

 

Figure 3.15 – Potential-time waveform of DPV. Orange trace corresponds to the applied 

potential. The black squares indicate the first and second points, where the current 

sampled. a) Full waveform, b) Zoom of the waveform. 

Unlike normal pulse voltammetry, with which it can be compared, the current is 

measured at two points for each pulse, the first point just before the application of the 

pulse      and the second at the end of the pulse    . These sampling points are selected to 

allow for the decay of the non-faradaic current. The difference between the current 

measured at these points for each pulse is determined,                and plotted 

against the base potential (Figure 3.16).  
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Figure 3.16 – Representation of a differential pulse voltammogram. 

 

The resulting differential pulse voltammogram consists of current peaks with the height 

of the peak current directly proportional to the concentration of the analyte. The peak 

current ( 
    

   and potential (        parameters, of a differential pulse voltammogram 

are defined by Eq. 3.12 and Eq. 3.13, respectively.6 

    
    

    (
 

       
)
   

 (
   

   
)                    

            
  

 
                 

where n is the number of electrons, F the Faraday’s constant, A the electrode area (cm2), D 

the diffusion coefficient (cm s-1), C the concentration of the analyte (mol cm-3),    is the 

pulse amplitude,    and   are the first and second current sampling time respectively.   

The maximum value for the quotient              is obtained for large pulse 

amplitudes and is the unity,    is expressed by Eq. 3.12. 

     (
    

   
)                   



Experimental methodology 

Chiral interactions and sensing at liquid|liquid interface                                                                     74 |  

The peak current also increases with the pulse amplitude,  

          but in a complicated linear fashion. For this reason, in practice, amplitudes 

greater than 100mV are not used, since the peaks broaden and the resolution is 

significantly inhibited. The characteristics of DPV are symmetrical peaks for reversible 

reactions and asymmetrical peaks for irreversible reactions.  
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Chapter 4 

Lipophilic cyclodextrins as chiral selectors at 

a liquid|liquid interface 

 In this chapter, work is described that demonstrates conclusively that size matched 

cyclodextrins, such as lipophilic acetylated α- and βCD (AcαCD and AcβCD) common 

chiral stationary phases, can be used in a non-aqueous phase to differentiate chiral 

molecules, such as ephedrine hydrochloride. Facilitated ion transfer of ephedrine 

enantiomers and racemate by the lipophilic cyclodextrins was investigated at the 

aqueous|1,2-dichloroethane micro interface using electrochemical approaches (cyclic 

voltammetry and differential pulse). The interaction of the ephedrinium ions with AcαCD 

and AcβCD was studied varying the concentration of the ephedrine ions and the ligand. 

The results suggest that the transfer of the ephedrine chiral ions facilitate by AcαCD and 

AcβCD are controlled by the diffusion of the ligands. Differences in the half-wave potential 

and current intensities show that chiral discrimination occurs both between the 

enantiomers and ligands. The difference in stability constant between the (+)EPH+ and 

(-)EPH+ complexes was found to be 0.83±0.1 for AcβCD and 0.71±0.1 for AcαCD. 
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4.1 Introduction  

It has long been recognized that many molecules exist in two mirror images. Despite the 

emphasis that has been placed on the recent advances in chiral chemistry, optical isomers 

have been known for many years. In fact, the discovery of chirality in chemistry can be 

traced back to more than 200 years ago. In the early 1800s, Jean Biot1,2 observed optical 

activity in mineralogical samples such as quartz, in which an asymmetrical crystalline 

form was macroscopically observable.3 At that time the crystals pair which are mirror 

images of each other were called “enantiomorphous” crystals (from the Greek enantios 

and morphe) which means opposite form. The existence of optical isomers was 

established by the work of Pasteur in 1848.2,4 Pasteur separated an optically inactive 

sample of a tartaric acid salt into optically active dextrorotatory and levorotatory 

components by physically segregating the enantiomorphous crystalline forms. He showed 

that what had been thought to be a pure substance (racemic acid) was a mixture of two 

compounds: the natural, dextrorotatory tartaric acid and a substance that, although 

identical to the first compound identified in all of its other chemical properties, was yet 

opposite in its solid state structure and in its observed rotation of polarised light. 

Furthermore, he advanced the field by studying the influence of one chiral compound 

upon another and introduced the technique of resolution via diastereoisomer formation, 

which became the basis of many modern chromatographic separations.3,5  

The existence of the asymmetric carbon atom and the explanation of optical rotation was 

proposed by both van't Hoff2,6 and Le Bel.2,7 However, it was Emil Fisher,2,8 who made the 

first serious attempts to relate the absolute stereochemistry of optical isomers and 

determined the configuration of (+)-glucose for which he received the Nobel prize.  The 

discovery that the respective physiological activity of the isomers of a drug could differ 

radically initiated a new interest in chiral substances, particularly chiral drugs. This was 
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found to be true for many physiologically active compounds and, in particular, 

physiologically active biotechnology products. However, the major stimulation for chiral 

studies arose from the unfortunate birth defects initiated by one of the enantiomers of 

thalidomide. This drug was manufactured and sold as a racemic mixture of N-

phthalylglutamic acid imide. However, the desired physiologically activity was found to 

reside solely in the R-(+)-isomer and it was discovered, too late, that the corresponding S-

(-)-enantiomer was teratogenic and caused serious fetal malformations. The thalidomide 

disaster evoked the need to test the different enantiomers of a drug and the appropriate 

analytical procedures to separate and quantitatively assay them.  

Chiral analysis and separation has therefore become an important topic in pharmaceutical 

analysis and bioanalysis for the screening of drugs, drug impurities, synthetic precursors, 

side products, and metabolites.9,10 Cyclodextrins (CDs), native or modified, are numbered 

among the most popular and most frequently used chiral agents for enantiomeric 

resolution.10,11 Harada et al.12 were the first to introduce the CDs as chiral separation 

agents and, in 1980, Armstrong13 used the CDs as mobile phase additives for chiral 

separations by thin-layer chromatography.  Since then, the use of CDs for chiral molecular 

recognition in separation sciences has undergone with growth as they can discriminate 

between positional isomers, functional groups, homologous and enantiomers.14 

 

4.1.1 Cyclodextrins 

CDs also known as cycloamyloses, cyclomatoses and Schardinger dextrins,15 are chiral by 

essence,16 they are cyclic (α-1,4)-linked oligosaccharides of α-D-glucopyranose containing 

a relatively hydrophobic (lipophilic) cavity and hydrophilic outer surface. Owing to lack of 

free rotation about the bonds connecting the glucopyranose units (in chair formation), the 

CDs are not perfectly cylindrical molecules but are toroidal or cone shaped. Based on this 
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architecture, the primary hydroxyl groups are located on the narrow side of the torus 

while the secondary hydroxyl groups are located on the wider edge (Figure 4.1). The 

cavity is lined by the hydrogen atoms and the glycosidic oxygen bridges, respectively.17 

The three dimensional structures of the CDs make them attractive because of the 

differential reactivity of their alcohol functions, which allow regioselective chemical 

modification either at the primary or at the secondary rim.16 

 

 

Figure 4.1 – 3D structure of a native cyclodextrin, illustrating the comical shape of the 

cyclodextrin molecules and both primary and secondary hydroxyl groups. Reproduced 

with permission from Ogoshi and Harada.18 

The naturally occurring CDs are α-, β- and γ-CD which consist of six, seven and eight 

glucopyranose units, respectively (Figure 4.2). CD molecules are relatively large with a 

number of hydrogen donors and acceptors and, thus in general they do not permeate 

lipophilic membranes. CDs are generally soluble in water and in most organic solvents. 

This property is attributed to the presence of primary and secondary hydroxyl groups 

that are on the outside of the CDs. The cavity of the CD ring consists of a ring of C-H 

groups and a ring of glycosidic oxygen atoms. This renders the cavity of the CD rings less 

polar than the outside. 

Primary hydroxyl rim
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Figure 4.2 – Chemical structure of the host α-, β- and γ-cyclodextrin. 

While is thought that, due to steric factors, CDs having fewer than six glucopyranose units 

cannot exist, CDs containing nine, ten, eleven, twelve and thirteen glucopyranose units, 

which designated              and θ-CD, respectively have been reported.19 Of these 

large-ring CDs only δ-CD has been well characterized. The chemical and physical 

properties of the three most common CDs are quite different, e.g., width of the cavity, 

solubility, molecular mass etc., however they possess the same depth.15 The main 

characteristics are summarized in table 4.1.  

Table 4.1 – Physical properties of α-, β-, and γ-CD15,20 

 α-CD β-CD γ-CD 

Number of glucose units 6 7 8 

Molecular weight (g/mol) 972.86 1135.01 1297.15 

Water solubility (g/100mL :25°C) 14.5 1.85 23.2 

Internal diameter (Å) 4.0-5.3 6.0-6.5 7.5-8.3 

Height of torus (Å) 7.9 7.9 7.9 

Cavity volume (Å3) 174 262 427 

Substitutable hydroxyl groups 18 21 24 
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Based on published data it seems that the cavity of βCD is appropriate for hosting a wide 

number of chemical compounds especially of pharmaceutical interest. CDs are widely 

used as “molecular cages” in the pharmaceutical  agrochemical  food and cosmetic 

industries.21 In the pharmaceutical industry they are used as complexing agents to 

increase aqueous solubility of poorly soluble drugs and to increase their bioavailability 

and stability.19,22 In short, CDs act as a drug delivery system and are potential drug 

delivery candidates in many applications because of their ability to alter the physical, 

chemical and biological properties of guest molecules through the formation of inclusion 

complexes.23 In addition, CDs can be used to reduce gastrointestinal drug irritation, 

convert liquid drugs into microcrystalline or amorphous powder and prevent drug-drug 

and drug-excipient interactions.  

CDs can also play a major role in environmental science in terms of solubilisation of 

organic contaminants, enrichment and removal of organic pollutants and heavy metals 

from soil, water and atmosphere. They are applied in water treatment to increase the 

stabilizing action, encapsulation and adsorption of contaminants. High toxic substances 

can be removed from industrial effluent by inclusion complex formation.24 Currently, 

chiral separations seem to be one the most significant areas of application in the use of 

CDs and their derivatives.10 

4.1.1.1 Cyclodextrins for chiral sensing  

The five chiral carbon atoms in each glucopyranose unit are the source of the 

enantioselectivity of CDs.25 The shapes of the glucose units do not repeat from unit to unit, 

as a result, different chiral recognition sites are present between glucopyranose units of 

the same CD. Furthermore, CDs can change their shape upon interacting with analytes, in 

which they can experience included-fit interactions, which can broaden the chiral 
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selectivity of CDs.26 Because of their unique properties CDs have been utilised for chiral 

resolution for a long time and are becoming increasingly popular, however the exact 

nature of the interaction between the CD and the chiral ligand which leads to 

enantiomeric discrimination is still not known in detail. CDs serve as ideal selector by 

chiral molecular recognition and are therefore used in various types of separations. In 

capillary electrophoresis (CE),27–30 hydrophilic CDs have been frequently used as buffer 

modifiers to effect chiral separation of drugs.30 CDs are also widely used in the separation 

of enantiomers by high-performance liquid chromatography (HPLC),2,28,31 or gas 

chromatography (GC).32 The stationary phases of these columns contain immobilized CDs. 

Other analytical applications can be found in CE27–30 and spectroscopic methods. In 

nuclear magnetic resonance (NMR) studies33–35 they can act as chiral shift agents and in 

circular dichroism36 as selective (chiral) agents altering spectra.  

CDs have been used for their ability of enantiospecific molecular recognition in the liquid 

phase. Parker and co-workers37,38 have demonstrated that highly lipophilic αCDs, 

per-octylated at both rims, are suitable receptors for chiral sensing of ephedrine, 

pseudoephedrine and norephedrine in the liquid phase, using potentiometric electrodes. 

In these experiments CDs derivatives have been incorporated into PVC membranes using 

o-nitrophenyl octyl ether (oNPOE) and bis(butylpentyl) adipate (BBPA) as plasticizers. 

Potentiometric electrodes have also been used by Stefan and co-workers39 to design 

enantioselective sensors. They used membrane electrodes based on graphite paste 

(graphite powder and paraffin oil) impregnated with 2-hydroxy-3-trimethyl-

ammoniopropyl-β-CD. They showed that molecules that possess at least one hydrophobic 

cyclic part could presumably be included in the hydrophobic cavity of the CD receptor. 

Polar functions of the guest molecule are then in close contact with eventual polar 
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functions of the receptor and then could interact to improve the stability and the 

enantioselectivity of the complex.40 

In order to enhance the chiral resolution power, a variety of derivatized CDs have been 

introduced. Due to the availability of multiple reactive hydroxyl groups, the functionality 

of CDs is greatly increased by chemical modification. Most of the modified CDs are 

mixtures characterized by an average degree of substitution in varying locations. It 

follows that increased chiral discrimination can be expected with modified CDs where, 

through the modification, the degree of asymmetry of the cyclodextrin has been increased 

and there is the possibility of greater interaction between chiral portions of the 

cyclodextrins and those of the guests. Modifying CDs and their complexing characteristics 

usually involves substitution of one or more of the C-2, C-3 and C-6 hydroxyl groups 

(Figure 4.3).  

 

Figure 4.3 – Schematic representation of the glucose unit showing in red the positions 

susceptive of modification on the CDs, (* represents the α-1,4-type glycosidic linkage). 

 

The modifications may be divided into two categories. In one, the hydroxyl groups are 

substituted in a symmetric fashion to give a single modified cyclodextrin (e.g. all the 

hydroxyl groups may be substituted) or at random to give a complex mixture of 

cyclodextrins in which the average effect is that of a symmetric substitution. A single 

substituent or a specific combination of substituents can also be done to obtain a modified 

cyclodextrin. There are 18, 21 and 24 hydroxyl groups in α-, β- and γ-CD, respectively, 

that can be modified by a wide variety of groups like: alkyl-, hydroxyalkyl-, aminothio-, 
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glucosyl-, maltosyl-, methyl-, hydroxyethyl-, hydroxypropyl-, acetyl-, etc. This 

derivatisation may induce substantial changes in the asymmetry of the CD and result in 

additional and more specific interactions between the chiral area of the guest and the 

asymmetry of the host, which restrict the geometry of binding, leading to greater 

enantioselectivity.10,20,41  

Acetylated CDs, the ones used in this work consist of CD molecules in which the secondary 

hydroxyl groups in positions 2 and 3 and all available primary hydroxyl groups in 

positions 6 are acetylated. This functionality acts as hydrogen bond acceptor, which can 

interact with the analyte hydroxyl or amine groups. The acetyl group can also act as rigid 

π-electron system for the steric interactions, and it has effect of the extending the mouth 

of the cyclodextrins cavity to include larger molecules. This is especially advantageous 

when the chiral analyte, upon the biding to the cyclodextrins protrudes from the cavity 

and the chiral centre is not in close proximity to the rim of the CDs. For these molecules, 

the acetylated CDs will enhance the enantioselectivity compared to native CDs.42 

In any case the major reason for the preparation of CD derivatives are generally the 

modification of solubility, modification of complexation abilities (stability constant, guest 

selectivity), or introduction of specific groups with specific functions. 

 
4.1.1.2 Formation of cyclodextrin inclusion complexes  
 

Inclusion complexation refers to a molecular phenomenon where one molecule of guest 

and one molecule of the host come into contact and form a complex.13,45-48 CDs can 

undergo molecular inclusion with a variety of low molecular weight compounds from 

aliphatic non-polar molecules to polar acids and amines. In these complexes, a guest 

molecule is held within the cavity of the CD host molecule.10,43  



Lipophilic cyclodextrins as chiral selectors at a liquid-liquid interface  

 

Chiral interactions and sensing at liquid|liquid interface                                                                      85 |  

As early as 1952, Dalgliesh44 pointed out that at least a three-point interaction should take 

place between the analytes and the chiral selector. For instance, the analyte should 

contain an α-amino-group or carboxyl group (hydrogen bonding), an aromatic ring 

(hydrophobic interaction) and the ring should contain one or more substituents allowing 

a closer fit within the cavity of the CD and hence a greater interaction with one of the 

enantiomers than with the other. Armstrong et al.45 mentioned that some of the 

requirements for the chiral recognition by CDs are: (i) formation of an inclusion complex, 

(ii) relatively tight fit between the analyte and the CD and (iii) a chiral centre or a 

substituent at the chiral centre must be near and interact with the mouth of the CD cavity. 

 The lipophilic cavity of the CD molecules provides a hydrophobic microenvironment into 

which appropriately sized non-polar moieties can enter to form inclusion complexes.19,22 

However, no covalent bonds are broken or formed during formation of the inclusion 

complex. The binding strength depends on how well the ‘host–guest’ complex fits together 

and on specific local interactions between surface atoms.14 Inclusion in CDs exerts a 

profound effect on the physicochemical properties of guest molecules as they are 

temporarily locked or caged within the host cavity giving rise to beneficial modifications 

of guest molecules, which are not achievable otherwise.10 

The ability of a CD to form an inclusion complex with a guest molecule can be explained 

by steric and thermodynamic factors. The steric factors involved depend on the relative 

size of the CD to the size of the guest molecule and certain key functional groups attached 

to the guest. If the guest's size is too large or too small it will not fit into the CD (i.e. 

geometric compatibility).15,17,46 Analytes can also fit either completely or with their 

hydrophobic part into the CD cavity entering through one of the openings, primary and 

secondary rims. 
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For an inclusion complex to be thermodynamically favourable there must be a favourable 

net energetic driving force that pulls the guest into the CD. A favourable net energetic 

change for the formation of an inclusion complex could involve several processes.10 The 

release of polar water molecules from the apolar CD cavity, the formation of a larger 

amount of hydrogen bonds between water molecules that are released from the cavity, a 

decrease in the amount of repulsive interactions between hydrophobic guests and an 

aqueous environment and an increase in hydrophobic interactions as the guest moves 

into the apolar CD cavity can contribute to a favourable net energetic change for the 

formation of an inclusion complex.10,43,46,47 Various explanations for the favourable energy 

changes that occur in the formation of inclusion complexes ultimately show that the 

complexation mechanism is neither simple nor universal for all combinations of 

cyclodextrins, guests and solvents.  

