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Explicit Wavefunction Collapse and 

Quantum Measurement 

Christopher John Dove 

Abstract 

In this thesis, we are concerned with models of explicit wavefunction col­

lapse as a possible solution to the measurement problem of quantum mechanics. 

We examine the models where collapse is to near-position eigenstates, originally 

introduced by Ghirardi, Rimini and Weber in 1986, where the wavefunction is 

spontaneously localized at random times. Subsequent models where some of the 

problems of the GRW model are solved, are discussed, for both sudden localiza­

tion and continuous localization processes. We comment briefly on the possible 

origins of collapse. The consequences of possible wavefunction collapse on the 

operation of quantum computers are described. Finally, we look at an attempt 

to describe the collapse process in a Lorentz-invariant manner. 
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Chapter 1 

Introduction 

In quantum mechanics, in constrast to classical mechanics, the particle is not 

everything. Sometimes it behaves as a wave. Thus in quantum mechanics, the 

particle is described by a wavefunction I $ > . The theory is probabilistic in nature, 

although the evolution equation is deterministic. We replace the exact values of 

quantities with operators, including 

d 

p -»• -itiV E -» ih—, (1.1) 

such that the wavefunction satisfies the Schrodinger equation 

| . *> = - i m > , (i.2) 

where the Hamiltonian H can be written as 

H = - ^ + V, (1.3) 

for a single particle. The Schrodinger equation is linear and deterministic. The 

linearity enables the superposition of states in a solution of the equation. The 

total wavefunction can be written as the sum of a number of eigenstates (of a 

particular operator) 

l * > = £ cM->- (1.4) 
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If the states \ i p j > are eigenfunctions of a particular operator 0 with corresponding 

eigenvalues o3 then the probability of a measurement of the dynamical variable 

represented by 0 producing the result Oj is given by \cj\2. The question is what 

exactly constitutes the measurement. 

This leads us to the fundamental difficulty of the theory. Taking into account 

that the measuring apparatus has quantum constituents, we can describe the 

measuring process as the evolution of the closed physical system S + A, where 

5" and A denote the measured system and measuring apparatus respectively. 

The measurement may be of any dynamical variable, and the eigenstates of the 

measuring apparatus may be different positions of a pointer perhaps. Thus the 

wavefunction resulting from the interaction between the microscopic system and 

the macroscopic measuring apparatus can be written as 

where I </>,•> represent the eigenfunctions of the microscopic system of the dynami­

cal variable that is being measured, and \ ij>i> are the eigenstates of the measuring 

apparatus. 

From this last equation, we can see the basis of the measurement problem of 

quantum mechanics. The result of the measuring process is a superposition of 

macroscopically distinguishable states. This contradicts the projection postulate, 

which requires a statistical mixture of the states \ (f>i>\ipi>, as "A measurement 

always causes the system to jump into an eigenstate of the dynamical variable 

that is being measured". [1] 

Since the result of a measurement is always indicated by the different eigen­

states of a macroscopic system, the problem can be traced back to the behaviour 

of macroscopic objects and their interactions with microscopic ones. The linearity 

of the quantum theory causes the inevitability of such problems as it allows the 

* = 22ci\<f>i>\^i> 1 (1.5) 
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superposition of macroscopically distinguishable states, i.e. pointer positions. 

A breakdown in quantum mechanics under certain conditions does not seem 

possible.[2, 3, 4, 5] We must believe that a macroscopic object is not a truly 

quantum mechanical system, but behaves classically. We then necessarily have 

dualism in nature, requiring a different evolution for microscopic and macroscopic 

objects. But what are the criteria for distinguishing between them? There can 

be no neat definition of the boundary between the two types of physical object 

or system. According to Bell, it "compels the physicist to disregard from time 

to time the exact equations of the theory and to supplement them with vague 

verbal assertions." [6] 

What are the possible solutions of this quantum measurement problem? If we 

leave aside the theories in which we divide systems and objects into two distinct 

types, we have three possible solutions:(See also [7]) 

1) The de Broglie - Bohm model 

2) The many worlds interpretation 

3) Models of wavefunction collapse 

In (1), the de Broglie - Bohm model[8, 9], instead of the answer 'wave' or 

'particle' to the question of wave-particle duality, this question is answered by 

'particle' and 'wave'. We still have a wavefunction ift(t,r), but it is an objective 

field, not simply a wave of information. The associated particle then rides along 

the wave at some well-defined position x(t) with velocity 

For a double-slit experiment, the wave in this picture goes through both slits, 

whilst the particle only goes through one, but is guided by the wave toward 

1 d 
) kit) log </>U,r r=x m or 

(1.6) 
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positions where \ip\2 is large, and away from positions with small values of l^l 2 . 

The de Broglie - Bohm picture is quite deterministic. The initial configuration 

of the system of wave and particle fixes completely any subsequent development. 

If the wavefunction is in a superposition of two macroscopically distinguishable 

states, then the trajectory calculated from eq. (1.6) will be for the particle in the 

first state or in the second state, giving a statistical mixture. 

Possibility (2) advocates the existence of many worlds. [10] The number of ac­

tual worlds present corresponds to the number of possibilities present. Whenever 

there is any doubt as to the outcome of any event because of quantum uncer­

tainty, the world multiplies so that all possibilities are realized, but in different 

worlds. As the observers will also multiply with the world, those in any particular 

world will experience only what happens in that world. 

In this thesis, we shall concentrate on possibility (3). The wavefunction must 

be reduced at some stage from the superposition of states, as in eq. (1.5) to 

individual eigenstates, resulting in a particular eigenvalue being measured. At 

what point in the measurement the wavefunction is reduced is not clear, only 

that it occurs. In models of wavefunction collapse, extra terms are added to 

the evolution equations of the system such that the wave-packet reduction is 

described by precise dynamical processes and equations. We may maintain the 

linearity of the evolution equation for the wavefunction, but at the level of a 

normalized wavefunction, this reduction is nonlinear. 

The evolution obtained from these extra terms must solve two basic problems. 

There is required to be a choice as to which states the reduction process leads, 

and the process must become more and more effective as the system becomes 

more macroscopic in nature. 

In Chapter 2, we introduce the pioneering hitting model of Ghirardi, Rimini 
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and Weber(GRW)[ll]. In this model, each constituent particle of any system is 

'hit ' at randomly distributed times and positions, such that the wavefunction is 

suddenly localized to a near-position eigenstate. These collapses of the wavefunc­

tion are instantaneous and are independent of whether a measurement has taken 

place. This model gives answers to both the problems above; the final states are 

localized in position, and the effectiveness of the process for macroscopic objects 

follows from the fact that a single collapse in a macroscopic object is sufficient to 

localize the whole object. However, one defect of this model was that the collapse 

process destroyed any symmetry that the wavefunction may possess, so the model 

needed development if the required symmetry properties of systems of identical 

particles were to be maintained. 

In Chapter 3, we review the continuous spontaneous localization model(CSL) 

which differs from the GRW hitting model in that the wavefunction evolves con­

tinuously from the initial state to the final state, not instantaneously[12, 13]. This 

is achieved by the introduction of a stochastic field into the evolution equations. 

We discuss the consequences of the model, and examine how certain theoretical 

and experimental constraints can influence the choice of parameters in the model, 

and suggest a connection to gravity. 

Discrete hitting models which, similarly to CSL, preserve the symmetry prop­

erties of the wavefunction, and have a more-or-less greater conceptual simplicity 

in not needing a CSL stochastic field, are described in Chapter 4, and the rela­

tionship between the hitting and continuous models is examined[14]. 

One possible relationship to gravity is discussed in Chapter 5[15], with the 

postulate of planckons appearing peripatetically to explain the origin of the col­

lapse process. The energy increase caused by these planckons is compared to the 

energy increase which accompanies collapse, and the correlation of the planckon 
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potential related to the stochastic fields introduced in CSL. 

In the following section, Chapter 6, we look at the effects of possible wave-

function collapse on the operations of quantum computers[16]. We calculate the 

sizes of possible errors arising as a result of the wavefunction being localized and 

whether they would be sufficiently large to be significant. 

Chapter 7 introduces the first attempts at describing a hitting model that re­

spects Lorentz-invariance[17]. In the GRW model, the collapse is instantaneous 

over all space, and here we postulate that the collapse is felt only inside of the for­

ward light-cone of the point of origin. The consequences for the Born probability 

rule are examined. 

Finally, Chapter 8 contains a summary of the collapse models and conclusions. 



Chapter 2 

Spontaneous Localization 

In this chapter, we review the model originally proposed by Ghirardi, Rimini 

and Weber in 1986[11] (hereafter to be referred to as the GRW model), which 

modifies the dynamical evolution of a quantum system by postulating that in 

addition to the normal Hamiltonian evolution, there is also a stochastic evolution 

which localizes the wavefunction. 

The model is defined in such a way as to leave the dynamics of a microscopic 

system essentially unaltered from the standard Hamiltonian quantum dynamics. 

The dynamics of a macroscopic system can be derived from that of its microscopic 

constituents, and the evolution is found to be compatible with classical mechan­

ics. In the model, linear superpositions of states corresponding to a macroscopic 

object being localized in markedly different spatial regions are suppressed. The 

reduction of a pointer, initially in a superposition, into a definite final position 

can be deduced from the modified equations. 

The basic postulate is that these collapse processes occur spontaneously; we 

do not enquire here as to their origin. (For one attempt, see Chapter 5.) 

We shall define the model, and examine some of its consequences for the 

dynamics of microscopic and macroscopic objects, including the deviation from 

12 
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the normal quantum-mechanical behaviour, and the rate of collapse of a pointer. 

We note that the collapse described here necessarily implies a non-conservation 

of energy. 

2.1 Definition of Model 

Consider a system consisting of N distinguishable particles with wavefunction 

given by ^ = ^ r ( q 1 , q 2 ) . . . , q„) = ^ (q ) . It was proposed that at random times, 

the wavefunction will be 'hit ' such that it changes instantaneously according to 

i?,(x) ' W 

where the function / is localized around the zero value of its argument. GRW 

chose this function such that f 2 is a normalized gaussian ( / f2(z)d3z = 1): 

/ (z) = exp (-^3) , (2.2) 

where the parameter (3 gives the order of magnitude of the radius of the collapsed 

wavefunction 

a = (2.3) 

The function R is chosen so that this hitting process preserves the normalization 

of the wavefunction. Hence 

| ^ ( x ) | 2 = J d 3

q i . . . cPqN\f(x - q,)! 2 !*! 2 . (2.4) 

It follows from these equations that the R functions themselves are normalized, 

j | J R j ( x ) | 2 r f 3 x = 1. (2.5) 

Now we suppose that the probability of hitting particle j in time dt is given 

by Xjdt, and that the probability distribution of the hitting position x is given 
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by the funct ion -Pj(x). Then the density matr ix at t ime t + dt is given by 

p(t + dt) = ( l " E A, -*) (p(t) - ^ [H, p(t)} dt) + £ \ j P f d t , (2.6) 

where is the density matr ix after particle j has been hi t . This equation leads 

to a differential equation governing the evolution of p: 

The model is completely determined when we impose the requirement that 

position averages are conserved, i.e. that the diagonal elements of the density 

mat r ix are unchanged by the h i t t ing process. Using a position representation, we 

have f r o m eq. (2.1) 

/. JJ. / , 3 ^ ( x ) / ( x - q ; . ) ^ ( q O V ( x - q j ) ^ ( q ) 
<q |q> = j d x , (2.8) 

and hence we require 

Since this equation must be true for all q, i t follows that P is proportional to | i? | 2 , 

and so, because eq. (2.5) shows that | i? | 2 is already normalized as a probability, 

that 

P i (x) = | i2 j (x) | a . (2.10) 

This probability that the occurrence of collapses occurs most often where the 

wavefunction is largest, is analogous to the dependence on probabilities of the 

outcomes of a measurement in standard quantum mechanics. However, these 

hits occur spontaneously and randomly, regardless of whether any measurement 

has been performed. 

Now, the elements of the density matr ix after a hi t can be wr i t ten 

< q V H l q " > = exp [ -^(q' - q")2) <q'lplq /'>, (2.11) 

^ • ( x K / C x - q , - ) ) 2 
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where we are dealing wi th a single particle, and the evolution equation, eq. (2.7) 
becomes 

^ < q V l q " > = -j<^\[H,p]\q"> - A ( l - exp (q' - q") 2 )) <qVlq">-

(2.12) 

We can easily see that this last equation is trace-preserving, and we have that 

jt(tvp2) < 0, (2.13) 

f r o m eq. (2.7). Thus originally pure states w i l l be transformed into statistical 

mixtures. 

2.2 Change of dynamics for a free particle 

I t is necessary to examine the consequences of the collapse mechanism for the 

dynamics of a single particle, and to compare w i t h the standard Schrodinger evo­

lut ion. We consider a single, free particle w i th Hamiltonian H. Let us calculate 

the mean values of position and momentum and their spreads. For a simple dy­

namical variable S we have that <S> = tv(Sp) as the mean value. Thus, f r o m 

eq. (2.7), the t ime derivative of this mean value is given by 

ft<S> = -l-tv([S,H}p)-\tr p [ S - ( z \ (2-14) 

x / <ftcexp ( - £ ( q - x ) 2 ) Sexp ^ ( q - x ) 2 ) ) 

I t is easily seen f rom this equation, that for any dynamical variable X which 

is a funct ion of position only, we have 

jt<X(q)> = ~tv(X(q)[H,p]), (2.15) 

as holds for the Schrodinger evolution. There follows immediately 

d 1 , 
— <(?,> = —<p,->, 2.16 
at m 
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and 

= <qiPi+Piqi>- (2-17) 

One can f ind the other values of interest by substituting the relevant operators 

into eq. (2.14). We have immediately 

jt<Vi> = 0, (2.18) 

and since <qiPi + p 2 g;> = <2qiPi — ih>, we have 

jt<qiPi + Piqi> = - ^ ^ t r (i2(HPi,Pl}p) 

= ~<P?>. (2.19) 
m 

Finally, to f ind the momentum spreading, and hence the energy increase; 

3 

j<P]> = - \ e i A \ v ^ j d 3 A - P + f(<i,-^?]^v(-f>^-^?)p) 

= ^ ' (2.20) 

The expressions given in eqs. (2.16) and (2.18) correspond wi th the pure 

Schrodinger evolution, 

<qi> = « 7 i > 0 , <Pi> = <Pi>o, (2.21) 

but the other values differ f rom the pure Schrodinger evolution because of the 

extra term on the right-hand side of eq. (2.20). We find that 

<q?> = <q->o + ^ - r t 3 (2.22) 
/3\h2 

6 m 2 

f3\h2

 2 

<qtPi + Piqi> = <qiPi + Piqi>o + —t (2.23) 
Zm 

<P1> = <pl>o+f±^~t, (2.24) 
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where the subscript 0 indicates the pure Schrodinger evolution. 

For reasonable in i t i a l values of the position and momentum spreads, Aq = 

(<(q — < g > ) 2 > ) 2 , and Ap = (<(p — < p > ) 2 > ) 2 , the standard Schrodinger evo­

lut ion causes the increase in Aq w i th t ime to be insignificant for all interesting 

times, due to the smallness of the Planck constant, h. 

In the case of the dynamics resulting f rom the collapse process however, the 

spreads now contain other time-dependent terms. We can calculate, in terms of 

the parameters (5 and A, the interval T for which these terms are smaller than 

the pure Schrodinger terms. From eqs. (2.22) and (2.24), we have 

7 i = 
6m2(Aqsy 2(APs) 2 

For times less than these values, the position and momentum spreads are 

lower than the Schrodinger values, and hence the overall spreads are negligible. 

The smallness of these terms is related to the small influence of the collapse term 

on the off-diagonal elements of the density matr ix <q'|/?|q"> in the case where 

|q' - q"| < a. 

For the off-diagonal elements, i f we ignore the Hamiltonian te rm in the evo­

lut ion (as we wish to concentrate on just the collapse behaviour), we can wri te a 

solution to eq. (2.12) in the f o r m 

<q'!/>(<) I q"> = exp -Xt [ l - e x p [ - ^ ( q ' - q " / <qV(0) |q">, (2.26) 

and i f we assume that |q' — q"| >̂ a, then we have approximately 

<qVlq"> «exp( -A*)<q ' | / 9 |q">. (2.27) 

This last equation shows that the off-diagonal elements of the density mat r ix 

w i l l decay exponentially, w i th l i fet ime T = \. This means that in a t ime interval 

of order T, a linear superposition of states separated by a distance much larger 

than a = —7= wi l l be transformed into a statistical mixture. 
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2.3 Rate of collapse of a pointer 

We wish to examine the rate of collapse of a macroscopic system of TV distin­

guishable particles, relative to that of a single particle. In GRW, each particle 

is assumed to experience collapse independently of all the other particles. I t 

w i l l be noted that this assumption is not valid for the case of identical particles, 

as the collapse process w i l l not then preserve the necessary symmetries of the 

wavefunction. 

We take the system to be pointer of N particles, in a linear superposition of 

states, separated by a distance |Q ' — Q"| >• a. 

Here, each particle w i l l be localized at a rate A, and the evolution of the tota l 

density mat r ix is given by eq. (2.7). We can replace the absolute coordinates of 

all the particles in the system w i t h the center of mass and relative coordinates, 

q, = Q + i \ , (2.28) 

and assume that the Hamiltonian separates into terms for the center of mass and 

internal motion, H = HQ + HR. The dynamical evolution of the center of mass 

of the system can be found by tracing over the internal variables in the evolution 

equation, eq. (2.7). I f we assume that the internal variable spread is negligible, 

i.e. \r'j — r"\ <C a for all constituents, then we can wri te p — pQpr and hence 

'PV f « ( P. d i N r ' ' " 
•jPq = -^[HQ,PQ] - J 2 X i PQ 

2 = 1 
^ ) / ^ x e x p - f ( Q - x ) 2 U 

x e x p L ^ ( Q - x ) 2 ' 

(2.29) 

In the position representation, we can evaluate elements < Q ' | / ? | Q " > , to find 

jt<Q'\P\Q"> = -1-<Q'\[HQ,PQ)\Q"> 

^ - e x p f - ^ Q ' - Q " / 
8 = 1 

<Q' | /> |Q">.(2.30) 
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Thus a localization of a single constituent of the pointer is sufficient to localize 

the whole pointer. To calculate the rate at which this occurs, we can approximate 

the solution to this last equation as 

<Q'\p\Q"> = exp £ A , ) * ( l - e x p ( - ^ ( Q ' - Q " / < Q V l Q " > . 

(2.31) 

I f we take each constituent particle to localize at the same rate, A, then we 

can wri te 

<Q'\p\Q"> &exp(-N\t)<Q'\p\Q">, (2.32) 

and a pointer of N particles collapse at a rate N times greater than a single 

particle. 

