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Abstract

Until recently, methodologies to extract sub-pixel information trom remotely
sensed data have tocused on linear un-mixing models and so called fuzzy classitiers.
Recent research has suggested that neural networks have the potential for providing sub-
pixel information. Neural networks offer an attractive alternative as they are non-
parametric, they are not restricted to any number of classes, they do not assume that the
spectral signatures ot pixel components mix linearly and they do not necessarily have to
be trained with pure pixels. The thesis tests the validity of neural networks for extracting
sub-pixel information using a combination of qualitative and quantitative analysis tools.

Previously published experiments use data sets that are often limited in terms of
numbers of pixels and numbers of classes. The data sets used in the thesis reflect the
complexity of the landscape. Preparation for the experiments is carried out by analysing
the data sets and establishing that the network is not sensitive to particular choices of
parameters.

Classification results using a conventional type of target with which to train the
network show that the response of the network to mixed pixels is different from the
response of the network to pure pixels. Different target types are then tested. Although
targets which provide detailed compositional information produce higher accuracies of
classitication for subsidiary classes, there is a trade oft between the added information and
added complexity which can decrease classification accuracy. Overall, the results show
that the network seems to be able to identity the classes that are present within pixels but
not their proportions. Experiments with a very accurate data set show that the network
behaves like a pattern matching algorithm and requires examples of mixed pixels in the
training data set in order to estimate pixel compositions for unseen pixels. The network

does not tunction like an unmixing model and cannot interpolate between pure classes.
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Chapter 1

INTRODUCTION

Remotely sensed satellite images now routinely complement mapping techniques
but there has been increasing concern about using the pixel as the fundamental unit of
classification without due concern for its shortcomings (Fisher, 1997; Cracknell, 1998).
Digital images divide up the landscape into arbitrary units, pixels, to which conventional
classifiers assign one landcover category. However, the nature of landcover is such that
one class often does not adequately represent the area that a pixel covers.

Neural networks have become well established over the last decade as classifiers of
remotely sensed data, as the recent special issue of the International Journal of Remote
Sensing devoted to neural networks (Vol. 18, N° 4) testifies to. Recently, empirical results
have suggested a strong potential for a relationship between neural network output values
and sub-pixel information (Moody et al., 1996; Atkinson et al., 1997; Foody et al. 1997,
Warner and Shank, 1997). The research carried out in this thesis seeks to provide a better
understanding of the relationship between neural network output values and sub-pixel

information.

1.1 The Problem with Mixed Pixels

Producing a satellite image can be likened to placing a grid over the earth’s surface
and recording, through an electric signal, the average intensity of reflected and emitted
radiance from the area covered by each grid cell, or pixel, for the entire scene. Each
channel records radiation in a range of wavelengths and the analog (continuous) signal is
sampled at regular intervals; the values of the samples are averaged to produce a digital
number (Lillesand and Kiefer, 1994).

Classification is the process of grouping objects which share similar characteristics
under the same label and differentiating them from objects grouped under a different
label. It can only be completely successful if at least one characteristic of objects from
different groups is unique to each group. Theoretically, every different landcover type is

represented by a unique spectral signature. The purpose of image classifiers is to produce






and increases misclassification (Chhikara, 1984; Campbell, 1996; Foschi and Smith,
1997).

The exact extent of the effect of mixed pixels on classification is not well known
since the methodology for many projects is to specifically remove mixed, or potentially
mixed, pixels from the training and testing sets (Arai, 1992; Yoshima and Omatu, 1994).
Ignoring the presence of mixed pixels is not a solution since mixed pixels will exist in the
image, particularly for low resolution sensors, and therefore although the testing accuracy
may well be high, it will not be representative of the accuracy of classification of the
image.

Simply increasing the resolution of the satellite imagery may not be practical nor
does it guarantee less mixed pixels since new features may resolve. Additionally, since
lower resolution classes can be more homogeneous, as spatial resolution increases so may
spectral variability and consequently separability may decrease (Irons et al., 1985);
increased resolution does not necessarily imply increased classification accuracy (Fisher
and Pathirana, 1990).

The presence of mixed pixels may decrease classification accuracy but more
importantly, the information present in mixed pixels may be valuable and assigning only
one landcover type may not be appropriate. For example, area estimates would be more
accurate if class proportions, that is the proportion that individual classes occupy in a
pixel, could be estimated. In some cases, a secondary class may be of more interest than
the dominant class. For example, a forest inventory may require knowledge that trees exist

within the area covered by a pixel, even if they do not cover the majority of the pixel.

1.2 Objectives of the Thesis

In conventional classification methods, even when a category represents a mixture,
the pixel as a whole belongs to that category: for example ‘mixed oak/pine/weeds’
(Wilkinson et al., 1995) or a category which is used for areas of between 25% and 75%
pine cover (Brockhaus and Khorram, 1992). This premise defines what is referred to as
‘pure’ classification, also sometimes called ‘hard’ or ‘crisp’ classification. Henceforth,
the term ‘pure’ will be italicised to emphasize the possibility that the pixel may not
actually be pure but is treated as such. The existence of mixed pixels highlights the need
for a methodology which can not only deal with them but also estimate their composition.
Classification methods that seek to provide information about the composition of a pixel

will be referred to as soft classifiers in this thesis, in contrast to pure classifiers.




Recently, it has been suggested that output values from a neural network,
specifically a multi-layer perceptron network, may be correlated with class proportions,
also called percentage cover, within pixels (Moody et al., 1996; Atkinson et al., 1997;
Foody et al., 1997; Warner and Shank, 1997). Neural networks have a number of features
which make them attractive for this task. In particular, the data need not conform to
parametric statistical requirements, and signals from sub-pixel components are not
assumed to mix linearly. The overall aim of the thesis is to investigate the relationship
between neural network output values and sub-pixel information.

In so doing, a number of methodological issues will be raised that the majority of
experiments reported in the literature and discussed in chapter II have not addressed. The
consequences of choosing particular parameters for the network used in the thesis
(henceforth simply referred to as ‘the’ neural network), for example architecture, number
of iterations, learning rate, and so on, are examined. The reference data and the data sets
created are described and analysed in detail so that any possible influence on results may
be known. Data sets are created which appropriately reflect the nature of the landscape
and the complexity of the classification problem. The effect of different types of target
representations of ground data is examined. Finally, the method of representation of
mixed pixels by the network is explored. In summary, part of the aim of this thesis is to
address methodological issues concerning the identification of sub-pixel information
by the neural network.

The literature also shows a lack of standard tools for the analysis of soft
classification results. The majority of techniques analyse the relationship between ground
cover proportions and classifier output, class by class, or else provide a single overall
accuracy value. Using these methods, the relationship between components in a pixel is
lost and the distribution of results is not available. Qualitative, visual, and quantitative,
numeric, analysis tools are developed and used to evaluate the performance of networks
in identifying sub-pixel components. Within the thesis, therefore, another aim is to

develop tools for the analysis of soft classification results.

1.3 Structure of the Thesis

The thesis starts with an overview of relevant work published in the literature:
Chapter II: Prior Research in Identifying Sub-Pixel Information. This chapter considers
the research that has been carried out to-date in identifying sub-pixel components and
their proportions. Methodological issues and results form the basis for the approach

chosen in this thesis.




At the European Commission’s Joint Research Centre of Ispra (Italy) at which the
author was based, a network had already been developed for the purpose of pure
classification of remotely sensed images. Chapter III: The Multi-Layer Perceptron
Nertwork describes the characteristics of this network and the issues that must be
considered when running it. An outline of the modifications carried out to the network so
that it could perform soft classification is also provided. This chapter is complemented by
Appendix A: Soft Classification Software Package.

Chapter IV: Reference Data Sites and Data Sets provides a detailed description of
the data sets and the methods for creating them. Details of the satellite imagery,
photographs of the landscape, descriptions of the ground campaigns, explanations
concerning the creation of the data sets and analysis of the data sets are included. The
chapter is complemented by Appendix B: Reference Data Information.

Having introduced the methodological tool and the data sets, the experiments start
with Chapter V: Sensitivity Analysis of the Network which reports on tests carried out to
confirm that particular choices of network parameters would not affect classification
output values. All the parameters of the network are tested in turn and conclusions as to
their effect on overall accuracy are drawn.

Chapter VI: Qualitative Analysis Tools and Sub-Pixel Information groups
experiments which use established and newly developed visual tools to study the
relationship between pixel components and neural network output values. Analysis is
qualitative in that it is performed visually, not numerically. The chapter describes the
analysis tools then uses them to evaluate the correspondence between neural network
output values and pixel components.

The issue of training strategy is addressed in Chapter VII: Quantitative Analysis
Tools and Target Types which investigates the effect of different target types to represent
reference data on soft classification accuracies. Two new types of matrices are developed
to provide quantitative analysis tools for calculating and comparing classification
accuracies. The matrices are used to determine how target types affect the neural network
results.

Chapter VIII: Composition of Training Data Sets is devoted to establishing
whether the neural network is capable of interpolating between values to provide the
composition of a mixed pixel or whether it requires examples of mixed pixels in the
training file in order to approximate compositions of pixels in the testing file.

The last chapter of the thesis, Chapter IX: Summary and Conclusions, provides a



synthesis of the experiments that have been carried out and highlights their results and the
qualitative and quantitative analysis tools that have been developed. General conclusions
regarding the appropriateness of a neural network for extracting sub-pixel information are
drawn. Aspects of the subject which have not been fully addressed are suggested for

future work.




Chapter II

As was highlighted in chapter I, mixed pixels occur within any raster image based
remote sensing system, whatever its resolution. Mixed pixels may decrease classification
accuracy because their spectral signature is likely to be different from the mean spectral
signature of pure classes. Therefore, mixed pixels cannot simply be ignored; removing
mixed pixels from the training and testing data sets might produce high classification
accuracies of the testing data but that will not be representative of the accuracy of
classification of the image. Furthermore, the composition of pixels is often of interest.
Classification methods which provide sub-pixel composition are therefore very useful.

A number of methods have been developed to identify sub-pixel classes and their
proportions. Simple vegetation indices such as the NDVI (Campbell, 1996), which has
been shown to be strongly correlated with leaf area index, could be used as a crude
measure of vegetation proportions but they are only appropriate for two component
mixtures. Complex non-linear mixing algorithms have been developed which postulate a
model for the relationship between class proportions and the spectral signature of a pixel
by modelling spectral behaviour (Borel and Gerstl, 1994; Jasinski, 1996; Li and Strahler,
1986). However, these mixture models assume that the user has detailed knowledge of the
complex physical behaviour of the interaction between sunlight and objects. This
overview of research to-date will concentrate on the most common algorithms in the

remote sensing literature. These can be divided into three groups.

* Algorithms which postulate a linear relationship between category
proportions in a pixel and the spectral signature of the pixel, usually called

linear unmixing models.

 Algorithms which are based on some form of distance measurement of the
pixel from the spectral mean of categories and which produce likelihood or
membership values. These include modified maximum likelihood and so-

called fuzzy techniques.




° Algorithms which extract the relationship between spectral signatures and
ground cover proportions through examples using parallel like processing.
These are termed neural networks.
For each of these algorithms, the basic methodology is explained and results and

limitations are discussed.

2.1 First Considerations

There is an important issue which needs to be clarified. Pixel signatures are not only
a result of the categories that compose them. Conditions of identical landcover types may
vary. For example, they may be found at different physical heights, under different
illuminations, with a different water content, and so on, all of which will affect the signal
received by the sensor. Technological considerations and atmospheric scattering and
absorption limit the wavelengths at which radiances can be measured and the sensor only
records approximate spectral signatures dictated by its spatial resolution, the area covered
by one pixel; its radiometric resolution, that is the number of brightness levels which can
be distinguished; and is spectral resolution, the width of wavelength intervals (Richards,
1986). Signals from neighbouring pixels may also contaminate a pixel’s reflectance curve
(Campbell, 1981; Cracknell, 1998). Therefore, pixels containing identical classes are
likely to have similar but not identical signatures and different landcover classes may give
rise to spectral signatures which are similar to one another.

Landcover classes are represented by clusters of pixels, as illustrated in figure 2-1,
and classification theory suggests that the further from the centre of a cluster a pixel is
found, the more unlikely it is to belong to that cluster. However, the reasons for a pixel
being on the edge of a cluster, such as pixels A, B and C may differ. The signal from pixel
A might be the result of a mixture between landcover classes Ly and L, since it lies

between the two centroids. However pixel B, situated at a similar distance from the

Bandy
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Figure 2-1. Illustration of category clusters and mixed pixels




centroid of class L.; as A, but not close to any other classes, would probably not be
considered a mixed pixel. Instead, the signal from pixel B might be considered to be a
result of conditions on the ground and, although it may be considered to have a low level
of similarity to the mean spectral signature of landcover class L4, it would be considered
to belong in full to L. Pixel C could be in a similar situation to pixel B, actually covered
by class Lj, or it could be a non-linear mixing between classes L; and L, or it could
contain all three landcover classes, L, L, and L.

There appears to be no method for differentiating between these types of pixels. For
this reason, it is essential that accurate reference data be collected. Only when the actual
composition of a pixel is known can classification results be evaluated. This is also the
reason why supervised classification is to be preferred over unsupervised classification
methods. Even for pure classification, it is sometimes difficult to assign landcover classes
to the clusters that unsupervised methods have identified. With soft classification, the task

becomes even harder.

2.2 Linear Unmixing Models

Linear mixture models have been successfully used in many applications at a range
of resolutions. Examples include the decomposition of minerals from Mars using imagery
from the Viking Lander 1 (Adams et al., 1986), routine mapping of intertidal vegetation
in an estuary using Landsat TM data (Reid-Thomas et al., 1995) and crop (Quarmby et
al., 1992) and tropical forest (Cross et al., 1991) monitoring with AVHRR imagery.

2.2.1 Methodology

The linear mixture model assumes that the observed spectra from a pixel is given
by the product of the reflectivity of a category and the fraction of the pixel that category
occupies. A series of assumptions are made that include a source of even illumination of
known spectrum and intensity and no fluorescence and photons only interacting once with
the surface (Horwitz et al., 1971; Detchmendy and Pace, 1972; Settle and Drake, 1993).
This model is usually extended to include an error term which includes instrument,
atmospheric and other contributions to the observed signal (Hallum, 1972). The model

can be expressed by the following equation.
N

E= Y xfi+e (2.1)
i=1
where E is the observation, that is the spectral signature from the pixel; x; is the pure

signal from component i, usually referred to as an end-member and taken to be the
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response that would be received by a pixel containing only category i f; is the fraction of
the pixel that component i covers and e; is an error term. Since this equation represents a
physical reality, f; is usually constrained to satisfying the following equations:

0<f <1

Sf=1

In other words, individual proportions must sum to one and cannot have values less than

(2.2)

zero or greater than one. In most methods, the error term is assumed to have statistical
properties that are independent of the mixture and that can be represented by a normal
distribution of mean zero determined by the covariance matrix of the end-members which
is constant and equal to C (Settle and Campbell, 1998).

The linear mixture model can be solved if:

» spectral signatures of pure components, x;, are known and thus fractions of

the pixel occupied by each component, f;, can be calculated, or

o if fractions of the pixel occupied by each component, f;, are known and thus

pure spectral signatures, x; , can be estimated.
End-member signals, x;, are either known as part of a library of laboratory measurements
or estimated from the image. Proportions of components within pixel, f;, are either known
from ground data or can be estimated from imagery with a higher resolution than that
which is being analysed. In either of these cases, the model is solved by multi-variate

linear regression or some form of least squares analysis, where the sum of squares of the

error is minimised (Shimabukuro and Smith, 1991; Settle and Drake, 1993)

2.2.2 End-members and limitations

One of the particularities of the linear mixture models is that they often include a
shade component as one of the end-members. Shadow effects depend primarily on sun
angle, ground morphology and, if present, the type and structure of vegetation within the
image (Jupp and Walker, 1997). Shadows can be an important factor (Horler and Ahern,
1986) which may cause landcover reflectances to be underestimated (Asner et al., 1997)
but not all authors report an influence (Stenback and Congalton, 1990).

In some cases, examples of the pure spectra of objects in an image may be available
in a library of laboratory spectra which have been measured under rigorously controlled
conditions and known illumination conditions. This is the method used for example by
Adams et al. (1986) to determine the composition of objects in an image taken of the
surface of Mars using a sensor on-board the Viking Lander 1. Alternatively, a library of
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spectra can be created in situ for the image by approximating laboratory conditions and
taking spectrometric measurements of the objects during a field campaign. Sohn and
McCoy (1997) use field measured spectra to map arid rangeland. However, the observed
image spectra are not the true reflectivity from the ground elements since the reflected
signals pass through the atmosphere before reaching the sensor. Therefore, the spectra
obtained from the image need to be corrected for atmospheric effects and geometric
distortions from the sensor. Only once these corrections have been performed, can the
spectra be compared to existing laboratory measurements, the image spectra calibrated to
the library spectra and the model applied to the whole image.

There are a number of limitations to using library spectra; in particular, it needs to
be extensive. Not only must every species in the image be present but ideally, each should
be present under different conditions. For example, there should be spectra for dark soils
through to light soils, spectra for the same green vegetation growing on different
backgrounds, with different stress conditions (little water, little nutrients) and so on
(Bateson and Curtiss, 1996). Laboratory measurements for vegetation cover are
especially difficult because the spectral response depends on intrinsic parameters which
could not be registered in a spectral library such as canopy architecture and leaves’
reflectance, the influence of which is not always predictable, and moreover vegetation
response changes with time (Kerdiles and Grondona, 1995). Furthermore, sophisticated
atmospheric modelling procedures for converting reflectance to radiance values and
removing atmospheric effects are required (Craig, 1994). Models differ and resulting
image spectra are not always similar to library spectra (Bateson and Curtiss, 1996). In
addition, sensor degradation adds to the difficulties of modelling atmospheric effects
(Kerdiles and Grondona, 1995). These are probably the reasons for which this method
works best for soil measurements (Huguenin, 1997) and the problems have led some
authors to state that laboratory reflectances are of limited value (Settle and Drake, 1993)
and to establish other methods to determine mixture components, namely, identifying
end-members directly from the image.

Image end-members can be identified in a variety of ways, the most common being
simply from homogeneous areas which ground data identifies as pure or by plotting the
spectra or principal components; the extremes of the plotted data are the end-members.
For example, Bryant (1996) use the method developed by Smith et al. (1985) using
principal components, to map salts on a playa surface from a Landsat TM image. When
ground data is not available, end-members can be identified using a higher resolution
image and then applied to the lower resolution image (Gong et al., 1994; Cross et al. 1991,
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Asner et al., 1997). This is often the method used for AVHRR imagery for which, due to
the size of the pixels, pure pixels are particularly difficult to find. Holben and
Shimabukuro (1993) estimate the spectral response of vegetation, soil and shade for
AVHRR pixels by regressing them against TM image pixels. In a slightly different
approach, Oleson et al., 1995 estimate cover type reflectances given the fractional areas
of multiple cover types, calculated from high resolution Landsat TM data, in a coarse
spatial resolution pixel. Multiple linear regression is applied to determine the mean
reflectance of cover types.

The problem with image end-members is that they may not be pure as they may be
linked to categories such as Vines or Orchards which themselves may be combinations of
more fundamental reflectance spectra. It is also assumed that all materials within the
image have sufficient spectral contrast to allow their separation and that the number and
identity of each component can be defined in some way but this may not be and pure
image end-members may not be identifiable (Sohn and McCoy, 1997; Gong et al., 1994).
This is particularly true as resolution decreases, for example to AVHRR resolution. The
number and characteristics of end-members in a spectral data set are determined not only
by the spectrally unique materials on the surface but also by illumination geometry and
process (Bateson and Curtiss, 1996). Calculated end-member spectra, particularly if
calculated automatically with no user input, may not be realistic; for example negative
proportions may be derived, or data may not be fit uniquely. The situation may also arise
where trees, for example, appear in more than half of the pixels on the ground but never
actually constitute more than 35% of any single pixel in the image, thus making their
identification as an image end-member impossible (Tompkins et al. 1997). If more
spectral end-members than are present in the image data are identified, then the
uncertainty in abundance estimates increases; if not all end-members are taken into
account, then uncertainty in abundance estimates also increases (Smith et al., 1994).

Overall, linear unmixing models have two serious shortcomings. The first is that the
assumption that the spectral response of a pixel is linearly dependent only on class
proportions within the pixel can be erroneous (Jupp and Walker, 1997). Some authors
have shown that the change in reflectance as a result of changes in proportions may be
approximately linear in particular cases; for example Donoghue et al. (1995) identified
three main mixing plains, water, vegetation and intertidal flats, when mapping an estuary.
But although Jasinski and Eagleson (1990) demonstrated that for many semi-vegetated
scenes, bare soil pixels orient themselves along a preferred soil line at the base of
triangular red-infrared scattergrams and all the pixels falling on a line parallel to the soil
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line may possess equal amounts of vegetation cover, the distance of that line from the soil
line was not linearly proportional to the amount of vegetation but depended on the amount
of vegetation and shadow and the magnitude of the reflectances. Mc Cloy and Hall (1991)
found that the canopy reflectance of woody vegetation is closer to the plain of soils than
is the response of green herbaceous material.

Non-linear mixing occurs when multiple scattering effects are considered. For
example, a one layer model of vegetation above ground was shown to exhibit dramatically
increased reflectance in the near-infrared due to multiple reflections between leaves and
soil (Borel and Gerstl, 1994). Small, sub-pixel features may have an effect on the spectral
response of a pixel that is not proportional to their area extent. Examples include fires and
Snow.

The second serious limitation of linear unmixing is that it is limited to n-1 classes,
where n is the number of channels of the sensor. This is sometimes referred to as the
condition of identifiability (Kent and Mardia, 1988) as it is the requirement for a unique
solution to exist. If it is assumed that one end-member is shade, then for the Landsat TM
sensor, only four other end-members remain. A small number of end-members has the
advantage that analysis is simplified but some materials will not fit a mixture of the few
selected end-members and some image spectra will appear to be mixtures when in fact
they are associated with different materials; errors will occur either as mis-identified
materials or as incorrect fractions of end-members (Smith ef al., 1994).

A number of authors have suggested improved methods for end-member selection
(Bateson and Curtiss, 1996; Bosdogianni et al., 1997; Craig, 1994; Mathieu-Marni et al.,
1996; Tompkins et al. 1997). Improvements have also been suggested for the linear
model, for example by suggesting that spatial relationships be taken into account (Mayaux
and Lambin, 1995), by carrying out spectral unmixing locally rather than globally to
overcome the n-1 restriction (klein Gebbinck and Schouten, in print; Huguenin, 1997) or
by adding simple post-processing non-linearities (van Kootwijk et al., 1995). But
although the linear unmixing model has been successful in a number of projects, results
may show a lot of scatter (Thomas et al., 1996) and inaccuracies which are thought to be

a result of the model’s limitations.

2.2.3 Summary
Although klein Gebbinck and Schouten (in print) suggest that linearity is the
sensible physical basis which other methods lack, the assumption of linear mixing is not

often correct and simply solving the linear equation is not a guarantee of a correct
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solution. A poor fit may indicate an inappropriate selection of reference spectra, a non-
linear response of the imaging instrument or non-linear mixtures of surface materials.
Furthermore, using Landsat TM imagery, not more than five classes can be identified.
Although with the event of hyper-spectral sensors this restriction may be overcome,
alternative approaches have been suggested which overcome the limitations of the linear

unmixing model.

2.3 Modified Maximum Likelihood and Other Fuzzy Algorithms

‘Fuzzy’ sets and logic (Klir and Yuan, 1995) are a branch of mathematics
introduced by Zadeh in the 1960’s (Zadeh, 1965). The theory of fuzzy sets is fairly
involved from the mathematical point of view (Di Zenzo ef al., 1987) but its popularity
has dramatically increased in the last five to ten years, even though it has at times been
subject to controversy (Zadeh, 1978; Cheeseman, 1985; Puri and Ralescu, 1982). Several
authors have commented on the confusion arising from the indiscriminate use of the term
‘fuzzy’ (Fisher, 1996; Lagacherie et al., 1996). Unfortunately there has been a tendency
in the remote sensing literature to use the term ‘fuzzy’ simply in contrast to ‘hard’ or
‘pure’ even though fuzzy mathematics are not used. In this thesis, preference is given to
the term ‘soft’ to dispel any confusion, although the terms used by authors will be
respected when describing their work.

The algorithms grouped under this section all use some form of measurement of the
distance between the pixel under consideration and class means, also called centroids. The
fundamental assumption is that data that are similar are spectrally close to each other
(Cannon et al., 1986b); the more of a cover class a pixel contains, the more spectral
characteristics of that class it has (Wang, 1990a). The main algorithms either use modified
versions of the maximum likelihood classifier or a supervised version of the fuzzy c-

means algorithm.

2.3.1 Modified maximum likelihood algorithms

The maximum likelihood classifier calculates means and variations of classes based
on training data. It then applies these statistics to image or testing data pixels to calculate,
for each pixel, its likelihood of belonging to any of the classes. In conventional
classification, the pixel is assigned to the class with the highest likelihood value, also

called a-posteriori probability. The likelihood of pixel x belonging to class i, L(ilx), is

given by Bayes’ Rule:
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P, P(x|i)
L(ij) = ———— (2.3)
2P P(xli)

where P; is the a-priori probability that x belongs to i and P(xli) is the probability density
function for x belonging to i. If it is assumed that the data is normally distributed, P(xli)
can be estimated using:

1 -5D

P(x|li) = ———— ¢ (2.4)
(2TC)N/2|V| 1/2

where N is the number of sensor channels, V is the variance-covariance for class i, and D?
is the Mahalanobis distance calculated by

D* = (x—p) V' (x-p) (2.5)

where x is the pixel vector, |; is the mean vector for category i and T signifies the
transpose of the vector (Swain and Davis, 1978; Thomas et al., 1987).