Complex formation is usually associated with a large, negative ∆H and a ∆S that can either 

be positive or negative. However, classical hydrophobic interactions, which are based on 

the hydrophobic effect, are associated with a slightly positive ∆H and a large, positive ∆S 

and have been shown to drive CD complexation in certain cases.10 Other factors involved 

in complex formation include the release of ring strain in the glucopyranose units 

composing the CD, van der Waal’s forces, hydrogen bonding and the flexibility, or degrees 

of freedom of a guest. Thus, it is accepted that various forces contribute to the complex 

formation.33 

The most frequent complex formed is a 1:1 ratio where one CD molecule includes one 

organic guest molecule and the binding process is not fixed or permanent but rather is a 

dynamic equilibrium. The 1:1 interaction is usually described by Eq. (1) or as figure 4.4, 

although higher complexes have been postulated.11 

 uest     CD        CD   uest                  ( . ) 
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Figure 4.4 – Formation on and inclusion complex of a CD with an organic guest 

molecule.20 where,      
          

           
. 

 

The complexation of enantiomeric pairs of guest molecules with CDs typically involves 

small differences between the thermodynamic quantities describing the complexation of 

each enantiomer. For example, differences in ∆G° that are typically less than 1 kJ mol-1 are 

reported for the complexations of mono(6-anilino-6-deoxy)-βCD with enantiomeric pairs 

of various amino acids and for the complexations of α- and βCDs with enantiomeric 

ephedrines and pseudoephedrines. Often, enantioselectivity is attributed to a larger ∆S° 

value for the complexation reaction involving the preferred enantiomer compared to the 

complexation reaction involving the less preferred enantiomer. The larger ∆S° value is a 

consequence of greater conformational freedom of the favoured enantiomer inside of the 

CD cavity and the classical hydrophobic effect in which there is more extensive 

desolvation of the cyclodextrin cavity in the system with the preferred enantiomer.46 

4.1.2 Chiral Analyte 

 
Ephedrine and ephedrine derivatives (e.g., methylephedrine and norephedrine) are 

sympathomimetic amines known to have central nervous system stimulating properties,48 

producing excitement and euphoria and increasing motor activity,49 which has direct 

effects on the regulations of the World Anti-Doping Agency (WADA). Ephedrine has 

Cyclodextrinfree

(Host)

Organic moleculefree

(Guest)

[Molecule-Cyclodextrin]complex
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become a valuable precursor as it serves as a starting material for two powerful and 

popular stimulants, methamphetamine and methcathione.50 Ephedrines are also used as a 

major active component in medications for the treatment of nasal congestion,51 asthma 

and obesity.52 Each ephedrine exists as a pair of enantiomers (Figure 4.5), which may 

differ in pharmacological activity as well as in the rate of their metabolism.  For example, 

the stimulant effect of the (1S,2R)-(+)-ephedrine enantiomer amounts to 80% of the 

activity of the (1R,2S)-(-)-ephedrine. 

 

Figure 4.5 – Chemical structure of ephedrine hydrochloride enantiomers. a) (1R,2S)-(-)-

ephedrine hydrochloride, b) (1S,2R)-(+)-ephedrine hydrochloride. IUPAC name (R*,S*)-2-

(methylamino)-1-phenylpropan-1-ol (pKa=9.39).53 

 

As a consequence of a widespread use of ephedrine, it has been necessary to develop 

analytical techniques for their reliable detection. The enantiomer composition (qualitative 

or quantitative) can be useful in order to identify the synthetic pathways of clandestine 

ampethamine samples.54 For these reasons, the development of chiral methods of analysis 

for ephedrines is receiving increasing attention in the clinical, toxicological and 

pharmaceutical fields. In this respect, the chiral discrimination of ephedrine has been 

reported by a number of techniques, including, liquid chromatography (LC),28,55 gas 

chromatography (GC),50 capillary electrophoresis (CE)56,57  and NMR spectroscopy.33,34  

a) b)

●HCl ●HCl
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It has been stated by several authors, that 1:1 complexes can be formed with βCD and 

modified βCDs with the enantiomers of the ephedrine.28,33,34,55,56 The aromatic moiety of 

the ephedrine is included in the cavity of the CD, composed of seven glucose units, 

whereas the said chain is located at the wider rim (secondary rim). This type of inclusion 

allows the formation of hydrogen bonds with the OH or the amino group of the ephedrine 

molecule with the acetyl groups in the rim of the CD. Holzgrabe et al.33 studied the chiral 

discrimination of ephedrine induced by βCD, heptakis(2,3-di-O-acetyl)β-CD, heptakis(6-O-

acetyl)β-CD using one- and two- dimentional NMR techniques. He found different inter- 

and intramolecular nuclear overhauser effects (NOEs) for the enantiomers with βCD and 

heptakis(2,3-di-O-acetyl)β-CD which reflected the ability of these CDs to discriminate 

between (+)- and (-)-ephedrine. No differences could be found between the enantiomers 

using 6-acetylated CD. Furthermore, indications that the 1H-1H-coupling constants of the 

enantiomers did not change upon complexation with both CDs suggested that is a 

different orientation of the enantiomers rather than a different conformation of the cavity 

that causes the chiral recognition. These findings were also reported by several 

authors.34,53,58 Mularz et al.58 proposed that hydrogen bonding between the ligands and 

the secondary hydroxyls in the 2- and 3-positions of the CD is essential for the 

discrimination of ephedrine and pseudoephedrine enantiomers. Li and Purdy59 reported 

on the necessity of side chain interactions between native βCD and substituted amino 

acids to discriminate between the optical isomers. 

The recognition of ephedrine enantiomers has also been done by potentiometry using 

enantioselective sensors based on lipophilic CDs (α- and 2,6-di-O-dodecyl-βCD).38,60–62 It 

was established that it was the configuration of the amino group in the ephedrine 

molecules which determined the sense of enantiodifferentiation in CD inclusion 

complexes. The (+)-enantiomer of ephedrine was found to be the more strongly bound 
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and in the (2S)-(-)-complex it was proposed that there was an unfavourable steric 

interaction between the 2-Me group and the H3 proton of the CD host that inhibited a 

favourable 
 
     hydrogen bonding interaction. Furthermore, it was demonstrated that 

CDs in which the OH have been alkylated showed no difference in the stability of the 

diastereoisomers complexes with (-)- and (+)-ephedrine.61 It was shown that complete 

alkylation of the 3-OH group in αCD derivatives removed the enantioselectivity in binding 

ephedrine and its stereoisomers.37,38  

4.2 Results and Discussion 

4.2.1 Transfer of ephedrinium ions assisted by AcαCD without organic reference 

solution 

Preliminary studies for the chiral discrimination of ephedrine, using liquid|liquid 

interface approach, were performed in the presence of AcαCD, as chiral ligand, in the 

organic phase. The interaction between the ephedrinium ions and AcαCD can be 

represented by the following reaction: 

AcαCD( )      ( )
      AcαCD                ( . ) 

where EPH+ stands for the two enantiomers of ephedrine hydrochloride, (+)EPH+ 

(-)EPH+, and the racemate (±)EPH+. AcαCD is the abbreviation for hexakis(2,3,6-tri-O-

Acetyl)--Cyclodextrin (see section 3.4.2, Figure 3.5). Outer silanised micropipettes were 

filled with solutions of ephedrine hydrochloride, enantiomers and racemate, and dipped 

in a 1,2-DCE solution containing the chiral selector (see section 3.1.2, Figure 3.10). The 

electrochemical cell employed for the study the of ephedrinium ions transfer facilitated by 

AcαCD is represented in scheme 4.1. 
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Scheme 4.1 – Cell configuration for the facilitated chiral transport of EPH+ ions using 

AcαCD.  

All the potentials were calculated using TBA+ as the internal reference, according to 

Eq.(4.3); the transfer potential of the reference63–65 ion TBA+ was measured by using 

10mM of TBACl inside the pipette instead EPH+. The   
  (         )

  
 values were 

calculated in accordance with the ‘TATB’ assumption in the form  
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 represents the value of the transfer potential of the TBA+ ion, 
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 are the experimental half-wave potentials of the charge transfer 

reactions and TBA+ transfer, respectively. As reference for our measurements the value of 

  
      

  
 -230 mV66 was used. 

Figure 4.6 shows the DPV voltammograms (background subtracted) obtained for the 

assisted transfer of the ephedrinium ions by AcαCD. As it can be seen from the same 

figure, the (+)-EPH+ enantiomer transfers at 142±2mV (Figure 4.6, red curve) whereas the 

(-)-EPH+ transfers at 117±2mV (Figure 4.6, purple curve). For the racemate, the transfer 

was observed at an intermediate potential of 122±2mV (Figure 4.6, blue curve). In the 

absence of the chiral selector, no transfer across the liquid|liquid interface was observed, 

within the potential window. TBA+ is also known to form weak association complex with 

AcαCD. The facilitated transfer of TBA+ by AcαCD (Figure 4.6, grey curve) occurs at 

approximately 265±2mV mV. As the concentration of the ligand in the organic phase is in 

10 mM TBATPB  
25 mM AcαCD (1,2-DCE)

Ag|AgTPB(s) Ag|AgCl(s)
10 mM KCl

5 mM EPH+
(aq.)
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excess, the current measured is proportional to the concentration of species in the 

aqueous phase. 

  

Figure 4.6 – DPV voltammograms for the assisted transfer of ephedrine ions (in red: 

(+)EPH+, blue: (±)EPH+, purple: (-)EPH+) and TBA+ (in grey) by AcαCD across the 

liquid|liquid interface. DPV conditions: pulse height: 0.0025 V, pulse with: 0.1 s, step 

height: 0.005 V, step time: 1 s, pipette radius was ∿50µm.67 

The difference observed in the half-wave potential of transfer between the (+)-EPH+ and 

(-)-EPH+ reflects the difference in chiral Gibbs free energy of the two enantiomers from 

the aqueous to the organic phase. This difference was found to be -2.47 kJ mol-1 

(Table 4.2). A peak of higher current intensity for the (+)-EPH+, suggest that this 

enantiomer is more facile to transfer in comparison to (-)-EPH+. Reharsky and 

co-workers53 using titration calorimetry, to measure equilibrium constants of ephedrine 

and related substances with αCD, reported K values, of 18.0±0.9 and 17.0±0.9 for (+)- and 

(-)-EPH+, at 298K, respectively. These values were based on a 1:1 binding model and a 

single binding site. The same authors suggested that the interactions between ephedrines 

and CDs can be qualitatively understood in terms of steric effects, hydrophobic 

interactions and hydrogen bonding. 
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Table 4.2 – Enantioselective differentiation of ephedrine enantiomers and the racemate 

using AcαCD at a aqueous|1,2-DCE interface. 

 (+)-EPH+ (-)-EPH+ Racemate 

 
(         )

   
/mV 142±3 mV 117±3 mV 122±3 mV 

 (  )                -2.47  

ΔK 0.5±0.1  

 

4.2.2 Transfer of ephedrinium ions assisted by AcαCD and AcβCD with organic 

reference solution 

In order to extend the preliminary results obtained for the chiral differentiation of 

ephedrine enantiomers at liquid|liquid interface, an additional chiral stationary was used, 

AcβCD, and the experimental set-up refined (see section 3.1.2, Figure 3.4). 

Before comparing the enantiomeric resolution of the two ligands, experiments were 

focused on the electrochemical response only in the presence of the lipophilic CDs in the 

organic phase, i.e. in the absence of ephedrinium ions in the aqueous phase, to observe 

any possible complexation between the ligands and the electrolytes. Figure 4.7 compares 

the CV and DPV voltammograms at the aqueous|1,2-DCE interface, according to scheme 

4.2. 

 

Scheme 4.2 – Cell configuration for the study of ion transfer in the absence of 

ephedrinium ions.  

 

 

10 mM TBATPB with/without 
1 mM AcαCD or AcβCD (1,2-DCE)

Ag|AgCl(s) 10 mM TBACl(aq.) 10 mM LiCl(aq.)
Ag|AgCl(s)
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a) 

 

b) 

  

Figure 4.7 – CV and DPV response obtained at the aqueous|1,2-DCE interface in the 

absence of ephedrinium ions. The grey dotted line represents the response of the 

background electrolytes, in blue and red in the presence of AcαCD AcβCD (1mM) in the 

organic phase, respectively. Scan rate:10mV s-1; pulse amplitude 0.05 V, sampling with 

0.060 s, step hight 0.005 V. Micropipette tip radius 7±1 µm. 

 
As it can be seen from figure 4.7, in the presence of AcαCD and AcβCD in the organic 

phase, the background electrolytes response does not alter significantly. The polarised 

potential window is approximately 400mV, limited by the background electrolytes 

transfer at the extremes of the potential window. At positive potentials, the potential 

window is limited by the egress of Li+ from water to the organic phase or by the ingress 

transfer of TPB- ion from the organic to aqueous phase. Conversely at negative potentials, 

the window is limited by either TBA+ (from the aqueous to the organic) or Cl- (from the 

organic to the aqueous phase) transfer at the negative side of the potential window. The 

transfer of the protonated drug (EPH+) ions was also studied in the absence of ligands in 

the organic phase. The electrochemical cell used is presented in scheme 4.3.  

 

Scheme 4.3 – Cell configuration for the study of ephedrinium ion transfer in the absence 

of ligands (AcαCD and AcβCD) in the organic phase. 
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In figure 4.8 are presented the CV and DPV voltammograms obtained for the unassisted 

transfer of ephedrinium ions from aqueous to organic phase.  

a) 

 

b) 

 

Figure 4.8 – a) CV b) DPV responses obtained at the aqueous|1,2-DCE micro interface in 

the absence (dashed line) and in the presence (dotted line) of ephedrinium ion, 

[EPH+]=5.0mM). Scan rate:10 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step 

hight 0.005 V. Micropipette tip radius 7±1 µm. 

In the absence of chiral ligands in the organic phase, no voltammetric waves of the 

unassisted transfer of EPH+ from the aqueous phase, inside the micropipette, to the 

organic solution, containing only supporting electrolyte (TBATPB), could be seen. The 

results were almost undistinguishable from those obtained in the absence of ephedrine in 

the aqueous phase. The steeply rising currents at the positive and negative limits of the 

potential window are due to the transfer of the supporting electrolyte ions from the 

pipette to the 1,2-DCE phase and from the organic to the aqueous solution inside the 

pipette. EPH+ is therefore transferred to the organic phase at potentials more positive 

than the positive limit of the potential window. The presence of a ligand in the organic 

phase is therefore needed to assist the transfer of the ephedrine cations.  
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4.2.2.1 Influence of the bulk concentration of ephedrinium ions on the facilitated 

transfer by the chiral ligands.  

The study of the assisted transfer of ephedrine chiral ions is represented in the following 

scheme. 

 

Scheme 4.4 – Cell configuration used for the study of the ephedrine cations assisted by 

AcαCD and AcβCD.    + represents the protonated enantiomers and racemate forms of 

ephedrine hydrochloride  χ 5   0   5   0 mM. 

 
From the previous results (Figure 4.8), it is clear that the facilitated ion transfer of 

ephedrine involves complexation of its cations ((+)EPH+, (-)EPH+, (±)EPH+) which are 

initially present in the aqueous solution (inside the micropipette), to the lipophilic CDs, 

contained in the outer organic solution. With the pipette biased at a sufficiently positive 

potential and the concentration of EPH+ ions much higher than the concentration of the 

ligands, [EPH+](w)>>[CD](o), the limiting current is controlled by the diffusion of the 

ligand  AcαCD or AcβCD  from the bulk organic solution (outside of the pipette) to the 

pipette orifice. This process coincides with a TIC mechanism (see section 2.9) at the 

exclusion cavity of the CDs. 

Figures 4.9 to 4.12 and Figures 4.13 to 4.16 show the responses obtained for the transfer 

of ephedrine cations assisted by AcαCD and AcβCD  respectively. As it can be seen from 

the figures, the current response for the transfer of the complex cations of ephedrine back 

to the aqueous phase is a steady-state wave, which suggests that the complexed ions do 

not cross the interface. If this was the case, the return wave should be peaked indicating 

linear diffusion of the complexed ion within the pipette back to the interface. 

10 mM TBATPB  
0.5 mM AcαCD or AcβCD (1,2-DCE)

Ag|AgCl(s)
10 mM TBACl(aq.) Ag|AgCl(s)

10 mM LiCl
χ mM EPH+

(aq.)
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Furthermore  the solubility of both chiral ligands (AcαCD and AcβCD) in water is very low  

thus it is expected that the transfer is dissociative, i.e. transfer by interfacial dissociation 

(TID). Upon dissociation the free ligand diffuses away from the interface in a spherical 

diffusion, whereas the ephedrine cations diffuse away linearly inside the pipette. 

The relationship between the experimental half-wave potential and the logarithm of the 

ephedrinium ions concentration is shown in Figures 4.9c, 4.10c and 4.11c. The plots 

indicate that the half-wave potential of the assisted transfer undergoes a shift towards 

less positive potentials, while the current is reasonable unchanged, when the 

concentration of ephedrine cations is varied. The slopes of the linear graphs yielded 

values of 40, 55 and 49 mV per decade for (+)EPH+, (-)EPH+ and (±)EPH+, respectively. 

These values are close to the theoretical value of 59 mV decade-1 for monovalent ions, 

indicating that the facilitated transfer is of reversible nature.68,69 For comparison, in figure 

4.12 is shown the responses obtained for the transfer of the two enantiomers and 

racemate cations of ephedrine assisted by AcαCD. 
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a) 

  
b) 

 

c) 

  

Figure 4.9 – a) CV and b) DPV voltammograms of the (+)EPH+ ion transfer facilitated by 

AcαCD (0.5 mM) for different ion concentrations, c) dependence of current density and 

half-wave potential of [AcαCD(+)EPH+] complexes on the variation of the logarithm of the 

concentration. Scan rate:10 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step 

height 0.005 V. Micropipette tip radius 7±1 µm. 
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a) 

 

b) 

 

c) 

  

Figure 4.10 – a) CV and b) DPV voltammograms of the (-)EPH+ ion transfer facilitated by 

AcαCD (0.5 mM) for different ion concentrations, c) dependence of current density and 

half-wave potential of [AcαCD(-)EPH+] complexes on the variation of the logarithm of the 

concentration. Scan rate:10 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step 

height 0.005 V. Micropipette tip radius 7±1 µm. 
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a) 

 

b) 

 

c) 

 

Figure 4.11 – a) CV and b) DPV voltammograms of the (±)EPH+ ion transfer facilitated by 

AcαCD (0.5 mM) for different ion concentrations, c) dependence of current density and 

half-wave potential of [AcαCD(±)EPH+] complexes on the variation of the logarithm of the 

concentration. Scan rate:10 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step 

height 0.005 V. Micropipette tip radius 7±1 µm. 
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a)  

 

b) 

 

Figure 4.12 – a) CV and b) DPV comparison voltammograms of the two enantiomers and 

the racemate EPH+ (10 mM) transfer of assisted by AcαCD (0.5 mM). Scan rate:10 mV s-1; 

pulse amplitude 0.05 V, sampling with 0.060 s, step height 0.005 V. Micropipette tip 

radius 7±1 µm. 
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uncomplex CDs at the interface is smaller given rise to a higher current. Also, the response 
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chiral selector has more affinity with (+)EPH+. The difference observed in the responses 
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of intermolecular hydrogen bonding between the hydroxy or amino group of the 

ephedrinium ions and the acetyl groups of the CD. Although the differentiation between 

the racemate and the enantiomers of ephedrine using AcαCD is modest, it is plausible that 

the (+)EPH+ changes its conformation somewhat upon complexation with the CD, in a 

different manner from the (-)EPH+ enantiomer, in order to maximise its interaction. Bates 

and co-authors62 have suggested that the enantioselectivity interaction between the 

ephedrinium ions and a lipophilic αCD (‘per’-O-octyl-α-CD) may depend upon the 

orientation of the C-methyl group with respect to the CD cavity. They have proposed two 

different models for the binding process. In the case of (+)EPH+, the methyl group is 

oriented away from the glycosidic region of the CD, whereas the (-)EPH+ is orientated 

towards the H3 and relatively close to H5 in the cavity of the CD, which lead to an 

unfavourable steric interaction. It seems likely that it is the different orientation of the 

ephedrine enantiomers in the cavity of the CD that is responsible for the enantioselection.  

