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Abstract 

O n the D y n a m i c s of Topological Solitons, J .M. Speight. 

This thesis investigates the dynamics of lump-Hke objects in non-integrable field the

ories, whose stability is due to topological considerations. The work concerns three 

different low dimensional ((1 + 1)- and (2 + l)-dimensional) systems and addresses 

the questions of how the topology and metric structure of physical space, the quan

t u m mechanics of the basic field quanta and intersoliton interactions affect soliton 

dynamics. 

I n chapter 2 a sine-Gordon system in discrete space, but wi th continuous time, is 

presented. This has some novel features, namely a topological lower bound on the 

energy of a kink and an explicit static kink which saturates this bound. Kink dynamics 

in this model is studied using a geodesic approximation which, on comparison with 

numerical siinulations, is found to work well for moderately low kink speeds. A t higher 

speeds the dynamics becomes significantly dissipative, and the approximation fails. 

Some of the dissipative phenomena observed are explained by means of a dispersion 

relation for phonons on the spatial lattice. Chapter 3 goes on to quantize the kink 

sector of this model. A quantum induced potential called the kink Casimir energy is 

computed numerically in the weak coupling approximation by quantizing the lattice 

phonons. The efl'ect of this potential on classical kink dynamics is discussed. Chapter 

4 presents a study of the low-energy dynamics of a C P ' lump on the two-sphere in 

the geodesic approximation. By considering the isometry group inherited f rom global 
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symmetries of the model, the structure of the induced metric on the unit-charge 

modul i space is so restricted that the metric can be calculated explicitly. Some 

total ly geodesic submanifolds are found, and the qualitative features of motion on 

these described. The moduU space is found to be geodesically incomplete. Finally, 

chapter 5 contains an analysis of long range intervortex forces in the abelian Higgs 

model, a massive field theory, extending a point source approximation previously only 

used in massless theories. The static intervortex potential is rederived f rom a new 

viewpoint and used to model type I I vortex scattering. Velocity dependent forces 

are then calculated, providing a model of critical vortex scattering, and leading to a 

conjecture for the analytic asymptotic form of the metric on the two-vortex moduli 

space. 
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Chapter 1 

Introduction 

1.1 Context 

Topological soHtons may provide the key to understanding phenomena observed in 

a diverse range of physical systems. Their apphcations span the length scale, f rom 

the structure of the atomic nucleus to cosmological matter distribution, taking in 

aspects of condensed matter physics (superconductivity for example) and biophysics 

in between. They are an inherently nonlinear phenomenon, so the study of their 

properties is a diff icul t but fascinating mathematical challenge. 

The word "sohton" means different things to different people, a less than ideal 

situation for a mathematical term to find itself in . There are essentially two kinds, 

integrable and topological, the latter being the objects of study here. There is some 

common ground: all solitons are spatially localized, stable, lump-like solutions of 

nonlinear partial differential equations. Equally, there are some marked differences. 

Integrable solitons owe their stability to local details of the evolution equation. There 

is a trade-off between dispersive and nonlinear sharpening terms, allowing lumps 

which neither spread out nor collapse. This balance is quite delicate in the sense that 

perturbing the evolution equation by adding some arbitrary term wi l l almost certainly 

destroy i t . So integrable systems are very special and comparatively rare. They have 



been intensely studied, and a rich i f rather obscure mathematical structure has been 

found. Inf ini te ly many independent quantities conserved under the time evolution 

can be constructed, and for each system there is a nonlinear analogue of the Fourier 

Transform, called the Inverse Scattering Transform, by means of which the ini t ia l 

value problem can, at least in principle, be solved. Consequently, a great number 

of nontrivial solutions are known explicitly, exactly. Unfortunately, all such exact 

solutions reveal very simple soliton dynamics. For example, on collision two solitons 

always scatter elastically, essentially suffering no more than a phase shift. Such 

solitons are of very l imi ted relevance to particle theory because their behaviour is over-

simple, but also, more importantly, because integrability appears incompatible wi th 

Special Relativity except in the very restrictive case of a one-dimensional Universe 

(that is (1 -I-1 )-dimensional space-time). In fact there are no known Lorentz invariant 

integrable field theories in higher dimensions. 

A l l this should be contrasted wi th the generic properties of topological solitons. 

These owe their stability to the most global aspects of the system - its topology. 

When the conditions that the field (the dependent variable of the partial differential 

equation) be single-valued and have finite energy are imposed, we obtain restrictions 

on its boundary behaviour which imply that there must be a solitonic lump somewhere 

in space. Stability tends to be very robust and does not depend critically on the 

field's self interaction. Consequently, i t is much easier to find systems possessing 

observed symmetries of nature, and in particular there is a wealth of relativistic 

models which have topological solitons in any number of dimensions. The price paid 

for this freedom is the loss of the rich mathematical structure found in integrable 

systems. There are only a few conserved quantities (energy, momentum, angular 

momentum - all those observed in nature) and no Inverse Scattering Transform. As 

a result, exact solutions are rather more scarce, usually restricted to static solutions 

and Lorentz transformations thereof. Often even the static problem cannot be solved 

exactly. Soliton dynamics can usually only be studied using numerical simulation and 



analytic approximation techniques, but these reveal a richer diversity of behaviour 

than that exhibited by integrable sohtons, as one would expect. 

So, although they are harder to calculate w i th , topological solitons are substan

t ia l ly more relevant to particle theory than are integrable solitons, and i t is this which 

motivates us to attempt to understand their underlying mathematics. They have two 

main areas of application. First, the Standard Model is a gauge theory wi th gauge 

group SU{3) X SU{2) x U{1). A n essential ingredient of the model is the Higgs 

mechanism [4] whereby one postulates the existence of scalar bosons whose vacua are 

continuously degenerate and constitute a nontrivial gauge orbit (no such particles 

have yet been observed). A t low energies, the Higgs bosons must choose a particular 

vacuum, leaving the system invariant only under the U{1) stabiliser of electromag-

netism, a subgroup of the SU(2) x U{1) electroweak gauge group. This process is 

called spontaneous symmetry breaking, and is necessary in order to introduce masses 

for the weak gauge bosons {W^,Z^), because gauge symmetry is ostensibly incom

patible w i th massive gauge quanta, and also for the fermions of the theory, because 

the electroweak gauge group acts chirally on the fermion fields. At high tempera

tures, thermal fluctuations produce a single effective vacuum, often called the "false 

vacuum," of the Higgs bosons, which is itself a completely degenerate gauge orbit , 

so that f u l l gauge symmetry is recovered. The idea is, then, that as the Universe 

expanded and cooled i t underwent a phase transition (the electroweak transition) 

f r o m the hot symmetric phase to the cold asymmetric phase we now observe. Such a 

phase transition may be preceded by another where some Grand Unified gauge group 

is broken to the SU{3) x 5 t / (2 ) x U{1) of the Standard Model. I f so, this GUT 

transition would occur at different times in different regions of space, causing bubbles 

of true vacuum to expand in the false vacuum. Assuming the vacuum in each bubble 

is chosen randomly,'where several bubbles meet the Higgs field may wind its way 

around the space of degenerate vacua in some topologically nontrivial way, forming a 

topological defect (soliton) and trapping substantial amounts of energy. This process 



is called the Kibble mechanism [5] and can lead to the formation of domain walls, 

cosmic strings and monopoles, depending on the details of the symmetry breaking. 

Such large conglomerations of energy would have very significant gravitational ef

fects, providing a natural mechanism for the formation of large scale inhomogeneities 

in the cosmological matter distribution, as are observed, for example, in the cosmic 

microwave background. 

The above is an example of an application where topological solitons were found in 

a system already proposed for quite independent reasons. On the other hand, topolog

ical solitons behave in such a particle-like fashion that i t is natural to attempt to use 

them to model particle interactions directly, by construction. They have a conserved 

topological charge, which may be identified, for example, wi th baryon number, and 

there exist antisolitons wi th negative charges, the images of solitons under the par

i t y transformation. A soliton-antisoliton pair may annihilate emit t ing an oscillating 

wavetrain, often called radiation, a process highly reminiscent of particle-antipaxticle 

annihilation. Solitons undergo nontrivial scattering and may fo rm bound states. A l l 

this behaviour is present at the level of classical field theory. Following standard pro

cedure, small amplitude travelling waves become, on quantization, the basic particle 

quanta of the system. The solitons then represent new particle degrees of freedom, 

beyond the reach of perturbation theory. Skyrme's bold idea (which actually predates 

the Higgs mechanism) was that protons and neutrons are soHtons in a field theory 

whose basic field quanta are pions ( 7 r ^ , 7 r ° ) , carriers of the strong nuclear force [6]. 

This is the second area of application, nuclear physics. Although the Skyrme model's 

predictions are in imperfect agreement wi th experimental data, i t has one great ad

vantage over more phenomenological approaches: its all embracing predictive nature. 

W i t h only two free parameters i t attempts to model all nucleon interactions. The last 

few years have seen a revival in the Skyrme model's fortunes due to the observation 

that i t may well emerge as a low energy effective formulation of QCD [7]. Skyrme's 

idea represents a belief that topological solitoris are to be found as real particles in 
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nature, that the particle-like properties constitute more than just an analogy. Of 

course, the te rm soliton was coined precisely because of these properties, in analogy 

w i t h the fundamental particles (proton, electron etc.). Many mathematicians regard 

elastic scattering as a defining characteristic of solitons, thereby restricting its use 

to the integrable type. Lumps which scatter inelastically are then called "solitary 

waves." There is a certain irony in this terminology: the objects called soUtons often 

do not possess key particle-like characteristics (antisolitons, pair annihilation etc.) 

but do describe wave phenomena (ultrashort optical pulses in fibre optic cables and 

water waves in shallow channels for example) while the objects called waves can be 

dist inctly particle-like, and not behave remotely like waves (which do not tend to 

b ind together, for instance). So this distinction is rather unhelpful f rom a particle 

theory standpoint, and henceforth wi l l not be made. 

Topological solitons are, then, relevant to real physics. However, as already ex

plained, their dynamics is very diff icult to study because modern techniques developed 

for solving nonlinear partial, differential equations require the property of integrabil-

i ty , not present in the systems of interest. Even numerical simulation of the field 

equations of realistic models in (3 -I- l)-dimensions is extremely difficult and costly 

in computer t ime. One is therefore led to study simpler systems which have the key 

topological features of more physical models, in the hope of understanding the under

lying mechanisms involved in soliton motion and interaction. Skyrme himself studied 

the sine-Gordon model as a warm-up for the f u l l Skyrme model [8]. I n this spirit, 

this thesis addresses, by looking at tractable examples, a number of mathematical 

questions regarding the dynamics of topological solitons: 

1. How does changing the metric structure and topology of physical space affect 

the motion of a soliton? I n chapter 2 we study a solitonic system defined on a 

space consisting of a discrete collection of points Z, while in chapter 4 physical 

space is a two-sphere S^. 

2. How does the quantum mechanics of the basic particle quanta of a model affect 
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its soUtons (chapter 3)? 

3. How can one analyze the interaction of well separated solitons when even the 

static soliton solution is not available (chapter 5)? 

Of course, these questions are not new, and i t is hard to imagine ever obtaining 

complete answers to them. The work concerns three different systems. In each case 

we are interested in the system purely for its mathematical properties, so possible 

physical applications receive minimal discussion. 

1.2 Basic concepts 

Each model considered wi l l be defined using the Lagrangian formalism of classical 

field theory, so that the field equations may be generated f rom an action principle, 

and symmetries of the system are manifest. There is a canonical energy functional, 

the Noether charge associated wi th t ime translation invariance, which gives the field 

immediate physical significance. One can define canonical field momenta and trans

fo rm to the Hamiltonian formalism, the standard starting point for quantizing the 

model. So once the action is specified there are well defined procedures for extracting 

the physical content of the model. Not all nonlinear partial differential equations can 

be derived f rom an action principle, but in the absence of such a principle i t is un

clear how to invest the dependent variable (the "field") wi th physical meaning. Such 

equations are not of interest to us, and we do not regard them as field equations in 

any meaningful sense. 

We take this opportunity to define some of the terms which wi l l recur throughout 

this thesis. Denote physical space X , and a general point i n space a; € X , so that 

space-time is X X R, and a space-time event is denoted {x,t). Then a configuration 

is a map f r o m physical space to some target space, (j) : X ^, while a field 

is a continuous t ime sequence of configurations, that is, a map f rom space-time to 

the target space, ^* : X x E —> So we imagine the t ime evolution of a field as 
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a smooth progression through a sequence of configurations. The action 5 is a real 

valued functional on the space of all fields, and the field equations (Euler-Lagrange 

equations) are obtained by demanding that (p* be a local extremal of this functional, 

SS/8(f)* = 0. A l l systems of interest are t ime translation invariant. Explicitly, i f (f)* is a 

field and (j)* is its image under an active time translation by r , 4'*{x, t) : = ^*(x, ^ + T ) , 

then Sl^i*] = S[(j)*] V?i'*,r. This continuous symmetry leads, by Noether's theorem, 

to a conserved quantity canonically identified wi th energy, E. Let ^* be the time 

derivative of (j)*, a map f rom X x E to the tangent bundle of and and be 

(j)* and ^* evaluated on the t t ime slice. Then the energy is a real valued, positive 

definite functional E[<pt,^t], and is conserved in the sense that i t is independent of 

t provided (f)* is a solution of the field equations (a local extremal of S). In some 

field theories, E depends on higher t ime derivatives of but such systems are not 

relevant to our considerations. From the energy one can extract the potential energy, 

a functional on the space of configurations, V[<f\ = 0], and the kinetic energy, 

T[cj>,4>\=E[<p,^]-V[cl>]. 

We finally arrive at the primary object of interest, configuration space Q, defined 

to be the space of configurations wi th finite potential energy. Each finite energy con

figuration is a point in this space and a solution of the field equations is a continuous 

sequence of such configurations, that is, a trajectory in Q. The t ime evolution gener

ated by the field equations cannot lead the field to leave configuration space because, 

kinetic energy being positive definite, this would inevitably violate conservation of 

energy. The functional V[<p] may be thought of as defining a potential relief on con

figuration space. More subtly, the kinetic energy T is, for each (j) ^ Q, A bilinear map 

f rom T^Q X T^Q to the positive real numbers (where T^Q is the tangent space of Q 

at (j)), and so defines a metric on Q, at least formally (this metric is not always well 

defined). Our picture of field dynamics is that of a notional point particle describing 

a trajectory in an infini te dimensional configuration space under the influence of a 

potential V and a metric inherited f rom T. Let us summarize what we have so far: 
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• Physical space X . 

• Target space $. 

• Potential energy V, a functional on the space of all maps ^ : X —> 

• Configuration space Q = {(j)\ ¥[(/)] finite). 

I t is the topology of Q which is crucial to the existence of solitons, in particular, 

whether Q is & connected space. To go further i t is helpful to be a l i t t le more specific 

about X . For the purpose of discussion, let i t be the J-dimensional Euclidean space 

W^. Then the functional V is an integral over of some function of (j) and its space 

derivatives V(p called the potential energy density V((ji, V(;&), 

V[<f>] = J d'^Vi<t>,V4>). (1.1) 

For a configuration (j) to have finite energy (and hence be an element of Q), V must 

vanish on the boundary of space, denoted d X , otherwise this integral wi l l diverge^. 

This places restrictions on (j) which, depending on V, may lead to the existence of 

solitons. This can happen in two ways. 

Let the vacuum manifold $o be the subspace of $ on which V{^,0) attains its 

absolute minimum, always normalized to zero. Any constant map ^(x) = ^ is 

a t r iv ia l static solution of the model wi th vanishing energy, called a vacuum. Then 

the first way that solitons can arise is i f $o has a nontrivial {d — l ) - t h homotopy 

group, 7rd_i($o)- The m- th homotopy group of a connected topological space Y is 

defined [9] as the set of equivalence classes of maps y : —> Y , where two maps 

yi and j/2 are equivalent i f one is continuously deformable into the other, that is, i f 

there exists a continuous map yt2 '• 5'" x [0,1] —> Y (called a homotopy) such that 

yi2(0) = yi and 2/12(1) = ?/2. The only exception is 7ro(y) which concerns maps f rom 

^Strictly, this is only true if one demands that the configuration should have a well-defined limit 
as |x| —> 00. We will henceforth always assume that this regularity condition is satisfied. 
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the space consisting of a single point {0} to rather than f rom 5 ° , which would 

more naturally be defined as Z 2 = { — 1,1}. The group composition law is induced 

by the composition of maps, but the group structure shall not concern us. A t r iv ia l 

homotopy group consists of a single class so that all maps are deformable to the t r iv ia l 

map where the whole m-sphere is mapped to a single point in Y (precisely which point 

is irrelevant since Y is connected). In particular, TTQ of any connected space is t r iv ia l 

and so, again exceptionally, we extend its definition to disconnected spaces. Now, the 

boundary of space dX is homeomorphic to the {d — l)-sphere, and finite V demands 

that V vanishes on dX, so any finite energy configuration (j) defines a map f rom S"^'^ 

to $0- I f 7rd_i($o) is nontrivial then Q is partitioned into disjoint sectors, one for 

each homotopy class. A configuration in one sector can never be deformed to one in 

another sector by any continuous process (time evolution, for example). Most field 

theories have t r iv ia l 7rrf_i($o), but some have 7r<i_i($o) = and these are particularly 

interesting f r o m our viewpoint. To see that this leads to the existence of solitons, that 

is, localized lumps of energy, we introduce a radial coordinate r € K + , the positive real 

line (including 0) and decompose A' as = x S"̂ ~̂  Then the map S"^'^ - > $ 0 

defined by a finite energy configuration (j) is ^00 : = limr-,oo<P- Consider the case 

where (j>oo does not lie in the t r iv ia l homotopy class (is not deformable to the t r iv ia l 

constant map). Then there is no way for (j) to remain on $ 0 throughout X because 

if i t d id , since (f) is single valued at r = 0, the radial dependence of (j) would define 

a homotopy between the map ^00 and the constant map !̂>|r=o, lying in a different 

homotopy class, a contradiction. Hence (j) must leave $ 0 at least in some region of X, 

and this generically w i l l result i n a lump, or a number of lumps. Such lumps might 

not be static solutions, they may expand indefinitely or collapse inwards whereupon a 

singularity forms. However, there are many systems in which there are stable lumps, 

the abelian Higgs and Yang-Mills-Higgs systems being examples. 

The other way topology can lead to the existence of lumps arises as follows. I t 

could be that in order for V[(p] to be finite, cj) must tend to the same value in $ on all 
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dX. This could happen i f $o consists of a discrete set of points and dX is connected, 

or at the opposite extreme, i f $o = that is the vacuum manifold is the entire 

target spax;e, but the dependence of V (such a V is necessarily ^ independent of 

course) forces Vcj) to vanish as r —> oo. Since (j) takes a single constant value on dX, 

i t may be regarded as a map f rom the one point compactification R*̂  U { 0 0 } = 

to $ , that is, one may identify the whole boundary of space as a single point { 0 0 } . 

The critical homotopy group is now 7rd($) . Each finite energy map must lie i n one of 

its classes and once again, a configuration is trapped wi th in its class by continuity of 

t ime evolution. I f ^ does not Ue in the t r iv ia l homotopy class, i t is not deformable to 

a constant map, so SJcj) ^ 0 ai least in some region of A' and in that region V > 0, 

leading to a lump or lumps. In addition, i f $ 0 is discrete, (f) must also leave $ 0 

somewhere i n A'', also contributing to V. The same caveat applies: such lumps might 

not be stable static solutions, but stable examples can be found (Skyrmions, CP^ 

lumps etc.). 

Condensed matter theorists are careful to distinguish between these two types of 

topological defect. Those which owe their existence to the nontriviality of T^d-xi^o) 

they call monopoles while those due to nontrivial 7rd($) they call textures. The 

distinction seems a useful one. I n both cases the key feature is that finite energy 

configurations have a well defined degree (also called topological charge), the degree of 

the map ^00 : S'^~^ —> $ 0 for monopoles and the degree of the map 

for textures. Configuration space is a disjoint union of homotopy classes Qn labelled 

by this degree, an integer n , so that 'KQ{Q) — Z . Configurations homotopic to the 

vacuum (or vacua) have zero degree, and Qo is called the vacuum sector of the theory. 

By convention Q\ is called the soliton sector and Q-\ the antisoliton sector. 

There is one final space of interest to us, the moduli space M , a subspace of 

Q. This is the space of minimals of the potential energy functional V[(f)\. The field 

variational problem reduces to the variational problem for V in the case of static 

fields, so M is the space of (perhaps marginally) stable static solutions of the field 
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equations. Since M G Q, it too is a disoint union of homotopy classes 7l/„, each one 

the equipotential surface of min imum energy in Qn, so that M„ is a finite dimensional 

subspace of the infini te dimensional charge n sector. Note that M±i are non-empty 

i f stable soli tons exist, but i t is possible that Af„ = 0 i f |n | > 1 even so. Given one 

static solution cp G M „ , one can generate a continuous family of other such solutions 

by acting on (j) w i th continuous symmetries of the model (translations, rotations and 

internal symmetries) since these leave V invariant and, being continuous, cannot lead 

out of M „ . (Discrete symmetries, by contrast, may generate new static solutions 

outside M „ . A n example is the parity transformation which maps M„ onto M_„. ) 

Such a symmetry orbit wi l l usually^ exhaust M±i, but often w i l l not exhaust higher 

modul i spaces. So there are often zero modes (tangent vectors to M) not associated 

w i t h any symmetry of the model, a theoretically very interesting situation. Thinking 

of y as providing Qn w i t h a potential relief, M„ is the finite dimensional flat valley 

floor on which V takes its absolute min imum value on Q„. Consider the ini t ia l 

value problem w i t h 9!>(0) G M„ and ^(0) € T^(o)-^n wi th small norm, that is low 

kinetic energy. The subsequent trajectory in Qn representing the solution of the field 

equations must remain close to Af„, because departure f rom the moduli space entails 

climbing the valley walls which costs kinetic energy, of which there is l i t t le . In the 

geodesic approximation [10], ^ is confined to M„ for all t ime by construction, and 

the t ime evolution of the field consists of adiabatic progression through a succession 

of static solutions. The number of degrees of freedom is reduced f rom infini ty (the 

dimension of Qn) to the finite dimension of Mn- Since M„ is an equipotential surface, 

the trajectory is determined solely by the metric on Mn, induced by that on Qn, the 

kinetic energy functional. The evolution equations are simply the geodesic equations 

w i t h respect to this induced metric, hence the name of the approximation. Studying 

low-energy field dynamics using this approach is st i l l a nontrivial task, the main 

dif f icul ty being evaluation of the induced metric on M „ . Nevertheless, the geodesic 

•̂ There are exceptions: see chapter 2 for example 
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approximation is more amenable to analytic effort than is the original field variational 

problem and, more importantly, leads to significant qualitative insight into soliton 

dynamics. 

1.3 A pedagogical example: the sine-Gordon 

model 

The summary contained in the last section is rather dense, so the reasoning in favour 

of the existence of topological solitons w i l l be outlined again for each system studied as 

i t arises. I t is also useful to see how the argument develops in the context of a simple, 

concrete example. The standard choice for such an exercise is the sine-Gordon model, 

a particularly convenient choice for our purposes since i t w i l l also provide relevant 

background information for the discrete version of the model, studied in chapters 2 

and 3. The model is rather special because although the solitons are topologically 

stable, the field equation is integrable (so the classification of solitons described in 

section 1.1 does not define an equivalence relation!). The integrabihty of the model 

has been well studied [11] but is not relevant here, so we restrict ourselves to the 

model's topological aspects [12 . 

Both physical space X and target space $ are the real line R, and space-time is 

(1 - f l)-dimensional Minkowski space w i t h metric (5^^) = d iag( l , —1), the convention 

being that = = x. The field is denoted i}){x, t). Definit ion of the model is 

completed by the action, 

S—^-jdtdx [d^^d^^ - F\^)l (1.2) 

where F^ij}) = sin (The model is more usually defined in terms of a rescaled field 

(j) = 2xj)^ but the above fo rm is more convenient in this context.) The field equation 

follows immediately, by the calculus of variations, f rom demanding that ^ be a local 
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extremal of S, 

d^d^rj^ + FF' = 0, (1.3) 

where F' = dF/dtp. Note that the action is manifestly invariant under rigid space-

t ime translations since these may be absorbed into a redefinition of the dummy inte

gration variables t and x. This observation leads us, via Noether's theorem [13], to 

the conserved stress-energy tensor, 

(1.4) 

Conservation is easily checked: 

^ ^ JC ^ 

= 0, (1.5) 

using the field equation (1.3) This tensor therefore defines two conserved currents, 

associated wi th t ime translation invariance, and T"^ associated wi th space translation 

invariance. These in tu rn define two conserved charges, the spatial integrals of 

and T°^, canonically identified wi th the field's energy and momentum respectively. 

The energy is, explicitly. 

E 

From this we extract the potential and kinetic energies. 

(1.6) 

V 
d f 
dx 

+ F' 

(1.7) 
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The potential energy density is 

(1.8) 
5a; 

2 

Note that the action may be wri t ten as the t ime integral of T — V , motivating the 

definit ion of Lagrangian L := T — V in analogy wi th Lagrangian mechanics. The 

spatial integrals may then be thought of as sums over a continuous internal index 

x G X, rather like sums over particle degrees of freedom in ordinary mechanics. This 

is one way of arriving at the picture of field dynamics as the motion of a notional 

particle in an infini te dimensional space. 