2.4 Excitation rate of a bound state 

The localization process can cause an atomic bound state to be excited f r o m 

its ground state. The rate of excitation can be calculated f r o m the expression 

R((f>) = -^<(j)\p\(f)>, where the excitation is to the state \<j>>. We evaluate this by 

mul t ip ly ing eq. (2.7) by < ^ | q ' x q " | ^ > and integrating over q ' and q". 

For simplicity, we take an atom of hydrogen, in i t ia l ly i n its ground state \ ipa>. 

We make the assumption that the spatial extension of the atom is less than a so 

that we may expand the exponential in eq. (2.11) to first order in /?(q' — q " ) 2 to 

give 

R(4>) = M | < < £ | q | < / , 0 > | 2 , (2.33) 

where q is the coordinate of the electron, and the collapse is assumed to affect only 

the electron. We can replace the absolute coordinate by the relative coordinate, 

as q = Q-\—^—r, the center of mass operator w i l l not excite the internal atomic 
^ ^ me+nip ' r 

states and — ^ — ~ 1. 
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To this order, the p-states only w i l l be excited. For example, the rate of 

exitation to each sublevel of the 2p-level in hydrogen is 0.277A^ag. 

We can also calculate the total rate of excitation, f r o m the expression 

Rtot = \ ( l - J d3x\<^ ! ^ o > | 2 ) • (2.34) 

Working again to lowest order, using the hydrogen ground state wavefunction, 

^ ° = / e x P ( ~ ~ ) ' ( 2 - 3 5 ) 

we find that 

Rtot = h/3a2

0. (2.36) 

Using the values of the parameters chosen by GRW, which we discuss i n the 

next section, we f ind that this formula gives a rate of photoemission of about 

25photons/g Hydrogen/sec. [18] This article also suggests that a possible place 

in which to search for these photons f r o m collapse is in the deep underground 

masses of water also used for the detection of possible proton decays and for the 

observation of neutrinos f r o m supernova explosions. 

2.5 Choice of parameters 

The localization model described in this chapter is all very well, but we need to 

be able to choose values for the parameters /? and A such that both the quantum-

mechanical predictions for a microscopic system are valid for long t ime intervals, 

and a macroscopic object does not persist in a superposition of spatially distin­

guishable states for sufficient t ime for i t to be perceived. 

We must follow some important criteria in the choice of each parameter. For 

the parameter A, we require that the rate of localization for a single particle, or a 

microscopic system to be very small, such that the dynamics of such a system be 
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essentially unaltered by the collapse process. For a macroscopic object, however, 

we require that the mean t ime, TV = between successive collapses to be small 

enough that the transition f rom the superposition to a statistical mix ture for 

states w i t h spatial extent larger than the localization distance a occurs in a small 

fraction of a second. 

For the parameter (3, we need to choose this such that the collapse radius, 

a = is large compared wi th an atomic radius, and w i t h mean spreads around 

equi l ibr ium positions of crystal lattice points. This is so that when a collapse 

does occur, i t does not significantly alter the internal structure of the system. 

However, as a represents the distance after which a linear superposition would be 

transformed into a statistical mixture, i t must be made sufficiently small that we 

avoid the occurrence of linear superpositions of markedly different locations of a 

macroscopic object. 

The GRW choice of these parameters was 

A = 1 0 _ 1 6 s e c _ 1 , (2.37) 

and 

a = - j = = 10~ 5 cm. (2.38) 
VP 

The value of A means that a single particle w i l l be localized once every 10 s — 

10 9 years, practically not at al l , and for a macroscopic object containing a number 

of particles of order Avogadro's number, the mean t ime between localizations w i l l 

be ~ 1 0 - 7 sec. 

Note that when we consider the smallest object that can be observed through 

an optical microscope, i t w i l l not be possible to simultaneously satisfy both of 

the above criteria for A, but this is mainly due to the fact that the GRW model 

in its original fo rm fails to respect the symmetry of the wavefunction. We w i l l see 
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in later chapters that some of the versions of the collapse models which respect 

the symmetry have a pointer collapse rate w i t h a higher proportionality to the 

particle number than the GRW model. 

We can evaluate the times in eq. (2.25) for a macroscopic object of mass M , 

as this equation s t i l l holds for a macroscopic object w i th the mass appearing now 

the total mass M and the collapse rate, A replaces by the collapse rate of the 

object, A^A. I f we take the object to have a mass of ~ 1 g, and have in i t i a l spread 

given by Ago ~ 10~ 5 cm, then the additional term appearing in Aq2 w i l l equal 

Aq$ at a t ime of order 100 years, and the t ime for the corresponding equality i n 

Ap2 w i l l be appreciably longer. These are very long times to keep a macroscopic 

object isolated. 

2.6 Energy non-conservation 

The non-Hamiltonian terms appearing in the evolution equation give rise to a 

non-conservation of energy. From eq. (2.20), we have that the mean value of the 

energy is given by 

<E> = <E>0 + — — ^ , 2.39) 

for each particle, and hence 

d „ Zh2\B 
-<E> = ——. 2.40 
dt 4?™ v ; 

For a single electron, this result in a rate of energy increase of about 

jt<E> « 1 0 " 2 i eV sec - 1 , (2.41) 

giving a 1 eV increase in 10 1 8 years. 

Whether this energy increase can be accounted for by the possible origins of 

the collapse processes w i l l be discussed later (see Chapter 5). 
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2.7 Concluding remarks 

The GRW model causes the wavefunction to undergo spontaneous localization 

to near position eigenstates. A superposition of macroscopically distinguishable 

states is transformed into a statistical mixture as required by the projection 

postulate of the theory of quantum measurement, and thus is a possible solution 

of the measurement problem. The modification of the Schrodinger evolution 

by an additional stochastic behaviour leaves essentially unchanged the dynamics 

of microscopic objects, whilst macroscopic objects are quickly localized. The 

effect of the stochastic terms is quite small, but the process necessarily causes an 

apparent non-conservation of energy. Perhaps all one can say is that this energy 

increase may be explained by the origin of the collapse process. 



Chapter 3 

The C S L model 

The GRW model described in the previous chapter was a discret h i t t ing model 

which causes the wavefunction to undergo sudden spontaneous localization to 

near position eigenstates. 

I n this chapter we describe a localization model which does not cause the 

wavefunction to change suddenly, but rather evolves continuously f r o m the in i ­

t ia l state to the collapsed state. This is known as the continuous spontaneous 

localization model, or CSL for short.[12, 19, 13] 

The CSL theory is in the class of Markov processes in Hilbert space and has 

a stochastic evolution equation of the fo rm 

where dh is a random, self-adjoint, linear operator. This process is not itself 

norm-conserving, so i f we wish, we can deal instead w i t h the process 

which, whilst now norm-conserving, is also non-linear, as now the operator dh^ 

is a funct ion of the state (f). This last equation also embodies an assumption as 

to the probabilities assigned to the state vectors \<f>>. 

d\ip> = - -
1 

(dhy \ip> Hdt + dh 
h 

(3.1) 

d\<j>> = 
i i i 

--Hdt + dhj,--{dht)2 \<f», (3.2) 

24 
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I n section §3.1, we introduce the basic formalism required to describe the 
CSL model, and show that w i t h a suitable choice of operators, state vector re­
duction can occur. The actual CSL model is described in subsequent sections, 
and attention is paid to the values of the parameters in the model in §3.6 . 

3.1 Markov processes 

The CSL model is derived f r o m assuming that the wavefunction in Hilbert space 

satisfies an I to stochastic differential equation. I n this section we define the 

necessary formalism for deriving the model. We take the Markov process I V ' B ( ^ ) > 

to satisfy the I to equation 

d\if)> = (Cdt + A • dB)\ip>, (3.3) 

where C is an operator, A = { A ; } is a set of operators, and B = \Bi] is a real 

Wiener process such that 

dBi = 0, (3.4) 

dBidBj = Sijjdt, (3-5) 

where 7 is a real constant. The index i can be continuous, in which case the 

Kronecker 8 becomes a Dirac 8. The I to equation, eq. (3.3) generates an ensemble 

of state vectors \ips(t)>, and each state vector has the same probabil i ty as the 

process B f r o m which i t originated. We should note that the evolution equation, 

eq. (3.3) is not norm-conserving. In fact, 

d\\ip\\2 = <ijj\dil» + <dip\*J)> + <dip\dil» 

= « / > | ( A + A t ) | < / » - d B + «/>|(C + c t ) n / » d t 

+ <C0 |At • A\^>jdt, (3.6) 
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where the notation d\if)> = \dtp> has been used. 

As the vectors \ipB{t)> do not have unit norm, we consider the ensemble of 

normalized vectors given by 

l X B { ) > ~ WMV (3-7) 

having the same probabilities as the corresponding vectors | -0B(i)>, and also the 

ensemble of vectors 

l ( f > B ' { i ) > = P ^ M ' ( 3 ' 8 ) 

whose probabilities are given by the probabilities of the vectors l^>B(i)> m u l t i ­

plied by their squared norms | | ? / > B ( t ) | | 2 . The ensemble of vectors \<j>B{t)> w i l l be 

called the physical ensemble and the corresponding stochastic process the physical 

process, in contrast to the raw ensemble and process described above. 

To describe the relationship between the raw and physical processes, we denote 

by p ( B ( t , t o ) ) the probability of the occurrence of the state vector l ^ f i ( t ) > or the 

Wiener process B ( i , t o ) ? and by q(H(t,to)) the probabili ty of the state vector 

\<t>B{i)>- According to definition, we have 

? ( B ( M o ) ) = | | ^ ( M O ) | | 2 P ( B ( M O ) ) . (3-9) 

Due to the linearity of eq. (3.3) and the Markov nature of the Wiener process 

B , the procedure f rom the raw to physical ensemble can be performed at any 

number of times between the in i t ia l and final times. Thus we may consider an 

infinitesimal t ime interval (t0,t0 + dt), giving 

q(dB)= (l + dU\\2)p(dB). (3.10) 

For the ensemble to be deemed physical, we require that the total probabil i ty 

associated w i t h the distr ibution q is unity. This amounts to requiring that the 
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average of the weighting factor \\ip\\2 relative to the distr ibution p is unity, i.e., 

<i||?/>||2 = <i||?/>||2 = 0- Thus we require, f rom eq. (3.6). that 

C + C t = - 7 A t • A . (3.11) 

We can use this condition to rewrite eq. (3.3) in the fo rm 

d\xj}> = (-^Hdt + A • dB - | A t • Adt)\if», (3.12) 

where we have wr i t ten the anti-Hermitian part of C as — ^H. For A self-adjoint, 

this is of the fo rm in eq. (3.1). Also we now have 

o?||^||2 = <ip\(A + A ^ ) | ^ > • dB, (3.13) 

and f r o m eq. (3.10), 

q(dB) = (l+2R-dB)p(dB), (3.14) 

where 

R = i < r / > l ( A + A+)lV>, (3.15) 
Li 

and the probabili ty distr ibution for q is normalized. The process that generates 

the ensemble, w i t h probabili ty distr ibution q is denoted by dB', and one has 

dB'i = 2Ri-ydt, (3.16) 

dB\dB'2 = Sirfdt, (3.17) 

so that 

dB' = dB + 2TLjdt, (3.18) 

and B ' is a diffusion process having the same diffusion as B and d r i f t 2R7 . I t 

should be noted that the physical process for the un-normalized vectors \ ip> w i t h 

probabilities equal to the corresponding vector l</>>, can be wr i t ten , analogously 

to eq. (3.12), as 

d\^B<> = { ^ \ H d t + A • dB' - I A t • Adtj \^B'> • 
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To wri te the stochastic differential equation for the physical process, we must 

first wri te i t down for the vectors \x>- From eqs. (3.12) and (3.13) i t is found 

that (See Appendix A for derivation) 

d\X> -L-H - | A t • A - 7 A • R + ^ R • R ) dt + (A - R ) • dB 

where now we have 

R = ^ < X l ( A + A t ) | X > . 

I X > , 

(3.19) 

(3.20) 

The physical process is now obtained by replacing the process B(t) w i t h the 

process having the correct probability distr ibution, namely B ' (£) , so that 

d\6> = •jH - ^A+ • A - 7 A • R + ^ R • R ) dt + (A - R ) • dB' 

wi th 

R = | < ^ | ( A + A+)|^>. 

\<f», 

(3.21) 

(3.22) 

We can rewrite this eq. (3.21) in terms of the original Wiener process B , to give 

d\<f» = -%-H - | ( A t - R ) • A + | ( A - R ) • R ) dt + (A - R ) • dB 

(3.23) 

I t should be noted that the equations for the norm-conserving processes, eqs. 

(3.19) and (3.21/3.23), are nonlinear, in contrast to eq. (3.12). The case in which 

A is a set of self-adjoint operators is important for our model. In this instance, 

eq. (3.23) becomes 

d\(j» = { ~ l H ~ 2 ^ A ~ R ^ 2 ) ^ + ( A ~ R ) ' d B \<t», (3.24) 

w i t h now 

R = «f>\A\<j», (3.25) 
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which is of the f o r m of eq. (3.2). We can easily obtain the equation for the 
evolution of the density matr ix corresponding to the physical ensemble, f r o m the 
definition 

p = \ ( j ) > < ^ (3.26) 

and by using eq. (3.24). Again using the theory of stochastic differentials, we 

obtain 

! = 4[^) + 7 A p . A t - ! { A t . A , , } , (3.27) 

where the symbols [, ] and { , } denote the commutator and anticommutator 

repsectively. 

3.1.1 Reduction from the Markov process 

We shall now see under what conditions the previously desribed process causes 

the state vector to be reduced onto eigenspaces of the operator A . This w i l l cause 

localization of the wavefunction when A is dependent on position. 

We are interested in the case when A is a set of commuting, self-adjoint op­

erators, and we ignore the Hamiltonian part of the evolution as we are concerned 

wi th the new terms. Thus we have 

d\<f)> - ^ ( A - R)2dt + (A - R ) • dB \<j», (3.28) 

w i t h R as given in eq. (3.25). We rewrite A in terms of orthogonal projections 

A ^ a ^ , (3.29) 
a 

where aa ^ a T for a ^ r , and the projections sum to the identity. We consider 

the real, non-negative variables 

< (^ |P ( T | ^> = ^ , (3.30) 
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w i t h the za satisfying 

In terms of these new variables, we can write 

a 
( A - R ) | £ > = ^ ^ - a , ^ , 

(3.31) 

(A-R) 2I<^> = x: zr{aa a r ) P*l<f». 

(3.32) 

(3.33) 

(3.34) 

Hence we can rewrite the evolution equation, eq. (3.28) as 

dPa\d» = 7 1 2 

2T( a<r — a r ) dt + Y t z T ( a a - a r ) - d B ] P c \ < f » . (3.35) 

We use this last equation in the relation 

d«t>\Pa\4>> = «j>\Pa{dPa\(j») + {d«l>\Pa)Pa\(l» + {d<4>\Pa){dPa\(j)>), (3.36) 

which follows f r o m P% = Pa and the stochastic differentials. Thus 

dza = 2za ^2 zT(aa — a T ) • c?B. (3.37) 

This last equation shows that when {za} approaches the solutions to the set 

of equations 

^ X ] ^ ( a a - a r ) = 0, (3.38) 
r 

then the diffusion of \za} vanishes, and the values of \za} w i l l eventually converge 

to such solutions. To prove this, we simply f ind the differential of z2

a f r o m eq. 

(3.37): 

dz2

a = 2zadza + [2za(aa - aT)]2^dt, (3.39) 

and subsequently 

dzl = dzl = 2za y ] zT(a<j a T ) •ydt. (3.40) 
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I t then follows that 

(3.41) 

Since we must have the boundedness property 

i j < l , (3.42) 

then as t —> oo, we have 

Hence f r o m eq. (3.40), 

d 
-z 2 

dt " 
0. (3.43) 

za zr(aa - a T ) -> 0. (3.44) 

The only solutions to eq. (3.41) are given by Zi — Sij for some j. I t is 

immediately apparent that z\ = 0 , . . . , za = 1 , . . . is an acceptable solution, but 

to show that this type is the only type of solution, suppose that, say, z\ / 0 and 

z2 7̂  0. Then we have 

Y^zT{si\— a T ) = 0 and ^ zT(a2 — a T ) = 0, (3.45) 
T T 

and hence 

£ > T ( a i - a 2 ) = 0, (3.46) 
T 

giving a i = a 2 , contrary to the statement that aCT 7̂  a T unless a = r . Thus we 

have that |</>> reduces to one of the components Pa\<j)(0)> times a real normalizing 

factor, under the process B. 

3.2 The model 

W i t h the general formalism defined in the previous sections, we now must define 

the set of operators A t required to cause the continuous spontaneous localization 
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of a system of particles. A t this stage we take the system to consist of identical 
particles. A locally averaged density operator iV(x) is defined according to 

iV(x) = W d3yg(y - x)at(y, s)a(y, s), (3.47) 
s J 

where a(x, s) and a^(x, s) are the annihilation and creation operators for a particle 

at point x w i t h spin component s satisfying suitable commutation relations. The 

funct ion </(x) is required to localize the operator, and needs to be a spherically 

symmetric, positive real function. Following the GRW model, this is taken to be 

a normalized gaussian, 

where /3 is the length parameter as in GRW such that represents the volume 

over which the average is taken for iV(x). 

The operators N(x) are self-adjoint and commute wi th each other, and w i t h 

the definit ion of g we have 

J d3xN(x) = N, (3.49) 

where N is the total number operator. 

The eigenvectors of these operators iV(x) are given by 

|q ,5> = J \ / ' a t (q 1 , s i ) . . . a t (q n , a n ) | 0> , (3.50) 

wi th corresponding eigenvalues 

n(x) = f > ( q t - x ) . (3.51) 
i=l 

These density operators N(x) can now be identified as the operators A{ i n the 

previous sections, w i t h the index i being replaced by the position x. W i t h this 

replacement, the evolution equation can be wri t ten 

d\i/» = \~Hdt+ [ d3xN(x)dB(x) - - 7 / d3*N2(x)dt 
L h J 2 J 

(3.52) 
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where the quantities B satisfy the equations 

dB{x) = 0, (3.53) 

anc 

dB(x)dB(y) = j6*(x - y)dt. (3.54) 

The density matr ix in this case, follows directly by replacing A by N(x) in 

eq. (3.27) to give 

dp 
dt 

= -j\H,p}+1 J d3xN(x)PN(x) -\-y{J d3xN2(x),p} . (3.55) 

In the position representation, we can use eq. (3.47) to find 

| U q ' , , V l q V > = -jr<q[ts'\[Htp]\q[',s»> - \ U \ ' <qL',3,\p\q[',s"> 

x £ [*(q* - q*) + *(q? - q*) - - qD](3.56) 

where we have defined 

*(y' - y") 
47T 

J , 
j d 3 x g { y ' - x ) g { y " - x ) 

exp I - - ( y - y (3.57) 

For a single particle, we can see that this reduces to 

d 
dj<q[\p\q"> = -^<q'l[^,^]lq"> 

e x P l - ^ ( q ' - q " ) 2 j - l 

W i t h the parameter choice 

A = 7 
47T 

<q ' | /9|q">.(3.58) 

(3.59) 

this coincides exactly w i t h the equation obtained for a single particle i n GRW 

described in §2.1 . 
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3.3 Rate of collapse of a pointer 

We want to be able to calculate the relative collapse rate of a macroscopic body 

to that of a single particle. We assume that the internal wavefunction of the 

macroscopic body is sharply localized wi th respect to the length parameter a = 

/?~2, and that i t is the center of mass of the body that is to be localized by the 

collapse process. The macroscopic body, or pointer, is taken to be a system of n 

identical particles, wi th the center of mass given by 

Q = - X > - ( 3 - 6 ° ) 
n f= i 

We can also wri te 

r< = * - Q, (3.61) 

for the internal coordinates of the particles in the pointer. These coordinates r 2 

wi th respect to the center of mass, sum up to zero, so that they are functions of 

3??. — 3 independent internal variables, which w i l l be indicated by r . 