Figures 13 to 16 show the assisted transfer of ephedrinium ions by AcβCD, according to 

the cell presented in scheme 4.4. 
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a) 

 

b) 

 

c) 

 

Figure 4.13 – a) CV and b) DPV voltammograms of the (+)EPH+ ion transfer facilitated by 

AcβCD (0.5 mM) for different ion concentrations, c) dependence of current density and 

half-wave potential of [AcβCD(+)EPH+] complexes on the variation of the logarithm of the 

concentration. Scan rate:10 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step 

height 0.005 V. Micropipette tip radius 7±1 µm. 
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a) 

 

b) 

 

c) 

 

Figure 4.14 – a) CV and b) DPV voltammograms of the (-)EPH+ ion transfer facilitated by 

AcβCD (0.5 mM) for different ion concentrations, c) dependence of current density and 

half-wave potential of [AcβCD(-)EPH+]  complexes on the variation of the logarithm of the 

concentration. Scan rate:10 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step 

height 0.005 V. Micropipette tip radius 7±1 µm. 
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a) 

 

b) 

 

c) 

 

Figure 4.15 – a) CV and b) DPV voltammograms of the (±)EPH+ ion transfer facilitated by 

AcβCD (0.5 mM) for different ion concentrations, c) dependence of current density and 

half-wave potential of [AcβCD(±)EPH+]  complexes on the variation of the logarithm of the 

concentration. Scan rate:10 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step 

height 0.005 V. Micropipette tip radius 7±1 µm. 

 
 

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

0 0.1 0.2 0.3 0.4 0.5 0.6

j(
n

A
/c

m
2
)

E/V (vs. Ag/AgCl)

5 mM

10 mM

15 mM

20 mM

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

0 0.1 0.2 0.3 0.4 0.5 0.6

j/
(n

A
/c

m
2
)

E/V (vs. Ag/AgCl)

5mM

10mM

15mM

20 mM

y = -0.0664x + 0.1688
R² = 0.9819

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

1.40E+05

1.65E+05

1.90E+05

2.15E+05

2.40E+05

-2.5 -2.2 -1.9 -1.6 -1.3

J/
(n

A
/c

m
2
)

log C(±)EPH
+/M

E 1
/2

/V
 (

vs
. A

g/
A

gC
l)



Lipophilic cyclodextrins as chiral selectors at a liquid-liquid interface  

 

Chiral interactions and sensing at liquid|liquid interface                                                                      106 |  

Figures 4.13c, 4.14c and 4.15c show that, like in the case of the assisted transfer by 

AcαCD, linearity was obtained when experimental half-wave potential was plotted against 

the logarithm of the concentration of ephedrinium ions. The experimental half-wave 

potential is shifted towards less positive potentials which are due to a decrease in the 

Gibbs energy of EPH+ transfer from aqueous to organic phase.69 Similarly to the transfer 

assisted by AcαCD no significant changes were observed in the current response. The 

slopes of plots yielded values of 58, 58 and 66mV decade-1 for (+)EPH+, (-)EPH+ and 

(±)EPH+, respectively, which are in agreement with the theory.68,69 The comparison of the 

responses for (+)EPH+, (-)EPH+ and racemate cations using AcβCD is shown in figure 4.16. 

a) 

 

b) 

 

Figure 4.16 – a) CV and b) DPV comparison voltammograms of the two enantiomers and 

the racemate of EPH+ (10 mM) transfer of assisted by AcβCD (0.5 mM). Scan rate:10 

mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step height 0.005 V. Micropipette 

tip radius 7±1 µm. 
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Since the the steady-state wave appears only when EPH+ is present in the aqueous phase 

and one of the chiral selectors is in the organic phase, it is obvious that the ion transfer 

process involves both species. Figure 4.8 illustrates the concept of the ephedrinium ion 

transfer by the formation of a hydrophobic complex between the ephedrinium ions and 

the lipophilic CDs at the aqueous|organic solution interface. The ephedrinium ion is 

sequestered within the structure of the CD which improves its solvation in the organic 

phase and then transported to the organic phase.  

 

Figure 4.17 – Schematic illustration of the proposed mechanism for the assisted transfer 

of the ephedrinium ions at the aqueous|1,2-DCE micro interface by lipophilic CDs. 

 

4.2.2.2 Influence of the bulk concentration of chiral ligands on the facilitated transfer of 

ephedrinium ions. 

At the liquid|liquid interface, if the concentration of the ion is greater than of the 

ionophore/ligand (schemes 4.4 and 4.5), the observed limiting current is proportional to 

the concentration of the ligand; the same phenomenon was observed in this system. In 

these conditions, the equation for limiting current of the facilitated chiral ion transfer by 

Aqueous phase

Organic phase

interface
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AcαCD and AcβCD across the aqueous|1,2-DCE micro interface at a micropipette (see 

section 2.13), is written as: 

i    . 5  FD  C  r          ( . ) 

where i   is the limiting current, D   the diffusion coefficient of the chiral ligands, z is the 

charge number, F is the Faraday constant, C   is the bulk concentration of the ligand and r 

is the radius of the micropipette. 

In the investigation of the variation of the chiral ligands concentration the following cell 

was employed: 

 

Scheme 4.5 – Cell configuration used for the study of AcαCD and AcβCD diffusion 

controlled process. ϰ= 0.5, 1, 2.5 and 5 mM. 

The obtained CVs and DPVs for the ephedrinium ions transfer facilitated by AcαCD and 

AcβCD, varying the ligands concentration, are shown in figures 4.18 and 4.19, and in 

figures 4.20 and 4.21, respectively. As can be seen, while the steady-state currents of the 

facilitated transfers increase with increasing of bulk concentration of the chiral ligands 

(Eq. 4.4), there is no obvious change in the half-wave potential (Figure 4.18c, 4.19c, 4.20c 

and 4.21c). These results further support that the facilitated ion transfer is limited by the 

spherical diffusion of AcαCD and AcβCD toward the aqueous|1,2-DCE micro interface 

from the organic phase. Also, no change at the half-wave transfer potential with the 

changing in concentration of ligand suggests that the facilitated chiral ion transfer occurs 

with the complexation having 1:1 stoichiometry (according to Eq. 2.57). Experiments at 

the higher concentrations caused inaccurate results and no well-defined peaks of the 

facilitated transfer in the CVs were observed. 

10mMTBATPB  
ϰ mM AcαCD or AcβCD (1,2-DCE)

Ag|AgCl(s)
10mMTBACl(aq.) Ag|AgCl(s)

10mMLiCl
5 mM EPH+

(aq.)



Lipophilic cyclodextrins as chiral selectors at a liquid-liquid interface  

 

Chiral interactions and sensing at liquid|liquid interface                                                                      109 |  

a) 

 

b) 

 

c) 

 

Figure 4.18 – a) CV and b) DPV voltammograms of the facilitated transfer of (+)EPH+ 

(5 mM) by AcαCD across the aqueous|1,2-DCE micro interface. c) Dependence of current 

and half-wave potential on the variation of [AcαCD]. Scan rate:10 mV s-1; pulse amplitude 

0.05 V, sampling with 0.060 s, step height 0.005 V. Micropipette tip radius 7±1 µm. When 

not visible, the error bars are smaller than the symbols.  
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a) 

 

b) 

 

c) 

 

Figure 4.19 – a) CV and b) DPV voltammograms of the facilitated transfer of (-)EPH+ 

(5 mM) by AcαCD across the aqueous|1,2-DCE micro interface. c) Dependence of current 

and half-wave potential on the variation of [AcαCD]. Scan rate:10 mV s-1; pulse amplitude 

0.05 V, sampling with 0.060 s, step hight 0.005 V. Micropipette tip radius 7±1 µm. When 

not visible, the error bars are smaller than the symbols.  
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a) 

 

b) 

 

c) 

 

Figure 4.20 – a) CV and b) DPV voltammograms of the facilitated transfer of (+)EPH+ 

(5 mM) by AcβCD across the aqueous|1,2-DCE micro interface. c) Dependence of current 

and half-wave potential on the variation of [AcβCD]. Scan rate:10 mV s-1; pulse amplitude 

0.05 V, sampling with 0.060 s, step height 0.005 V. Micropipette tip radius 7±1 µm. When 

not visible, the error bars are smaller than the symbols. 
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a) 

 

b) 

 

c) 

 

Figure 4.21 – a) CV and b) DPV voltammograms of the facilitated transfer of (-)EPH+ 

(5 mM) by AcβCD across the aqueous|1,2-DCE micro interface. c) Dependence of current 

and half-wave potential on the variation of [AcβCD]. Scan rate:10 mV s-1; pulse amplitude 

0.05 V, sampling with 0.060 s, step height 0.005 V. Micropipette tip radius 7±1 µm. When 

not visible, the error bars are smaller than the symbols. 
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Figures 18c, 19c, 20c and 21c show that the limiting current obtained in the CVs were 

proportional to the concentration of the chiral ligands in the presence of an excess of 

(+)-EPH+ and (-)-EPH+. The differences observed in the half-wave potentials, when the 

transfer of the chiral ions are facilitated by the two ligands, indicates that AcβCD has 

higher chiral selectivity compared to AcαCD (Table 4.2). Additionally, the transfer of 

(+)-EPH+ seems to be the more facile process to occur upon complexation with ligands, its 

potential of transfer occurs at slightly is smaller potentials, when compared to (-)-EPH+. 

This is also an indication of different binding constants for the interaction between the 

EPH+ ions with the chiral ligands.69 Previous studies have shown that 

stereodifferentiation of ephedrine61 and its congeners as guest of CD host arises from a 

difference in 
 
     hydrogen bonding. As mentioned previously, the (-)-EPH+ has 

unfavourable steric interactions which may be responsible for the formation of a weaker 

complex compared to (+)-EPH+ ion. Although these differences cannot be directly proved 

electrochemically, we believe that is a combination of these effects that manifests as the 

difference observed in this study. 

 As we were unable to obtain a complete voltammogram for the unassisted transfer of 

ephedrine ions, only a rough estimate for the binding constant is available from this study. 

The estimated values, for the free Gibbs energy of transfer and binding constant, related 

to the facilitated chiral ions transfer are presented in table 4.3.  

The results obtained (figure 4.18 to figure 4.21) indicate that the current response is 

limited by the diffusion of the ligand (AcαCD or AcβCD) to the interface and by the 

diffusion of the complex away from it. It is also plausible that the complexation between 

the ephedrine enantiomers and the modified CD is determined by kinetic control. This 

means that the FIT process can be limited by the rate of the complex formation. 
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 Table 4.3 – Enantioselective differentiation of ephedrine enantiomers [5mM] using 

AcαCD and AcβCD [0.5mM] as chiral stationary phases at a micro aqueous|1,2-DCE 

interface. 

 (+)-EPH+ (-)-EPH+  (  )         mol   ΔK 

 
(         )

   
/mV 328±3 333±3 -482.4 0.71±0.1 

 
(         )

   
/mV 315±3 323±3 -771.8 0.83±0.1 

 
 
4.3 Conclusion 
 

Chiral stationary phases based on acetylated CDs  AcαCD and AcβCD  were used to 

facilitate and differentiate chiral ion transfer at a micro liquid|liquid interface. The results 

obtained show that the performance of CDs as chiral selectors is due to the molecular 

interaction based on the inclusion of the chiral analyte into the hydrophobic cavity, 

hydrogen bonds or dipole-dipole interactions with the acetyl groups of the CDs. The size 

of the chiral selector (Table 4.1) seems to influence strongly the selectivity of the analyte, 

as the chiral responses using AcβCD and AcαCD showed a significantly different response 

towards the selectivity of the ephedrinium ions.  The use is a bigger macrocycle  AcβCD  

proved to be more favourable for the chiral discriminations of ephedrinium ions. 

The values obtained for the variation of stability constants using AcβCD (0.83±0.1) and 

AcαCD (0.71±0.1) were modest; however, they prove that the ephedrinium ions interact 

differently with the chiral selectors and those differences can be detected 

electrochemically. Although the present approach has not been yet applied for the 

separation of ephedrines, it can constitute a rapid and simple alternative to other 

methods for the analysis of pure chiral compounds requiring small volumes and 

non-destructive of samples.  
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Chapter 5 

Binding of drug molecules with 

α1-acid glycoprotein at a µ-liquid|liquid interface 

 The investigation of interactions of drugs, particularly chiral drugs with plasma proteins, 

is of fundamental importance for drug efficacy and toxicity studies. In this chapter, the 

interaction between propranolol, procaine and lidocaine hydrochloride with a chiral acute 

phase plasma protein, α1-acid-glycoprotein (AGP) at a micro liquid-liquid interface was 

studied. The binding of these basic drugs to the protein was studied using electrochemical 

techniques such as cyclic voltammetric (CV) and differential pulse voltammetric (DPV). 

The interaction between the AGP and the drugs was shown as a decrease in the CV and 

DPV current responses, corresponding to the decrease in the transfer of the drugs at the 

liquid|liquid interface. The bound concentration of propranolol (R- and S- enantiomers), 

procaine and lidocaine to AGP was estimated based on the responses obtained in the 

presence and absence of the protein. Scatchard analysis was employed to calculate the 

association constant and the number of binding sites of the drugs with AGP. It was proved 

that AGP has different affinity for different basic drugs which was reflected in the 

calculated association constants 2.7x105 M-1 for S- and 1.3x105 M-1 for R-propranolol, 

1.2x104 M-1 for lidocaine and 8.4x103  M-1 for procaine. 
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5.1 Introduction  

The study of the binding interactions between drug molecules and plasma proteins is of 

crucial importance since it affects the transportation and distribution of pharmaceutical 

agents in the body.1,2 Binding of drugs to plasma proteins can be both a help and 

hindrance to the distribution of drugs through the body. They can help the drugs to reach 

regions remote from the site of administration but, because the rate of distribution of 

drug into to the tissue is controlled by the concentration gradient of the unbound drug, 

the drug-protein binding can affect both the duration and intensity of drug action.2–4 

When a drug is dosed to the body, it enters in the bloodstream, where it quickly reaches 

binding equilibrium with plasma proteins. However, the total drug concentration exists in 

two forms, the fraction bound to plasma proteins and the free or unbound fraction. The 

unbound fraction is usually ionic and transfers freely across the biological membranes, 

reaching the drug receptor site to produce the pharmacological effect and must be easily 

metabolized for elimination from the body to prevent potential toxicity (scheme 5.1). On 

the other hand, the bound drug fraction is prevented from passing through the blood 

vessel walls, as the drug-protein complex becomes too large for easy diffusion.5,6 

The drug-protein binding is influenced by a number of important factors which includes, 

i) the drug: its physicochemical properties and concentration in the body, ii) the plasma 

protein, the quantity of protein available for drug-protein binding, iii) the affinity between 

drug and protein, which includes the association constant, iv) drug interactions: 

competition for the drug by other substances at the protein binding site and v) the 

pathophysiologic condition of the patient, because the drug-protein binding may be 

altered according to the health of the patient.  
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Scheme 5.1 – Schematic representation of protein binding and drug disposition. 

5.1.1 Kinetics of protein binding 

The interaction of most drugs with plasma proteins is characterised by a dynamic, 

reversible process with dissociation of bound drug molecules from the drug-protein 

complex occurring very rapidly (probably within milliseconds or less).4,7 Quantitatively, 

the kinetics of reversible drug-protein binding can be described by the law of mass action, 

as follows: 

[ rotein]  [ n o n   r  ]  [ r   protein]        

or 

[ ]  [ ]  [  ]                 

From Eq. (5.1), an association constant,    can be expressed as the ratio of the 

concentration of the drug-protein complex [PD] and the concentration of the drug [D] and 

protein [P]. The extent of the drug-protein complex formed is dependent on the 

equilibrium association constant, Ka, given by Eq. (5.2), 

Unbound

Protein bound drug

BLOOD

Excretion

Inactive 
metabolites

Active 
metabolites

Therapeutic
effects

Side
effects

Drug
receptors

Metabolism

Drug 
administration

Absorption



Binding of drugs molecules with AGP at a micro liquid|liquid interface 

Chiral interactions and sensing at liquid|liquid interface                                                                     120 |  

   
[  ]

[ ][ ]
                

 Accordingly, drugs that strongly bind to proteins have a very large    and exist mostly as 

the drug-protein complex. In these circumstances a large dose may be needed in order to 

obtain a reasonable therapeutic concentration of the drug. Drug-protein binding may also 

be expressed in terms of dissociation constant (  ), which is the reciprocal of affinity and 

is equal to K2/K1. Experimentally, the free drug [D] and the protein-bounded drug [PD], as 

well as the total protein concentration [P]+[PD], can be determined. Another term 

frequently used is the free fraction,   , of the drug in plasma,8,9 which is defined by:  

   
[ ]

[ ]  [  ]
 

[ ]

[ ]   
              

where [ ]    is the total drug concentration in the plasma,    presents values between 0 

and 1, or from 0 to 100%. The free fraction of the drug in plasma depends on the 

magnitude of the equilibrium constant, the total drug concentration and the protein 

concentration. In order to study the binding behaviour of drugs, a ratio r, Eq. (5.4), must 

be considered 

r  
moles o   r    o n 

total moles o  protein
                

where r determines the extent to which the binding sites in protein are occupied by the 

drug. The moles of drug bound is defined as [PD] and the total moles of protein 

is [  ]  [ ], the Eq. (5.5) becomes 

r  
[  ]

[  ]  [ ]
                 

According to Eq. (5.2), [PD]=ka[P][D], substituting into Eq.(5.5) 
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r  
  [ ][ ]

  [ ][ ]  [ ]
                 

which yields, 

r  
  [ ]

    [ ]
                

Eq. (5.7) describes the simplest situation, in which 1 mole of drug binds to a mole of 

protein in a 1:1 complex. In this case, it is assumed only one binding site for each molecule 

of drug. However, if there are   identical independent binding sites in the protein, then 

the following is used: 

r  
n  [ ]

  n  [ ]
                

In terms of   , Eq. (5.8) becomes: 

r  
n[ ]

n   [ ]
                 

The values for the association constant,   , and the number of binding sites, n, are 

obtained by various graphic methods. A graphic technique called Scatchard plot, gives an 

estimation of the binding constants and binding sites for such a system. From Eq. (5.8), is 

obtainable: 

r  n  [ ]  n  [ ] 

r  n  [ ]  r  [ ] 

r

[ ]
 n   r                   

Plotting  
 

[ ]
  versus  r yields a straight line as shown in Figure 5.1. The intercept of this 

plot gives the number of the binding sites and the slope is the negative value of the 

association constant. 
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Figure 5.1 – Example of Scatchard plot where    is the association equilibrium constant, n 

is number of binding sites, and [D] corresponds to the free or unbound drug 

concentration. 