Likelihood values have been used to indicate the degree of certainty with which
pixels are classified. For example, Van Deusen (1995) uses an algorithm which iteratively
assigns pixels to classes based on their likelihood values. Pixels that are clearly associated
with a given class, as indicated by a high likelihood value in one class and low values
elsewhere, are used to influence the decision on allocating a class to their uncertain
neighbours, as indicated by low likelihood values for every class. Novel approaches to
analysing classification results are reported in Fisher (1994a and 1994b) where likelihood
values are animated either visually or audibly to indicate the reliability of a classification.
When used as a measure of uncertainty (Zhang and Hoshi, 1994) or similarity (Zhu,
1997), likelihood values were found to improve the classification accuracy. Although it
can be hypothesised that misclassified pixels are likely to be mixed pixels and that
therefore likelihood values can be used to indicate mixed pixels, without reference data
no conclusion regarding sub-pixel information can be drawn from these particular
experiments.

Reference data is available in the experiment reported by Foody et al. (1992) for
example, continuing experiments reported in Wood and Foody (1989). The a-posteriori
probabilities of pixels, as provided by the maximum likelihood classifier, are used to map
a transect between wet and dry heathland from Airborne Thematic Mapper (ATM) data.
The authors calculate relatively high correlation values between ground cover, as
measured by quadrants, and a-posteriori values for fifteen test data points.

Wang (1990b) introduced the concept of weighting the mean and variance of the
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maximum likelihood by fuzzy membership values. How much a pixel belongs to a class
determines how much it contributes to the mean and covariance of that class. Thus for

example, the mean of a category is calculated by the following equation, where pu.* is
n

2 fix)x,
p* o= = (2.6)

2. fitx)

t=1
the fuzzy mean, fj(x,) is the fuzzy membership value of pixel x, for class i and n is the total
number of pixels. The fuzzy mean and fuzzy variance-covariance matrices are then used
within the maximum likelihood algorithm in equation 2.4 and equation 2.5. The fuzzy
membership values could be obtained from any methodology but Wang (1990a and
1990b) chooses to use the maximum likelihood values for each pixel. In effect, fuzzy
membership values and a-posteriori probabilities are one and the same here. The fuzzy
membership values of seven Landsat MSS pixels are found to be in agreement with
visually estimated proportions from an aerial photograph. The fuzzy classification results
are also ‘hardened’ for comparison with results from a traditional classification.
‘Hardening’ consists in assigning a pixel to the class with the highest fuzzy membership
value, or a-posteriori probability. The overall fuzzy classification accuracy is found to be
higher than that of the conventional classifier.

Maselli et al. (1995), basing themselves on the results by Wang (1990a and 1990b),
estimate fuzzy membership values by a maximum likelihood procedure modified by the
inclusion of non-parametric prior probabilities, calculated from simple frequency
estimates. The aim of the experiment is to relate fuzzy membership values with the
percentage of deciduous forest cover and with basal area values within afforested plots in
the Apennines. Regression analysis is performed to test the relationship. Although the
authors report good correlations, the ground data show that twelve out of twenty-two plots
are 100% pure deciduous, seven of the plots contain less than 20% deciduous cover and
only three have percentage covers in-between. The ground data therefore does not provide
a good range of values and the results have to be seen in that context.

In a later experiment, Maselli et al. (1996) evaluate the capability of the modified
maximum likelihood algorithm to estimate cover proportions in a general landcover
classification. The data used has been degraded from a Landsat TM satellite image. Thus,
the composition of pixels in the coarse resolution image is provided by the distribution of
landcover classes of the high resolution data within the pixels. Training of the classifier
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is carried out with Landsat TM pixels whereas testing is performed on the coarsened data.
The relationship between the fuzzy membership values and class proportions is evaluated
using correlation values and graphs. Good correlation values are found but the graphs

show considerable scatter.

2.3.2 Fuzzy c-means

The fuzzy c-means algorithm was originally developed for the unsupervised
classification of pure data. It is a non-parametric method, based on measuring the distance
between pixels and classes, and weighting it according to fuzzy membership values,
similarly to the modified maximum likelihood algorithms discussed above. The algorithm

works by seeking the least square minimum to

rowcol ¢

JUV) = XY (2.7)
ij ok

where f is the matrix of fuzzy membership values and D is some form of distance
measure such as Euclidean or Mahalanobis described in equation 2.5; ¢ is the total number
of clusters and m is a weighting exponent. The algorithm essentially works by initialising
¢, m and fy;, and class centroids, randomly assigning pixels to each class and then moving
the pixels around so as to minimise the least squares error (Bezdek, 1984; Cannon et al.,
1986a).

Cannon et al. (1986b) present improvements to the algorithm, which require
extensive ‘tweaking’ of the parameters, and apply it to the classification of cereal fields.
However, the authors are not concerned with sub-pixel components and simply ignore the
added information provided by the fuzzy outputs, by only extracting the class with the
highest fuzzy membership value.

Fisher and Pathirana (1990) decide to investigate the relationship between ground
cover proportions and the fuzzy membership values. Using supervised and unsupervised
methods, the authors establish that seven landcover classes existed within their Landsat
MSS urban scene. Proportions within pixels are estimated from aerial photographs and
correlation values calculated. From the membership values, it would seem that most
pixels are mixed although since the ground data is not described, it is difficult to tell the
distribution of proportions across classes. The authors find that correlation values
between estimate proportions and actual proportions are highest for well defined classes
and lowest for poorly defined classes.

Foody (1992) uses the fuzzy c-means algorithm in supervised mode by providing

-17-




class centroids into the program. The experiment uses the same data as that reported in
Foody et al. (1992). Different values of m, the weighting exponent, are studied. Values
close to one provide an almost conventional classification; values greater than one
provide more fuzzy classification. Graphs of fuzzy membership values against actual
percentage cover of dry heath reveal that the more fuzzy classification performs better.
A further example of the use of the fuzzy c-means algorithm is provided by Foody
(1994) who uses a supervised version to perform an ordinal classification of tropical forest
cover into ‘large’, ‘intermediate’, ‘small’, ‘very small’. ‘Large’ describes pixels with
more than 80% forest cover; ‘intermediate’ describes pixels with between 20% and 80%
forest cover; ‘small’ describes pixels with between 2% and 20% forest cover; and finally
‘very small’ is applied to pixels with less than 2% forest cover. Landsat MSS data
provides the composition for data degraded to approximate AVHRR resolution. The
classifier is trained with twelve pixels of forest and twelve of non-forest to extract fuzzy
membership values. Thirty-three pixels are then used to derive a regression relationship
between the fuzzy membership values and sub-pixel cover. The performance is measured
using thirty-two mixed pixels. Good correlation values are obtained. Estimated
proportions are then used to produce a confusion matrix using the ordinal groups
described above. Although not mentioned in the article, it is interesting to note that
percentage cover is not evenly divided between the groups. This will certainly have an
effect on the classification accuracy calculations, although what that effect may be is not

clear without more information concerning the ground data.

2.3.3 Comparison of algorithms

One of the earliest attempts at correlating likelihood values with ground data
proportions is reported in Marsh et al. (1980) who use what they call an approximate
maximum likelihood technique. The method is only applicable to two-component
mixtures; class proportions are proportional to the Mahalanobis distances between the
reflectance of the pixel and each class mean, divided by the Mahalanobis distance
between the class means. The authors compare the approximate maximum likelihood
technique to a general weighted average equation and a linear regression technique. For
the general weighted average, the proportion of a component is simply a function of the
Euclidean distance between pixel and mean vector of the class divided by Euclidean
distance between the two classes. Landsat MSS data is used to test the methods; aerial
photographs provide the ground data from which proportions are calculated. Forty pure

pixels for each class are identified and seventeen mixed. Eight mixed pixels are used for
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testing the accuracy. The other nine are used for the regression analysis. Accuracies are
compared using root mean square error (RMSE). The AML algorithms performs best
although there is a tendency for dark vegetation to be overestimated and light soils to be
underestimated. Results are confirmed using other data sets.

Foody and Cox (1994) compare a linear unmixing model and a regression model
using fuzzy c-means estimated membership values. They conclude that both models can
un-mix pixel composition although the linear unmixing model provides slightly higher
correlation values.

In Foody (1996a), a discriminant analysis and a fuzzy c-means algorithm are
applied to the same data, namely an ATM scene which has been coarsened so that the
original data provides the composition of the degraded pixels. Three landcover types are
identified, trees, asphalt and grass, and the classifiers are trained on five pure examples of
each. The accuracy is tested on thirty-five pixels. The relationship between a-posteriori
probabilities and class proportions is found to be weak in the case of the discriminant
analysis but strong in the case of the fuzzy c-means.

Bastin (1997) compares a fuzzy c-means classifier, a linear mixture model and
probability values from a maximum likelihood classifier. An unsupervised classification
of a Landsat TM image into four classes, is regarded as the reference data and the image
is coarsened to various scales. The results show that some classes present difficulties for
each classifier, signifying that this maybe a feature of the classes rather than the
algorithms. The classifiers perform to a similar accuracy although they appear to have

different areas of strengths and weaknesses.

2.3.4 Summary

In summary, the experiments reported in the literature have shown that there are
indications of a strong relationship between a-posteriori probabilities or fuzzy
membership values and landcover proportions within a pixel. However, the maximum
likelihood methods assume that data is normally distributed and the supervised version of
the fuzzy c-means algorithms requires the input of class means from pure pixels. When
mixed pixels are present, class data is unlikely to be normally distributed and in some
cases, pure pixels may be difficult to identify. An alternative which makes no assumptions
about the data and which may not necessarily require the input of pure pixels, is a neural

network classifier.
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2.4 Neural Networks

The interest in artificial neural networks, and more particularly multi-layer
perceptrons, was revived in the late 1980’s after the publication of research by Rumelhart
et al. (1986). The success of ML.Ps in remote sensing classification problems no longer
needs to be established as they have often been shown to perform at least as well as
conventional classifiers (Howald, 1989; Benediktsson, 1990; Paola and Schowengerdt,
1994). Other types of networks have also been shown to be successful classifiers such as
the Learning Vector Quantization (Hernanadez et al., 1992) and the Self Organising Maps
(Kohonen, 1989) but the most commonly used type in classification in general is the MLP
which will be concentrated on here.

The MLP is simply a data driven classifier which is implemented to perform several
calculations is parallel. A thorough description is provided in chapter III and at this stage
it is only necessary to know that the penultimate stage of classification is a vector of
output values from which the class with the maximum is attributed to the pixel offered as
input. The main advantages of neural networks is that they are non-parametric and can
easily include attribute data at the training stage. No model for the data is assumed as the
relationship between inputs and outputs is extracted automatically from the examples
provided. The main disadvantage of neural networks is that training can be slow, although
on the other hand, the testing or classification phase is usually very fast.

Reservations concerning the use of neural networks in the remote sensing field
mainly stem from their complexity. In fact, neural networks have more in common with
statistical packages than is often assumed. They can be regarded as non-linear regression
analysis tools (Cortez et al., 1997). The vector of output values has been proven
mathematically to provide a-posteriori probabilities under a series of assumptions that
include infinite data sets and an appropriate architecture (Shoemaker, 1991) and training
data that adequately represents the underlying probability density functions (Richard and
Lippman, 1991). Irrespective of the activation function (Ruck et al., 1990), neural
networks can extract information about a-priori distribution and conditional probability
from training data so as to approach unknown but true Bayes’ rule asymtotically (Osman
and Fahmy 1994; Wan, 1990). Consequently, when the approximation is accurate
network outputs should sum to one (Lowe and Webb, 1991).

A number of ‘fuzzy-networks’ exist (Kosko, 1992) such as the Fuzzy ArtMap
described in Gopal et al. (1993) and Carpenter et al. (1992) or those used by Lee and
Wang (1994) and Uebele et al. (1995) for classification problems with fuzzy inputs.

However, the purpose of these classifiers is ultimately to perform pure classification. It is
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the implementation of the network that uses fuzzy concepts, they are not however applied
to the classes. These networks are not therefore appropriate here.

As for the previously discussed modified maximum likelihood classifiers, some
authors have used a-posteriori probabilities, this time derived from a neural network
classifier, to indicate degrees of confidence in assignments (Bartl and Pinz, 1992). Foschi
and Smith (1997) use a neural network for the identification of sub-pixel amounts of
wooded vegetation. However, only one output is used with a continuous value to represent
the presence or not of wooded vegetation. The value is taken as a probability that the pixel
does contain wooded vegetation, it does not represent the proportion that wooded
vegetation may occupy. Without the reference data to compare network output values
with ground cover, only hypothetical conclusions about the relationship between the two
can be drawn from these experiments.

Few articles report experiments to determine the relationship between neural
network output values and ground cover proportions as this technique is at the forefront
of sub-pixel information research. Moody et al. (1996) investigate the relationship with
simulated data. Two data sets are used: the first contains simulated pure and mixed pixels;
the second contains real pure pixels but simulated mixed pixels. Mixed pixels are linear
combinations of the pure pixels. For the real data, a Landsat TM image is degraded and
coarsened pixels are assigned the most frequent class according to the high resolution
imagery. The response of the network is plotted in two-dimensional graphs of feature
space, that is one band against another, and different shades of grey indicate the network
output strength. The network consistently produces a maximum output for the largest sub-
pixel class but the error increases with mixing. The correspondence between the second
largest output signal and the second dominant class is weakest for almost pure and
extremely heterogeneous cases. This is to be expected, since the secondary class in almost
pure pixels may be too small to produce a strong signal in the pixel and in very
heterogeneous pixels, the secondary class will not be very different in size from the other
classes and therefore contribute to the pixel signal by a similar amount. According to the
authors, it may be that in order to use non maximum outputs to indicate sub-dominant
classes, the outputs first need to be adjusted based on interclass distances in multi-spectral
space.

Foody (1996b) investigates the relationship between network output values and
percentage cover using two data sets. The first consists of degraded ATM imagery from
which three main pure classes are identified; the second consists of an AVHRR image
with the percentage of forest cover within pixels is provided by a Landsat MSS image.
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The neural network is trained on pure classes and tested on mixed pixels. The author finds
that the network response is fairly hard. In other words, proportions in between the
extremes are not well approximated. The node value for a class is close to one if that class
covers more than 50% of a pixel and close to 0 if it covers less than 50%. Hypothesising
that the sigmoid activation function of the network, that is the function which transforms
input to output for each node of the network, may be influencing results, the author
rescales output values to a linear function and results improve.

Foody (1997) use Landsat TM imagery to provide the composition of AVHRR
pixels. Three classes are identified, River, Pasture and Forest. The particularity of this
experiment is that since pure pixels are almost non-existent, the network is trained and
tested with mainly mixed pixels. The target for the network uses scaled values of the
proportions at every class. Network estimates are evaluated using correlation values and
the total areal cover by a class. Statistically significant correlation coefficients are
obtained although the graphs of estimated proportions against actual proportions, for each

class, show some scatter.

2.4.1 Comparison of algorithms

Foody (1996a) uses coarsened ATM imagery to compare the abilities of a linear
discriminant analysis, a fuzzy c-means and a neural network algorithm. Five pure pixels
of each of the three pure classes are used to train the classifiers which are then tested on
thirty-five mixed pixels. The effect of the sigmoid activation function is removed from the
neural network output values. Performance of the algorithms is measured using measures
based on the distance between predicted and actual proportions, and the difference
between probability distributions. The graphs and the measures of accuracy indicate that
the neural network and fuzzy c-means algorithms are more appropriate than the linear
discriminant analysis.

Schouten and klein Gebbinck (1997) compare neural network identification of sub-
pixel information with least squares and modified least squares algorithms for
classification problems using three different sensors. Three or four end-members are
identified within each problem and simulated mixed pixels are generated as linear
combinations of the classes. The mixed pixels are used in the training and testing data sets
which contain approximately 15,000 pixels each. The target type used for training the
network is not reported. Performance of the algorithms is judged on the basis of plots of
the frequency of difference between fractions. That is, for each pixel, the difference

between the predicted proportion and the actual proportion is computed, apparently for
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every class, and frequency graphs are plotted. The network performs best for each
classification problem.

Warner and Shank (1997) use two sets of simulated data. The first, a two class
problem, is fully synthetic, both the pure and the mixed pixels are simulated. The second,
a four class problem, is partially synthetic: pure pixels are from a SPOT HRV image but
mixed pixels are generated using a linear model. The network for the first data set is
trained using only the pure pixels. The use of a modified activation function is evaluated
and the performance of the network on the fully synthetic data is compared to a linear
unmixing model. The linear unmixing model produces much lower errors on the fully
synthetic data and the modified activation function performs better than the conventional
sigmoid function. Two networks are trained on the second data set: the first uses only pure
pixels, the second used pure and mixed pixels in the training file. For the network using
also mixed pixels, the target for the network consists of scaled values of the proportions
of the classes, between zero and one. The network trained with mixed pixels is able to
better represent fuzzy boundaries in feature space.

Atkinson et al. (1997) use classified images of SPOT HRV sensor as reference data
for AVHRR imagery. The identification of sub-pixel information from a linear unmixing
model, a fuzzy c-means algorithm and a neural network are compared. The network is
trained with a target of scaled values of class proportions. Training pixels number 215 for
the network and testing pixels for all the algorithms number 108. Accuracy is evaluated
using graphs of known percentage cover against predicted percentage cover. The linear
unmixing model, trained on five pixels for each of the four or five end-members, performs
particularly badly for this problem. The fuzzy c-means algorithm performed marginally
better. The neural network was the most accurate estimator. These results may imply that
the unmixing model and the fuzzy c-means algorithm are particularly sensitive to the end-
member data that they are presented with. Considering that, particularly for AVHRR
imagery, end-members are difficult to identify, this suggests that neural networks are

advantageous in this case.

2.4.2 Summary

Investigating the relationship between neural network output values and class
proportions has only very recently been carried out. Results show that there is a strong
potential for using networks to identify sub-pixel information. Neural networks are
particularly attractive as they are non-parametric and do not assume any relationship

between individual components signatures and resulting mixture signatures. Furthermore,

-23-




it may be unnecessary for pure pixels to be used in the training stage. Neural networks

compare favourably with other algorithms for the identification of sub-pixel information.

2.5 Data, Training Strategy and Accuracy

The results from the experiments reported in the literature described above, often
show that there is reason to believe that there is a strong relationship between a-posteriori
probabilities or fuzzy membership values and ground cover proportions within pixels.

However, a number of issues have not been addressed.

2.5.1 A-posteriori probabilities and ground cover proportions

It has become common in the literature to use the concepts of uncertainty and
mixing interchangeably. Fisher and Pathirana (1990), for example, explain that fuzzy
membership values close to one show that it is very likely that the pixel belongs to the
class and consequently, values in between one and zero show pixel proportions. In fact,
there appears to be no theoretical proof that a-posteriori probabilities or fuzzy
membership values which indicate the certainty with which a pixel can be assigned to a
class should reflect class proportions. The a-posteriori probability that a pixel belongs to
a class is the probability, based on a-priori probabilities and after using an algorithm, that
the whole pixel belongs to that class. A probability of 0.3 of a class belonging to class 4,
means that the pixel has 30% probability of belonging to class 4. There is no mathematical
reason why a probability of 0.3 that the pixel belongs to class 4 should imply that 30% of
the pixel is covered by class 4, even though it may seem intuitive. Campbell and Hashim
(1992) insist that there is no theoretical justification for using probability or distance
measures as proportions. The fact remains that empirically, as seen above, a-posteriori
probabilities and fuzzy membership values have been shown to be related to ground cover

proportions.

2.5.2 Data

Most of the experiments described in the previous section use classified high
resolution data as reference data from which to calculate proportions for coarse resolution
images: either the high resolution image is degraded to produce a coarse resolution image,
or imagery from two different sensors are used, for example AVHRR and Landsat TM
(Cross et al., 1991; Maselli et al., 1996; Foody, 1996b). Pixels in the high resolution
imagery are considered to be pure. Although in some cases collecting reference data is not

possible, this method ignores the fact that the classification of the high resolution image
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will usually not be 100% accurate; indeed the accuracy with which the original image is
classified is rarely reported. Since the reference image is not 100% correct, the
proportions that are calculated from it will not be 100% correct either. Furthermore, in the
case where an image is degraded, the problem is not necessarily realistic since pixel
signatures from a low resolution image, as obtained independently from another sensor,
are not simply some form of average of pixel signatures from a high resolution image.
Even though some methods use more sophisticated models (Oleson et al., 1995), they are
still only a model. In the case where an independent high resolution image is used,
georeferencing the two images may include some errors and consequently, the
proportions that are calculated will not be accurate.

Some experiments use simulated data: sometimes both pure and mixed pixels are
simulated but more often, pure pixels are taken from an image and mixed pixels are
generated (Settle and Drake, 1993; Warner and Shank, 1997; Schouten and klein
Gebbinck, 1997). Most commonly, mixed pixels are generated as linear combinations of
the signatures of the pure pixels. This method presents a simplified problem to the
classifiers which does not realistically mirror the problems that may be found in reality.
Although useful for determining general trends, the methods make a series of assumptions
which make it difficult to transpose the results onto a more realistic problem.

In addition, many of the experiments use small to very small numbers of pixels in
the training and testing data sets (Bosdogianni et al., 1997; Foody, 1992; Foody, 1996a;
Wang, 1990a). This makes it difficult to draw any definitive conclusions that are
statistically valid. The use of small data sets for training also render the use of statistical
techniques such as the maximum likelihood algorithm somewhat questionable. The
maximum likelihood is not a particularly robust technique and is really only reliable when
its assumptions are met (Swain and Davis, 1978). These include normally distributed data
and statistically significant data sets. Canters (1997) suggests that the strength of the
relationship between class proportions and maximum likelihood a-posteriori probabilities
will depend on the characteristics of the training data; with poor quality reference data or

a strong deviation from normality, correlations may no longer be strong.

2.5.3 Training strategy

The training strategy for algorithms has not been discussed in the literature in any
detail. Methods such as the maximum likelihood classifier, the fuzzy c-means or the linear
unmixing algorithm require pure pixels. But as Canters (1997) suggests, it remains

questionable that reliable conclusions on fuzzy membership can be drawn from the output
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of a supervised classification procedure which generates spectral signatures from training
pixels that are pure. Neural networks have the possibility of being trained with mixed
pixels, and Wang (1990a) suggests that the requirement for homogeneous training sets 1s
therefore less important. However, the articles which suggest this alternative have not
usually compared results with training with pure pixels (Atkinson et al., 1997; Foody,
1996b). Moody et al. (1996) chose training pixels that are neither extremely pure nor too
mixed but do not discuss the reasons for this. Warner and Shank (1997) compare the
partitioning of feature space between networks trained with synthetic pure pixels and
networks trained with synthetic mixed pixels. They decide that the representation using
mixed pixels is more accurate, but the results are qualitative rather than quantitative.
According to Foody (1996), Pham and Bayro-Corrochano (1994) suggest that the back-
propagation algorithm produces a network which can interpolate, but there has been no
actual investigation as to whether this is true.

Furthermore, for the neural network classification, the format of the target which the
network must aim for has not been investigated. The few articles that report a non-pure
target simply use scaled values of the percentage cover (Atkinson et al., 1997; Foody,
1997, Warner and Shank, 1997) but comparisons are not carried out with experiments

using different target types nor is the possible influence of the target type discussed.

2.5.4 Accuracy

There have been numerous studies of methods for measuring pure classification
accuracies (Congalton, 1991; Janssen and van der Wel, 1994) but the analysis of soft
classification results is particularly difficult because of the increased dimensionality of the
classification results. One of the simplest methods for measuring performance of an
algorithm is computer time (Shimabukuro and Smith, 1991) but that provides no
information concerning classification results. Not all methods are applicable to every
problem. For example, Gopal and Woodcock (1994) develop accuracy measures which
use fuzzy logic. However, they are only applicable when the outcome of classification is
assumed to be pure but the ground data is fuzzy. Nevertheless, some of the issues, such
as mismatches between class allocations, can be relevant.

Different graphical methods have been developed. The performance of the network
for different proportions has been judged using, for example, plots of the frequencies of
the difference between predicted and actual fraction (Schouten and klein Gebbinck,
1997); average error against proportions for different Bhattacharyya (separation index)

distances (Warner and Shank, 1997); bar charts of the frequency of proportions obtained
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for each method compared to the actual frequency of proportions (Bastin, 1997). These
methods, however, calculate total or average values and do not show the distribution of
results per pixel.

The most common type of plot is that of the predicted fractions against the actual
fractions for each class (Foody and Cox, 1994; Thomas et al., 1986). This type of plot
shows the distribution of pixels for each class. However, the relationship between classes
within a pixel is lost. For example, although an algorithm might have correctly predicted
the percentage cover for class A in the pixel, it may be wrong for the proportion of class
B within the pixel. Since the results for each class are represented on different graphs, this
cannot be inferred from the plots.