I f a configuration V'(^) is to have finite energy, V must vanish as x -* ±oo. Thus 

ip must tend to a constant at each end of space {dil>/dx 0) and this constant must 

be a root oi F = s i n ^ , a vacuum of the theory {tl> = mn, m € Z ) . I t is not necessary 

for «/) to tend to the same constant at both ends however. So, finite V implies 

n+TT x ^ oo 
(1.9) 

n_7r X —> —oo 

both n+ and n_ being integers. The action S is manifestly invariant under the 

transformation •ij)[x^t) i—> V'(^5 0 ~ ^ - T T , so we may assume without loss of generality 

that n _ = 0. Dropping the -|- subscript, we define n to be the topological charge of 

the configuration, a constant which cannot change under any continuous deformation 

of ^ preserving finiteness of F , that is, remaining on configuration space Q. Thus 

Q is partitioned into disjoint sectors Qn- The n = 1 sector is called the kink sector, 

topological solitons in one dimension conventionally being called kinks. Looked at 

f r o m this viewpoint the part i t ion of Q is due to the nontriviaHty of 7rd_i($o), since 

$0 = Z C M = and d = \ (that is 7rd_i($o) = 7ro(Z) = Z ) , so the kink is classified 

as a monopole. This is a somewhat degenerate case, because dX and $o are discrete. 

I n particular, n cannot be identified wi th the degree of the map 4>oa dX $o since 
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this degree is undefined. 

Alternatively, given the symmetry of S just noted (under ^ i—> ^ - f mw, m € Z) 

we could perfectly well regard as an angular variable, identifying tp values diff^ering 

by mjr , and think of target space as S^, the circle, rather than R. In this language, 

al l the vacua ip = rmr are identified as one single vacuum on 5^, ^ = 0. The finite 

energy condition then requires that ip tends to the same point in $ on all dX, that 

is, both ends of space. So finite energy configurations are effectively maps f rom the 

one point compactification R U { 0 0 } = 5^ to $ = S^, and such maps fal l into disjoint 

homotopy classes because 7ri(S'^) = Z , each class being labelled by its topological 

charge n . We arrive at the same conclusion, that Q is partitioned into disjoint sectors 

Qn, but f rom this viewpoint the part i t ion is due to the nontriviali ty of Tfd{^), and 

the kink is classified as a texture. The winding number n is the degree of the map 

ip : XU { 0 0 } —> so this line of argument is less degenerate and rather more natural 

than the previous one. I t was as the lowest dimensional analogue possible of the 

Skyrmion (a texture) that Skyrme studied the sine-Gordon kink. 

Having established that T r o ( Q ) = Z , the next task is to solve the field equation 

for the static kink solution. Substituting tp = 0 into (1.3) the sine-Gordon equation 

reduces to a second order nonlinear ordinary differential equation for ̂ ( x ) . 

This equation is quite straightforward to solve wi th kink boundary conditions. How

ever, the problem of finding the static soliton can be simplified st i l l further by means 

of an ingenious argument of a k ind which w i l l repeatedly occur in subsequent chap

ters, called the Bogomol'nyi argument [14]. The analogous argument can always be 

made for kink bearing (one dimensional solitonic) models, but is a feature of only a 

few special higher-dimensional models. Recall that the static field variational prob

lem is equivalent to extremizing V[ip], and that stable static solutions are minimals 

of V. For any static field ip{x) satisfyng the kink boundary conditions ip{—oo) = 0, 
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0(oo) = T T , we start f r o m the t r iv ia l inequality 

< - dx - ^ - S l X i T p (1.11) 
4 J \dx j 

— Y\>p\ - - dx — sinij; 
2 J dx 

= ^ [ ^ ] + ^[cosV'(a;)]!°^ 

= V [ ^ ] - l 

=^ V[-0] > 1, (1.12) 

that is, the functional V[tp] is bounded below by 1 on Qi. Moreover, in order for ^ 

to saturate this bound the integrand of (1.11) must vanish for all a;, 

y[V;] = 1 ^ = sinV'. (1.13) 

Equation (1.13) is called the Bogomol'nyi equation. Note that i t is a first order 

nonlinear ordinary differential equation. Its general solution is 

^ = 2 tan-^e^-^ (1.14) 

where b is an arbitrary real constant of integration, which does indeed satisfy kink 

boundary conditions, the only other solution being = 0, the vacuum. We could 

have arrived at (1.13) by mul t ip lying the static field equation (1.10) by dijj/dx and 

integrating, but the procedure above gives us, without further calculation, the static 

kink energy and the information that (1.14) is a global minimal oi V on Q\ and thus 

is stable. One can repeat the Bogoniol'nyi argument wi th 

^ - - f s m ^ j (1.15) 

as the integrand in (1.11) and antikink boundary conditions on ^ (0(—oo) = 0, 
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Potential energy density 

Figure 1.1: The static kink solution ip{x) and its potential energy density V(a;). 

•tp{oo) = — T T ) to obtain the same bound V[ip] > 1 on Q-i, the antikink sector. The 

Bogomol'nyi equation is then 
dil, 

(1.16) - = - s m ^ . 

and we see immediately that the antikink is the image of the kink under the parity 

transformation x i—> —x. 

The 6 = 0 kink is plotted along wi th its energy density V(ip{x)) in figure 1.1. 

Changing b merely translates the kink along physical space, so i t is natural to regard 

6, the point at which ip = n/2, as the kink's position. Thinking of $ as S^, a 

general winding n (assumed positive) configuration must pass through tp = n/2 at 

least n times, but may pass through more times i f i t winds back on itself. Let i t 

pass through 7r/2 times w i t h positive dip/dx and times wi th negative dtp/dx, so 

that n = Hk — nj.. The configuration is naturally interpreted as containing Uk kinks 

and njf antikinks located at the points where tp{^) = ^ / 2 . Given the form of V, such 

points w i l l coincide wi th lumps of potential energy. I f n is negative, the interpretation 
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is s t i l l valid, but antikinks outnumber the kinks. The existence of the zero mode"' 

b is inevitable because of the model's translation invariance: the translation orbit 

of any configuration must be an equipotential curve in Q. In the case of the static 

k ink, the Bogomol'nyi argument tells us that this equipotential curve is the absolute 

m i n i m u m of on Qi^ the one dimensional valley floor of the potential relief, twisting 

through Qi. This is the unit charge moduli space Mi. A static kink set in motion by 

a small Galilean boost has a trajectory in Qi starting at some point on Mi, w i th a 

small in i t i a l velocity tangential to Mi (where small in the second sense means small 

w i t h respect to the metric on Qi, the kinetic energy). Such a trajectory must always 

stay close to Mi by energetic considerations. The geodesic approximation to kink 

dynamics consists of confining the field for all t ime to move in this single dimension 

in accordance w i t h the Lagrangian inherited f rom the f u l l field theory. Explicitly, let 

b in (1.14) be t ime dependent b{t). Then 

ip = -bsech{x -b), (1.17) 

and so 

/ . , 9. , . r dx 
Jdxsech^ix-b) = j J 

= ^ [ t a n h a ; ^ ^ = i 6 ^ (1.18) 

while V = 1 since the Bogomol'nyi bound remains saturated. Note that T is the 

kinetic energy of a point particle moving geodesically on Mi = R w i th a flat metric. 

Of course, since Mi is one dimensional, i t is inevitably intrinsically flat, but the key 

point is that the induced metric is flat when expressed in terms of 6, the kink position. 

We are interested in the geometry of Mi as a surface embedded in Qi viewed from 

^Strictly speaking it is dip/db, as a function of x calculated from the static kink solution, which is 
the zero mode rather than b itself, but little confusion can arise from treating the two interchajigeably. 
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"outside" Ml. So, the inherited Lagrangian is 

L = \b'-1, (1.19) 

that of a nonrelativistic free particle of unit mass (the static kink energy). The 

solutionof the equation of motion generated by (1.19) is b{t) = vt+bo, where b{0) = bo, 

and 6(0) = v. The kink travels along at constant speed, and the approximate field 

solution is 

V'(x,0 = 2 t an -^e^ - "* -*° . (1.20) 

I n this case, the geodesic approximation is a complicated way of deriving some

thing simple. Note that the action is Lorentz invariant i f ^p transforms as a Lorentz 

scalar. Hence f rom the static solution (1.14) we can generate moving kink solutions 

w i t h arbitrary speed simply by performing a Lorentz boost: 

tt-^t = , ^ (t — vx) 

x \—^ x = (x — vt) 

tp{x,t) ^ ip(x,t) = ip{x,t). (1.21) 

This 3'ields the exact solution 

(X — vt ~bn\ 
•iP{x,t) = 2ta.n-^exp — . (1.22) 

\ y/l-v'^ ) 

which agrees wi th (1.20) for small v. The trajectory corresponding to (1.22) is again a 

translation orbit i n Qi, travelled along at constant speed, and hence an equipotential 

curve, but wi th F > 1 because the relativistic contraction of the kink profile by 

(1 — v^Y^ pushes the whole trajectory up the valley walls, away f rom M^. There is a 

force pull ing the notional particle towards the valley floor, but this is balanced by the 

inert ial force due to the valley's twisting through Qi. The geodesic approximation 
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is more useful when one is studying dynamics i n higher moduli spaces, or when the 

original model is not Lorentz (or Galilei) invariant. In the simple case of the sine-

Gordon model, however, all the higher moduli spaces are empty, as we shall shortly 

see, so there is no nontrivial demonstration of the approximation available in this 

system. 

The model has some ungeneric properties, which we should point out. First, 

applying winding number n boundary conditions to the Bogomol'nyi argument (1.11) 

one obtains 

V > ^\cosip{oo) — cos?/)(—cx))| = (n( mod 2, (1.23) 

while the lower bound for V on Qn so obtained is generically proportional to |n | (the 

constant of proportionality being the single soliton energy). One can use the n = 1 

Bogomol'nyi bound to find an opt imal lower bound for V on Qn 3LS follows: i f ip 

has winding n then, by continuity, i t must consist of a sequence of n unit winding 

sections (assuming n > 1); apply the n = 1 Bogomol'nyi argument piecewise to each 

of these sections in turn , yielding V > n. The inequality must be strict because i f ip 

were to saturate i t , i t would satisfy the Bogomol'nyi equation independently on each 

finite (or, at most, only semi-infinite) section, which is impossible given the general 

solution (1.14). The bound is optimal however since a winding n configuration can get 

arbitrari ly close to i t by spreading its n subkinks arbitrarily far apart. This suggests 

that kinks tend to repel one another, so one would suspect that there are no static 

n-kink solutions. This turns out to be true because, not only is a solution of the 

Bogomol'nyi equation a solution of the static field equation, the reverse is also true: 

all static solutions must satisfy either (1.13) or (1.16), so the only static solutions are 

kinks, antikinks and the vacuum. This statement can be seen to hold quite generally 

for Poincare invariant sytems in one dimension. Consider the conservation law 5 Q T ° ^ , 

arising f r o m symmetry under spatial translations, in the case of a static field 4>{x), 

d,T'"=0=^—— = 0 
dx 
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d 
dx dx I 

= 0 

2 

^(t)-F^^C, (1.24) 

where C is some constant, which, given finite energy boundary conditions, must be 

zero. Hence all static finite energy solutions must satisfy 

the Bogomol'nyi equation. This holds for all F{IIJ). Now, the Bogomol'nyi equation 

has no solutions wi th winding |n | > 1, so while M±i = R, all the higher moduli spaces 

are empty, M„ = 0, |n | > 1. This does not generalize to higher dimensions. A higher 

dimensional system may or may not have a Bogomol'nyi bound, and a first order 

Bogomol'nyi equation for configurations saturating that bound. I f i t does, the boimd 

may or may not be attainable, that is, the Bogomol'nyi equation may or may not have 

solutions wi th the correct boundary behaviour. However, i f the bound is attainable 

in one topological sector then i t is generically attainable in all sectors. So i f a system 

has static single-soliton solutions saturating a Bogomol'nyi bound, i t generically has 

static n-soliton solutions also, and moreover, the constituent solitons of such solutions 

can generically occupy any and all positions i n X. One interprets this as meaning 

that such solitons do not exert any forces on one another when at rest. This contrasts 

w i t h the kinks described above which always repel one another. Another aspect which 

does not generalize to systems in higher dimensions is the two-way equivalence of the 

Bogomol'nyi and static field equations. That is, .there exist models wi th finite energy 

static solutions which do not satisfy the Bogomol'nyi equation, in the same topological 

sector as those that do. Such solutions cannot globally minimize the potential energy 

functional w i th in their sector, and are generically saddle points rather than local 

minimals of V. 

This concludes the introductory material, and the thesis proper begins in chapter 
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2. A spatially discrete system is presented which has topological properties closely 

related to those of its continuum l i m i t , the sine-Gordon model, discussed above. We 

study the dynamics of a single kink propagating through space at both low and high 

speeds, using the geodesic approximation and numerical simulations, I n chapter 3 

we go on to quantize the kink sector of the discrete sine-Gordon system in the weak 

coupling approximation, and compute numerically a quantum induced potential called 

the kink Casimir energy. We return to the classical dynamics of a single soliton in 

chapter 4. This concerns the low-energy dynamics of a CP^ lump on the two-sphere. 

The induced metric on the unit charge moduli space (a six dimensional manifold, 

(S^ X R ' ^ ) / Z 2 ) is found explicitly, and the qualitative features of motion on totally 

geodesic submanifolds are described. Finally, chapter 5 presents an analysis of long 

range intervortex forces i n the abelian Higgs model. A point source approximation is 

used to rederive the static intervortex potential f rom a new viewpoint, then velocity 

dependent forces are found by extending the method of linear retarded potentials. 

The results are used to study type I I and critical vortex scattering, and to conjecture 

an analytic asymptotic fo rm for the metric on the two-vortex moduli space. A l l of 

these chapters are self contained, so concluding remarks are presented at the end of 

each. 
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Chapter 2 

A topological discrete sine-Gordon 

system 

2.1 Introduction 

There are two main reasons why solitons in discrete spaces (lattices) are of interest. 

First, many of the applications of topological solitons are in condensed matter and bio

physics where the systems under study (a macroscopic sample of some solid material 

or a molecule of D N A for example) really do have a lattice structure. Much theoret

ical analysis of such systems has been carried out using continuum solitons, ignoring 

the discreteness of space, mainly as a matter of calculational convenience. However, 

i t has become increasingly recognized that discreteness does introduce significant new 

effects into soliton dynamics, and that these have important phenomenological impl i 

cations. Second, although solitons relevant to particle theory usually occur in models 

defined on a continuum, one must often resort to numerical simulations to study 

their dynamics. This inevitably leads to a fictitious discretization of space, because 

all mathematics on digital computers is inherently discrete. I f one is to attempt to 

deduce facts about the behaviour of real continuum solitons f rom numerical simula

tions, one must be able to distinguish which of the effects seen are truly physical and 
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which are introduced by the fictitious discretization. By judicious choice of the means 

of discretization (inevitably rather arbitrary), one might then hope to partially elim

inate the latter. In either case, one is motivated to t ry to understand the dynamics 

of solitons on lattices, and, as a first case, the dynamics of kinks on one dimensional 

lattices i n particular. 

This chapter deals w i t h a discrete version of the sine-Gordon model, reviewed 

in section 1.3. We use the same notation {ip for the field, T and V for kinetic and 

potential energies, L for Lagrangian etc.) but f rom now on x becomes a discrete 

variable taking values on a regular lattice of spacing h including the point x = 0, for 

brevity, x G hZ. A subscript -|- on a funct ion f ( x ) denotes forward shift on the lattice, 

f+{x) := f{x + h), and similarly f - { x ) : = f{x — h). The forward difference operator 

is denoted A and defined such that A / = ( /+ — f ) / h . Spatial integrals are replaced 

by sums over x. By a discrete sine-Gordon (DSG) system, we mean a Lagrangian 

system defined on this lattice whose continuum l im i t is the usual sine-Gordon model, 

already described. Note that the discretization process is highly non-unique: there 

are infini tely many inequivalent lattice systems all wi th the same continuum Umit. 

The conventional choice for discretizing the sine-Gordon model is simply to replace 

the partial derivative di^/dx by the forward difference A ^ , yielding the Frenkel-

Kontorova model, 

LFK = J E - ( ^ ^ ) ' - s i n V ] . (2.1) 
xehZ 

The equation of motion generated f rom this, by extremizing the action SpK = 

JdtLpK, is a second order differential-difference equation, of which no nontrivial 

solutions are known (the vacua 0 = rnr persist of course). The system has been 

extensively studied [15, 16, 17, 18, 19] using both numerical and perturbative tech

niques, and the qualitative features of kink dynamics are well known. There are two 

static kink solutions, modulo discrete translations (x i-> x -f n/i, n G Z, manifestly a 

symmetry of Lpj.c)i one w i th the kink located directly on a lattice site and one wi th a 

kink located halfway between two lattice sites. As before, by kink location we mean 
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the point at which ip = 7 r / 2 , defined by linear interpolation between lattice sites i f 

necessary. So the kink position takes values in E, the real line containing the lattice, 

for a general configuration, but is restricted to the discrete subset x G {h/2)Z for 

static kink solutions. Of these two static kinks, the one located at x = n/i has higher 

potential energy than the one located at x = (n + ^)h. The former is a saddle point of 

the potential and is an unstable solution, while the latter is a minimum and hence sta

ble. The difference between the two static kink energies is called the Peierls-Nabarro 

barrier and has a crucial effect on kink dynamics. I f a moving kink has insufficient 

kinetic energy, i t cannot surmount the barrier and gets trapped between two lattice 

sites, a process called "pinning." I t oscillates and emits radiation, settling down into 

the potential well. The motion of a soliton on the lattice is dissipative, there being 

no continuous translation symmetry to force momentum conservation. Thus a kink 

which starts off w i t h enough kinetic energy to surmount the Peierls-Nabarro bar

rier and travel along the lattice dissipates its energy as radiation, slows down and 

eventually becomes trapped. 

Such dynamics may make the model interesting f rom a physical viewpoint i f analo

gous effects are seen in real condensed matter or biophysical systems, but is obviously 

radically different f rom the continuum dynamics, so the Frenkel-Kontorova model rep

resents a bad choice for fictitious discretization. I n the next section we wi l l present 

an alternative discretization, specifically designed to preserve the topological (more 

precisely, the Bogomol'nyi) properties of the continuum model. There is a topolog

ical lower bound on the kink energy and a first order difference equation for kinks 

saturating this bound. These static solutions may be found expHcitly. There is no 

Peierls-Nabarro barrier and consequently kink dynamics in this topological discrete 

sine-Gordon (TDSG) system is quite different f rom that in the Frenkel-Kontorova 

model. 
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2.2 Topological discretization 

We wish to f ind D and F, lattice versions of dijj/dx and sinV* respectively (that is, 

D —> dil^/dx and F —> s i n ^ in the l im i t /i —> 0) such that their product is 

DF = -Acostp. (2.2) 

For then, defining the potential energy to be 

V = j Ei^' + n (2.3) 
xehZ 

which has the correct continuum l i m i t , we have a lattice version of the Bogomol'nyi 

argument. Let V'(^) have kink boundary conditions, ^(—oo) = 0, ^(oo) = ir. Then, 

0 < jEiD-Fr (2.4) 

= V-!!iTDF 

= ^ + o V'+ ~ COS ij)) 

= V - l 

> I. (2.5) 

Once again, the energy of a kink configuration is bounded below by 1, and can attain 

this bound i f and only i[ D = F Vx G hZ, the lattice Bogomol'nyi equation. 

Such a factorization of A cos ip is possible. The most natural choice is 

2 1 
D = ^ s i n - ( ^ + - V ' ) 

F = sin^(V'++V'), (2.6) 

although D := D/a{h) and F := a{h)F would do just as well provided a is a strictly 
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positive, smooth funct ion wi th o:(0) = 1. Rearranging the Bogomol'nyi.equation, 

^+ 2 + h ^ , , 
tan ^ = — t a n | , (2.7) 

we see that i f /i > 2 any solutions are inevitably oscillatory, which is incompatible wi th 

w i t h kink boundary conditions. We therefore restrict h to the range (0,2). This upper 

bound on h could be eliminated by using the modified quantities D and F choosing a 

such that ha^{h) < 2 V/i (for example, a — e"''), because the Bogomol'nyi equation 

D = F then becomes 

so no oscillatory behaviour can occur. There is no clear advantage in this, so we do 

not pursue i t but choose the simplest version (2.6). 

Given that h G (0,2) the solution of (2.7) is 

i/'(x) = 2tan-^e°(^-*), (2.9) 

where 

and b is an arbitrary real constant. This does indeed satisfy kink boundary conditions. 

Note that a{h) is a monotonically increasing function on (0,2) and that a ^ 1 as 

h 0, while a is unbounded as h —y 2. The static kink is therefore a sharpened 

version of the continuum kink (1-14) "sampled" on the lattice x G hZ. The sharpening 

factor disappears in the continuum l imi t and becomes infinite in the anticontinuum 

l i m i t h 2. The potential energy of a kink is correspondingly highly localized. I f 

6 = 0 then the proportion of the energy (normalized to unity wi th our conventions) 

contributed by the two central links {—h,Q) and {0,h) is 4/i/(4 + h"^). I f /i = 1, 

this is 80% while i n the l im i t h ^ 2 it tends to 100%. The h = 1 static kink is 

plotted in figure 2.1. Perhaps the most surprising feature of (2.9) is the existence of 
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Figure 2.1: The static kink solution for /i = 1 with 6 = 0. 

the continuous zero mode b, which is not due to any symmetry of the model. Given 

that the model has only discrete translation symmetry, one would naively expect the 

static kink to be located either on the lattice hZ or / i (Z+ 5), but i t turns out that the 

kink can take any position relative to the lattice. I t follows that this system has no 

Peierls-Nabarro potential, and one would expect kink dynamics to be consequently 

much simpler than in the Frenkel-Kontorova model. 

Since the configuration (2.9) satisfies D = F,it globally minimizes V wi th in the 

class of configurations wi th kink boundary conditions (the kink sector) and hence is 

a stable static solution. Applying antikink boundary conditions and starting wi th 

summand (D + F)^ i n (2.4) we obtain the antikink Bogomol'nyi bound, V > I, 

V = I D = —F, so as one would expect, there are stable static antikinks, obtained 

f r o m the kinks by mapping x i-> —x. So i f ^ is a solution of D = ±F, i t must be a 

solution of the static field equation. I t is interesting to consider the possibihty of other 

nontr ivial static solutions such as double kinks and kink-antikink pairs. Both exist 

in the Frenkel-Kontorova model because of the Peierls-Nabarro barrier: at long range 

kink-kink repulsion and kink-antikink attraction are not strong enough to overcome 
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the pinning force which traps the constituent kinks and antikinks of a configuration 

between lattice sites. It follows that there are static solutions consisting of well 

separated kinks and/or antikinks in stable equilibrium. Given the absence of a Peierls-

Nabarro barrier in the T D S G system, one would expect no such solutions to exist. 

Recall that in the continuum model, nonexistence followed from Noether's theorem 

and translation invariance (equations (1.24) and (1.25)), by means of which we proved 

that all static solutions must satisfy the Bogomol'nyi equation. Remarkably, this 

result almost survives on the lattice, despite the loss of translation symmetry. From 

the explicit expression for the potential. 

(2.11) 

we derive the static field equation, dV/dij) = 0, where 

= s i n ^ ( V ' - ^ - ) c o s i ( ^ - V ' - ) - s i n ^ ( V ' + - ^ ) c o s ^ ( ^ + - V ) 

+ sin ^(V' + V*-) cos ^(V* + V'-) + sin ^(V'+ + ^ ) cos ^(V'+ + ^ ) 

2 1 
= [sin(V'+ - ^ ) + sin(V'- - ^)] + - [sin(i/'+ + V-) + sin(V'- + i^)] 

4 1 1 
= - ^ s i n - ( i / ' + - 2 V ' + V ' - ) c o s - ( ^ + - V * - ) 

+ sin + 2ip + ^ _ ) cos ^(V'+ -

4 1 
^ s i n - ( ^ + - 2 0 + V - ) 

- s in^(V'+ + 20 + 0_) 

= - c o s - ( 0 + - V)-) 

(2.12) 

So each triple of lattice sites {^/'_,0,V'+} niust satisfy either 

cos-(V'+ -?/>-) = 0 (2.13) 
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or 

^ sin ^(V'+ - 2V' + V'-) - sin ^{^+ -h 2^̂  + V - ) = 0- (2.14) 

Note that i f {«/'_, V*, V'+l satisfies (2.13) then jp+ — ip^ = w mod 27r but V" is uncon

strained, and that i f the solution is to satisfy regular finite-energy boundary condi

tions, then (2.13) cannot hold for all x, but, at most, at a f ini te number of isolated 

sites. Along the rest of the lattice (2.14) must hold. Now, motivated by the continuum 

model, we consider the quantity A(Z)^ — F^): 

[A(.i)2 - f 2 ) ] _ 

4 
sin ^(V'+ - « / > ) - sin ^(ip- - xl>) 

sin ]^{^+ + V") - sin ^(V-- + i^) 

sin ^(^^4 - V") + sin ^(V'- - V") 

sin ^(V'+ + V') + sin ^(V'- + V") 

^cos^(V'+ - 2V' + V'-)sini(V'+ - V'-)sin^(V'+ - 2V' -f V'-) cos ^(V'+ - V"-) 

- 4 cos ^(V'+ + 2V' + V'-)sini(V'+ - V'-) sin ^(V'+ + 2V' + V*-) cos ^(V'+ - V"-) 

= s in^(V'+-V*-) 
4 1 1 

1̂  — sin - ( 0 + - 2V' + 0 - ) - sin -(V'+ + 2V' + V*-) (2.15) 

Comparing (2.15) and (2.14) we see that i f (2.14) holds everywhere, then A(Z)^ — 

F^) = 0 and, applying finite energy boundary conditions, D = ±F. We cannot, 

however, claim that there are no non-Bogomolnyi static solutions, because there may 

be isolated points where 'tl)(x) satisfies (2.13) rather than (2.14). I t is quite d i f f i 

cult to f ind such solutions without spoiling the finite-energy boundary behaviour. 