Thus we wish to consider the wavefunction 

1&(q,a) = tf(Q)x(r,a), ( 3 - 6 2 ) 

where the internal wavefunction x is understood to be correctly symmetrized 

(or antisymmetrized), and both x a n d the center of mass wavefunction $ are 

separately normalized. The wavefunction x{r->s) be- taken to be sharply 

(wi th respect to /3~5 ) peaked around the value ro of r. 

We can easily calculate the action of the operator iV(x) on this wavefunction, 

3 

W(x) t f (Q)x(r, s) = vD(Q) £ ( j ^ j ° e x p ( _ I (Q + r t _ x ) 2 ) x ( r , a ) . ( 3 .63) 

As the funct ion x ( r ? , s ) i s sharply peaked around r = ro, the factor in front of 

X w i l l vary more slowly than x itself, and we may take r — VQ in this factor. In 
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other words, we treat x a s i f i t were of the fo rm 83n~3{r — ro)£(s) . Then we have 

JV(x)tf (Q)x( r , s) = F(Q - x ) ¥ ( Q ) X ( r , s), (3.64) 

where we have wri t ten 

F(Q - * ) = E ( 0 exp (~f (Q + r.-(ro) - x ) j . (3.65) 

Hence the operator N(x) acts solely on the factor \ f of if). Thus, i f we have 

that H = HQ + HR then ^ and x satisfy the equations 

d\V> = 
i 

HQdt + J d3xF(Q - x)dB(x) - | J d3xF2(Q - x)dt l * > , 

(3.66) 

and 

dx = —iHrdtx, (3.67) 

respectively. Hence the motion of the center of mass of the pointer and the 

internal motions decouple in this case. Furthermore, the internal structure is 

not affected by the stochastic terms under this approximation, whilst the center 

of mass wavefunction obeys a stochastic differential equation, again of the type 

given by eq. (3.52). The operators F(Q — x ) which appear in this equation are 

real functions of the center of mass position operator Q, and correspond to the 

operators A,- of §3.1 Thus, these non-Schrodinger terms induce the collapse of the 

wavefunction onto approximate eigenstates of the position Q. 

I n order to calculate the rate at which this reduction occurs, we can study 

the off-diagonal elements of the density matr ix , <Q'\p\Q">, disregarding the 

Schrodinger term as this w i l l not be significant for a process which turns out to 

be very fast. The evolution equation, eq. (3.55) becomes in this case 

^ < Q V l Q " > = - r ( Q ' , Q " ) < Q V l Q " > , (3.68) 
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where 

T(Q' , Q") = 1 J J 3 x [,F 2(Q' - x ) + F 2 ( Q " - x ) - 2F(Q' - x ) F ( Q " - x ) 

(3.69) 

Equation (3.68) of course gives 

<Q'|/>(*)lQ"> = e x p ( - n ) < Q , | / ? ( 0 ) | Q " > . (3.70) 

We can evaluate the integral in eq. (3.69) exactly i n terms of the r,-, but we 

can gain a clearer physical insight i f we use the macroscopic body approximation 
3 

by replacing the sum by an integral, since we are assuming that a volume (3~i 

contains a large number of particles. Thus we write 
3 

F(Q - x ) = J d3xD(y) ( J ^ j 2 exp ( - | ( Q - y - x ) 2 ) , (3.71) 

where D(y) is the density of particles in the region of the point y = Q + y. 

Since we are not interested in the details of T for Q' — Q" —> 0, we can make 

a fur ther approximation by replacing the normalized Gaussian funct ion i n eq. 

(3.71) by the corresponding 8 funct ion, which means 

F ( Q - x ) = D ( x - Q ) , (3.72) 

resulting in 

T(Q' - Q") = f j d 3 x \D2(x) - / J (x ) J D(x - Q' - Q")] • (3.73) 

I f we take the simple case when the pointer is a homogeneous body of constant 

density D0 then we have 

r = iD0nouU (3.74) 

where nout is the number of particles that are not contained in both the volume 

occupied when the pointer is in the center of mass position Q' and when the 
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pointer has center of mass Q", i.e. nout = n — n o v e r \ a p . Thus the ratio of the 

collapse rate of a pointer to that of a single particle is given by 

-f = noutD0[ — \ , (3.75) 

valid for when |Q ' - Q"| » / H . 

We note here the presence of the extra factor ~ Doct3, the number of paritcles 

in the 'collapse volume'. This was not present in the collapse rate of a pointer 

in GRW, and gives more scope for the choice of the parameters when constraints 

are imposed.(§3.6) 

3.4 Position and momentum spreads 

I f we substitute Q' = Q" into eq. (3.69), then we can see that the diagonal ele­

ments of the density matr ix , < Q | / 9 | Q > are unaffected by the localization process. 

As in the case of the GRW model, we wish to ensure that the t ime dependence of 

both position and momentum spreads does not result in unacceptable behaviour. 

The equation for the density matr ix in operator fo rm is wr i t ten 

1 dp 

dl 
i 

[H, p] + 7 / d3x [ F ( Q - x)PF(Q - x ) - - {F2(Q - x ) , p}\ , (3.76) 

where we now retain the Schrodinger term. For the case of a free macroscopic 

body, we have H = ^ j P 2 , and for a dynamical variable 5" the mean value is 

defined to be 

<S'> = tr(Sp). (3.77) 

The t ime derivative of S according to eq. (3.76) is given by 

d c 

— <S> -
dt 

M[S,H}p) (3.78) 

+ 7 J d3xtv ( [ F ( Q - x)SF(Q - x ) - I {S,F2(Q - x ) } ] 
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Using this equation, we find that the position and momentum spreads are 

5 < * > = ( 3 ' 7 9 ) 

Jt<p>> = 0< (3- 8 °) 

and 

jt<Ql> = <QtPl + PQl>, (3.81) 

jt<QtPt + PtQt> = ^<P">, (3.82) 

jt<Pf> = \lSih2, (3.83) 

where 

Si = J d3y 
dF(y) 2 

(3.84) 
% 

Eqs. (3.79) and (3.80) are the same as in the case of pure Schrodinger evolu­

t ion, so that 

<Qi> = <Qt>0 and <Pt> = <Pi>0, (3.85) 

where the suffix 0 indicates the pure Schrodinger solution satisfying the same 

ini t ia l conditions. 

The system of equations, eqs. (3.81), (3.82) and (3.83) differ f r o m the normal 

Schrodinger evolution, because of the non-zero term on the right-hand side of eq. 

(3.83). We can rewrite them as 

h2 

<Q't> = « £ - > o + 7 * i g ^ * 3 , (3-86) 

h2 

<QiPi + PiQi> = <QiP + PtQt>o + 76l—t2, (3.87) 

h2 

<pf> = < p i > 0 + 16i'—t. (3.88) 

The momentum diffusion ^<5,/i2 appearing in the th i rd of these equations 

causes the extra terms in the first two equations. These differ f r o m GRW in 

file:///lSih2
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that the factor raA/? is here replaced w i t h 7^. To evaluate the quantities <5;, we 

need the details of the macroscopic body in question, and we need to make the 

macroscopic body approximation, as in §3.3. For simplicity, we take the body to 

be a box of side L , wi th constant density Do- The macroscopic body approxima­

t ion gives 

M 1 r ( P, F(y) D, • ( £ ) / / ' 3 y - P ( - f ( y + y 

0 

2 = 1 
erf 

2 * 
(3.89) 

We then substitute this expression into the equation for 8{, eq. (3.84), to f ind 

m [1 v 
7T/?, 

l - « x p ( V E2 \2' (3.90) 

where 
r+00 

E{x) = / dz [erf (z + x) - e r f ( ^ ) ] 2 . (3.91) 

Since we are dealing w i t h a macroscopic body, we have x = ( f ) 2 L 1, and 
we can take E[x) = 4x so that 

2 r 2 
6i = u) DqL (3.92) 

For an idea on the order of magnitude of this term, we can choose the GRW 

values for the parameters f3 and A, and a density of, say, Do ~ 10 2 4 c m - 3 , the 

m i n i m u m value of L pa 10~ 4 cm for which the approximations are valid, to give 

^6th2 « 1 0 - 4 O ( g c m s - 1 ) 2 s - 1 . (3.93) 

This means that the term on the right-hand side of eq. (3.86) w i l l become of the 

order of I O - 1 0 cm 2 after a t ime of the order of 10 2 s. 

These position and momentum spreads were specifically for the center of mass 

of the macroscopic body in question. I t is perhaps useful to calculate the average 
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rate of increase of energy per particle. This can be calculated f r o m a similar 

expression to eq. (3.78), 

d_ 
dt 

<H> = j J f / 3 x t r ( n ( x ) / / n ( x ) - l- { # , n 2 ( x ) } (3.94) 

where n(x) is as given in eq. (3.51). We treat the particles in the system to be 

non-interacting, so that we can take 

1 N 3 
(3.95) 

The major i ty of the terms f rom eq. (3.95) wi l l either cancel or sum to zero when 

all the particles are taken into account, leaving just one term 

d_ 

dt 
» 3 

(35oj(qa - x ) ! exp (-^(q<7 - x ) 2 

( 3 6 T j ( q r - x)i exp I - ^ ( Q T - x ) 2 

This expression can be evaluated easily, giving 

± < H > =

 3%2tPN I? 
dt 32m V I " 

(3.96) 

(3.97) 

When the expression for 7, eq. (3.59) is substituted into this equation, we can 

see that the average rate of energy increase for a system of ./V identical particles 

is given by the same formula as for GRW, 

- H - ^ N 

d t K > _ 4 ? 7 l a 2 T ' (3.98) 

for any state of the system. 

3.5 Bound State Excitation 

I f we have a system of N particles which belong to a bound state, then the collapse 

process can cause the system to be excited f r o m the ground state. We assume 
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that the system has spatial extension much less than a = j3~^ ? and calculate the 
rate of excitation f r o m the ground state to an orthogonal excited state \<j>>. 

The rate of excitation is given by 

R{<f>) = -^«f>\p\<l», (3.99) 

and in order to calculate this, we take the evolution equation for the density 

matr ix , eq. (3.56), mul t ip ly through by <</>|q><q'l</>> and integrate over q and 

q'. We take the in i t i a l wavefunction to be the ground state so that p = p(0) = 

\ip0><ipo\- Due t ° the orthogonality of the ground state and the excited state, al l 

terms excepting $(q, — q'*.) w i l l vanish. As the spatial extension of the state is 

much less than a, we may expand the funct ion $ as 

/ \ 1 (l] + l'k ~ 2qj • q'fc 

$ ( q j - q * ) » i - - ^ ' ( 3 - 1 0 0 ) 

which leads to 

^ N N 

R(<j>)t=o = ^ r ^ £ £ < ^ l q j l V ' o > • <^olq*l^>, 
a j=l k=l 

N' 2 

<^>lQlV'o>|2, (3.101) 
2 T a 2 

where Q is the center of mass position operator for the iV-particles, which may 

or may not be the center of mass for the entire system. 

I f only the electrons in the system were affected by the collapse process, then 

this equation gives a rate of photoemission similar to GRW. I f , however, the 

process affects both electrons and nucleons, this rate can change considerably. 

The most economical way to accommodate both electrons and nucleons in the 

collapse process is to allow the coupling of each type of particle to be different, 

whilst keeping the parameters A and fH the same for all particles. I f we take the 

coupling of particle j to be pj, then this introduces a factor pjPk into the double 
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sums in both the equation for the elements of the density matr ix , eq. (3.56) and 

that for the rate of excitation, eq. (3.101).[20] 

We can eliminate the excitation to this order in CSL entirely i f we choose 

the couplings to be proportional to the mass, fij — where mo is a constant 

mass-scaling factor. Then the rate of excitation reads 

W ) t = 0 =

 2 r f l 2 . m 2 l < ^ ' Q ' ^ o > | 2 , (3.102) 

= 0, (3.103) 

where Q is now the center of mass position operator for all the particles in the 

system. The expression is zero, as the center of mass operator does not excite 

the internal atomice states. W i t h this coupling, the average energy increase for 

the system can now be wri t ten 

d < H > _ 3h2 M_ 

dt 4?7?.0a2 m0T 

The first non-vanishing contribution to the rate of excitation is of order 

T ( m ^ ) i~a') ' w n e r e ao i S the atomic radius, and w i l l be evaluated for a hy­

drogen atom in §4.5. 

We can make the simplification that atoms consist of just two different types 

of particles; electrons (mass me) and nucleons (mass m p ) , ignoring the nuclear 

binding energy and the neutron-proton mass-difference. Then we can take the 

coupling to be a for the electrons, and 1—a for the nucleons, so that the excitation 

rate for an atom (Z, A) becomes 

I z A 2 

«f>\a^2rj + (1 - a)^2Rj\i/f0> 
2Ta 

(3.105) 

where we have used the relative coordinates r , and R- for the electrons and 

nucleons respectively, as we can ignore any occurrence of the atom center of mass 
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position operator. We can eliminate the position variables R , by noting that 

™ e X / f=i r j + m

P Tlf=i R-j = 0 and thus 

nr. JL 
(3.106) «t>\ ^ R J | 0 o > <(j)\^r,|^o>-

Hence the rate becomes 

2Ta2 

mr 
me + mP/ i = i 

(3.107) 

3.6 Constraint on Parameters 

The window for parameters in the GRW model is relatively small. I t is necessary 

that a macroscopic object collapses faster than the t ime of human perception 

(at least), whereas there should be no obvious difference in the behaviour of 

a macroscopic object. However, there were no experimental constraints to be 

imposed on the parameters, so the ini t ia l ly chosen values could not be ruled out. 

We can now put a constraint on the value of To,2 appearing in the excitation 

rate by comparing the theory to an experiment measuring the rate of spontaneous 

X-ray emission in Germanium[21]. In this experiment, we examine the data for 

the ionization of the Is electrons. Double-beta decay experiments have long been 

performed to set upper bounds on the rate of spontaneous X-ray emission. I f 

the collapse process causes an electron to be knocked out of the Is shell in Ge, 

an X-ray pulse w i l l immediately follow. The total energy of the photons emit ted 

w i l l be l l . l k e V (the ionization energy), and also the free electron w i l l lose several 

keV in collisions. 

A l l that is needed f r o m this experiment is the count rate for to ta l energy 

detecton just over l l . l k e V . The experimental upper bound on the X-ray f lux 

is found to be 0.049counts/keV/kg/day. We now need to calculate the rate 

predicted by CSL. 
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In i t ia l ly we w i l l assume that only electrons are affected by the collapse, (a = 

1), and take as a starting point, eq. (3.101) for the excitation, where we can 

replace q; by the relative coordinates, r;. We can write <<^>|rj + T 2 + . . . + r n |I/J> = 

Z<d>\ri\ip> because of the symmetry of the electrons. \ipo> w i l l denote the 

Is electron state and \ipi> the other electron states. |<^o,&,m> w i l l denote the 

normalized / = 1 ionized electron state wi th spin index m and momentum k. 

Then using eq. (3.101), the probability that one of the two Is electrons w i l l be 

ionized to a state w i t h momentum between k and k -\- dk is 

z-i 
|2 

2dk 

dR= —TT£l<^o,fc,m|r1H/>o>|2 II \<&\&>\2 • (3-108) 
^ a m i=\ 

I f we let <r\ip0> = R0(r)Yoo and <r|</>0, k,m> = Rk(r)Yim then we have 

dk r roo i 2 z-i r r T O n 2 

dR = / r3drRk(r)R0(r) TT / r2 dr R\(r) R^r) , (3.109) 
Jo J f-=\ Uo J Ta2 

where i? ' ( r ) and Ri(r) are the wavefunctions of the other, non-ls electrons in the 

ionized state and ground state respectively. 

The integrals here can be approximated by assuming that the electrons in 

the state are non-interacting, but this w i l l underestimate the count rate. More 

accurately we can apply Hartree's method, in which each electron is taken to 

move in a potential due to the nucleus and the average potential due to the other 

electrons in the atom. For each electron, we solve a differential equation of the 

f o r m 

- ^ - - T ^ ( r R ^ ) + VnRi> + VeR* + V,R^ = ER^, (3.110) 

where R^ is the radial part of the wavefunction, Vn the nuclear potential, Ve is the 

electron potential f rom the other electrons, Vi is the potential f r o m the angular 

momentum and E is the electron energy. 

This equation can be solved numerically, by treating the atom as i f i t were 

placed in a box. The wavefunctions and transition probabilities can be computed, 
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and we have a theoretical count rate of 

dR a2 

dE 2Ta2 
r , (3.111) 

where a = ^ is the Bohr radius, and T is a funct ion of the energy which, ac­

cording to the numerical calculation, is T — 0 .548keV - 1 when E = l l . l k e V , the 

ionization energy of the electron. As there are 8.64 x 10 4 sec/day and 8.29 x 

10 2 4 atoms/kg in Ge, the theoretical count rate can by wr i t ten 

a2 1 
Counts /keV/kg/day = 7.17 x 1 0 2 9 — — T = 5.37 x 10 9 — - , (3.112) 

2Tal Ta2 

where T is measured in seconds, and a in cm. 

We can substitute the experimental l im i t into this equation to give the in­

equality 

To2 > 1.1 x 10 1 1 sec c m 2 . (3.113) 

W i t h the GRW choice of parameters, we only have Ta2 = 10 6 sec c m 2 , and clearly 

we cannot choose these parameters i f only the electrons were affected by collapse. 