For neural networks, but applicable to other methods, authors have used plots of
pixels, band x against band y, where the response of the pixel is graded in grey scale. High
response is usually white, low response is usually black (Moody et al., 1996; Warner and
Shank, 1997). These plots can show that response is usually highest where pure pixels are
expected and lowest where mixed pixels are thought to lie. Again, however, the plots are
class by class and the relationship between them within pixels is not obvious.

Fraction images are a similar technique for evaluating results, most commonly used
in linear unmixing methods (Adams et al., 1986; Fisher and Pathirana, 1990), which keeps
the spatial relationship of pixels intact. For fraction images, one image per class is created.
The intensity of each pixel in an image is the a-posteriori probability, fuzzy membership
value or neural network output value for that class. These images are particularly useful
for providing a spatial overview of the classification results. However, the analysis can
only be qualitative and the relationship between classes within a pixel is not kept.

For quantitative analysis, one common method to analyse soft classification output
is ‘hardening’ the results (Kent and Mardia, 1988). ‘Hardening’ consists of assigning
pixels to the class which registers the highest a-posteriori probability, fuzzy membership
value or network output (Wang, 1990a; Maselli et al., 1996; Foody, 1992) and using a
common confusion matrix to study the misclassifications. Essentially, this reverts to pure
interpretations of the data and so is only useful for determining how a soft classification,
rather than a pure classification, has affected overall accuracies; no soft information is
provided. Actual and estimated total area estimates per class can be compared (Thomas et
al., 1996; Foody et al., 1997; klein Gebbinck and Schouten, in print) but the problem with
this method is that it is quite possible to have high overall accuracies but low individual

accuracies as shown by Quarmby et al. (1992).
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Most experiments use some measure which provides an overall accuracy value or
an overall accuracy value per class. Measures that have been developed are usually based
on the distance between the actual proportion of classes and estimated fractions. They
include simple correlation values or Root Mean Square (rms) errors (Marsh et al., 1980;
Atkinson et al., 1997); Euclidean-like differences between fraction, or between the
probability densities of fraction estimates (Foody, 1996a; Foody and Arora, 1996); so-
called Relative Probability Entropy (Maselli et al., 1996) or cross-entropy (Foody, 1995).

Matrices have been developed which use some of these measures for the analysis of
the distribution of results. For example, correlation values between pure classes can be
displayed in a matrix (Moody et al., 1996; Bastin, 1997). Fisher and Pathirana (1990) use
matrices of the frequency of occurrence of fuzzy membership values which simply
describe the data. They also use per class matrices of proportion and fuzzy membership
value ranges. These matrices show the distribution of results within a class. A similar
matrix is that used by Foody (1994), although ranges are assigned a name rather than a
value.

Finally, the relationship between dominant and secondary classes, and the
accuracies which would be obtained if misclassification between the two is considered
correct, is analysed in a few articles. Alimohammadi (1994) found that the second class
identified by a maximum likelihood classifier, that is the class which had the next-to-
maximum likelihood value, makes the most significant contribution to classification
errors. Moody et al. (1996) examine accuracies when the dominant class is assigned as a
secondary class and vice versa. Canters (1997) produces tables of accuracy if
misclassification to the second, to the second or the third, to the second, third or fourth
position are considered accurate. Zhang and Foody (1998) suggest that results can be
analysed by sorting fuzzy vector and ground proportions vector into decreasing order and

comparing the classes at each position.

2.6 Summary of Chapter II

A review of the main results reported in the literature reveals that the most common
algorithms used to identify sub-pixel information can be divided into three groups: linear
unmixing models, modified maximum likelihood and other fuzzy algorithms, and neural
networks.

Although linear unmixing models, discussed in section 2.2, can be successful, they

have two serious limitations. The first is that they assume that the spectral signals from
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pixel components mix linearly, whereas this may not always be the case, particularly for
intimate mixtures. The second limitation is that they are restricted to n-1 classes where n
is the number channels of the sensor. For these reasons, alternative algorithms have been
investigated.

So called fuzzy algorithms, discussed in section 2.3, mainly include modified
maximum likelihood and fuzzy c-means classifiers. These algorithms use some form of
measurement of the distance of a pixel from class centroids to estimate class proportions.
Results show a strong potential for a relationship between a-posteriori probabilities or
fuzzy membership values, and percentage cover. However, the maximum likelihood
algorithm assumes that data is normally distributed, an assumption that is particularly
unlikely for mixed pixels. The fuzzy c-means algorithm does not assume that data is
normally distributed, but it requires, in supervised mode, input of class means. Pure pixels
from which to estimate class means may not always be easily obtainable, especially for
low resolution data.

The most recent studies, discussed in section 2.4, have investigated the use of neural
networks for identifying sub-pixel information. Neural networks, specifically multi-layer
perceptrons, are an attractive alternative to the other two groups of algorithms because
they make no assumptions about the statistical distribution of data or about the way
spectral signatures from pixel components may mix. Furthermore, they do not necessarily
require pure pixels in the training stage.

Results reported in the literature suggest that neural network output values may be
related to ground cover proportions. However, several issues arise from the
methodologies used in the experiments described in the literature. In particular, data sets
usually consist of very few classes and few pixels per class. Therefore, the data sets do not
reflect the reality of the landscape and the complexity of landcover classification
problems. Furthermore, the composition of mixed pixels is often calculated from
classifications of higher resolution data or generated synthetically. The reference data
against which classification results are compared may consequently be unreliable or
simplistic. The training strategy for neural networks has not been investigated. Although
some authors have used mixed pixels in the training data sets, the results have not been
compared with using only pure pixels in the training data set. Furthermore, the target with
which the network should be trained has not been examined. Using a target which reflects
the proportions of classes in the ground data has not been compared to other target types.

Finally, there seems to be no consensus concerning methods for measuring classification
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accuracies and the techniques that are used have several shortcomings. In particular, most
techniques examine results class by class which means that the relationship between
classes within a pixel is lost. Quantitative methods that show where and how classes have
been misclassified are also lacking.

The purpose of this thesis is to further knowledge concerning neural network

interpretation of mixed pixels and their ability to identify sub-pixel information by

addressing these issues.
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Chapter 111

THE MULTI-LAYER PERCEPTRON NETWORK

The network used in this thesis was implemented by the Environmental MAPping
and modelling Unit (EMAP) of the European Commission’s Joint Research Centre (JRC)
of Ispra (Italy), at which the author was based. The algorithm was originally intended and
used for pure classification of remotely sensed data (Kanellopoulos et al., 1991;
Kanellopoulos ef al., 1992; Kanellopoulos and Wilkinson, 1997). For the purposes of this
thesis, it was modified and incorporated into a soft classification software package
implemented by the author.

The network is a fully connected feed-forward multi-layer perceptron trained with
a back-propagation algorithm. This is the type of network most frequently used in remote
sensing classification problems (Dayhoff, 1990; Lisboa, 1992) and it has been shown to
perform as well as, or better than, other algorithms such as the maximum likelihood
algorithm (Howald, 1989; Bischof ef al., 1992), the minimum distance algorithm
(Downey et al., 1992) or multi-source statistical algorithms (Benediktsson et al., 1990).
Foody (1996a) and Atkinson et al. (1997) have shown the network to compare favourably
with other techniques for soft classification problems.

This chapter provides an overview of the multi-layer perceptron network in the
context of remotely sensed image data classification. First, the training, testing and
classification processes are outlined. Then, details of the structure and training algorithm
of the neural network are provided. The chapter continues with a review of some of the
issues that must be considered when using this classifier. Finally, changes to the original
computer code are outlined. Appendix A contains a full description of the software

package and a listing of the source code.

3.1 Training, Testing and Classification

It is not necessary to know about the technicalities of the multi-layer perceptron
network to understand its training, testing and classification phases. Within this section,

the neural network will be regarded as a black box which takes input, processes it, and

produces output.
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3.1.1 Training

The network is trained with a supervised training algorithm. In supervised training,
each pattern in the training data set consists of an input vector and a desired output vector,
also referred to as the target. The target output is based on reference data and is assumed
to be correct.

The learning algorithm is illustrated in figure 3-1. First, an input vector is presented
to the network which processes it and produces an output vector. This output vector is then
compared to the target output corresponding to the input vector. The difference between
the two vectors, the desired or expected output and the estimated output, is calculated. The
network configuration is changed so that the difference, or error, will decrease for this
pattern. The next input vector is then presented to the network. After all the patterns have
been presented once, one iteration has been performed and a mean error is calculated for
the system.

Training is finished when a fixed number of iterations of the training data set have
been performed or a minimum mean threshold error has been reached. At this point, the
configuration of the neural network system is fixed. Testing and classification can now

take place.

3.1.2 Testing

Testing is carried out to measure the performance of the network. In this phase,
patterns from a testing data set are presented to the network. The network computes an
output vector from each input vector. In pure classification problems, the class to which
the network assigns the pixel is determined from the output vector. The output class is
compared to the target class, provided by the reference data, to which the pixel belongs.
The simplest measure of performance is a sum of the correctly classified pixels divided

by the total number of pixels in the testing data set.

3.1.3 Classification
Once the network has been trained and tested, an image can be classified. For each
pixel in the image, the network computes an output class to which the pixel is assigned.

The final product is a classified image. The accuracy of classification is assumed to be that

calculated in the testing phase.
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3.2 Network Structure and Training Algorithm

3.2.1 Network structure

At the simplest level, a neural network is a software program which implements a
specific set of mathematical equations. The main characteristic of the program is that it
performs parallel non-linear mapping from input to output (Works, 1992). The logical
flow of the software program is represented by groups of processing units. Each
processing unit, or node, takes an input value, I, applies a function to it, f(I), and produces
an output value, Q. The sequence ’Input, Node, Output’, shown in figure 3-2, is often

called a neuron.
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Figure 3-2. One neuron

Neurons can be combined in two ways. With the first method, illustrated in figure
3-3, the output values from a group of neurons are linearly combined and the overall result
becomes the input to a new neuron. The connections between each neuron and the new
neuron carry a value called a weight, or connection strength. The overall input to the new
neuron is calculated by taking the sum of the product of each input value and its respective
weight. The processing unit of the new neuron can then apply a function to the overall

input pattern and produce a new output value.
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Figure 3-3. First method for combining neurons

The second method, illustrated in figure 3-4, uses the fact that different sets of
weights, separately applied to the same group of neurons, are equivalent to the one group
of neurons with different sets of weights applied in parallel. When several neurons are
combined in both ways, a network is obtained. To simplify diagrams and explanations, it

is common to represent a whole neuron by showing only its node as depicted in figure 3-5.
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Figure 3-4. Second method for combining neurons

Nodes at the same level of connection belong to the same layer. It is common to
represent an input vector from a pattern as a set of / neurons, where [ is the number of
components of the input vector. Each node receives as input its corresponding input
vector value. The group of neurons is often termed the input layer and is the first layer of
the network. No processing takes place in this layer, that is f{x) = x, and the outputs from
the nodes are simply the raw input values. For this reason, some authors prefer not to
represent the input values in this way (Kung, 1993). The last layer in the network, called
the output layer, is generally the last layer of processing units. It is understood that this
layer produces an output vector, whose elements are the individual output values, which
is not represented. Nodes which lie in between the input layer and the output layer belong
to hidden layers and are called hidden nodes. Thus, a network such as that depicted in
figure 3-5, is termed a three layer network and consists of an input layer, a hidden layer

and an output layer (which produces a vector of output values).

o - I)- »o »Q

Figure 3-5. Illustration of a network

The simplest network is fully connected and feed-forward. In a fully connected
network, all nodes in a layer are connected to each node in the layers immediately above
and below (shown as right and left in figure 3-5) but not to nodes from the same layer.
When information is only propagated in one direction, from the input layer to the output

layer through the hidden layers, the network is called feed-forward. It is the simplest type
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of multi-layer perceptron because at any instant, the output of the network only depends
on the current input pattern and weights (Works, 1992; Bishop, 1995). Networks exist
with more complicated structures such as missing connections, connections which skip
layers or lateral connections (Hush and Horne, 1993), but the fully connected network is

the most commonly used (Dayhoff, 1990)

3.2.2 Training algorithm

The training algorithm used for the multi-layer perceptron is a back-propagation
algorithm whose basic logic was outlined in section 3.1.1. In this section, it will be
explained in more detail, based on the description given in Rumelhart er al. (1986b). The
discussion will be based on figure 3-6, a three layer, fully connected, feed-forward multi-
layer perceptron containing ! input nodes, m hidden nodes and n output nodes, but it is
applicable to a multi-layer perceptron with more hidden layers. Nodes in the input layer
I, are identified by the subscript i; nodes in the hidden layer J, are identified by the
subscript j; nodes in the output layer K are identified by the subscript k. Weights between
nodes are identified by the subscripts of the nodes they connect, for example w;; for

weights connecting nodes in layers I, the input layer, and J, the hidden layer.

output vector

K = Output Layer

J = Hidden Layer

I = Input Layer

input vector

Figure 3-6. Generic feed-forward, fully-connected,
three layer multi-layer perceptron
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As mentioned in section 3.2.1, a node, also sometimes called short term memory,
takes an input, applies a function to it, and produces an output. The function is usually
called the activation function and the output of the neuron is referred to as the activation
value (Simpson, 1990), output strength (Fisher 1994a), firing (Amari, 1993) or simply
output value (Bishop, 1995). It is not necessary to know the details of the function at this
stage.

Before applying the back-propagation algorithm, the weights of the network,
sometimes also referred to as long term memory, are randomly initialised. Then, the
information present in the input pattern is conveyed to each node in the hidden layer
through a linear combination of the outputs from the input layer. In other words, the

overall input,

ovr » t0 €ach node in the J™ layer, therefore called 1oy 5 is the sum of the

product of each output from the L layer, O;, and the corresponding connecting weight,
w;; . Sometimes a bias term is included in the equations but this can be treated as a special

case of weights from an extra input equal to one (Bishop, 1995).
/

Iovrj = 2 wijOi (3-1)
i=1
Once the overall input to each node in layer J has been calculated, it is transformed
by the activation function f(I,,,;) and the output of each node of the Ji" layer, O;, is

computed.

0, =fl,,) = D w0, (3.2)

The output values from the J? layer are then multiplied by the relevant weights, wy,
and summed to produce the overall input to each of the nodes in the output layer K, using
equation 3.1. Similarly, the output strengths for layer K, for each node, are calculated
using equation 3.2. At this stage, an output vector of length n has been produced and the
feed-forward stage of the back-propagation algorithm is complete for the input pattern.

Now the output vector is compared to the target vector which corresponds to the
input vector. The difference, or error, can be calculated in several ways and authors
disagree as to whether there is little effect on the accuracy (Richard and Lippmann, 1991)
or whether results differ (Ripley, 1993). The sum of squares error function is the simplest
(Bishop, 1995) and most typically used (Simpson, 1990). Let f represent the target vector
and o the output vector from the network, then the error between the two, for pattern p, is
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expressed by equation 3.3, where k is the index of the output node.
n
1 2
E, =3 2, (1,-0) (3.3)
k=1

Consider figure 3-7.a which illustrates an arbitrary function which is differentiable.
The first derivative of a function f(x) is an expression of the rate of change of the function
J(x) with respect to x. It is the slope of the tangent to each point of the curve. When the
function is at a minimum or maximum value, the tangent is parallel to the x axis, the slope
is zero and therefore the first derivative is zero as shown in figure 3-7.b. To differentiate
between a maximum and a minimum value, the second derivative of the function is taken.
The second derivative is negative when the original function has a maximum at that point;
whereas the second derivative is positive when the original function has a minimum at

that point, as shown in figure 3-7.c.

. f(x
tangent to the function ‘ x)
at a maximum

.

|
(a) -— 1
|
| | |\
| I tangent to the
B | function at a
: : v | minimum
| | AP D
| | -
| [ |
(b) - . |/ /!\l —
/(BU Y
L
£(x) < 0 | Y : |
| |
’(x) >0
ek b
I | |
I | |
| | | /
| ! |
(© - \ i < —>

Figure 3-7. (a) Arbitrary function; (b) first derivative of the
function; (c) second derivative of the function
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Consequently, to find a configuration of the weights such that the error is at a
minimum, changes to the weight values must be proportional to the derivative of the error
with respect to the weights. The change in the weight value for a connection between node

J in the hidden layer and node k in the output layer, between iterations ¢ and £+1, is

therefore computed by
. + — = Aw., = -N=— (3.4)
ka(t 1) wjk(t) Wik nawjk

where wy, represents the weight value between node j in the hidden layer and node k in
the output layer, N is a constant of proportionality and is called the learning rate; A
means change and 5 means partial derivative.

Using the chain rule, the derivative can be written as the product of two elements.
The first is the change in the error as a function of the change to the overall input to the
node. The second is the change to the overall input to a node, as a function of the change

to a particular weight connected to that node.

oFE oE aIovrk
X

= (3.5)
awjk aIovrk awjk
From equation 3.1:
ol
. ovrk _ 0,‘ (3.6)
ij .
Define
oE 5
- = 3.7
aIovrk k (3:7)

Substituting equation 3.6 and equation 3.7 into equation 3.5 and subsequently into

equation 3.4:

This is known as the generalised delta rule. From equation 3.7, and using the chain rule:
d o 90
0, = _EE_— =55 xalk (3.9)
1 ovrk k ovrk
From equation 3.2:
20,
T = 1 Uy 310
ovrk
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If node j under consideration is an output node, then from equation 3.3:

oE 3.11
30, = k% (10

and therefore:

&, = (t,—o0)f (U, 1) (3.12)

If, on the other hand, the node under consideration is not an output node then, in equation

3.9, using the chain rule:

ol .
gE_ - SE x =22 (3.13)
Ok ) Iovrj Ok
_ J
From equation 3.1:
oE d oE
a1 X0, 2 k0k = g X Wik (14
ovrj k . ovrJ
k i k
From equation 3.7:
OE _
X Wik = = 28wy (3.15)
g ovr X

and therefore, substituting into equation 3.9, for non-output units:
8, = fU,,,)% Y 8w (3.16)

The error signal for hidden units is thus determined recursively in terms of the error
signals from the output units to which they are connected and the weights between them.
The backward phase of the back-propagation algorithm therefore consists of the

following steps:
1- calculate the error signal for each output node;
2- calculate the weight changes for the connections which feed into the output;

3- calculate the error signals for the hidden nodes.
Since the aim of the back-propagation algorithm is to minimise the overall error of the

system, that is the error over all patterns p, a mean error E,, is given by

1 n
E, = 2—})2 S (-0’ (3.17)

Pk=1
The delta rule is said to be a close approximation of a gradient, or steepest, descent
procedure, even though weights are updated after each pattern; if the learning rate is small

enough, the difference is negligible (Rumelhart ef al., 1986b).
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In a general sense, learning is defined as any change in memory over time not equal
to zero (Simpson, 1990). Since the weights and the processing units can be considered to
contain the memory of the neural network system, modifying the weights is termed
learning (Le Cunn, 1987). The system is inherently parallel because several units can be
updated at the same time. The computations of changes to the weights and nodes are
extremely complex and time consuming; nevertheless, an example of the calculations

involved for a simple problem can be found in Aleksander and Morton (1992).

3.3 Using the Network

This section will describe some of the issues that must be considered when using
the network. As is explained in this section, choices for the parameters that are set by the
user are mainly a case of trial and error. Chapter V describes experiments that were carried

out to test the sensitivity of the network for each parameter.

3.3.1 The activation function

From the derivation of the back-propagation algorithm, the activation function,
sometimes also called threshold (Wilkinson, 1997) or squashing function (Simpson,
1990), must be chosen to be a differentiable, and therefore continuous, monotonic (non-
decreasing), semi-linear function. Sigmoids are commonly used and a hyperbolic tangent

function tanh was used in this implementation of the network:
—kIuvr 1

Mpy) = m- g (218
ove + 1

where f(1,,,) is the activation function; I,,,is the overall input to a node; k and m are

constants. The function is illustrated in figure 3-8.

f(I()vr)

Figure 3-8, tanh and mtanh functions

_41 -



This activation function has arange of [-1,1] and aims to produce output that is close
to +1 or -1 by enhancing or suppressing the overall input to the node. For an unscaled tanh
function (that is, without m), it would take an infinite amount of time to approach +1 and
-1. If tanh is scaled by m, +1 and -1 can be reached in a less than infinite amount of time
as illustrated in figure 3-8. It is also possible to choose the targets of the activation
function in a smaller range than [-1,+1]. For example, for a sigmoid activation function
with a range [0,1], the targets can be chosen to be 0.1 and 0.9 (Benediktsson et al., 1990;
Paola and Schowengerdt, 1995b). Values of m and k of 1.7 and 4/3 respectively have been
shown to have practical benefits (Fogelman-Soulie, 1991; Bottou, 1991), the details of
which lie beyond the scope of this thesis. These were the values that were used in the
implementation of the network. They imply that neural network output values will lie
between ~+/-1.7. The activation function is a feature of the implementation and cannot be

modified by the user.

3.3.2 The weights

As shown in section 3.2.2, the change in weights is proportional to the derivative of
the activation function. In the tanh function, the derivative is steep in the most linear part
of the curve, in the centre. This implies that weight values in that region will change
rapidly. On the other hand, weights will change little when values approach the desired
values since the derivative in that part of the function is asymptotic.

The weight adjustment is proportional to the error value of the target node and the
output value for the input node. Thus, if the error of a node is large, the change to its
incoming weights is large. Similarly, if the output value of an incoming node is small, the
weight adjustment is small and vice-versa. In other words, there will be a larger
adjustment of the outgoing weights of a node with a high activation value (Dayhoff,
1990). Since weights control whether a signal should be amplified or reduced, they can be
referred to as excitory or inhibitory, respectively (Simpson, 1990).

Since the error is proportional to the weight values, all hidden nodes connected to
output nodes will get identical error signals if all the weights are initialised with equal
values. Since weight change is dependent on the error signal, all the weights will change
by the same amount and weights will always be the same. If weights are initialised to
values which are too large, then they require large changes and training is unlikely to
succeed. Thus, weights should ideally be small and initialized randomly. Results are
improved if the weights are uniformly distributed (Yoo and Pimmel, 1994). Under these

conditions, changes in weights produce a change in output approximately equal to the
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range of weights (Kanellopoulos and Wilkinson, 1997) and training is more stable.

To understand the effect of weight changes, it is easier to consider a system with a
linear activation function and one weight as shown in figure 3-9. In this case, the error
equates to a simple quadratic. Its derivative is given by the straight line (¢-0). Let the
minimum error occur at weight value w,,. If the weight is currently at w,, then it should be

increased to reach w,,. If on the other hand it is at wy, then it should be decreased.

Error
E = 1/2 (t-0)?

dE/dw = w, dE/dw = wy,
- !

\j "

Figure 3-9. Possible weight situations for a system with a
linear activation function and one weight

Weight value>

Weight space for a system containing hidden nodes and non-linear activation
functions is more complex. Weights can be interpreted as a set of hyperplanes partitioning
the input space (Fierens et al., 1994) and can be viewed as a series of troughs and crests,
the depth and height of which are the mean error at those points. From its similarity to the
gradient descent procedure, the back-propagation algorithm can be expected to be caught
in local minima (Rumelhart et al., 1986a). A local minimum is a point in the weight space
where the error is at a minimum, but not at the overall minimum of the function. Authors
disagree as to whether this problem is rare in practice (Rumelhart ez al., 1986a) and can
easily be solved by increasing the degrees of freedom, that is, the number of weights (Le
Cunn, 1987), or occurs more frequently than imagined (Ripley, 1993).

In theory, it is possible to update weights either after each pattern or after each
complete iteration, that is the presentation of all the patterns in the training set. The former
is termed on-line training while the latter is termed off-line training or also, data adaptive
or block adaptive respectively (Kung, 1993). Opinions differ as to which is the more
efficient. Some authors advocate blocked back-propagation as improving speed of
convergence and accuracy (Heerman and Khazenie, 1992; Liu and Xiao, 1991) and

guaranteeing a decrease in mean square error from one iteration to the next (Paola and
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Schowengerdt, 1994). Others counteract that on-line training is a local cost gradient
which makes it more likely to enable the network to escape from local minima by
updating weights more frequently (Fogelman-Soulie, 1991; Kanellopoulos et al., 1993;
Bottou, 1991) even though off-line methods may be more robust (Kung, 1993). The back-

propagation algorithm used in the thesis implements on-line training.

3.3.3 The learning rate and the momentum term

From equation 3.4, the learning rate is a constant of proportionality. It is set by the
user and influences the size of the step taken from one weight position to another. The
most common cause of oscillation in a network is an improperly selected learning rate
(Heerman and Khazenie, 1992). If the learning rate is small, the network takes a long time
to minimize the error although it consistently follows the correct direction and is therefore
eventually likely to converge if the weights do not get trapped in local minima. If the
learning rate is large, large step sizes are taken which allow the network to step ‘over’
local minima and learning is fast but oscillations can be produced, resulting in an unstable
network. Learning rates usually range between 0.1 and 1.0.

In addition to the learning rate, it is possible to add a term to the equation such that:

Awij(t +1) = n8j0j + OcAwij(t) (3.19)

where ¢ is the iteration number and o is a constant. The second term of the equation is
called the momentum term and is used to dampen the effects of the learning rate and thus
reduce possible oscillations between two points by adding a fraction of the previously
calculated weight change; this can speed up convergence.