Nevertheless, they do exist, as may be illustrated by example. 

Consider the configuration 

V'(x) = 
IPK{X — b) X <0 

i^Ki^ — b — 2h) + TT X > h, 
(2.16) 

where I(^K{^) is the kink located at zero, ij^Kix) = 2 tan ^ exp(aa;.), and b e R. This is 

a static solution. Each of the triples {ijj-{x),i(){x),tf;^{x)} for x < -h satisfies (2.14) 

36 



because both pairs and {tp,tp+} satisfy the Bogomol'nyi equation. The same 

holds for the triples centred on x > 2h. So this configuration satisfies (2.14) for all x 

except a; = 0 and x = h. However, at both these points (2.13) holds, by construction. 

Hence dV/dtp = 0 Vx, and (2.16) is a static solution. This is a double kink, but the 

same method could be used to put more dislocations^ in the lattice and produce a 

n-kink static solution. Note that the construction works for any value of b, and wi th 

the dislocation between any pair of neighbouring lattice sites - a; = 0 and x = h were 

chosen in this case. The static double kink and its energy distribution are plotted 

for four different values of b i n figure 2.2. I n each case there is a lump of energy 

spread over approximately four lattice sites caused by the kink, and a one-site spike 

caused by the dislocation, though when b = —0.5 they coincide. Since b can take 

any value there is a one-parameter curve of these solutions in configuration space Q2. 

This should be an equipotential curve, since any variation of V along i t would be in 

contradiction w i t h the assertion that (2.16) is a static solution for all b. I t is not hard 

to calculate V because the Bogomol'nyi argument gives the energies of the left and 

right hand tails (x < 0 and x > / i ) , so one merely has to add the energy of the l ink 

(0 , / i ) , the dislocation spike. The result is, 

V =1- ^[cos 0(0) + cos 0( / i ) ] + ^{D^ + F^) (2.17) 
x=0 

Afte r much algebra, this reduces to 

. . ( ^ . ( . . . ) 

which is indeed independent of b. Note that 1^ > 2 \/h e (0,2) leading us to 

conjecture that the solutions are saddle points of the potential: i t is energetically 

favourable for the configuration to evolve into a conventional kink-kink pair arbitrarily 

^This terminology is perhaps a little unfortunate since discrete kinks themselves are often used 
to model crystal dislocations. However, no apt alternative suggests itself. 
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Figure 2.2: The static two-kink solution on the /i = 1 lattice. The circles represent 
V'(x)/7r while the solid line represents the energy distribution. The energy should be 
thought of as located in the links between lattice sites. 

far apart so as to approach V = 2. One would suspect that any static n-kink solution 

constructed similarly would also be a saddle point of V onQn. Note also that V —> 0 0 

a,s h —y 0 so that the solution is lost i n the continuum l i m i t . In summary then, 

the static field equation implies the Bogomol'nyi equation, except in some rather 

pathological cases where tl){x) jumps by ir mod 27r in a short interval. By exploiting 

this possibility one can construct unstable static n-kink solutions. I t is unUkely that 

any stable non-Bogomol'nyi solutions exist. 

So far we have only considered the static model. The dynamics is completed by 

defining the kinetic energy T. Again there is much freedom in this, the only constraint 

being that the continuum l i m i t of T must be \ f d x [dtp/dty. The simplest and most 
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physical choice is 

7̂  = J E ^ ^ (2-19) 

where ip = dtj^/dt. This is the kinetic energy of infinitely many identical point particles 

moving in one dimension (the lattice picture), or equally, of a single particle moving 

in an infini te dimensional Euclidean space (the configuration space picture). The 

equations of motion are obtained f rom the Lagrangian L = T — V in the standard 

way. Af te r rearranging, one obtains 

•• 4 - h'^ 4 + /i^ 
0 = cos 0(sin0^. - I - s in0_) -77—sin0(cos 0+ + cos0_), (2.20) 

4/1 4/1^ 

a second order differential-difference equation. No exact time-dependent solutions of 

(2.20) are known. I n particular, given the static kink solution, there is no Lorentz 

or Galilei symmetry by means of which one can generate kink solutions in uniform 

motion. ( I t is interesting to note, however, that wi th a different choice of T , one can 

generate equations of motion which do have an exact travelling kink solution, at least 

for one chosen velocity [20]. This velocity becomes, along w i t h h, a parameter of the 

model.) Nevertheless, we do have a continuous moduli space of static kink solutions, 

so we can calculate a geodesic approximation to low speed kink dynamics. A t higher 

speeds we must perform numerical simulations. 

2.3 A geodesic approximation 

Just as i n the continuum model, the kink moduli space in the TDSG system is the real 

line parametrized by kink position b, Mi = R, contrary to one's naive expectation 

of a lattice model. Mi = Z . The Bogomol'nyi argument shows that V attains its 

topological m in imum value on Mi, which is thus a level valley bot tom twisting through 

the kink sector Qi. We obtain the geodesic approximation to low speed kink dynamics 

by restricting V' to Mi by construction, but allowing its position on Mi to vary wi th 
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t ime. The number of degrees of freedom is thus drastically cut, f rom infini ty to 

one. The potential is constant, so the dynamics is determined by the metric ghib) 

induced by the kinetic energy (the subscript is to emphasise the metric's parametric 

dependence on the lattice spacing). In contrast w i th the continuum model, we expect 

the metric to depend periodically on b, but not be constant. This wi l l introduce new 

features into the slow motion of kinks. 

Explici t ly , let 

V'(a;,^) = 2tan-^e"(^-' 'W). (2.21) 

Then V = I ^t, and 0 = -a6secha(a: - b{t)), so 

T=\9Hib)b\ (2.22) 

where 
21, 

9hib) = sech2«(^ - b) (2-23) 
xehZ 

is interpreted as a metric on Mi. The reduced Lagrangian is Lgeo = lgh{b)b'^ — 1, f rom 

which the derived equation of motion is simply the geodesic equation for {Mi,gfi). 

Note that gh{b) is periodic w i t h period h, is even, has a local maximum at 6 = 0 

and a local min imum at 6 = h/2. Graphs of gh{b) for various values of h are shown 

in figure 2.3. One way to solve the geodesic equation is to transform 6 h-> 5^ to a 

coordinate on A/x w i t h respect to which the metric is constant. In this case 

Jo 

b 
da \ 

so that 
1 

L,eo = ^gmBl-\. (2.25) 

I f the in i t i a l data are 6 = 0, 6 = ( implying B = 0, Bh = v) the solution is Bh = vt. 

40 



h=1.4 

2hh=1.2 

Figure 2.3: The metric gh{b). 

To find the trajectory b(t), one inverts the transformation (2.24), 

(2.26) 

So, in this approximation, finding the moving kink solution is reduced to evaluat

ing the function Bh{b) of equation (2.24). Note that this function is strictly increasing, 

and that 

BH{b + nh) = Bnib) -f- nBH{h) (2.27) 

for all integers n owing to the periodicity of gnib), so i t suffices to know Bh over a 

single period, b G [0,h]. The integral in (2.24) is easily evaluated numerically, and 

one may then plot Bh{b) = vt against b to obtain kink trajectories for different values 

of h (see figure 2.4). The main feature is that the kink wobbles as i t moves through 

the lattice. This wobble is a dynamical effect: there is no potential (such as Peierls-

Nabarro) causing i t . Thinking of gh{h) as a position dependent kink mass, the kink is 

lightest between lattice sites (6 e h{Z-\-\)) and heaviest on lattice sites (6 G / iZ) , and 
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Figure 2.4: The trajectory b(t) over one wobble period for /i = 1 and h = 1.8 

consequentlj', for a given conserved kinetic energy (^gii(0)v'^), fastest between sites 

and slowest exactly on sites, when i t moves wi th speed v. The time taken for the 

kink to travel f rom x = 0 to x = h (the wobble period) is 

Bh{h) 
(2.28) 

and Bh{h)/h < 1, approaching the upper bound, in the continuum Umit h ^ 0. So 

the kink travels faster by a factor h/Bh{h) than would be naively suggested by the 

in i t i a l velocity v. A graph of Bh{h)/h shows that discreteness effects are small for 

h < 1, but grow large as h approaches 2 (see figure 2.5). 

The accuracy of the approximation has been tested numerically using a fu l ly-

exphcit fourth-order Runge-Kutta algorithm wi th fixed time-step 0.01. The ini t ial 

condition was a Galilean-boosted static kink profile wi th ini t ia l velocity 0.01 lattice 

sites per unit t ime (v = O.Olh). Simulations of duration 1000 t ime units were per

formed (or h = 1,1.2,1.4,1.6 and 1.8. I n every case the kink moves freely, without 

pinning, undergoing motion of the predicted periodicity. Furthermore, inspection of 
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Figure 2.5: Effect of discreteness on the wobble period, the function Bh[h)lh. 

the kink velocity over a single period reveals close agreement wi th b{t) calculated 

f rom (2.26) (see figure 2.6), although for h = \.2, numerical errors rather swamp the 

very small theoretical wobble (note the scale on the velocity axis). 

Collective-variable analyses of the Frenkel-Kontorova model (cf [19]) have intro

duced the kink position as an extra variable, accompanied by a constraint. But since 

the dynamics is much more complicated, all the degrees of freedom have to be kept 

in order to obtain accurate results. A truncation to one degree of freedom, as in the 

present case, does not work. 

2.4 Fast-moving kinks 

The geodesic approximation is expected to fa i l at high velocities. This is observed 

in the simulations as a gradual onset of kink deceleration as the ini t ia l velocity is 

increased. Failure occurs at lower velocities for coarser lattices—around v = 0.02 for 

A = 1.8 compared wi th w = 0.15 for A = 1. The kink energy is dissipated in the 

fo rm of small amplitude oscillations ("radiation" or "phonons") emitted in its wake. 
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Figure 2.6: Kink velocity over a single wobble period. 
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Figure 2.7: Radiation by a fast-moving kink. 

propagating backwards (see figure 2.7). 

The effect of this radiation on the kink velocity over a long time-scale can be seen in 

figure 2.8. The data were produced by the above-mentioned Runge-Kutta algorithm, 

run for 16000 t ime units w i th a time-step of 0.01. The ini t ia l configuration was a 

static kink Gahlean-boosted to speed v — 0.3, on a lattice of unit spacing {h = I). 

To cut reflexion of radiation f r o m the fixed left-hand boundary, the first five lattice 

sites were damped. Af te r an in i t ia l velocity drop of 0.02 in 10 t ime units as the kink 

assumes a more appropriate shape, i t decelerates more slowly. The modulation of the 

amplitude of velocity oscillations is due to the velocity sampling (once every 10 t ime 

units) fal l ing in and out of phase wi th the periodic wobble of the kink as i t passes 

lattice sites. 

The most interesting feature of figure 2.8 is the existence of a threshold velocity, 

V « 0.16, below which deceleration, and hence radiation, is much reduced. Some 
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Figure 2.8: Radiative kink deceleration. 

understanding of this phenomenon may be gained by an analysis (motivated by [18]) 

of the linearized equation of motion. 

4/i2 2h^ 
(2.29) 

From this one derives a dispersion relation for small-amplitude travelling waves, 

namely, 

2 4 - f / i 2 4 - / 1 ^ 

" = - 2 ^ - - 2 ^ ^ ^ ^ ' ' ' ( '-^^^ 

where k is the wave-number. The angular frequency u> ranges between 1 and 2 / / i , the 

lower bound being responsible for the threshold velocity. As the kink travels along the 

lattice, i t hits lattice sites wi th frequency v/h sites per unit time. Provided v > h/2Tr, 

the kink can excite radiation of the same frequency, that is a; = 2Trv/h. However, 

i f I* < hj2iT, then ^ < 1, and the lattice cannot support such radiation. The kink 

can only excite higher harmonics, so the rate of energy dissipation is suddenly cut 

and the kink velocity becomes "quasi-stable." For / i = 1, this threshold occurs at 

V = l/27r « 0.159, in good agreement wi th the numerical data (figure 2.8). 

46 



We can use the dispersion relation (2.30) to find an upper bound on the group 

velocity Vg := dw/dk of radiation of the lattice. I t is convenient to use rescaled 

variables K : = hk andn := hu;/y/2 - hy2, and to defi ne the constant 7 := (4 -f-

h^)/{4: — h^) > 1, so that the dispersion relation becomes 

n^ = ^-cosK. (2.31) 

Differentiation w i t h respect to K (denoted by a prime) yields 

2nn' = sin K, (2.32) 

and repeating gives 

2na" + 2(n')^ = c o s « . (2.33) 

A t turning points of Vg(k), D."{K) = 0, SO 

{n'y = i cos K. (2.34) 

Note that this equation holds only at turning points of D ' oc Vg, so that extremizing 

(2.34) to get Q.'^^^ = 1/2 is spurious. Returning to (2.32), we find that 

^̂ ^̂  - 4fi2 ~ 4 ( 7 - c o s « ) ^^-^^^ 

using (2.31). Thus, when K satisfies 

d { sin^ K 

c?/c \ 7 — cos K 
= 0, (2.36) 

0' = 0 (and hence Vg = 0) or Vl" = 0 and Vg is extremized. A little algebra gives three 

sets of roots of (2.36): 

1. sin K = 0 ^ 0' = 0 from (2.32), = 0 
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2. cos «: = 1 ^ > 1, false roots 

3. cos /c = 1=1 =J> n' ^0 f rom (2.32), U" = 0. 

Since f2" = 0 in the th i rd case, we can use (2.34) to f ind ( f i ' ) ^ , whence, taking the 

rescalings into account, we find that 

= 1 _ ^ . (2.37) 

I n the continuum l i m i t , v^"'^ -+ 1, the speed of light, while in the anticontinuum 

l i m i t v^"'^ 0 suggesting that radiation cannot travel along the lattice at al l . In 

al l the numerical simulations, the envelope of the radiative wake appeared to move 

w i t h precisely this maximum speed. For example, the simulation depicted in figure 

2.7 was performed on a lattice wi th = 1, and thus t?^"^ = 1/2. Close inspection 

reveals that the wake travels 50 length units backwards at apparently constant speed 

in 100 t ime units. 

A theoretical understanding of the specific shape of the graph is more elusive. We 

make the ad-hoc assumption (motivated by figure 7 of [18]) that the energy AE lost 

by a kink i n traversing a single lattice cell at speed v obeys an exponential law: 

= e""-', (2.38) 

where p and q are positive constants, properties of the lattice. We further assume 

that the kinetic energy of the kink is 

EK = \cv' (2.39) 

where c is approxirriately constant provided h is not too large, as suggested by the re

sults of section 3 (fig. 2). These two equations imply a first order differential equation 
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for {;(/), easily solved to give 

v{t) = v{0) - A logiBt + 1), (2.40) 

where 

1 
A = -

P 

B = ^t^^"")-". (2.41) 
he ^ 

The dashed curve in figure 2.8 is a fit of this formula to the numerical data, taking 

A = 0.032, B = 0.004365, v(0) = 0.28. Estimating c = 1.0986 by averaging the 

funct ion / ( 6 ) for / i = 1, one deduces that p — 31.3, and q = 17.5. The fit is good for 

velocities greater than the radiation threshold at u = 0.159. 

2.5 Conclusion 

By preserving the Bogomol'nyi argument, one can find a discretization of the sine-

Gordon model whose kink dynamics is significantly simpler than that of the Frenkel-

Kontorova model. The Peierls-Nabarro barrier is eliminated, and although the dy

namics is dissipative, so moving kinks suffer radiative deceleration, kinks are never 

pinned however slowly they travel. We conjecture that there are no nontrivial stable 

static solutions wi th regular finite-energy boundary conditions beyond those satisfy

ing the Bogomol'nyi equation (kinks and antikinks). This is a first order difference 

equation whose solutions can be explicit ly wri t ten down. 

Several interesting questions remain. The existence of breathers (spatially local

ized, t ime periodic solutions) is comparatively rare in continuum field theories, and 

appears to be a property of integrable systems. This is not true of discrete systems: 

Aubry and MacKay [23] have proved the existence of breathers in a very wide class 

of one dimensional lattice models, at least in a neighbourhood of the anti-continuum 
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l i m i t . The TDSG system does not fa l l inside this wide class due to its unconventional 

difference operator D (Aubry and MacKay essentially assume A , as in the Frenkel-

Kontorova model). However the TDSG system does have the essential features needed 

for the proof, in particular, a t r iv ia l breather in the anti-continuum l im i t (A —> 2 in 

this case). Substituting h — 2 into the field equation (2.20), one obtains 

0 
1 

sin V'(cos V'+ + cos ij)-). (2.42) 

This supports a breather located at a single site, since a field of the form 

0 a; 7^0 

i9(t) x = 0 
(2.43) 

satisfies (2.42) provided 

i9 + sint9 = 0, (2.44) 

that is, •d{t) satisfies the pendulum equation. One might therefore be able to extend 

the proof of [23] to this case. 

One should be able to generalize "topological" discretization to any continuum 

model which has kinks. A n example is the (f)^ model, also popular in condensed 

matter physics. The potential functional is 

dx 
dx 

(2.45) 

so the model has two degenerate vacua ^ = ± 1 , and a kink interpolating between 

them. I f we define 

d := A<^ 9+ - (f> h->o 
h dx 

1 
(2.46) 
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then 

c// = - A Q < ^ ^ - ? i ) . (2.47) 

The lattice potential energy is 

V : = j E i ^ + n'-=^V<^^ (2-48) 

as i n the TDSG system. The Bogomol'nyi argument for kink configurations (boundary 

conditions l i m ^ ^ i o o (j) = ±1) follows immediately: 

0 < j U ' i - f f 

and V = I d = f . (2.49) 
o 

Unfortunately there is no explicit solution of the Bogomol'nyi equation d = f (an 

ansatz of 4>{x) = tanha(a; — b) motivated by the continuum model does not work). 

I t is therefore less easy to decide whether, as one might expect, the Peierls-Nabarro 

barrier has been eliminated. Recall that in the TDSG system this conclusion was 

reached when a continuous translation parameter was found in the kink solution. 

The essential point is that there exists a solution of D = F satisfying kink boundary 

conditions for each V'(O) G (0, TT), that is, wi th the zeroth lattice site taking any value 

between the two vacua. The one-parameter curve in Qi covered by the solution if; as 

V'(O) moves along the interval (0, tt) may then be defined to be the kink translation 

orbi t . The analogous result can be shown to hold in the T D ^ ' ' system described above, 

provided / i < 1, using the boundedness and monotonicity properties of the iteration 

<jf>+(̂ ) derived f rom d = f . That is, there exists a unique monotonic solution of 

d = f satisfying hmj;_^.±oo 6̂ = ± 1 for each <j){0) G (—1,1). Given the absence of a 
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Peierls-Nabarro barrier, one would expect that there are no stable static mult ikink 

or kink-antikink solutions, but this is not certain. I t is not clear whether there is any 

connexion between dV/dcj) — 0 and A((/^ — / ^ ) = 0; to answer this question requires 

the factorization of a quartic polynomial i n three variables. 

Generalizing topological discretization to higher dimensions is rather more dif

ficult. I n one dimension, continuum models have important discrete features even 

before discretization: the vacuum "manifold" and the boundary of space are both 

discrete, and consequently the Bogomol'nyi argument is already discrete; This is 

not so in higher dimensions. For example, i t seems impossible to formulate a lattice 

0 ( 3 ) sigma model w i th a saturable Bogomol'nyi bound. One must be slightly less 

ambitious, and aim to find a model w i t h as nearly saturable a bound as possible [24]. 

This w i l l hopefully minimize, but not completely eliminate the Peierls-Nabarro bar

rier. The aim is to find lattice systems whose solitons closely mimic their continuum 

counterparts even on very coarse lattices, thereby saving considerable computational 

cost in numerical simulations. 
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Chapter 3 

Some quantum aspects of the 

topological discrete sine-Gordon 

system 

3.1 Introduction — the kink Casimir energy 

Classically, a topologically stable field configuration may be regarded as lying in a 

potential well in an infini te dimensional configuration space. Two solutions in differ

ent sectors are separated by an infinite potential barrier by virtue of the topology. 

Quantum mechanically, a particle cannot sit at the bot tom of a well: i t always pos

sesses a zero point energy dependent on the shape of the well bottom. The analogous 

situation applies to fields also. 

We wish to find the zero point energy associated y/iih a kink configuration in the 

discrete sine-Gordon system described in chapter 2. The calculation is performed in 

the weak coupling approximation, by performing a Taylor expansion of the potential 

about the kink configuration, truncating the expansion at quadratic order. We then 

find the normal modes of the truncated system, reducing the problem to that of an 

infini te set of decoupled harmonic oscillators. On quantization, each contributes a 
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zero point energy. Summing over all oscillators gives an infinite total . 

I f we similarly approximate the vacuum well-bottom we can derive the zero point 

energy associated wi th the t r iv ia l vacuum. This is also infinite. The "physical" 

quantity required is the energy difference between the kink and the vacuum, since 

we can always define the vacuum energy to be zero. This quantity, analogous to 

the Casimir energy of Quantum Electrodynamics [25], turns out to be finite and 

less than the classical energy of the kink. Since the model possesses only discrete 

translation symmetry, the normal mode frequencies, and hence the Casimir energy 

depend periodically on the kink position. 

Calculation of the normal mode frequencies amounts to finding the eigenvalues 

of an infinite-order, tridiagonal, symmetric matr ix . In practice this is not possible 

and the system must be truncated symmetrically about the kink centre, ignoring the 

large |a;| degrees of freedom. I t is possible to show that the resulting quantum energy 

correction must be negative, for any size of truncated system. The correction may be 

calculated numericall}'. 

Since we propose a perturbative quantum calculation we must introduce an explicit 

mass parameter m and a dimensionless coupling constant A into the model. I t is also 

convenient to change notation f r o m 0(a;), x taking discrete values, to ipj, the index j 

taking all integer values. In this notation the Lagrangian is 

^1 — sm -{xjjj+i - ^Pj) - — sm -(V-j+i+V-i) (3.1) 

where h is the lattice spacing just as before. Taking the h 0 l imi t one recovers the 

standard sine-Gordon model: 

1 f°° 
l i m L = - dx 
h^O 4 7-00 

' d f ' d f 
dx, 

sin^ (3.2) 

where x = hj. 

Let us briefly recapitulate the salient features of this TDSG system, using the new 
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notation. The model has an infini te set of discrete potential minima, 

T ' (3.3) 

where n 6 Z , and a static kink interpolating between neighbouring minima, which 

may be derived using a Bogomol'nyi argument. The energy of a static configuration 

is just the potential V , and 

^ ^ / i ̂  / 2 . A , , , . m . A . , , .'̂  
0 ^ 7 Z ^ T r s i n - ( V ' j + i - V - i ) - Y s m - ( V ' j + i + ^ j ) 

m 

(3.4) 

when kink boundary conditions are imposed. This (the Bogomol'nyi) bound is satu

rated i f and only i f 

sin ̂ (^ j+i - ^ j ) = hmsin ^(V'j+i + V'j)- (3.5) 

The first order difference equation, (3.5), is called the Bogomol'nyi equation and, 

remarkably, has an explicit kink solution: 

= — tan ^ 
A 

'2 + hrn 
.2 - hm. 

j-b/h 

(3.6) 

The dimensionless parameter hm € (0,2) for sensible solutions. The arbitrary con

stant b may take any real value — the kink energy is not position dependent. The 

right hand side of (3.4) may be interpreted as the classical kink mass, M. Small veloc

i ty kink dynamics can then be approximated by geodesic motion of a point particle, 

mass M, on the manifold generated by b translation, wi th a natural induced metric. 
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3.2 The weak coupling approximation 

We follow the method outlined in [12] adapted for the infinite lattice. We work in 

natural units, effectively having absorbed a factor \/h into A so that, by the stajidard 

argument, the weak coupling criterion A <C 1 yields a semi-classical approximation. 

The momentum conjugate to is 

dL h ; 
TTi = — = —Wi (3.7) 

Thus, the TDSG Hamiltonian is 

(3.8) 

where 

— sm -{^j+i - ^i) + - j ^ sm -ii^j+i + Vi) (3.9) 

Let ^ be a static configuration giving a local (in configuration space) minimiun of 

the potential, V{ip). We treat motion about this stable configuration in the small A 

approximation by Taylor expansion of V: 

= - I - ^ E W M , - i>j){i^k - 4 ) + (3.10) 

where 
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W,k = -
1 d'^V 

hm / , f 
cos X(4^k - ipk-i) + cos A(^fc+i - Tpk) 

1 
+ 2 

COS 

-1 

J / tm)2 

A(V'A; + ^ f c - l ) + COS X(4>k+1 + i>k) I 

2 . . . 1 » • 
•——COS A(̂ fc - tpk-i) + - COS A(V'fc + ipk-i) 
[hmy I 

2 ~ - 1 
-———cos A(V'fc+l - V'fe) + o cos A(V'iS:+l + V"*) • (3.11) 

Note that W is a real, symmetric, tridiagonal matr ix. Note also that the next term 

in the expansion is 

3! 'di>MMk 
(tjji - ^,)(^j - i)j){tjjk - 4'k), (3.12) 

and that the three derivatives w i t h respect to ij^ introduce a factor of A^, leaving an 

overall factor of A after cancelling the l / A ^ of V(V'). Thus, higher corrections are at 

least of order A, which is why one can truncate the series in the small A Hmit. 