I f however both electrons and nucleons are involved in collapse, w i t h coupling 

a and 1 — a, then the excitation rate changes according to eq. (3.107), and this 

inequality now becomes 

( YYl \ ( Tfl \ 
1 + — [a - secern 2. (3.114) 

mp J \ me + mpJ 

For the GRW values of the parameters to be consistent w i t h this inequality, 

we require that a < 3.5 x 10~ 3 . Thus, i f we want to maintain these values, 

then nucleons must be mainly responsible for the collapse. The right-hand side 

of this inequality vanishes i f we choose the couplings to be mass-dependent, 

a = ——— ~ 0.54 x 1 0 - 3 , and the order of magnitude of the excitation rate 
me+mp ' ° 

' s 7 ( m ^ ) ( ^ 0 - ^ e e x P e i ' i m e n t a l data then leads to a new, very weak con­

straint 
Ta4 > 10" 1 5 sec c m 4 . (3.115) 
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Figure 3.1: The boundaries imposed by the theoretical constraints, eqs. (3.119), 

(3.120) and (3.121) in the logT(sec) — loga(cm) plane for the cases a = 0,1. The 

allowed region lies below each boundary. Also shown is the constraint imposed 

by the Germanium experimental data, eq. (3.115), with the allowed region lying 

above the boundary 
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We can also find some theoretical constraints for the model by requiring that 

macroscopic objects do not persist in a superposition longer than the human 

perception time, which we conservatively take to be of order 0.01 sec. 

We will take the macroscopic object to the smallest object that can be seen 

through an optical microscope, a sphere of about 4 x 10~5 cm diameter. We 

assume that the sphere is initially in a superposition of states separated by a 

distance /. The collapse times of such an object are then given by 

T 
Da3N[aZ + (1 - a)A] 2 ; 

a < 4 x l 0 " 5 c m (3.116) 

T 
o > 4 x l 0 " 5 c m , l>a (3.117) N2[aZ + (l -a)A}2' 

T « — , a > 4 x l 0 - 5 c m , / < a. (3.118) 
N2P[aZ + (1 - a)A]2 ' 

The first two of these equations come from the pointer collapse rate, of §3.3, 

whereas the third can be derived easily from eq. (3.56), by expanding to first 

order in I2. Here, D is the particle number density and N is the number of 

atoms in the sphere. If we take the sphere to be made of carbon, then D « 

1.1 x 10 2 3 atoms/cm 3, N « 3.8 x 109 atoms, Z = 6 and A = 12. We take the two 

states to be on the point of touching, such that / « 4 x 10 - 5 cm, and hence we 

have three theoretical constraints, 

Ta'3 < 1.5 x 103 2(2 - a ) 2 secern - 3 , a < 4 x 10"5 cm (3.119) 

T < 5.2 x 1 0 1 8 ( 2 - a ) 2 sec, a > 4 x 10" 5 cm, l> a (3.120) 

Ta2 < 8.3 x 109(2 - a ) 2 sec cm 2 , a > 4 x 10 - 5 cm = / . (3.121) 

These theoretical constraints are shown in Fig. (3.1), together with the ex­

perimental constraints from the Germanium data. It should be noted that eqs. 

(3.114) and (3.121) are in fact inconsistent unless the value of a < 0.43, indicat­

ing that the collapse process should certainly affect the nucleons, and suggesting 
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there is some sort of mass-dependence of the couplings. 

3.7 Conclusion 

The continuous spontaneous localization model introduces a new stochastic field 

which causes the wavefunction to collapse continuously to near position eigen-

states, as opposed to the sudden collapses of the GRW model. The requirements 

of a negligible effect on microscopic systems and a rapid collapse of the wavefunc-

tions of macroscopice objects are maintained. Moreover, the CSL process can 

describe all the particles in the system, be they distinguishable or identical. The 

constraints that can be placed on the parameters of the model suggest that the 

collapse mechanism, and the new stochastic field may in some manner be related 

to gravity, and i t is there that we should look for the source of collapse. 



Chapter 4 

Symmetric Collapse Models 

Although the pioneering GRW 'hitting' model [11] described in the first part of 

Chapter 2 can cause collapse at a rate consistent with whether the system under 

consideration is microscopic or macroscopic in nature (with a suitable choice of 

parameters), the collapse process, eq. (2.1) does not respect any symmetry that 

the initial wavefunction may possess. Whereas this may not be a problem when 

all of the particles are distinguishable, we require the symmetry to be preserved 

in the case of identical particles (Whether the wavefunction is totally symmetric 

or antisymmetric is not an issue). 

This is not a problem in the case of the continuous collapse models that were 

subsequently developed (described in Chapter 3)[12, 13], and here we will describe 

possible versions of the explicit collapse models which do maintain the previous 

symmetry of the wavefunction[14]. 

We will then introduce a hitting process which will affect distinguishable par­

ticles in a different manner, by modifying the equations to include a coupling 

which is mass-dependent. 

It will be observed that there is no unique model to achieve these ends. One 

degree of freedom will be the choice of the power taken of a particular sum in the 

49 
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collapse function, and another will be the coupling coefficients. We will compare 

the theoretical predictions of the models here with the GRW model and CSL for 

the amount of excitation of bound states and the rate of collapse of a pointer, 

and using experimental constraints to try and reduce the freedom of choice. 

It is found that these comparisons strongly suggest that if collapse does actu­

ally occur, it has gravitational origin[23] (See §3.6). 

Finally we will discuss the connection between the family of explicit collapse 

models discussed in this chapter with the continuous CSL-type models. 

4.1 A hitting process for identical particles 

Given that we wish to maintain the wavefunction symmetry, the collapses ex­

perienced by individual particles cannot be totally independent as in the GRW 

model. We require the system to undergo the collapse process. 

Initially, we will suppose that all of the TV particles in this system are identical, 

and that the wavefunction is correctly symmetrized (or antisymmetrized). An 

obvious generalization of eq. (2.1) that preserves this property is 

We must now ask exactly what form the new 'hitting' function F should take. An 

early attempt by Ghirardi et al.[22] suggested that to maintain the symmetry, the 

collapse should involve as many collapse centers as there are particles involved, 

and then the collapse function should be a sum over all permutations, i.e. 

F ( x , { q t } ) * 
1 

(4.1) 

where the function it!(x) is required to normalize the wavefunction, 

J2(x) = / 

x,-},{q,-}) = EXP 
7T ( 

- £ ( q i - x „ ( i ) ) (4.2) 
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where the ir(i) are permutations of the numbers 1 to N and the sum is over all 

such permutations. 

However, this does not appear to have nice features when translated into the 

language of second quantization. 

I t is much more preferable for a single collapse to only one collapse center, even 

if the collapse does affect all particles. A single collapse on a macroscopic body 

will cause its wavefunction to collapse. We can take the system collapsed wave-

function to be an equal superposition of the wavefunctions produced when each 

individual particle experiences the collapse, i.e. the collapse function becomes 

n x , { q J ) = ^ E ( 0 ^ f < * - 4 (4.3) 

The necessity of the factor C({q t }) will be made clear below. 

To ascertain the probability distribution of the collapse centers, and the func­

tion C, we must again look at the diagonal elements of the density matrix. Since 

any individual hit may affect all of the particles in the system, we shall denote 

the probability of a single hit in the system in a time dt by Xsdt, where Xs could 

now be very large. It should be emphasized at this point that later we will re­

quire Â  = Nu, where Nu is the number of particles in the universe, and each hit 

can occur anywhere in the universe. Here we shall assume that there is nothing 

except the system. 

The density matrix evolves almost the same as before, with Hamiltonian evo­

lution when there is no hit in time dt, 

(1 - Xsdt) (p(t) - '-[H, p{t)]dt) + XspHdt, (4.4) 

ft=-^[H,p}-Xs(p-p»). (4.5) 

p(t + dt) = 

which leads to 
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If we take the probability of a single hit occurring at x to be i 3 ( x ) , then we 

can write pH, the density matrix after the hit as (in a position representation): 

< q V " i q > ••= J i 3 x P ( x ) j F ( x ' K l M q ' ) * ^ H » * ( q ) (4.6) 
|i?(x)| 2 

with F as given in eq. (4.3). 

The requirement that the probability predictions of quantum theory are pre­

served again means that the diagonal elements of the density matrix must be 

unchanged by the collapse. This implies that 

P(x)P 2 (x , {q , } ) 
= 1. (4.7) 

| i?(x)| 2 

Substituting in the form of F from eq. (4.3) and making use of the identity 

/ 1 \ 2 1 
(q.? - x ) 2 + (q* - x ) 2 = 2 ( x - -(q,- + qk)J + - ( q , - q f c ) 2 , (4.8) 

we f i n d 

^ ( - ) 2 5 e x p
 H ( q j - q * ) 2 

P (x ) 
exp -P x - \{&3 + q*) = i . (4.9) 

| i?(x)| 2 

In order for this last equation to be satisfied, the function C must depend on 

the position variables, { q j } . It seems a reasonable physical requirement that it 

should depend only on the differences between any two of the position variables, 

and thus the integrals must be independent of (q j + qfc), and hence we must again 

choose 

P(x) = |i?(x)| 2 , (4.10) 

analogous to eq. (2.10). Thus we can now write down the explicit form of the 

function C from eq. (4.9): 

C({q,-}) 
N I>XP ( - f ( q j - q * ) 2 

3,h V * 
(4.11) 
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Note that is the absence of the factor C({q;}) that causes an earlier attempt 
at a symmetric version of GRW to fail[24]. 

4.1.1 A n alternative hitting model which preserves the 

symmetry 

We can see that an extra complication of the model in the previous section which 

manifests itself as cross-terms, for example in eq. (4.6), is caused by the factor 

C({q;}) . It is possible to eliminate this extra factor in the collapse function if we 

replace eqs. (4.1) and (4.3) with 

( 4 ' I 2 ) 

where 
-

£ e x p (_0( x - q,-)3) G'(x,{q t}) = - U ^ 
V71"/ .7 

(4.13) 

and the square root removes the need for the position-dependent C factor. Note 

that the coefficient of the square position deviation (qj — x ) 2 in the gaussian is 

f3, a factor of 2 different to before to ensure that all the models are in agreement 

when there is only one particle. 

In eq. (4.13), we have taken the collapse function to be the square root of 

the original function of eq. (4.3). In principle, we could take an arbitrary power 

of this sum to be the collapse function, but the square root is the only one for 

which the function required to separately normalize the collapse function is in 

fact constant. 

The equation governing the evolution of the density matrix for this model is 

the same as for the first model, eq. (4.5), with the elements of the hit density 
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matrix given by 

<q'\pH\q> X > x P ( - / ? ( x - q ; . ) 2 ) <q'|/>lq> (4.14) 

x ]Texp ( - / ? ( x - q f c ) 2 ) 

4.2 A mass-dependent hitting model 

As we shall see below there are reasons for believing that the collapse model 

should treat all 'matter' particles (fermions) in a symmetrical way, apart from a 

dependence on the mass. In order to permit this dependence, we can replace eq. 

(4.3) with 

F ( x , { q J ) = — X^aj^-j e x p ^ - - ( q j - x ) ' ! (4.15) 

where ctj is the "coupling" of the jth particles, and the sum is now over all 

particles. If particles j\ and j2 are identical, then of course the couplings 

and ctj2 will be equal, thus maintaining the symmetry of the wavefunction. The 

simplest mass dependence, which would be expected for a gravitational effect, 

comes from taking ctj = where m0 is some arbitrary mass scaling factor. We 

may choose this arbitrarily as A may still be adjusted to satisfy any constraints. 

Later we will consider atomic systems where we have electrons that couple with 

strength a and nucleons with strength 1 — a. Wi th this change in the hitting 

function, the diagonal elements of the density matrix are unchanged if we have 

N J 2 e x p - q*)2 (4.16) 

We can of course make a similar replacement for the alternative model, with 

now 

G ( x , { q , » = ^r(£Y £ a , - e x p (-^(q^ - x ) 2 ) (4.17) 
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4.3 The pointer collapse rate 

We now wish to compare the rate of collapse of a macroscopic system, which we 

shall call the pointer, to the rate of collapse of a microscopic system, consisting 

of a single particle. In particular we shall compare the relative rates for the origi­

nal GRW model, the continuous localization model (CSL), with mass-dependent 

collapse, the symmetrical hitting model of §4.1 (which we shall call SHM1) and 

the alternative model of §4.1.1 (Henceforth to be known as SHM2), together with 

their modified versions for mass-dependent collapse of §4.2. 

Initially, we assume that the pointer is in a state of superposition of two 

macroscopically distinguishable states, and these states are isolated from the rest 

of the universe, i.e. the wavefunction can be written 

* = ; ^ ( 0 i + ^ ) x « , (4-18) 

where ipi and •02 are the pointer states and \u is the wavefunction for the rest of 

the universe. 

1. G R W 

In this model each particle is hit independently of all of the others, so the rate of 

collapse of the pointer is given by 

Ap = NPX, (4.19) 

where Np is the number of particles in the pointer. 

2. C S L 

As noted in §3.3, the collapse rate has an extra factor causing the pointer to 

collapse to either if>\ or ip2 much faster: 

Ap = (NpDNa3)X, (4.20) 
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where DN is the particles-number density of the pointer. 

If we consider this model with mass-dependence, then we must include the a 

factors. In particular, if we take electrons to have a coupling a and nucleons a 

coupling 1 — a, then for a pointer made of one element (Z, A) , the collapse rate 

becomes 

Ap = (NPDna3[aZ + (1 - a)A}2) A, (4.21) 

where Np is now the number of atoms in the pointer, and DN is the density of 

atoms in the pointer. 

3. SHM1 

Since we earlier defined As to be the collapse rate of the system in question, we 

must either consider a subset of this system or indeed that the system is a subset 

of the entire universe. 

It is perhaps enlightening to examine further the extra factor C({q,-}) present 

in the collapse function. We can use a similar method to that of CSL to approx­

imate this factor, by replacing the sum in eq. (4.11) by an integral with extra 

density factors: 

-> J J (PqjCpqkDiqjWq^exp ( ^ j i ^ j ~ q*) 2 ) • 

(4,22) 

This should be a reasonable replacement if we are dealing with a macroscopic 

object. We are not able to perform the integration without knowing the exact 

form of the density functions in the expression, but we can make a further ap­

proximation by replacing the gaussian by a suitable delta function, which enables 

us to calculate C. 

E E X P - q * ) 2 

C ( l q , } ) = (4.23) 
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where D is the average particle density of the macroscopic system. Now this 

factor is in fact identical to that factor present in the pointer collapse rate in 

CSL. 

The similarity is in fact even more marked if in the original sum over particles 

in the collapse function, we consider all of the particles in the universe. As the 

pointer states are taken to be isolated from the rest of the universe, we may 

rewrite the C factor in the form 

N £ e x P ( - f (°b - q*)2) + £ e x P ( - f to - qO2 

j,kEu-p \ I j,fc€p \ (4.24) 

where the first sum is over all the universe apart from the pointer and the second 

is over the particles in the pointer. As the number of particles in the universe 

is clearly much larger than the number of particles in the pointer, Nu Np, we 

can clearly approximate this expression as: 

C ( { q i } ) / n > 
N \EU 

where we have written 

1 - § e x p r 4 ( q > ~ q k Y 

u ],kep \ 

s„ = ^ exp ( - j ( q j - qfc)2 J • 

(4.25) 

(4.26) 

Clearly this number is not going to change significantly by incorporating the 

particles in the pointer into the sum. The number is very large, and approximately 

constant. 

We may also make these approximations in the equation for the elements of 

the density matrix, eq. (4.6). Since we are only interested in how the pointer is 

affected by the collapse, we may take qj = q1- for particle j (fc p. Thus we have 

<q'\pH\q> 
1 

2S 
1 

1 
2SU 

£ *(q; - q*) 

S « + E $(q, - q ; ) <q'lplq>, 
1 j,k£s J 

(4.27) 
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where $(z) = exp (— f ^ 2 ) . 

Taking into account the fact that E u is very large, we can substitute the above 

expression into the equation for the evolution of the density matrix, eq. (4.5) to 

give 

d<q'\p\q> i'•• , [ T T , A , 
d t = ~jr<q'\[H,p]\q> - ~<q'\p\q> 

X £ [dKc, - cu) + <D(q;. - q'fc) - 2*(q i - q'fc) 

where $ is given as above and we have written 

A — ^ u 

(4.28) 

(4.29) 

The above equation for the evolution of the density matrix is in fact identical 

to that obtained from CSL, and hence the rate of collapse for a pointer in the 

model SHM1 will be as given for CSL in eqs. (3.70), (3.74) and (3.75). 

It is perhaps worth noting that the SHM1 model does allow the possibility of 

a novel type of superluminal signalling. If we take the overall rate of collapse for 

the universe to be constant(A„), then the effective collapse rate, proportional to 

A, depends on the quantity £„, which in principle can be altered by changing the 

density anywhere in the universe (at least when the universe is finite). 

4. SHM2 

As the pointer is isolated from the rest of the universe, we may split the sum 

over particles into two separate sums; one for the particles in the pointer and 

the other for the rest of the universe. If the collapse center x is located on the 

pointer, then the sum over particles in the rest of the universe will be essentially 

zero, and vice versa. Thus we can write 

£ e x p ( - / ? ( X - q , ) 2 ) £ exp (-/3(x - q,) 2) 
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+ £ e x p ( - f l x - q , - ) 2 ) (4.30) 

as for all values of x we may take one of these terms to be zero. 

As we are only interested in the pointer, we may again take q, = q̂  for particle 

i £ p, and we can write the hit density matrix, /d 3 xP(x)| \J , ^><W^ | , as 

£ e x p (-/9(x - q,) 2) 
j€p 

(4.31) 

x £ e x p ( - / ? ( x - q ; . ) 2 ) 

+U|)'f**\£~*^-l>t*-*),) 
jeu-p 

<q \p\q> 

We may of course evaluate the second term in this expression exactly, giving 

a value of N u ^ N p , where A^u is the number of particles in the universe, and Np the 

number of particles in the pointer. 

As the pointer is in a superposition of two macroscopically distinguishable 

states, the first term in eq. (4.31) is essentially zero, since one of the factors 

will vanish for each value of x. 1 Substituting this equation into the evolution 

equation, eq. (4.5) and ignoring the Hamiltonian term, we have 

d<q'\p\q> 
dt 

-XNp<q'\p\q>, 

where we have written 

(4.32) 

(4.33) 

analogously to eq. (4.29). Therefore the rate of collapse of the pointer is given 

by 

Xp = NPX. (4.34) 
1 More precisely, with the macroscopic body and sharp-scanning approximations, the term 

is approximately n o v e r i a p . 
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Again, we can modify these equations for the case when the couplings are 

mass-dependent, leading to a similar expression for the collapse rate: 

AP = £ > , A , (4.35) 

where now we have 

A = , (4.36) 
2->jeu a j 

replacing eq. (4.33). In particular, for a pointer made solely of atoms (Z, A) with 

the coupling a for electrons and 1 — a for nucleons, then 

\ p = (Np[Za + {l-a)A})\, (4.37) 

where Np is the number of atoms in the pointer. We can see that this model has 

the same pointer collapse rate as the GRW model; it is linear in the number of 

particles, lacking the extra factor present in the SHM1 and CSL models. 

Exactly how the pointer collapse rate varies with Np when the overlap between 

ipi and ip2 does not vanish, will be discussed later. 

4.4 Position and Momentum Spreads 

As in the case of the GRW model and CSL, we will calculate the effects of the 

stochastic terms in the evolution equation on the mean values and spreads of 

position and momentum. 