The learning rate and momentum term can be kept fixed throughout training or can
be reduced at fixed intervals. Paola and Schowengerdt (1994) for example, change the
learning and momentum rates. If the error of the current iteration is less than the previous
error, values of the rates are decreased, otherwise they are increased. As the authors argue,
this procedure diminishes the importance of the original choice by the user. With on-line
training, the momentum term is unnecessary (Fogelman-Soulie, 1991) and it was not
implemented in the software. Unless otherwise specified, the learning rate was set at 0.1

for all the experiments described in this thesis.

3.3.4 The architecture
The number of input and output nodes of a network are determined from the
available data and the classification problem; the number of hidden nodes is usually

ascertained through trial and error although some authors have sought more formal rules
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are not necessarily +/-1 or 0 and 1. They may, for example, represent the ground cover by
each class and lie in the range [0,1], the percentage cover having been scaled between
these values (Atkinson et al., 1997; Foody, 1996a). This will be discussed in more detail
in chapter VIIL. In any case, for pure and soft classification, the output layer contains the
same number of nodes as there are components of the target vector.

Whereas the input and output layers are defined by the characteristics of the
classification problem, the number of hidden nodes are determined through trial and error.
If there are too few hidden nodes, the data will not be adequately represented internally
(Hepner et al., 1990) and the network will not possess sufficient capacity to separate
categories. On the other hand, if there are too many hidden nodes, the network will learn
the training patterns but will not have the ability to generalize; there will be overfitting
and poor interpolation (Kung, 1993).

Although it is impossible to train a network with one hidden layer to the same
degree as a network with two hidden layers (Dreyer, 1993), one hidden layer is sufficient
for most problems (Hepner et al., 1990). The number of nodes in the hidden layer is a
matter of trial and error and although authors have made suggestions, there are no rules.
Increasing the complexity of a network increases the time taken to train the network. For
this reason, all the experiments described in the thesis were carried out with networks with
one hidden layer. Throughout the thesis, the convention will be to refer to a network as 6-

13-7 for example, meaning 6 input nodes, 13 hidden nodes and 7 output nodes.

3.3.5 The datafiles

Running the neural network requires two data sets, one for training and one for
testing. The data file is randomised and then the pixels are divided into a training and
testing data set. Alternatively, pixels are divided into training and testing data sets and
then the training file is randomised. Training patterns must be randomised before being
presented to the network. The network adapts its weights over time. If the last patterns in
an iteration are not randomised and thus are all from the same class, the network will adapt
to represent this cluster, effectively ‘forgetting’ the previous patterns. In the testing phase,
the network weights are fixed and it simply produces an output for each input pattern that
it is presented with. It is therefore unnecessary to randomise the testing set.

The number of patterns in the training set is not fixed. For a general classification
problem, Swain and Davis (1978) suggest 30 x number of classes x number of channels;
Foody et al. (1995b) recommend at least 30 x the number of input features; Fogelman

Soulie (1991) indicate that a network with W weights requires W/e training patterns to

_46 -



yield an error less that e. Again, there are no rules. The number of patterns should be
sufficiently large to adequately represent the variance of each cluster.

The number of patterns per class in the training and testing data sets depends on the
classification problem. The number of patterns per class can provide an a-priori
weighting of the importance of each category (Foody et al., 1995a) and the neural network
may be biased in favour of classes which are the most frequent in the training data set
(Lowe and Webb, 1991). If no classification is carried out, the number of pixels per class
in the training set can be equal for all classes. In this way, the testing accuracy provides
an unbiased estimate of the generalisation capabilities of the network for each class. On
the other hand, if classification is to take place, it is recommended that the number of
patterns in the training set reflect the distribution of the classes in the image to be
classified. The number of patterns in the testing file need not be the same as for the
training file, but they should be in similar proportions for each class so that the accuracy
calculations are not influenced by the number of patterns. The number of patterns per
class should provide an adequate overview of the variability of the class.

The raw input data should be processed to make it centred and of equal variance, as
for most statistical techniques (Fogelman-Soulie, 1991). Since the data is centred, the
activation function must be symmetric, hence the use of the ranh function, or any other
sigmoid. Data is scaled with small centred initial random weights so that it starts near zero
(Kanellopoulos et al., 1991) thus avoiding saturation effects (Kanellopoulos et al., 1993).
The testing data is modified using the statistics calculated for the training file. Therefore,
for two experiments which use the same testing file but different training data, the test file
must be modified twice: once with the statistics of each training file.

When the pre-processing of the training and testing files is complete, they are
divided into two files containing the training and testing data and two files containing the

corresponding targets.

3.3.6 Accuracy of classification

It is important to distinguish between the classification accuracy for the training set
and that for the testing set. The accuracy of classification of the training set provides a
measure of how well the network can recognize patterns that it has already seen. On the
other hand, the testing set accuracy is an indication of the generalisation capabilities of the
network; in other words, how well the network recognises patterns it has never seen,
which may not be exact copies of patterns in the training data. A good training accuracy

does not necessarily indicate that there will be a good accuracy on unseen patterns. For
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this reason, it is essential that the testing set be composed of pixels that are not in the
training set. The testing set accuracy is also the measure which should be used to evaluate
the performance of the network because it is the classification of unseen patterns that is
of interest. Overall accuracy can be calculated by dividing the number of correctly
classified pixels by the total number of pixels. It must be noted however, that even though
overall accuracy may be quite high, some individual classes may not be well classified.

Sometimes, the testing set is used to tune the network (Yager, 1994). In other words,
if the testing accuracy is unsatisfactory, parameters of the training procedure, for example
learning rate, architecture and so on, are modified until the performance is satisfactory. In
such a case, the testing file becomes part of the training set and an additional test set must
be created (Le Cunn, 1987). |

The main variable affecting classification is the training method, and not the
classifier (Hepner et al., 1990). This is the case for all classifiers, not only a neural
network; the classifier learns to recognise classes on the information with which it is
provided. If the information is erroneous, the results will be erroneous. For this reason,
the poor quality of ground truth is a contributory factor to the poor performance of a
network, and may be the cause of the lack of improvement in the performance of
classifiers over the years (Wilkinson, 1997).

Network accuracy depends on network complexity but also on the composition of
the two data sets, training and testing, as mentioned in the previous section. The amount
of training data, the degree to which training data reflect true likelihood distributions and
a-priori class probabilities affect the accuracy (Richard and Lippman, 1991). In addition,
if the testing set does not approximately reproduce the class proportions of the training
data, the accuracy will be biased in favour of some classes. If the training data is not an
adequate representation of the actual data as provided by the image, the accuracy with
regards to the testing set may not be impaired, if the test data contains similar proportions
of classes, but the accuracy of classification with regards to the actual situation on the
ground will be diminished or biased.

Training the network requires a balance between over-training and under-training.
Over-training occurs when the network has learned the training set too well. The neural
network has been forced to draw boundaries around outliers and overfitting occurs,
resulting in a decrease in the testing accuracy (Rosin and Fierens, 1995). Undertraining
occurs when the network has not been given enough time to learn a mapping between
inputs and outputs.

The end of training occurs when a user defined number of iterations has been
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completed or threshold error on the training data set has been reached. Neither of these
parameters are usually set other than through trial and error. The best result obtained in a
realistic amount of time has to be accepted, even though it may not be the optimum result,
because of the slow rate of convergence (Wilkinson et al., 1995a). If the number of
iterations is the chosen criteria, the classification accuracy at the end of the training might
still be unacceptably low. It is therefore recommended to train for a large number of
iterations and to keep a record of the error. The number of iterations at which the error
starts stabilizing can be used for subsequent experiments since it is unlikely that the error
will diminish any further. The error is based on the training set and therefore only provides
an indication of the level of accuracy of classification of the test set. However, if the
training data is a representative sample of the testing data, the indication will be quite
accurate.

The final level of accuracy which can be attained is usually totally unpredictable at
the start of a training phase. The initial conditions for the training, that is, network
architecture, weight initialisation and parameters, have an effect on the accuracy,
although it is not clear whether it is significant (Wilkinson, 1997; Kanellopoulos and
Wilkinson, 1997) or not (Paola and Schowengerdt, 1997). In any case, since standard
multi-layer perceptrons have been shown to be capable of approximating any measurable
function to any degree of accuracy, that is, they are universal approximators, any lack of
success in applications must arise from inadequate learning, insufficient numbers of
hidden nodes or the lack of a deterministic relationship between input and target (Hornik

et al., 1989).

3.4 Modifications to the Original Software

When the thesis was started, the neural network classification software that was
available had only been implemented for pure classification problems. In order to also
carry out soft classification, it required modification. In addition, several software
routines were written to ease the process of preparing data for input into the neural
network, the most time consuming part of neural network classification. Tools for the
analysis of neural network outputs were also developed. The original software was
therefore incorporated into a menu driven package for classification. The chart in figure
3-12 illustrates the menu structure provided to help the user run the software. Although
the software is an important part of this thesis, it is only summarised in the text but details
are provided in appendix A which contains the source code and a description of each

routine for those implemented by the author. The source code for the original software is
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not provided; however, an outline of the modifications brought to the existing routines
was provided in header comments which are included in appendix A.

The software is composed of three modules:
1- Preparation of files for input to the neural network
2- Neural network classification

3- Analysis of the outputs from the neural network.

The first option presents the user with a menu of operations to manipulate files and
prepare data for input into the neural network. The second option provides a menu of
neural network operations. The third option prints a menu of analysis tools for neural
network outputs.

Within the ‘Preparation’ module, pixels with specific codes or ground data can be
selected or removed, data files can be divided into training and testing sets, the files can
be randomised, targets can be created, ground data can be checked, ground data statistics
can be produced, and so on. Ground data are assumed to be in one of two formats. Either
they consist of one column of integers indicating to which class a pixel belongs to (100%
coverage is assumed), or they consist of integer vectors of ground data. The vectors of
ground data can be of size 2 to 2m, where m is the actual maximum number of mixture
components found in the data set. The theoretical maximum number of components in a
pixel in a data set is equal to the number of pure classes defined in the study. The actual
maximum number of components of a pixel is usually lower. Pairs of vector elements are
separated by spaces. In each pair of elements, the first integer indicates the percentage
cover, the second number indicates the class. Thus, a mixture of [20% class 3 + 40% class
1 + 10% class 4 + 30% class 5] must be provided in this way: ‘203 401 104 305’
(no quotes). Vectors of ground data can be sorted, for example in increasing order of cover
or in increasing order of class number, but it is not a requirement. Coverage must add up
to 100%.

The second module, ‘Neural Network Classification’ contains the modified
network implementation. Within this module, classification takes place. The network can
be trained, tested or an image can be classified. The original software assumed that
training and testing data sets were provided to the network as one file for each data set:
one for the training data and one for the testing data. Each row was expected to contain
input data for one pixel: n columns of information such as modified channel DN values
and in the last column, an integer indicating which class the pixel belonged to; 100%

coverage was assumed. The integer class number was transformed into a target format
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within the program and therefore without user intervention or even awareness. Targets
were pure; the class to which the pixel belongs was assigned +1, the other classes were
assigned -1. In the new software, mixed pixels can also be handled. Each data set, training
and testing, is composed of two files. One file contains information such as modified
channel DN values and the other file contains target representations of the ground data.
Rows in the files correspond. That is, the pixel in row one of the information file is
described by the target in row one of the target file and so forth. Targets have been created
from the ground data and are not necessarily pure targets.

Other modifications concern the output of the neural network in the testing and
classification stages. After testing, an output file can be created which provides the neural
network output value for each node for each pixel of the testing file. This file is used to
evaluate the potential of the neural network to identify sub-pixel components, using the
analysis tools implemented in the third module of the program. At the classification stage,
fraction images similar to those produced in linear unmixing models can be created. The
image provided as input is divided into one image per class and the intensity of each pixel
is the neural network output value for that class. These images are described in more detail
in chapter VI. Details of the analysis tools which are provided in the third module are

described in chapters VI and VII.

3.5 Summary of Chapter III

This chapter has provided an overview of the multi-layer perceptron used for the
experiments described in this thesis. Training, testing and classification processes were
outlined in section 3.1. They were then described in detail and the mathematical basis for
the back-propagation algorithm was set out in section 3.2. The structure and parameters
of the network were explained and their effect on neural network classification accuracy
was discussed in section 3.3. Modifications to the original implementation of the network
were summarised in section 3.4 which is complemented by appendix A. The next chapter

describes the sites and test data collected with which experiments were carried out.
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Chapter IV

Whichever supervised classification method is used, the composition and quality of
the training and testing data sets have an influence on classification accuracy. If a
classifier is to perform satisfactorily, it must be given data which faithfully reflect the
situation on the ground. There are two stages to creating training and testing data sets. The
first is the collection of reference data; the second is the creation of data sets from the
reference data. Both phases must be carried out taking particular care to ensure that the
data sets produced will have characteristics that are well defined and understood.
Classification accuracies can only be considered a true measure of the performance of the
classifier if the properties of the training, testing and image data are known and can be
used to assess the results.

In 1991, the EMAP Unit carried out an extensive ground campaign at a site in
Portugal for its project concerned with providing a methodology for automatically
updating CORINE (COoRdination of InformatioN on the Environment) landcover maps
(Wilkinson et al., 1991). Besides producing new maps of the chosen test units based on
the CORINE nomenclature, the campaign allowed the EMAP unit to collect detailed
ground information for homogeneous areas within the test units. Part of the information
recorded included the composition of the parcels and the percentage of area covered by
each class. This information was considered suitable for mixture analysis and is used in
this thesis.

However, as work progressed, it became apparent that the data sets created from the
reference data from Portugal were complex and that it may be helpful, for a better
understanding of the network, to use a data set with few categories whose properties could
be better controlled. Thus, a second site was chosen in Scotland. The site in Portugal,
centred around the city of Lisbon, contains many different landcover classes (agricultural
crops, trees, urban areas, water and so on) and many different types of mixtures. On the
other hand, the site in Scotland consists only of plantations of coniferous trees where

mixing occurs between trees and background grass. Obtaining percentage cover of pixels
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by individual classes is particularly difficult within intimate mixtures. However, in the
case of coniferous forests, structural attributes such as height and basal area of trees for
example, have been found to be strongly correlated with reflectance values from forest
stands (Cohen and Spies, 1992; Danson and Curran, 1993). In fact, the relationship is
actually a function of the degree of canopy closure. Thus, it is hypothesised in this thesis,
that measurements of height and basal area of forest stands can substitute for canopy cover
and, therefore, for percentage cover of trees and background. In this way, the mixing
between coniferous trees and background, and more particularly between Sitka Spruce
trees and grass can be identified with a high degree of precision.

A detailed description of the method to acquire reference data and process them, and
of the composition of data files is essential to the interpretation of results. This chapter
provides a critical discussion of the data sets created from the reference data collected at
the Portugal and Scotland sites. It is divided into several sections. The first section
provides details of the satellite imagery for both sites. The second section outlines the
methodology of the ground campaign carried out at the site in Portugal. This is followed
by an analysis of the properties of each of the data sets created from the reference data
collected. Then, the ground campaign at the Scotland site is described and, finally, the

characteristics of the data sets created from the reference data are examined.

4.1 Location of Sites and Satellite Imagery

The geographical locations of the two sites in Portugal and Scotland are shown in
figure 4-1. Photographs in figure 4-2 and figure 4-3 show the general characteristics of the

landscape at each site. As can be seen, the two sites are quite different.

Site 2: __] X"
Scotland

Site 1:
Portugal

Figure 4-1. Geographical location of sites from which reference
data was collected

The satellite imagery was acquired by the Thematic Mapper (TM) sensor of the

Landsat 5 satellite. The images used in the thesis are six band quarter scenes. The thermal
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channel of the TM sensor (band 6) was not used because of its lower spatial resolution of
approximately 120m? compared to the other channels’ resolution of approximately 30m?.
The images have very little haze or cloud cover and are of good visual and radiometric
quality. Atmospheric correction was not deemed necessary as no temporal analysis was
carried out and atmospheric effects over a scene (and moreover over a quarter scene)
appear almost constant (Chikkara, 1984).

The main characteristics of the images are listed in table 4-1. One image was used
for Portugal which was acquired in geocoded format, details of which were not available.
In the absence of the author having access to the geocoding information, the locational
accuracy of polygons was assessed visually. Two images were used for Scotland from
which a small area was extracted. The images were geometrically corrected (by a member
of the same research group as the author at Durham University) using 25 ground control
points, and georectified to the UK National Grid. The root mean square error of
rectification was just over half a pixel. Figure 4-4 illustrates the image from Portugal and

the 1995 image from Scotland and a subscene for the latter, showing the study area.

Site Date Path / Row Upper Left Lower Right Geocoding
s, June 24th Path = 20 x = 471,450 x = 543,450 to Universal
=] Transverse
£ 1991 = = =
5 Row =33 y = 4,327,800 y = 4,255,800 Mercator (UTM)
June 215 Path = 205 x = 175,297 x = 303,427
=]
= 1995 - = —
% . Row =22 y = 620,898 y = 506,268 {0 UK National
@ July 11 Path = 205 x = 186,183 x =295,713 Grid
1989 Row =22 y = 617,673 y=512,013

Table 4-1. Details of the satellite images

4.2 Collection of Reference Data for Portugal

The ground campaign was carried out by staff from the EMAP unit and from the
Universidad de Lisbda (Portugal) in June 1991, contemporaneously to the acquisition of
the satellite image. A total of 12 sites of 3x3km? were visited, some twice, covering an
area of approximately 60x60km? in and around Lisbon. 736 polygons were mapped.
Figure 4-2 shows the typical landscape of the study area. The guidelines issued for the
field survey (Wilkinson et al., 1994) recommended a minimum mapping area of 4ha
(200m*200m). The field staff were asked to delineate homogeneous parcels on maps
(1:25,000) and on aerial photographs (1:33,000) which were later digitised. Photographs
were unfortunately only available for part of the test units at the time of the survey

(Wilkinson and Folving, 1991). Homogeneous landcover types are defined as consisting
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of one pure class, or consisting of an intimate mixture of pure classes where the physical
distance between two classes is much less than one pixel and regular, for example an
orchard. In this way, it can be assumed that any pixel extracted from the polygon will have
the same composition as the polygon. A form was provided to record the composition of
each parcel, a copy of which can be found in appendix B, section B.1. The information
recorded for each polygon could include up to three vegetation species with their
respective heights and percentage cover of the parcel; water content of surface (wet/dry);
colour of surface not covered by vegetation; and composition of the surface not covered
by vegetation. Percentage cover was estimated visually. Over seventy different landcover
classes were recorded. The information was entered into an Oracle database and Arc/Info
GIS.

From this reference data, three data sets were created containing sixteen, fifteen and
seven pure classes. Throughout the thesis, these data sets will be referred to as ‘Portugal

sixteen class’, ‘Portugal fifteen class’ and ‘Portugal seven class’ respectively.
4.3 ‘Portugal Sixteen Class’ Data Set

4.3.1 Methodology for creating the data set
A data set was made available to the author which had been created from the

reference data in the following manner.

1- From the seventy or more reference classes reported in the survey, sixteen pure
categories (listed in table 4-2) were defined to represent the landcover of the
image.

2- (a) Where possible, for each class, polygons covered 100% by the class were

selected.

(b) For some classes, in particular those which rarely occupy 100% of a polygon,
the data were supplemented by selecting polygons which had the next highest
coverage by the class. Examples of such classes include Bare Soil, Fresh

Water, Maize, Aquatic Plants, Weeds and Grass.

(c) For classes which never occupy 100% of a polygon, pixel data were extracted
from polygons with a high coverage by the class but not complete (100%)
occupancy. Examples of such classes include: Tiled/Concrete, Barley, Vines,
Garrigue, Deciduous Forest and Coniferous Forest. Regardless of the actual
composition of the polygon on the ground, it was considered to be occupied
100% by the dominant class and assigned that class number. This is a common
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method of producing training data for conventional classification when pure

polygons are not available.

3- A total of 12,505 pixel vectors were extracted from the image consisting of, for
each pixel, the DN value for each of the six image bands and the class number of

the polygon from which the pixel was extracted.

Id. Class Name Pixels Id. Class Name Pixels
1 Tiled / Concrete 314 9 Maize 282
2 | Sand 172 10 | Aquatic Plants 501
3 Bare Soil 868 11 | Vineyards 1,046
4 Sea Water 368 12 | Weeds 1,141
5§ | Fresh Water 277 13 | Garrigue 1,465
6 Estuary / Lagoon 721 14 | Grasslands 3,331
7 Wheat 423 15 | Deciduous Forest 828
8 Barley 311 16 | Coniferous Forest 457
Total number of pixels 12,505

Table 4-2. Composition of the ‘Portugal sixteen
class’ data set

4.3.2 Analysis of the data

The ‘Portugal sixteen class’ data set contains no mixture information which is
typical of data sets created for conventional pure classification problems. As shown in
table 4-2, the number of pixels in each class differs. As discussed in chapter III, section
3.3.5, the number of pixels within each class may provide the network with an a-priori
weighting of the importance of that class and the testing file should therefore be
representative of the distribution in the image; only then are the classification accuracies
representative. The number of pixels per class for this data set were chosen partly on this

basis (Wilkinson, personal communication).

Spectral analysis

An overview of the spectral separability of classes can be estimated by comparing
their spectral signatures. Generally, the spectral graph of a class shows the mean value and
standard deviation of each band. However, box plots show a number of other
characteristics of the data beyond the simple mean and are used in this thesis. In a single
box plot such as that represented in figure 4-5, the median of the data values is shown by
a white line in the box. The spread of values is shown by the height of the box. The top of

the box lies at the 751 percentile, the position in the data distribution below which 75% of
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—  ————— outlier

median
spread of /
values

-

possible values of the variable

variable being analysed

Figure 4-5. Illustration of a box plot

the data lie, while the bottom of the box lies at the 25™ percentile. Thus 50% of all values
lie within the box whose vertical height is referred to as the Inter Quartile Distance (IQD).
Asymmetry in the data is shown by the position of the white line, the median, with respect
to the vertical dimensions of the box. When plotting spectra, horizontal dimensions are
meaningless. However, if the same variable is being compared, for example band 1 for
several classes, then the width can be made to represent the number of samples which are
present in the distribution. The vertical lines which extend beyond the boundaries of the
box extend to the extreme values of the data or a distance of 1.5 *IQD from the centre,
whichever is less. Data points which fall outside the vertical lines are outliers. Box plots

of spectral signatures can be used to identify:

* classes which have similar spectral signatures and may be expected to be

difficult to distinguish,

* the spread of values of each class, which provides an indication of the

variability of spectral signatures within the class,

» the number of outliers of each class, which shows how well the class is
represented by statistics such as the mean and the variance.
Figure 4-6 shows the spectra of the sixteen classes listed above, some of which are
discussed in more detail below (n = number of pixels).

The classes with the least spread and outliers are Sea Water and Estuary, shown
in figure 4-7. Water is usually a well defined class with little variability so this is not
surprising. On the other hand, Sea Water and Estuary classes share very similar spectral
signatures and may be expected not to be well differentiated. Fresh Water and

Coniferous Forest, shown in figure 4-8, appear to have the most outliers suggesting less
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Figure 4-6. Spectra of the ‘Portugal sixteen class’ data set
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Figure 4-7. Spectra of the Sea Water class and the Estuary class
of the ‘Portugal sixteen class’ data set

well defined classes and consequently more confusion with other classes at the
classification stage. The reason for outliers in the Fresh Water class may be the presence
of vegetation within these pixels. This is suggested by the spectral signature of some of
the pixels which is typical of vegetation such as Grass. The cause of outliers in the
Coniferous Forest class is not clear. Both of these classes have a very small spread for
50% of their values which means that there is more likelihood of there being outliers. For
example, if a class is defined by spectral values which have quite a large spread, as for
example Wheat, then the likelihood of there being outliers for that class is smaller than
for classes defined by very precise, and therefore small spread, values. This is because
1.5%(IQD), defined above as being the distance beyond which points are considered to be
outliers, is larger for poorly defined classes than for precisely defined classes.
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Figure 4-8. Spectra of the Fresh Water class and the
Coniferous Forest class of the ‘Portugal sixteen class’ data set

The spectral signature for the non-water classes share a similar pattern: decrease in
the signature between bands 1 and 2, increase between bands 2 and 5, decrease between
bands 5 and 6. The position of the medians vary, as do the spread and the number of
outliers. For example, the mean value in all the bands for Sand are higher than for any of
the other classes. This makes it likely that the Sand class will be separable from the others.

On the other hand, figure 4-9 shows that there is little difference between the Tiled/

Concrete signals and the Bare Soil signal for example.
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Figure 4-9. Spectra of the Tiled/Concrete class and the Bare
Soil class of the ‘Portugal sixteen class’ data set

In summary, the box plots are useful prior to classification to determine expected
results and after classification to examine the reasons why classes may be confused.
Indices which provide a mathematic‘al representation of the difference between classes
based on some form of distance measurement could also be used to quantify the
separability of classes. However, these techniques usually produce a single number,
which is to be taken as an indication of the separability of classes, which does not reveal

any information on possible mixing between classes.