Owing to the symmetry of the W matr ix , there exists an orthogonal transforma

t ion R such that 

Wjk=Y.RjlU,,nRmk (3.13) 
l,m 

where £/ is a diagonal matr ix . We may reduce the system to a sequence of decoupled 

harmonic oscillators by transforming to the rotated coordinates (normal coordinates) 

6' = I]^jit(V'fc - V'fc), 
it 

(3.14) 
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which have conjugate momenta 

Then, 

r,^=J2R,knk. (3.15) 
k 

'^{H-Vm = \^[v] + ^»l(i), (3.16) 

where ilj are the eigenvalues of the W matr ix , none of which can be negative since 

ip locally minimizes the potential. 

We now quantize in standard canonical fashion, taking ^ to be first the vacuum, 

then the kink located at x = fe. The vacuum ground state energy is 

3 

The kink, by vir tue of the zero mode b of (3.6) lies not in a potential well, but 

in a level-bottomed valley meandering through configuration space. One of the nor

mal modes is locally tangential to the valley bot tom and consequently has vanishing 

corresponding eigenvalue (zero frequency). We shall treat this translation mode, 6, 

classically because in the weak coupling approximation i t is much heavier than the 

orthogonal modes (mass m/A^ compared wi th m ) . 

Whi le the translation orbit of the static kink (3.6) is an equipotential curve, neigh

bouring orbits are not: the potential varies periodically along them. So the eigenvalues 

of the W matr ix {^fY w i l l be b dependent wi th period h. The ground state energy 

of a kink at b is 

where the sum may be taken over all eigenvalues since the one we wish to omit is zero 

anyway. 

There is no reason to expect either E^Qy{b) or E"^^^ to converge to a finite sum but 
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one would expect finite Casimir energy 

e = E(,yib)-El,^-^ (3.19) 771 

since the lattice spacing h has effectively cut off the ul tra violet divergence problems 

of the continuum model. We must st i l l take care when manipulating the divergent 

sums of (3.19) that they are suitably regulated before being combined. The method 

of regulation is determined by practical considerations: we calculate E^Qy{b) and E^^y 

on a finite lattice, compute £ and then allow the lattice size to grow large. In practice 

we must truncate the lattice to finite size anyway in order to solve the kink matrix 

eigenvalue problem. 

3.3 The eigenvalue problem 

We now address the problem of finding the eigenvalues of the vacuum and kink W 

matrices, W° and W^'. Let us first consider the vacuum matrix, obtained f rom (3.11) 

by substituting ipk = 0: 

« 7 . = X 
4 \ / 2 n 

{hmf ' } \{hmy 2^ 
(3.20) 

This is a very simple matr ix . A l l the diagonal entries are equal, as are all the upper 

and lower diagonal entries. Consequently, the spectrum of the truncated matrix of 

order A'' is known exactly (see, for example, [26]): 

/r^ox2 4: + h'^m'^ 4 - / i W / \ , , 

j = 1,2,... ,N. I n the TV —> oc l i m i t this is strikingly similar to the dispersion 

relation for phonons on the lattice (2.30) because the normal modes of oscillation 

about the vacuum are phonons. 
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The question of making sense of the N oo l imi t of J^j is irrelevant because 

there is no hope of finding the exact spectrum of the kink W matr ix , W^. Substituting 

(3.6) into (3.11) we obtain an explicit expression for W^{b). Since the kink is highly 

localized (provided hm is not too small), at large | j | the kink configuration rapidly 

approaches neighbouring vacuum minima so that W-f.{b) tend to W°i^ away f rom the 

matr ix centre. The suggestion, then, is that we truncate the lattice, pinning all 

the large | j | degrees of freedom, for which the kink and vacuum configurations are 

essentially identical, to their classical values. The resulting finite problem may be 

solved numerically. 

One can prove that, whatever the order, N (an odd integer), of the symmetrically 

truncated system (that is, truncated symmetrically about the lattice site j = 0), the 

Casimir energy must be negative. The proof rests on the observation that, truncated 

to order N = 2n + I, 

W"" = W'' + B + C, (3.22) 

where B is the symmetric, tridiagonal matr ix , 

- / 3 - n 6-n 0 

0 b-n+1 

I 
B = 

- / ? n - 2 0 

bn 

0 bn 

(3.23) 

b, = !^[l-cos\{i>,+i^,-^))+^{l-cosX{i;,-i>,.,)) (3.24) 
8 

> 0, 

/3j = bj + bj+i, (3.25) 
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and C is the diagonal matr ix wi th elements, 

Cij = S i j ^ [cos A(^^+i + cos A(^,- + ) - 2] . (3.26) 

Now, C manifestly has negative semi-definite eigenvalues, and J5 is a special case of a 

class of matrices whose spectra are known to be negative semi-definite [27]. Regarding 

B and C as perturbations to the matr ix W°, we apply a corollary of the minimax 

theorem [28]: 

T h e o r e m : If 0 , T , r are symmetric N x N matrices with eigenvalues 

&r,Vs,lt (all sets arranged in non-increasing order), and 

0 = T -1- r , 

then 

er<Vr+ 71 

f o r a l l r = l , 2 , . . . , . V . 

Thus the eigenvalues of W° - f B are shifted down relative to those of W" (the 

greatest eigenvalue of B is negative or zero), and similarly, the eigenvalues of W° - f 

B -\-C = are shifted down relative to those of W° -f- B. Hence, 

Y:^nb)<Y:^], (3.27) 
3 i 

and, substituting into (3.19), 

S{b) < 0, (3.28) 

the quantum mechanical effect must be to lower the kink energy. 

We have assumed, on physical grounds, that 

e^(b) = -^Y:{^fib)-n''), (3.29) 
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Figure 3.1: Convergence of the Casimir energy. 

the Casimir energy of the order iV truncated system converges to a constant value 

as N grows large. Numerical evidence for this is presented in figure 3.1, a graph of 

A'' against Ei\f{0)/m for various values of hm. Convergence is very fast for large hm 

(the hm = 1.9 curve is essentially flat for A > 3) but much slower for small hm. Of 

course, this happens because the more finely space is discretized, the more degrees of 

freedom the kink structure is spread over. There is also a much smaller exacerbating 

effect due to the hm dependence in the kink solution, (3.6) — large hm kinks are 

sharper i n "real" x space than small hm kinks. Note that, as proved above, the 

Casimir energy is always negative and that its magnitude grows large for small hm as 

we expect f r o m consideration of the unrenormalized continuum model [29]. Although 

6 = 0 was chosen for these data, the rates of convergence are vir tually independent 

ofbe[-h/2,h/2]. 

The Casirnir energy of suitably truncated systems is plotted as a function of kink 
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Figure 3.2: Position dependence of the Casimir energy. 
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Figure 3.3: Sinusoidal fit to the hm = 1.8 Casimir energy. 

position b in figure 3.2. I t attains its maxima where the kink is located exactly on a 

lattice site and its min ima where the kink is halfway between two sites. For large hm 

the resemblance to a sinusoidal curve is remarkable: figure 3.3 shows a sinusoidal f i t 

for hm = 1.8. The resemblence deteriorates as hm decreases because numerical er

rors become relatively large as the Casimir energy barrier [£{0)-S{h/2)]/m decreases 

(figure 3.4). The Casimir energy is probably not t ru ly sinusoidal, however, because 

strong anharmonicity has been found to develop as hm approaches the anti-continuum 

l i m i t {hm —> 2) very closely^. I f one were to use S{b) in a phenomenological calcula

t ion, taking a truncated Fourier series would seem to be a convenient and justifiable 

approximation. 

I t is the Casimir energy barrier (figure 3.4) which is physically most relevant 

and which w i l l directly affect classical kink dynamics. In the continuum l imi t f u l l 

am grateful to Adrian Kent for pointing this out to me 
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Figure 3.4: The effect of discreteness on the Casimir energy barrier. 
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continuous translation symmetry is recovered, so the barrier should disappear, as is 

indicated by the plot. I n fact, in common wi th other (classical kinetic) discreteness 

effects of the TDSG system, the barrier is very small for all hm < 1. I f S{b)/m for 

a given b/h is a strictly increasing function of hm E (0,2), as i t appears to be, then 

given that S{b) < 0, the barrier should approach a finite value in the hm —* 2 Hmit. 

Numerical evidence suggests that i t does and that this value is around 0.17. 

3.4 Concluding remarks 

We have seen that quantum fluctuations around the kink configuration spoil the level 

kink valley bot tom by introducing a Casimir energy which depends periodically on 

the (classical) kink position. This energy has been computed numerically i n the 

weak coupling approximation and found to be approximately sinusoidal, maximum 

when b = 0, ±h, ±2h,... and min imum when b = ±h/2, ±3h/2, ±5h/2,..., the dif

ference between these extrema being large for large hm but rapidly vanishing in the 

continuum hmi t . I t is superficially similar to the Peierls-Nabarro potential of the 

Frenkel-Kontorova model [18], but is entirely different in origin, being a purely quan

t u m effect. Since the Casimir effect is a genuine physical phenomenon, experimentally 

verified in the context of Quantum Electrodynamics, we are led to the conclusion that 

classical kinks in this lattice model may be "pinned" by the quantum mechanics of 

the orthogonal modes. 

Finally, following a suggestion by Gibbons and Manton [30] we could attempt 

to include the effect of variation of orthogonal mode frequencies on the quantized 

geodesic approximation of kink motion by including the Casimir energy as an extra 

potential term in the Hamiltonian: 

Ha^ = -^A + £ib) (3.30) 

where A is the covariant Laplacian on the submanifold of static kinks. Given the 
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periodic nature of € , we would then expect band structure in the kink spectrum. 

There are two objections to this. First, the kink kinetic terms are of order (due 

to the large kink mass), while the potential was expanded only up to order A°, so 

the perturbative expansion is not consistent. Second, picking out the — | A kinetic 

te rm at order is also not consistent because there are several other kinetic terms at 

this order neglected in equation (3.30). This may be seen by reexpressing the kinetic 

Hamiltonian of the f u l l quantum field theory, 

(an infini te dimensional Laplacian) in terms of the kink translation mode h and the 

orthogonal modes ^j. The resulting formula is very messy, and includes order A^ cross 

terms w i t h derivatives d^/d^jdb and d^/d^jd^k i n addition to the terms included 

in (3.30). The analogous expression in the continuum model [12] can be greatly 

simplified by boosting to the kink's rest frame, but this trick is not available to us 

here. These considerations cast doubt on the suggested procedure, at least in this case. 

However, one should note that a naive expansion of the Hamiltonian in A may not 

be the most physically relevant procedure when considering quantum kink dynamics. 

For example, one could imagine making the demand that the kink's "speed" (in an 

appropriate quantum sense) be of order A°. Given the kink's large mass in the weak 

coupling approximation, one would then expect the kink kinetic term to dominate 

the Hamiltonian. So the legitimacy of the suggested procedure remains an open and 

somewhat controversial question. 
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Chapter 4 

The dynamics of a CP^ lump on 

the sphere 

4.1 Introduction 

Sigma models have long been popular objects of study among theoretical physicists. 

They emerge as low energy effective theories of nuclear and particle physics and have 

applications i n condensed matter physics. They also provide a useful testing groimd 

for ideas whose eventual objective may concern more complicated theories. Probably 

the most studied sigma model is the CP^ model in (2-|-1) dimensions. In this case the 

problem of soliton dynamics can only be attempted analytically using the geodesic 

approximation. However, as we shall see, the model defined on flat space suffers f rom 

singularities in this approximation which is thus ill-defined. So we are motivated to 

consider the model defined on the two-sphere. Soliton dynamics in curved space is, 

in any case, an interesting subject. 

The CP^ model in flat space is a scalar field theory whose configuration space Q 

consists of finite energy maps f rom Euclidean R*̂  to the complex projective space CP^, 

the energy functional being constructed naturally f rom the Riemannian structures of 

the base and taxget spaces (that is, the model is a pure sigma model in the broad 

68 



sense). The requirement of f ini te energy imposes a boundary condition at spatial 

inf ini ty , that the field approaches the same constant value, independent of direction 

i n R^, so that the field may be regarded as a map f rom the one point compactification 

U {00} = 5^ to CP^ . Since CP^ = also, finite energy configurations are 

effectively maps 5^ —> 5^, the homotopy theory of which is well understood, and 

the configuration space is seen to consist of disconnnected sectors Qn labelled by an 

integer n , the "topological charge" (degree), 

Q=[jQn. (4.1) 

Each configuration is trapped wi th in its own sector because t ime evolution is contin

uous. 

The Lorentz invariant, time-dependent model is not integrable but complete solu

t ion of the static problem has been achieved by means of a Bogomol'nyi argument and 

the general charge n moduli space, the space of charge-n static solutions M„ C Qn, is 

known (that all static, finite energy solutions of the CP^ model saturate the Bogo

mol 'nyi bound is a non-trivial result [31]). Each static solution wi th in the charge-n 

sector has the same energy (minimum wi th in that sector and proportional to n ) , and 

M„ is parametrized by 4n -|- 2 parameters (the moduli) , so such a moduli space may 

be thought of as the (4n -|- 2)-dimensional level bot tom of a potential valley defined on 

the infini te dimensional charge-7i sector, Qn- Low energy dynamics may be approx

imated by motion restricted to this valley bot tom, a manifold embedded in the f u l l 

configuration space, and thus inherit ing f rom i t a non-trivial metric induced by the k i 

netic energy functional. The approximate dynamic problem is reduced to the geodesic 

problem w i t h this metric, and has been investigated by several authors [32, 33]. In the 

unit-charge sector one here encounters a diff icul ty: certain components of the metric 

are singular and the approximation is i l l defined. For example, unit-charge static 

solutions are localized lumps of energy wi th arbitrary spatial scale, so one of the six 
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moduli of M l is a scale parameter. Motion which changes this parameter is impeded 

by infini te inertia i n the geodesic approximation, a result in conflict w i th numerical 

evidence which suggests that lumps collapse under scaling perturbation [34 . 

This problem should not be present in the model defined on a compact two di

mensional physical space. The obvious choice is the 2-sphere because the homotopic 

par t i t ion of the configuration space carries through unchanged. Also, S"^ wi th the 

standard metric is conformally equivalent to Euclidean R^U { o o } , and the static CP* 

model energy functional is conformally invariant, so the whole flat space static anal

ysis is s t i l l valid and all the moduli spaces are known. However, the kinetic energy 

functional does change and induces a new, well defined metric on the unit-charge 

modul i space. By means of the isometry group derived f rom the spatial and internal 

symmetries of the f u l l field theory we can place restrictions on the possible structure 

of this metric, greatly simplifying its evaluation. The' geodesic problem is s t i l l too 

complicated to be solved analytically in general, but by identifying totally geodesic 

submanifolds, i t is possible to obtain the qualitative features of a number of interest

ing solutions. I n particular, the possibilities for lumps traveUing around the sphere 

are found to be unexpectedly varied. 

4.2 The CP^ model on 

The CP* model on the 2-sphere is defined by the Lagrangian 

where is a complex valued field, dS is the invariant S'^ measure and are the 

components of the inverse of the Lorentzian metric 

T ) = d f - d^n (4.3) 
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on R(time)x5'^(space), cPf] being the natural metric on 5^. Although the language 

of the CP^ model is analytically convenient, the homotopic classification and physical 

meaning of the field configurations are more easily visualized i f we exploit the well 

known equivalence to the 0{3) sigma model [35, 36]. In the latter, the scalar field is 

a three dimensional isovector ( f ) constrained to have unit length wi th respect to the 

Euclidean norm ( ^ -(^ s 1), that is, the target space is the 2-sphere of unit radius 

w i t h its natural metric, which we w i l l denote S^^^ for clarity. (The suffix refers to 

"isospace" in analogy w i t h the internal space of nuclear physics models.) The CP^ 

field W is then thought of as the stereographic image of in the equatorial plane, 

projected f rom the Nor th pole, (0 ,0 ,1) . Explici t ly, 

fW + W W-W \W\^-l\ 
[i + \w\^'i{i + \w\^yi + \w\^) ^ ̂  ^ 

and 

W ^ i ^ . (4.5) 

L[W] =L,[(i>] = \ I dSd^(f>- d,<j>ri^' (4.6) 
4 Js'^ 

the familiar 0 (3 ) sigma model Lagrangian. A W configuration, then, may be visual

ized as a distr ibution of unit length arrows over the surface of the physical 2-sphere 

5^p. Each smooth map S'^^-^S'^^^ falls into one of a discrete inf ini ty of disjoint homo

topy classes, each class associated wi th a unique integer which may be thought of as 

the topological degree of the map (see, for example [9]), so homotopic partit ion of the 

configuration space is buil t in to the model f rom the start. 

We also choose stereographic coordinates {x,y) on 5̂ p̂, in terms of which, 

M = diag ( l , (4.7) 

where r = yjx^ -\- y^, {x,y) takes all values in and a;° = t, = x, x^ = y. The 
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radius of 5'̂ , has been normalized to unity. The invariant measure is. 

dS = dx dy \J\ det(?7^^)| = 
dxdy 

( 1 + 7 - 2 ) 2 
(4.8) 

and so. 

L[W] = j d . d y — l 
(1 + |H^|2)2 I ( l + r 2 ) 2 

dW 

dx 

dW 

dy 
(4.9) 

We identify kinetic energy, 

T[W] = J dxdy \W\^ 
(4.10) 

and potential energy 

dW 
dx + dW 

dy 
(4.11) 

Note that the potential energy is identical to that for flat space by virtue of the 

conformal invariance of the static model (stereographic projection is a conformal 

transformation). Thus the famihar Bogomol'nyi argument [12] follows immediately 

and k run over 1,2 and x represents the R^ vector product in ( f ) space): 

0 < j dxdy {di(j) ± Cijcj) x dj<l)) • (5^0 ± e.i<^ x dkcj)) 

= 2 J dxdy [di<i} • di(f> =F e,j(5,<A X 5^0) • 4>], 

^V[W] = \ J dx dy d,cf>' dicj) 

> i 
- 2 

= 27r|n|. (4.12) 

where W is i n the degree n homotopy class, equality holding i f and only i f 

di(f) = ^^Cijcf) X dj(l), (4.13) 
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which, on substitution of (4.4) becomes the Cauchy-Riemann condition for W to be 

an analytic funct ion o{ z = x-\-iy (upper sign) or z = x — iy (lower sign). The former 

(latter) case corresponds to static solutions of positive (negative) degree, and i f W is 

single valued w i t h finite degree n , then i t must be a rational map of degree n in 2 i f 

n > 0 or in ^ i f n < 0. We shall deal w i t h the unit charge moduH space, consisting of 

all rational maps of degree 1 in z. Since the configuration space and moduli spaces 

of the flat space and spherical space models are diffeomorphic, we shall use the same 

notation {Q.,Qn,^n etc.) in both cases. 

4.3 The unit-charge moduli space 

The simplest static unit-charge solution is 

Wiz) = z (4.14) 

which we shall call the symmetric hedgehog because its (/) field points radially out

wards at al l points on Sf^.. Its energy density is uniformly distributed, so i t is not 

really a lump. Since the static model is conformally invariant, any configuration ob

tained f rom this by a Mobius transformation must be another point on the moduli 

space. I n fact the orbit oi W = z under the Mobius group is the space of degree 1 

rational maps, each map being generated by one and only one group element. Thus 

we may identify the moduli space wi th the parameter space of the Mobius group. 

There is a well known matr ix representation of Mobius transformations [37] which 

we denote thus: 

W(z) = ^ i i ^ 
( a b \ 

yc d j 
Qz = MQz (4.15) 

where M G GL{2, C) so. that det M ^ Q. The last condition ensures the invertibil ty 

of the transformation and fixes the degree of at 1. The Mobius group product 
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becomes matr ix mult ipl icat ion, 

M2 0 ( M l Qz) = (M2M1) 0 z (4.16) 

where the left hand side means 

in obvious notation. A l l matrices differing by a constant factor yield the same config

uration, and det M ^ 0 so when we divide by this scaling equivalence we can choose 

a unimodular matr ix as the representative for each equivalence class. There are two 

such matrices possible for each distinct configuration because i f M is unimodular, so 

is — M . Thus SL{2,C) is a double cover of the moduli space, which we recover by 

dividing out the equivalence M ' ~ M <^ M' = ±M: the moduli space is SL{2, C ) / Z 2 . 

Coincidentally, SL{2, C) is also a double cover of the proper orthochronous Lorentz 

group. The statement that any Lorentz transformation may be formed by a unique 

composition of a boost then a rotation (or vice versa) translates to the existence, for 

all M G SL{2,C), of U G SU{2) and / f , a positive definite, unimodular, Hermitian 

2 x 2 matr ix (call this set H), satisfying 

M = UH (4.18) 

both U and H being unique [38]. I t follows that the space SL(2,C) is locally a 

product of (the group manifold of SU{2)) and R^ (the parameter space of 7i), a 

result which generalizes globally, SL{2, C) = 5^ x R^. 

We may choose local coordinates on 5'X(2, C) by defining the standard Euler 
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angles ( q , / ? , 7) on 

U = 
I cos ^e'(^+^)/2 sin ^e"(^-^)/2 \ 

- s i n f e - ' (^ -^ ) /2 c o s f e - W / 2 
(4.19) 

and expanding H i n terms of Pauli matrices r . 

^ = A I + A • r = 
A -|- A3 Ai — 1X2 

^ Ai -h 1X2 A - A3 ^ 
(4.20) 

A(A) being chosen to ensure the unimodular and postive definite properties: 

A = V T + A 2 . (4.21) 

The 3-vector A (modulus |A| = A) takes all values in E ^ , while /? G [0,4x], 7 G [0,27r 

and a G [0 ,7r] . These ranges allow M to take all values in the double cover 5Z(2 ,C) . 

I n analyzing the structure of the metric, i t is convenient to work wi th 5'Z(2,C), 

checking that the metric is single valued under the identification of M w i th —M. 

The true moduli space SL{2,C)/Z2 is charted by the same coordinates but wi th {3 

ly ing i n the reduced range [0,27r], for U is then restricted to the "upper half" of S^. 

The chart has a coordinate singularity at a = 0 and at a = tt. The explicit cormexion 

between a point in M i and the corresponding static solution wi l l be made in section 

4.5, below. 

4.4 The induced metric and its isometry group 

Field dynamics of the CP^ model may be visualized as the dynamics of a point par

ticle w i th "position" W : Sf^ —* S^^ moving in an infinite-dimensional configuration 

space. A solution W{t, x, y) of the field equations is thought of as a trajectory in this 

space, motion on which is determined by metric T[V^] and potential F [ W ] . In the 
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unit-charge sector, the Bogomol'nyi argument shows that there is a six-dimensional 

subspace on which the potential achieves its topological min imum value of 27r, and 

that any perturbation departing f rom this subspace must involve increasing V. I f a 

configuration si t t ing at the bot tom of this potential valley is given a small velocity 

tangential to i t then we expect the ensuing time-evolved field to stay close to the val

ley bot tom, for departure f rom i t entails climbing up the valley walls. In the geodesic 

approximation [10] we restrict motion to the valley bottom, assuming that orthogonal 

modes are insignificant. 

Thus, at all times W{t, x, y ) is a solution of the static model, but we allow the 

moduli { A , a , , 3 , 7 } , denoted collectively by {q* : i = 1 . . . 6 } , to vary wi th time in 

accordance wi th the inherited action principle. So, 

dW 
W = ^ i ; (4.22) 

and the Lagrangian is 

/ dxdy dWdW 

Defining the induced metric, 

= = 2 / ( 4 . 2 4 ) 

and ignoring the irrelevant constant, the Lagrangian is recast as that of a free particle 

moving on a Riemannian manifold w i t h metric g: 

L = \9iji<lW- (4.25) 

The equations of motion are the geodesic equations. In principle all we need do is 

evaluate the integrals of (4.24), but these are 21 functions of 6 variables so as i t stands 

this is intractable i n practice. I t is profitable to take a more circumspect approach, 
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using symmetries of the model to place restrictions on the structure of g. 

Consider the rotation group 5 0 ( 3 ) acting on S"^^ and Sl^. The former is the group 

of spatial rotations (under which W, or equivalently transforms as a scalar) while 

the latter is the group of global internal rotations (henceforth called "isorotations") 

of the ( f ) field of which W is the stereographic image. Any such transformation T 

leaves invariant (a) the topological charge, so T is a bijection T : Qn Q^, (b) the 

potential energy, so w i t h i n Qn static solutions are mapped to other static solutions, 

T : M„ —> M„, and (c) the kinetic energy, which induces the metric on M„. Hence 

T is an isometry of (Mi ,5). The SU{2) subgroup of the Mobius group's double 

cover, 5^ (2 , C ) , acting via the operation 0 defined by equation (4.15) is the double 

cover of the group of rotations of the 2-sphere [37] considered as operations on the 

projective plane (spatial or internal, ie acting on z = x + iy or W). Thus we find that 

{L,ReSV{2),M eSL{2,£)\ 

LM ^ W{z) ^ L 0 {W{z)) (4.26) 

produces an isorotation of the configuration W{z) — M 0 2 , while 

M^MR^ W{z) ^ W{R 0 z) (4.27) 

produces a spatial rotation, both isometries of the induced metric. 