 

5.1.2 Plasma proteins 

5.1.2.1 α1-acid-gycoprotein  

Al  min, α1-acid-gycoprotein (AGP) and lipoproteins are the three major proteins to 

which drugs bind in plasma.5,7 The binding properties of these plasma proteins are 

different from each other and their plasma concentrations may vary depending on gender, 

age and/or disease state of patients.5  

The concentration of AGP in blood (1g/L)5,10 is about 30 times less than that of albumin, 

which is the most abundant plasma protein in blood (approximately 60% of the total 

plasma protein).7 While albumin binds mainly with acidic-type molecules, AGP is known 

as the principal binding protein for a wide variety of basic and neutral drugs, with 

significant clinical implications.11,12 Human AGP is produced mainly in the liver but 

extrahepatic synthesis has also been reported,13 is one of the major acute phase proteins 

of human blood.14 The binding of several drugs has been shown to increase following 

surgical interventions, inflammation and stress and this increased binding is due to an 
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increase in plasma concentration of AGP.15,16 Thus changes in the level of AGP in plasma 

during physiological and pathological conditions can have a profound effect on drug 

disposition and pharmacological activity, which may result in treatment failure, due to 

higher binding and the resultant lower concentration of the free drug.11  

AGP (Figure 5.2), also called orosomucoid, is a negatively charged (pI=2.7-3.2)17 acidic 

(pKa=2.6)14 glycoprotein, due to the presence of sialic acids (12% of the carbohydrate 

moiety). It is a highly heterogeneous, extensively glycosilated  Mw≈  ,    , with a 

carbohydrate content of 45% (w/w). It is composed of a single polypeptide chain of 183 

amino acids with up to five carbohydrate moieties attached to the protein core via five N-

linked glycans.11,14,17,18 It has been estimated that there are between 12 and 20 different 

forms19 of AGP in serum due to variations in its amino acid sequence and the types and 

numbers of carbohydrate groups attached to its polypeptide chain. These carbohydrate 

moieties are thought to be located on the outside of this protein, giving it a hydrophobic 

core and a hydrophilic exterior.20   

 

Figure 5.2 – Crystal str ct re o  h man α1-acid-gycoprotein at 1.8 Å resolution.21 The 

secon ary str ct re is represente  in yellow  β-stran s , pink  α-helix), and grey (coils). 

Reproduced from Schönfeld et al.,21 with permission. 
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5.1.2.2 Binding properties of α1-acid-gycoprotein 

The drug-protein binding is the result of multiple interactions between the two molecules, 

some o  which are  airly weak  s ch as van  er Waal’s  orces  an  some o  which are 

extremely strong (such as covalent bonding). Hydrogen bonding, ionic interactions and 

the hydrophobic effect between the molecule and protein also play a role on the 

favourability of a drug-protein interaction. Rarely a drug-protein binding is caused by a 

single type of interaction; rather it is a combination of binding interactions that provides 

drugs and proteins with the necessary forces, specificity and affinity to form a 

drug-protein complex. 

The molecular structure of the drug strongly dictates the physical and chemical properties 

that contribute to its specific binding to the protein. Important factors include 

hydrophobicity, ionization state (pKa), conformation, and stereochemistry of the drug 

molecule. The protein binding site, often referred as microenvironment, is highly specific, 

thus small changes in the drug can have a great effect on the affinity of the drug-protein 

interaction. 

In the case of AGP, the nature of drug binding is still not clearly understood, however, it 

has been characterised mainly, by hydrophobic interactions, due to the hydrophobic 

resi  es near the AG   in in  site  Hy ro en  on in , van  er Waal’s  orces an  

electrostatic interactions have also been mentioned as participants in the binding 

interactions.1,2,11,14,15,22 Kaliszan et al.23 proposed an asymmetric and a negative charge 

distribution for the binding site for antihistamine drugs on AGP, that later would 

contribute for the studies of enantioselective binding. They suggested that the binding site 

is formed by a conical pocket that contains lipophilic regions at the base of the cone and 

an anionic region, close to the spike of the cone, which interacts with protonated aliphatic 
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nitrogen within a basic drug (Figure 5.3). The hydrophobic moieties provide anchoring 

for the drug molecule in the binding site of the protein,23 and the steric restriction 

prevents the molecule from plunging into the binding site.  

 

Figure 5.3 – Structural feature of the binding site for basic drugs on AGP. The AGP site is 

occupied by an exemplary drug (pheniramine). Reproduced from R. Kaliszan24 with 

permission. 

Additionally, it has been demonstrated that AGP has the ability to stereoselectively bind of 

enantiomers of widely different character.25–27 The binding interaction takes place in the 

chiral sites of the protein, which appear to be located both in the peptide chain and in the 

carbohydrate units.25 This peptide chain is composed of several different chiral groups, 

beside the hydrophobic groups, hydrogen bonding amides and anionic and cationic 

groups. On the other hand, the carbohydrate units are built up of sialic acid, hexosamine 

and neutral hexoses, and all contain chiral carbons, which appear to be involved in the 

retention of enantiomers.28,29 

AGP has an extremely broad applicability, with the binding of drugs being examined by a 

wide range of techniques. Examples include equilibrium dialysis,30,31 capillary 

electrophoresis,28 high performance liquid chromatography (HPLC)26,29,32 and various 

spectroscopic methods.10,33–35  
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5.1.2.3 Binding of propranolol, lidocaine and procaine to AGP  

Since AGP is acidic, it is the main binding protein of basic (cationic) drugs, such as β-

adrenergic receptor blockers and local anaesthetics.2,3,22 The extent of binding of local 

anaesthetics ranges from 6% (procaine) to 95% (bupivacaine).36 In table 5.1 are listed the 

drugs which binding to AGP was studied in this work. 

Table 5.1 – Properties of basic drugs that interact with AGP.  

Drugs pKa (298K) Log(P)oct Drug binding (%) to AGP 

Procaine (anaesthetic) 8.6-8.937 1.8738 636 

Lidocaine (anaesthetic)  7.7-8.137 2.2638 6536 

Propranolol (antiarrhythmic) 9.3-9.539 3.5638 8036 

 

Local anaesthetics are drugs that provide a reversible regional loss of sensation, reducing 

the pain and therefore facilitating surgical procedures. The site of action is believed to be 

the nerve membrane. In nerve cells, action potentials are created by the influx of sodium 

ions from the surrounding tissues.40 These action potentials result in the conduction of 

nerve impulses that produce sensations (including pain). Local anaesthetics prevent the 

conduction of impulses by decreasing the permeability of nerve membranes to sodium 

ions. This reversible block of impulses, prevents excitation along a neural pathway and 

gives rise to anesthesia.40,41  

The clinically useful local anaesthetics agents have been classified as either amino-esters, 

such as procaine (Figure 5.4 a) possessing an ester linkage between the benzene ring and 

the intermediate chain, or amino-amides, like lidocaine (Figure 5.4 b) possessing an 

amide link between the benzene ring and intermediate chain. Depending on physical and 
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chemical properties, such as lipid solubility, protein-binding and pKa, these agents exert 

their anaesthetic effect by acting on the highly lipid nerve membranes.42 Lidocaine is 

known to bind strongly to AGP, with an association constant in the range of 

3.2(±0.2)  104 (determined by capillary electrophoresis/frontal analysis,    C and pH 

7.4) up to        M  .43 Lidocaine is also believed to bind weakly to HSA with an 

estimated    of         M   (measured at    C and pH 7.4 by equilibrium dialysis).44,45 

β-blockers comprise a group of drugs that are mostly used to treat cardiovascular  

disorders such as hypertension, angina pectoris and cardiac arrhythmias.39,46 Each of 

these drugs possesses at least one chiral centre, and an inherent high degree of 

enantioselectivity in binding plasma proteins in blood.47 Propranolol (Figure 5.4 c) is 

known to stereoselectively bind to both whole plasma and individual serum 

proteins.46,48,49 The first  stereoselectivity of propranolol was established by Walle et al. 

using equilibrium dialysis.46,50,51 They demonstrated that plasma binding of the 

propranolol enantiomers differed with the unbound fraction, with (S)-(-)-propranolol 

(22±2%) being smaller than that of (R)-(+)-propranolol (25.3±1.9%), meaning that the 

binding of AGP was stereoselective for (S)-(-)-propranolol. They also demonstrated that 

the stereoselectivity in the binding of propranolol enantiomers to HSA revealed to be the 

opposite of that observed for human AGP.46,52  

The binding of propranolol to AGP has been studied using various analytical techniques, 

encompassing fluorescence spectrophotometry,53 circular dichroism,54 NMR,35 HPLC,54 

ultrafiltration2 and equilibrium dialysis,30 among others. The binding parameters of 

propranolol enantiomers binding to AGP have been estimated to be          M   and 

        M   with a binding site number of 0.41 and 1.17 for R- and S-propranolol, 

respectively, at 17°C using fluorescence spectrophotometry.53 Using ultrafiltration,2 the 
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dissociation constant of          M   and         M  , with n=0.78 and 0.63 were 

determined for S- and R-propranolol at 37°C, respectively.  

a) 

 

b) 

 

c) 

 

Figure 5.4 – Chemical structures of a) procaine hydrochloride, 2-(diethylamino)ethyl 4-

aminobenzoate hydrochloride, b) lidocaine, 2-(diethylamino)-N-(2,6-dimethyl-phenyl)-

acetamide hydrochloride and c) (±)-propranolol hydrochloride, (±)-1-isopropylamino-3-

(1-naphthyoxy)-2-propranolol hydrochloride (asterisk denotes the chiral carbon).  

 

 

●HCl

●HCl

●HCl

*
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5.2 Results and Discussion 

The basic drugs studied, procaine, lidocaine and propranolol, have pKa values between 7.8 

and 9.5 (Table 5.1). Procaine and lidocaine, like the majority of anaesthetic drugs, have a 

pKa value close to the normal extracellular pH of 7.4, thus they exist in two forms in 

solution, the uncharged (deprotonated) basic form (B) and the charged (protonated) 

form (BH+), according to the equilibrium: 

 H     H                  

The importance of the pKa-pH relationship is that this knowledge allows the calculation of 

the relative amounts of these two forms, by the use of the Henderson-Hasselbach 

equation: 

pH  p   lo 
[ H ]

[ ]
                 

When the pH is equal to the drug's pKa, 50% of the drug is in the uncharged form, and 

50% is in the charged form. At physiological pH, procaine, lidocaine and propranolol 

present an ionization of 96.9, 83.4 and 99.2%, respectively. In order to study the 

drug-protein interactions, two solutions of phosphate buffer (pH=7.4) were prepared: 

one witho t AG  an  another with   μM o  AG   A simple two electro e arran ement  as 

described in section 3.1.2, Figure 3.5) was used to perform the voltammetric 

measurements. The electrochemical cell can be represented by the following scheme: 

 

Scheme 5.2 – Cell configuration used, where PH+ is the protonated drug cations, procaine, 

lidocaine, (R)-(+)- and (S)-(-)-propranolol, where  χ     ,     ,     ,     ,      μM  

10mMBTPPATPBCl
(1,2-DCE)

Ag|AgCl(s)
1mMBTPACl
10mMLiCl

(aq.)

10mMLiCl+ μM PH+

with /without 50µM AGP
Buffer (aq.)

Ag|AgCl(s)
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Initial experiments were focused towards establishing whether the addition of AGP would 

create changes in the potential window, which is limited by the background electrolytes 

transfer at extremes of the potentials. Figure 5.5 shows the potential range of the 

electrochemical system, which is about 600mV, in the presence (dashed line) and absence 

(dotted line) of the protein, in phosphate buffer at pH7.4.  

 

Figure 5.5 – CV (inset DPV) of the supporting electrolyte without AGP (dotted line) and in 

the presence of AGP (dashed line) at physiological pH. Scan rate: 10mV s-1, micropipette 

radius = 10±1µm. 

As can be seen in Figure 5.5, there is no marked effect on the potential window when the 

protein is added, meaning that there is no significant contribution to the increasing of the 

charging current. This is corroborated by the findings of Vanysek and Sun,55 where in the 

study of bovine serum albumin adsorption at water-nitrobenzene interface, they showed 

that the capacitance increases for pHs below the isolelectic point and that at more basic 

pHs, the opposite occurs. 

At physiological pH, AGP bears a negative overall charge and the drugs have a charge of 

+1 (i.e. the amine group is protonated) which makes the binding complex very likely to 

occur. The drugs are mainly ionized and can be strongly retained by ionic bonding to the 

anionic groups in the binding site of the protein. Ravis et al.30 have shown that the 
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composition of the buffer and pH can have a great effect in the drug-protein binding. 

Using equilibrium dialysis, they found that in the case of propranolol the binding to AGP 

was greater when the protein was initially dissolved at pH 7.4, compared with pH 7.2 as 

well as with phosphate buffers than with a physiological buffer. It has also been 

demonstrated that pH values near the isoelectric point of the protein, lower the degree of 

its negative charge and thus decreases the retention of the cationic drug.29  

Initially the transfer of the cationic drugs was characterised in the absence of AGP, using 

both CV and DPV, at pH 7.4 (Figures 5.6 to 5.9), and a linear concentration dependence 

was observed within the range studied, 0.0375-0.10mM. 

a) 

 

b) 

 

Figure 5.6 – DPV of increasing concentrations of a) S-propranolol and b) R-propranolol in 

the absence of AGP (pulse amplitude 0.05 V, sampling with 0.060 s, step height 0.005 V). 

Insets: calibration curve of peak current vs. concentration, (Ø = 20±1µm). 
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a) 

 

b) 

 

Figure 5.7 – DPV of increasing concentrations of a) procaine and b) lidocaine in the 

absence of AGP (pulse amplitude 0.05 V, sampling with 0.060 s, step height 0.005 V. 

Insets: calibration curve of peak current vs. concentration, (Ø = 20±1µm). 
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drugs into the organic phase and a peak-shaped response on the reverse scan, 
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 This type of diffusion regime was pioneered by Shao et al.56 who observed a pseudo-

steady state wave (spherical diffusion) when the ion transfer process was controlled by 

the species entering the micropipette and a peak-shaped voltammogram (linear diffusion) 

occurred when the transfer process was controlled by the species leaving the 

micropipette. Therefore, the apparent steady-state in the forward scan and the peak 

observed in the reverse scan, are due to the transfer of the protonated drugs, consistent 

with the different diffusion fields on either side of the micro interface.56,57 

a) 

 

b) 

 

Figure 5.8 – CV of increasing concentrations of a) R-propranolol and b) S-propranolol in 

the absence of AGP, scan rate: 10mV s-1.  Insets: calibration curve of steady-state current 

vs. concentration, (Ø = 20±1µm). 
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a) 

 

b) 

 

Figure 5.9 – CV of increasing concentrations of a) procaine and b) lidocaine in the absence 

of AGP, scan rate: 10mV s-1. Insets: calibration curve of steady-state current vs. 

concentration, (Ø = 20±1µm). 
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potentials drug cations and TEA+, respectively. A value for the free Gibbs energy of 

transfer,  G  ,   
 ,   , was calculated using the Eq.(5.14), 

 G  ,   
 ,          

     
  

                   

The standard potential of the propranolol enantiomers,   
   

  , was found to be the same 

and equal to 197±5 mV and the free Gibbs energy of transfer equal to 18.0±0.5 kJ mol-1. 

These values are in reasonable agreement with values already reported in the literature,60  

  
   

   197±5 mV vs.   
    
   

 and  G  , 
 ,     12.6±0.5 kJ mol-1. For procaine and 

lidocaine,   
   

   was found to be 142±5 and 207±5 mV with a correspondent free Gibbs 

energy of transfer of 13.7 and 19.0±0.5 kJ mol-1, respectively. These values could not be 

easily compared with literature values as their exact values are not well known. 

The organic|aqueous interface at a DCE filled micropipette has been shown to be 

essentially planar under normal conditions (absence of applied potential), thus the 

steady-state plateau current can be described by Eq.(5.15)61 

    A   a  C                 

where Iss is the limiting current, D the diffusion coefficient, C is the concentration of the 

protonate   r  s in the o ter sol tion, a is the ra i s o  the micropipette tip    ±  μm , 

and the empirical factor A is 4, assuming that the micro interface displays current 

response similar to a disk-shaped ITIES.57,61 The diffusion coefficient of the protonated 

drugs were determined using Eq.(5.15), and the limiting currents were taken from the 

CVs responses (Figures 5.8 and 5.9). For S- and R-propranolol were found to be 

1.6x10-6±0.1 and 1.5x10-6±0.1 cm2 s-1, respectively, which are in good agreement with 

those reported by Fantini et al.60 for a nongellified interface, table 5.2. The diffusion 

coefficients of procaine and lidocaine could not be compared with the literature values, as 
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well as the Gibbs free energy of transfer and formal potential due to the lack of studies 

that at a water|1,2-DCE interface. 

Table 5.2 – Thermodynamic and transport parameters of the transfer of the protonated 

propranolol enantiomers, procaine and lidocaine across the aqueous 1,2-DCE micro 

liquid|liquid interface. 