Quantile-quantile plots

As mentioned in chapter II, section 2.3, the maximum likelihood classifier assumes
that classes are normally distributed whereas the neural network makes no such
assumption. Quantile-quantile plots are used to compare the distributions of two sets of
data and can be used here to test the actual distribution of the data against the assumption
of normally distributed data. In the plots, the percentiles of the data are compared against
the same percentiles for, in this case, a standard normal; that is a normal with a mean of
zero and a standard deviation of one. Even though one data set consists of discrete values
(integer DNs) and the other consists of continuous values (the standard normal), provided
there are enough points covering the range of values, this comparison is valid. On these
quantile-quantile plots, if the data lies on the line, the actual data can be considered to be
normally distributed. In conjunction with the spectral plots, the quantile plots can show
whether there is a correlation between class definition and normal distribution of the data.
Quantile plots were drawn for each band of each class. A sample of the plots are shown
in figure 4-10 to figure 4-12. All quantile plots can be found in appendix B, section B.2.

Figure 4-10.a is the quantile plot for Sea Water, band 2. It shows that even though

a class may be well defined spectrally as shown in figure 4-6.4, this does not imply a
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Figure 4-10. Quantile-quantile plots for band 2 of the Sea
Water class (a) and band 4 of the Grass class (b) of the
‘Portugal sixteen class’ data set

normal distribution. On the other hand, a class with more variance in its spectra, such as
Grass, may show approximately normal distribution in one of its bands, in this case band
4 (figure 4-10.b). It seems therefore that there is no relation between class definition, and
more particularly, the spread or not of values for each spectral band, and normal
distribution. The step-like aspect of the Sea Water figure compared to the Grass figure
is because of the scale of its y-axis. The shape of the plot is not a function of band number
or class. Different classes may have similar distributions as illustrated by graphs for

Coniferous Forest and Fresh Water (figure 4-11).
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Figure 4-11. Quantile-quantile plots for band 5 of the Sea
Water class (a) and band 3 of the Fresh Water class (b) of the
‘Portugal sixteen class’ data set

The same class may show normality in one of its bands but not another. Figure 4-
12 shows that band 4 of the Vines class seems to be approximately normally distributed
whereas the data for band 5 is not. The quantile-quantile plots show in which direction
data is skewed. For example, in the quantile plot for band 5 of the Vines class, the actual
data has a larger tail in its lower values than the standard normal and is therefore

negatively skewed. The quantile-quantile plots confirm that data is not always normally
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Figure 4-12. Quantile-quantile plots for band 4 of the Vines
class (a) and band 5 of the Vines class (b) of the ‘Portugal
sixteen class’ data set

distributed and that a technique such as maximum likelihood, which specifically assumes
normality of the data may not be appropriate.

The ‘Portugal sixteen class’ data set did not take advantage of the mixture
information available for each polygon. Indeed, the aim of the process of extracting
training data was to collect pixels which were as pure as possible. Location information
for the pixels was not available. Therefore, a new data set was created from the reference

data for the purpose of analysing mixtures.

4.4 ‘Portugal Fifteen Class’ Data Set

The data set to be created required detailed mixture information. A mixture is
defined both by its class composition and the percentage cover by each component; thus
amixture of [60% class 1 +40% class 4] is considered to be a different mixture from [50%

class 1 + 50% class 4].

The creation of this data set from the reference data required five steps:

1- Correction of mistakes

2- Removal of ambiguous polygons

3- Reduction of the number of landcover types

4- Buffering

5- Simplification
In the work presented in this thesis, the aim of the experiments was not the classification
of images but rather an evaluation of the potential of the classifier. For this reason, the
training and testing data sets were created to be representative of each other but not

necessarily of the image. In fact, making training data sets that are representative of the
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image to be classified is particularly difficult for soft classification problems as it implies

a high degree of a-priori knowledge about the landcovers in the scene.

4.4.1 Methodology for creating the data set

1 - Correction of mistakes

Since reference data is considered to be true and correct, mistakes must be
minimised. Checking the reference data revealed a number of typographical mistakes and
inconsistencies of class names which were corrected. In addition, the percentage coverage
per class of some polygons did not sum to 100%. It is difficult to decide how to correct
this; an arbitrary decision was taken to always add to the smallest percentage or to subtract
from the largest. At this stage it was decided that no other modification could be made and
this was considered the final and true ground information from which a data set could be

created. There were 797 polygons.

2 - Removal of ambiguous polygons

Polygons with the following characteristics were removed from the data base:

° whose landcover was either unique or ambiguous (for example: bregner
(danish grass), salt, sun flower, wild oats, mixed, corn? (sic), pine-oak (no

relative percentage coverage provided), trees (no species indication)),

which included the comment ‘non-homogeneous’,

for which the original survey form was missing and could not therefore be

checked,

for which there was no composition information,

* whose percentage composition was arbitrarily corrected in the previous step

3 - Reduction of the number of landcover types

Over seventy landcover classes had been recorded. Besides being unmanageable,
many of these can be expected to have similar spectral responses. The landcover classes

were therefore divided into 15 groups based on theme or expected spectral signatures.

e The class name Fruit Trees grouped together vegetation types which
included: apples, apricots, cherries, figs, fruit trees, olives, oranges, peaches,

pears, plums and prunes.
» The class name Horticulture grouped together vegetation types which
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included: asparagus, beans, carrots, melon, mixed horticulture, potatoes,

strawberries and tomatoes.

* The class name Cereals grouped together vegetation types which included:

barley, corn, maize, oats, wheat.

e The class name Broadleaf grouped together vegetation types listed as: cedar,
eucalyptus, oak. Broadleaf is used in preference to deciduous because some

of the tree types such as the eucalyptus trees do not actually shed their leaves.

* The class name Grass grouped together vegetation types listed as: grass or

weeds.
e The class name Coniferous replaced the vegetation type listed as: pine.

» The class name Marsh grouped together vegetation types which included

reeds or rice.

* The class name Urban grouped together non-vegetation types which
included: asphalt, concrete, construction material, metal, tile, urban, gardens,

plastic.

e The class name Stones grouped together non-vegetation types which

included: dirt road, quarry, stones, rock, rubble, gravel, non-asphalt roads.

+ Shrubs, Stubble, Vines, Bare Soil, Sand and Water were kept as class

names.
At this point there were 15 landcover classes and 303 different mixtures. Each of the
fifteen class is considered to be a pure class even though it may be composed from several

original landcover classes.

4 - Buffering

Polygons were then buffered within the GIS by 30m (1 pixel) to eliminate the
problems which arise from pixels lying on boundaries. As figure 4-13 shows, border
pixels may be assigned to no class or to the wrong class because of location errors between
lines and points in a GIS and because of the accuracy of the geocoding and georeferencing
processes, usually half a pixel (Thomas et al.,. 1987). The green pixels in figure 4-13.a
could be assigned to no class. The orange pixel in figure 4-13.a could be assigned to class
B, even though it actually belongs to class A. Buffering removes these problem pixels as
shown in figure 4-13.b, so that the remaining pixels can confidently be said to belong to

the polygons they are identified with and therefore to that class composition. When
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At this point, 108 mixture types remained. The data set contains 27,651 pixels
extracted from the image. The list the 108 of cover types which make up the fifteen class
data set are listed in appendix B, section B.3. The list of cover types removed in steps 4
and 5 above are listed in appendix B, section B.4. The accuracy of classification of the test
data set assuming that all pixels are pure was about 70% for this data set whereas it was

about 50% before being simplified.

4.4.2 Analysis of the data

Spectral analysis

The analysis of soft classification training and testing data, that is mixed pixel
information, is very complex unless there are few classes and mixtures. For example, in
this data set there are 108 different mixtures which makes it impossible to study individual
spectral signatures for each composition. Furthermore, not all of the fifteen pure classes
occur as 100% cover of a polygon. One of the unfortunate consequences of simplifying
the data is the removal of polygons whose coverage is almost pure; for example, whereas
class 3 covered 90% of a polygon in the mixture [6% class 1 + 90% class3 + 3% class 6
+ 1% class 10], after simplification, the only occurrence of class 3, Stones, was in the
mixture [10% class 3 + 90% class 12]. The maximum occupancy for some classes such
as Vines and Fruit Tree was only 50% or 60%. Therefore, for each of the fifteen classes,
an example composition was chosen where the percentage cover of the class is
maximised; they may not necessarily be dominant in terms of percentage cover for the
reasons given above. The examples are listed in table 4-3 and their spectra are shown as
box plots in figure 4-8.

By plotting the spectra of the examples listed in table 4-3, a similar analysis to that
provided for the ‘Portugal sixteen class’ data set can be carried out although it is restricted
to the examples that have been chosen. Figure 4-15 shows the spectra for the ‘Portugal
fifteen class’ data set. Numbers of pixels per class vary greatly here, but these are not the
only pixels in the data set for these classes.

 Stones, Stubble, and Fruit Trees have quite well defined signatures with

little spread or outliers.

» The Stones class has a fairly distinct signature which, strangely it is thought
at first, is more similar to the Shrubs class than to the Urban class for
example. However, considering that Stones only exists as part of a mixture

with 90% Shrubs, it is not surprising.
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Id. | Class Name Ma:i::;z“l:);fefczl:g;ltg;::iz?egz? t‘l:tglass ;)Nfull:i]:eells-
1 | Bare Soil 100% 1 663
2 | sand 100% 2 69
3 | Stones 10% 3 +90% 12 93
4 | Water 100% 4 798
5 | Marsh 90% 5+ 10% 1;90% 5 + 10% 4 108
6 | Urban 100% 6 362
7 | Stubble 100% 7 140
8 | Cereals 100% 8 249
9 | Horticulture 70% 9 +30% 1 39
10 | Grass 100% 10 1,899
11 | Vines 60% 11 + 10% 10 + 30% 1; 60% 11 + 40% 10 1,342
12 | Shrubs 90% 12 + 10% 3; 90% 12 + 10% 10 299
13 | Fruit Trees 20% 1 +30% 10 + 50% 13 9
14 | Broadleaf 90% 14 + 10% 10 10
15 | Coniferous 90% 15 + 10% 12 5

Table 4-3. List of pure classes of the ‘Portugal
fifteen class’ data set and example mixture
compositions

The Stubble class’s spectral signature overlaps the Bare Soil class which

makes it likely that the two will be confused at the classification stage.

Fruit Trees have a signature which is similar to Shrubs but with slightly

higher DN numbers for all bands except band 4.

Horticulture is a slightly less well defined class, with a small number of

outliers, and its spectral signature is similar to that for Cereals.

For the classes which were also defined in the ‘Portugal sixteen class’ data
set, there are some differences. For example, Bare Soil has a larger spread of
values in the ‘Portugal fifteen class’ data set than the ‘Portugal sixteen class’
data set, as does the Sand class, even though they both have fewer pixels than
in the previous data set. The Vines class also has a larger spread of values but

it also has more pixels.
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e On the other hand, the Broadleaf and Coniferous forest classes have more
precisely defined signatures in the ‘Portugal fifteen class’ data set than in the
‘Portugal sixteen class’ data set. The outliers present in the sixteen class data
set have been removed. This is not surprising considering the number of
pixels plotted here (10 and 5 respectively). There is very little difference
spectrally between these two classes, and between the two classes and the
spectral signature for Shrubs. This leads to the expectation that these classes

may be confused at the classification stage.

* The Shrubs class has a very similar signature to its equivalent Garrigue in

the sixteen class data set.

* On the other hand, the Marsh class and its equivalent, the Aquatic Plants
class in the sixteen class data set, surprisingly do not have similar signatures.
The Marsh class has higher DN values in bands 4, 5 and 6. It is not clear why

this is so.

* The Urban class of the fifteen class data set is less well defined than the
Tiled/Concrete class of the sixteen class data set but their definition was also
different, the original classes that make up the Urban class being more
varied.

Finally, there are three classes in the ‘Portugal fifteen class’ data set which group together

classes from the ‘Portugal sixteen class’ data set:

* Water, Cereals and Grass. Not surprisingly, these classes have more spread
and more outliers than the single classes from the sixteen class data set since
they group two or more signatures together.

From the spectral analysis, it could be decided to remove or redefine some classes
such as the Stones class for example. This was not done here as the data were not intended
for image classification and a spread of quality in the classes was felt to provide a better

overview of the potential of the neural network classifier.

Composition matrix

The composition of the data set is particularly difficult to summarise because of the
large number of different mixtures. One type of summary table is presented in table 4-4.
Mixtures are read as follows.

Mixtures are ordered on their dominant class, the class which individually covers

the largest percentage area. In the column titled ‘Class Name of Dominant Class’, if the
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class name is underlined, it exits as a pure polygon, covered 100% by that class. For each
row, the second column lists the secondary classes in two class mixtures with each of the
first classes listed in the first column. The mixtures are organised so that they only appear
once in the row of the dominant class. Thus a Grass - Bare Soil mixture, where Grass is
the dominant class will be listed under class 10, Grass, but not under class 1, Bare Seoil.
Furthermore, classes are listed in decreasing order of importance. Thus a three class
mixture Bare Soil - Grass - Urban is not the same as a three class mixture Bare Soil -
Urban - Grass. In the first, Grass is more dominant than Urban whereas in the second
the opposite applies. These mixtures would therefore both appear in the table under the
Bare Soil row. Percentage cover is not considered. If coverage is equal between classes,
one selection is listed, chosen arbitrarily.

The table can be used to establish, for example, that
* Sand only exists as a pure (100% coverage) class;

¢ Stones, which is not underlined and is not the dominant class of a mixture,

only exists as part of a mixture, as a secondary class at most;

¢ the classes which mix the most are Bare Soil, Grass and Shrubs followed by

Coniferous and Broadleaf classes;

* Fruit Trees is not often dominant in a mixture but appears quite often as a
third or fourth component, similarly to Vines which, with Horticulture, is

always mixed with Bare Soil;

o the other classes, Water, Marsh, Urban, Stubble and Cereals only exist as
part of two component mixtures or as pure classes.

However, although table 4-4 is useful for a rapid overview of the mixing of classes,
it does not provide quantitative composition information such as the number of pixels of
each class. For simple data sets, such an analysis can be carried out manually but for this
very large data set, it was necessary to develop an automatic method for representing the
mixture information from the reference data. For this purpose, a so called ‘Composition
matrix’ was developed.

The Composition matrix for the ‘Portugal fifteen class’ data set is shown in figure
4-16. The matrix lists the pure class numbers vertically (A). Horizontally (B), it lists the
possible positions within a mixture. For example, if there is a maximum of four
components mixing in the reference data, then there are four possible positions in which
a class can lie. The matrix is filled by counting the number of times a class occurs in each

position. For example, in a [60% class 5 + 40% class 14] mixture, the counters for the
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#File used in composition matrix: Portugal_15_classes.dat Name of file
Position of the class COMPOSITION Matrix ‘\f"om wh_u_:h the
in a mixture composition matrix
1 = dominant ———» Posidl> was calculated
2= Se§ondar)’ Class Numl 1 2 3 4 Class
3 = third etc.
- | Total
1 1 5485 8119 4234 0 == 17838
21 102 0 0 0 == 102
A 31 0 133 0 0 == 133
Pure class 41 192 356 0 0 == 1648 Total Nimb
identification e ota _nlum he.r h
number 51 208 0 0 o == o208 TPMes B ol
e.g. 1 = Bare Soil contain t e'class
2= Sand etc. 61 713 281 181 0 == 1175 8 0237 pixels
contain class 11
\ 71 938 0 0 0 == 938
8 | 672 5 0 0 == 677
9 1 129 6 0 0 == 135
10 1 11493 3641 2238 0 == 17372
D 111 2195 3970 72 0 == 6237
Number of pixels 12 1 1640 2199 565 52 == 4456
which contain the 31 6 135 72 129 == 399
position. e.g. 8891
pixels have three 14 1 1914 4564 765 0 = 7243
components
15 1 2141 1281 764 131 == 4317
I
os Total | 28985 24690 8891 312 == (2878
There were 5256 pixels with equal coverages.
\ E
Number of pixels with two or more classes
with equal percentage cover

Figure 4-16. Composition matrix for the ‘Portugal fifteen

class’ data set
dominant position of class 5 and the secondary position of class 14 would both be
increased by one. If two or more classes cover the same proportion of a pixel, for example,
[30% class 1 + 40% class 2 + 30% class 6], then both (or more) class counters for the
relevant position are incremented by one; in the example, the counters in position two of
classes 1 and 6 would both be increased. The column on the far right entitled ‘Class Total’
shows how many pixels contain each of the classes, irrespective of the class position in
the mixture (C). This provides an idea of the a-priori probabilities of each class. However,
if two classes are present in the same number of pixels but one class is mainly present as
a dominant class whereas the other is mainly present as a secondary class, the a-priori
probabilities are not the same. The matrix also provides a breakdown of the position of
classes within pixels. The last row of the matrix (D), entitled ‘Pos. Total’ (Pos. = Position)

provides, for each column of the number of components, the number of pixels which
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contain that number of components. Finally, the last line (E) indicates the number of
pixels which had two or more classes with equal percentage cover.

For example, from this composition matrix, it is possible to tell the following.

e Sand, Marsh, Stubble, Cereals, and Horticulture exist almost exclusively

as dominant classes within a mixture.

e Fruit Trees mainly exists as a second (34%), third (18%) or fourth (32%)
component of a mixture; only 16% of pixels containing the class Fruit Trees

have it as a dominant class.

* Deciduous Forest occurs as a secondary class 66% of the time whereas it

occurs as a dominant class only 26% of the time.
In other words, the composition matrix allows the user to calculate the percentage of each
class within the data set, the percentage of each class at each position of a mixture and

other similar statistics.

4.5 ‘Portugal seven class’ Data Set

The ‘Portugal fifteen class’ data set which was created for the purpose of this thesis
is complex and large which makes its analysis difficult. A smaller, further simplified data

set containing seven pure classes was created with limited numbers and types of mixtures.

4.5.1 Methodology for creating the data set

The ‘Portugal fifteen class’ data set was reduced by:

1- only considering those classes which had at least one polygon with 100%

coverage,
2- from the above, only considering those classes in two component mixtures,
3- ignoring Stubble as a class because of its ambiguous definition,

4- defining the Vines class as a homogeneous mixture of soil and vine plants and
changing proportions in consequence. For example, [30% Vines + 70% Bare

Seil] becomes 100% Vines.
The final data set included Bare Soil, Sand, Water, Urban, Cereals, Grass and Vines
as pure classes. 11,852 pixels were extracted. The individual classes and the mixture types
are listed in table 4-5. The composition matrix for this data set is listed in appendix B,

section B.6. It was not necessary to have a set of classes which were representative of the

original landscape since only accuracy was of interest here.
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O | e | Types | of P | MiureTvpes | SRS
1 | Bare Soil | 100% 1 984 20% 1 80% 6 1,063
2 | Sand 100% 2 102 30% 1 70% 6 225
3 | Water 100% 3 1,196 40% 1 60%06 248
4 | Urban 100% 4 528 70% 1 30% 6 270
5 | Cereals 100% 5 372 80% 1 20% 6 714
6 | Grass 100% 6 2,827 20% 6 80% 7 1,419
7 | Vines 100% 7 1,024 40% 6 60% 7 718
20% 3 80% 6 162
Total Number of Pixels 11,852

Table 4-5. Composition of the ‘Portugal seven
class’ data set

4.5.2 Analysis of the data

Spectral Analysis

The smaller number of mixtures, compared to the ‘Portugal fifteen class’ data set,
allows the spectra for each mixture type to be displayed. Figure 4-17 shows the spectra
for each of the categories listed in table 4-5. The spectra have been arranged so that
mixtures are ordered between the pure spectra that compose them, in decreasing order of
the percentage of the class on the left and increasing order of the percentage of the class
on the right. Classes 2, 4 and 5 do not exist within mixtures in this data set. The categories
and their spectra presented in figure 4-17 have been divided up for a more detailed
analysis below.

Figure 4-18 shows the spectra for each of the classes in their pure state. Some of the
classes have a large spread of values in each of the bands, particularly Bare Soil, Sand,
and Cereals. The Water class seems, as before, to be composed of two distinct signatures,
one of which is vegetation, which implies poor definition of the polygons at the ground
campaign stage. It is possible that some of the Water polygons were mapped in areas of
rice fields even though no vegetation was recorded on the campaign sheet. The Grass
class has a number of outliers in the lower part of the spectra which suggest that there may

be non-grass pixels within this class. The Vines class has less spread in its values than the

Bare Soil, Sand and Cereals classes and no outliers.
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Figure 4-17. Spectra for the ‘Portugal seven class’ data set
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Figure 4-18. Spectra for the 100% pixels

Figure 4-19 shows the spectra for Water, Grass, and mixtures in between. [20%

Water + 80% Grass] is actually more similar to the pure Water spectra, excluding the

outliers, than it is to the Grass class. This indicates that either the percentages indicated

in the ground survey are wrong or Water and Grass mix non-linearly. Linear mixing

implies that the classes affect the spectral signatures proportionally to the percentage of

the pixel they cover. If the percentages recorded in the field survey are correct, then it
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Figure 4-19. Spectra for 100% Water, 100% Grass and
mixture in between
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seems that the presence of Water has a stronger influence on the composite signal from
the mixture than does the Grass class.

The spectra in figure 4-20 show the mixtures of Grass and Bare Soil and appear to
confirm that mixing between classes is non-linear. If the classes mixed linearly, the
expected pattern of the signatures would be a gradual transformation from one class into
the other. As the percentage of Bare Soil decreased and that of Grass increased, the
spectra would be expected to look less like Bare Soil and more like Grass. This is not the
case. The mean of the spectra at each band drops significantly with only 20% less Bare

Soil than a pure pixel and the spectra are not that close to the pure Grass signal either.
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Figure 4-20. Spectra for 100% Bare Soil, 100% Grass and
mixtures in between

Finally, figure 4-21 shows the spectra for a mixture of Vines and Grass. Again, the
spectra of the mixtures do not lie between the spectra of the pure classes which compose
them. For example, the mean of band 5 for the mixtures is higher than the means of band
5 for either pure components.

The fact that the spectra do not appear to mix linearly suggests that a linear mixture
model may not be appropriate to this problem. It also implies that the network will have

to find a mapping between class coverage and spectral signal which is not obvious in these

graphs.

- 80 -



100% 06 40% 06 + 60% 07

5 5 =
o n=2827 o n=718
S <
28 2 g — —
s - s - g - T ]
[=) —_ o i i H +
g8 % = = T - &8 ¢ & - 8 B8 — H
(=] (]
1 2 3 4 5 7 1 2 3 4 5 7
Spectral Band Spectral Band
20% 06 + 80% 07 100% 07
3 3
N n= 1419 _ o~ n= 1024
(=) (=)
(=) _— (=) 5
o ] o~
58 ] 3 3
L 7 — = ey — g - -
(=) P T —— H
z 8| 2 = = = 8| 8 =
o = =i ket o =] £
(Y5 [~=1 0 = i
(=] o
1 2 3 4 5 7 1 2 3 4 5 7
Spectral Band Spectral Band

Figure 4-21. Spectra for 100% Grass, 100% Vines and
mixtures in between

The description and analysis of the data sets from the Portugal site is now complete.
As the description shows, the production of data sets on which to train and test a classifier
can be extremely time consuming. The complexity and size of the data sets from the
Portugal site have been highlighted. Quantile-quantile plots have shown that data may not
be normally distributed and spectral box plots have shown that mixing may not be linear,
implying that other classification techniques such as the maximum likelihood classifier
and the linear un-mixing model may not be appropriate.

The method for creating the data sets caused some difficulties. For example, the two
parcels shown in figure 4-22 and figure 4-23 are both defined as 100% bare soil.
Consequently, even though pixels from these parcels will have different spectral
signatures, they cannot be differentiated in the data set. Furthermore, the visual
interpretation of percentage cover by different field staff produced inconsistencies in the
data. For example, figure 4-24 and figure 4-25 show photographs of vineyards and their
description. Although the difference between the vine content of figure 4-24 and figure 4-
25 is only 2% according to the interpreters, from the photographs, the difference appears
to be larger; for the photograph in figure 4-25 (and albeit not from on the ground), the
author would have assigned a percentage of 15-20% of vines rather than the 5% assigned.

For these reasons, which later translated into difficulties in the interpretation of

results of the experiments, another site was chosen, from which precise and accurate data

sets could be created. These are described in the next section.










4.6 Collection of Reference Data for Scotland

A number of studies, mostly carried out in areas of natural forest, have shown that
parameters of coniferous forests such as height (Franklin, 1994), mean diameter at breast
height (Danson and Curran, 1993) and tree growth (Ahern et al., 1991), and derived
variables such as basal area (Brockhaus and Khorram, 1992) and stand density (Horler
and Ahern, 1986) are significantly correlated with reflectance signals picked up by the
Landsat TM sensor. In fact, changes to these variables, for example from growth of the
trees, reflect changes in the relative proportions of trees and background; that is, the extent
of canopy closure. Background vegetation and soils generally have a higher reflectance
than conifer canopies (Franklin, 1986; Gemmel and Goodenough, 1992) and so the
reflectance measured by the sensor decreases as the percentage tree cover increases. This
can be used to advantage to study the presence or absence of the understory vegetation
(Stenback and Congalton, 1990). It is therefore hypothesised that a study of the mixing
between coniferous trees and grass can substitute measurements of the proportions of sub-
pixel components with measurements of structural variables of the forest.