The action of the isorotation on the moduli space is simple: 

M = UH ^ LUH (4.28) 

^ LU 

H ^ H. 

The isometry takes the SU{2) left mult ipl icat ion action on /'L2 while leaving the 

^ moduli A unchanged. Using a technique standard in the analysis of isometries in 
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general relat ivi ty [39], we change f rom the coordinate basis on S^fli-ii {d'^,d(3,d'y}, to 

a non-coordinate basis, in this case the left-invariant 1-forms of the Lie group SU{2). 

These may be found by expanding the left-invariant 1-form U'^dU in terms of a 

convenient basis of the Lie algebra su{2), for example iT/2. Explicitly, 

U-'dU = ( T - i y (4.29) 
V2 / 

where 

cTi = — sin 7 c/a-H cos 7 sin a c?/9 (4.30) 

(72 = cos 7 c?a - f sin 7 sin a dl3 

<T3 = cosadj3 + d'j. 

I f we evaluate the metric at one particular point on S^/Z2, for all possible A G R^, we 

can obtain the metric at all other points on S^/Z2 because S^/Z2 is the isorotation 

orbit of our base point, and isorotation is an isometry, so the metric must remain 

constant (for each A) over the entire orbit . "Constant" means unchanging when 

considered as a geometric object, not that the components wi th respect to the original 

coordinate basis are constant, because the basis vectors themselves transform non-

trivi.ally. The basis of (4.30) is invariant however, so the metric must be of the form 

g = /ia6(A)<TaCr6 -|- I/ai(A)(Ta JAfc -|- 7rab{\)dXadXb, (4-31) 

where a, 6 = 1,2,3 and each of the component functions is independent of ( 0 , ^ , 7 ) . 

Let us now consider the spatial rotations: 

M = UH ^ MR = URB}HR (4.32) 

^ UR 

H ^ R^HRen. 
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The latter i n terms of coordinates is 

H = VTT^I + ><-T^VTTX^I + R \ \ - T ) R . (4.33) 

The action of conjugation of the Hermitian, traceless matr ix A - r by a unitary matrix 

R is well known [40] - i t is equivalent to a 5 0 ( 3 ) rotation of A: 

R\X-T)R = {n\)-T (4.34) 

where 7^ € 5 0 ( 3 ) w i t h components Tlab = ltv{TaR^nR). The action on the left-

invariant 1-forms tr is similar. Under U ^ UR, 

U-'dU ^ R\U-UU)R (4.35) 

^ ' - a . r - '-R\a.r)R = i{ncT.r) 

^ a v-^ Tlar 

where li. is the same 5 0 ( 3 ) matr ix defined above. Thus both A and a transform as 

3-vectors under spatial rotations and as scalars under isorotations. 

The metric must be invariant under spatial rotations also, so the task is to con

struct f rom A, d\ and a the most general possible (0,2) tensor which is scalar under 

these rotations. This is 

g = Ad\-dX + B(X-dXy + C(r-tT + D{X-(Ty (4.36) 

+E<T-dX + Fix • dX){X • ir) + G{X x f f ) - d X 

A—G being 7 unknown functions of A = |A| only. 

The metric may be restricted st i l l further on consideration of a discrete isometry. 

The kinetic energy is invariant under the discrete "parity" transformations : 2 i-> 2 

and Pw : W W. However, neither is an isometry of the moduli space because 

79 



each reverses the sign of the topological charge, mapping lumps to anti-lumps. The 

composite transformation o is an isometry. Using the configuration of (4.15), 

az-\rh az + b -
Wiz) I—> I—> = = M Q z. 

^ ' cz + d cz + d 
(4.37) 

In terms of the moduli, M i—> M is the transformation, 

= (<7l,<72,<T3) ( - ( T i , < T 2 , - ( T 3 ) 

A = (Ai,A2,A3) ^ (Ai , -A2,A3) . 

(4.38) 

This isometry removes two of the terms in (4.36) because under it. 

a • dXi-^ —a • d\, (4.39) 

and 

(A • d\){X • a) ̂  - ( A • dX){\ • a) (4.40) 

so that E{X) = F(X) = 0. 

The remaining five functions of A are evaluated by choosing convenient orientations 

for A , positions on S^/Z2 and tangent vectors (velocities), then calculating the kinetic 

energy and comparing with (4.36). Repeating this four times it is possible to extract 

the following (see figure 4.1): 

A 

B 

C 

D 

G 

= 47r52(x) 
47r 

A2 1 + A 2 
TT 
2 - 2T5X(X) 

T T 

A2 

A 

6 5 I ( X ) - 2 

(4.41) 
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where, 

Figure 4.1: The metric functions A,B^C and D. 

X(A) 

Siix) 

S2ix) 

2{x' - ir 
X 

ix' - ly 

{x' + l)\ogx'-2x' + 2 

x'-2x'\ogx'-l 

(4.42) 

Note that x is a strictly increasing function of A, and that x '• [0,oo) [l,oo). 

There appear to be divergences of the functions A—D at A = 0, but these are in fact 

removable singularities, so all the limits of vanishing A exist. Although B and D are 

negative it is straightforward to show that this metric is positive definite, as of course 

it must be. In summary then, the metric is 

g = AdX • d\ + B{\ • d\f + C a • a + D{\ - (Tf + A{Xx a) • d\. (4.43) 
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4.5 Some totally geodesic submanifolds 

Before discussing geodesies of the metric (4.43) we must describe the connexion be

tween a point on the moduli space (5^/Z2) x and its corresponding field configura

tion. Consider first the 3-dimensional submanifold defined hy U = 1, parametrized by 

A e R^. Any point in this subspace may be written as A = HX' where A' = (0,0, A), 

A > 0 and TZ € S0{3). The lump represented by A' is 

W'{z) = {X'.T)Qz= ^ ^ ^ ± A j , = ^(A) , . (4.44) 

This is a distorted hedgehog with the arrows pulled towards the North pole. The 

larger A is, so the larger x is and the greater is the distortion. Although it is usual to 

define the position of a lump as the position of maximum energy density, we shall refer 

to this as a lump of sharpness A located at A = (0,0,1), the antipodal point to the 

energy density peak which occurs where the arrows are stretched apart. Obviously the 

motion of any point is trivially mirrored by its antipodal image, so this terminology 

makes sense. The lump represented by A is 

Wiz) = {nX'-T)ez = [R\X'-r)R]Qz (4.45) 

= [R^{X'-T)]Q{RQz) = R^Q[W'iRQz)]. 

This configuration is formed by first performing a spatial rotation - taking the (f> 

arrow at the old point z and placing it at the new point R Q z without changing 

its orientation - then performing the inverse isorotation. The result looks like the 

arrows have been fixed to S^^ which has then been rotated by Tl which, as defined, 

has the action on equivalent to R\ not R, acting on C P ^ via 0 . That is, if we 

define P to be stereographic projection, P : —»CP^ so that P : </> i-^ then 

V -.llcj)^ R^ QW. So the lump at the North pole is shifted to A = 7^A'. 

All other points on the moduli space are on the isorotation orbit of this subman-
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ifold, and isorotation, while changing the internal orientation of the lump, does not 

move the lump around on physical space. Thus we can always interpret A as the 

lump's position, and A as parametrizing its sharpness. The symmetric hedgehog has 

A = 0, and large A lumps have taller, narrower energy density peaks than small A 

lumps. 

One way of attacking the geodesic problem is to reduce its dimension by iden

tifying totally geodesic submanifolds, that is, choosing initial value problems whose 

solution is simplified by some symmetry. The easiest method for identifying such 

submanifolds is to find fixed point sets of discrete groups of isometrics. Any isometry 

maps geodesies to geodesies, so if there were a geodesic starting off in the fixed point 

set of the isometry and subsequently deviating from it, this would be mapped under 

the isometry to another geodesic, identical to the first throughout its length in the 

fixed point set, but deviating from the set in a different direction. This violates the 

uniqueness of solutions of ordinary differential equations, so no such geodesic may 

exist. If the initial data are a point on the fixed point set and a velocity tangential 

to it, then the geodesic must remain on the fixed point set for all subsequent time. 

Examining (4.43) we see that A —* —A is an isometry. Its fixed point set is 5'^/Z2, 

the isorotation orbit of the symmetric hedgehog, on which the metric is 

5 = ^o- • flr. (4.46) 

The kinetic energy is the rotational energy of a totally symmetric rigid body, moment 

of inertia 7r/6. The solutions are just isorotations of the symmetric hedgehog at 

constant frequency about some fixed axis. In this case isorotation is equivalent to 

spatial rotation because X = 0 H = 1. 

A less trivial geodesic submanifold is the fixed point set of the parity transforma

tion described above, M ^ M. This is a 3-dimensional manifold, the product of the 

plane A2 = 0 in with the circle { a £ [0,7r],y5 = 7 = 0} U { a G [0,7r],/? = 7 = T T } 

in jlj-i. The circle is more conveniently parametrized if we temporarily allow a the 
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domain [0,27r], for it is then { a G [0,2%],/3 = 7 = 0 } . This space contains lumps 

of arbitrary sharpness located on a great circle through the poles of S^^, each lump 

having an internal phase, so certain of its geodesies may be candidates for "travelling 

lumps." Introducing spherical polar coordinates for A , 

A = A(sin B cos ^, sin 6 sin (ft, cos 6), (4.47) 

the plane A2 = 0 is parametrized by (A,^) where 9 6 [0,27r], again gluing two semi

circles together and extending the domain of 6 to cover the whole circle in one go. 

The metric on this geodesic submanifold is 

5 = (A + \''B)dX^ + X^Ad6'' + C da'' - A M d6 da. (4.48) 

So the kinetic energy is 

^ 4 A M ( C - A M / 4 ) C - A M / 4 
(4.49) 

where we have used the cyclicity of 6 and a to eliminate 9 and a in favour of their 

constant, canonically conjugate momenta, 

pe = A M ( ^ ^ - i a ) (4.50) 

= Ca-^X^A9. 

Note that constant pe (pa) does not imply constant 9 (a), nor does pe = 0 {pa = 0) 

imply 9 = 0(a = 0). 

This system can be visualized as a point particle of position dependent mass 

(A + X^B) moving in a potential. It is the form of the potential which determines the 
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Figure 4.2: The potential functions Vfi(A) and Vo(A). 

broad qualitative features of its behaviour: 

(4.51) 

As can be seen from figure 4.2 while Ve(A) is monotonically decreasing, Va(A) is 

monotonically increasing. This allows the possibihty of potential minima where the 

forces —plV'g{X) outwards (in the sense of increasing A) and Pa{Pa +Pe)Va{X) inwards 

are in stable equilibrium. It certainly is not possible if Pa{pa + Pe) < 0, for then 

V ( A ) as a whole is monotonically decreasing. This region in the {pa,Pe) plane is 

shown shaded in figure 4.3. Whatever the initial conditions on A, the lump always 

moves towards infinite A without passing through A = 0 (which would correspond 

to the lump swapping hemispheres), reaching the singularity A = oo, an infinitely 

tall, sharp spike, in finite time. Thus (Mi, g) is geodesically incomplete. This result 

follows from the rapid vanishing of the inertia to sharpening, A + X'^B, in the large A 

limit (see figure 4.4). For example, consider the simple case p^ = pg = 0 and let A(0) 

and A(0) be strictly positive. It is easily seen that ôo) the time taken to reach the 
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Pa 

Figure 4.3: The { p a , p $ ) plane. The instability region is shaded and includes boundaries. 

singular spike is proportional to the following integral: 

too oc r dX JA{X) + XW{X). (4.52) 

The integrand is finite over the integration range (even if A(0) = 0), so if ôo diverges 

it can only be due to the large A behaviour. But the integrand vanishes hke (log A)/A^ 

at large A, fast enough to ensure convergence. The inclusion of repulsive potentials 

can only make matters, worse, so this singular behaviour extends to the rest of the 

shaded area. 

In the unshaded region, one can define the positive constant K = pg/{Pa + PaPe) 

such that 

V(A) = p^{p, + pe) (KVeiX) + V„(A)). (4.53) 

Then the forms of the functions —V'g and (see figure 4.5) suggest that for each A, 

there is one (and only one) value of K (call it /c) for which V has a minimum at A. 

86 



m 

Figure 4.4: The inertia to sharpening, A + X'B. 

The equilibrium condition is V'(A) = 0, so 

K ( A ) = (4.54) 

Inverting the definition of K we find that there are two distinct values of Pa/pe for 

each K. If Pa/pe takes one of these and A(0) = 0 then A will not subsequently change 

and hence a arid 9 will also remain constant, allowing the lump to travel around a 

great circle on S^^ with constant speed and shape while undergoing constant frequency 

isorotation. The two values are 

1 / I 1 (4.55) 

Substituting (4.50) we can find the corresponding pair of stable ratios a/9 as functions 

of A, 
X'A{X){2ui{X) + l ) 

(4.56) 
2C(A) + AM(A)i/±(A)' 

(see figure 4.6). Thus, for any lump sharpness A and travel speed 9 there are two 
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shrinKing force 

spreading force 

Figure 4.5: The outward (shrinking) force, —V'g{X) and the inward (spreading) force, 
V^(A). The vertical scales of the two curves are different. 

possible isorotation frequencies a which allow stable, uniform travel and these two 

stability "branches" never coincide. It is interesting to note that limA-̂ oo'*^+(A) = 1 

meaning that very tall, sharp lumps can travel uniformly with a fa 9. Motion with 

constant A and Q = ^ is simply constant speed spatial rotation carrying the lump 

around a great circle. So when the extent of the lump's structure is negligible relative 

to the radius of curvature of ^.p, it can travel in analogous fashion to a flat-space 

C P ^ lump [32 . 

Since K{X) takes all positive values, whatever value K takes there is an equilibrium 

A. If A(0) is near this value, then (assuming |A(0)| is not too large) the shape of the 

lump will oscillate periodically about the preferred sharpness, and its speed of travel 

round the sphere will vary with the same period. If |A(0)| is too large, or the lump 

is initially much too spread out for its K, then it will escape to the singular spike in 

finite time. 

Let us examine the concrete example pg = pa. Figure 4.7 shows the potential 

V with its minimum and the lump travel speed 9 as functions of A. We imagine a 
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Figure 4.6: The stable frequency ratios, ajd = a;±(A). The upper curve w_(A) tends to 
infinity at large A. 
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2.6 I TTT- T 1 r 

2.4 

2.2 

^ 2.5 

Figure 4.7: The pe = case: potential V and speed 9. 
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particle of position dependent mass moving in this potential and for simplicity taJce 

A(0) = 0. Clearly, if we release the particle with A(0) < X^ ~ 0.626, it will move off to 

infinity, the last case mentioned above. But if A(0) > A^, oscillatory motion ensues. 

Even here there are two qualitatively different cases, because ^(A) has an absolute 

minimum at Ac w 2.096, a turning point which is only reached if A(0) < As « 0.789 

(or A(0) > Ac). If Ajg < A(0) < Ac then the speed of travel oscillates in simple phase 

with the lump sharpness, going from fast, spread-out lump to slow, sharp lump and 

back again. But if A^ < A(0) < A^ or A(0) > Ac the speed undergoes an extra wobble 

during the middle of the sharpness cycle, speeding up then slowing down again as it 

passes through its maximum sharpness. This case corresponds to lumps whose shape 

oscillates more acutely. 

Other interesting geodesic submanifolds are generated by computing the fixed 

point sets of the isometrics M i-> (iTa)^M(iTfc), simultaneous isorotation and 

spatial rotation by T T about the a and b axes respectively: 

U ^ {iTayu(in), 

H ^ {in)^H{in) 

Ac c = b 
(4.57) 

-Ac c^b. 
Ac 

Thus if 9 e Sa6 A must point along the fe-axis. On Ebb, U = exp(iipTb/2) where 

G [0,27r], whereas if a = 6 ± 1 mod 3 then U = exp(±i7rrc/4) exp(z^Tfc/2) where 

c = 6^ 1 mod 3. It follows that or also points along the 6-axis, independent of a. The 

a ^ b submanifolds are the images of St;, under ±7r/2 isorotations about the three 

axes, so it suffices to solve the geodesic problem on - geodesies on Sa6,a ^ b, 

are then obtained by acting with the appropriate isometry. The choice of b doesn't 

matter, and we choose to study the cylinder S33 = 5^ x R consisting of lumps of 

every sharpness located at the North (South) pole if A3 > 0 (A3 < 0), arbitrarily 

rotated about the North-South axis. Note that [[/, H] = 0 on S33 so "isorotated" and 
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Figure 4.8: Potential, Vv,(A3). 

"spatially rotated" mean the same thing in this case. 

The kinetic energy on E33 is 

{A + XlB)Xl + Pi 
c + xw 

where once again p^ is the momentum conjugate to 0, 

(4.58) 

p^ = {C + XlD)iP, (4.59) 

and is constant by virtue of the cyclicity of tp. This looks like a particle in one 

dimension moving in a potential 

Pi 1 
2 n^ = oPt^^ 2 ( C + XlD) 2 

(4.60) 

with postion dependent mass. From the potential (figure 4.8) we see that all motion 

is oscillatory and that A3 periodically changes sign. Thus a lump set spinning about 

its own axis will spread out, its rotation slowing, until it is uniformly spread over 
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s=p 

s=0 

s=-p 

Figure 4.9: A sketch of the geodesic submanifold S33 embedded as a surface of revolution 
in R^. 

the sphere, whereupon it will shrink to its mirror image in the opposite hemisphere, 

regaining its original spin speed as it does so. The process then reverses and the lump 

"bounces" between antipodal points indefinitely. 

Defining the new coordinate 

^{X^) = d^c,/A{fi) + fi^Bif^), (4.61) 

which takes values in a finite open interval {—p,p) symmetric about s = 0, the metric 

on S 3 3 becomes 

g = ds'' + H\s)di>'' (4.62) 

where H"^ (^(Aa)) = C(A3) -f- XlD{X^). Since \dHlds\ < 1 Vs, the manifold may 

be embedded as a surface of revolution in and geodesies on it can be visualized 
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directly. Figure 4.9 is a sketch of the embedded surface, which is of finite length 

and sausage-shaped with its ends pinched to infinitely sharp spikes, the tips of which 

are the points A3 = ± 0 0 and so are missing. The coordinates {s,if}) are geodesic 

orthogonal coordinates: a curve of constant ^ is a geodesic along the length of the 

cylinder, lying in a plane containing the cylinder's axis, parametrized by arc length 

s, while a curve of constant 5 is a circle of radius H{s), lying in a plane orthogonal 

to the cylinder's axis. Two such curves always intersect at right angles. 

The spinning geodesies described above wind around the cylinder, never reaching 

the ends (this would violate conservation of "angular momentum") but winding back 

and forth between two circles s = ±p, p < p which they touch tangentially. The 

angle <fi at which the geodesic intersects the circle s = 0 determines p. When tp = 0 

the geodesic stays on the circle, p = 0 (a. spinning symmetric hedgehog) and p{(p) 

monotonically increases, tending to the supremum./) as <p tends to 7r/2 {if = 7r/2 is 

an irrotational geodesic between antipodal singular spikes). Note that the geodesic 

incompleteness already mentioned appears again, this time characterized by the finite 

length of the cylinder and the missing points s = ±p {X3 = ±00) . 

4.6 Concluding remarks 

The behaviour of isolated topological soUtons in flat space is generally rather trivial, 

whereas, as we have seen, despite the homogeneity of 5^, the motion of a single lump 

on the sphere is surprisingly complicated. It does travel on great circles, but while 

doing so its shape may oscillate in phase with its speed, whose periodic variation is 

of one of two types depending on the violence of the shape oscillations, or it may 

collapse to an infinitely tall, thin spike in finite time. A lump sent spinning about its 

own axis spreads out then re-forms in the opposite hemisphere, endlessly commuting 

between antipodal points. 

The infinities in the unit-charge metric in flat space can be attributed to the 
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lumps' polynomial tail-off: the kinetic energy needed to rigidly spin or scale-deform a 

lump diverges because such motions involve changing the field at spatial infinity. The 

CP^ model on any compact space should be free of this problem because the kinetic 

energy, being an integral over a space of finite volume, must be finite provided the 

kinetic energy density is non-singular. Conversely, one would expect the singularity 

to persist in the model defined on hyperbolic space. 

The flat-space C P ^ model can be made more "physical" by adding a (2 -|- 1)-

dimensional version of the Skyrme term to stabilize against lump collapse, and a 

potential to stabilize against spread. The Bogomol'nyi bound remains valid but im-

saturable. The potential is somewhat arbitrary, but one interesting possibiHty [41 

gives a mass to small amplitude travelling waves of the (j> field, termed pions in analogy 

with the Skyrme model, and gives the lump an exponential rather than polynomial 

tail. This allows the lump to rotate, a problem if one attempts a collective coordinate 

approximation to low-energy dynamics along the lines recently proposed in [42, 43]. 

The idea is to restrict the field to the "Bogomo'nyi regime" moduli space (in this case 

the space of static C P ^ solutions), introducing a potential and a perturbed metric 

(in [42] but not [43]) to account for the new interactions, which are assumed to be 

weak. There seems Httle hope of perturbing the singular flat-space metric such that 

rotations become possible, but the problem does not arise on the sphere. 

The geodesic approximation could be used to investigate the interaction of two 

lumps moving on 5^. Right angle scattering in head on collisions emerges naturally 

from the geodesic approximation of many flat-space models as a consequence of the 

classical indistinguishability of topological solitons. It would be interesting to see 

if there is some analogous behaviour on the sphere. However, evaluating the two-

lump metric could be difficult since the action of the isometry group on the charge-2 

moduli space is far less accessible than in the present case. Even in flat space [33], 

the scattering problem is sufficiently complicated to require considerable numerical 

effort. 
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Chapter 5 

Inter vortex forces 

5.1 Introduction 

The abelian Higgs model is a field theory in (2 + 1) dimensional Minkowski space 

consisting of a complex-valued scalar field (j), coupled to a {/(I) gauge field A^. The 

scalar field is given a Higgs symmetry breaking self-interaction which allows topo-

logically stable solitons, called vortices, to exist. This symmetry breaking property 

is of great interest to cosmologists, who study gauge symmetries (Grand Unified or 

electroweak) which are broken as the Universe undergoes a phase transition during 

expansion and cooling. The abelian Higgs model in (3 -h 1) dimensions provides the 

simplest example of a broken symmetry yielding cosmic strings, which may explain 

the inhomogeneity of large-scale cosmological matter distribution. The study below 

concerns vortices in the (2 -f- 1) dimensional theory, which may be thought of as a 

cross-sectional slice through parallel, straight strings in the larger space. The model 

also has applications in superconductivity theory. We, however, shall treat vortices 

purely as solitons in their own right, independently of any applications. 

Let us review the salient features of the abelian Higgs model [4, 44, 45]. We adopt 

the standard conventions for Minkowski space. Spacetime coordinates are written 

(collectively a;), where fi (as any other Greek index) runs over 0,1,2; time is the 

96 



zeroth component, x° = and we will often write the spatial pair (x^, x^) as a 2-vector 

x; (d^) = (d/dx^) = {d/dt,V). Indices are raised and lowered by contraction with 

the Minkowski metric, (T/^K) = diag(l, —1, —1). The summation convention applies 

throughout. The Lagrangian density is 

C = \D,<fDi^ - \F,.F>^'^ - ^{\<j>\' - l ) \ (5.1) 

where D^<f) is the gauge covariant derivative, 

D^(t> = {d^ + iA,)(j>, (5.2) 

and F^j,u is the field strength tensor, 

F^, = d^A, - duA^. (5.3) 

Note that that the electric charge and the vacuum magnitude of the Higgs field have 

been normalized to unity, leaving one parameter //, the Higgs mass. The Lagrangian 

density is symmetric under U{1) gauge transformations as follows: let x be any 

smooth, real function on Minkowski space, x '• then the transformation 

A^ ^ A^-dt,x (5.4) 

locally redefines the phase of ^i, and maps 

F^, H -> F^, 

(5.5) 

so that £ ( - > £ . This symmetry group is vast - the space of all smooth maps from 
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Minkowski space to the circle, R̂ "*"̂  S^. 

The Euler-Lagrange equations derived from C are a set of coupled, nonlinear, 

hyperbolic partial differential equations, of which no nontrivial solutions are known. 

To make progress we must dismantle the relativistic framework and concentrate on E, 

the energy rather than action functional. The kinetic and potential energy functionals 

are, respectively, 

T = \Jd'^{\i\' + \A\') (5.6) 

(5.7) 

where gauge freedom has been used to set Aq S 0, leaving only time independent 

transformations available ( D ^ denotes the 2-vector part of the covector D^tj), so = 

V<l) — iA<p] note the minus sign). The variational problem with action / cPx{T— V) is 

then the same as that with action / cPxC, provided we also impose the Euler-Lagrange 

equation associated with Aq as & constraint: 

V • A + i ( # * - fcj>) = 0. (5.8) 

For a configuration (?!>, A ) to have finite total energy, the integrand of (5.7) must 

vanish at large r = \x.\. This imposes the following boundary conditions at spatial 

infinity: 

-> 1 (5.9) 

i<l) 
B4> ^ 0=^ A-^ (5.10) 

Introducing angular coordinate 6, we can rewrite (5.9), 

<P^{e):=\im<f>{r,e) = e^^('\ (5.11) 
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that is, (?!)oo : 5^ 5^. Single valuedness of (/"demands that 7(0) = 7(27r)+2n7r,n e Z, 

and the winding number n is invariant under any continuous deformation of ^ 0 0 • It 

follows that each finite energy configuration has associated with it a winding niunber 

n, invariant under any continuous deformation preserving finiteness of energy (time 

evolution, for example). Thus configuration space is a disjoint union of sectors, each 

labelled by an integer n. 