Drugs   
   

         , 
 ,                       

Procaine 142±4 13.7±0.5 1.4 x10-6±0.1 

Lidocaine 207±4 19.0±0.5 1.1 x10-6±0.1 

(R)-(+)-propranolol 197±4 12.6±0.5 1.5x10-6±0.1 

(S)-(-)-propranolol 197±4 12.6±0.5 1.6x10-6±0.1 

 

It was expected that, on the addition of AGP to the aqueous phase, the ionized drug 

molecules would bind to the protein in the aqueous phase and that the binding would 

influence its transfer across the interface. As mentioned previously, the binding of drugs 

to plasma proteins is a reversible and rapid reaction. The uncomplexed/unbounded drug 

is able to diffuse through the interface into the organic phase, whereas the bound one is 

retained by the protein (Figure 5.10). The reaction that occurs in solution can be 

described by Eq. (5.16) and (5.17). 

[ rotonate   r  ]                [ rotonate   r  ]                            

[ rotonate   r   AG ]             [ rotonate   r   AG ]            (5.17) 
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The subscripts unbound and complex refer to non-complexed and complexed drug, 

respectively, and (w) and (o) refer to the locations of the species in the aqueous and 

organic phase, respectively. 

 

 

Figure 5.10 – Schematic representation of the drug-protein equilibrium at the liquid|liquid 

interface. 

To understand the effect of AGP on procaine, lidocaine and propranolol enantiomers 

trans er across the micro inter ace, a constant concentration     μM  o  AG  was a  e  to 

aqueous solution containing different concentrations of the ionized drugs, under the same 

conditions (PBS buffer, pH 7.4). A decrease in current in the CV and DPV responses was 

observed in the presence of AGP, due to the binding of the drug molecules to AGP, which 

suppressed its transfer across the interface. Similar findings were obtained by Horrocks et 

al.62 in the binding study of a cation, N-methylphenanthroline, to DNA. In one of the 

approaches developed, where the cation is initially present in the aqueous phase, they 

also found that, upon the addition of high molecular weight DNA to the aqueous phase 

that the concentration of free cation decreases which resulted in a decrease in the ion 

transfer current. 

(w) (o)

Liquid|liquid interface

bound drug

free drug
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The CV and DPV responses obtained for the binding of R-propranolol, S-propranolol, 

procaine and lidocaine to AGP are presented in figures 5.11, to 5.14, respectively. The DPV 

response provided a more sensitive detection signal at lower concentrations for the 

transfer of the unbounded drugs in comparison with CV.  It was observed that the peak 

current intensity for the DPV, in the presence of AGP, was in average about 33% and 52% 

smaller for R- and S -propranolol, respectively, when compared to the measurements in 

the absence of AGP. For procaine and lidocaine a decrease of 7.4% and 26%, respectively, 

was observed. CVs revealed steady-state currents on forward sweep, but these were 

decreased relative to that in the absence of AGP.  

a) 

  

b) 

 

Figure 5.11– a) CV and b) DPV at different concentrations of R-propranolol in the 

presence of AGP (50µM), scan rate: 10 mV s-1; pulse amplitude 0.05 V, sampling with 

0.060 s, step height 0.005 V, (Ø = 20±1µm). 
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a) 

  

b) 

  

Figure 5.12 – a) CV and b) DPV at different concentrations of S-propranolol in the 

presence of AGP (50µM), scan rate: 10 mV s-1; pulse amplitude 0.05 V, sampling with 

0.060 s, step height 0.005 V, (Ø = 20±1µm). 

 

When compared the responses obtained for the interactions of AGP with R- and 

S-propranolol, figures 5.11 and 5.12, the peak in DPV and the apparent steady-state in CV 

are clearly of lower current intensity in the case for S-propranolol. This suggests that the 

drug-protein binding is stronger in the case of the S-propranolol enantiomer. 
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a) 

 

b) 

 

Figure 5.13 – a) CV and b) DPV at different concentrations of procaine in the presence of 

AGP (50µM), scan rate: 10 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step 

height 0.005 V, (Ø = 20±1µm). 
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a) 

 

b) 

 

Figure 5.14 – a) CV and b) DPV at different concentrations of lidocaine in the presence of 

AGP (50µM), scan rate: 10 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step 

height 0.005 V, (Ø = 20±1µm). 

 

As it can be seen in Figures 5.13 and 5.14 AGP interacts more strongly with lidocaine than 

with procaine, which was reflected as a more significant decrease in current.  

For an equilibrium system, the binding sites (n), bound and free drug can be calculated 

according to the Scatchard model (Eq. (5.9)), as mentioned earlier. The Scatchard plots, 

for S-and R-propranolol are presented in Figure 5.15 a) and b), respectively. 
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a) 

  

b) 

  

Figure 5.15 – Scatchard plot for the binding of AGP to a) S- and b) R-propranolol 

(according to Eq. 5.10). The data points are expressed as mean of three separate 

experiments. 

 

From these plots, the binding parameters of Ka and n, for the interactions of the 

enantiomers of propranolol with AGP, can be easily calculated using Eq.(5.9). The 

difference in the binding parameters 2.7 x105M-1, n=0.73 and 1.3 x105M-1, n=0.50, for S- 

and R-propranolol  respectively, clearly shows a chiral selective binding for the two 

enantiomers with AGP, with the S- enantiomer having a higher affinity compared to 

R-propranolol. The difference obtained is due to the chiral interactions of AGP with 

propranolol enantiomers. The number of binding sites, n, on AGP molecules is less than 

the unity for both enantiomers, which means that both bind at the same place in the 
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protein, but in a dissimilar way. Accordingly, a higher amount of S-propranolol is bounded 

to AGP, as it can be seen in figure 5.16, for the same [propranolol]/[AGP] ratios.   

 

Figure 5.16 – Relation between bound concentration of S- and R-propranolol to AGP, for 

the same [propranolol]/[AGP] ratios. The [Propranolol]Bound was determined based on the 

responses obtained in the presence and absence of protein. The data points are expressed 

as mean of three separate experiments. 

 

The Scatchard plots obtained for procaine and lidocaine are presented Figure 5.17a) and 

5.17b), respectively. The binding parameters of the two anaesthetic drugs were 

significantly different, 8.4 x103M-1, n=0.24 and 1.2 x104M-1, n=0.76 for procaine and 

lidocaine, respectively. These values indicate that the affinity of AGP for lidocaine is much 

higher in comparison with procaine, which appears to form a very weak complex. Thus, 

lidocaine presents a higher amount of drug bounded to AGP for the same ratio 

[Drug]/[AGP]. 
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a) 

  

b) 

  

c) 

 

Figure 5.17 – Scatchard plot for the binding of AGP to a) procaine, b) lidocaine; c) relation 

between bound concentration of procaine and lidocaine to AGP, for the same 

[propranolol]/[AGP] ratios. The data points are expressed as mean of three separate 

experiments. 
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An evaluation of the free Gibbs energy of binding between the drugs studied and AGP can 

be determined using the following: 

 G                  ln                                 

where Ka  r   AG   is the stability constant of the complexes formed (calculated from 

the Scatchard plot), R the gas constant (8.314 J.mol-1.K-1 ) and T, the temperature (K). The 

 G val e represents the free energy of the reactions 1 and 2 (Figure 5.10 b), respectively. 

In the case of propranolol, the enantioselectivity of the protein can be given by: 

   G         G   AG    G   AG                    

The estimated binding parameters, number of binding sites and the free energy for the 

drug-protein binding interaction are presented in Table 1.  

Table 5.3 – Binding parameters of S- and R-propranolol, procaine and lidocaine with 

α1-acid glycoprotein at pH=7.4, T=21°C. 

 Ka (M-1) n                  (kJ.mol-1)             (kJ.mol-1) 

(S)-Propranolol 2.7x105 0.73 -30.1 

-1.8 

(R)-Propranolol 1.3x105 0.50 -29.2 

Procaine 8.4x103 0.12 -22.1  

Lidocaine 1.2x104 0.76 -23.3  
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5.3 Conclusion 

In this chapter is demonstrated a simple and effective method for studying interactions of 

drugs and proteins. It was shown that using a micro liquid|liquid interface the affinity of 

propranolol enantiomers, lidocaine and procaine to AGP can be quantitatively evaluated. 

The presence of AGP in the aqueous phase lead to the formation of a complex between the 

protonated drugs and the protein, which was reflected as a decrease in the detection 

signal, once only the unbound drug is able to transfer across the interface.  

The three drugs bound to AGP with different affinities, which were reflected in the values 

of association constants and number of binding sites. The association constant for 

S- propranolol (2.7x105 M-1) was found two times bigger than of R-propranolol 

(1.3x105  M-1), which proves that AGP can be a very effective chiral selector at liquid|liquid 

interface.  The calculated values are in good agreement with the literature, where it was 

found that S-propranolol is significantly more bound to AGP than R-propranolol.2,31,53 

On the other hand the two anaesthetic drugs studied, procaine and lidocaine also revealed 

to have very different affinities with AGP. The interactions of procaine and lidocaine with 

AGP led to association constants of 1.2x104 M-1 and 8.4x103 M-1, respectively. Procaine 

was the less bounded drug studied and therefore having the smallest association constant 

value. 

Based on the results presented in this chapter, it is shown that interaction between drugs 

and plasma proteins can be studied using electrochemical methods, which can offer rapid, 

simple and alternative analysis for these types of studies.   
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Chapter 6 

Chiral ion transfer  

across the liquid|liquid interface 

 coupled to electrochemical redox reaction 

 This chapter describes the chiral discrimination of mandelic acid (MAH) enantiomers, by 

the use of a thick organic film modified electrode. The transfer of the chiral ions was 

achieved in a unique arrangement that consisted of a small volume of an organic phase 

immobilized at the surface of a glassy carbon electrode. The organic film contained an 

ethylated ferrocene cyclodextrin (EtCDFc) which has a dual role, a redox moiety and a 

cyclodextrin moiety which is able to form chiral complexes with a variety of compounds. 

The modified electrode was immersed in aqueous solutions containing mandelic acid ions 

(R- or S-MAH) and aqueous electrolyte. The redox reaction of EtCDFc is accompanied by 

the complexation of the MAH enantiomers with the cyclodextrin part of EtCDFc. The 

coupled reaction led to the formation of diastereoisomers complexes between the 

enantiomers and EtCDFc. The effect of the concentration and ionization state of MAH ions 

was analysed at different pHs (2, 3.4 and 7). The S-MAH showed preferential 

enantiomeric interactions with EtCDFc. At pH of 3.4 the chiral discrimination between 

R- and S-MAH was the most pronounced. 
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6.1 Introduction  

Electrochemical processes of a redox compound accompanied by the simultaneous 

transfer of ions from the adjacent electrolyte solution are considered very interesting 

from the viewpoints of the energy transformation at biological membranes, the active 

transport and selective transport of ions or electrons, etc.1,2 Besides their fundamental 

interest, as they comprise both an electron and an ion transfer reaction,3,4 they can also be 

very important for various potential applications, such as energy storage,5 charge storage6 

and ion sensing and detection.7  

The four electrode system has been a popular choice, for the determination of ion 

partition coefficients between two immiscible phases. The partition coefficient is a very 

important molecular parameter used in different areas of chemistry, medicine and 

pharmacology for predicting interactions with biological receptors, and biological effects 

in general. The four electrode system is only to polarizable phase boundaries, at which, 

relatively narrow potential ranges are available. Nonetheless, its shortcoming limits wider 

applications in the determination of ion transfer. Girault et al.8,9 introduced liquid|liquid 

interface supported on a metallic electrode for the study of ion and electron transfer. The 

system was composed of an aqueous droplet (where a highly concentrated redox coupled 

was dissolved together with a small amount of the target ion) supported on a platinum 

disc electrode which was immersed into an organic electrolyte solution. Analogously, 

Shao et al.10,11 constructed another water droplet modified electrode by depositing an 

aqueous electrolyte solution on to a solid reference electrode for the study of various 

ionic species, such as biological molecules.10,11 These methodologies have the benefit of 

not requiring special instrumentation, however they still present limitations for the study 

of extreme ion transfer, in the sense that only ionic analytes with formal potentials that 

fall within the potential window can be readily and precisely determined.  



Chiral ion transfer across the liquid|liquid interface coupled to electrochemical redox reaction 

Chiral interactions and sensing at liquid|liquid interface                                                                      151 |  

A new era of ion transfer based on electrochemically induced redox processes 

accompanied by the simultaneous transfer of ions was started by Compton,12–14 

Marken,15–17 and Scholz et.al.3,18,19 They created a concept of ion transfer voltammetry, 

named three-phase electrode, with the development of new approaches for the deposition 

of oil microdroplets on suitable electrode surfaces.  

Marken et al.13,16,17 were the first to note the importance and consequences of ion transfer 

from one liquid phase to another at a three-phase electrode. They deposited an oily 

electroactive compound (N,N,N’,N’-tetrahexylphenylene diamine, THPD) in the form of 

several droplets on a graphite electrode surface and immersed this composition into 

aqueous solutions of different inorganic salts. Oxidation of THPD proceeded at 

voltammetric potentials dependent on the hydrophilic properties of the anions from the 

aqueous solution. Scholz et al.3,18,20,21 developed new approaches to measure the 

lipophilicity of ions by employing highly-hydrophobic paraffin-impregnated graphite 

electrodes (PIGE) and replaced the pure organic phase with a solution of selected 

electroactive compound (e.g., decamethylferrocene) in organic solvents such as 

nitrobenzene,3,21,22 n-octanol,23,24 menthol25 and 2-nitrophenyloctyl ether.26 The authors 

assigned the observed potential shifts to the differences in the Gibbs energies of transfer 

of the ions being transferred across the interface of the two immiscible liquids, leading to 

significant progress in the determination of the lipophilicity of a variety of inorganic and 

organic ions.20,21,27,28 In the three-phase electrode no electrolyte is dissolved in the organic 

phase and, as a result, the electrode reaction occurs exclusively at the three-phase 

junction, which is the junction water| solid electrode| organic phase, e.g., on the rim of an 

organic droplet set on a solid surface in contact with an aqueous electrolyte. Only there 

the electrochemical reaction can proceed and advance into the organic solvent droplet, 
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regardless of the electrical conductivity of the organic phase. This was experimentally 

proved by employing a microelectrode probe.29 

Ion transfer voltammograms can also be obtained when a thin layer is used to cover the 

electrode surface, partially. This is exemplified by the work developed by Opallo and co-

workers,30 who recently investigated the ion transfer across liquid|liquid interfaces of the 

type: aqueous solution|solution of electroactive compound in polar organic solvent 

supported on a hydrophobic silicate carbon composite. They also encapsulated the 

organic phase in a ceramic carbon material composed of carbon particles and 

hydrophobic silicate, prepared via the sol-gel chemistry from methyltrimetoxysilane-

based sol.30,31 

In another approach, Shi and Anson32–34 showed that when the droplet of the organic 

phase is replaced with a thin film of this solvent, containing a dissolved electroactive 

compound, the system becomes analytical applicable. In this case, the layer of organic 

solvent may require the addition of supporting electrolyte. The thin film-modified 

electrodes have shown to be particularly effective for the study of electron transfer across 

the liquid interface,34,35 and the measurement of kinetics of ion transfer.36 

Thin-organic film modified and three-phase electrodes are closely related. Both systems 

couple the electron transfer at the electrode|organic solution interface with the ion 

transfer at an organic|aqueous solution interface.  When these modified electrodes are 

placed in contact with an aqueous electrolyte solution, ion exchange will occur (an anion 

for the oxidation or cation for the reduction of the molecule) in order to compensate the 

charge neutrality required during the course of the voltammetric experiments. The ion 

transfer is related to the hydrophobicity and thus can be monitored as a function of 

electrode potential. 
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The thin film electrode configuration circumvents some of the physical problems 

associated with three-phase electrodes with immobilized droplets such as 

irreproducibility of the drop size and the need of using a graphite substrate due to the 

instability of organic droplets on metal surfaces.  

The redox probes employed must strictly fulfil the following requirements: (i) they must 

remain in the organic phase and have very low affinity for water; (ii) both the redox 

probes and their generated products, should be chemically very stable and should not 

react with the included ions; (iii) the bonding effects between the generated products of 

the redox probes and the included ions should not be significant enough to be worth 

considering. In this sense, the development of a suitable redox probe can be a difficult 

task. For instance, the transfer of the ferrocenium ion, Fc+, from organic solvents to water 

is known to occur easily which makes it not suitable for such studies. On the hand, 

decamethylferrocene (DMFc) with a higher lipophilicity is a frequently used probe and 

has the ability of being dissolved in most organic solvents, however in the presence of 

highly hydrophilic ion transfers, DMFc+ can become chemically unstable.37 High 

lipophilicity is therefore an essential characteristic, as the redox products of the molecules 

must also stay in the organic phase and not participate in the ion exchange across the 

interface.  

In previous publications, it has been shown that a method to increase the stability of the 

ferrocene (Fc) and its derivatives at the electrode surface is by the formation of inclusion 

complexes with cyclodextrins (CDs), a class of toridally shaped cycloamyloses, with a 

hydrophilic outer surface and a hydrophobic inner cavity.38,39 Fc is spherical shaped and 

can be accommodated as guest for β-cyclodextrin (β-CD). Breslow40 reported that Fc 

forms a 1:2 complexation ratios with α-cyclodextrin and 1:1 with β- and γ-cyclodextrin 

even in organic solvents. He also found that the binding of substrates by β-CD in 
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nonaqueous solvents were not as strong as in water, however strong enough to permit 

complete binding by cyclodextrin of nonpolar species which could fit into the cavity.40,41  

The formation of β-CD and Fc inclusion complex greatly decreases the solubility of the Fc+ 

in water and correspondingly improves its retention in a non-aqueous phase on the 

electrode.38  

In the work reported in this chapter, a β-CD-linked ferrocene (EtCDFc)42 was used as 

redox probe to improve the retainment of Fc on the electrode surface. EtCDFc consists of 

an ethylated β-CD, composed of 7 glucose units with a linked ferroceneacetamido group 

(Figure 6.1). EtCDFc is characterized by being a highly lipophilic organic compound, 

reversibly oxidizable, soluble in organic solvents and almost insoluble in water.  