Most studies reported in the literature have been carried out in areas of natural
forest. Although the structural variables which describe the forest are the primary source
of changes in reflectance, other sources that affect the signal of the forest cover include
slope, tree spacing, species composition, type of background and tree health. The site
chosen for this study is situated in the Dumfries and Galloway region of Scotland and its
typical landscape is shown in figure 4-3. It consists of plantations of coniferous forest and

has the following advantages over a natural forest area:

* almost unique species composition (mainly Sitka Spruce);

forest understory (when present) consisting almost exclusively of grass;
* regular and dense planting;

* simple single storied homogeneous canopies with few gaps;

* most trees planted on flat or gentle slopes;

* minimal thinning and, whenever possible, immediate control of disease and

poor growth.
In addition, only a small proportion of the image is used and the scene is of good quality
with little atmospheric influence. The relationship between structural parameters and

canopy reflectance can therefore be expected to be strong and a high degree of confidence

in their accuracy, associated with the data sets.
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Ancillary data for the area included
* 1: 10,000 colour aerial photographs (1992);

* 1: 10,000 forest stock maps (1980’s mainly).

These were made available to the Department of Geography by Forest Enterprise, UK.
Stock maps are produced by the Forestry Commission and identify forest compartments
in terms of extent, year of planting and species composition. Unless trees are harvested or
thinned, the planting date and species composition of parcels provided on stock maps can
be taken as correct. Aerial photographs are invaluable for estimating the homogeneity of
an area and the degree of closure of the canopy, both of which are often impossible to tell
from the ground. The aerial photographs predate the 1995 image and postdate the 1989
image by three years. Although this should be taken into account, particularly for younger
trees, three years is a short time in terms of tree growth and should therefore have a
minimal effect on interpretation.

From these data, a first reference data set was created by delineating areas on stand
maps which appeared to be hgmogeneous acéording to the aerial photographs. Areas of
closed canopy, medium density and low density trees were chosen. As the density
decreases so does the homogeneity. Boundaries of the polygons were drawn at a distance
of more than 30m from the stand edges to eliminate the need to buffer the polygons later.
These data are typical of conventional pure classification data; each polygon is assigned
to only one class.

In addition to these data, a forest survey was carried out by the author and staff from
the Department of Geography of Durham University, in May 1996. Only Sitka Spruce
stands were chosen to limit the effect of species differences on the signal variability of the

pixels. The ground survey was carried out as follows:

1- Prior to the field survey, using aerial photographs, homogeneous areas were
identified. Although random sampling may theoretically be the best
methodology, practical considerations such as accessibility often limit this
method and polygons to be surveyed were also considered for ease of access. The
polygons were delineated on the stand maps, at a distance of more than 30m from

stand boundaries, and digitized.
2- (a) In the field, at each site to be surveyed, plots were located at more than 30m

from the stand edge.

(b) Once within the area to be surveyed, a marker was thrown randomly to

represent the centre of a plot. A circle of 5.3m radius was marked out within
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which measurements were taken. As mentioned in a separate study from the
same research group (Puhr, 1997), surveying larger plots was impractical
considering the difficult working conditions found in the plantations. However,
the homogeneity and simplicity of the forest should allow the plots to be

representative of the whole stand.

3- (a) For every tree in the plot that was not dead, the species was noted and
Diameter at Breast Height (BH = approximately 1.3 m) measured. Dead trees are
not included as they do not contribute significantly to the canopy’s spectral

response. Each stem of multi-stemmed trees was measured.

(b) Using a clinometer, which measures the angle between the observer and the
object being pointed at, measurements were taken for the height of the thickest
tree, or another if visibly higher. If the top of the tallest tree was not visible from
within the stand, measurements were taken from outside. The distance and the

slope between the observer and the tree was recorded.

(a) Slope and aspect of the plot were recorded together with any comments

concerning the plot.

4- Where possible, since signals were not received within closed canopies, a
position was read using a Global Positioning System - it was later estimated to
be accurate to within 10m.

In total, 16 sites were visited; in some two to three plots were measured. Appendix B,
section B.7. shows a survey sheet for one of the plots. A sample aerial photograph used
in the survey, on which the approximate location of the digitized polygons and polygon
reference numbers are indicated, is provided in figure 4-26. Spatial location of plots was
very well controlled with the use of these large scale photographs, maps and a Global

Positioning System.
4.7 ‘Scotland Eight class’ Data Set

4.7.1 Methodology for creating the data set

A data set was created from the 1989 image and the homogeneous polygons of pure
classes described in the previous section which will be referred to as the ‘Scotland eight
class’ data set, whose composition is listed in table 4-6. Classes are considered to be pure.
For example, pixels which belong to the class Low Density Trees are covered by a
mixture of trees and grass but the scale of mixing is considered to be less than the size of

the pixel, so that the percentage cover of the polygon by each class, trees and grass, is
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Id. Class Description Number

of

Pixels
1 | Closed Canopy Sitka Spruce 189
2 | Closed Canopy Lodgepole Pine 209
3 | Water 267
4 | Background (Grass, Rocks) 637
5 | Deciduous 418
6 | Low Density Trees (mainly Sitka Spruce) 376
7 | Medium Density Trees (mainly Sitka Spruce) 208
8 | Closed Canopy Trees (Mixed) 425

Total number of pixels 2,729

Table 4-6. Composition of the ‘Scotland eight
class’ data set

representative of that of each individual pixel. 2,729 pixels were extracted from the 1989

image to form this data set.

4.7.2 Analysis of the data

The spectra for each of the eight classes were plotted and are shown in figure 4-27.

The Water class has a different signature from all the others and can therefore

be expected to be easily separated.

The Closed Canopy Sitka Spruce and Closed Canopy Lodgepole Pine
classes are differentiated spectrally by a higher median value for Closed
Canopy Sitka Spruce in bands 4 and 5 particularly. Both classes have some

outliers.

Low Density Trees and Medium Density Trees, which are mainly Sitka
Spruce, are differentiated from their closed canopy equivalent by higher
values in all the bands and particularly bands 4, 5 and 6. The median for
Medium Density Trees are slightly lower than for Low Density Trees. The

latter class has no outliers, the former class has a few.

The Closed Mixed (SS-LP) class has values which are between the Closed

Sitka Spruce and Closed Lodgepole Pine spectra, with few outliers.

The Background class has higher spectral values in all bands. It also has a

larger spread of values and is less well defined.

Finally, the Deciduous forest class has the highest median in band 4 of all the
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classes and a median in class 5 which is higher than for the closed canopy
classes and the mixed canopy classes but lower than the Background class.
From these spectra, a relatively good accuracy of classification can be expected as classes

seem well defined and separable.
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Figure 4-27. Spectra for the ‘Scotland eight class’ data set

4.8 ‘Scotland Bio All’ and ‘Scotland Bio Box’ Data Sets

4.8.1 Methodology for creating the data sets

From the measurements taken in the field, as described in section 4.6, Basal Area,
Height and Stem Density values were calculated for each digitised polygon. A summary
of the values is provided in table 4-7; when there were several plots, values for each plot

were averaged.

1- Basal Area is the total area within the plot which is covered by tree trunks. It is
calculated using the diameter at breast height (DBH) for each tree. Basal Area

for each stem of multi-stemmed trees are included.

2- Height is calculated from angle measurements using trigonometry. If the ground

is not level, the effect of the slope should be taken into account.




Basal Stem
Polygon | Height Area in Density Year of
Visit 1d. inm 5 | intrees/ Planting
m ha
1 12.75 39.51 3,060 1960
2 15.56 71.94 2,946 1963
3 18.04 57.28 2,606 1962
4 7.00 36.57 1,700 1976
5 5.31 6.34 1,303 1979
6 6.17 21.00 1,700 1979
7 542 17.57 1,813 1979
8 17.76 62.35 3,060 1955
9 13.60 56.45 1,926 1971
10 18.64 56.76 3,683 1956
11 5.27 15.21 1,586 1981
12 5.68 22.00 1,926 1981
13 4.49 9.73 1,586 1981
14 5.16 9.99 1,700 1981
15 7.34 26.46 1,813 1975
16 17.56 56.17 2,776 1948

Table 4-7. Summary of the variables calculated
from field measurements for the Scotland site

3- Stem Density values are calculated by counting the number of trees in the plot;
multi-stemmed trees are counted as one. Two data sets were created from the

1995 image: ‘Scotland bio all’ and ‘Scotland bio box’.

(a) For the first data set, ‘Scotland bio all’, all the pixels in every digitized
polygon were extracted along with their corresponding structural measurements.
Then pure Grass pixels were added. The size of this data set was 936 pixels.
Upon analysis of the data, variability was found to be quite large and it was

decided to create a second data set.

(b) The second data set, ‘Scotland bio box’, was created by extracting only the
channel values for pixels within a 5x5 pixel box. The box was preferably
centered at the location of the plot from which measurements were taken, but if
it was considered that there was an area more homogeneous than that around the

plot location, still within the forest stand, the box was located in the most
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homogeneous area. Pure Grass pixels were added. The size of this data set was

515 pixels. The pure grass pixels that were added to both data sets are the same.

4.8.2 Analysis of the data

The variables were plotted against each other as shown in figure 4-28. Despite the
relatively few points mapped, the graphs in figure 4-28 show that there appears to be an
almost linear relationship between the variables which becomes less evident at the
extreme values, that is for older trees. As discussed in section 4.6, it is thought that
structural parameters of the forest such as Height and Basal Area can be related to the
spectral signature of the pixel because the sensor measures the background reflectance.
Young trees have a large amount of reflectance from background vegetation whereas
older trees have a small amount of background reflectance. When canopy closure occurs,
that is, when background can no longer be viewed by the sensor, the relationship breaks
down. Peterson ef al. (1986) also found saturation effects in the response from the

clustering of older trees.
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Figure 4-28, Graphs of Basal Area against Year of Planting (a),
Height against Year of Planting (b) and Height against Basal
Area (c)




Pearson correlation coefficients, which provide a measure of the linear correlation
between variables, were calculated for Height, Basal Area, Stem Density and planting
Age and are provided in table 4-8. From the table, Stem Density seems to have the
weakest relationship with Basal Area, and Basal Area has the weakest relationship with
Age. Height has the strongest relationship with Basal Area and Age. Puhr (1997), from
the same forest, found strong positive correlations between Basal Area and tree Height,
tree Height and stand Age, and Basal Area and stand Age; and weaker correlations
between Stem Density and the other variables. Since Age is not a structural parameter, it

was not studied further in this thesis.

Variable Basal Area Height Stem Density Age
Basal Area 93 0.81 0.84
Height 0.89
Stem Density
Age

Table 4-8. Pearson correlation values for the rela-
tionship between the structural parameters

The mean DN values of each channel were plotted for increasingly large square
areas from a point to study the variability of the reflectance of pixels within each polygon.
Changes to the mean signal are an indication of the heterogeneity of the area being
studied. In the case of the first data set, ‘Scotland bio all’, the mean reflectance values
were extracted for increasing kernel sizes (1x1, 3x3, 5x5, 7x7...) in proportion to the size
of the polygon. Thus, if a polygon was small, it may only include a 3x3 kernel; if it was
large it may include a kernel up to 7x7 or more.

The graphs showed some heterogeneity in the data. For this reason, the second data
set, ‘Scotland bio box’, was created. Only kernels ot 3x3 and 5x5 were studied since all
pixels in the data set were extracted from 5x5 boxes. The graphs, showing mean DN
values for each channel, for increasing kernel sizes, are provided in appendix B, section
B.8, but a sample are shown in figure 4-29.

Figure 4-29.a and figure 4-29.b show two graphs from the ‘Scotland bio all’ data set
and figure 4-29 ¢ and figure 4-29.d show the graphs for the ‘Scotland bio box’ data set for
the same sites. From figure 4-29.a and figure 4-29.b, it is apparent that in plot 77, the 3x3
and 5x5 means are similar whereas the 7x7 means have decreased. On the other hand, the
3x3 means in plot 78 are slightly higher than the 5x5 means. The graphs in figure 4-29.c

and figure 4-29.d, on the other hand, show that the variability has been reduced using the
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Variable Height Basal Area Stem Density
Band 1 -0.51 -0.52 -0.48
Band 2 -0.80 -0.74 -0.74
Band 3 -0.72 -0.72 -0.67
Band 4 -0.64 -0.54 -0.64
Band 5 -0.71 -0.73 -0.65
Band 7 -0.59 -0.62 -0.54

Table 4-9. Pearson correlation values for the
relationship between the Landsat TM channel
values, and Height and Basal Area calculations for
the ‘Scotland bio box’ data set

thesis. The analysis of the forest reflectance suggests that a neural network should be able
to map input DN values to the appropriate Basal Area and Height classes with a relatively

high level of accuracy.

4.9 Summary of Chapter IV

This chapter has provided a detailed description of the methodology for creating
each data set used in this thesis: ‘Portugal sixteen class’, ‘Portugal fifteen class’, ‘Portugal
seven class’, ‘Scotland eight class’, ‘Scotland bio all’ and ‘Scotland bio box’. The data
sets created from reference data from the Portugal site were described in sections 4.2 to
4.5. The data sets created from reference data from the site in Scotland were described
sections 4.6 to 4.8.

The study of the ‘Portugal sixteen class’ data set, a pure data set, shows that classes
multi-spectral data for most classes are not normally distributed which consequently
implies that a technique such as maximum likelihood classification may not be
appropriate. Considering that pure classes are likely to be more normally distributed that
mixed classes, this conclusion extends to the mixed data sets. Furthermore, the study of
the ‘Portugal seven class’ data set showed that classes do not appear to mix linearly. This
implies that a technique such as the linear un-mixing model, already discarded because of
the number of classes under investigation, may not be appropriate. The analysis of the data
illustrated the complexity of the data collected at the site in Portugal and suggested that it
may cause inaccuracies and difficulties at the classification stage. This conclusion, later
verified in the experiments which are described in subsequent chapters, suggested the
need for accurate ground data for a second experimental site.

The second site was situated in the Dumfries and Galloway region of Scotland.
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Whereas the Portugal data was composed of many classes and mixtures, the only mixing
studied here was that between Sitka Spruce coniferous trees of different ages and Grass.
Because of the characteristics of the site and the use of precise measurements of structural
variables as substitutes for proportions of each class, a high level of confidence in the
accuracy of the data could be associated with each data set created from the reference data
collected.

The next chapters will describe the experiments that were carried out using the data

sets discussed in this chapter.




Chapter V

SENSITIVITY ANALYSIS OF THE NETWORK

The overall aim of the thesis is to test the hypothesis that the network can identify
sub-pixel information. However, before analysing the output from the neural network, it
is necessary to account for factors not related to sub-pixel information that may influence
the outcome of experiments. Running the network requires the user to set (1) the number
of iterations to which the network is trained and (2) the architecture of the network. It is
necessary to establish whether the choices that are made influence the performance of the
network. In addition, the initial values of the weights determine the configuration from
which training starts, therefore training may be affected by (3) different weight
initialisations. The user must also set (4) the learning rate. Finally, observations may be
affected by (5) the manner in which the data set is divided into training and testing data
sets. The effect of these parameters (they will be referred to as such even though some of
them are not strictly speaking parameters) has to be quantified before soft classification
of pixels by the neural network can be evaluated.

When neural networks are used in the remote sensing literature, authors very rarely
present thorough investigations into the sensitivity of these networks; rather the emphasis
is usually placed on the performance of the network for a given application. Sensitivity
experiments are extremely time consuming both to run and to analyse. Nevertheless, an
initial study of the performance of the network over a range of parameter values is
essential as it provides the framework within which further experiments can take place.

Exact parameter choices cannot be compared because different networks and data
sets require different settings. Nevertheless, it is interesting to contrast general trends in
the experiments reported in this chapter and those reported in the literature. The results
from this study are compared with two articles of particular reference to sensitivity
experiments for networks trained with remotely sensed data: Skidmore et al. (1997) and
Paola and Schowengerdt (1997).

This chapter is divided into several sections. First, the general design of the

experiments is discussed. Then, the methodology and results for each individual
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parameter are reported; their effect on the performance of the network is evaluated using
graphs which show the overall accuracy of classification of the testing set over a range of
values of the parameter. Each parameter is tested by keeping all others constant. The aim
of the experiments is to show that observations in subsequent experiments will not be
dependent on particular choices of parameters. Results are compared with those reported

in the articles by Skidmore et al. (1997) and Paola and Schowengerdt (1997).

5.1 General Design of the Experiments

Ideally, for each neural network classification problem, a large number of training
and testing runs of the network would be carried out so that the effect of any one
parameter (number of iterations, architecture of the network and so on) could either be
discarded as insignificant or fully quantified. Parameters could be comprehensively tested
so that every possible network configuration could be studied. However, this is not
feasible as there are too many possible values for the parameters, too many combinations
of parameters and the sometimes lengthy training time of the neural network restricts the
number of training runs which can be executed for each experiment. A representative
sample of experiments were therefore carried out to study the effect of changes to the

following parameters on the classification results
* number of iterations,

» architecture of the neural network,

initial weight values,
* learning rate,

» composition of the data sets.
For each study, all parameters other than the one under investigation were kept constant.
Initial values for the parameters were based on preliminary experiments not reported here
and advice from experienced users of the network (Kanellopoulos, personal
communication).

Sensitivity experiments could be carried out on simulated data which have the
advantage of perfectly known characteristics. However, it is difficult to model data so that
they resemble real data enough for results from simulated data to be extrapolated to the
real data set. Furthermore, the behaviour of the network specifically trained with the data
sets used in the thesis is of interest here, not simply the performance of the network.

Therefore, the networks used the ‘Portugal sixteen class’ and ‘Scotland eight class’ data

sets described in chapter IV, section 4.3 and section 4.7 respectively.
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In subsequent experiments, described in chapters VI and VII, other data sets and
target types were used. Even though these will produce variations in the behaviour of the
network, the variability is expected to be minimal. Although different data sets and target
representations may affect the classification accuracy of the network and the details of
parameters, the pattern of parameter effects should remain similar. This is confirmed by
the fact that similar experiments to the ones reported here were carried out on different
data sets by Kanellopoulos (personal communication) and general trends were similar. |

The data sets were randomised and then divided into a ratio of number of training
pixels to number of testing pixels of 2:1. The composition of each data set is provided in
table 5-1 and table 5-2 (Id. = class identification number; TR = number of pixels in the
Training file; TS = number of pixels in the Testing file; Total = total number of pixels in

the data set).

Id. Class Description TR TS Total
1 | Closed Canopy Sitka Spruce 126 63 189
2 | Closed Canopy Lodgepole Pine 139 70 209
3 [ Water 178 89 267
4 | Background (Grass, Rocks) 425 212 637
5 | Deciduous 279 139 418
6 | Low Density Trees (mainly Sitka Spruce) 251 125 376
7 | Medium Density Trees (mainly Sitka Spruce) 139 69 208
8 | Closed Canopy Trees (Mixed) 283 142 425

Total number of pixels 1,820 909 2,729

Table 5-1. Composition of the training and testing
files for the ‘Scotland eight class’ data set

Id. Class Name TR TS Total | Id. Class Name TR TS Total
1 | Tiled/ Concrete 221 93 314 9 | Maize 224 58 282
2 | Sand 73 99 172 10 | Aquatic Plants 373 128 501
3 | Bare Soil 365 503 868 11 | Vineyards 623 423 1,046
4 | Sea Water 233 135 368 12 | Weeds 626 515 1,141
5 | Fresh Water 189 88 277 13 | Garrigue 1,184 | 281 1,465
6 | Estuary / Lagoon 470 251 721 14 | Grasslands 2,220 | 1,111 | 3,331
7 | Wheat 267 156 423 15 | Deciduous 458 370 828
8 [ Barley 190 121 311 16 | Coniferous 331 126 457

Total number of pixels 8,047 | 4,458 | 12,505

Table 5-2. Composition of the training and testing
files for the ‘Portugal sixteen class’ data set




Both sets of data assume that pixels are covered 100% by one class only. The targets
for each pixel are vectors of length n where n is the number of pure classes. For each
pixel, the class to which it belongs is identified by +1 in the target; all other classes are set
to -1 (see chapter III, section 3.3.4).The architecture of the network for the Portugal site
was set at 6-28-16 and the learning rate was fixed at 0.1 as recommended by Wilkinson
et al. (1995) who used the same network implementation on the same data sets. For
Scotland, the initial architecture was set to 6-15-8 and the learning rate was also set to 0.1

Weights were usually initialised using a constant as a seed value. This is the method
used in the original implementation of the network. The routine which calculates random
initial weight values uses a constant as a seed. This means that the weight values are
random but for the same configuration of the network they remain the same set of random
values; this is useful for re-running networks for checking purposes. This routine was
modified to allow the option of choosing the computer clock’s current time as a seed
value. In this way, the initial weight values are different every time the network is run
even if the same configuration is kept.

The end of training occurs either because the number of iterations set by the user
has been reached or because the system error has fallen below the error threshold set by
the user (see chapter I1I, section 3.1.1). In order that the controlling variable for
termination of training would not be the error threshold, this was set to a low value of
0.0001 for all the experiments.

Performance of the network can be measured using the root mean square error of
the system during training or the accuracy of classification of the test set, given as the
overall percentage of correctly classified pixels. During training, the temporary error on
the learning set is logged at every three iterations. In addition, every fifteen iterations, the
temporary accuracy of classification of the testing set can be calculated. The temporary
error or accuracy numbers are the values that would be obtained if training was stopped
at that point. The final error and accuracy values are reached on the last iteration. The
temporary accuracy of classification of the learning set is also calculated at every fifteen
iterations, but, as explained in chapter III, section 3.3.6, the accuracy of classification of
the learning set will be biased since the network has already seen the patterns. For this

reason, the learning accuracy was not used to judge the performance of the network.

5.2 Number of Iterations

It was seen in chapter III, section 3.3.6, that the performance of the network is partly

a function of the number of iterations with which it is trained. Independently of how many
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iterations it is trained with, an inadequate network will not perform well. However, even
if a network of adequate size is used, this is not a guarantee of good performance. 1f the
network is trained for too many iterations, it may learn the training data very well but be
unable to generalise and classify unseen data; this is termed over-fitting. On the other
hand the network may not be able to learn a mapping between inputs and outputs if is
trained for too few iterations. The aim of this experiment is to determine how particular

choices of iterations affect classification accuracy.

5.2.1 Methodology

In a graph of error against iteration number, the error curve, formed by plotting the
temporary error at every three iterations, is generally expected to decrease as iterations
increase from 1 to +eo. The curve formed by plotting the overall testing accuracy at every
fifteen iterations would be expected to rise. In other words, the network should learn more
about the mapping between inputs and outputs with every iteration. However, the rate of
learning is rapid at first and then decreases as the network reaches a point at which it has
learned all it can. The testing accuracy may then decrease as the network over-learns its
training data. The point at which over-fitting occurs cannot be deduced a-priori. The point
at which the overall testing accuracy no longer rises can be taken as the minimum number
of iterations needed to train the network.

Two neural networks, one for the Portugal data and one for the Scotland data, were
trained to 3000 iterations. This number was considered adequate to provide an overview
of the behaviour of this particular network implementation, but other networks may
require much longer training (Paola and Schowengerdt, 1994). The parameter settings for

the network are listed in table 5-3, the parameter under investigation is italicised.

Parameters Portugal Scotland

Number of iterations 3000 3000
Architecture: Input Nodes 6 6

Hidden Nodes 28 15

Output Nodes 16 8
Type of weight initialisation | Constant seed value Constant seed value
Learning rate 0.1 0.1
Randomisation Once Once
Division ratio TR:TS=2:1 TR:TS=2:1

= 8,047 : 4,458 =1,820:909

Table 5-3. Parameter settings for the experiment
testing the effect of the number of iterations on the
overall testing set classification accuracy










The error curve in figure 5-1 does not necessarily mirror the testing accuracy curve
of figure 5-2 or vice-versa. This is because the error is calculated on the training data
whereas the accuracy is measured on the testing data. For this reason, testing accuracy is
from now on taken as the only measure of the performance of the network. Considering
that the lengthy training time is one of the disadvantages of the neural network approach,
and that excessive training can introduce overtraining and loss of generalisation power, it
is recommended to keep the number of iterations small. For subsequent experiments, the

number of iterations was set at 600.

5.3 Architecture

The architecture of the network, and more particularly its number of hidden nodes,
will affect its performance (chapter 111, section 3.3.4). Too few nodes means that the
network cannot learn the mapping between inputs and outputs. If there are too many
nodes, although the network may learn the training patterns well, it will no longer have
the ability to generalise for unseen patterns.

The aim of this experiment is to examine the behaviour of the network with different
numbers of nodes. It is expected that for a given problem, networks with a large numbers
of nodes in the hidden layer(s) would show increasing accuracies of classification until a
point beyond which over-training had occurred. After this point, accuracy would be

expected to decrease and stabilise.

5.3.1 Methodology

The number of input and output nodes of a network are pre-defined by the nature of
the problem that is being addressed. In this case, there are six input nodes and sixteen
output nodes for the Portugal data set and six input nodes and eight output nodes for the
Scotland data set. Changing the number of input or output nodes implies changing the
nature of the problem. For this reason, the only architectural parameters which are varied
are the number of hidden layers and the number of nodes in each hidden layer of the
network. The influence of the number of input and output nodes on classification accuracy
was not investigated. Only networks with one hidden layer were studied. Networks with
two hidden layers have not been shown to produce a large improvement in classification
results, and they greatly increase the complexity, and thus the training time, of the
network (Hepner et al., 1990).