The winding number has very direct physical significance. We introduce a ficti

tious third spatial dimension orthogonal to physical R^, with unit vector k. Then 

i^i2k = —{d\A^-d2A^)k = - c u r l A , so we define B := --Pi2k and call it the magnetic 

field. (In fact, the only reason for introducing k is to allow the definition of the vector 

product between vectors; it may be regarded as a purely algebraic device.) Con

tinuing the analogy, we can define the magnetic flux through the physical plane, 

denoted P , 

J^dS-B = J^dS- curlA = jf^(fs • A , (5.12) 

using Stokes' theorem. Substitute (5.11) into (5.10), the second finite energy condi

tion: 

\imr0-A = j'{e). (5.13) 

Thus, 

^= \im J dere-A= J dei{6) = 2n7r. (5.14) 

So the magnetic flux is quantized in multiples of 27r, and the winding number of a 

configuration is the number of flux quanta associated with it, a topologically conserved 

quantity. 

By continuity, a configuration with winding n must have exactly n zeros (of the 

Higgs field) in the plane, counted with multiplicity. A zero Xi € R^ (so that (^(xi) = 0) 

has multiplicity ni if on completing an infinitesimally small loop encircling Xi the 

Higgs field acquires a phase of 2ni7r. Once again, single valuedness of ^ requires that 

ni € Z . A configuration with n = 1, and with this winding centred on only one 
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Figure 5.1: The Higgs symmetry breaking potential. Note that <̂  = 0 is a local maximum. 

simple zero, is called a vortex, and the n = 1 sector of configuration space is called 

the vortex sector. The image of a vortex under the parity bijection (a symmetry 

of the model) a;̂  —> x^,x^ —> —rr^ is the analogous n = — 1 configuration, called 

an antivortex. In fact entire negative winding sectors are paired with their positive 

winding counterparts in this way, so we may (and henceforth will), without loss of 

generality, consider only the n > 0 sectors. Examining the symmetry breaking po

tential (figure 5.1) we see that a zero of ^ is likely to be a local maximum, or close 

to a local maximum, of the configuration's potential energy density (the integrand of 

(5.7)). So, a vortex has an energy lump located at its single zero, and is topologically 

stable - it is a soliton. It is natural to identify the zero as the vortex position. For 

more general configurations, a multiplicity Ui zero, X i , is regarded as Ui coincident 

vortices (antivortices if n i < 0). In this way any configuration can be assigned a 

vortex number and an antivortex number, and interpreted as a collection of vortices 

and antivortices located at its zeros. During time evolution the loci of these zeros are 

(anti-)vortex trajectories: where vortex meets antivortex they ma.y unwind, annihi

lating and releasing their pent-up energy; where two vortices meet they may coalesce, 

forming a bound state, or undergo scattering. It is this last phenomenon which we 

will attempt to analyze. 
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Numerical experiments [46] show that vortex dynamics splits into three regimes, 

depending on the value oi fi. If ^ < 1 (the so-called type I case), vortices attract 

and the only static n-vortex solution is n coincident vortices. By contrast, if /i > 1 

(type II) vortices repel. Again, the only static solution is n coincident vortices, 

but it is unstable unless n = 1. The critical case /x = 1 is mathematically most 

interesting. Static vortices neither attract nor repel, and static solutions exist for 

all vortex positions. The Hnk between vortex position and zero of cf) has a precise 

expression in Taubes' theorem, which establishes a bijection between sets of zeros in 

physical R^ and static solutions. 

Crucial to this analysis is the Bogomol'nyi argument [14]. Let (^,.A) be a static 

configuration. Since ^ = 0, A = 0, the constraint (5.8) is trivially satisfied and 

T = 0, so the field variational problem reduces to extremizing (in fact, minimizing) 

the potential energy functional. The minimals within each sector can be found using 

a Bogomol'nyi argument somewhat more subtle than in the sine-Gordon and C P ^ 

models. Assuming positive winding, we start from the trivial inequality, 

0 < yd'x!^\D^<f> + W2<l>\'+[-Fr2 + \ M ' - l ) f ^ 

= E+yd'^[i{D2(l>D;^-Dr<l>D^)-Fu{\<i>\'-l)], (5.15) 

since E = V for static fields. Now, 

D2<t>Dx(l> - Di(j)D2(j> = d2(j>Di(i) - dx(j>D2^ ^-i<i>{A2Dx(j> - A^D2(j>) 

d2{<l>Dr(f>) - dx{(f>D2<f>) 

-(i>{d2Dx^ - diD2<t> - iA2Di(l) + iAiD2<f>) 

= d2{(l>D,(f>) - dii<j>D2<l)) + <f>{DxD2<i> - D2Dx<j>y 

= d2{'t>Drcj>)-di{(t>D2<f>)-iWFu, (5.16) 

since [Z)^, D^,] = iFf^^,. Note that the first two terms of (5.16), above, may be written 
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in language as —k • curl(^D(?i>). Substituting into (5.15), 

0 < E-'- I dS- cm\{cj>D^) + i / d ^ x F u 
2 Jp 2 J 

= E - ' - £ ^ d s . { m ) - \ ^ , (5.17) 

using Stokes' theorem. Finite energy requires that Y)(j) = 0 on dP, so the boundary 

integral vanishes. Hence, by flux quantization (5.14), 

E>mr, (5.18) 

equality holding if and only if 

{Di+iD2)(l> = 0, 

-Fu + \ m ' - l ) = 0. (5.19) 

Of course, the bound is valid for time-varying fields also since kinetic energy cannot 

be negative, but it can only be saturated by static fields. Once again, the Bogomol'nyi 

equations are first order, in contrast with the Euler-Lagrange equations, which are 

second order. 

No explicit, nontrivial solutions of the Bogomol'nyi equations are known. However, 

Taubes has proved [47] that for each unordered set of n points in the physical plane 

{ x i , X 2 , . . . , X n } there exists a solution, unique modulo gauge transformations, of the 

pair (5.19) with the correct boundary behaviour, and ^^(x,) = 0,?' = 1,2, . . . , n , ^ 

vanishing nowhere else in R^. If a point Xp appears in the set np times, then the 

solution has a zero of multiplicity Up at Xp. So, static critical vortices exert no net 

forces on each other, although vortices set off in relative motion do exert velocity 

dependent forces, causing deviation from straight-fine motion, and scattering. 

As an aside, it is interesting to note that the critical coupling Bogomol'nyi bound 

(5.18) can be used to place topological lower bounds on the energy of the system 
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at general coupling. Denote by £'^2 the static energy functional of the model with 

Higgs mass / i , evaluated at a point in the winding n > 1 sector of configuration space 

(^, A ) . So El is the critical energy functional and Ei > nir. First consider the type 

I I case, //2 = 1 + |e| > 1. Then from (5.7), 

E,2 = Ei+^-^Jd'x{\<l>\' - If > nir, (5.20) 

the inequality now being strict, and hence the bound unsaturable, because the van

ishing of the integral above is incompatible with non-zero winding. Turning now to 

type I , = 1/(1 + |e|) < 1, 

Again, the inequality is strict: the integral cannot vanish, because the configuration 

has non-zero total magnetic flux, so F12 cannot be everywhere zero. Numerical work 

[48] shows that the bounds (5.20), (5.21) are, further than unsaturable, not optimal. 

That is, y?mc for < \ and UTT for //^ > 1 are neither minima nor infima of the 

energy functional E^2 evaluated on the winding n sector. 

We return now to the main object of our study: the two-vortex scattering problem 

at arbitrary coupling. The starting point of our calculation is the assertion that the 

essentials of soliton dynamics are in the soliton degrees of freedom (vortex positions 

in this case) which constitute a finite subset of the infinitely many field degrees of 

freedom. We wish to find a Lagrangian mechanical system whose coordinates are 

the vortex positions and which describes, in a low energy approximation, two-vortex 

scattering. We seek to deduce this mechanical system from the field equations, then 

compare its predictions with numerical simulations. 

Several techniques have been developed to achieve this. Most notable is the 

geodesic approximation, already described in previous chapters. This is valid when 

one has a saturable Bogomol'nyi bound, and has been successfully used [49] to analyze 
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vortex scattering at critical coupling. Another technique, first used to describe long 

range interactions of monopoles of the Yang-Mills-Higgs system in the BPS limit, is 

the method of linear retarded potentials. Far from a monopole's core, its fields are 

indistinguishable from those induced by a point (Dirac) monopole in a linear field 

theory. If physics is to be model independent, long range BPS monopole interactions 

should be the same as Dirac monopole interactions in the linear theory. Analyzing 

the latter system, Manton [50] re-derived the asymptotic form of the Atiyah-Hitchin 

metric [51, 52]. The assumed model independence is observed and has a precise 

mathematical expression. A similar approach is to use a field superposition ansatz 

for two-soliton configurations, patching together two well-separated, single soUtons. 

This was the method used by Bettencourt and Rivers [53] to find static intervortex 

forces at arbitrary coupUng. In fact, this and the method of linear retarded poten

tials are really two different ways of organizing the same calculations, as demonstrated 

explicitly for the case of Skyrmions (in the Skyrme model with massless pions) by 

Schroers [54]. We prefer the latter viewpoint over the superposition ansatz approach 

because the calculations are more compact, and at each stage there is contact with a 

concrete physical interpretation. 

In outline then, the programme is: 

1. Find the asymptotic expression for a single, static vortex solution. 

2. Derive the linear field theory associated with the abehan Higgs model. 

3. Identify the point source which replicates the vortex asymptotics in the linear 

theory. 

4. Study intervortex forces by calculating an interaction Lagrangian for the point 

sources in the framework of the linear theory. 

The novelty of the calculation is twofold: we will find velocity dependent forces (be

yond the static analysis of [53]) in a massive theory. All previous applications of the 
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method have been to systems whose associated linear theories are massless - BPS 

monopoles [50], maximally charged black holes [55] and Skyrmions [54]. These have 

the simplifying feature that field disturbances travel uniformly at the speed of fight 

and one may use retarded potentials to calculate intersource forces. In the vortex 

case, as in many other cases of physical interest, the linear theory is massive, so 

conventional retarded potentials are not available to us. 

5.2 Asymptotics of the field equations 

The first task is to find the asymptotic behaviour of vortex solutions at large r. It is 

convenient to obtain the Euler-Lagrange equations in general curvilinear coordinates, 

in terms of which the Minkowski metric is g^^, and has (modulus of) determinant g. 

The action is 

s[(i>,A]=yd'x^ D,<i>g'''D.cj> - ^9^'^g^^F,.Fc,p - ^-^\<p<p - if (5.22) 

Variation with respect to (j) and A^ yields, respectively. 

d, [^D.<l>9'"'] + ^g iA,g^''DJ--ii^m\'-l) = 0, (5.23) 

and, 

0, (5.24) 

if (?!>, A) is an extremal of S\4>^A\. The most natural coordinates in the vortex sector 

are plane polar. The Minkowski inverse metric is 

{gn = g'"" g'\ g'' 

g'' g'' g'' 

1 0 

0 - 1 

0 0 

0 

0 (5.25) 
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so that g = r^. Substituting the ansatz {a € 

{Ao,Ar,A8) = ( 0 , 0 , - a ( r ) ) , (5.26) 

the field equations reduce to 

and 

the equations for .4o and Ar being trivially satisfied. Note that this ansatz has unit 

winding by construction. The finite energy conditions (5.9),(5.10) become 

\(I>\-^1 <7-^ 1, 

Dg<j>-^0 [do - ia)e'^ ^ 0 a 1, (5.29) 

as r ^ oo. In addition, regularity demands that <T(0) = a(0) = 0. No explicit, 

exact solutions of (5.27),(5.28) with these boundary conditions are known. Numerical 

solutions suggest that both a and a rise monotonically from 0 to 1 as r covers [0, oo), 

so X = 0 is the only zero of (j), and (cr, a) truly represents a static vortex solution. 

We are only interested in the asymptotic forms of a and a, and for these analytic 

expressions do exist. Define the functions a and ^ such that 

cr(r) = l + a ( r ) , 

a(r) = l + / ? ( r ) . (5.30) 

At large r, (5.29) implies that a and ^ are small, so we substitute (5.30) into 
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(5.27),(5.28) and linearize in a and /3: 

d}a 1 da 
dr'^ ^ r dr ^ ^ 

dr"^ r dr 
= 0. (5.31) 

These equations hold asymptotically as r —> oo. Now define f := /zr and ^ := ^jr. 

Rewriting the pair (5.31), 

(Pa Ida 

dp r dr 

we obtain the modified Bessel's equations of zeroth and first order respectively. It 

follows that 

/? ~ ^ ^ M r ) (5.33) 

at large r, where /('„,n = 0,1 is the n-th modified Bessel's function of the second 

kind [56]. Note that A'i(r) = —/('^(r). Since we have linearized the field equations, 

the asymptotic solutions contain unknown scale constants q and m which can only 

be fixed by solving (5.27), (5.28) numerically. It is the asymptotic behaviour, (5.33), 

that we shall replicate with appropriate sources in the associated linear field theory. 

5.3 The point sources 

As will be shown below, the linear theory associated with (5.1) consists of two uncou

pled fields - a real scalar field with mass ^, and a real vector field of unit mass. The 

latter is not a gauge field, because the mass term breaks gauge invariance. We obtain 

a real scalar field by making a gauge choice. Since the scalar field is real, there is no 
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sense in which it can have winding at infinity. The winding number of a configuration 

of the nonlinear model is gauge invariant. Consider any smooth gauge transforma

tion, U(r,6) = exp{ix{r,d)). For each value of r this is a map from the circle at r, 

parametrized by 0, to U{1) = S^. If this transformation changes the winding number 

n of (j), then U{oo,6) must itself have non-zero winding. But if the transformation is 

to be single valued at the origin, x(0,9) must be a constant, so f/(0,6) must have zero 

winding. Then the r dependence of x defines a homotopy between two maps S^, 

U{0,0) and U{oo,6), which lie in different homotopy sectors, a contradiction. Hence 

no such gauge transformation exists - n is gauge invariant. How, then, are we to 

make the comparison between a vortex, which has unit winding, and a solution of the 

linear theory, which has none? A key ingredient in the above argument is the demand 

of regularity at the origin, the vortex centre. However, we only require comparison 

at large r, well away from the origin, so for our purposes we can weaken this demand 

to regularity on R^\{0}. There exist gauge transformations regular on R^\{0} which 

change the winding of a configuration. Applying one of these to the vortex, it can be 

unwound and compared with a linear theory configuration. Since we will introduce a 

singular point source into the linear theory, this is, from the outset, regular only on 

R^{0}, not all R^ 

Take the Lagrangian density (5.1) with gauge chosen so that ^ e R (such a gauge 

choice is singular at vortex and antivortex positions, as described above). The vacuum 

is then 4> = 1, so we define 4> such that <j> = 1 -{-ij}, substitute into (5.1) and neglect 

terms of higher than quadratic order in -ip and A^, yielding 

Cjree = \d,^d'^^ - ^/^^^^ - \F,.F^^ + \A,A>^. (5.34) 

Including the external source Lagrangian, 

Csource = ' j^A^ (5.35) 
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with scalar density p and vector current j ^ , we obtain the following massive wave 

equations for if) and / l ^ , 

( • + / i 2 ) ^ ^ p (5.36) 

UA^-d^{d,A'')^A^ = j^, (5.37) 

where • = d^d", the d'Alembertian operator. Taking the divergence of (5.37), one 

finds 

a^A'̂  = a^j'^, (5.38) 

a fact which would usually lead to the conclusion d^A^ = 0, and the simplification 

of (5.37) to the Proca equation. In this case there is no global U{1) symmetry of 

Cjree with whose Noether current we can identify (because is real), so there is 

no reason to assume that is a conserved current, On substitution of (5.38), (5.37) 

becomes 

{a + i ) A , = j , + d,{d,r). (5.39) 

The vortex ansatz has ( j ) = cr(r)e'*, so the gauge choice (f> £ R requires a singular 

gauge transformation with xi''^:^) — The unwound vortex Higgs field is 

^ = a{r) = 1 + a{r) ~ 1 + ~Mnr). (5.40) 
ZTT 

The gauge field transforms A^^ A^ - d^Xi so AQ AQ, Ar ^ Ar, Ae ^ Ae •\- \. 

That is, the unwound vector field is 

771 
Ae = l - a{r) = - ^ ( r ) ~ -—rKr{r), (5.41) 

while Ar = AQ = 0. In terms of the 2-vector field A , the unwound asymptotic 

behaviour is 

A ~ - ^ K { r ) d = - ^ k X VKo{r). (5.42) 
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So, we need to find p such that the solution of (5.36) is 

^ = | ^ A ' o ( H , (5.43) 

and such that the solution of (5.39) is 

A = - — k X VK^{r). (5.44) 
ZTT 

The static Klein-Gordon equation in two dimensions has Green's function KQ, 

( - A + ti'')KQ{iir) = 27r(5(x), (5.45) 

where A = V • V , the Laplacian on R^. Substituting (5.43) into (5.36), and using 

(5.45), one finds 

( • + ^ 2 ) ( ^ X A ^ , ( ^ , ) j = | - ( -A-h^^) /^o (H=9<^(x) 

= qS{x). (5.46) 

Similarly, substitution of (5.44) into (5.39) yields 

( • - M ) f - ^ k X VA'o(r)) = - ^ k X V ( - A + l)Ko{r) = - m k x V<5(x) 

=^ j - V ( V • j ) = - m k X V(5(x). (5.47) 

Taking the divergence of (5.47), one sees that V • j must be a solution of the homo

geneous static Klein-Gordon equation, so if j is a localized point source, V • j = 0. 

Thus, the unique point source satisfying (5.47) is 

j = - m k X V(5(x), (5.48) 

which does indeed have the property that V • j = 0. Since A° = 0, we take j ° = 0. 
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The physical interpretation of these expressions for p and j is that the point source 

consists of a scalar charge q and a magnetic dipole of moment m. We refer to this 

composite source as a point vortex. The monotonicity properties of a and a, noted 

above, lead to the expectation that both q and m are negative. This is perhaps a 

little surprising in the case of m, because the magnetic field of a vortex points in the 

-|-k direction on all R^, in the opposite sense to the point vortex's magnetic dipole. 

This is a peculiarity of massive electrodynamics in (2 -f-1) dimensions. If the photon 

mass, here normalized to unity, was zero, there would be no magnetic field away from 

X = 0 at all. This is most easily seen by imagining the system embedded in R^ with 

translation symmetry along the k direction. The source (5.48) then represents an 

infinitely long, thin solenoid perpendicular to the {x^,x'^) plane, piercing it at x = 0. 

We know that the magnetic flux induced by such a solenoid is confined entirely within 

the solenoid, that is, the line = = 0, so that B = 0 except on this line. The 

sense of B on the line is given by the right hand screw rule. Extending this picture to 

the case with non-zero photon mass is dangerous. In fact, although the source (5.48) 

represents (for m < 0) a vanishingly small clockwise current loop, the resulting B 

fleld in the massive theory points in the +k direction on all R^\{0}, 

A = - ^ k X v ;^o(r ) = - ^ V X (/ro(Ok) 

=^B = V X A = J^Aii:o(r)k = J^iro(r)k, (5.49) 

using (5.45) with x 0. So, somewhat unexpectedly, we need a clockwise current 

loop in the linear theory to reproduce the correct asymptotic behaviour. One should 

also note an important difference between the present endeavour and the analogous 

analysis for BPS monopoles [50]. Both systems (abelian Higgs and Yang-Mills-Higgs) 

have topologically quantized magnetic flux $. In the monopole calculation, the Dirac 

monopole charge is assumed to have precisely the topological value, while we must fix 

the dipole moment of the point vortex by numerical solution of the field equations. 
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The difference lies in the fact that monopoles exist in E" ,̂ where magnetic flux is 

defined as flux through a spherical shell of large radius centred on the monopole - an 

asymptotic quantity, whereas vortices exist in K^, where $ is flux through the whole 

plane, including the vortex interior. Such a quantity is not asymptotic, and so is not 

reflected in the properties of the point vortex. 

The final stage in the identification of the point sources is determination of the 

numerical values of q and m . To do this one must numerically solve (5.27), (5.28) at 

each value of fi^ required, and evaluate 

q = l i m 2ir 
v ( r ) - n 

= . (5.50) 
r—too 

approximately. Rather than solving the boundary value problem a(0) = a(0) = 

0,<T(OO) = a(oo) = 1, we solve the in i t ia l value problem cr(0) = a(0) = 0, cr'(O) = 

^,a '(0) = 7̂ using a fourth-order Runge-Kutta algorithm, where the constants ^ and 

C must be adjusted un t i l the solution has the correct behaviour at large r , that is, 

un t i l cr(roo) = o(''oo) = 1, the "effective inf in i ty" Too being some large but finite 

radius ( in this case, 10 or 8 depending on / i ^ ) . The main difficulty wi th this shooting 

method is that there are two shooting parameters, ^ and to be adjusted. Shooting 

w i t h only one parameter is much easier because i f one finds a pair of parameter 

values one of which shoots too high, the other too low, then the true value must lie 

between them (barring unforeseen singular behaviour). We must aim for the point 

(''•(^oo), a(^oo)) = (1:1) i n SO the terms "too high" and "too low" have no meaning. 

The only systematic approach is to discretize shooting parameter space (call this space 

E^), (^, Q taking values on a lattice. We start wi th a coarse 10 x 10 lattice covering 

a large square in R^, outputing (cr(roo), a(roo)) for each point (^, C) on the lattice. 

Contour plots of cr(roo) and a(roo) give the cr(roo) = 1 and a(r-oo) = 1 contours in E^. 

These intersect at a unique point in R^, which we take as the central point of our 
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Q m rc 5̂ 
0.4 -7.54 -14.92 4.23 3.05 
0.6 -8.71 -12.61 3.75 2.73 
0.8 -9.70 -11.31 3.43 2.53 
0.9 -10.14 -10.89 3.22 2.45 
1.0 -10.58 -10.57 - 2.39 
1.1 -10.98 -10.31 2.98 2.34 
1.2 -11.43 -10.06 3.07 2.29 
1.3 -11.80 -9.85 2.96 2.25 
1.4 -12.23 -9.66 2.95 2.21 
1.6 -13.04 -9.34 2.88 2.15 
1.8 -13.97 -9.09 2.87 2.10 
2.0 -14.50 -8.86 2.72 2.04 

Table 5.1: Numerical values of vortex scalar charge q and magnetic dipole moment m. 
The other data are critical radii: equilibrium separation of the static intervortex potential 
and the metric singularity at which the signature of the metric on moduli space changes. 

new, finer lattice, s t i l l 10 x 10, but concentrated on a square of one hundredth the 

area. The procedure is repeated so that we "zoom in" on the correct parameter values 

{ ^ T O I eventually searching a t iny area of w i th a very fine lattice. This allows us 

to determine (if, Q to the considerable number of figures required for the numerical 

solution to behave as specified at large r. Searching al l of (i.e. the original guess 

patch) so finely would be prohibitively costly in computation time. 

The results of this procedure may be seen in table 5.1 (the rightmost two columns 

w i l l be explained in subsequent sections). They should be treated wi th some caution; 

at large r , the field equations (5.27), (5.28) collapse to Bessel's equations (5.32) 

which each have two independent solutions: one exponentially decaying, the other 

exponentially growing. We seek to pick out the former and completely exclude the 

latter, an impossible task. A l l numerical solutions blow up at large r, so, particularly 

when is far f rom 1, Voo must be smaller than one would like (10 or 8). Comparison 

w i t h the asymptotic forms must be made where the solution is barely asymptotic. 

Nevertheless, certain interesting features can be discerned. First, when / i = 1, the 
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case of critical coupling, q Pa m. In fact one can prove that q = m, because the (1 = 1 

vortex satisfies the first order Bogomol'nyi equations (5.19), which one can use to 

derive the asymptotic behaviour of a f rom that of cr. Substituting the vortex ansatz 

into (5.19) yields, 

r ^ - { l - a ) ( 7 = 0, (5.51) 
dr 

- ^ + ( ^ 2 - 1 ) = 0. (5.52) 
r ar 

Define a and /? as before, substitute into (5.51) and linearize: 

l3 = - r ^ . (5.53) 

Thus, 

a = ^Koir) =^ ^ = ^vK.ir), (5.54) 

and so m = ^. To find q when /z = 1, we can replace (5.51), (5.52) by a single second 

order ordinary differential equation in a alone, then perform a one parameter (namely 

^) shooting method, a relatively simple task, as explained above. The correct value 

of C is fixed by ^, so the point (^, C) ^ for = 1 can be determined without the 

complicated lattice procedure. This point is placed at the centre of our in i t ia l lattice 

for the fi^ = 1.1 calculation. Similarl j ' , the correct for //^ = 1.1 is placed at the 

centre of the in i t i a l //^ = 1.2 lattice, and so on. In this way, we work piecemeal away 

f r o m //^ = 1 into both the type I and type I I regimes. 