For SHM1, the values calculated will , in the limit as the number of particles 

in the universe tends to infinity, be the same as for CSL, eqs. (3.85) -(3.88). 

For SHM2, we calculate the values as before, using the equation 

3 

j<S> = -l-tv([S, H]p) - \utv{Sp) + ^ { A 2 tr (J d ^ S F ^ p ) , (4.38) 
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which follows from the evolution equation, eq. (4.5). We have also written 

F = J2exp(-P(qJ-x)2). (4.39) 
3 

As in previous cases, if the operator S is solely a function of position, then 

the values are given by the standard Schodinger evolution. Similarly, when S 

contains only one power of momentum, this will also hold. The problem case is 

where S = pf, in which case we have 

!<„?,„> = 
3 

= \% 2 2 tr (/ ^ 3x [0 - 2/32(qi - x)2} exp (-/?(q, - x) 2 ) p) 
3 

+Xh2 ( P j 2 tr ( / d3xj/32(qi - x)2 exp (-2/3(q, - x) 2 ) p) (4.40) 

The first term on the right-hand side of this last equation vanishes when an 

integration by parts is performed. The second term cannot be integrated exactly 

because of the presence of the factor in the integrand. However, we may 

estimate the magnitude of the term by condsidering a couple of special cases. 

Firstly, let us examine this integral when the Ith particle is isolated from all the 

other particles. (Isolated in this case means with a separation greater than the 

collapse radius a.) In this case, the function F may esssentially only contains one 

term over the relevant range of x, since the numerator will ensure the integrand 

is small for other values. Thus, in this case, 

3 

§~t<Ph)> « A f t 3 ^ a t r ( / d 3 x / 3 2 ( g i - x ) ? e x p ( - / 9 ( q t - x ) a ) p ) 

w -\P%2. (4.41) 

So we recover eq. (2.40) for the average rate of energy increase per particle in 

this instance. However, if we assume that the particles are packed more densely 

d2 

dq2 
Fi 
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around the particle in question, then more particles will contribute in the sum 

in F. If we make the approximation of a constant particle density around q;, 

then the number of particles that will contribute to the sum is approximately 

Da3 where D is the particle number density. Thus the momentum spread wil l be 

as in eq. (4.41), but reduced by about a factor of Da 3 , and the average rate of 

energy increase will differ from that of the GRW and CSL models. 

To summarize, the mean values and spreads are given by 

<q{> = <qi>0, <Pi> = <Pi>o, (4.42) 

as with the pure Schrodinger evolution, and 

<"<> = <''•>"+ k^wf (4'43) 

pxh2 l 2 , 
<qiPi + Piqi> = <qiPi + Piqi>o + —7777^ (4.44) 

2m f(D) 

<pt> = < P t > 0 + PX* 1 t, (4.45) 

where the function f(D) indicates the approximate effect of the particle density 

on the spreads, and is approximately equal to the number of particles in the 

collapse volume, c.f. eqs. (2.22)-(2.24). 

4.5 Bound State Excitation 

In section §4.3, we were concerned with the collapse rate of a pointer, giving a 

lower limit to the collapse rate. Now we switch our attention to an effect which 

has not been observed thus far, and therefore will give an upper limit to the 

collapse rate. 

We suppose that the particles in the system belong to an isolated bound 

state, with spatial separation much less than a = -j=, as for example in an atom. 



CHAPTER 4. SYMMETRIC COLLAPSE MODELS 63 

Initially we take the system to be in its ground state ?/>o. We will consider the 

rate of excitation to an orthogonal excited state <f> in the various models. 

As the spatial separation of the particles are small, so are the q,, and we can 

make an expansion to lowest order in flqj. 

1. GRW 

The expression for the rate of excitation is given by 

R(<t>) = ^-E\«f>\<lk^o>\2, (4.46) 
L k=i 

where Ns is the number of particles in the system. This has order of magnitude 

2 ( i f ) ' w n e r e ao is the radius of the bound state. 

2. C S L 

For the continuous model, the corresponding expression to eq. (4.46) is 

2 
(4.47) 

where the sum is over all the particles in the bound state. If the ak are all equal, 

the effect is dominated by the electrons, and the excitation rate is similar to that 

given above for GRW. 

A very different situation arises if we choose mass-dependent couplings, a, = 

In particular if we have ae = m

m^m and ap = 1 — ae (ignoring the neutron-

proton mass-difference), then 

W ) = ( — ) 2 ) f \ « f > \ Q \ M \ (4.48) \m0 / I 

where Q is the center of mass operator and Ma is the mass of the bound atom 

(Here, it is actually the sum of masses of its constituent particles). This last 

expression is equal to zero, as the center of mass operator cannot excite the 

2 
<i>\^2 akqk\tp0> 

k=i 
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internal atomic states. Thus there is no excitation to lowest order in the mass-

dependent case. The first non-vanishing term gives an excitation proportional to 

A(^)4-

3. SHM1 

As we noted above, the equation for the evolution of the off-diagonal elements of 

the density matrix is identical to that obtained in CSL, and hence the expressions 

for the rate of excitation of a bound state will be as in eqs. (4.47) and (4.48) 

above. 

4. SHM2 

To calculate the rate of excitation in SHM2, we need to work with the equation 

for the elements of the density matrix. Whereas the first term in eq. (4.31) is 

exact, an approximation is needed to proceed further with the second term. We 

write 

£ , = ^ e x p ( - ^ ( x - c b ) 2 ) , (4.49) 

where the sum is over the particles in the system, and hence 

E | = exp I - - a ; ^ e x p ^ q ^ x - g ? ) ) (4.50) 

The gaussian at the front of this expression, exp § £ 2 ) , ensures that only terms 

with x < a will be significant. Since we are concerned with a system with spatial 

separation much less than a, i.e. q <C a, we have (xq) <C a2 and hence f3(xq) <C 1 

so we can make a power series expansion of the exponentials and just keep the 

first few terms. 

S I = exp { - ^ £ ( l + 0(2* • x - q}) + 2/?2(x • q,) 2) (4.51) 
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as we are only interested in terms that give a contribution to first order in q2. 

We can similarly expand the square root to give 

x 1 + /3QS • x - -L £ Uq) - /32(x • q,) 2 ) - ^ ( x • Q s ) 2 (4.52) 

where Q s is the center of mass operator for the system. We can then substitute 

this expression into the equation for the evolution of the density matrix, eq. (4.5), 

and by making use of 
3 

( P j 2 / d 3 x(x • q,) 2 ex P (- /3z 2 ) = ±q], (4.53) 

we find that 

<q'\pH\q> <q\p\q> 
N u - N s 

iV„. 

+ ^ ( ^ ) 7 ^ « P ( - ^ ) ( I - ^ [ X . ( Q . - Q : ) ] S 

'Ns\ B 
1 

NJ 4 - ( Q . - Q ' . ) <q'|/olq>. (4.54) 

We can substitute this last expression back into the evolution equation to get 

- ( Q s - Q ' s ) 2 < q V l q > . (4.55) 
dt 

= -jr<q'\[H,p]\q> ^ 

To calculate the rate of excitation, R(4>) = 5<M|M> ? w e m u s t multiply both 

sides of eq. (4.55) by < ^ | q ' x q | < ^ > , and integrate over q and q', leading to 

^ ) = ^ M | « / , | Q | ^ 0 > | 2 , (4.56) 

and there is again no excitation to this order, as this equation only involves the 

center of mass operator. Including the ctj factors yields 

27V, 

Ns 

«f>\ J2ak<ik\^0> 
k=l 

(4.57) 
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Apart from the factor of Ns, which is 2 for hydrogen for example, this is the same 

as the rate for CSL and SHM1. 

As before, in the case where the a3 are linearly proportional to the mass of 

particle j , then the the contribution to the excitation rate R(<f>) is zero to this 

order. 

When this is not the case, we can denote the ratio of the excitation rate to 

the pointer collapse rate by TSHM2 and similarly by TSHMI for these two models, 

and we have that 

which will be very small, of order 10~8 when we consider a carbon pointer and 

take a = 10 - 5 cm. This is one reason why the constraints on the parameters are 

much tighter than those for CSL or SHM1. 

4.5.1 Excitation with mass-dependent couplings 

For the case when the couplings ctj are proportional to the mass of the j t h particle, 

we will evaluate the first non-vanishing contribution to the excitation rate of the 

bound state. 

The calculation of the next order term is straightforward. We can calculate the 

excitation rate directly from the evolution equation, eq. (4.28). Only terms 

which contain both primed and unprimed coordinates will give a contribution to 

the excitation rate. Furthermore, we may neglect any occurrence of the center 

of mass operator, as it does not excite the internal atomic states. The rate of 

^SHM2 Dna3[aZ + (l - a)Ay 
Ns (4.58) 

1. CSL/SHM1 
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excitation becomes 

• u
 ma 

(4.59) 

X < ^ | q / > < q ' | ^ o > < ^ o l q > < q l ^ > -

To get any sort of numerical result, we need to consider a particular atomic 

system and substitute explicit forms for the wavefunctions in eq. (4.59). For sim­

plicity, we will take the simplest atomic system, that of a solitary hydrogen atom, 

and consider the collapse affecting both the proton and the electron. Initially, 

we take the atom to be in its ground state(ls), and will be calculate the rate of 

excitation to the lowest excited states, the 2s and 2p levels. The m = 0 state of 

the 2p level is not excited here, unlike the case of GRW where it is excited in first 

order, even in the mass-dependent case. 

In order to evaluate eq. (4.59), we can change the coordinate basis, and make 

the replacements q i = Q — and q 2 = Q + for the proton and electron 

respectively. Any appearances of the center of mass operators will cancel out, 

leaving the integral over this coordinate as trivial. 

2. SHM2 
i 

In this case, we have already expanded E l as far as we require. The same terms 

will contribute as in the calculation for CSL/SHM1. This means that the relevant 
i 

part of E£ can be written as 

(4.60) 

In order to simplify the expression for the excitation rate obtained using this 

expansion, we make further use of eq. (4.53) together with 

3 

( £ \ 2 / d 3x(x • q j ) 2 ( x • q' f c)2 exp ( - / fc 2 ) = ± + 2(q,. • q' f c) 2) , (4.61) 
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Excitation GRW CSL/SHM1 SHM2 

2s 0 0.231A/?2 ( * j ) 2

a < 0 . 3 7 0 A / ^ f e ) 2 < 

2p(m=0) 0-277A/? al 0 0 

2 p ( m = ± l ) 0.277A/3 al 0.267A/?2 fe)2^ 1 . 0 7 0 A ^ ^ ( ^ ) 2 < 

Table 4.1: Rates of Excitation for a Hydrogen Atom 

which leads to the expression 

^ > = f (4-62) 

x<<^|q'><q'lV'o><'/ 'olq><ql</». 

To compare the rates here with those obtained in CSL/SHM1, we use the 

same atomic system as before, the hydrogen atom, and we replace the absolute 

coordinates with the center of mass and relative coordinates as before. 

Table 3.1 shows the excitation rates for all the models under discussion for 

the case of mass-dependent couplings. 

If we take mo = M = me + mp as suggested before, then the extra factor ^ 

in the rates for SHM2 is unity, and the excitation rates have a dependence on 

\(32 ( j f f 4 for both CSL/SHM1 and SHM2. 

4.6 Constraints on Parameters 

We can find similar constraints for the SHM2 model to those of CSL/SHM1, 

which are described in §3.6.[21] There are two theoretical constraints, formed in 

the same way as for CSL, on what we need the model to achieve. (Only two as 

there is no density factor here in the rate of collapse of a pointer.) 

Again, we take the pointer to consist of a sphere with diameter fa 4 x 1 0 - 5 cm, 

in a superposition with separation / between the two states. 



CHAPTER 4. SYMMETRIC COLLAPSE MODELS 69 

When the separation / is greater than the collapse parameter a, the collapse 

rate from eq. (4.32) is 

T 
I > a, (4.63) 

N[aZ + (1 - a)A] 

where T = j. Note that if the two pointer positions were to overlap, then N here 

would be reduced to the number in those positions that are not in the overlap 

region. 

When the separation is less than a, we must approximate the first term in 

eq. (4.31). If we assume that the two states in the superposition are identical in 

configuration, with a shift in the center of mass only, then we can write 

exp (-/3(x - q',)2) = exp (-/?(x - q f c) 2) exp (-/?/2) (4.64) 

x e x p ( 2 / 9 ( Q ' - Q ) . ( x - q J b ) ) . 

To enable us to evaluate the integral in eq. (4.31), we must approximate the 

final term. Since |Q' — Q| = / <C a, we can expand the exponential and take just 

the first two terms. A futher approximation enables us to write: 

$ > x p ( - / ? ( x - q ' f c ) 2 ) 2 = £ e x p ( - / ? ( x - q f c ) 2 ) 
. k J Ik 

exp 

x 1 + 0 
£ f c exp (-/?(x - q f c) 2) (Q' - Q) • (x - q f e) 

E f c e x p ( - 0 ( x - q f c ) 2 ) 
(4.65) 

If we substitute this last expression into eq. (4.31), we find that the last term 

in eq. (4.65) will cause this part of the integral to vanish through symmetry, 

leaving us with 

<q'|/oH|q> 1 - e x p ( - ^ j - l j j < q ' l / o | q > . (4.66) 

We of course can modify this expression to take into account the mass-

dependent couplings, a, and we have a collapse time given by 

2Ta 2 

NP[aZ + (1 -a) A]' 
I < a. (4.67) 
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Figure 4.1: The boundaries imposed by the theoretical constraints, eqs. (4.68) 

and (4.69) in the log T(sec) —log a(cm) plane for the case a — m^.e

mp • The allowed 

region lies below each boundary. Also shown is the constraint imposed by the 

Germanium experimental data, eq. (4.72), with the allowed region lying above 

the boundary. 
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With the sphere made of carbon atoms, N m 3.8 x 109 atoms, Z = 6 and 
A = 12, the two constraints, eqs. (4.63) and (4.67) become 

T < 2.3 x 108(2 - a) sec / > a, (4.68) 

and 

To1 < 0.1(2 - a) sec cm 2 a > 4 x 10"5cm = /. (4.69) 

It should be noted that the GRW value of T = 10 1 6 sec is forbidden by some 

8 orders of magnitude by eq. (4.68). 

Here, we may use the same experimental data obtained from the germanium 

experiments used for the constraint of the parameters. Since the first order rate 

of excitation in SHM2 only differs from that of CSL/SHM1 by a factor N[aZ + 

(1 — a)A], we may immediately write down the constraint which is appropriate 

here. 

Ta2 > 1.1 x 1 0 n + (a (74 - 42a) ' 1 sec cm 2 (4.70) 

\ mpJ \ me + mpJ 

The inequalities in eqs. (4.69) and (4.70) impose very strong limits on the 

value of a. In fact, we have 

< 0.03. (4.71) 

Given this result, it would be surprising were a not to be equal to m

m ^ m , i.e. 

mass-proportional coupling. In other words in the model SHM2, which appears to 

be one of the more natural hitting models consistent with preserving wavefunction 

symmetry, the experimental requirements force a mass dependence suggestive of 

the effect being ultimately connected with gravity. 

With this choice of coupling, the excitation vanishes at this order, and we have 

a new, much weaker constraint from at second order (to order of magnitude): 

Ta4 > 1Q-16 sec cm 4. (4.72) 

a 
me/(me + mp) 
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The allowed parameter space formed from the inequalities eqs. (4.68), (4.69) 

and (4.72) is shown in Fig. (4.1), which may be compared with the corresponding 

diagram for CSL/SHM1, Fig. (3.1). 

4.7 Connection between discrete and continu­

ous localization models 

We saw earlier that the elements of the density matrix in the model SHM1 reduce 

to those of CSL in the limit when the system is isolated from the rest of the 

universe. One subtle difference is the coupling constant A. As defined in SHM1, 

the coupling for a single particle is not in fact totally constant, the constant 

instead being the total 'hit rate' of the universe, A„. In CSL, the rate of hitting 

of a single particle is defined to be the constant. 

Here we investigate the connection between the second model discussed above 

and CSL. As the difference between SHM1 and SHM2 is simply a square root, it 

seems logical to examine the CSL equations with an added square root. 

Since the eigenvectors rc(x) of the operators A^(x), defined in §3.2. are basi­

cally the collapse functions of SHM1, we need operators whose eigenvalues are 

the square roots of those for CSL, i.e. we simply need to take the square root of 

the original operator, i.e. 

N{x) 

and thus the eigenvalues are 

j ^ 3 y^(y-x)a^(y ,5)a(y ,s) (4.73) 

n'(x) = 53 9(.m - x ) 
U=l 

(4.74) 

These eigenvalues are now basically the collapse function of SHM2, subject to 

an insignificant difference of a factor of 2 in the expoentials. To check this, we 
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substitute eq. (4.73) into the equation for the evolution of the density matrix in 

CSL, eq. (3.55) and using eq. (4.74) we find 

J U q V i q > = -7INU-J d 3 x Y,9(<li: - x ) 
2 

<q >iq>, 

(4.75) 

ignoring the Hamiltonian evolution. 

This is of course precisely the same form as the evolution equation for SHM2, 

from eqs. (4.05) and (4.14), for the parameter choice 7 = A, the single particle 

'hit rate'. 

Subject to manipulation of the parameters in the models, and the odd factor 

of 2, the hitting model formed by taking an arbitrary power of the symmetric 

sum in eq. (4.3) as the collapse function, can be related directly to CSL when we 

take the same power of the operator N(x) in the CSL equations. 

4.8 Concluding Remarks 

The models described in this chapter have shown that it is possible to have a 

discrete hitting model which preserves the symmetry of the wavefunction, whilst 

maintaining the necessary properties for the collapse models to be a possible so­

lution of the measurement problem of quantum theory. In the limit when the 

number of particles tends to infinity, the disrete hitting models can be approxi­

mated to become equivalent to CSL or a variant. The parameters in the models 

can again be constrained, and the original choice of GRW is found not to be 

compatible with the constraints for SHM2. Moreover the suggestion of a link to 

gravity is evident from the severity of the constraints. 



Chapter 5 

Modelling the origin of collapse 

In the collapse models discussed in earlier chapters, the Schrodinger equation 

is modified by the addition of a stochastic term causing the localization of the 

wavefunction[ll, 13]. However, there have been no attempts to explain the origin 

of these extra terms causing wavefunction collapse, other than to say that the 

experimental data relating to Germanium excitation suggest that the models are 

in some way have a gravitational basis[21, 23] 

In CSL, the stochastic process dB which causes the collapse is not specified, 

only its mean value and drift. The parameters in the models, A and /3 are ad hoc, 

with the choice being so as to fit certain theoretical and experimental constraints 

(see §2.5 §3.6 and §4.6).If collapse is a fundamental physical process, then we 

should expect to be able to write these parameters in terms of other physical 

constants. A third criticism is that the narrowing of the wavefunction after 

collapse produces an associated energy increase (see §2.6 and §3.6), requiring us 

to ask whether this is really a non-conservation of energy or simply has an as yet 

unspecified source. 