 

An additional benefit of the system used in this work, arises from the fact that the 

relatively thick film ensures that the generated product of the molecular probe, EtCDFc+,  

is retained within a limited diffusion layer and is kept far away from the aqueous|organic 

solvent interface. Also, bis(triphenylphosphoranylidene) ammonium (BTPPA+) ions from 

 

Figure 6.1 – a) Molecular structure of the EtCDFc,42 b) conical representation showing the 

hydrophobic and rims of the cyclodextrin. 
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the electrolyte bis(triphenylphosphoranylidene) ammonium tetrakis (4-

chlorophenyl)borate (BTPPATPBCl) (see section 2.4.1.2), dissolved in the organic film are 

highly hydrophobic and this will ensure they will not be excluded from the organic film. 

For these reasons, EtCDFc+ and BTPPA+ will not partake in the ion exchange across the 

interface and the charge compensation/neutrality in the organic film is only maintained 

by the injection of ions in the aqueous phase.  

6.2 Study of chiral ion transfer using modified electrodes 

Electrochemical reactions can exhibit stereoselectivity when performed in chiral 

solvents,25,43 in the presence of chiral agents,44–46 or on electrodes with a chiral 

surface.47,48 Using a three-phase system, Scholz and co-workers,25 reported for the first 

time Gibbs energies of transfer of chiral anions. The three-phase arrangement system 

consisted of a droplet of decamethylferrocene in a chiral liquid, D- and L-2-menthol, 

which was attached to a graphite electrode, when immersed in aqueous solution 

containing chiral anions, D- and L-trypotphan, the determination of  the energetic 

differences of Gibbs energy of transfer is possible. Later, the same group reported the 

quantification of Gibbs energies of transfer of D-phenylalanine and L-phenylalanine 

anions across the water|chiral solvent (D- and L-2-octanol) using a similar three-phase 

system. They suggested that the differences obtained between D-phenylalanine and 

L-phenylalanine anions were probably due to the formation of diastereomeric complexes 

with one solvent molecule.49 It is known that when the organic phase is not chiral, one 

cannot expect measurable differences in the standard Gibbs energies of transfer of the 

enantiomers of the chiral ion. However, using a chiral liquid phase these differences 

should be detectable.25  
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In this work, an ethylated ferrocene cyclodextrin is dissolved in 1,2-dichloroethane which 

will make the organic phase chiral. EtCDFc was chosen as a chiral selector, as one of the 

main interest in CDs lies in their ability to form inclusion complexes with several 

compounds.50–52 The lipophilic cavity of the CDs molecules provides a microenvironment 

into which appropriately sized non-polar moieties can enter and form inclusion 

complexes. The enantioselectivity of the molecular interaction is based on the inclusion of 

the chiral analyte into the hydrophobic cavity (internal selectivity) of the cyclodextrin and 

on various interactions involving Van der Waals, dispersive forces, dipole-dipole 

interactions, electrostatic forces and hydrogen bonding between the guest molecules with 

the groups on the cyclodextrin rim (external enantioselectivity). This type of interaction is 

obviously affected by the arrangement, size and type of ions bound to the external chain 

of the CD.53 On this basis, it is expected that the redox properties combined with the 

enantioselective capabilities, characteristic of a cyclodextrin, will make EtCDFc a very 

suitable compound, capable of sensing chiral molecules, such as mandelic acid (MAH) 

enantiomers. The chirality selective inclusion of MAH in the CD cavity of EtCDFc should 

affect the redox properties of EtCDFc and the generated electrochemical signal used to 

transduce the interaction between the two molecules. 

Ueno et al.54 prepared a ferrocene-appended β-cyclodextrin (similar to the one 

represented in figure 6.1) and examine its induced circular dichroism (i.c.d.) spectra in 

organic solvents. He found that the i.c.d. intensity decreases upon guest addition, and that 

the analysis of the guest-induced intensity variations gives binding constants of 1:1 

host-guest stoichiometry.41 In figure 6.2 is shown a schematic representation associated 

with induced-fit type complexation proposed by Ueno et al.54 
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Figure 6.2 – Induced-fit type of complexation for a ferrocene-appended cyclodextrin.41 

MAH (Figure 6.3), the chiral analyte chosen in this study, is considered a major metabolite 

of styrene55,56 and an important fine chemical. MAH and its derivatives are widely used in 

the chemical and pharmaceutical industries. Enantiopure MAH is an important chiral 

synthetic intermediate, an important chiral determination reagent in nuclear magnetic 

resonance (NMR), and a useful reagent in chromatography.57,58 It is present in certain skin 

care products and used as a precursor in the manufacture of certain dyes.59 R-MAH for 

instance is applied as precursor for the synthesis of cephalosporin and penicillin.60,61  It is 

also used as a chiral resolving agent and chiral synthon for the synthesis of anti-tumour 

and anti-obesity agent.62,60 The S-MAH is used to synthesise substituted cyclopentenones 

and commercial drugs, including the nonsteroidal anti-inflammatory drugs.63,64 

 

Figure 6.3 – Chemical structure of mandelic acid, * represents the chiral centre. 
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6.3 Coupled electron and ion transfer reactions  

Coupled electron and ion transfer reactions, combines the electron transfer at the solid 

electrode|organic solvent (E|O) interface with the ion transfer at the organic 

solvent|water (O|W) interface. The solid electrode (electron conductor) serves as a 

source of electrons; the organic phase provides the redox active material and the aqueous 

phase supplies the charge compensating ions. Upon oxidation or reduction, the 

electroneutrality of the organic phase is unbalanced, promoting an ion transfer reaction 

which has to occur to maintain the electroneutrality in both liquid phases.  

The electrochemical process at the thick film modified electrode (Figure 6.3) couple 

electron transfer Eq.(6.1) at the E|O with the ion transfer Eq.(6.2) at the O|W interface: 

 ed(  
    x(  

  e           (  1  

 (  
       (  

            (  2  

Although the ion transfer follows the electron transfer reaction, these two electrochemical 

processes cannot be separately identified, and in the potential window of the 

voltammetric experiments they proceed simultaneously at two different interfaces,36,65–67 

appearing as a single overall process Eq.(6.3). 

 ed(  
   (  

    x(  
   (  

   e           (     

In Eq. (6.3),  ed(  
  and  x(  

  denotes EtCDFc and EtCDFc+, respectively, and A- stands for 

the transferring anions of MAH. Figure 6.4 shows a schematic representation of the 

mechanism involved in the coupled electron and ion transfer reaction. The redox reaction 

of the EtCDFc takes place at the surface of the thick film modified electrode, whereas the 

transfer of the anion A- occurs at the organic|aqueous interface.  
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Figure 6.4 – Schematic representation of coupled anion and electron transfer reaction 

using a thick film modified electrode. 

 

The potential difference between the working electrode and the reference electrode in 

aqueous electrolyte (E|W) i.e., that is potentiostatically controlled, is given by the sum of 

the potential at the electrode|organic (E|O) interface and the potential across the 

organic|aqueous (O|W) interface, corresponding to the potential of the coupled reaction:  
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In a first approximation, the activities in the Nernst equation Eq. (6.5) and (6.6) can be 

replaced by concentrations. Since the concentration of the anions in the aqueous phase is 

kept in excess in comparison to        (  
, and does not change significantly during the 

experiments. In Eq. (6.7), the   
      (  

        (   
  is the standard redox potential of the 

redox couple  t   c   t   c in the organic solvent (vs. Ag|AgCl), n is the number of the 

exchanged electrons (n  1 in the case of EtCDFc),   is the Faraday constant 

(96485 C mol-1),   is the gas constant (8.314 J mol-1 K-1), and   the temperature (K). 

       (  
  and        (  

are, respectively, the concentrations of EtCDFc+ and EtCDFc in the 

organic phase.    
   (  

 
   is the standard potential of transfer of anions A- from the aqueous 

phase to the organic phase, while   (  
  and   (  

 are the concentrations of the studied 

anion in, respectively, the organic and aqueous phases. Eq.(6.7) shows that the formal 

potential of the voltammograms that portray the coupled electron and ion transfer 

processes depend on the nature of the anions in the aqueous phase via the 

values    
   (  

 
  . Generally, the more lipophilic the anions are the more negative the value 

of    
   (  

 
  is. Consequently, the oxidation of the compound Red in the organic phase will 

be shifted towards more negative potentials when the lipophilicity of the transferrable 

anions increases.  

In our study the coupled electron and ion transfer reactions is rather more complicated as 

the EtCDFc combines the function of a redox probe and ligand in simultaneous. In this 

case, a fast equilibrium must be considered in which the anion   (  
  is forming a complex 

with  t   c(  
 , as represented by Eq. 6.8 

 t   c(  
    (  

     t   c(  
    (  

    e           (     



Chiral ion transfer across the liquid|liquid interface coupled to electrochemical redox reaction 

Chiral interactions and sensing at liquid|liquid interface                                                                      161 |  

If both forms of MAH, carboxylic acid (MAH) and carboxylate ion (MA-) are able to form a 

complex with EtCDFc, the equilibria presented in scheme 6.1 has to be considered. 

 

Scheme 6.1 – Equilibria for the complex of MAH and MA- with EtCDFc+. Ka and Ka’ 

represent the acid dissociation constants in the free state and in the complex 

respectively. KHA and KA represent the complexation of the protonated and ionized form 

of the acid. 

The stability constant of the complex formed, is related to the standard free energy 

change for the complex formation by: 

      ln            (     

The units of    are determined by the units of R, but the magnitude of    is also 

controlled by the concentration units in which   is expressed (Eq. 6.10) 

  
 complex 

 host   uest 
          (  1   

The system then manifests its enantioselectivity through the differential interaction of the 

chiral selector with the two enantiomers to be resolved. This enantioselectivity is 

thermodynamic in origin and is due to the different stability of the diastereomeric species 

formed by the two enantiomers and the chiral selector. In the absence of achiral 

interactions the enantioselectivity is related to the Gibbs energy difference by Eq. (6.11) 

[ ]
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   ,             ln  ,           (  11  

Where    ,  is the difference in the Gibbs free energy between the two enantiomers and 

the chiral selector. 

6.4 Results and discussion 

6.4.1 Characterisation of EtCDFc  

In order to study the electrochemical response of EtCDFc by means of a thick organic film 

modified electrode, its response was first analysed using a classical three-electrode 

system and compared to Fc. Cyclic voltammetric measurements were carried out in 

1,2-DCE solution with BTPPATPBCl (0.02M) as the supporting organic electrolyte. A fresh 

polished glassy carbon was used as a working electrode (A=0.07cm2), a platinum flag and 

platinum wire were used as a counter and pseudo reference electrodes, respectively. 

Figure 6.5 shows cyclic voltammograms of the oxidation of EtCDFc to EtCDFc+ 

(Figure 6.5a) and Fc to Fc+ (Figure 6.5b), 1mM each at different scan rates. It can be seen 

on the voltammograms that both, EtCDFc and Fc show a well-defined and reversible 

one-electron response. 

a) 

 

b) 

 
Figure 6.5 – Cyclic voltammograms of 1mM of a) EtCDFc and b) Fc at different scan rates 

(10, 25, 50, 75, 100 mV s-1). 
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Ideally, the two redox couples should exhibit a peak separation of 0.057V, however the 

separation between voltammetric peaks (ΔEp=Epc-Epa), increases slightly with the increase 

of scan rate. This behaviour suggests slow electron transfer at the electrode surface, 

meaning that the potential applied does not result in the generation of the concentrations 

at the electrode surface as predicted by the Nernst equation, due to the kinetics of the 

reaction the equilibrium is not established rapidly. A large ΔEp value can be also 

attributed to the uncompensated resistance effect, as was previously observed by other 

researchers.68,69 Nonetheless, a plot of the anodic (ipa) and the cathodic peak current (ipc) 

against the square root of the scan rate (υ1/2) resulted in a straight line with a slope 

proportional to the square root of the scan rate (υ1/2), as given by the Randles-Sevcik 

equation70 (Figure 6.5 a) and b), and the ipa/ipc ratios were equal to the unit for the two 

ferrocenes.  

a) 

 

b)

 

Figure 6.6 – Plots of peak current vs. square root of scan rate a) EtCDFc and b) Fc in the 

range from 10mV s-1 to 100mV s-1. When not visible, the error bars are smaller than the 

symbols. 

This linearity between the examined scan rates indicates that the oxidation process of 

both ferrocenes is reversible and diffusion controlled in the investigated solvent media at 

room temperature (295±2K). On this basis the diffusion coefficients were calculated and 
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found equal to 1.12x10-6 and 1.81x10-6 cm2 s-1 for EtCDFc and Fc, respectively. A 

difference in the diffusion coefficients was expected having in account the structure of the 

redox species under study. EtCDFc has a CD in its structure (Figure 6.2) and this should, 

empirically, decrease the velocity at which the molecule moves in the media; hence a 

lower diffusion coefficient. This was observed but the difference between Fc and EtCDFc 

was smaller than that predicted; the reason for this might lie in the fact that the diffusion 

coefficient determined from figure 6.6 is one order of magnitude higher than the value 

reported in the literature (2.1 10-5 cm2 s-2).71 

6.4.1 Stability of the thick modified electrode 

In order to verify the stability of the thick film used, the oxidation of EtCDFc to EtCDFc+ 

was examined under consecutive voltammograms at a fixed scan rate (50mV s-1), as 

depicted in Figure 6.6. In contrast with previous reports3,49,72 where it has been shown 

that the organic phase does not contain any deliberately added supporting electrolyte, the 

organic phase was made sufficiently conductive by the incorporation of a hydrophobic 

salt.  A small volume (25µL, corresponding to 1.3mm thickness) of the organic solution 

was placed on the surface of a glassy carbon working electrode. A silicon support at the 

end of the working electrode was used to immobilize the organic phase (see section 

3.4.1). The working electrode was then immersed in an aqueous solution containing LiCl 

(20mM), according to the following electrochemical cell: 

 

Scheme 6.2 – Electrochemical cell for the study of the stability of the thick film modified 

electrode. 
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It is clearly shown (Figure 6.7) that the voltammograms are fully reversible and the 

current magnitude remained virtually unchanged after 30 cycles. The reproducibility of 

the voltammograms reveals the stability of the redox probe during the electrochemical 

transformations within the thick layer, meaning that there is no leaching of the reactants 

(EtCDFc+) from the organic film to the aqueous solution. In this way, the charge 

compensation process can only occur by the transfer of Cl- into the organic film. This fact 

is easy to understand as the thickness of the diffusion layer of EtCDFc within the organic 

film is considerably smaller than that of the thick organic film. 

 

Figure 6.7 – 30 consecutive cycling of CV at a constant scan rate (0.5mVs-1) using 1mM of 

EtCDFc as redox probe and 20mM of LiCl in the aqueous phase. The dotted line shows the 

background response (absence of EtCDFc). 

6.3.1 Electrochemical response of the redox couple EtCDFC|EtCDFc+ in the presence 

of different aqueous anions 

The voltammetric response of the thick film modified electrode was inspected in a series 

of different aqueous anions solutions, using CV and DPV (Figures 6.8a and 6.8b). As it was 

expected, the reduction and oxidation of EtCDFc is accompanied by the transfer of the 

anions from the aqueous phase to the organic film, and thus sensitive to the type of 

aqueous ions. Figure 6.8 b) shows clearly the position of the half-wave potential of each 
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anion on the potential axis, which follows a reasonable sequence reflecting their affinities 

towards the organic phase. The shift in the midpoint potential may be attributed to the 

Gibbs free energy, which is responsible for the transfer of the anion from the aqueous to 

the organic phase in this system. 

a) 

  
b) 

  
Figure 6.8 – a) CV and b) DPV voltammograms (normalized currents) of EtCDFc (1mM) at 

the thick film modified electrode coupled to the transfer of the anions of different 

electrolytes, KI, KNO3, KBr and KCl, across water|1,2-DCE interface. The concentration of 

the aqueous electrolytes was 0.02M. Scan rate:50mVs-1; pulse amplitude 0.05V, sampling 

with 0.060s, step height 0.005 V. 

From figure 6.8 a second peak of lower intensity, which also shifts according to the anion 

in solution, can also be seen. The explanation may lie in a two-step process, migration of 

ion and complexation of ion with EtCDFc, as all the experimental conditions, 

(concentration, temperature and pH) were kept constant. It has been shown previously, 
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using spectrophotometric and ultrasonic relaxation techniques, that these anions complex  

with βCD,41,73 with the stability constants being dependent on the lipophilicity of the 

anions. 

Since the voltammetric systems measured in such experiments possess all the features of 

electrochemical reversibility and the transfer coefficients can be assumed to be near 0.5, it 

is reasonable to take the mid-peak potentials as the formal potential of the system.   
   can 

then be derived from the cyclic voltammograms as   
   

 

 
(         where      and     

are the anodic and cathodic peak potentials respectively, or from differential pulse 

voltammograms according to   
     ,    where   ,    is the peak at the half-wave 

potential.74 One can rationalize the potential shift by plotting the measured peak 

potentials as a function of    
    

 , as this parameter describes the ability of the anion to 

be transferred across the water-organic solvent interface and therefore its 

hydrophobicity. Some of the properties of the studied anions, such as standard Gibbs free 

energy of transfer (  
       mol   , standard ion transfer potential(   

    
     from 

water to 1,2-DCE, and radii of ions (r/nm) together with the mid-peak potentials obtained 

with CV and DPV are listed in Table 6.1. 

Table 6.1 – Standard transfer potentials, standard Gibbs energy of transfer, radius and 

transfer half-wave potentials of the studied anions ([Anion]=20mM, [EtCDFc]=1mM). 

 
 

   
    

      
            r/nm   

        
      

    
0.48175 5475 0.16775 

0.74 0.75 

   
0.27475 2575 0.20675 

0.54 0.55 

    
0.40075 3875 0.18275 

0.66 0.68 

   
  

0.33075 3475 0.18975 
0.62 0.63 

a) CV measurements, b) DPV measurements. 
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The y-intercept obtained in the linear relationship between the half-wave potential and 

  
    

  is depicted in figure 6.9 using CV (a) and DPV (b), and can be related to 

 
      (  

        (  

 according to Eq.(6.7). It can be seen that the relationship is linear, with 

a slope of approximately one for both measurements, which is in good agreement with 

Eq.(6.7).  

a) 

 

b) 

 

Figure 6.9 – Dependence of the half-wave potentials of a) CV and b) DPV of 1mM EtCDFc 

in 1,2-DCE in the presence of 20mM aqueous solution of KI, KNO3, KBr and KCl, with the 

standard Galvani potential differences75 of anions of the aqueous electrolytes (average 

values). 

Considering the intercept of the straight line in figure 6.9, the standard potential of 

EtCDFc/EtCDFc+ couple in 1,2-DCE  was found to be 0.30±0.01 V (vs. Ag|AgCl) using CV 

and DPV.  