The second striking feature of table 5.1 is that q increases monotonically, while m 

decreases monotonically w i t h //^. We shall see that this behaviour leads to unexpected 

crit ical points of the type I and type I I static intervortex potentials. Notice also 

that although q = m when //^ = 1, q/m varies between 0.50 and 1.64 as fi^ covers 

0.4,2.0]. So the assumption that q « m away f rom critical coupling, made in [53], 

seems suspect. 
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5.4 Static intervortex forces 

Having found the scalar charge and magnetic dipole moment carried by a point vortex, 

i t is straightforward to calculate the force between two such vortices held at rest, in 

the framework of the linear theory. We begin by finding the interaction Lagrangian 

for two arbitrary (possibly t ime dependerit) sources (/9i , j( i)) and {p2ij{2))- Consider 

first the scalar interaction. The scalar Lagrangian is 

(5.55) 

Let the field due to source pi be V'i- Since the theory is linear, i t obeys the superposi

t ion principle, so the field due to the combined source p\ -\- p2 is -|- ^2- Evaluating 

Ls[i^i + i^2,Pi + P2] we identify the cross terms as the interaction Lagrangian, L^, 

:= Ls[ij^i+ip2Tpi+P2] -Ls[t{^i,pi]-Ls[tp2,p2. 

- I 

= J ( f x [-Md^9''ll>2 + fJ-^i^2) + Pli>2 + />2^1 

= j ( f x [-tplp2 + pli>2 + P2'4>\. 

= Jd'^Xpi7p2, 
(5.56) 

using integration by parts and the inhomogeneous Klein-Gordon equation for ^2-

Turning to the vector interaction, we find a similar expression. The vector Lagrangian 

is 

:v = J d'x -]^{d^A,d^A'' - d^A.d^A^) \^A^A^-j^A^ (5.57) 

Again the superposition principle applies. Wri t ing ^( , ) for the field due to the 

interaction Lagrangian is 

LA ••= LvlAi^i)^-A[2),j{i)-\-3(2)]-Lv[A{x),j{i)]-Lv[A{2),j{2). 
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= J d'x lA(J\d,d-Al,) - d^d.A^,^ + Al,)) - jW^f , ) - j W ^ ) 

= - / ( f ^ x ^ U f , ) , (5 .58) 

using the field equation for A(2y 

We may now specialize to the case of two static point vortices. Let vortex 1 be at 

y, vortex 2 be at z. Then the scalar source for 1 is = qS{x — y ) , while the scalar 

field due to source is ^2 = 9^'CD(A'|X — z|)/2;r. So, 

2 2 
L^=J d'x ^Six - y)Koifi\x - z|) = ^M^^V - (5-59) 

The magnetic interaction is similar. Substituting = 0, j ( i ) = —mk x W6{x — y ) , 

Afj) = 0, A (2) = - m k X VKo{\y - z|)/27r into ( 5 . 5 8 ) , we find 

d^x — - [ k X V6{x - y)] • [k X VKo(\x - z|)] 

= Jd'xS{x-y)AKo{\x-z\) 

= - — A , i f o ( | y - z | ) 

rr? 
= - ^ ^ o ( | y - z | ) , (5 .60 ) 

using ( 5 . 4 5 ) w i t h y 7̂  z. The total interaction Lagrangian is LA + L^ = : —U. Since 

this is a funct ion of the positions y and z only, we interpret U as the potential energy 

of the interaction. 

m'Ko{r)-q^Ko{iir) , ( 5 .61 ) 

having defined r to be the vortex displacement vector, r : = y — z, so that r = | r | is 

the vortex separation. This is the same potential as found in [53], but we arrived at 

i t via a different route. 

Note that ( 5 . 6 1 ) is consistent w i th the part i t ion into type I , critical and type I I 
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regimes. The (central) force due to U is 

- ^ = 2Tr[m^Ki{r) - ^q^Kiifir)]. (5.62) 

I f / i < 1 then Ki{r) —> 0 at large r faster than Ki(fir), so that scalar attraction 

dominates over magnetic repulsion, and the force is negative, indicating vortex at

traction. I n the critical case = 1, we have proved that m = q, implying that U = 0, 

so there is no net force at al l . When ^ > 1, magnetic repulsion dominates over scalar 

attraction at large r (because Ki(fir) vanishes more quickly than Ki{r)) and type 

I I behaviour emerges. This consistency at large r happens regardless of the specific 

values of q and m , and can be at tr ibuted to the inverse relationship between a field's 

mass and its range. However, the fi dependence of q/m greatly affects the qualitative 

nature of U at small to moderate values of r . Let us derive conditions on the function 

/c(//) : = q{p,)/m{fi) for there to exist critical points of the potential U. I f Vc is a 

crit ical point, then, f r o m (5.62), 

Using the properties of Bessel's functions [56], one sees that the right hand side 

of (5.63) is a monotonically decreasing function (of T C ) wi th range (0,1) i( p, < 1, 

and a monotonically increasing function wi th range ( l , o o ) i f ^ > 1. I t follows that 

there exists a unique critical point r^p) of the potential for aW p ^ I i f and only 

i f K{P) < l / y / p when p < I and K(P) > l / y / p when p > 1. We-have proved that 

«;(1) — 1, and our numerical work suggests that K[P) is.a monotonically increasing 

funct ion, so the actual values of K easily pass these criteria. The results of solving 

(5.63) numerically for the critical radius rc{p) are presented in table 5.1. Potentials 

for p = 0.4 (type I ) and p = 2.0 (type I I ) are plotted in figure 5.2. Rebbi and Jacobs 

48] have found approximate static intervortex potentials by numerically minimizing 

the potential energy functional (5.7) subject to the constraint that 4> has two simple 
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Figure 5.2: The potential function U{r) for fi^ = 0.4 and fi'^ = 2.0. 

zeros separated by a given distance d, for a range of values of d. In the type I case, 

they find that .the dominance of scalar attraction over magnetic repulsion subsides 

as the vortex separation gets small, but not to the extent of producing a stable 

equil ibrium at non-zero d. Similarly, they find that magnetic repulsion of type I I 

vortices is increasingly counteracted by scalar attraction (though they do not use this 

terminology) as d becomes small. I t would appear that U is in broad agreement wi th 

their results when r > T C , but that the asymptotic approximation breaks down for 

r < rc. Of course, this is to be expected - vortices are not point particles, as in our 

picture, and when they approach one another closely enough their overlap produces 

significant effects. 

5.5 Type I I vortex scattering 

The interaction potential U provides a very simple model of two-vortex dynamics: 

the dynamics of two point particles each of mass M (the energy of a single vortex 

at rest, a / i ^ dependent quantity) interacting via the potential (5.61). Ignoring the 
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( t r iv ia l ) centre of mass motion, the Lagrangian of such a mechanical system is 

1 

4 
1 

L = -M\r\''-U{r) 

= ^M{f + r''^'')-U{r\ (5.64) 

since the reduced mass of the system is M / 2 . This is a manifestly bad model i f /z = 1, 

because i t would predict that there is no scattering at all , in conflict wi th the results of 

numerical simulations [46] and the geodesic approximation [49]. Away f rom critical 

coupling, one might expect the potential U to dominate over velocity dependent 

corrections, at least at moderately low speeds, so the above model, although simple, 

may give a good quantitative account of vortex interactions. We choose to study 

type I I vortices because these provide a simple, clear-cut dynamic problem: vortex 

scattering. Type I dynamics is slightly more complicated in that vortices can scatter 

or fo rm bound states depending on the in i t ia l conditions. The coupling chosen for the 

type I I numerical simulations of [46] is /z^ = 2, a choice which we follow for purposes 

of comparison. In the Lagrangian (5.64), the constants q and m are already known 

for = 2, but the vortex mass M is not. Rather than attempt to calculate M f rom 

our numerical solution, we use the careful numerical analysis of Rebbi and Jacobs 

48]. Unfortunately, they found M for each of a regular sequence of // values, rather 

than pi^ values, so the fi = \/2 value is not quoted. However, a graph of against M 

is very nearly linear, so we use linear interpolation to estimate the // = 1.41421... 

mass f r o m the /x = 1.4 and / i = 1.5 masses given. The result is Af = 1.512307r (note 

that this is consistent w i t h the type I I topological lower bound E > TT derived in 

section 5.1). The potential for this coupling is plotted in figure 5.2. 

The problem we seek to solve is elementary and common in mechanics: the motion 

of a (notional) point particle of mass M/2 in the (central) potential U{r). From the 

plot of U{r) we see that all trajectories which do not encroach on the interior region 

r < Tc ( in which the model is not valid) are scattering trajectories, that is as ^ -> ± o o . 
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r —> oo. A t some point on the trajectory, the particle achieves its closest approach 

To to the origin. By time-translation and rotational symmetries^ we can, without loss 

of generality, take this point to he on the = 0 ray and occur at t ime t = 0. So, we 

wish to solve the equations of motion derived f rom (5.64) subject to ini t ial conditions 

r (0) = To, t?(0) = 0, r (0) = 0, i?(0) = t?o. The conserved energy associated wi th 

(5.64) is 

^ = + + (5.65) 

where the cyclicity of i? has been used to eliminate in favour of the conserved 

angular momentum J = r^?j. Note that 6 and J are determined by (ro,J?), or, as is 

more useful in practice, S and i? are determined by (ro, J ) : substituting the ini t ia l 

data into (5.65), 

f ( r o , J ) = | : W ( r o ) - h | ^ (5.66) 

and i?(ro, J ) = J/r^ f rom the definition of J . Equating the right hand sides of (5.65) 

and (5.66), we can solve for r and reduce the time evolution r{t) to quadratures. 

However, we are more interested in the geometry of scattering (see figure 5.3), that 

is the deflection angle 0 : = TT - 2i?(oo), where i?(oo) = limf_»oo 19(0- Now, 

dr r M \rn j 

roo fir [ A / 1 1 M 2 
= . . 9 ( 0 0 ) = J^J - (Uiro)-Kir))+ [ - , - - ] (5.67) 

so the scattering problem is reduced to evaluating the above integral for all required 

in i t ia l conditions (ro, J ) . 

The scattering simulations described in [46] were parametrized not by (ro, J ) as 

is natural for the mechanical analysis above, but by (b,Voo) where b is the impact 

parameter and v^:, is the impact speed (the speed when t -+ —oo). (Note that b and 

Voo are asymptotic quantities, defined when the vortices are infinitely remote f rom 

one another, and that they provide a convenient parametrization of real scattering 

120 



Figure 5.3: The geometry of vortex scattering. 

events since they are natural experimental variables.) Four different values of Voo were 

chosen (voo = 0.1,0.2,0.3,0.4) and for each Voo, scattering was simulated at a range 

of impact parameters in the interval [0.5,4]. We execute the following procedure: 

1. Choose a value of Voo, one of the four above. This determines £ because as 

r —> oo the energy is purely kinetic, £ = u ^ / 2 . 

2. F ind a lower l i m i t , rmin, on TQ. This corresponds to head on scattering (b = 0) 

for which J = 0, so we find i t by solving (5.66) wi th J = 0, 

1 2 
(5.68) 

I n practice this must be done numerically. 

3. F ind an upper l i m i t , r^ax) on ro. This corresponds to scattering wi th 6 = 4, 

which, since b is defined such that J = 2vooh implies J = 8 ^ 0 0 . Thus rmax is the 
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solution of ( 5 . 6 6 ) w i th J = 8t;oo, 

2 - ^ = ^ ^ ( w ) + ^ . (5 .69) 
^ ' max 

Again this must be done numerically. 

4. Calculate ^(oo) for a range of ro values in the interval [rmi„,rmax]- For each ro, 

the corresponding (giving the correct Voo) is found f rom ( 5 .66 ) , 

J ^ ( r o , . o o ) = 2 r ^ ( i . ^ - A z Y ( r o ) ) . (5 .70) 

I n this way we calculate 0 for fixed Voo and a range of values of ro, this range 

being chosen to cover the impact parameter interval [ 0 , 4 ] . For each (ro, foo), we 

also calculate h = J(ro, i'oo)/2foo- We then plot b against 0 . One might worry that 

at high speeds and low J , the vortices w i l l penetrate the r < rc zone and become 

(unrealistically) captured. I n fact the speed required for this is greater than 0.4, so 

i t is not a problem. 

Steps 2 and 3 of the above procedure are, as noted, numerically implemented. Not 

susurprisingly, given the fo rm of W(r) , the integration to evaluate ??(oo) in step 4 is 

also necessarily numerical. Note the ( r —ro)~^ singularity of the integrand of (5 .67) at 

r = ro. This presents no problem in principle because of the integration wi th respect 

to r , but must be treated carefully in any numerical algorithm. Schematically, we 

handle the integral as follows, 

/•ro+(5 /-A foo 
«?(oo) = . / + + 

Jro Jro+o J A 
« l?5 + ^trap + 1?A, (5 .71) 

where 8 is small (6 = OA) and A is large ( A = 15 ) . The contribution •&s is calculated 

by Taylor expansion of the integrand about r = ro, while •&trap is evaluated using 

the trapezium rule. A t large r the potential falls off exponentially, so for r > A we 
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Figure 5.4: The scattering of / i ^ = 2 (type II) vortices: deflection angle 0 versus impact 
parameter b at four different impact speeds. The solid curves were produced using the 
point source approximation, the crosses by numerical simulation of the full field equations 
[46]. 

set U = 0 and calculate I9A in the free vortex approximation. The results of this 

algorithm are shown in figure 5.4. The fit to the numerical simulations of [46] could 

be improved by adjusting the values of q and m. Given the warning attached to these 

charges in section 5.3, this may well be justified. However, such adjustment corrupts 

the deductive nature of the model, so we prefer not to make i t . 

5.6 Velocity dependent forces 

We next augment the very simple model described above by including velocity de

pendent corrections. I n the case of critical coupling these corrections are leading, 

because U = 0, so they give the simplest model of critical vortex scattering in the 
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point source formalism. In the type I I regime, the inclusion of velocity dependent 

corrections should improve on the scattering data of figure 5.4. The calculation is 

performed a priori in the centre of mass frame, so that z = —y for all t. The first task 

is to find expressions for the sources p and j for a point vortex moving on some arbi

trary trajectory y (^ ) . We employ a quasi-adiabatic approximation: we assume that 

at each point y ( / ) , the source is a static point vortex Lorentz boosted wi th velocity 

y . ( A n adiabatic approximation would be to assume that the point vortex always 

has the static fo rm, and simply translates along the trajectory y{t).) The strategy is 

then to expand this moving source in powers of |y | , truncating at order | y p , calculate 

the t ime dependent fields i t induces, truncating similarly, then use these to find an 

interaction Lagrangian. 

5.6.1 Moving sources 

We seek expressions for the scalar charge density p and vector current j of a point 

vortex moving along some curve y ( / ) in IR^. A t t ime t = 0, let the point vortex be 

at X = 0, moving w i t h velocity u . Introduce rest frame coordinates rj'^, related to 

laboratory coordinates a;̂  by a Lorentz boost (on x) w i th velocity u . Explicitly, 

rj° — 'y{u)(x° - u • x ) = - 7 U • x 

yyll — 7(w)(x" — U X ° ) = 70;" 

rj^ = (5.72) 

at t ime t = 0 = x° , where j{u) = (1 — w^)"?. The spacehke components ?/" and 

Tj-^ can be combined into a single 2-vector equation for ri{x) by decomposing rj into 

parallel and perpendicular components: 

V = 2 + 
(rj • u ) u 
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7(x • u)u 
+ X — 

(x • u)u 

= x + 
(x • u)u 

- 1 

1 
x + -{x-u)u + .. (5.73) 

where the eUipsis denotes discarded terms of order or greater (we shall not persist 

in so noting these discarded terms; henceforth an eUipsis w i l l only be included where 

we have discarded further negligible terms in deriving the given expression). Now 

generalize to the situation of a point vortex located at y( / ) moving, w i th velocity 

y{t). The rest frame coordinates of a general point x on the x^ = t time-like surface 

are 

»7(f,x) = x - y 4 - ^ [ ( x - y ) . y ] y (5.74) 

by mapping x x - y(^), u i-> y(^) in equation (5.73). 

We must now transform the sources, applying Lorentz boosts wi th velocity —y to 

the rest frame distributions />(o) and j(o). Consider first the scalar distribution, which, 

f r o m previous work, i n the rest frame has the form 

(5.75) 

Since p transforms as a Lorentz scalar, p{x) = /?(Q)(T7(X)) in the lab frame. Now, 

jd'xf{x)8{ri)= j d ' r , 
dx 

(5.76) 

where \dx/dTi\ is the determinant of the Jacobian of the transformation x i-» From 

(5.74), 

drt 

dx 

drf 
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dx 
di] 

= 1 (5.77) 

Substituting into (5.76), 

j<Pxf{x)8ir)) = 

= 1 
^ / n-o 

since = 0 =» x = y. Thus, 

6{n), 

=^pix) 

= ( i - ^ | y r ) / ( y ) 

{ i - \ \ y \ ' ) s { x - y ) 

(5.78) 

= 1 

(5.79) 

(5.80) 

The term scalar charge for q is something of a misnomer since, as shown by (5.80) 

i t is not a scalar! A plate of area C in its rest frame, carrying uniform scalar charge 

density p has total scalar charge q = Cp. Looked at f rom a boosted frame, the 

plate is squashed along the boost direction by a factor 1 / 7 due to Lorentz-Fitzgerald 

contraction, so the area of the plate in this frame is C /7 « (1 — w^/2)C. The charge 

density is invariant, so the total scalar charge is 9' « (1 — I2)q in agreement wi th 

the calculation above. 

The moving magnetic dipole is rather more complicated, because transforms 

as a vector itself. The rest frame source is 

3(0) = 0' j(o) = - " ^ k X V^8{-q). 

Again, we perform a Lorentz boost on this w i th velocity —y, that is 

(5.81) 

(5.82) 
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where 

A ° = A " o = 

7 

7|y| 

A\ = 1, (5.83) 

all other A ' t = 0. ExpUcitly, 

f i x ) 

f i x ) 

f i x ) 

vloM'^)) = [^ + ^\y\'}HoMx)) + 

(5.84) 

(5.85) 

Repeating the algebraic trick of (5.73), 

j ( x ) = + j ( ^ ) -
iii^) • y)y 

1 
= j(o)(^(3;)) + r(j(o)(^(a^))-y)y + (5.86) 

Now, 

'dx 

= ( i - ^ y ® y + ) v 

= V ^y(y-v) , (5.87) 

so, using (5.79), we find that 

j(o)('?(^)) = - m k x V „ % ) 

= —mk X V - - y ( y • V ) i - ^ l y n ' ^ ( x - y ) 
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= —m ( l - i | y | 2 ) k x V ^ ( x - y ) 

+ ^ m ( k x y ) y - V ^ ( x - y ) + . . . (5.88) 

Substituting (5.88) into (5.86) and (5.84), 

jix) = -m(^l~ i | y |2 j k X V^(x - y) 

+ [y(k X y) • V^(x - y) + (k x y)y • V^(x - y)] , (5.89) 

/ ( ^ ) = m(k X y) . V^(x - y) , 

the final result. One should note that 

= ^ + V • j = m(k X y) • V6{x - y) , (5.91) 

so that d^j'^ 7̂  0 unless y = 0 (in which case the rest frame is inertial and d^j'^ = 0 

follows from the vanishing of V • j for a static point vortex). If y = 0 the current is 

conserved, so we can visualize the current density of a vortex moving with constant 

velocity as a standard electric current. In analogy with ordinary electrodynamics, we 

identify = g a.s the electric charge density of the distribution. From (5.90) we see 

that ^ 7̂  0 for a moving magnetic dipole, but that g corresponds to an electric dipole 

of moment —mk x y = |m|k x y. It is helpful to think of the magnetic dipole at 

rest as a small clockwise current loop consisting of interpervading gases of oppositely 

charged current carriers confined to a circle in R^, travelling in opposite senses, as in 

figure 5.5, so that the whole has >̂ = 0 everywhere. Consider such an object viewed in 

a frame in which it is moving with constant velocity y. In the figure, the positive gas 

in the upper half experiences greater Lorentz-Fitzgerald contraction than the negative 

due to its velocity of circulation (it is charge not charge density which is scalar here), 

and vice-versa in the lower half. Thus the upper half acquires a net positive charge 

density, while the lower half acquires an equal net negative charge density, this charge 
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Figure 5.5: A moving current loop. The unit vector k is directed out of the page. The 
left hand picture shows the senses of circulation of the charge carriers, while the right 
hand picture depicts the electric charge density as seen from the laboratory frame. 

splitting being the origin of our electric dipole g. Note the agreement of orientation. 

Turning now to the current density j , the first term of (5.89) represents a current loop, 

while the second and third represent anisotropics due to the aforementioned charge 

splitting. The transport of the net positive charge (upper half) and net negative 

charge (lower half) with velocity y produces the current represented by the second 

term in (5.89). Also, as the loop moves along, the charge must split in front of the 

loop and recombine behind it in order to create the electric dipole. The current due 

to this process is represented by the final term. 

5.6.2 Interaction Lagrangians 

In order to compute the interaction Lagrangians and LA in the case of arbitrarily 

moving vortices, one must find the fields ^ and A induced by time varying sources 

p and j. Were the linear theory massless, this would involve the use of retarded 

potentials, since disturbances of the fields due to time varying sources would propagate 

uniformly at the speed of Ught. For example, the potential induced by a moving point 

charge in classical electrodynamics has been well studied, and explicit formulae can 

be found in the literature [57]. Not surprisingly, the analogous problem in massive 

electrodynamics (or scalar field theory) has not received such attention: the only 

fundamental physical force transmitted by massive quanta is the weak force, which 
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has no role to play in the classical dynamics of point particles. Motivated by a 

technique used in the study of pion-nucleon models [58], we handle the problem by 

introducing formal temporal Fourier transforms, as follows. Let ^(^,x) be the field 

induced by time-varying source /3(^,x), according to the inhomogeneous Klein-Gordon 

equation. Define Fourier transforms •tp and p with variable uj dual to t. That is, 

/
oo . ^ 

-oo 

/
o o 

c/a;e'"V(w,x). (5.92) 
•CO 

Then, 

( • - h M ' ) 0 = p (5.93) 

^ {-u^ - + i?)i> = p 

=> [-A + ifi'' - uj^)]i^ = p, (5.94) 

so ^(u;,x) satisfies the static inhomogeneous Klein-Gordon equation with squared 

mass p,^ — up' and source ^(a;, x). Equation (5.94) is solved (at least formally) by 

convolution of p with the Green's function KQ{yJp? - w^jx - x'|)/27r, 

^(a.,x) = C / V / ^ O ( V m ^ ^ | X - x'|)^(a;,x'). (5.95) 

Now expand the Green's function in w///, truncating at order uPjp}^ 

K,{SIP'-u^\^-A) = / ^ o ( M l - 2 ^ + - - - ) |x -x ' | ) 2//2 
= /ro(/^|x-x'|) 

2 ,x-x' | /r^(/ . |x-x' | ) -f- . - . (5.96) 
2/z^ 
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so that substitution into (5.95) yields 

= ^J cfx'Mfi\x-x'\)p{uy) 

-^Jd'x'\x-x'\K'M^-x'\)p{uj,x% (5.97) 

whence we obtain i>{t,x) by (5.92), 

1 fOO f 

i^it.x) = -J_^dioe^^*Jd'x'Ko{ii\x-x'\)p{u,x') 

1 f ° ° t 

-—- \ dujiJe''^' / (fix' |x - x'\KMx - x'|)^(a;,x') 
47r// y - o o J 

1 r f o o 

= ^ y d^x! Koiii\x - x'l) e"^'p{iv, x') 

= i - | c / V / a / ^ | x - x ' | ) / , ( / , x ' ) 

/d'x'\x-x'\K^{ix\x-x'\)pit,x'). (5.98) 

Note that truncating the expansion in lj is, in effect, the same as neglecting higher 

time derivatives of p in general, eventually acting on y{t) in our application. No claim 

of rigour is attached to the above Fourier transform manoeuvre. One should regard 

it as a convenient algebraic short-hand for obtaining a perturbative ansatz for (5.93). 

Substitution of (5.98) into (5.93) explicitly verifies that 0 is indeed a solution, up to 

higher derivative terms {(Pp/dt^ etc.). 

Using this procedure, we find 2̂ , the field induced by time varying source p2. 