In this chapter, we will examine a model which produces a fluctuating gravi­

tational source. The gravitational potential arising will be taken to determine the 

74 
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stochastic process c?B in CSL, and also as a possible source of the accompanying 

energy increase. This model postulates that a point particle has an effect on the 

potential as if its mass were smeared over the GRW scale cs[25, 15] The values of 

the parameters calcualted in the models will be compared to the GRW values. 

In CSL, the quantum system is influenced by a field w = <£B' which can be written 

as 

where < A > is the quantum expectation value of the mass density operator when 

we use mass dependent couplings, and WQ is a field with zero drift(See §3.1). The 

average value of u;(x,i) is <A>, so proceeding by analogy with classical gravity, 

we write 

The presence of the randomly fluctuating field WQ in eq. (5.1) indicates that the 

gravitational potental also fluctuates. We shall describe one naive classical model 

of the source of the fluctuations. 

We assume that the source of the fluctuations is the appearance at random 

times and positions of particles(monopoles) of mass pi. Each persists for a fixed 

short time interval T in a cell of volume C3. Each 'real' particle feels a gravita­

tional force due to these peripatetic particles, causing it to undergo undamped 

Brownian motion, with its kinetic energy increasing linearly with time as a re­

sult. The energy increase is precisely what is predicted by the collapse models to 

accompany the collapse. We can equate the expressions calculated here and from 

the collapse models to gain a relationship between the two sets of parameters. 

5.1 A fluctuating gravitational potential 

(x , i ) = w0(x,t) + < A ( x , i ) > w (5.1) 

1 
V ^ ( x , i ) w 

4TTG 
(5.2) 
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We take the whole of space to be partioned into these cells of volume £ 3 

and time into intervals T . We define a characteristic function u according to 
u Q i T (z, t) — 1 if a monopole is in the aih cell during the TTH interval for z contained 
in this cell and t in the interval, and uatT(z,t) = 0 otherwise. So that there is 
on average zero mass in each cell, we take there to be a constant mass density of 
— ^ j - throughout space, where V is the probability of a monopole appearing in a 
cell during an interval T. 

The potential at (x, t) can be written 

<£(x,t) = -Gn\^— j d6z ^ — , (5.3) 

leading to <̂ >(x, t)> = 0 since <u a ] T ( z ,£ )> = V. 

From this last equation, we can find the correlation function of the potential 

< * ( x , t ) # x ' , o > = 6„.&T(t)e,(t')(GnYvl-l~v) 

a ' J | X - Z | | X ' - Z' | 

w 6(t-t'){GnfV Id3z-t n r, (5.4) 
J |x — z| |x' — z| 

where we have defined V = Also, the functions 0 a ( z ) is defined to be 

1 if z lies in the aih cell and 0 otherwise. Similarly, ©T(£) is unity if t lies 

in the rih interval. In eq. (5.4) we have made the approximations V <C 1, 

6rr,eT(t)eT(t') w T6(t - t') together with 0 a ( z )0 o ( z ' ) w C3S(z - z'). 

From the potential correlation, we can calculate the correlation of the field 

ID0: 

<io0(x, t) w0(x', t)> = fi2V6(t - t')6(x - x'). (5.5) 

This is the same as the correlation function used in CSL provided we take 7 = ^ 5 . 

Thus we can obtain an expression for the collapse rate of a single particle of mass 

77?,: 



CHAPTER 5. MODELLING THE ORIGIN OF COLLAPSE 77 

We now evaluate the rate of energy increase of a particle of mass m due to 

the fluctuating potential. We take the mass of the particle to be smeared over 
3 

the GRW distance a such that it has a mass distribution m {J^j 2 exp § £ 2 ) -

The force correlation follows from eq. (5.4) 

<r(t)F>(t')> = S(t-t')(G^m)2v(jA2 

x / d 3 x d 3 x ' d 3 z exp l - - ( x 2 + x'2)) dtd'- n r 
J \ 2 J J |x — z| |x' — z\ 

= 6{t-t')8^p{Giim)2V. (5.7) 

This last equation follows from the symmetry of the integrand enabling us to make 

the replacement did] - • - | ^ V 2 . This enables us to identify F{(t) = K ^ 1 

where K2 is the constant factor in eq. (5.7) and B{(t) is Brownian motion, 

<Bi(t) Bj(t)> = 6ijt. The momentum is hence KBi(t) and the energy E = 

£ B ( 0 - B ( f ) . Thus 

jt<E> = 2Jm(Gii)2(3V. (5.8) 

The effect of the fluctuating potential is an increase in energy, which we equate 

to the energy increase which we know accompanies collapse, leading to a second 

relationship involving A m and a — -K=: 
VP 

Ama 

We can solve eqs. (5.8) and (5.9) to find 

3 \ * 
,64TT5 

and 

ch 

Gfi 

i 2 ' 1 \ 2 

A m = (5.11) 
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We note that a is independent of m, and Xm is thus proportional to m 2 , as 

the collapse models to date have assumed. It is also interesting that Xma is 

independent of the parameters in the model. 

If we wish to keep the GRW value for a, then from eq. (5.10) we have A m « 

10~ 2 4 sec - 1 for a nucleon, which is some 8 orders of magnitude smaller than the 

value suggested by GRW. It is not possible to retain the GRW value of this 

parameter, as then a is required to be of order 1 0 - 1 3 cm, too small as it is less 

than atomic radii. 

The model only determines a if we specify the mass of the particles / i and the 

probability density V. There are no obvious choices for these parameters, but 

let us see the results if we choose the Planck mass for n = ( 7 7 ) 2 , and also the 

mass. Using the nucleon Compton wavelength for £ we find that 

a Ri 1.4 x 10" 5cm, and A m m 2 x 1 0 - 2 4 sec - 1 for the nucleon. (5.12) 

Thus we obtain the GRW value for a if the probability density for these 

monopole 'Planckons' is about 1 per proton volume. 

If we decide we do not require CSL, only a discrete hitting model, then we 

remove the necessity of equating the field correlation to that of the CSL stochastic 

field, and eq. (5.6) need no longer hold. Thus the only equation relating the two 

fundamental parameters of the collapse model is then eq. (5.9). 

In this instance, we have no problem in maintaining the GRW values for the 

parameters A m and a. To do this we would then require that V ~ 4 x 10 1 1 sec m - 3 . 

This value is about 8 orders of magnitude larger than before. If we use the Planck 

time again for T , it is difficult to relate the value of ^ to any fundamental 

quantities. 

Planck time for T = ( ^ ) 2 

^ « 4 x 10 4 1 cm-

s if we choose the Planck mass for a and also the G 

( ^ j f ) 2 . Maintaining the GRW parameter a, we require that 

We note that f ^ J 41 10 cm , where M is the nucleon 
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It should be noted that the additional negative mass background included 

in the potential is necessary to prevent the planckon distribution from being 

sufficient to overdose the universe by many orders of magnitude. If we ignore this 

negative mass background, the correlations and energy relation are unchanged 

from before, but we now have an average mass density of p = ^ over all space. 

The closure condition for the universe is given by 

p pa 2 x f ( T 2 6 kg m - 3 , (5.13) 

so if we were to maintain the values of the parameters we had before, we would 

have pmodei ~ 10 4 Okg m~ 3 , thus overdosing the universe by some 66 orders of 

magnitude. 

If on the other hand, we use the closure relation to define the value of p and 

hence we would find it impossible to use the Planck value for T if we wished 

to maintain sensible values for the collapse parameters. 



Chapter 6 

Collapse and Quantum 

Computers 

One of the main features that is required in quantum computing is the placing of 

the system in a superposition of a large number of states. How quantum comput­

ers perform, and limitations on the number of states involved, will be influenced 

by how straightforward it is to maintain these superpositions over the course of 

the calculation. Unruh[26] has discussed interactions with the environment, and 

the constraints decohering noise may put on the length of time the computa­

tion may last. In this chapter, we will assess the effects of possible wavefunction 

collapse on the superposition.[16] In particular, we are concerned with the ex­

plicit collapse to (near) position eigenstates as postulated in the GRW model in 

Chapter 2. 

Firstly, we need to know how the bits of memory are to be 'stored'. If they 

are to be stored as superpositions of | + > and | —> in a suitable spin system, then 

we do not have to worry about collapse, as the collapse process (as it stands) 

does not act on the space of spin states. 

80 
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However, any quantum two-level system could feasibly be used in the memory 
of the computer (exactly which system will of course also influence the length of 
the computation). Collapse processes could be significant in any system which 
uses spatial separation to distinguish between the two states. (This is true to 
a certain extent if the states are two different energy eigenstates, as the spatial 
wavefunctions will of course differ.) 

Here we shall examine the case when the |0> and |1> states are distinguished 

solely by spatial separation. It is not important that this should be the case, but 

we are not concerned here with effects arising from other sources. 

6.1 Effect of collapse on a single-bit calculation 

The most general state of the system with a single 'input' and single 'output' bit 

is 

I V » = - [a |0 , / (0)> + / ? | l , / ( l ) > ] , (6.1) 
(a 2 + p z ) 2 

where / is the output memory state associated with the input state at any stage 

of the calculation. We will assume that the |0> and |1> states of any one bit 

are differentiated solely by a spatial separation d. If any collapse process occurs, 

i t has a certain probability of being centered on either the |0> or |1> states. 

(Probabilities proportional to a2 and ft2 respectively). In what follows, we shall 

take the collapse center to be located close to the |0> state of the input. In this 

case, a collapse will cause the wavefunction to become 

lV» \*l>» = r 
( W / ^ e x P \-*\y 

(6.2) 

where a is the collapse radius. It is immediately apparent that the relationship 

between the spatial separation d of the two states and the collapse parameter a 

a\0,f(0)> + / ? exp ( - — J l l , / ( 1 ) > 
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will be the major factor determining the significance of collapse. 

We will first assess the effect of possible wavefunction collapse on the simplest 

calculation, due to Deutsch[27], where we have / : Z 2 —> Z 2 , and we would like 

to utilise quantum parallelism to compute the Boolean sum G = / (0) © / ( I ) . In 

what follows, we take a = /?, to give four possible final states of the system before 

measurement, namely 

\UQ> = 
1 

V2 
[|0,0> + 11,0>] (6.3) 

U Q 1 > = 
1 

V2 
[|0,1> + 11,0>] (6.4) 

U W > = 

1 
72 

[|0,0> + |1,1>] (6.5) 

l«l> 
1 

V2 
[|0,1> + 11,1>] (6.6) 

In order to extract information about G by the use of one measurement only, 

we construct an observable Q with eigenstates 

\E0> = ^ ( |0 ,0> + | 1 , 0 > - | 0 , 1 > - l l , l > ) = ^ 0 u o > - l« i>) (6.7) 

\E1> = l(\0,0>-II,0>-|0,1> +11,1>) = 4=(l«oi> - l«io>) (6.8) 
2 y 2 

\Ef> = i ( | 0 , 0 > + | l , 0 > + | 0 , l > + | l , l > ) = - ^ ( | u o > + l«oi>) (6.9) 

\Ee> = ^ ( | 0 , 0 > - | 1 , 0 > + | 0 , 1 > - l l , l > ) (6.10) 

Note that \Ej> can also be written as ^ j ( l ^ i > + \uw>) and that \Ee> is or­

thogonal to all the states \u>. 

Upon the performance of a measurement of Q on any state there is a probabil­

ity of | that the eigenvalue corresponding to \E/> wil l be seen; the observation 

has failed to determine the value of G. Also with probability | , the eigenvalue 



\1p/> = io,/(o)> + ( i - ^ ) u , / ( i ) > (6.11) 
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seen will correspond to the eigenstate |-Eo> (respectively | £ i> ) , and the value of 
G is then definitely 0 (respectively 1). A false value for G will never be obtained. 

This is all very well when we have an equal (or at least known) superposition 

of the two states, but what happens if a collapse occurs, disturbing this balance? 

When the state separation J < a, we can write the collapsed state as 

1 

We will take the function / to be the constant function, / = 0. In this 

instance, the eigenvalue corresponding to \E\> should never be seen, but it will 

be with probability 

Per = \<^HE!>\2 (6.12) 

i ( ^ y 
~ A - H * - - (6.13) 

1 6 2 - 4 

If for example, we take the spatial separation d to be about an order of 

magnitude smaller than the collapse parameter a, we would find an error of about 

3 x 10 - 6 . It may very well be that inaccuracies of this order could be tolerated, 

as the system itself will not be completely precise. 

With the spatial separation d equal in magnitude to the collapse parameter 

a, then the resultant error becomes much more significant. Of all the supposedly 

'definite' values of G produced, about 5.6% of the results will actually be false. 

It should be remarked that if the separation d is greater than the value of a, 

then effectively the collapse has destroyed the superposition, and any hopes of 

information being obtained from the system have gone. 
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6.2 Effects of collapse on many bits 

The chance of any individual bit being affected by a collapse during the course of 

a computation is relatively small, but when the superpositions of states involve 

a large number of bits, then the expected number of collapse processes occurring 

will rise by a factor at least linear in the number of bits involved. The number 

of bits required to deal with a number is given by log 2 N, and the advantage 

of a quantum computer is that in a superposition of a large number of states 

representing a sequence of numbers, the number of bits required is still only 

logarithmic in the number of states. 

As a first example, we shall still take the 'output' state, described by / , to be 

a single bit. However, we will restrict the possible functions / to two types: (a) 

those where / is a constant ( / = 0 or / = 1), and (b) those where / takes the 

value 1 for exactly half of all the possible input states[28]. We are to determine 

the type of function / involved. If there are 2N different input states, then 

classically we would need TV + 1 computations to be sure of the type of function 

/ that we have. However, by utilising quantum parallelism, we can determine / 

with only two computations (described by unitary transformations U/, together 

with an intermediate operation S\i,j> = ( — iy\i,j>. The implementation of the 

operations Uf,S,Uf to an initial state 

j 2N-1 

causes the system to finish in the state 

2N-1 

IV» = -r E ( - 1 ) / ( 0 U , 0 > . (6.15) 

It should be noted that \<f>> and \xf)> are orthogonal when the function / is 

of type (b). Upon measuring the projection observable \(j>><(j>\, an outcome of 1 
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means that we can be sure that / is of type (a), whereas if the outcome is 0 then 
/ must have been of type (b). 

In assessing the effect of collapse, we will take f(i) = 0. In this case, the only 

difference between the initial state \(f>> and the final state \ip> will be that the 

coefficients of half of the states will have been reduced by a factor a = exp , 

together with a slightly different normalization. This means that 

^ ' ^ ^ I r r ^ J ( 1 + a ) - ( 6-16) 

Whereas before, when this inner product was unity, we could be sure that the 

outcome of a measurement of I ^ X ^ I would be 1, it is now possible that an 

outcome of 0 would occur, with probability 

Per = 1 - \<<f>\ij»\2 

( l - < * ) 2 

(6.17) 
2(1 + a 2 ) -

As before, we can expand this expression in terms of the spatial separation d, 

provided that d < a . To lowest order, we have 

^ M s T (6'18) 

This is the same expression, for a single collapse (apart from a factor of 2) as 

that in the previous section, as should be expected. 

On average, for each additional collapse occurring, the magnitude of the inner 

product between |</>> and \ip> decreases by the same factor. Given n collapses, 

the probability of a given state being affected by m of these is 2~n . The 

system will finish in the state 
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leading to 

(1 + a ) n 

(6.20) 
[2(1 + a 2 ) ] ? 

In deriving this expression, it has been assumed that no two collapses are centered 

on any individual bit. Since A ~ 10~ 1 6 s _ 1 for a nucleon, and lower by perhaps a 

factor of for an electron if the couplings in the model are mass-dependent 

(see §3.5 and §3.6), this does not seem an unreasonable assumption. Also, for 

ease of calculation, we take 2N = 2L, so that the superposition uses all L bits 

equally. 

This of course leads to a probability of an incorrect measurement of 

( l + a ) 2 n 

P " = 1 " [ S O W <6-21> 

Again, we would like to expand this in terms of the spatial separation, d of 

the states. To do this, we now require that 

d2 

n— < 1. (6.22) 
a1 

It is very unlikely that the computation will involve enough bits and run for a 

long enough time for there to be significantly many collapse processes occurring, 

so this is effectively the same condition as before. When this condition is satisfied, 

Per becomes, to leading order 
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6.3 Collapse and Shor's Algorithms 

It will be shown that collapse has effects of the same magnitude when the states 

in the superposition have different phases. 

Although the algorithm for factoring is no doubt the most useful, in assessing 

the errors arising from collapse, it is easier to examine the algorithm for evaluating 

discrete logarithms, as it is clearer to see where the errors occur[29]. 

The algorithms rely on destructive interference between states which represent 

unwanted results to leave only those states which may in some way be useful. If 

any collapse process occurs, i t will disturb the amplitides of the phase factors 

in the superposition, the interference will not be totally destructive, and some 

unwanted states will persist (i.e. those that will give an incorrect result). We 

wish to calculate the probability that the state of the system will be found to be 

in one of these states upon measurement. 

The algorithm for discrete logarithms relies on the superposition of states 

representing numbers a,b,c,d. Collapses centered on the bits of different numbers 

will have differing effects. It should be noted that collapses centered on the bits of 

the numbers c and d will not cause unwanted states to persist. These collapses will 

diminish the probability of obtaining certain states, but will not give unwanted 

results. 

We consider the effect of one collapse on an arbitrary bit of the superposition 

of b; 

\bti> = l—T[|0> + a\l>]. (6.24) 
(1 + a2)? 

As before, each individual collapse will affect half of the states in the super­

position. The probability of a state \c,d,y> (where y = gk (mod p)) being 
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observed becomes 

1 / 2 
( p - l ) 2 VI + a 

2 £ [1 x (6, = 0) + a x {b3 = 1)] (6.25) 
6=0 

x exp 
'2Tri(kc + b(d + rc)Y 

( P - 1 ) 

where we have taken the collapse to be centered on the |0> state of the j t h bit of b. 

It is straightforward to calculate this probability when d + rc = 0 (mod p—1). 

We have 

P 
1 

d+rc=0 ( p - i y 
P - l , ^ 2 l 2 2 

1 + a 2 
(6.26) 

Noting that there are (p—1)2 possible states satisfying the equivalence condition, 

we have the probability of a non-useful state being observed 

(1 - af 
(6.27) 

1 2 ( 1 + a 2 ) ' 

which is precisely the same probability as was obtained before. It can easily be 

shown that for the case when we have a number of collapses occuring during the 

computation, the expression for the probability of error is given by eq. (6.21), 

and eq. (6.23) when d < « . 