The ion transfer depends both on the nature of the solvent and on the ionic radius. Figure 

6.10 shows the half-wave potentials of transfer versus the ion radius at the water|1,2-DCE 

interface. As can be seen from the figure 6.10 the ion distribution potential decreases 

linearly with the increasing of ionic ion radii.75  
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a) b) 

 
 

Figure 6.10 – Dependence of the half-wave potentials of a)CV and b)DPV of 1mM EtCDFc 

in 1,2-DCE versus the ion radii.75 
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prerequisite for chiral recognition77 was assumed to be the inclusion complex formation 

with the tightest fit of the complex and the interaction of the groups at the cyclodextrin 

cavity entrance with the chiral centre of the guest molecule. However, contradictory 

evidence also exists indicating that a tight fit implies the formation of strong complexes 

that can be unfavourable for the enantiomeric differentiation.78 Nonetheless, the cavity 

size of the CD needs to be suitable to accommodate a guest of particular size. 

We expect that the recognition of the MAH enantiomers by EtCDFc at the modified thick 

film electrode couples the complexation process to the redox reaction, i.e. the two 

reactions will mutually influence each other. The insertion (reduction) or withdrawal 

(oxidation) of an electron from the EtCDFc molecule will change the stability of the 
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complexed formed, leading to a change on its redox potential. Furthermore, the 

interaction of MAH with EtCDFc will depended on its relative 

hydrophobicity-hydrophilicity, which depends on the pH of the aqueous phase. The 

equilibrium equation for the protonation (unionized) and deprotonation (ionized) 

(scheme 6.3) of MAH is as follows:  

 

The association constant at the p   value can be described as: 

   
         

     
          (  12  

where     and     represent the unionized and anionic forms of R or S-MAH, 

respectively.  The concentration of the ionic moiety of the acid increases with increasing 

pH of the aqueous solution, as shown in the Henderson-Hasselbalch equation: 

p  lo 
     

     
 p            (  1   

According to Eq. (6.13), at pH=2 the MAH is ionized only 3.83% ([MAH]>>[MA-]) meaning 

that it is mainly in its protonated (unionized) form; at pH=3.4, MAH is 50% ionized, 

protonated and anionic forms exist in equal quantity ([MAH]=[MA-]); at pH=7, the anionic 

(ionized) form of the MAH is dominant in solution with 99.97% ionization 

([MA-]>>[MAH]). The effects of the protonated, neutral and ionized forms of MAH in the 

redox reaction of EtCDFc were studied using the electrochemical cells represented in 

scheme 6.3. 
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Scheme 6.3 – Cell configurations used, where  is the concentration of MAH enantiomers, 

0mM [MAH]  20mM. 

The modified thick film electrode was first analysed in the absence of both, chiral redox 

probe and analyte, i.e only in the presence of aqueous and organic background 

electrolytes (Figure 6.11, dashed line). No redox or ion transfer behaviour was observed 

within the potential window. In order to observe if a detection signal corresponding to the 

MAH transfer could be seen, its transfer was studied in the absence of EtCDFc in the 

organic film. As it can be seen from figure 6.11 (dotted line) the CV and DPV responses 

were very similar to ones obtained in the presence of the aqueous and organic 

electrolytes. This indicates that no transfer of MAH can be detected without the redox 

probe in the organic film.  
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a) 

 

b) 

 

Figure 6.11 – a)CV and b)DPV response of the thick modified electrode in the absence of 

MAH and  EtCDFc (dashed line), and in the absence of EtCDFc (dotted line). Scan 

rate:50 mV s-1; pulse amplitude 0.05 V, sampling with 0.060 s, step height 0.005 V. 

In the three pH ranges studied it was observed that when the concentration of the MAH 

enantiomers is below the concentration of EtCDFc, there is little effect on the response 

(Figures 6.12, 6.13 and 6.14). However, when the concentration of R- and S-MAH 

enantiomers increases and becomes higher than that of EtCDFc, a more noticeable effect 

is observed as both oxidation and reduction peak potentials on the CV and peak potential 

on DPV shift towards to negative potentials (Figures 6.12, 6.13, 6.14). It can also be seen 

from the same figures that the current response decreases with the increase of MAH 

enantiomers concentration. The presence of enantiomers of MAH in solution lowered the 

Ip values of the EtCDFc redox waves and shifted their peak potentials to less positive 

values, with the peak-to-peak separation     increasing. This behaviour may be explained 

with the formation of inclusion complexes between the cyclodextrin moiety of the EtCDFc 

and the MAH enantiomers. The oxidation of EtCDFc to EtCDFc+ becomes more difficult to 

occur as the concentration of free EtCDFc in the organic phase decreases, as a 

consequence a reduction in the current responses is observed.  
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As mentioned previously, the complex formation between the MAH enantiomers and 

EtCDFc will be strongly influenced by electrostatic interactions, Van de Waals 

interactions, hydrophobic interactions and hydrogen bonding.79 Altering the charge state 

of the analyte by changing the pH of the aqueous solution will affect the enantioselectivity 

of the inclusion complex.  

At pH=2 (Figure 6.12), as the MAH enantiomers are protonated, the phenyl ring of MAH 

will interact easily with the hydrophobic cavity of the cyclodextrin. On the other hand, at 

pH=3.4 (Figure 6.13), as MAH and MA- enantiomers will be in equilibrium in solution, 

both will compete in the complex formation with EtCDFc. At pH=7 (Figure 6.14), the MAH 

enantiomers are mainly ionised carrying a negative charge. As EtCDFc becomes positively 

charged upon its oxidation, the MA- anions migrate to the 1,2-DCE phase, to maintain 

electroneutrality and due to complexation with the CD cavity.  
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 6.12 –CV and DPV responses at pH=2.0 for R (graphs a and b) and S (graphs b and 

c), according to cell 1 (scheme 6.3). Scan rate:50m Vs-1; pulse amplitude 0.05 V, sampling 

with 0.060 s, step height 0.005 V. The variation of current, for all the concentrations 

studied, at different scan rates is shown in appendix (A1).  
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 6.13 –CV and DPV responses at pH=3.4 for R (graphs a and b) and S (graphs b and 

c), according to cell 2 (scheme 6.3). Scan rate:50m Vs-1; pulse amplitude 0.05 V, sampling 

with 0.060 s, step height 0.005 V. The variation of current, for all the concentrations 

studied, at different scan rates is shown in appendix (A1). 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 6.14 – CV and DPV responses at pH=7.0 for R (graphs a and b) and S (graphs b and 

c), according to cell 3 (scheme 6.3). Scan rate:50m Vs-1; pulse amplitude 0.05 V, sampling 

with 0.060 s, step height 0.005 V. The variation of current, for all the concentrations 

studied, at different scan rates is shown in appendix (A1). 
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6.14 shows the variation in peak potentials and normalized currents with the 

concentration of MAH for the three pH ranges studied.  

 a) a') 

p
H

=
2

 

  

 b) b’  

p
H

=
3

.4
 

  

 c) c') 

p
H

=
7

 

  

Figure 6.15 – Plot of the half-wave potentials (a , b  and c   and current (a’ , b’  and c’   

vs., concentration of MAH enantiomers obtained from DPV at pH=2, b) pH=3.4 and pH=7. 
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Initially, the higher chiral differentiation was expected to be at pH 7 due to the strong 

interactions between EtCDFc and MAH enantiomers (EtCDFc is positively charged upon 

its oxidation and MAH is 99.97% ionized), but this was not the case. The strong 

electrostatic interactions between the two molecules lead to a difference of, at most, 

15±2mV. This pH was not the one that presented higher difference in the potential for the 

coupled reaction between MAH enantiomers and EtCDFc; 30±2mV were observed in the 

case of pH 3.4. At pH 3.4 there are electrostatic and hydrophobic interactions involved in 

the complex formation. The hydrophobic interactions are stronger at pH 2, as the MAH is 

almost unionized (3.83% ionized), the hydrophobicity of the MAH enantiomers at this pH 

will make its entrance in the cavity of the cyclodextrin more favourable, however the 

difference detected in the response of S- and R-MAH was approximately 10mV±2mV. 

From the experiments performed at the three pH ranges, it seems that the combination of 

electrostatic and hydrophobic interactions and the maintenance of electroneutrality are 

needed to achieve a better chiral differentiation. For the different concentrations 

analysed, the S- enantiomer showed consistently lower current intensities indicating that 

there is a preferential interaction with this enantiomer with EtCDFc.  

The possibility of a pre-equilibration process with the anions of mandelic acid exchanging 

the chloride needs also to be considered for an alternative interpretation. 

6.4 Conclusion 

 
The present study shows that a thick film modified electrode can be used as an alternative 

system for the study of ion transfer. It was demonstrated that the redox probe, EtCDFc, is 

sensitive to the nature of the aqueous solution, as its redox potential shifted according to 

the hydrophobicity of the ions in solution. A good linear correlation was found between 

the mid-peak potential of cyclic and differential pulse voltammograms of EtCDFc and the 
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standard Galvani potential differences of the anions present in the aqueous solution. For 

Br-, Cl- and NO3
- ions the relationship was linear, which made possible to estimate the 

standard redox potential of EtCDFc in 1,2-DCE of 0.0853±0.005V, using DPV. 

Due to its unique structure EtCDFc was also used as a chiral selector for the 

discrimination of mandelic acid enantiomers. The oxidation of the EtCDFc was 

accompanied by the charge compensating of MAH anions from the aqueous to the organic 

phase. This coupled reaction led to the formation of diastereomeric complexes. It was 

found that the recognition of mandelic acid anions using EtCDFc strongly depends on the 

pH of the aqueous solution which determines the intermolecular forces that participate in 

the complex formation. In the three pHs studied (2.0, 3.4 and 7.0) the S- enantiomer 

showed to be more favourable to complex with EtCDFc as the potential of the global 

reaction occurred at more negative potentials. Also, the results obtained at pH 3.4 showed 

better chiral discrimination between R- and S-MAH. 

Using a thick film modified electrode, is demonstrated that electrochemically driven 

transfer of chiral mandelic acid ions can be differentiated using a compound that can be 

both redox active and chiral selector. Redox probes such as EtCDFc can be very promising 

as they simplify the number of compounds used in such system. Research on the 

differentiation of chiral anions can be continued and optimized using simple and 

alternative systems as the one described in this chapter.  

  



Chiral ion transfer across the liquid|liquid interface coupled to electrochemical redox reaction 

Chiral interactions and sensing at liquid|liquid interface                                                                      180 |  

References  

(1)  Watarai, H.; Teramae, N.; Sawada, T. Interfacial nanochemistry: molecular science and 
engineering at liquid-liquid interfaces; Springer, 2005. 

(2)  Volkov, A. G. Liquid Interfaces in Chemical, Biological, and Pharmaceutical Applications; 
1st ed.; CRC Press, 2001. 

(3)  Scholz, F.; Komorsky-Lovrić, Š.; Lovrić, M. Electrochem. Commun. 2000, 2, 112–118. 
(4)  Scholz, F.; Meyer, B. Chem. Soc. Rev. 1994, 23, 341–347. 
(5)  Shouji, E.; Buttry, D. A. Langmuir 1999, 15, 669–673. 
(6)  Laforgue, A.; Simon, P.; Sarrazin, C.; Fauvarque, J.-F. J. Power Sources 1999, 80, 142–

148. 
(7)  Hermes, M.; Scholz, F. J. Solid State Electrochem. 1997, 1, 215–220. 
(8)  Gobry, V.; Ulmeanu, S.; Reymond, F.; Bouchard, G.; Carrupt, P.-A.; Testa, B.; Girault, H. 

H. J. Am. Chem. Soc. 2001, 123, 10684–10690. 
(9)  Ulmeanu, S.; Lee, H. J.; Fermin, D. J.; Girault, H. H.; Shao, Y. Electrochem. Commun. 

2001, 3, 219–223. 
(10)  Zhan, D.; Mao, S.; Zhao, Q.; Chen, Z.; Hu, H.; Jing, P.; Zhang, M.; Zhu, Z.; Shao, Y. Anal. 

Chem. 2004, 76, 4128–4136. 
(11)  Zhang, M.; Sun, P.; Chen, Y.; Li, F.; Gao, Z.; Shao, Y. Anal. Chem. 2003, 75, 4341–4345. 
(12)  Davies, T. J.; Wilkins, S. J.; Compton, R. G. Journal of Electroanalytical Chemistry 2006, 

586, 260–275. 
(13)  Banks, C. E.; Davies, T. J.; Evans, R. G.; Hignett, G.; Wain, A. J.; Lawrence, N. S.; 

Wadhawan, J. D.; Marken, F.; Compton, R. G. Phys. Chem. Chem. Phys. 5, 4053–4069. 
(14)  Rayner, D.; Fietkau, N.; Streeter, I.; Marken, F.; Buckley, B. R.; BulmanPage, P. C.; 

delCampo, J.; Mas, R.; Munoz, F. X.; Compton, R. G. J. Phys. Chem. 2007, 111, 9992–
10002. 

(15)  Marken, F.; Blythe, A. N.; Wadhawan, J. D.; Compton, R. G.; Bull, S. D.; Aplin, R. T.; 
Davies, S. G. J. Solid State Electrochem. 2001, 5, 17–22. 

(16)  Marken, F.; Compton, R. G.; Goeting, C. H.; Foord, J. S.; Bull, S. D.; Davies, S. G. 
Electroanalysis 1998, 10, 821–826. 

(17)  Marken, F.; Webster, R. D.; Bull, S. D.; Davies, S. G. J. Electroanal. Chem. 1997, 437, 
209–218. 

(18)  Scholz, F.; Gulaboski, R.; Caban, K. Electrochem. Commun. 2003, 5, 929–934. 
(19)  Scholz, F. Annu. Rep. C 2006, 102, 43–70. 
(20)   o or   -Lovrić, Š.;  i   ,  .;      o  i,  .; Mir    i,  .;    o  ,  . Langmuir 2002, 18, 

8000–8005. 
(21)  Gulaboski, R.; Riedl, K.; Scholz, F. Phys. Chem. Chem. Phys. 2003, 5, 1284–1289. 
(22)       o  i,  .; Mir    i,  .;    o  ,  . Amino Acids 2003, 24, 149–154. 
(23)       o  i,  .; Mir    i,  .;    o  ,  . Electrochem. Commun. 2002, 4, 277–283. 
(24)  Bouchard, G.; Galland, A.; Carrupt, P.-A.;      o  i,  .; Mir    i,  .;    o  ,  .;  ir   t, 

H. H. Phys. Chem. Chem. Phys. 2003, 5, 3748–3751. 
(25)     o  ,  .;      o  i,  .; Mir    i,  .; L ng r, P. Electrochem. Commun. 2002, 4, 659–

662. 
(26)  Gulaboski, R.; Galland, A.; Bouchard, G.; Caban, K.; Kretschmer, A.; Carrupt, P.-A.; 

Stojek, Z.; Girault, H. H.; Scholz, F. J. Phys. Chem. B 2004, 108, 4565–4572. 
(27)   o or   -Lovrić, Š.;  i   ,  .;      o  i,  .; Mir    i,  .;    o  ,  . Langmuir 2003, 19, 

3090–3090. 
(28)  Gulaboski, R.; Scholz, F. J. Phys. Chem. B 2003, 107, 5650–5657. 



Chiral ion transfer across the liquid|liquid interface coupled to electrochemical redox reaction 

Chiral interactions and sensing at liquid|liquid interface                                                                      181 |  

(29)  Donten, M.; Stojek, Z.; Scholz, F. Electrochem. Commun. 2002, 4, 324–329. 
(30)  Shul, G.; Opallo, M.; Marken, F. Electrochim. Acta 2005, 50, 2315–2322. 
(31)  Shul, G.; Murphy, M.; Wilcox, G.; Marken, F.; Opallo, M. J. Solid State Electrochem. 

2005, 9, 874–881. 
(32)  Shi, C.; Anson, F. C. Anal. Chem. 1998, 70, 3114–3118. 
(33)  Shi, C.; Anson, F. C. J. Phys. Chem. B 1998, 102, 9850–9854. 
(34)  Shi, C.; Anson, F. C. J. Phys. Chem. B 1999, 103, 6283–6289. 
(35)  Barker, A. L.; Unwin, P. R. J. Phys. Chem. B 2000, 104, 2330–2340. 
(36)     nt  ,  .; Mir    i,  .; L   r, M. Anal. Chem. 2005, 77, 1940–1949. 
(37)  Charreteur, K.; Quentel, F.; Elleouet, C.; L   r, M. Anal. Chem. 2008, 80, 5065–5070. 
(38)  Guorong, Z.; Xiaolei, W.; Xingwang, S.; Tianling, S. Talanta 2000, 51, 1019–1025. 
(39)  Luong, J. H. T.; Male, K. B.; Zhao, S. S. Anal. Biochem. 1993, 212, 269–276. 
(40)  Siegel, B.; Breslow, R. J. Am. Chem. Soc. 1975, 97, 6869–6870. 
(41)  Atwood, J. L.; Lehn, J.-M. Comprehensive Supramolecular Chemistry: Cyclodextrins; 

Pergamon, 1996. 
(42)  Kataky, R.; Dell, R.; Senanayake, P. K. Analyst 2001, 126, 2015–2019. 
(43)  Kuhn, A.; Anson, F. C. J. Electroanal. Chem. 1996, 410, 243–246. 
(44)  Lopes, P.; Kataky, R. Anal. Chem. 2012, 84, 2299–2304. 
(45)  Kataky, R.; Lopes, P. Chem. Commun. 2009, 1490–1492. 
(46)  Gao, C.; Ding, S.; Tan, Q.; Gu, L.-Q. Anal. Chem. 2009, 81, 80–86. 
(47)  Zhou, J.; Chen, Q.; Wang, L.; Wang, Y.; Fu, Y. Int. J. Electrochem. Electrochem. 2011, 

2011, 1–6. 
(48)  Schulte, B.; Pleus, S. J. Solid State Electrochem. 2001, 5, 522–530. 
(49)  Scholz, F.; Gulaboski, R. Faraday Discuss. 2005, 129, 169–177. 
(50)  Del Valle, E. M. M. Process Biochem. 2004, 39, 1033–1046. 
(51)  Schneiderman, E.; Stalcup,  a M. J. Chromatogr. B 2000, 745, 83–102. 
(52)  Novák, C.; Végh, A.; Marokházi, S.; Pokol, G.; Szente, L. J. Therm. Anal. 1994, 41, 181–

190. 
(53)  Izake, E. L. J. Pharm. Sci. 2007, 96, 1659–1676. 
(54)  Ueno, A.; Moriwaki, F.; Matsue, T.; Osa, T.; Hamada, F.; Murai, K. Makromol. Chem. 