The interaction of such a field with another time varying source pi is given by (5.56), 

^ J d^xpxil^-i 

= d'xd'x'Koifi\x-x'\)p,{t,x)p2(t,x') 

" 4 ^ / ''̂  ~ '''l^o^^l'' " x'\)px{t,x)p2it,x'), (5.99) 

131 



where a total time derivative has been discarded. The vector field calculation is 

essentially identical, yielding interaction Lagrangian 

LA = - ^ | ^ 2 x J V / r o ( | x - x ' | ) i 5 ) ( ^ , x ) j f ( t , x ' ) 

/ J 2 x j ^ x ' | x - x ' | / ^ ^ ( | x - x ' | ) ^ ( ^ , x ) ^ ( ^ , x ' ) , (5.100) 

the only new feature being that one of the sources includes the "fictitious current" 

due to non-conservation of That is, the field equation for with source 

(5.39) looks like the Proca equation (a triplet of Klein-Gordon equations) with source 

jij. + d^{9,/j^), so we define the pseudocurrent 

(5.101) 

and it is this source which appears in the algebra analogously to p-2 in the scalar 

calculation above. There is an apparent asymmetry in (5.100)- it looks asymmetric 

under the interchange of sources 1 <-> 2 - but this is easily rerhoved, given the form of 

the pseudocurrent (5.101), by integration by parts; taking the first integral of (5.100), 

the extra term due to the fictitious current is (d'^ denotes d/dx''^) 

J d'xcf^'Koi\^-x'\)j^,^ix)dlidlj(,^{x^ 

= ^ J d'^d'x'j^,^d,Kodlj^2) 

= <i2xcfViiro(|x-xi)5,if,)(x)a:j72)(^')L (5-102) 

where, as usual, all boundary integrals have vanished. A similar calculation for the 

second integral yields the extra term 

f=t 

i - / J ^ x J V | a : - x ' | i ^ ^ ( | x - x 1 ) | 5 , ; 5 ) ( x ) | ; 5 % ( x O 
d 

(5.103) 
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so that 1 2 symmetry is recovered. Recall from (5.91) that df^j'^ is of order |y|, so 

neither term (5.102) nor (5.103) makes any contribution to LA at the order to which 

we axe calculating. We may thus discard them and work with the formula 

LA = - ^ / ^ ^ x ( / V / ^ o ( | x - x ' | ) i j ; ) ( / , x ) j f ( ^ , x ' ) 

^-Jd'xd'x'\x-xV<^i\x-x'\)^{t,x)?^{t,x'). (5.104) + dt dt 

I t remains to substitute the point vortex sources into (5.99) and (5.104) and 

evaluate the integrals, a rather lengthy calculation the details of which we present in 

appendix A. It is convenient to define the function T : a H-> aK'Q{a). We eventually 

find that 

27r L 
Koi2M) - l\y\'M2M) - i ( y • y)^T(2/i |y|) (5.105) 

while 

2^ 
1, 

+ ( y . y ) M 4 i ^ o ( 2 | y | ) + -T(2 |y | ) 
|y| . 

(5.106) 

We can now formulate a more refined mechanical model of two-vortex dynamics. 

As in section 5.4, let r := 2y = r(cosi?,sint9) and M be the single vortex mass at 

coupling fi^. Also, it is henceforth implicit that a Bessel's function written without an 

argument is evaluated at r, unless it has a • superscript, in which case it is evaluated 

at fir. The Lagrangian of the model is 

(5.107) 
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Substituting from (5.105) and LA from (5.106) and collecting terms yields 

1 / M ^ 
L = {G{ry + r'H{r)d') - U{r), (5.108) 

where 

m 
2 'bKo - vKr - i - ^ ) - 9̂ (3/̂ 0* - prK*) 

\ r J J 

f3/^o + ^ ) + 3 9 X 

^Y(r) = 1.(^2/^0-9%*). (5.109) 

Note that U{r) is simply the static intervortex potential already found (5.61). We 

interpret this system as representing a particle of mass M/2 moving on a manifold 

(call it M) with metric 

g = G{r)dr'' + r''H{r)dd'' (5.110) 

under the influence of a potential U{r). Vortices are not classically distinguishable, 

that is, - r does not correspond to a configuration of vortices which is physically 

distinguishable from that corresponding to r, so the points r and —r should be iden

tified. Accordingly, i9 G [0,7r], = 0 and = TT being identified, and is a metric 

on the cone R^/ ~ , where ~ is the equivalence relation r ~ r ' <^ r = ±r ' . Let us 

examine this metric more closely. Both G{r) and H{r) approach 1 exponentially fast 

as r grows large, so g is asymptotically flat. It is clear that H{r) is a monontonically 

increasing function approaching 1 from below, and, given the blow-up of Kq and Ki 

at small r, that H{r) —> —oo as r ^ 0, so H{r) is negative for r < T J , this critical 

radius depending on p^. The function H(t) must behave in this way, regardless of 

q{p^) and m{p^), provided m and q never simultaneously vanish, which would be 

somewhat bizarre. We cannot be so definite about G{r). Using the approximate 

values for q{p^) and rn{p^) found in table 5.1, and a piecewise linear interpolant of 

the data quoted in [48] for M{p'^), we can investigate its properties. It seems that 
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G > 1 for all r, that G —* oo as r 0 and that G{r) is a monotonically decreasing 

function. So the only singular radius is r^, at which the signature of g flips from 

EucHdean (r > r^) to Lorentzian (r < r^). This singularity is completely unphysi-

cal, and we make no attempt to interpret it (a similar singularity occurs in the BPS 

monopole calculation [50]). Given approximate {q,m,M) we can numerically solve 

H{rs) = 0 to find rs(//^). The results form the rightmost column of table 5.1. Note 

that rsifi'^) is a monotonically decreasing function, and that rs(/i^) < rdfi^) for all 

(except fi^ = I for which T C is not defined, there being no static potential). The 

singularity is therefore inside the "core region" and beyond the range of validity of 

the approximation. 

The equations of motion derived from (5.108) are 

r* + r j fc r '> + 1̂  = 0 (5.111) 

where r*, z = 1,2 are some coordinates on M (for example = r, = the polar 

coordinates used above), and T is the Levi-Civita connexion derived from g. Consider 

the case of critical coupling p.^ = I. Then U = 0, so if r'(^). is a solution of (5.111) it 

follows that 

P = - ^ • , r • r ^ (5.112) 

and | f | is of order |rp for all t. Differentiating (5.112) with respect to time, one sees 

that for each integer n > 2, there exists a set of (position dependent) coefficients 

; such that 

so that \d"r/dt^ \ is of order |r|". This provides a posteriori justification for truncating 

the expansion in time derivatives of (/9,i), in effect y(^). That is, although the 

assumption that higher time derivatives are negligible may turn out to be bad for 

real vortex dynamics, it is at least self consistent. Unfortunately, this is a property of 

purely geodesic motion and does not extend to off critical dynamics. Were the linear 
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theory massless, both U and g would fall off polynomially at large r, as is found in 

the case of Skyrmions [54]. Then (5.111) can be used to show self consistency of the 

expansion, provided one makes the extra assumption that |r| is always large (this is, 

after all, a long-range approximation). In our case, both U and g fall off exponentially, 

as do all their derivatives, so the situation is less clear. This problem will afflict any 

attempt to find a mechanical model for soliton dynamics in a massive field theory. 

The approximation must then be viewed as one assuming smooth motion, rather than 

low speed. We can still use (5.108) to model type I I two-vortex dynamics, but the 

results may break the assumptions used to derive i t . In fact, the Lagrangian (5.108) 

does lead to a very slight improvement in the scattering data presented in figure 5.4, 

derived using only the static interaction, but the improvement does not warrant the 

great complication introduced into the calculation of 0(6, v^) by the metric g, so we 

will not present these results here. Rather, we will concentrate on the case of critical 

coupling, comparing our results with those obtained by Samols [49] using the geodesic 

approximation. 

5.7 Critical vortex scattering 

A static vortex of the model at critical coupling saturates the Bogomol'nyi bound 

(5.18), so its mass is M = w. Substituting p = 1 and q = m into (5.109) produces a 

great simplification in the metric g = Gdr^ + Hr^d^d"^: 

2 
G{r) = 1 + f f i ro + 4 ^ ) 

47r V r / 

H{r) = l - f ( 3 K o + A — ] . (5.114) 
47r \ r / 

Samols [49] regards physical space as the complex plane C = E^, and parametrizes 

the n-vortex moduli space by the n zeros of the Higgs field Zi,Z2,..., z^. He then goes 

on to prove, using properties of the Bogomol'nyi equations, that these are the natural 
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complex coordinates in which to describe the induced metric structure on the moduli 

space, in the sense that the metric is Hermitian in terms of them. The two-vortex 

moduH space is C x M , where C is the space of centre of mass positions, and M is 

the space of relative positions (corresponding to M in our work). Defining relative 

coordinates (cr, t?) such that 

ae'" = i ( z i - 22), (5.115) 

rotation and parity symmetries are sufficient to restrict the metric on M to the form 

Ua)da'+ Ma)a'd^\ (5.116) 

while Hermiticity provides the extra restriction that /^(cr) = f^{cr) =: Fs{a), so that 

gs = Flia^da''+ aW). (5.117) 

Samols then goes on to compute F{(J) numerically, and solve the scattering problem. 

We would like to identify our radial coordinate r with 2a, but this would make (5.114) 

incompatible with (5.117). That is, given that H ^ G, our metric cannot be Hermi

tian in the complex coordinate re"'. I t follows that our vortex positions ± y do not 

coincide with zeros of the Higgs field in the nonlinear theory, although coincidence 

is recovered asymptotically. Defining soliton positions is always somewhat arbitrary 

because solitons can really only be considered independent particles when they are 

infinitely remote from one another. For example, one could define vortex positions as 

local maxima of the potential energy density, which would only asymptotically coin

cide with zeros of (j). With hindsight, then, one cannot demand that the identification 

of r with 2<j should work for finite r, but the failure to do so is an unwelcome feature 

not seen in previous applications of the method. It might therefore be connected with 

the massive nature of the linear theory. 

Nonetheless, this failing does not disquahfy g from being the asymptotic form of 

gs (or rather 4^5, given the different normalizations used). We can always construct 
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a radial coordinate s in terms of which g does take the Hermitian form. In comparing 

the metrics, we wish to discard the Lorentzian part of A4, that is the disc r < r^, so 

let g^ be the metric g restricted to = {R^\D)/ ~ where D is the disc of radius 

> Vs, excluding boundary, centred on r = 0. We seek a coordinate transformation 

on A^ , mapping r H-> s[r) and.leaving unchanged, such that there exists some 

function F{s) satisfying 

g, = Gir)dr^ + r''H{r)dr = AF''{s){ds'' + s'^dd'') 

=^2sF{s) = r^fH{r), and 2F{s)^ = yjcir) 

j^[\ogs{r)] G{r) 
H{r) 

dr I G{r) 

(5.118) 

l o g . ( r ) - l o g . . = / ^ y ^ ^ 

=^ s{r) = s^exp 
r df G(f) 

(5.119) 

where := s{rj). Note that if we take = there is a (r — r^)"^ singularity 

in the integrand of (5.119) which, whilst no problem in principle, complicates the 

numerical evaluation of the integral, so for later convenience we choose to exclude 

a slightly larger disc D than is strictly necessary. It remains to choose the constant 

Sd- Since we wish to identify s with Samols' a, this is fixed by the requirement that 

lim,^oo5(r)/r = l / 2 : 

Sd — l im - exp 
r - > o o 2 

r df G{f) 
H{f)^ 

(5.120) 

Given the exponential fall off of G and H, we know that this limit exists, although 

we cannot calculate it exactly. Since G{r) > H{r) Vr, 

,. r r dr Td 
Sd < l im - exp - — = — 

T-*oo2 Jra r 2 
(5.121) 
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So s{r)/r is a function on [r^, oo) with value Sd/rd < 1/2 at rj and tending to 1/2 as 

r oo. Does it have any turning points? Assume that such a point exists, r = r̂ ,. 

Then 

1 

— logs(r) 
dr 

(5.122) 
r=r* 

but from (5.118) the left hand side is 

G(rv) 1 
(5.123) 

since G > H Vr, so no such exists. Thus, s{r)/r monotonically increases from 

minimum Sd/rj, < 1/2 to supremum 1/2. It follows that a given point (r,i9) e 

M* represents a two vortex configuration with inter-zero distance less than r, the 

difference vanishing exponentially at large r . 

The key numerical task is the evaluation of the function 

d\ G{\) 
A \ HiX) 

(5.124) 

in the domain [rrf,roo], where Too is some large value, the effective infinity. Then 

Sd « ^ e - ^ ( - ) , (5.125) 

and 

s{r) = Sde (5.126) 

We choose rd = 2.5, Too = 52.5 and use the trapezium rule, yielding Sd « 0.94. 

Having calculated s{r) we can plot it against F{s{r)) = ryjH{r)/2s{r) and compare 

the results with Samols' numerically determined metric function Fs{cr), as presented 
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Figure 5.6: The metric profile function F{s) of this metric f̂* in Hermitian form (solid 
curve) compared with Samols' [49] numerically determined function (dashed curve). 

in figure 5.6. We see that it is certainly plausible that p. is the asymptotic form 

of igs- Given the metric functions G and H it is straightforward to check that the 

curvature 

is always positive on M:,, and rapidly vanishes as r —> oo. Thus we can interpret 

{M*,g*) as a rounded cone with its cap cut off, where the missing cap represents the 

forbidden core region in which our approximation breaks down. 

The main object of this section is to model critical vortex scattering. To do this we 

must solve the geodesic problem on (M*,g*)- We could use g^ in its Hermitian form, 

but this would introduce an extra layer of numerical approximation (the coodinate 

transformation r (-> .s(r)), so we choose instead to use g^ in the original coordinates. 

The scattering problem is defined in terms of asymptotic parameters in any case: 

impact parameter b and impact speed Voo both of which are defined on the part of 

configuration space in which the term "vortex position" is unambiguous. In fact the 

geometry of geodesies does not depend on initial velocity, as may be seen by rescaUng 

140 



the time variable in (5.112), so deflection angle 0 is independent of Voo- This property 

is found to hold approximately for low to moderate VQO in numerical simulations of 

vortex scattering, but breaks down at very high speeds. So the scattering data 0(6) 

provide a coordinate independent characterization of the metric structure on M.,. 

The kinetic energy associated with is 

(5.128) 

where, once again, the cyclicity of t? has been used to eliminate i? in favour of the 

conserved angular momentum J = r^H(r)'0. Without loss of generahty, we can solve 

the initial value problem r(0) = TQ , i?(0) = 0, r(0) = 0, 29(0) = ??o, essentially 

parametrized by (ro, J) . Substituting the initial data into (5.128) we see that the 

pair (ro, J) fixes 6, so that 

dd 

G{r)P 
r^H{r) 

= J 
1 1 

^| Gir) \rlHiro) r^H{r)J 

1 / 1 1 1 
r^H{r) 

dr 

G{r) \rlH{ro) r^H{r))\ 

1 ( 1 1 
m{r) G{r) \rlH{ro) r^H{r)^ 

(5.129) 

(5.130) 

Note that the absence of J in (5.129) implies that the geodesic t?(r) is independent of 

initial speed, as claimed. It remains to find the connexion between TQ and b. Recall 

that J = 2voob, so evaluating S at TQ and oo and equating expressions gives 

rlH{ro) 

Kro) 

1 2 
2 ^ -

(5.131) 
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Figure 5.7: Critical vortex scattering: deflection angle 0 versus impact parameter b. 
The results of the point source approximation (solid curve) should be compared with the 
results of the numerically implemented geodesic approximation (dashed curve), which is 
in good agreement with numerical simulations of the full field theory [49]. 

We evaluate i?(oo) for a range of TQ in the interval [rd,rmax], where rmax is chosen 

so that the upper limit of the b range is 3, that is, it is a numerical solution of 

fmax'\jH{rm.ax) = 6. Ouce again, the integrand of (5.130) has a (r — T Q ) " ^ singular

ity. The numerical integration is performed in the same way as described in section 

5.5, equation (5.71). Figure 5.7 shows 6(ro) plotted against 0(ro) = IT — 2??(oo), 

in comparison with Samols' scattering data [49] (see [49] also for a comparison of 

the geodesic approximation with numerical simulations). The fit is fairly good, and 

might be improved by adjusting 9, a procedure which we eschew on grounds of prin

ciple. As one would expect, failure of agreement becomes more marked as b becomes 

small. Small b collisions probe the small r region of Af* where the point particle 

approximation breaks down. 
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5.8 Conclusion 

The essentials of vortex phenomenology in the abelian Higgs model have been known 

for many years. The qualitative behaviour of vortices depends on a single parameter 

in the model (/i in our conventions) and splits into three regimes: type I (/x < 1) 

vortices attract, type I I (/x > 1) vortices repel and critical vortices neither attract nor 

repel. The physical origin of this splitting has also been long known. We may regard 

fi as the ratio of the Higgs mass to the photon mass (such terminology is, strictly 

speaking, only appropriate in the quantum, rather than classical, field theory, but 

its use in this context is widespread) so that the various regimes are seen to arise 

from the relative ranges of the scalar attraction, transmitted by the Higgs field, and 

magnetic repulsion, transmitted by the photon field. Using asymptotic properties of 

the vortex solution, Bettencourt and Rivers [53] found an analytic expression for the 

intervortex potential at long range. In the present work, this result was rederived 

from a different viewpoint, a viewpoint which provides a useful physical picture of 

static vortex interactions. From afar, the vortex looks like a classical point particle 

carrying both scalar charge q and magnetic dipole moment m in a linear field theory 

consisting of a real Klein-Gordon field of mass p and a free vector field of unit mass. 

The constants q and m were determined numerically for a range of p^ values, and 

it was found that an assumption made about the analogous constants in [53] is i l l 

justified. As an application, the potential was used to formulate a very simple model 

of type I I vortex scattering, the predictions of which were found to be in reasonable 

agreement with numerical simulations [46], although the model does not do so well 

as Shah's perturbed moduli space approximation [42 . 

Velocity dependent corrections to the static interaction were then found by adapt

ing the method of linear retarded potentials originally developed by Manton for the 

study of BPS monopoles [50]. The diflSculty of calculating the induced massive fields 

due to time varying sources was overcome by means of a formal Fourier transform 

manoeuvre. The resulting corrections were found to add little of value to the very 
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simple model of type I I scattering already considered, but provided a good quan

titative account of critical vortex scattering at modest to large impact parameters. 

The / i = 1 velocity dependent interaction Lagrangian was reinterpreted in terms of 

the geodesic problem on a certain manifold M with metric g, and compared with 

Samols' metric on the two-vortex moduli space [49]. Here an unfortunate feature 

was encountered: the natural coordinates for our point source approximation coin

cide only asymptotically with zeros of the Higgs field, the natural coordinates for 

the geodesic approximation. This problem has not afflicted previous applications of 

the method, and so the masses of the Hnear theory may be responsible. An exphcit 

coordinate transformation was constructed to reduce g to Samols' form, whereupon 

good asymptotic agreement between the two metrics was found. I t is worth pointing 

out that, compared with other studies of vortex dynamics [46, 49, 42], our calculation 

required only very lightweight numerical work. The most sophisticated technique was 

a fourth order Runge-Kutta method to solve an ordinary differential equation, albeit 

used in a two-parameter shooting algorithm. In fact, if we restrict ourselves to the 

case of critical coupUng, we need only use a one-parameter shooting method. The 

only other numerical work consisted of the approximate evaluation of integrals on the 

half line using the trapezium rule. Of course, the price paid for this simplicity was a 

lengthy and rather messy calculation in section 5.6.2. 

A recent development in the study of low energy soliton dynamics is the gener

ation of moduli spaces by computing instanton holonomies [59]. In this approach 

one explicitly constructs the field configurations from instantons of some Euclidean 

theory in a space of dimension greater than that of the original soliton theory. The 

moduli space so generated inherits a potential function (the restriction of the field 

theoretic potential functional) and a metric induced by the kinetic energy functional. 

Generically, this metric must be evaluated numerically from first principles, that is, 

by calculating the inner products of every (unordered) pair of tangent vectors, at 

each configuration. This is a very intensive procedure. The computational cost would 
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be significantly reduced if the need for such numerical work could be contained within 

a relatively small core region of moduli space where the solitons are close together -

if, for example, the asymptotic form of the metric could be found analytically from 

a point source approximation, a technique employed in [60] in the context of the 

Skyrme model without pion mass. The present work develops in a simple setting a 

possible way of doing this when the linearized theory is massive. However, one should 

note that the unfortunate mismatch of moduli space coordinates encountered in the 

abelian Higgs model could cause major problems if it occurs generically. We were 

able to construct a coordinate transformation quite easily, but this was on a two di

mensional manifold with rotational symmetry. For higher dimensional moduli spaces 

(if the field theory is defined on R^'^^, or the solitons have orientations or internal de

grees of freedom for example) the transformation may be far more complicated. Even 

so, it would be interesting to find such asymptotic metrics, if only for the aesthetic 

reason that a formula is always preferable to a collection of numerical data. 
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Appendix A 

Derivation of the velocity 

dependent interaction Lagrangians 

In this appendix we present the detailed derivation of the velocity dependent inter

action Lagrangians and LA quoted in section 5.6.2. Recall that we defined the 

function T : a aKl^{a). Beginning with the scalar interaction, 

where 

51 = J d^xd^x'Ko{fi\x-x'\)pi{t,x)p2{t,x') 

52 = J d^xd''x'rifi\x-x'\)pr{t,x)p2{t,x'). (A.2) 

Recall that source 1 is at y(^) while source 2 is at —y(^), so from (5.80), 

p,it,x) = q[l-l\y\'^Six-y{t)) 

P2{t,x) = q{l-^-\y\'y{x + y{t)). ' (A.3) 
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Thus, 

= 9^(1 - |y| W H y | ) , (A.4) 

while 

52 = I d'x d'x' T ( M | X - x ' | ) ( - y . V^(x - y))(y • V',^(x' + y)) + 

Jd'xy- V6{x - y ) J d ' x ' y • V 'T( / . |x - x' |) 6{x' + y) 

-q^ JcPxycot V(5(x - y) y • VyT(// |x + y | ) 

q' J d'x 6(x - y ) y • V ( y • V , T ( ; . | x -f- y | ) ) 

^ ( y . V , ) ^ T ( 2 H y | ) . (A.5) 

Let w := 2fj,y. Then 

52 = 'i^{w-V^Y{wK^{w)) 

2 

= • {WKQ^W) -f- W • W K'Q{W)^) 

2 2 
Fq 

y|2iro(2;i |y|)-F(y.y)2T(2;^|y|) (A.6) 

Substituting into ( A . l ) , 

27r 
Koi2fi\y\) - ^\y\'Ko{2M - l ( y • y)^T(2^|y|) (A.7) 

as quoted. 

The magnetic interaction Lagrangian, LA, while considerably more complicated 
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is evaluated in similar fashion. So, 

(A.8) 

where 

3̂ j <i2x^V/<'o( |x-x' |) ;(°)(^,x)j(%(^,x') 

j d'x d^x! K,{\x - x'|)j(x)(t, x) • j(2)(t, x ') 

j M x ' T i \ x - x ' \ ) ^ { t , x ) ? ^ { t , x ' ) . (A.9) 

Source 1 is given explicitly in (5.89), (5.90), while source 2 is obtained from this by 

mapping y i-> —y (=> y ^ —y). Substituting these expressions into 5*3 and ^4, 

53 = -m'J d^xd^x'Ko{\x~x'\){kxy)-V6(x~y){kxy)-VS{x' + y) 

= — [ ( k x y ) . V , f ; r o ( 2 | y | ) . 

54 = m^J cPxd^x'Ko{\x-x'\). 

(1 - i | y p ) k X V6(x - y ) - ^ (k X y ) y • V6(x - y) 

- - y ( k x y ) . V ^ ( x - y ) 

(1 - i | y p ) k X VS{x' + y) - ^ (k X y) y . V'<5(x' + y) 

i y ( k x y ) . V ' < 5 ( x ' - F y ) 

3 3 

i=l j= l 

(A.IO) 

(A.11) 
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where 

Su = 

>12 

5i3 = 

J d^x<fx' Ko{\x - x'l) ( l - ^ | y | ' ) ' (k X W6{x - y)) • (k x YS{x' + y)) 

( l - | y H J d^xd^x'Koi\x-x'\)^6{x-y)-VS{x' + y) + ---

- \yf)\/lKo{2\y\), (A.12) 

J d'xd'x'Koilx - x ' | ) (k X V^(x - y)) • (k X y ) y . VS(x' + y) + ---

- \ l d'xd'x!Ko{\x - x ' l ) y • V6(x - y) y • Vb{x' + y) 

i ( y • V,)^iro(2|y|) , (A.13) 

y d^xd'x' i f odx - x ' | ) (k X V8{x - y)) • y (k X y) • V'^(x ' + y) -f • • • 

= i 1 d'^xd'^x!Ko{\x - x ' | ) (k X y ) . V8{x - y) (k x y) • V'6(x':+ y) 

- i [ ( k x y ) . V , ] ^ i ^ o ( 2 l y | ) , 

Sij with z 7̂  1, j 7̂  1 is of negligible order, and, by construction, 

Sji — ^ ' i j ly- . -y , 

which, given the above expressions, implies = 5'2i, •S'ls = S^x. Thus, 

S4 •= m^(5n + 25i2 + 25i3-f •••) 

(A.14) 

m 
T 

-{l-\y?WlK,{2\y\)^{y-W,)K,{2\y\) 

- [ ( k X y ) . V,]2A-o(2|y|) . (A.15) 

Now consider the integral Ss- Recall that j^^j^ = y -3(1) -| , so, 

53 = - / . i ^ x . f V T ( | x : - x ' | ) % ) ( ^ , x ) . % ) ( ^ i ' ) + - " 

= - m ^ y d''xd^x!t{\x-x'\). 

(k X V ( y • Vy6(x - y))) • (k x V ' (y • V,<5(x' -}- y))) 
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m ^ ( y - V , ) ^ V ; T ( 2 | y | ) . (A.16) 

After evaluating the differentials in (A.IO), (A.15) and (A.16) - an exercise in ma

nipulating Bessel's functions - and substituting ^3, 4̂ and 5*5 into (A.8), we finally 

find that 

LA = — 2^ 
- A V 2 | y | ) + |yP f ^ ^ ^ - k o ( 2 | y | ) ' 

-H(y. y)^ (4;fo(2|y|) + \ m y \ ) ' ^-^^ (A.17) 
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