6.4 Sizes of possible errors 

We have assessed the errors occurring when collapses occur, but of course as the 

collapses are random, we can only estimate the number that are likely to occur 

during the course of any computation. If the number of bits that are used in the 

calculation is L, then the expected number of collapse processes occurring is 

Nc = XLTC, (6.28) 

where Tc is the length of time for which the computation proceeds. If the spatial 

separation of the states d, is small compared with the collapse parameter a, we 
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can approximate the total error in the results as 

d 1 
XLTC er 16 a 

(6.29) 

As an idea of the order of magnitude of this error, again using an electron 

state, we can let the spatial separation be almost as large as possible, only one 

order of magnitude smaller than a, using L = 104 bits, and Tc = 102 s, giving 

Per & 10~1 5 for a nucleon, and Per « 1 0 - 2 2 for an electron, which should be a 

very insignificant chance of producing an incorrect result. Taking a maximum 

permissible error to be of order 10~6, say, and using a state described by a single 

electron, then we could employ L = 10 1 9 bits in the computation, and be dealing 

with numbers of order 1 0 3 x l ° 1 8 . We could hold this number in superposition for 

the length of the calculation, or let the state evolve in some unitary way, but the 

final error would be of the same order of magnitude. Having a computational state 

represented by a number of superpositions (as in Shor's algorithms for example) 

may bring down the number of permissible bits by an order of magnitude, but 

the maximum number with which we could deal would still be extremely large, 

showing that for most situations that could be envisaged, wavefunction collapse 

is a very minor effect. 

Al l of these results have assumed that each bit is represented by a single 

particle. It is most probable that we would at the very least be dealing with 

single atoms. Using a large number of particles to describe each bit would be 

cumbersome, but it should be asked whether the errors would be significantly 

different in this situation. 

The presence of many particles would increase the minimum separation d 

between 10> and 11> that could be used, as the two states must still be orthogonal, 

yet this distance must not approach the collapse parameter a 10 - 5 cm. If we 

take the particle separation to be of order 1 0 - 8 cm, then we could be permitted 
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]\r ^ 106 particles describing the state. 

An increase in the number N of particles involved would also increase the 

number of collapses centered on the bit in any given time. Depending on the 

model used for many-particle collapse, this increase could be by a factor N if 

we take SHM2 to be correct for describing many particles, or even N2 if we 

assume SHM1 or CSL to be the appropriate model. Taking the most severe case, 

when the number of collapses is quadratic in the number of particles present, 

and Â  = 106, then the probability of an error becomes Per = 1 0 - 3 for nucleons 

(for the same values of TC,L as before.) This error is no longer very small, and 

it is apparent that using this number of particles in any one bit is impractical if 

we want an error-free computation. The error is still quite small, however, if we 

consider electron states, of order Per — 10~ 1 0. 

It should be remarked that all of this assumes that wavefunction collapse does 

occur. This is of course, yet to be confirmed. It may be possible that a quantum 

computer, working on a calculation with a known result, could be a test of the 

existence of explicit wavefunction collapse. This is of course if other sources of 

decoherence, such as interactions with the environment do not swamp the effects 

due to collapse. 



Chapter 7 

A Local Model of Collapse 

As described in Chapter 2, the GRW model [11] showed the possibility of con­

structing a realistic model describing explicit wavefunction collapse in such a 

way that, in many situations, the correct predictions of quantum theory were 

maintained but real experiments actually had results. The work has since been 

developed in a number of ways, some of which are described in Chapters 3 and 

4[13, 14], and it is generally agreed that it provides a satisfactory resolution of 

the measurement problem of quantum theory, at least in the non-relativistic do­

main. As originally presented, however, the model was clearly non-local and not 

Lorentz invariant. Both the symmetric versions of the hitting model and CSL 

share these attributes. Recently, attempts have been made to develop versions 

of the collapse models which, whilst retaining the non-locality, are nevertheless 

Lorentz invariant[30, 31, 32] Perhaps the best one can say of these models is that 

they are partially successful. They certainly raise several interesting issues. 

We shall take a different approach in this chapter and endeavour to construct 

a local, and Lorentz invariant version of the collapse model[17]. We know of course 

that this cannot agree in all respects with the predictions of orthodox quantum 

theory, and one object here is to see where the disagreement lies and whether it 

91 
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is detectable. Note that even the original GRW model does not completely agree 

with quantum theory, and this requires severe constraints to be placed on the 

parameters[20, 14, 21] (See §2.5 ,§3.6 and §4.6). We are concerned here with a 

different type of departure from quantum theory, which is caused by our insistence 

on the theory being local. 

In the original GRW model(see chapter 2), it was proposed that 'hits' occurred 

in a random fashion, at certain space-time points. The effect of a given hit 

spread throughout all space instantaneously. Thus, if we have a single particle 

wavefunction i f ) ( x , t ) , a hit at the point x 1 ; would cause this to change according 

to: 

In order to make this into something that is both local and Lorentz invariant, 

effect inside the forward light-cone from that point. To ensure Lorentz invariance 

of the hitting function, we must replace the 3-dimensional distance in eq. (7.1) by 

a four-dimensional distance. We cannot use the distance from the hitting point 

to the point on the light-cone since this is identically zero. Instead, we propose 

the perpendicular distance from the point on the light-cone to a four-momentum 

vector PM originating from X l 5 where perpendicular is meant in the sense of 

a Minkowski metric. For a state with a single momentum component (this of 

course can only be true approximately unless we have a plane wave), this PM wil l 

just be the four-momentum of the particle. For a more general wavefunction i t 

is probably necessary to consider each component of momentum in a separate 

7.1 A local model of collapse 

( x - X l ) 2 U tb —> if> = N exp (7.1) 

we propose instead that a hit at the space-time point X i = (xi,ii) only has an 
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X 

X 

X 

Figure 7.1: Constructing a Lorentz invariant distance 

manner. Alternatively, it may be possible to define a 4-momentum vector at a 

point in analogy to the Bohm hidden-variable model (i.e. from a 4-dimensional 

analogue of eq. (1.6) ), although for a complicated wavefunction, this may not 

lead to a momentum vector lying within the forward light-cone. [33] 

If we denote the vector from the light-cone to PM by aM (see Fig.7.1) then the 

condition that it is perpendicular to PM is 

P X = 0. (7.2) 

The path from Xi to X 3 , where X 3 is a point on the forward light-cone from Xi 

that is at one end of a perpendicular vector to PM, can be traversed in two ways, 

giving another condition 

for some k. These two equations enable us to find the value of a^a^. From eq. 

(7.3), and using eq. (7.2), we have 

fcP^P" = P^Ax' 1, (7.4) 
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and 

eva" = G ^ A X m . (7.5) 

Also, since A x M is a null vector, eq. (7.3) gives 

kAx^ + Ax^a" = 0. (7.6) 

We can rearrange these three equations to eliminate k and, putting PMPM = 

m 2 c 2 , we have 

a" = Ax» - -^—P» (P, A x " ) , (7.7) 

and 

a»o* = T-2 ( P ^ A x " ) 2 • (7-8) 

This reduces to a^a.^ = —(Ax) 2 in the rest frame of the particle, P^ = (mc,0). 

We therefore postulate that the collapse takes effect along the forward light 

cone from X i , according to 

r j , H l ( X ) = exp ( - ^ L - ( p ^ X * - X - ) ) 2 ) ^ ( X ) , (7.9) 

and use this as a boundary condition to finding the effect of the collapse inside 

the forward light-cone. This is our local analogue of eq. (7.1). 

In what follows, we shall simplify the discussion by constraining the particle 

to a single spatial dimension (z). Ideally, we should take the wavefunction to be 

a solution of the Dirac equation. However, we wish not to be concerned with 

any Dirac bispinor, as the collapse process does not act on the space of spins. 

For a free particle, we can instead take the wavefunction to be a solution of the 

Klein-Gordon equation. We shall work with a single momentum for which the 

initial wavefunction is 

ipo(t, z) = N exp {—iEt + ipz), (7.10) 



CHAPTER 7. A LOCAL MODEL OF COLLAPSE 95 

where N is some normalization factor. 

Given that the forward light-cone is the boundary under consideration, i t is 

sensible to use light-cone coordinates, x+ = ct + z, .r_ = ct — z. The Klein-Gordon 

equation in this coordinate system reads 

d2 , 1 fmc\2 , 

Then, if we choose the origin to be at the point of collapse, the boundary 

conditions in a general frame of reference are 

lKx+,0) = Nexj>(-±{E-p)x+} e W [ ~ ^ - 2 ( E - V f x \ ^ (7.12) 

</>(0,x_) = Nexj>(-%-{E + p)x^ e x V ^ - ^ ( E + p)2x2_y (7.13) 

The solution of the Klein-Gordon equation inside the forward light-cone from 

the point of collapse is uniquely defined by these boundary conditions. In order 

to be able to write this down in a simple form, we shall ignore the quantum 

evolution, i.e. assume ^ is very small. We will later specialize to the rest frame, 

in which p — 0, but we will use a more general frame at the moment. We can 

write 

i/>(x+, z_) = N(p, E) exp (-%- [(E - p)x+ + (E + p)x_f) w(x+,x-). (7.14) 

Substituting this expression into the Klein-Gordon equation, we have 

(E + p)dw <E-p)dw 2ih d2w r n i r , 
o 1 a— = a a—' ( 7 - 1 5 ) 

m ox+ m ox- mcox+ox-

where we have included all constants which had been previously set to unity. The 

right-hand-side is responsible for the quantum evolution. It can be treated as a 

perturbation. First we calculate the zeroth order solution which is w(x+,x_) = 

h(x+ — , t_). Substituting in the boundary conditions leads to 

w(x+, *_) = exp [(E - p)x+ - (E + p)x_A , (7.16) 
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within the forward light-cone of X. Outside of this region, the original free-particle 

solution holds. This of course can be written as 

w(x+,x_) = W{z,t) = exp I - -

2\ 2 

1 2> 
(7.17) 

with 7 = 1̂ — (j^j j . Hence the zeroth order solution to the Klein-Gordon 

equation may we written as 

tp(t, z) = N(p, E) exp(—iEt + ipz) exp ^—^ 

which in the rest frame reads 

P 

4>(t,z) = N exTp(-imt) exp ( — ^z2 

(7.18) 

(7.19) 

For completeness, we will evaluate the contribution of the first order 'correc­

tion' to this result, which follows from treating the right-hand side of eq. (7.15) 

as a perturbation. 

Rewriting the boundary conditions as 

w(x+,0) = f(x+) 

«>(0,x_) = f(x-), 

we have an equation for the correction term (in the rest frame) of 

dwi dwi 2ih .... . 
— L + ^ - J - = — / " ( » + - ^ ) . ox+ ox- mc 

(7.20) 

(7.21) 

(7.22) 

This equation is most easily solved by working in normal space-time coordi­

nates and then transforming back into the light-cone system, leading to a solution 

2i% 
iwi(a; + ,x_) = (x+ + x_)f"(x+ -£_). 

mc 
(7.23) 

We now substitute the boundary conditions, eqs. (7.20) and (7.21) to find the 

solution to eq. (7.15) to first order 

2iH 
w(x+,x_) = f ( x + - x.) + —f"(x+ - x.) [(x+ + x-) - \x+ - x _ | ] . (7.24) 

mc 
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Substituting in the function / for the boundary conditions and transforming 

back into Minkowski space, gives us a wavefunction (in the rest frame) within the 

forward light-cone, to first order 

We must ask the question as to the conditions under which this 'correction' 

term is smaller than the first term. If we take the GRW value for the parameter 

0 = 10 1 4 m~ 2 , then this quantum spreading of the wavefunction could become 

important over distances of order 1 0 - 7 m and times of order 1 0 - 7 sec. However, 

as the quantum spreading is ignored in the non-relativistic collapse models, we 

shall continue to do so here. 

If we take the initial wavefunction to be a gaussian with a large spread, ?/>o ~ 

exp j r ) , with a then the momentum states contributing will have p < 

^ <C mc. We should note that using the collapse radius for a here gives p < 2 x 

10 _ 9mc, and we are justified in taking this to have a single momentum component. 

To summarise this section, the effect of a single collapse on a single particle is 

the same as in the non-relativistic case, except that the effect is only felt within 

the forward light-cone of the point of origin of the collapse, X i . 

7.2 Single particle affected by two collapses 

A major difference between our local collapse model and that of GRW is that two 

independent collapses can occur at space-like separations so that neither collapse 

'knows about' the other. There is no problem with consistency until we arrive at 

the intersection of the light-cones arising from the two collapse centers. In the 

region formed by the forward light-cone originating from the point of intersection 

both collapses wil l be felt, and we need to define precisely how this happens. 

ip(t, z) = N exp — i—— t j exp ( 0 iBh 
( c t - \z\)(l - 0 z 2 ) . (7.25) 1 

mc 
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B 

w 

w w 

X 

w 0 
X 

Figure 7.2: Wavefunction affected by two collapses 

We shall take the two collapses to occur at the points X i = (z\,ti) = 

and X2 = (22,^2) = (^2+5^2-)) see Fig. 7.2. The wavefunction in 

the regions u>i and W2 will be calculated as in the previous section. On reaching 

the intersection point, X3 = (a:2+, £ 1 - ) , we shall solve the differential equation 

again with new boundary conditions along this third light-cone. 

The boundary conditions are formed, as indeed they were before, by taking 

the wavefunction outside of the light-cone, and multiplying by the collapse factor 

which arises from the collapse along that particular light-cone. Thus, for the 

boundary condition along X 3 A we take the hit wavefunction in the region io 1 ? 

which is ijjWl(z,t), and multiply by the collapse factor arising from the collapse 

at X 2 along X 2 A Hence 

where axi and ax2 are the perpendicular four-distances from the momentum 

( « X 2 ) ll>wAz,t) V ^ X a U , * ) = e x P (7.26) 

and similarly along X 3 B 

P ikx2\Az,t) = exp (7.27) 
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vectors arising from the collapses at X i and X2 respectively. 

In general, for an arbitrary initial wavefunction the momentum vectors arising 

from each point will be different. Even ignoring the quantum evolution, this 

could lead to solutions of the differential equation which are quite complicated. 

For simplicity, we shall deal with the case when the momenta arising from each 

collapse center are equal. In this situation, we can again work in the frame where 

p = 0. This means that the boundary conditions are (having extracted the 

plane-wave term and normalization as before): 

w(x2+, x_) = exp f - ^ ( 2 - z i ) 2 J e x P 

along X3A, and 

0, w(x+,xt-) = exp ( -^(z - z2f \ exp 

(x_ - x2-f 

(x+ - x1+f 

(7.28) 

(7.29) 

along X3J5. 

We are only interested in the zeroth order solution to the differential equation, 

eq. (7.15), so of course we have w(x+,X-) = h(x+ — s_), as before. Substituting 

the boundary conditions, we find that 

h(x+ - x i _ ) = exp ( ( x + - z i _ - x2+ + x 2 _ ) 2 + (x+ - x1+)2 (7.30) 

which may be rewritten as 

h(X) 

leading to a wavefunction 

= exp ^ [(A - x2+ + x2_f + (A - xl+ + xa_) 2 ]^ , (7.31) 

.mc- \ 1 0 , , 2 \ ..... / 0, 
4>(t,z) = iV(0,m)exp I - i — * J exp I - - ( z - zx) I exp I --{z - z2) 

(7.32) 

Here we find that, in this case, the two collapses are equivalent to a single 

collapse at the point | ( X i + X 2 ) , but with twice the 'strength'. This is cer­

tainly what would be expected in the non-relativistic limit if we were to have 
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two collapses, although this solution only holds in the forward light-cone of the 

intersection point X 3 . It should be noted that in the non-relativistic situation, 

the wavefunction at the point of the second collapse would have already been 

reduced by the first, so the probability of the second collapse occurring would be 

very small. 

We now briefly consider the question of the order of the two collapses. Take 

the situation shown in Fig. 7.3, where the collapse at X i happens later than the 

collapse at X 2 , in the frame in which p = 0. The relative size of the two peaks 

depends on the distances from X i to A 2 and X 2 to A a . As can be seen from the 

diagram, these distances are of course equal, so the exponentials by which we 

multiply the two wavefunctions will be equal, at the two peaks, and thus as the 

wavefunction is not time-dependent, the two peaks will have the same size. The 

order of the collapses is immaterial when we have a single momentum component. 

7.2.1 Superposition of Two Wavepackets 

We now want to examine a typical measurement situation, where the initial wave-

function is a sum of two well-separated peaks, e.g. 

one, be centered around one of the two peaks of the wavefunction, as a result of 

an important property of the GRW-type models which we wish to retain in the 

rest frame; that the probability of a collapse occurring at a point x is proportional 

to \ipH(x)\2. Wi th a single collapse, the wavefunction will be reduced to a single 

peak in a time t « l 2 l ~ Z 2 l . 

However, as before, the relativistic model allows the possibility of there being 

two collapse events, one centered on each peak, providing that each collapse event 

i)0(z) = N exp (-a(z - z i ) 2 ) + exp {-a(z - z 2 ) 2 ) ] , (7.33) 

with \z\ — z2\ ^> 4 j . Any collapse which occurs will , with probability essentially 
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X 

Figure 7.3: The effect of the relative times of the collapses 

is outside of the forward light-cone of the other. On a constant time slice, there 

may persist peaks in each region, but we are predominately concerned with the 

shape of the wavefunction at later times, i.e. after the intersection of the two 

forward light-cones. 

We assume that the momentum vectors defined at the two collapse points are 

(to a sufficiently good approximation) the same, so that we can again work in 

the frame for which p = 0. Then, with the same approximations as before, the 

final state wavefunction will just be the initial state wavefunction multiplied by 

the collapse functions arising from the spatially separated collapses. This final 

state wavefunction can be written as 

^ f = N [exp ( - ( a + /?)(* - z [ f ) + exp ( - ( a + f3)(z - z ' 2 f ) \ , (7.34) 

and we again have the two peaks, only now their centers have been shifted, 
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according to 

l 0 
zi = * i + ^ T ^ 2 - * i ) (7.35) 

a + p 
1/3 

z2 = zi+ 2 , a i z i ~ z2)- (7.36) a + p 

Obviously if the peaks were very sharp in the initial wavefunction, then the 

shift will be quite small. However, it is certainly possible that the shift will be 

sufficient for the new peak to lie well into the tail of the initial peak, where it 

woidd have been extremely unlikely that the particle could be found. This will 

be the case if exp 4^+p)2 ( Z 2 — ^ i ) 2 ) ^ For a pair of sharp initial peaks, and 

a > fi, this reads \z2 - z\ \ > ^ p . 

In general we might expect the localization of the two peaks to be less than, 

but of the order of, the GRW collapse size, i.e. /? < a. but of the same order. 

This means that the peaks are shifted by something around | of their separation. 

7.3 The Born Probability Rule 

In orthodox quantum theory, the probability that a measurement outcome wil l 

correspond to one of 2 peaks is proportional to the square integral of the weight 

of each peak. The same result holds in GRW, where it is a consequence of the 

probability rule for a hit occurring at a particular point (see §2.1). Here we 

shall again guarantee this result, for a single collapse, by postulating that the 

probability of this collapse occurring at one of the peaks is proportional to the 

integral of the square of the wavefunction over the peak. 