Rapid Commun. 1985, 6, 231–233. 
(55)  Utkin, I. b.; Yakimov, M. m.; Matveeva, L. n.; Kozlyak, E. i.; Rogozhin, I. s.; Solomon, Z. 

g.; Bezborodov, A. m. FEMS Microbiol. Lett. 1991, 77, 237–242. 
(56)  Linhart, I.; Smejkal, J.; Mládková, I. Toxicol. Lett. 1998, 94, 127–135. 
(57)  Amoroso, R.; Bettoni, G.; Tricca, M. L.; Loiodice, F.; Ferorelli, S. Il Farmaco 1998, 53, 73–

79. 
(58)  Chataigner, I.; Lebreton, J.; Durand, D.; Guingant, A.; Villiéras, J. Tetrahedron Lett. 1998, 

39, 1759–1762. 
(59)  Taran, F.; Gauchet, C.; Mohar, B.; Meunier, S.; Valleix, A.; Renard, P. Y.; Créminon, C.; 

Grassi, J.; Wagner, A.; Mioskowski, C. Angew. Chem. Int. Ed. 2002, 41, 124–127. 
(60)  Yamamoto, K.; Oishi, K.; Fujimatsu, I.; Komatsu, K. Appl. Environ. Microbiol. 1991, 57, 

3028–3032. 
(61)  Kaul, P.; Banerjee, A.; Mayilraj, S.; Banerjee, U. C. Tetrahedron: Asymmetry 2004, 15, 

207–211. 
(62)  Allenmark, S.; Bomgren, B.; Borén, H. J. Chromatogr. A 1983, 264, 63–68. 
(63)  Mateo, C.; Chmura, A.; Rustler, S.; van Rantwijk, F.; Stolz, A.; Sheldon, R. A. 

Tetrahedron: Asymmetry 2006, 17, 320–323. 
(64)  Blay, G.; Fernández, I.; Molina, E.; Muñoz, M. C.; Pedro, J. R.; Vila, C. Tetrahedron 2006, 

62, 8069–8076. 



Chiral ion transfer across the liquid|liquid interface coupled to electrochemical redox reaction 

Chiral interactions and sensing at liquid|liquid interface                                                                      182 |  

(65)       o  i,  .; Mirć   i,  .; P r ir , C. M.; Cor  iro, M. N. D.  .;  i v , A.  .;    nt  ,  .; 
L   r, M.; Lovrić, M. Langmuir 2006, 22, 3404–3412. 

(66)  Mir    i,  .;    nt  ,  .; L   r, M.; Pon  v n, A. Electrochem. Commun. 2005, 7, 1122–
1128. 

(67)  Mir    i,  . J. Phys. Chem. B 2004, 108, 13719–13725. 
(68)  Bond, A. M.; Oldham, K. B.; Snook, G. A. Anal. Chem. 2000, 72, 3492–3496. 
(69)  Ranchet, D.; Tommasino, J. B.; Vittori, O.; Fabre, P. L. J. Solution Chem. 1998, 27, 979–

991. 
(70)  Bard, A. J.; Faulkner, L. Electrochemical Methods: Fundamentals and Applications; 2nd 

ed.; John Wiley & Sons, 2001. 
(71)  Janisch, J.; Ruff, A.; Speiser, B.; Wolff, C.; Zigelli, J.; Benthin, S.; Feldmann, V.; Mayer, H. 

A. Journal of Solid State Electrochemistry 2011, 15, 2083–2094. 
(72)  Scholz, F.; Gulaboski, R. ChemPhysChem 2005, 6, 16–28. 
(73)  Rohrbach, R. P.; Rodriguez, L. J.; Eyring, E. M.; Wojcik, J. F. J. Phys. Chem. 1977, 81, 

944–948. 
(74)  Scholz, F. Electroanalytical Methods: Guide to Experiments and Applications; Springer, 

2010. 
(75)  Volkov, A. G. Liquid Interfaces in Chemistry and Biology; Wiley: New York, 1998. 
(76)  N r i, A.; E i   v, A.; Bo   , P.;   n  i,  . J. Chromatogr. A 1993, 638, 247–253. 
(77)  Bikádi, Z.; Iványi, R.; Szente, L.; Ilisz, I.; Hazai, E. Curr. Drug Discov. Tech. 2007, 4, 282–

294. 
(78)  Asztemborska M.; Nowakowski R.; Sybilska D. J. Chromatogr. A 2000, 902, 381–387. 
(79)  Liu, L. E. I.; Guo, Q. J. Incl. Phenom. Macro. 2002, 42, 1–14. 

 



Conclusion and Further work 

 

Chiral interactions and sensing at liquid|liquid interface                                                                      183 |  

 

Chapter 7 

Conclusion  

and Further work 

New approaches for the study of chiral molecules and interaction at liquid|liquid interface 

have been presented. In this thesis, it is shown how chiral stationary phases made of 

lipophilic cyclodextrins and plasma proteins can contribute to the enhancement of 

applications for chiral studies. The electrochemical techniques allow qualitative and 

quantitative differentiation between the enantiomers studied. The chiral differentiation 

obtained in the different systems used is comparable to that shown by other techniques 

with the advantage that it involves significant less costs, simple instrumentation and rapid 

analysis. It seems, therefore, that the conversion of chiral discrimination from other 

formats (e.g. chromatographic, spectroscopic etc.) to the format of a sensing 

electrochemical system deserves an increasing attention in the current analytical 

research. 

Initially the study of chiral detection and discrimination at liquid|liquid interface was 

done using lipophilic cyclodextrins, such as AcαCD and AcβCD. This study was performed 

in order to enable us to understand the nature of analyte recognition by the lipophilic 

cyclodextrins using electrochemical techniques. The chiral stationary phases used proved 

to be successful for the study of chiral interaction and differentiation at liquid|liquid 

interface. The results indicate that acetylated cyclodextrins provide a size-selective cavity 



Conclusion and Further work 

 

Chiral interactions and sensing at liquid|liquid interface                                                                      184 |  

for the binding and detection of ephedrinium ions. The differences obtained in the 

responses of the two enantiomers, suggest that (+)EPH+ and (-)-EPH+ enantiomers of 

ephedrine fit differently in the cavity of the cyclodextrins which may  result from their 

different orientation. In both cyclodextrins, the (+)EPH+ enantiomer was transferred at 

less positive potentials  than (-)-EPH+ and with a higher magnitude of response, 

suggesting that this is the enantiomer that more strongly bounds to the chiral selectors 

and is more feasible to be transferred across the interface. Although the values obtained 

for the variation in stability constants using AcβCD (1.41±0.1 M-1) and AcαCD (1.20±0.1 

M-1) were modest, they proved to be sufficient to differentiate between the enantiomers of 

ephedrine. 

In the study of the interaction between the basic drugs, propranolol, lidocaine and 

procaine, with the acute phase plasma protein, it was found that the three drugs studied 

bound to AGP with different affinities. The interaction and the formation of complex 

between the AGP and the drugs lead a decrease in the detection signal, as only the 

unbound or free drug was able to be transferred across the interface. The differences in 

the detection signal in the presence of AGP made possible the differentiation between the 

enantiomers of propranolol hydrochloride. No substantial difference was observed in the 

transfer of lidocaine in the presence of AGP, indicating that there is a weak interaction 

between the two molecules.  The differences observed in the affinities of the drugs and 

protein was reflected in the values of association constants. The association constant of S-

propranolol was found to be 2.7x105 M-1, whereas for R-propranolol the value was about 

two times smaller, 1.3x105 M-1. On the other hand the two anaesthetic drugs studied, 

procaine and lidocaine also revealed to have very different affinities with AGP, which lead 

to association constants of 1.2x104 M-1 and 8.4x103 M-1, respectively. Procaine was the less 

bounded drug studied and therefore having the smallest association constant value.  
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A thick film electrode modified with an ethylated ferrocene cyclodextrin, EfCDFc, was 

used as additional system for the study of chiral ion transfer. The chiral selector used has 

a dual role, a redox active moiety and a cyclodextrin moiety which was able to form 

enantioselective complexes the enantiomers of mandelic acid. The oxidation of the EtCDFc 

accompanied by the charge compensating of MA anions from the aqueous to the organic 

phase led to the formation of diastereomeric complexes, which depended on the pH of the 

aqueous solution. This simultaneous reaction made possible the differentiation of the 

enantiomers of mandelic acid.  

The work presented in this thesis can/should be developed further. In the case of the 

chiral detection and discrimination with lipophilic cyclodextrins, further studies can be 

focused on other chiral analytes of pharmacological interest in order to extend the 

application of chiral discrimination at liquid|liquid interface. The use of more efficient 

chiral selectors, such as those negatively charged, can also be considered. For instance, 

sulfated CDs offer the possibility of formation of stronger interactions, such as ion-ion 

interactions between the positively charged nitrogens of ephedrines and the negatively 

charged groups of the CD. The formation of stronger interactions may lead to a better 

chiral differentiation. In seeking further to understand in detailed the mechanism by 

which the enantiomeric discrimination occurs, a systematic variation of both, the 

structure of the chiral analyte and of the CD host can be undertaken. 

The study of the interaction between chiral and non-chiral drugs with plasma proteins 

can be done using other type of proteins such as albumin which according to the 

literature1,2 is more suitable to bind with acid drugs, extending the application of the 

system used and the number of the drugs studied. 

In the thick film modified electrode, a more deep study has to be done as the system is 

more complex with two reactions occurring simultaneously. A redox chiral selector which 
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is able to differentiate enantiomeric molecules seems to be a very promising way of 

studying chiral acidic compounds.  
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Appendix 

A1 – Variation of current with scan rate at different concentrations of  

mandelic acid    

a) 

 
b) [R-MA]/mM ipa ipc 

0 y = 3.9305x + 0.1055 y = -3.8265x + 0.1749 

 

R² = 0.9981 R² = 0.999 

0.25 y = 3.3705x + 0.144 y = -3.5435x + 0.1214 

 

R² = 0.9865 R² = 1 

0.5 y = 3.3661x + 0.1135 y = -3.5907x + 0.1516 

 

R² = 0.9999 R² = 0.9997 

0.75 y = 3.3311x + 0.1557 y = -3.555x + 0.1442 

 

R² = 0.9999 R² = 0.9998 

1 y = 4.1151x - 0.0032 y = -3.2127x + 0.141 

 

R² = 0.9832 R² = 0.9995 

5 y = 2.5294x + 0.2664 y = -2.8931x + 0.1352 

 

R² = 0.9996 R² = 0.9994 

10 y = 1.4542x + 0.357 y = -2.0446x + 0.0936 

 

R² = 0.9815 R² = 0.9982 

15 y = 1.0221x + 0.2624 y = -1.4109x + 0.0812 

 

R² = 0.9763 R² = 0.9976 

20 y = 0.4438x + 0.3377 y = -1.0455x + 0.0976 

 
R² = 0.9908 R² = 0.9968 

 

Figure A1.1 – a) Relation between anodic (ipa) and cathodic (ipc) peak currents and the square 

root of scan rate (υ1/2) at different concentrations of R-MA, b) linear regression of the data 

points, at pH 2. 
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a) 

 
b) 

[S-MA]/mM ipa ipc 

0 y = 3.7043x + 0.142 y = -3.5674x + 0.1694 

 

R² = 0.9924 R² = 0.9998 

0.25 y = 3.271x + 0.1463 y = -3.3734x + 0.1477 

 

R² = 0.9989 R² = 0.9996 

0.5 y = 3.6295x + 0.0528 y = -3.5781x + 0.184 

 

R² = 0.9996 R² = 0.9995 

0.75 y = 3.6461x + 0.1347 y = -3.6513x + 0.1702 

 

R² = 1 R² = 0.9996 

1 y = 3.1236x + 0.201 y = 2.5624x + 0.2402 

 

R² = 0.9993 R² = 0.9963 

5 y = 2.5624x + 0.2402 y = -2.7265x + 0.1504 

 

R² = 0.9963 R² = 0.9981 

10 y = 1.3343x + 0.3249 y = -1.9021x + 0.1337 

 

R² = 0.9607 R² = 0.9977 

15 y = 0.8485x + 0.3487 y = -1.3615x + 0.1153 

 

R² = 0.9538 R² = 0.9973 

20 y = 0.4704x + 0.2885 y = -1.0371x + 0.0985 

 
R² = 0.9774 R² = 0.9974 

 

Figure A1.2 – a) Relation between anodic (ipa) and cathodic (ipc) peak currents and the square 

root of scan rate (υ1/2) at different concentrations of S-MA, b) linear regression of the data 

points at pH 2. 
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a) 

 
b) 

[R-MA]/mM ipa ipc 

0 y = 3.7242x + 0.1742 y = -3.9177x + 0.1697 

 

R² = 0.9996 R² = 1 

0.25 y = 3.4113x + 0.1644 y = -3.6613x + 0.1379 

 

R² = 0.9992 R² = 0.9997 

0.5 y = 3.3072x + 0.1495 y = -3.6325x + 0.1469 

 

R² = 0.9998 R² = 0.9998 

0.75 y = 3.0689x + 0.2013 y = -2.992x + 0.0756 

 

R² = 0.9881 R² = 0.9992 

1 y = 2.412x + 0.2534 y = -2.6266x + 0.108 

 

R² = 0.9999 R² = 0.9989 

5 y = 1.7746x + 0.2832 y = -2.1277x + 0.0883 

 

R² = 1 R² = 0.9991 

10 y = 1.8668x + 0.2263 y = -2.0722x + 0.1183 

 

R² = 0.9907 R² = 1 

15 y = 1.3018x + 0.2829 y = -1.7332x + 0.0926 

 

R² = 0.9981 R² = 0.9997 

20 y = 1.0379x + 0.2588 y = -1.4584x + 0.0775 

  R² = 0.9929 R² = 0.9995 
 

Figure A1.3 – a) Relation between anodic (ipa) and cathodic (ipc) peak currents and the square 

root of scan rate (υ1/2) at different concentrations of R-MA, b) linear regression of the data 

points at pH 3.4. 
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a) 

 
b) 

[S-MA]/mM ipa ipc 

0 y = 2.7959x + 0.3376 y = -3.3648x + 0.2505 

 

R² = 0.9696 R² = 0.9667 

0.25 y = 3.1641x + 0.1297 y = -3.3492x + 0.2491 

 

R² = 0.9988 R² = 0.9995 

0.5 y = 2.9908x + 0.1776 y = -3.195x + 0.1736 

 

R² = 0.9995 R² = 0.9992 

0.75 y = 2.4875x + 0.1974 y = -2.5903x + 0.1462 

 

R² = 1 R² = 0.998 

1 y = 2.2376x + 0.2623 y = -2.5516x + 0.1871 

 

R² = 1 R² = 0.9988 

5 y = 1.3687x + 0.3814 y = -1.9763x + 0.1379 

 

R² = 0.9935 R² = 0.9983 

10 y = 1.1483x + 0.29 y = -1.6488x + 0.1267 

 

R² = 0.9847 R² = 0.9988 

15 y = 0.6495x + 0.2489 y = -0.916x + 0.0528 

 

R² = 0.9993 R² = 0.999 

20 y = 0.5852x + 0.1748 y = -0.9086x + 0.0823 

  R² = 0.9889 R² = 0.9978 
 

Figure A1.4  – a) Relation between anodic (ipa) and cathodic (ipc) peak currents and the square 

root of scan rate (υ1/2) at different concentrations of S-MA, b) linear regression of the data 

points at pH 3.4. 
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a) 

 

b) 
[R-MA]/mM ipa ipc 

0 y = 2.7209x + 0.3738  y = -3.2234x + 0.3422 

 

R² = 0.9858 R² = 0.9991 

0.25 y = 2.7209x + 0.301 y = -3.2234x + 0.2672 

 

R² = 0.9858 R² = 0.9991 

0.5 y = 3.4013x + 0.1406 y = -3.5459x + 0.2641 

 

R² = 0.9993 R² = 0.9993 

0.75 y = 2.8521x + 0.2363 y = -3.2298x + 0.1894 

 

R² = 0.9986 R² = 0.9993 

1 y = 2.2254x + 0.2642 y = -2.6354x + 0.1403 

 

R² = 0.9971 R² = 0.9987 

5 y= 1.7363x + 0.2406 y = -2.0983x + 0.1201 

 

R² = 0.9947 R² = 0.9983 

10 y = 1.199x + 0.2289 y = -1.5285x + 0.1005 

 

R² = 0.9907 R² = 0.998 

15 y = 0.6448x + 0.2882 y = -1.1042x + 0.0857 

 

R² = 0.9882 R² = 0.998 

20 y = 0.3207x + 0.3282 y = -0.797x + 0.0757 

 

R² = 0.9902 R² = 0.9979 
 

Figure A1.5  – a) Relation between anodic (ipa) and cathodic (ipc) peak currents and the square 

root of scan rate (υ1/2) at different concentrations of R-MA, b) linear regression of the data 

points at pH 7.0. 
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a)  

 

b) 
[S-MA]/mM ipa ipc 

0 y = 2.8791x + 0.3824 y = -3.5109x + 0.4082 

 

R² = 0.9902 R² = 0.9995 

0.25 y = 2.8791x + 0.3316 y = -3.5109x + 0.2744 

 

R² = 0.9902 R² = 0.9995 

0.5 y = 3.4991x + 0.2161 y = -3.9288x + 0.2665 

 

R² = 0.9957 R² = 0.9989 

0.75 y = 2.8507x + 0.3121 y = -3.5378x + 0.1733 

 

R² = 0.9983 R² = 0.9997 

1 y = 2.3405x + 0.3166 y = -2.9295x + 0.1143 

 

R² = 0.9993 R² = 0.9996 

5 y = 0.8439x + 0.4753 y = -1.5314x - 0.045 

 

R² = 0.9636 R² = 0.9773 

10 y = 0.7919x + 0.3074 y = -1.1477x + 0.0578 

 

R² = 0.9705 R² = 0.9993 

15 y = 0.6534x + 0.2814 y = -0.7076x + 0.0467 

 

R² = 0.9878 R² = 0.9952 

20 y = 0.4785x + 0.2717 y = -0.5887x + 0.0585 

  R² = 0.9892 R² = 0.9975 
 

Figure A1.6  – a) Relation between anodic (ipa) and cathodic (ipc) peak currents and the square 

root of scan rate (υ1/2) at different concentrations of S-MA, b) linear regression of the data 

points at pH7.0. 
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