In this set of experiments, the number of nodes in the hidden layer was varied

between 1 and 50 for Portugal and between 1 and 30 for Scotland. Fewer network

104 -




experiments were run for the Scotland data set because it contains fewer pixels, fewer and
more spectrally homogeneous classes, and is therefore a less complex problem requiring
fewer hidden nodes. The results obtained in the previous experiments tend to confirm this
since the accuracy of classification of the testing set was higher for Scotland than it was
for Portugal, even though the former only contained fifteen nodes in its hidden layer
whereas the latter had twenty-eight.

Each network architecture was trained once for 600 iterations. The final testing
accuracy for each network was used to evaluate the performance of the different
architectures by plotting it against the number of nodes in the hidden layer. It was assumed
that the final testing accuracy for each run was representative of the maximum accuracy
which could be reached for that architecture. In other words, it was assumed that the
temporary accuracies were lower for fewer iterations. As seen in the previous experiment,
this assumption is reasonable once the network learning has stabilised. Other parameters

were kept as for the previous experiments; parameter settings are listed in table 5-4.

Parameters Portugal Scotland

Number of iterations 600 600
Architecture: Input Nodes 6 6

Hidden Nodes 1t 50 11030

Output Nodes 16 8
Type of weight initialisation Constant seed value Constant seed value
Learning rate 0.1 0.1
Randomisation Once Once
Division ratio TR:TS=2:1 TR:TS=2:1

= 8,047 : 4,458 =1,820:909

Table 5-4. Parameter settings for the experiment
testing the effect of the network architecture on
classification accuracy

5.3.2 Results and analysis
Figure 5-3 shows the final accuracy of classification of the testing set for each network
with the number of hidden nodes as shown. At first, the accuracy increases as expected.
Then beyond a certain minimum threshold, around five hidden nodes for Scotland and
fifteen hidden nodes for Portugal, the accuracy remains relatively constant although
values oscillate by approximately 5% points for the Scotland data set and by about 7%
points for the Portugal data set. There appears to be no pattern in the oscillation, for
example with regard to odd and even numbers of nodes, which could suggest a method

for determining the best architecture
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5.4 Initial Weight Values

As explained in chapter III, section 3.2.2, the network learns by changing its weight
values so as to decrease the system error for the next iteration of the pattern. Initial
weights should be initialised to small random values since the error is proportional to the
weight changes. If weights are too large, then they will require large changes and training
is unlikely to succeed. If weights are initialised to the same values, weight changes will
be the same and learning cannot take place. The initial weight values therefore influence
the final outcome of a classification. However, for a given problem, different sets of
random initial weight values should produce similar final accuracies. The aim of this
experiment was to determine whether networks with the same configuration but initialised
with different random weights would produce different overall accuracies of

classification.

5.4.1 Methodology

Network weights for fifty networks were initialised with the current time, as
provided by the operating system of the computer, as a seed value. In this way, the
configuration of the network is kept constant except for the initial weight values which
change for each network. Parameter settings are listed in table 5-5. Results are displayed
in a graph showing the final overall testing accuracy for each network and used to evaluate

the behaviour of the network implementation.

Parameters Portugal Scotland
Number of iterations 600 600
Architecture: Input Nodes 6 6
Hidden Nodes 28 10
Output Nodes 16 8

Type of weight initialisation

Time as a seed;
50 initialisations

Time as a seed;
50 initialisations

Learning rate 0.1 0.1

Randomisation Once Once

Division ratio TR:TS=2:1 TR:TS=2:1
=8,047: 4,458 = 1,820 : 909

Table 5-5. Parameter settings for the experiment
testing the effect of the initial values of the weights

on classification accuracy

5.4.2 Results and analysis
Figure 5-4 is a plot of the final testing accuracy after 600 iterations, plotted for each

weight case. The networks trained with the data from Portugal demonstrate greater
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5.5 Learning Rate

The learning rate is a constant, set by the user, which governs the size of changes
from one weight value to another during training. Training with small learning rates is
slow but the network is expected to converge eventually, as long as it does not get trapped
in a local minimum. Large learning rates enable the network to step out of local minima
but may cause oscillations so that the network cannot converge (see chapter III, section
3.3.3). The aim of this set of experiments is to determine the effect that different learning
rates have on the overall testing accuracy of a network during training. The behaviour of
the network during training is studied by plotting the temporary overall testing accuracies

at every fifteen iterations. The final overall accuracies are reached at the last iteration.

5.5.1 Methodology

The complexity and size of the data set from Portugal are such that it takes a very
long time to train networks. Furthermore, it has been shown in the previous sections that
the behaviour of networks trained on the Scotland data set are similar to those of networks
trained on the Portugal data set, although the latter show larger oscillations. Therefore, for
this and the next set of experiments, networks were only trained and tested on the data
from Scotland. Eleven networks with the parameters listed in table 5-6 were trained and

tested with learning rates in steps of 0.1 between 0.1 and 1.0 and with an additional step

of 0.05.

Parameters Scotland

Number of iterations 600

Architecture: Input Nodes 6
Hidden Nodes 10
Output Nodes 8

Type of weight initialisation | Constant seed value

Learning rate 0.05, 0.1, 0.2, 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9. 1.0
Randomisation Once
Division ratio TR:TS=2:1=1,820:909

Table 5-6. Parameter settings for the experiment
testing the effect of the learning rate on classifica-
tion accuracy

5.5.2 Results and analysis
The results are illustrated in figure 5-5.a and figure 5-5.b which show the temporary
overall testing accuracies, for each network trained with a different learning rate, at every

iteration. The graphs show that small learning rates (figure 5-5.a) provide a stable learning
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Schowengerdt (1995b) compare the n'" error with the n-/™ error at fixed intervals. If the
former is larger then the learning rate is decreased, otherwise it is increased. The
advantage of such a method is that it places little importance on the original values set by
the user and convergence is more likely to occur. Experiments were run where the
learning rate was diminished by 0.02 when the error had changed by less than 0.1 in ten
iterations but there was no improvement in the accuracy of classification for these data.

This procedure was therefore not carried out further in the thesis.

5.6 Composition of the Data Sets

The testing data should be representative of the training data for an unbiased
estimation of the capabilities of the network (see chapter 111, section 3.3.5 and section
3.3.6). The question arises as to whether the same data set produces different
classification accuracies if the data are presented to the network in a different order,
through different randomisations, and/or if the number of training pixels to the number of
testing pixels ratio changes. As long as patterns are randomly presented to the network
and not class by class, since this may cause the network to be biased towards the last set
of patterns, the final accuracy should not be affected. On the other hand, fewer pixels in
the training data set may make it less representative of the testing data set. In this case,
final test data classification accuracies may decrease with lower ratios of training to
testing pixels. The aim of this set of experiments was to determine whether different
randomisations of the same data would produce different classification accuracies, and
also to determine whether decreasing ratios of training to testing pixels would produce a

reduce level of testing accuracy.

5.6.1 Methodology

The influence of different randomisations of the data files can be evaluated from a
plot of final overall testing accuracy for each network trained with a differently
randomised set of training and testing files. The accuracy should remain the same if there
is no effect. Similarly, the influence of training to testing pixels ratio can be evaluated
from a plot of overall testing accuracy for each network trained with differently
randomised sets of training and testing files. The 2:1 ratio was tested on thirty differently
randomised files; other ratios were randomised ten times.

Networks were trained and tested with the parameter settings listed in table 5-7.
‘Randomised 30 times; 2:1° means that 30 different randomisations of the data set were

carried out; then each randomised file was divided into a ratio of 2:1 for the number of
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ratio. This could be because the network has more patterns to learn the mapping of input

to output for the training data which then causes a loss in its ability to generalise.

5.6.3 Summary

The final test data classification accuracies for networks trained with the same data
sets, but randomised differently, were not expected to change. However, accuracies were
expected to decrease as the ratio of training to testing pixels decreased.

The results of the experiments tend to reinforce these expectations. Accuracies
varied by a maximum of 5% points and decreased as the division ratio of training to
testing pixels decreased. An exception was the ratio of 2:1 which produced lower
accuracies than expected. Considering, as always, that length of training time is an issue,
it appears as a rule of thumb that a ratio of 1:2 between number of training patterns and
testing patterns is adequate. Furthermore, it seems possible to assume that the level of
accuracy produced for any one experiment will be almost the same as the level of
accuracy produced by a network with the same configuration but differently randomised
data.

Skidmore et al. (1997) report on experiments to test whether a network tested on
randomised data performs better than on sequential data. Unusually, they report higher
accuracies with the sequential data. However, they comment that even the sequential data
may be quite random as the data set is large. Since details of the methodology and contents
of the data sets are not provided in the article, it is not possible to draw general
conclusions. They do not test different ratios or different randomisations. In an earlier set
of experiments, Paola and Schowengerdt (1995a) find that training with small data sets
produce larger training accuracies but lower testing accuracies. Staufer and Fischer
(1997) measure the overall accuracy of classification of a network and find that when the
training data is diminished by 40% the overall accuracy only changes by -1.24%, and

when the training data is diminished by 80% the accuracy decreases by 6.66%.

5.7 Summary of Chapter V

The aim of the experiments in this chapter was to investigate the effect that changes
to different parameters of the network may have on the accuracy of classification. Each
parameter was tested in turn, keeping all others constant.

In section 5.2, the classification accuracy was shown to increase with the number of
iterations of the data until a point beyond which it stabilises and may eventually decrease.

The error of the system decreases with the number of iterations until a point beyond which
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it stabilises and may eventually increase. Since the error is measured on the training data
set, it is not used subsequently as a measure of the performance of the network. The
number of iterations to which networks will be trained for further experiments is set to
600. It is understood that higher accuracies may be reached with more iterations but 600
should produce a representative accuracy.

Experiments concerned with the architecture of the network, and more particularly,
the number of nodes in the hidden layer, showed that the classification accuracy increases
with the number of hidden nodes until a point beyond which it stabilises (section 5.3). For
these data sets, the best architecture was 28 nodes in the hidden layer for the Portugal data
and 10 for the Scotland data. Subsequent experiments which use similar architectures for
similar data sets are expected to produce accuracies which are representative of the best
accuracy, even if they may not be the best architecture.

Different initial weight values were studied in section 5.4 and shown to produce
classification accuracies which oscillate within a small range dependent on the problem.
The oscillation of the accuracies for different initial weight values is expected to be small
enough that reporting the results of only one network will be representative of the results
which would be obtained when training with several different weight initialisations.

Learning rates were investigated in section 5.5. Small learning rates generally
produce smoother learning curves and higher final classification accuracies than larger
learning rate. A learning rate for subsequent experiments of 0.1 is expected to produce
smoother learning and higher classification accuracies than larger learning rates.

Finally, characteristics of the training and testing data set were examined in section
5.6. As the division ratio of the training to testing pixels increases, the final classification
accuracy tends to increase. The data sets used in subsequent experiments are divided in a
ratio of 1:2 for the number of pixels of training data to the number of pixels of testing data.
This division is expected to provide an adequate generalisation in less time than a higher
division ratio.

Presenting the network with differently randomised data sets produces
classification accuracies which oscillate within a small range dependent on the problem.
Results from networks trained with a single randomised data set are expected to be
representative of the results that would be obtained from a set of networks trained with
different randomisations.

Oscillation effects are expected to cancel each other out since they appear to be
randomly distributed. For example, if a particular set of initial weights produces a
classification accuracy which is lower than the mean classification accuracy (achieved
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with several initial weight values), this effect will be minimised or cancelled if the
particular randomisation of the data set produces a classification accuracy which is higher
than the mean classification accuracy (achieved with different randomisations).

The results generally agree with those presented in the literature such as by Paola
and Schowengerdt (1997) and Skidmore et al. (1997). Skidmore et al. (1997) argue that
the choice of network parameters is critical to success. From the results in this chapter, it
is suggested that if appropriate values are selected for the parameters, then results will
average to the same overall accuracies. Particularly if the best performance is not of
interest, the user can run the network without having to worry that choices that have been
made will have a significant consequence on the results. On the other hand, if the best
performance is of interest, then a systematic review of parameter values and average

overall accuracies must be undertaken. Having investigated the sensitivity of the network,

the study of the neural network outputs can now take place.




Chapter VI

In the previous chapter the effect of changes to the parameter settings of the neural
network was assessed. The study of neural network outputs can take place with the
confidence that appropriate choices of iteration number, architecture, initial weight
values, learning rate and training and testing file division ratio and randomisation do not
unduly influence observations. A combination of qualitative and quantitative analyses are
used to examine neural network representation of mixed pixels. This chapter provides a
qualitative appraisal of the neural network outputs.

The first section of this chapter investigates the relationship between neural network
output values and correctly or incorrectly classified pixels for a data set containing only
pure pixels. This serves to illustrate the reasons which led to the initial hypothesis that
neural network output values may reflect the proportions of classes present within pixels.
As discussed in chapter 11, several authors have suggested that there is a relationship
between neural network output values and percentage cover of classes within pixels
(Atkinson et al., 1997; Foody et al., 1997; Moody et al., 1996) and the remainder of the
chapter describes experiments carried out to test this hypothesis.

Subsequent sections use visual tools to analyse the results of soft classification by
the neural network. Fraction images, described in the second section, are similar to those
normally produced in linear un-mixing methodologies and allow a spatial analysis of
neural network output values. However, the relationship between classes within a pixel is
lost using this type of output. A new non-spatial visualisation tool is described in the third
section that allows the direct comparison of reference data and neural network outputs and
keeps the relationship among classes intact. The fourth and final section examines the
representation of mixed pixel data by the neural network, particularly for unknown
classes, using a new graphical technique which shows the network response at every

output node for pixels grouped according to their dominant class.
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6.1 Network Output Strength Statistics

The aim of the experiments reported in this section is to determine whether there is
arelationship between output values and correctly or incorrectly classified pixels in a pure
data set. Although a data set is considered to contain only pure pixels, it may in fact
contain some mixed pixels. A pixel may be incorrectly classified by the network if its
spectral signature is similar to the spectral signatures of more than one class or if its
spectral signature is unlike the spectral signature of its dominant class. This may happen
if classes are not spectrally separable or the pixel is mixed. If there is a difference between
the response of the network for correctly classified pixels and incorrectly classified pixels,
this would suggest that neural networks may be able to identify mixed pixels and perhaps
their component classes.

As discussed in chapter II, there is mathematical proof that outputs from a multi-
layer perceptron, when they are scaled between zero and one, approximate Bayesian a-
posteriori probabilities under a series of conditions which include infinitely large data
sets, adequate architecture and correct representation of the true data statistics by the
training data (Richard and Lippman, 1991; Ruck et al., 1990; Shoemaker, 1991). If this is
so, then scaled output values from the neural network should sum to one (Lowe and
Webb, 1991). It is also presumed that if neural network outputs are a-posteriori
probabilities, correctly classified pixels will have a high value in the dominant class node
and low values elsewhere. Kanellopoulos and Wilkinson (1990) found that the average
value of maximal firing of the output units was substantially higher for correctly classified
pixels than for misclassification cases. On the other hand, misclassified pixels are
expected to have high values in more than one output node, corresponding to the classes

that are spectrally similar or that are present within the pixel.

6.1.1 Methodology
The following hypotheses were tested using Mann-Whitney U tests, graphs and

mean and standard deviation calculations.

1- the sum of the output strengths for correctly and incorrectly classified pixels is

equal to one;

2- the maximum output for correctly classified pixels is greater than the maximum

output for incorrectly classified pixels;

3- the second maximum output for correctly classified pixels is smaller than the

second maximum output for incorrectly classified pixels;
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4- the difference between the maximum output and the second maximum output is
greater for correctly classified pixels than for incorrectly classified pixels.

The Mann-Whitney U test is similar to the student t-test except that the latter assumes that
data is normally distributed and is usually applied to small data sets. The Mann-Whitney
U test assumes similar distributions between data sets with possibly different medians.
Skidmore et al. (1997) use this test for their investigation of the effect of changes to neural
network parameters. Mean and standard deviation statistics and the Mann-Whitney U test
provide a summary statistic for the whole data set. On the other hand, plots of individual
pixel values show the distribution of results for each pixel. Therefore, the hypotheses are
tested using a combination of these techniques.

Neural network experiments were run on the pure ‘Portugal sixteen class’ data set

using the parameters listed in table 6-1.

Parameters Portugal 16 class

Number of iterations 600

Architecture: Input Nodes 6
Hidden Nodes 28
Output Nodes 16

Type of weight initialization | Constant seed value

Learning rate 0.1
Randomisation Once
Division ratio TR:TS=2:1=28,047:4,458

Table 6-1. Parameter settings for the ‘Portugal
sixteen class’ data set

6.1.2 Results and analysis

The final accuracy of classification was approximately 75%. The network output
values from the output file created at the testing stage were scaled between 0 and 1 and
the following variables were identified or calculated for each pixel: the sum of the scaled
outputs, the maximum value of the outputs, the next (or second) maximum value of the
outputs and the difference between the latter two. The testing data was then divided into
two groups: correctly classified pixels and incorrectly classified pixels. There were 3,292
correctly classified pixels and 1,166 incorrectly classified pixels in the test set. Mean and
standard deviations were calculated for each variable within each group. Results are
recorded in table 6-2.

The table shows that the mean values of the sum of the scaled outputs are close to
one but not exactly one. Incorrectly classified pixels might have been expected to have a

mean that is further from the theoretically ideal sum of one but this is not the case; the
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3,292 Correctly 1,166 Incorrectly
Classified Pixels Classified Pixels
Variable Name Mean Starfd&frd Mean Star.ndatrd
Deviation Deviation
Sum of outputs 1.17 0.28 1.14 0.37
First maximum 0.88 0.17 0.70 0.24
Second maximum 0.18 0.15 0.28 0.19
Difference between the first 0.71 0.25 0.41 0.28
and second maximums

Table 6-2. Statistics from the neural network
outputs of the ‘Portugal sixteen class’ data set

mean of the correctly classified pixels is further from one than the mean for the incorrectly
classified pixels. On the other hand, the standard deviation for the incorrectly classified

pixels is larger than for the correctly classified pixels.

The mean of the maximum value for correctly classified pixels is higher than for the
incorrectly classified pixels. If neural network outputs do indeed represent the a-
posteriori probability of assigning pixels to each class as suggested in the literature, then
these results make sense. Incorrectly classified pixels are likely to have a spectral
signature that is similar to more than one class, the network therefore has difficulty in
assigning any of the classes with any certainty.

The mean second maximum output value is lower for correctly classified pixels than
it is for incorrectly classified pixels. Again, this suggests that for correctly classified
pixels the network has some degree of certainty that the spectral signature is not similar
to any of the other classes. On the other hand, for incorrectly classified pixels, the network
is less certain that the pixel may not belong to other classes. The mean difference between
the mean maximum output value and the mean next maximum output value is
consequently larger for correctly classified pixels than it is for incorrectly classified
pixels.

The hypotheses concerning the difference between correctly classified and
incorrectly classified pixels, hypotheses 2, 3 and 4, were tested formally with a Mann-
Whitney U test using S* software. Stated formally, the second hypothesis tests the null
hypothesis Hy: ny = n, versus the alternate hypothesis H;: n; > n, where n; is the median
first maximum for correctly classified pixels and n, is the median first maximum for
incorrectly classified pixels. The null hypothesis was rejected at p < 0.0001 confirming

that the correctly classified pixels have a higher first maximum than incorrectly classified
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pixels. Unfortunately, when values are very close to zero or very close to one, the S*
software does not report exact values but rather rounds the numbers to zero and one.

The third hypothesis tests the null hypothesis Hy: n; = n, versus the alternate
hypothesis H;: n; > n, where n; is the median first maximum for correctly classified
pixels and n, is the median first maximum for incorrectly classified pixels. The null
hypothesis was rejected at p < 0.0001 confirming that the correctly classified pixels have
a higher first maximum than incorrectly classified pixels.

The fourth hypothesis tests the null hypothesis Hy: n; = ny versus the alternate
hypothesis H;: ny > n, where n; is the median difference between the first and second
maximums for correctly classified pixels and n, is the median difference between the first
and second maximum for incorrectly classified pixels. The null hypothesis was rejected
at p < 0.0001 confirming that the correctly classified pixels have a larger difference
between the first and second maximums than incorrectly classified pixels.

The summary statistics that have been discussed provide overall accuracy values
that can be compared but they provide no information regarding the distribution of results
over the range of data values. Graphs of the values for each pixel can show the distribution
of results. Figure 6-1 contains plots of the sum of the scaled outputs, figure 6-1.a, the first
maximum, figure 6-1.b, the second maximum, figure 6-1.c and the difference between
these two, figure 6-1.d for each pixel in the test set. Correctly classified pixels are plotted
in green; incorrectly classified pixels are in plotted in blue.

Figure 6-1.a shows that there appears to be no pattern between correctly and
incorrectly classified pixels in terms of the sum of their outputs. As mentioned above,
misclassified pixels might have been expected to have consistently lower or higher sums
of outputs than correctly classified pixels but this does not appear to be the case. The
incorrectly classified pixels tend to be grouped together. Since the testing file had not been
randomised, neighbouring pixels belong to the same class. This shows that some classes
are consistently misclassified, which may mean that they are either poorly defined or they
contain many mixed pixels, whereas others are consistently correctly classified.

Figure 6-1.b shows that incorrectly classified pixels rarely reach a maximum output
value of 1 unlike the correctly classified pixels, and figure 6-1.c shows that their second
maximum is rarely in the region of 0. Pixels which have a maximum close to 1 often have
a second maximum close to 0. In other words, when the neural network is certain about

an assignment it seems to be equally certain about not assigning any of the other classes

and the difference between the first and the second maximum is large as shown in , figure

6-1.d.
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were assigned -1. For example, the target for a pixel with a composition of [30% Class 1
+ 50% Class 6 + 20% Class 10] would be +1 for class 6 and -1 for all other classes. Class
labels and their percentage cover values are read into vector arrays in the order in which
they are presented in the reference data file. For compositions with two or more dominant
classes, the last dominant class in the vector array is set to +1, the others are set to -1. For
example, a composition of [30% Class 10 + 20% Class 7 + 30% Class 6 + 20% Class 15]
would be represented by a target with a value of +1 for class 6 and -1 for all other classes.
These pixels could introduce some negative bias in the accuracy of classification since a
pixel may be identified as misclassified even though it is correctly classified. In the
example above, identifying the pixel as belonging to class 10 is in fact as correct as
identifying it as belonging to class 06. There are 5,257 pixels with two or more classes
with equal cover in the ‘Portugal fifteen class’ data set, which corresponds to almost 20%
of the data set. However, many of these pixels have one dominant class and then equal
proportions of second and third classes.

Classification accuracy of the ‘Portugal fifteen class’ data set is similar to that of the
‘Portugal sixteen class’ data set: ~ 70%. There were 12,880 correctly classified pixels and
5,554 incorrectly classified pixels. The mean sum of outputs, mean maximum output
values, mean second maximum output values and the mean difference between the latter

two for each group of pixels are listed in table 6-4 together with their standard deviations.

12,880 Correctly 5,554 Incorrectly
classified pixels classified pixels
Variable Name Mean Star}dzfrd Mean Stal}datrd
Deviation Deviation
Sum of outputs 3.62 0.05 3.61 0.05
First maximum 0.16 0.03 0.13 0.03
Second maximum 0.09 0.01 0.10 0.01
Difference between the first 0.07 0.04 0.04 0.03
and second maximums

Table 6-4. Statistics from the neural network
outputs of the ‘Portugal fifteen class’ data set

The mean sum of the scaled outputs is much higher than for the previous data set:
approximately 3.6 compared to approximately 1.1. The values of the neural network
outputs for the maximum and the second maximum, regardless of whether the pixel is
classified correctly or not, are much lower than in the previous experiment, see table 6-2.
Even though the scaled neural network outputs can take on values as high as 1.0, their

mean value is ~0.15. The difference between the two maximums is again smaller for
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misclassified pixels than it is for correctly classified pixels, but the size of the difference
is very small as are the standard deviations for each variable.

As emphasized in section 6.1, mathematical theory suggests that neural networks
approximate Bayesian a-posferiori probabilities and output values should consequently
sum to one. For a network with an activation function that does not lie between 0 and 1,
as is the case here, network outputs must be scaled. Since it is the network’s ability to
approximate a-posteriori values naturally that is of interest, outputs are not normalised
(forcing the sum to one by dividing each output value by the sum of the outputs).

In this experiment, the sum of the output values is much larger than one and the
network therefore does not appear to approximate a-posteriori probabilities. However,
comparing the ground data with the resulting output values suggests that they are closely
connected. Dominant classes of a pixel are dominant in the network output values and
secondary classes often have higher output values that other classes. This suggests that the
output values of the network are related to a-posteriori probabilities but that the
relationship may be complex. Simply linearly scaling the outputs between -1.7 and 1.7 to
lie between 0 and 1, for example, may tend to exaggerate the importance of small output

values. Further analysis of these results is presented in section 6.2 and section 6.3.

6.1.3 Summary

The aim of the experiments in this section was to determine whether there was a
relationship between neural network output values and correctly or incorrectly classified
pixels. There appeared to be no relationship between correctly or incorrectly classified
pixels and the sum of output values. The mean sum of the outputs for the ‘Portugal sixteen
class’ data set was close to 1.1 whereas the mean sum of the outputs for the ‘Portugal
fifteen class’ data set was close to 3.6. This suggests that the sum of the neural network
outputs is not an indication of overall accuracy of classification but may be useful as a
measure of the complexity of the data set, and possibly, of the presence of mixed pixels.