It should be noted that in the non-relativistic GRW model, the probability of a 

collapse in an infinitesimal element dxdt is given by P = \\^?(x,t)\2dxdt, where 

i f j f f e j t ) is the integrated square of the wavefunction after a hit, equivalent to 

eqs. (2.10) and (2.4) of the GRW model. We would like to retain some version of 
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this rule. However, the integral in the non-relativistic case is over the hyperplane 

with constant time. In this local version, the hit is not felt instantaneously at all 

points, so the integral must be taken over the hypersurface that is the forward 

light-cone of the point in question, assuming no further hits. 

Thus with an initial state (in the rest frame): 

ipo(z) = N[a exp [-a{z - Z l f ) + bexp (-a(z - z2)2)] , (7.37) 

with |a|2 + \b\2 = 1, the collapse will occur near z\ or z^ in the ratio of \a\2 to |6| 2. 

However, we now have to consider carefully the possibility of more than one 

collapse occurring. This means of course that both peaks can change their mag­

nitudes. We take account of this by allowing a and b in eq. (7.38) to be functions 

of time. Consistent with the requirement of a local model we postulate that the 

probability of a collapse at z\ at time t\ is proportional to \ a ( t ) \ ° + \ b ( t R ) \ 2 > w n e r e 

tR = h — ^ Z l ~ Z 2 K the retarded time. 

The probability of a particular peak persisting depends of course on the num­

ber of collapses that occur, and the time taken for the signal of a collapse to 

reach the other peak(T). Here we shall evaluate the probability of peak 1 domi­

nating. There will be contributions to this probability from all possible numbers 

of collapses. We shall assume that AT <C 1, and so make an expansion in this 

parameter. We shall calculate the first three terms in this series, i.e. work to 

order (AT) 2 . 

The collapse processes which contribute to this order are illustrated in Fig. 

7.4. We shall take the first collapse to occur at time t = 0. The separation of the 

two peaks is z\ — z2 = L = Tc. In order to assess the probability of a collapse 

occuring on a particular peak, we look at the relative sizes of the peaks along 

the backward light-cone. In the figure, the solid vertical lines indicate where a 

collapse on the peak is possible, whereas the dotted lines indicate that a collapse 
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Figure 7.4: Collapse processes which contribute to second order in AT. 

is not possible. When a collapse is deemed possible, the probabilities for each 

side will be \a\2 and |6|2 respectively, if both can occur, or 1 and 0 if only one of 

these is possible. We need to calculate the probability contributions from each 

diagram separately. 

Diagram (i) In this case a single collapse is successful. There are no collapses 

on the other peak before it has received the signal from the first collapse. The 
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probability of this occurring is 

Pi = \a\2 exp (-\T\b\2) = \a\2 ( l - \T\b\2 + ^(AT) 2 | 6 | 4 + 0 ( [AT] 3 ) ) . (7.38) 

Diagram (ii) Here we have two specified collapses, C\ and C 2 j one centered on 

each peak, with that on the peak number 1 occurring first, and with no further 

collapses before the time indicated by the dashed line. The probability can be 

written as 

Pit = | a | 2 ^ T e x p ( - A r | 6 | 2 ) \dt\b\2 exp ( - A ( T + *)|a|2) 

x exp (-2AT) exp (-\t\b\2) P 

= \a\2\b\2(\T)[l-7-(\T)}P + 0{[\T}3), (7.39) 

where P is the overall probability of peak 1 dominating. 

Diagram (iii) This diagram is a mirror image of diagram (ii) , and the probability 

contribution is in fact the same. 

Pm = Pa- (7.40) 

Diagram (iv) The initial collapses are the same as in diagram (ii) , only we have 

a further collapse occurring before the dashed line. (n.b. if there are no further 

collapses before this time, then we essentially have the situation with which we 

started.) This added collapse gives rise to another integral in the calculation of 

the probability 

Piv = \a\2 j exp( -AT|6 | 2 ) A<ft |6| 2 exp(-A(T + *)|a|2) 

x Jo exp{-2XT)\dt'exp[-Xt'\b\2) 

= | (AT) 2 | a | 2 | 6 | 2 + 0([AT] 3 ) , (7.41) 

Diagram (v) This time we have two collapses centered on peak 1 before the 

collapse on the second peak has taken ful l effect, with the first collapse centered 

file://-/T/b/2
file:///T/b/2
file:///dt/b/2
file://-/t/b/2


CHAPTER 7. A LOCAL MODEL OF COLLAPSE 107 

on peak 1. 

Pv = | a | 2 ^ r

e x p ( - A T | 6 | 2 ) Adi|&| 2A|a| 2(T + *)exp ( - A ( T + *)I« | 2 ) 

= - (AT) 2 | a | 4 |& | 2 + <3([AT]3). (7.42) 
2 

Diagram (vi) This is similar to the previous diagram, with the solitary collapse 

on peak number 2 occurring first. 

Pvi = | & | 2 ^ T e x p ( - A T | a | 2 ) Xdt\a\2 exp (~X(T + t)\b\2) £ Xdt'\a\2 

= ^(AT) 2 | a | 4 |6 | 2 + 0([AT] 3 ) . (7.43) 

Diagram (vii) This diagram is similar to diagram (iii) in the same way as 

diagram (iv) is related to diagram (ii). 

Pvii = \b\2 £ exp(-XT\a\2) A^ | a | 2 exp ( - A ( T + i ) |6 | 2 ) 

£ ' Xdt' exp (-2AT) exp (~Xt'\b\2) 

= -\a\2\b\\XT)2 + 0{[XT]3). (7.44) 

Diagram (viii) This is almost the same as the last diagram, except that the 

time of the last collapse gives it a different probability of occurring. 

Pviii = \b\2 j\xp(-XT\a\2)Xdt\a\2exp(-X(T + t)\b\2) 

J * Xdt'\a\2 exp (-2AT) exp (-A*|a| 2 ) exp ( - A ( T - t + t')\b\2) 

= i | a | 4 | 6 | 2 ( A r ) 2 + 0 ( [ A r ] 3 ) . (7.45) 

Adding all these calculated probabilities together and rearranging, leads to 

P = \a\2 + A T > | 2 H 2 ( | a | 2 - |6|2) - i (AT) 2 | a | 2 | 6 | 2 ( | a | 2 - |6|2)(5 -4 |a | 2 | 6 | 2 ) . (7.46) 

If the initial superposition is equally weighted, then as expected the probabil­

ities for each peak to dominate are equal. However, if we start with an unequal 

superposition of the two gaussian peaks, then in this model the probability of 

obtaining the initially higher peak increases with the peak separation. 
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7.4 Two-particle correlated wavefunction 

We will now deal with the case where we have two particles with a correlated 

wavefunction, for instance an EPR-type situation analogous to the measurement 

of the spins of two fermions in a correlated state 

The initial wavefunction can be written in the form: 

where Z\\,z\2 refer to the center of the peaks corresponding to particle 1, and 

similarly for particle 2. We assume that the two peaks for each particle do not 

overlap significantly, so that a collapse centered on one will ki l l the other peak, 

i.e. a(zn — z\2)1 1 and /3(zn — Z12)2 ^> 1- Also, for simplicity, we will 

consider only the case when this peak separation itself is negligible compared 

with the separation of the two particles, for instance, \zu — z2i\ 3> \zn — zX2\. 

This of course corresponds to the actual experimental situations in tests of the 

Bell inequality. 

Collapse processes centered on each particle will be taken to be independent, 

and they will have the same effect on the wavefunction as before. However, in the 

case where we have two 'incompatible' collapses, the situation will have changed 

in that as each collapse acts on a different part of the wavefunction, they will 

not 'interfere' at any point in space. At a time after signals from both collapses 

have reached the other, the wavefunction in the intermediate region will just be 

multiplied by the two independent collapse factors irrespective of the momentum 

states from which they were constructed, i.e. for collapses centered at z\\ and 

tf>(zi,z2) N [a^i(^i)^ 2 (^) + &Xl(2l)X2(22)] 

N a exp (— a(zi — zu)2) exp (— a(z2 — z2\)2 (7.47) 

) 2 ) exp ( -a ( +6exp ( — a ( Z\2 Z2 Z22 1 
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^22, 

</>' = ^exp (-^{zx - z „ ) 2 ) exp ( - ^ ( z 2 - z 2 2 ) 2 ) . (7.48) 

As before, we should again ask which part of the wavefunction will dominate. 

We can do a similar calculation to before, with the probability of a collapse 

occurring on a particular peak being either |a|2, |6|2, 1 or zero. However, as the 

peak separation of either particle is considered to be negligible compared to the 

separation between the two particles, we shall take the signal of a collapse to 

travel instantaneously to the other peak connected to that particle. For a single 

particle, the probability of another collapse in the actual time taken is very small. 

It turns out that the probability for a particular peak to dominate is actually 

the same as when we only have one particle. 

Fig. 7.5 illustrates the diagrams which contribute to second order in AT, 

ignoring the separation between the two peaks on one side. As before the solid 

lines indicate that a collapse is deemed possible, whereas a collapse cannot occur 

where the line is dotted. The points where a collapse occurs are circled. The peaks 

for particle 1 are those to the left, with the (f> peak the right one of these and the 

X peak on the left. We calculate the probability of the <f> peaks dominating. 

Diagram (i) The simplest case where we have no incompatible collapses. 

Pn = \a\ 
T 

exp (-XT) + / X\a\2dt exp (—\t) 
Jo 

= | a | 2 ( l - A T | 6 | 2 + (AT) 2 |6 | 2 ) + 0([XT]3). (7.49) 

Diagram (ii) As in the one-particle case, we have two specified collapses, one 

affecting each particle, but incompatible. 

Pm = \a\2 f T \ \ b \ 2 d t e x p ( - 2 \ ( T + t))P2 Jo 
= | a | 2 | & | 2 ( A T ) ( l - 3 ( A T ) ) P 2 + 0 ( [ A r ] 3 ) , (7.50) 
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(iii) (ii) 0 

(vi (vii v (iv) 

Figure 7.5: The collapse processes which contribute to second order i n XT 

two correlated particles. 
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where Pi is the overall probability of the <f> peaks dominating for this two-particle 

wavef unction. 

D i a g r a m (i i i) This is just the mirror image of the previous diagram, w i t h iden­

t ical contribution to the probability. 

P2H1 = P2H- (7-51) 

D i a g r a m ( iv) As in diagram (i i ) but w i t h an additional collapse prior to both 

particles having knowledge of both previous collapses. 

rT 

Pnv — |°|2 

1 

2 

/ \\b\2dt [* X\a\2dt'exp(-X(T+ t'))exp(-X(T-t + t')) 
Jo Jo 

a | 4 | 6 | 2 (Ar ) 2 . (7.52) 

D i a g r a m (v) One particle has two compatible collapses dominating the collapse 

on the other particle. 

rT rT+t 
P2v = |a| 2 / A | & | 2 c f t e x p ( - A r ) e x p ( - A ( T - M ) ) / Xdt'exp(-Xt') 

Jo Jo 

= | |« | 2 | 6 | 2 (A3-) 2 . (7.53) 

D i a g r a m (vi) As in the last diagram, but the order of the first two collapses is 

reversed. 

P2* = \b\2 [ T X\a\2dtexp(-XT)exp(~X{T+ t)) [ T 1 Xdt'exp(-Xt') 
Jo Jo 

= \\a\2\b\2(XT)2. (7.54) 

D i a g r a m (vi i ) Similar to diagram ( i i i ) w i th the same difference as between 

diagrams ( i i ) and ( iv ) . 

P2vu = \b\2 [ X\a\2dtexp{-XT)exV(-X(T + t)) 
Jo 

x [* X\a\2dt'exv(-X(T - t + t')) 
Jo 

= ^ |a | 4 | 6 | 2 (AT) 2 . (7.55) 
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Adding these probabilities together, gives 

P2 = |a | 2 + A r | a | 2 | 6 | 2 ( | a | 2 - | 6 | 2 ) - i ( A r ) 2 | a | 2 | 6 | 2 ( | a | 2 - | 6 | 2 ) ( 5 - 4 | a | 2 | 6 | 2 ) , (7.56) 

which is the same probability as that obtained for the one-particle, two-peak 

wavefunction. 

7.5 Problems 

The crucial parameter in the above discussion is AT. For a single particle, or 

two particle system, this w i l l be small, even w i t h the separation L ?« 10 m cor­

responding to the largest separation in the Aspect experiments[34]. However, 

for examining the quantum probability rule, we need to interact the two-particle 

system w i t h a measuring apparatus. I t is extremely unlikely that the two-particle 

system w i l l have collapsed, so the result of any measurements w i l l be dependent 

on the collapses of the measuring pointers. I f the interactions on the opposite 

sides of the system occur almost simultaneously (separated by less than t ime T) , 

then the collapses which occur on the pointers on each side w i l l be independent 

(as the pointers themselves are not correlated), and thus the correlations between 

the two particles w i l l have disappeared. Thus our local collapse process does not 

seem to be able to explain the results of the Aspect experiments. 

7.6 Summary 

A n important contribution of the original GRW model was that i t showed the 

possibility of defining a precise model i n which collapse happens as a physical 

process in such a way that the tested predictions of quantum theory s t i l l held 

(This is independent of the issue of whether nature actually chooses this particular 
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solution of the measurement problem). 

In the same spirit we have attempted to find here a precise definit ion of a 

collapse model which is local and Lorentz-invariant. The issue of whether i t can be 

made consistent w i t h all experiments is somewhat less clear, especially involving 

correlated wavefunctions, may well render the condition on locality impossible to 

retain. 



Chapter 8 

Summary and Conclusions 

The models of wavefunction collapse postulate that the quantum jumps that take 

us f r o m a superposition to a statistical mixture do occur, but not in the rather 

vague sort of way originally int imated. The collapses are bui l t into the evolution 

equations of the quantum system in a stochastic manner, i n such a way that 

although the wavefunction experiences sudden, random localizations, and hence 

is discontinuous at the point of a collapse, the evolution of the density mat r ix of 

the system is completely deeterministic. I t should be noted that the narrowing 

of the wave-packet is necessarily accompanied by an increase of energy. 

The models possess the two features to enable them to be considered as pos­

sible solutions of the measurement problem of quantum theory. As stated above, 

they cause the reduction of an in i t ia l superposition of states into a statistical mix­

ture. However, this process is only rapid for macroscopic objects, and the effect 

is negligible for a microscopic system. This difference can be seen explici t ly f r o m 

the equations of the model, without the need for a priori spl i t t ing of objects into 

two classes. Another crucial feature is that the collapse is to spatially localized 

states, thus accounting for the world we actually see. 

A simple extension of the original h i t t ing model renders i t consistent for a sys-
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tem of identical particles, and this model can be related to a continuous version 

in which the wavefunction is localized continuously as opposed to changing sud­

denly. The discrete models introduce two new parameters into nature, A which 

gives the average rate of collapse of a single particle (or the whole universe, de­

pending on exactly what you require to be constant.), and a, the localization scale 

to which the wavefunctions are reduced. I n addition, the CSL model introduces 

a new stochastic field, c?B to be the source of the collapse. 

Theoretical constraints can be imposed on the models by considering the 

collapse rate of a macroscopic object, whilst experimental constraints can be 

derived f r o m examining the maximum rates of atomic excitation not already ruled 

out. These constraints taken together give a strong indication that the couplings 

for the particles are related to their mass, and hence the collapse mechanism has 

a gravitional source. 

A n early attempt at explaining the relationship between gravity and collapse 

postulates a random fluctuating gravitational potential arising f r o m the appear­

ance of planckons at random times and places. This model can give the required 

rate of energy increase accompanying collapse, but does not give the previously 

taken values for both parameters simultaneously. I t is doubtful whether any pa­

rameter values could be found to be consistent w i th the constraints for the models 

formulated here. 

These collapse models exist in the non-relativistic domain, and are non-local 

in that the collapse has an immediate effect on the wavefunction over all space. 

We postulate that the effect of the collapse is fel t only inside of the forward light-

cone of the collapse center. However, this does lead to a slight deviation f r o m the 

Born probabili ty rule for a simple state of one particle or two correlated particles. 

I f the effect of the collapses were to be completely additive for many particles, 
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then the deviation could become large, although i t is negligible at microscopic 

level. Observation or non-observation of this effect could be a test as to whether 

the collapse mechanism exists. 

To conclude, models of wavefunction collapse, whether discrete h i t t ing ver­

sions or continuous models can be seen to be a logical consistent solution to the 

measurement problem of quantum mechanics. They introduce two new parame­

ters into nature at this level, and indications are that they have a gravitational 

origin. To date there have been no experiments performed that can prove the 

existence of the collapse mechanism, but none can disprove i t either. 



Appendix A 

Derivation of eq. (3.19) 

The derivation of eq. (3.19) f rom eqs. (3.12) and (3.13) is not immediately 

obvious. This is because the differential of ||^>|| does not follow immediately 

given f^UV ' l l 2 when using I to calculus. To derive the evolution of l x > , we must 

f ind the differential d ( j j ^ f ) • Using the I to calculus, we f ind 

To calculate the differential of we w i l l first evaluate d||^>||. 

We know all of the terms that can occur in the differential, so we can wri te 

= c i R • dB + c 2 ( A - A t ) • dB + (c3A • R + c 4 R • R + c 5 A t . A + c 6 ) dt, 

(A.2) 

where the c, are to be determined. To do this, we substitute this expression into 

the formula 

2R dB = dUf = 2U\\d\m + dU\\dU\\. (A.3) 

Using the correlations of dB given by eq2. (3.4) and (3.5), we find that 1 = C i | | i / > | | 

and 2||?/>||c4 + c\~i = 0 w i th all the other c; vanishing. Thus 

^ H ^ R - r f B - ^ d i R . R . (A.4) 
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To extract the required differential, we make use of the identi ty 

0si^m)=^m+uHm)+^m)- (A-5) 

We write the differential in the same manner as fi?||^>||." 

d ( —̂ —- J = c i R • cff i + c 2 7 t f t R • R , (A.6) 

in the knowledge that these wi l l be the only terms present. We then substitute this 

expression and that for d\\ij>\\ of eq. (A.4) intoeq. (A.5) to f ind that jj^jp+||?/>||ci = 

0 and -577T7I4- + C 2 I M I + ciidiT = °> w n i c n l e a d s t o 

d(-^—] = -—I—R-dB + —-— ydtR-TL. (A.7) 

Using eq. (3.12) for d\ij>>, we f ind that 

m>)Am = -¥¥litA'K' (A-8) 

and hence 

+ (~¥FR dB+wr"itR'R) m - W"dtA' Rw 
where R = | < ^ » | ( A + ) |-0>. We can of course rewrite this expression in terms 

of the new state \ x>, 

d\X> = - \ H - J A t • A - 7 A • R + ^ R • R ) dt + ( A - R ) • dB 
ft Zi & / 

i x > , 

(A.10) 

w i t h R now given by 

R = i < X l ( A + A t ) | X > . ( A . l l ) 

We can see that we have recovered eq. (3.19). 
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