The mean output values for the first maximum and second maximum showed a
relationship with correctly and incorrectly classified pixels. Correctly classified pixels
had larger maximum output values than incorrectly classified pixels. Using a maximum
likelihood classifier on a per-field basis for crop analysis, Foody ef al. (1992) found
similar results although the difference between correctly and incorrectly classified pixels
was small. Correctly classified pixels had smaller second maximum values and
consequently larger differences between the first and second maximum than incorrectly

classitied pixels.
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Assuming that pixels are misclassified because they are either mixed or some
classes are spectrally similar, the results imply that the network produces output values
for mixed or misclassified pixels that are different from those produced for correctly
classified pixels. If this is true, then it may also be the case that neural network output
values reflect which classes mix, or misclassify, and perhaps even the proportions of
classes in mixtures. However, the fact that the mean sum of the network outputs for the
‘Portugal fifteen class’ data set was not close to one, indicates that network output values

may not be able to approximate a-posteriori probabilities in the presence of mixed pixels.

6.2 Neural Network Fraction Images

Fraction images, also called proportion or abundance images, are typically a
product of linear un-mixing models (Donoghue, 1994; Gong ef al., 1994; Oleson et al.,
1995; Smith et al,1990) although they have also been produced from other methodologies
(Fisher and Pathirana, 1990; Maselli ef al., 1996). For each class, a single band grey scale
image is produced where the intensity of each pixel is proportional to the percentage cover
of the pixel by the class. Similar images can be produced from neural network outputs

(Foody and Arora, 1996) to visualise the spatial distribution of class assignment.

6.2.1 Methodology

The hypothesis that neural network output values can be considered a-posteriori
probabilities of classification, under ideal conditions, was discussed in chapter 1l where it
was also shown that the basis of most methodologies is that a-posteriori probabilities are
linked to the percentage cover of a pixel by the class. Therefore, if single class images are
created where the intensity of each pixel is proportional to the neural network output
values, the images should represent certainty and uncertainty of classification and, by
extension, this uncertainty may relate to proportions of each class in a mixture.

The original neural network software was modified so that for each pixel, the output
values at each node could be provided instead of only the class to which the pixel is
assigned (chapter 111, section 3.4). The output file created from the ‘Portugal fifteen class’
data set classification in the previous experiment, section 6.1, was used here. Since the
outputs of the neural network lie between -1.7 and 1.7, they were scaled to lie between
zero and one and multiplied by 100 so that an adequate mapping could be produced on the
image processing system between the neural network outputs which lie in a range [0,1]
and the grey scale values which lie in the range [0,255]. 1f required, the outputs can be

normalised so that they sum to one. The intensity of the pixels in each single class image
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is proportional to the neural network output value of the pixel for that class. The procedure

for creating these output strength images, or fraction images, is illustrated in figure 6-2.

6.2.2 Results and analysis

Fraction images created from the neural network classification of the Landsat TM
scene of the Portugal site are presented in figure 6-3 and figure 6-4 in the form of
individual single-class neural network fraction images. The neural network values were
mapped to the grey scales so that black to white represented low output values to high
output values.

The images for the Stones class and the Fruit Trees class are almost entirely black
with only a dozen or so pixels in white. This implies that either there are almost no pixels
within which these classes are present or these classes cannot be recognised by the neural
network because they are confused with other classes. Analysis of the ground data from
chapter IV revealed that the Stones class was only present as 10% cover within a mixture
with 90% Shrubs and the spectral signature of the Stones class was most similar to the
Shrubs class signature. Therefore, the classifier will not have been provided with a target
for the Stones class, since a pure type of target was created which in this case will, quite
rightly, assign the pixels to the Shrubs class. Consequently, the classifier cannot be
expected to classify this class correctly.

There are 399 pixels containing the Fruit Trees class but only 63 of these have it
assigned as a dominant class, and therefore have a corresponding Fruit Trees target. The
spectral signature of Fruit Trees is also quite similar to Shrubs. Consequently, the
network has difficulty classifying the Fruit Trees class.

The Water class appears to be well defined. From the reference data, there were
1,648 pixels containing Water of which 1,292 as dominant class (78%). Areas on the
image which should have a water signal, such as the sea, do indeed have a high water
signal. Furthermore, these areas generally do not register signals from any other node. The
area within the estuary is an exception as it contains Grass and Marsh signals, suggesting
that there i1s some vegetation in that area. It is interesting that the actual Marsh class
which can be thought of as a mixture between Water and Grass is less present, from the
grey scale colours, than the Grass signal. This could imply that it is more profitable to
identify pure classes as the basic classes, rather than use already mixed classes such as
Marsh. On the other hand, the Marsh class is present along the rice field ‘arms’ which
stream down from the fresh water river, in the top right of the image. Since the Marsh

class was created from the amalgamation of original classes ‘rice’ and ‘aquatic plants’, it
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may be that the vegetation present in the estuary has a signal which is closer to Grass than
to ‘rice’. However, it is also true that there are only 208 pixels that contain Marsh but
17,372 pixels that contain Grass.

Other fairly well defined classes, well defined in the sense that their occurrence is
in well defined areas and not spread out over the whole image, include the Urban class
and the Coniferous class. This is slightly unexpected since their spectral signatures
(chapter 1V, section 4.4) showed them to contain quite a few outliers.

Many of the remaining classes seem to induce a small signal in all pixels. This can
be explained for some classes such as Grass or Bare Soil, which can be expected to exist
in almost every pixel, but other classes such as the Sand class are less understandable. It
1s possible that Sand, of which there are only 102 pixels in the data set, and Bare Soil
classes have been confused. Particularly badly identified classes are Broadleaf and
Shrubs, both of which resemble each other and other classes spectrally, as mentioned in
chapter IV.

This analysis technique provides a spatial overview of the distribution of the classes
allocated by the network. However, although it is possible to identify the presence and
absence of classes in particular areas, it is not possible to obtain details about individual
pixels. The quantity or percentage cover of each class is not evident, nor are the relative
proportions of classes which appear to mix in some areas. Creating a pseudo colour table
so that, for example, strengths 0-10 are coded blue, 11-20 are coded red and so on, does
not particularly alleviate the problem.

To improve the analysis, and since the eye is more sensitive to colour differences
that to grey levels (Adams et al., 1986), it is possible to load three fraction images on to
the colour guns (Red, Green, Blue) of an image processing system. In this way, intensity
of colour gives an approximate idea of the percentage cover by the class on the colour gun
being viewed. When the guns are combined, mixing between classes is identified by
mixed colours: purple is produced by a mixture of red and blue; yellow is produced from
a mixture of red and green; and cyan is produced from a mixture of blue and green. A
similar procedure has been used to study changes in vegetation by loading NDVI images
of three different dates on the three different colour guns (Sader and Winne, 1992) and
with fraction images from a linear un-mixing model (Settle and Drake, 1993; Holben and
Shimabukuro, 1993).

A sample of images are shown in figure 6-5. Each single band image is one of the

previously shown black and white images. Three classes were chosen for each image.
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Urban, Grass and Vines. All three classes are relatively well defined and there are few
mixed colours. Finally, the almost complete absence of Green in the last image (d)
suggests that the Cereal class is not present in abundance since the other classes
overwhelm the colour of the pixels. In addition, the Stubble class, much like the Sand
class, produces a signal in most pixels.

Although it allows some further analysis, this technique has several shortcomings.
Firs, a large number of permutations are necessary to analyse the mixing between any
three of the fifteen classes; only four examples were shown here. In addition, although
some indication of the relative abundances within mixtures is obtained from the mixture
colours, the information is not precise. And finally, this technique is limited to a study of

up to only three classes at a time.

6.2.3 Summary

The usual product from linear un-mixing methodologies, fraction images, can be
created from neural network outputs. However, although they are more informative than
a single pure classification image, proportion images only provide an overview of the
spatial distribution of classes. Degrees of mixing between classes are not obvious.
Furthermore, the information present in the reference data is wasted as the fraction images
do not allow the comparison between ground data and results. For these reasons, a new

visualisation technique was developed.

6.3 Ground Data/Neural Network Correspondence Images

The most common visual method used in the literature to analyse the relationship
between ground data and the results from a soft classification problem is to plot, for each
class, the algorithm output (a-posteriori probability, membership value or derived
percentage cover and so on), against the actual percentage cover as given by the reference
data (Marsh et al., 1980; Foody, 1992; Thomas et al., 1996). The graphs show the
relationship between the variables and a correlation value can be provided which
quantifies it. Although this method shows the distribution of results over the range of data
points, it has the disadvantage that only one class is studied at a time and the relationship
between mixtures in the same pixel is lost. For example, it is not possible to tell that class
A was overestimated and consequently class B underestimated for a pixel. An alternative
method for representing neural network output values is a two dimensional plot of input
values of pixels, for each node, where points are coloured according to the strength of the

output value (Warner and Shank, 1997, Moody et al., 1996). This technique shows the
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fifteen class’ and ‘Portugal seven class’ data sets. The ‘Portugal sixteen class’ data set was
kept in a ratio of training to testing files of 2:1 since it had been provided in that ratio. The
other two data sets were divided into ratios of 1:2. The composition of the ‘Portugal
sixteen class’ data files was provided in chapter V. The composition of the ‘Portugal

fifteen class’ and ‘Portugal seven class’ data sets are provided in appendix B, section B.5

and section B.6.

Parameters Portugal 16 Class Portugal 15 Class Portugal 7 Class
Number of iterations 600 600 600
Architecture - Input Node 6 6 6
Hidden Nodes | 28 28 13
Output Nodes | 16 15 7

Type of weight initialization

Constant seed value

Constant seed value

Constant seed value

Learning rate

0.1

0.1

0.1

Randomisation Once Once Once
Division ratio TR:TS=2:1= TR:TS=1:2= TR:TS=1:2=
8,047 : 4,458 9,217 : 18,434 3,951 : 7,901

Table 6-5. Parameter settings for the classification
of the ‘Portugal sixteen class’, ‘Portugal fifteen
class’ and ‘Portugal seven class’ data sets

6.3.2 Results and analysis

‘Portugal sixteen class’

Figure 6-8 shows the Correspondence images created from the ‘Portugal sixteen
class’ data set. As described in chapter 4, this data set is typical of a conventional pure
classification problem data set. In other words, all pixels are considered to be covered
100% by one class only. This is shown in figure 6-8 by the fact that, according to the
ground data, all pixels are represented by a line of only one colour. The pixels were
grouped by actual class, that is, the class to which the pixel belongs according to the
ground data. Since the reference data assumes each pixel to be pure, the results can only
be interpreted in terms of misclassification and not in terms of mixed pixels.

From figure 6-8, it is possible to tell which classes are best classified and with what
classes they are confused. For example, the different water classes, Sea Water, Estuary
and Fresh Water and the Vines, Shrubs and Weeds classes are well classified, since for
the majority of the pixels of each of these classes, the dominant neural network class is

correct. The Water classes are surprisingly well separated since it was expected from

their spectra that Sea Water and Estuary would be confused. On the other hand,







Wheat class contains signals which suggest probabilities of assignment to Bare Seoil,
Weeds and Grass. It could be that within the Wheat training areas there were pixels of
Bare Soil, Weeds and Grass or it could be that within Wheat pixels there were areas of
Bare Soil, Weeds and Grass or it could be that the spectral signature of Wheat is similar
to that of Bare Soil, Weeds and Grass. Without reference data against which to compare

the results, no conclusions can be drawn.

‘Portugal fifteen class’

The results for this data set are presented in figure 6-9. The image on the left shows
the results on the testing file. To create the training and testing data sets, the original file
containing all the data is randomised and then divided into two. Pixels in the testing file
are therefore in random order. From this image, it is difficult to draw any conclusion
because no pattern is discernible for the ground data and the large number of pixels
involved (18,434) makes it extremely difficult to compare pixel by pixel. The testing file
was therefore sorted and the resulting image is shown on the right of figure 6-9. The
results are the same, only ordered differently.

The first point to note is that for most pixels, every node appears to register a
minimum output value. For some pixels, the image shows that there is higher output in
the correct class. For example, the pixels at the top of the graph which have a dominant
Coniferous class, the Water pixels and the pixels containing Vines seem to register the
highest response in the appropriate node. However, the network does not allocate classes
with any degree of certainty and it is difficult to see the relationship between the ground
data and the neural network outputs. The apparent confusion may be due to mixed pixels
with different percentage cover being assigned the same target, which suggests the
necessity for a different target representation. This issue is discussed in chapter VII.

The presence of a non-zero neural network value in all the nodes suggests the
hypothesis that there might be a threshold associated with every output. In other words,
the neural network perhaps produces a, possibly random, minimum signal at every output.
The cause of this threshold might be the complexity of the data set, the variance associated
with each class, target representation of the ground data, or the frequency of classes. It was
therefore hypothesised that the nodes with the highest output strengths might represent
classes which truly existed in the mixed pixel and that consequently, removing a threshold
value from the network output strengths so as to favour those classes with the highest

output strengths, would improve the identification of the sub-pixel components.
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Figure 6-10. Illustration of the two methods of applying a
threshold to the neural network outputs

The purpose of the first method was to investigate the effect of applying the same
threshold to all the output nodes. The idea behind this method was that all output nodes
for a pixel may be subject to the minimum signal. On the other hand, the second method
was studied to determine the effect of applying a threshold only to the nodes with the
smallest output strengths. The idea behind this method was that for each pixel, only the
nodes whose class did not actually appear in the pixel were subject to this minimal signal.

Results are illustrated in figure 6-11. The strip on the far left shows the sorted image
of the ground data and next to it the scaled and normalised neural network outputs. The
strips to the right of this set show the images resulting from the neural network outputs
after a threshold has been applied. The value of the threshold is specified at the top of each

image; ‘m1’ refers to method 1. ‘m2’ refers to method 2.
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The images show that the neural network identifies the dominant class more clearly
for this data set than for the previous data set. The output value for the dominant class is
usually significantly larger than for the other classes, although it seems that most of the
Urban, Cereals and Sand pixels may be misclassified. The second classes also seem to
be better identified but increasing thresholds increase the extent of the dominant class and
not always that of the correct second classes. Since the effect of the threshold is to remove
low node values, this shows that the output strengths for the second classes are not
necessarily always next, after the maximum value of the dominant class. In other words,

the neural network does not always seem to correctly identify the second classes.

6.3.3 Summary

The Correspondence images are a useful visualisation tool which allows immediate
comparison of neural network outputs with reference data. Sources of misclassification
can be identified in the experiments using the ‘Portugal sixteen class’ data set. However,
the large number of pixels and the complexity of the ‘Portugal fifteen class’ data set
hinder analysis to determine whether second, third and so on, classes are correctly
identified. The data seems to produce some confusion in the network results since all
output nodes, for every pixel, register an output value. Analysis of the simpler ‘Portugal
seven class’ data set by applying a threshold to the network outputs shows that the
network output values are more related to the reference data than for the previous data set
but the preliminary conclusion is that second classes are not always correctly identified.
The confusion of the network may be caused by the type of target that was used. The use
of quantitative analysis tools to provide a measure by which to compare results
numerically are discussed in chapter VII and used to investigate different types of targets
with which to train the network. The network may also require only pure pixels in the
training stage, and mixed pixels may be confusing it. This issue is discussed in chapter

VIII.

6.4 Neural Network Node Response Graphs

The Correspondence images allow the visual comparison between ground data and
neural network outputs for individual pixels. The method developed here shows the
overall distribution of responses at every node for a given class, directly in terms of the

output strengths.

6.4.1 Methodology

The ‘Portugal seven class’ and then the ‘Scotland eight class’ data sets were used
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for these experiments. The composition of the ‘Portugal seven class’ data set is provided
in appendix B, section B.6. The ‘Scotland eight class’ data set was divided into a training
file and a testing file in a ratio of 1:1 for the number of pixels in the training file to the

number of pixels in the testing file. In addition, a set of training and testing files was

created with a ratio of 1:1 containing only the first five classes which are all pure classes.
Finally, a testing file containing only pixels from classes 6, 7 and 8 which are mixtures
was also created. The composition of these files is reported in table 6-6.
Scotland 8 Scotland 5 Scotland 3
Class Class Class
Id. Class Description TR TS TR TS TS
1 | Closed Canopy Sitka Spruce 89 100 92 97 N/A
2 | Closed Canopy Lodgepole Pine 107 102 96 113 N/A
3 | Water 130 137 135 132 N/A
4 | Background (Grass, Rocks) 309 328 315 322 N/A
5 | Deciduous 211 207 222 196 N/A
6 | Low Density Trees (mainly Sitka Spruce) 188 188 N/A | N/A 376
7 | Medium Density Trees (mainly Sitka Spruce) 102 106 N/A | N/A 208
8 | Closed Canopy Trees (Mixed) 229 196 N/A | N/A 425
Total Number of Pixels 1,365 | 1,364 860 860 1,009

Table 6-6. Composition of data files for the
‘Scotland eight class’, ‘Scotland five class’ and
‘Scotland three class’ data sets

Using the parameters listed in table 6-7, one network each for the ‘Portugal seven class’
and the derived ‘Scotland five class’ data sets were trained and tested. In addition, the

network trained on the ‘Scotland five class’ was tested on the ‘Scotland three class’ data.

Parameters Portugal 7 class Scotland 5 class
Number of iterations 600 600
Architecture - Input Nodes 6 6
Hidden Nodes 13 10
Output Nodes 7 5

Type of weight initialization | Constant seed value | Constant seed value

Learning rate 0.1 0.1

Randomisation Once Once

Division ratio 1:2=3,951:7,901 1:1=2860:860

Table 6-7. Parameter settings for the classification
of the ‘Portugal seven class’ and ‘Scotland five
class’ data sets
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Grass so some medium to high values would be expected in the Grass node for pixels
whose dominant class was Bare Soil, and similarly, some medium to high values would
be expected in the Bare Soil node for pixels whose dominant class was Grass. In fact, the
graph shows that the node responses for pixels dominated by Bare Soil can be high for
Bare Soil and Grass and also for Urban and Vines. In fact, Bare Soil, Grass, Urban and
Vines classes are confused, or mixed, with one another for many pixels as can be seen
from the graph which shows, for each of these actual classes, high node output values in
all the corresponding nodes. The graph shows a degree of confusion between the spectral
signatures of some of the classes.

The graphs shows that for the Water class, node 3 registers high output strengths
whereas all the other nodes register low output strengths as would be expected in an
accurate classification of pixels of this class. A few pixels register a high output value in
the Bare Soil node which suggests that they may be misclassified. The cause of
misclassification could be that the pixels were mistakenly labelled as Water in the ground
data.

The node for the Sand class (class 2) never contains high values. Consequently it
can be assumed that this class will be overwhelmingly misclassified. In fact, the Sand
class registers high values for the node corresponding to Bare Soil which implies that
Sand will be misclassified as that class. Going back to figure 6-11, which shows the same
results displayed using Correspondence images, this is indeed the case as can be seen
from the dominance of the Bare Soil class for the Sand pixels. A similar problem is
encountered for the Cereals class which has no high values in its corresponding node.
Pixels of this class register high Grass output values and some high Urban output values.
Figure 6-11 shows this.

A similar analysis can be carried out on the results of the classification of the
‘Scotland eight class’ data set which was classified with an overall accuracy of
approximately 84%. However, it is more instructive to look at the results of the
classification of unknown classes 6, 7 and 8 with a network trained with classes 1 to 5.
Classes 1 to 5 are Closed Canopy Sitka Spruce, Closed Canopy Lodgepole Pine,
Water, Background and Deciduous Trees respectively. Classes 6, 7 and 8 are Low
Density Trees (mainly Sitka Spruce), Medium Density Trees (mainly Sitka Spruce)
and Closed Canopy Trees (Mixed) respectively. These class names will be referred to as
1 - Sitka Spruce, 2 - Lodgepole Pine, 3 - Water, 4 - Background, 5 - Deciduous, 6 -
Low Density Trees, 7 - Medium Density Trees, 8 - Mixed Trees in the discussion that
follows. This experiment was run to determine the response of the neural network for
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recognises the signal. Alternatively, it may be that in the training areas for Low Density
Trees there were actually some pure Background pixels which are therefore classified as
such by the neural network. The Deciduous forest node has some high values for classes
6 and 7. This implies that the background signal in Low Density Trees and Medium
Density Trees affects the coniferous tree signal to a degree that they can be confused with
deciduous trees. The Mixed Trees which are closed canopy had no high signals for the

Deciduous node, which would support this hypothesis.

6.4.3 Summary

This method of visualising the output strengths from each node, for each class in a
testing set, is particularly useful to examine the overall response of the network to the
pixels. The results from this section have shown that the network does appear to respond
to components in a mixture. A Node Response Graph for pixels in the ‘Portugal seven
class’ data set showed that for well defined classes, output values were high only in the
appropriate node. For classes that were confused, network output values were high in the
incorrect node. Classes that included some mixed pixels, as well as possible spectral
confusion, showed high responses in more than one node.

A Node Response Graph for the ‘Scotland three class’ testing data set, classified
with a network trained only on pure classes, showed that the output values for the Low
Density Trees class in the Closed Canopy and Background nodes were high and low
elsewhere. Node values for the Closed Canopy Mixed class were high only for the
Closed Canopy nodes and low elsewhere. This suggests that the network can extract
component classes from mixed pixels, having only been trained with pure pixels. On the
other hand, node values for the Medium Density Trees class were high in the Closed
Canopy classes but low elsewhere. The expected high values in the Background node do
not occur. There were also some high node values for the Deciduous node for Low
Density Trees and Medium Density Trees. Therefore, it seems that the unmixing
procedure is not straight forward.

There are three main limitations to the Node Response Graph method of anlaysis.
The first is that it is not possible to determine the response for a particular pixel. In other
words, the relationship between the output strengths of the different nodes for a single
pixel is lost. This fact leads to the second limitation which is that if many of the pixels are
confused between all the classes, the spread in the values at each node will be very large
and no pattern will be obvious. Furthermore, it is not possible to tell the frequency of

pixels at a particular point from the graph. For example, if fifty pixels whose dominant
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classes is 5, produce an output strength of 1.2 for node 5, say, and only one pixel produces
an output value of 0.3 for node 5, each of these values is only represented by one point on

the graph.

6.5 Summary of Chapter VI

This chapter has addressed two issues: a study of the neural network outputs in the
présence of mixed pixels and the development of visual analysis tools.

First, in section 6.1, statistics concerning correctly and incorrectly classified pixels
within a pure data set, ‘Portugal sixteen classes’, showed that correctly classified pixels
had higher maximum output values and lower next maximum output values than
incorrectly classified pixels. Incorrectly classified pixels are likely to be mixed or contain
a class whose spectral signature is similar to another class. This experiment shows that the
network produces a different response for these pixels and that therefore it may be able to
identify sub-pixel information.

Fraction images, discussed in section 6.2, similar to those created in linear un-
mixing methodologies, show that the abundance of classes in certain areas as expressed
by the network a-posteriori probabilities is as expected from the image. However,
although they are more informative than a single pure classification image, proportion
images only provide an overview of the distribution of classes. Degrees of mixing
between classes are not obvious and they do not allow the direct comparison between
ground data and results. Three-class colour images do not particularly alleviate the
problems. For this reason, new visualisation techniques were developed.

The first technique, ground data / neural network Correspondence images described
in section 6.3, provides a useful visualisation tool for comparing neural network outputs
with reference data. Possible areas of misclassification were easily identifiable for the
‘Portugal sixteen class’ data set. However, the large number of pixels and the complexity
of the data hindered analysis and seemed to produce some confusion in the network results
for the ‘Portugal fifteen class’ data set. Results were improved with the use of the
‘Portugal seven class’ data set but remained unclear. The use of different target types to
determine whether they may the cause of confusion are examined in chapter VII.

A different technique was used to study the response at each node for every pixel in
a testing set: Node Response Graphs, discussed in section 6.4. The graph for the ‘Portugal
seven class’ data set showed that well defined classes with no mixed pixels produced high
output values at the correct node and low output values at the other nodes. Possibly poorly

defined classes with no mixed pixels produced high output values at the wrong node and
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low values elsewhere. Classes with mixed pixels and possible spectral confusion with
other classes produced high output values in several nodes. Results from a network
trained with a pure data set from the Scotland site and tested on untrained for mixed pixels
were also shown in a Node Response Graph. The graphs showed that the neural network
may be able to extract component signatures from mixed pixels in a simple mixture
although the unmixing is not straight forward. Whether network training files should
contain mixed pixels or only pure pixels is investigated in chapter VIIIL.

These results are somewhat different from those in the literature that suggest not
only that the neural network can correctly identify mixture components but also their
percentage cover of the pixel (Atkinson et al., 1997; Foody et al., 1997; Warner and
Shank, 1997). However the experiments described in the literature tend to use very simple
data sets with few classes and few pixels. The fact that conflicting results have been
presented here may be a result of the complexity of the data sets. Part of the problem is
also that the methods outlined here are qualitative. Quantitative methods which use some
form of measure against which to compare results may provide a clearer answer. The next
chapter, chapter VII presents quantitative analysis tools which are used to determine

whether a more conclusive answer, as to whether a neural network could identify sub-

pixel components, can be obtained.
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Chapter VII

In the previous chapter, neural network outputs were analysed qualitatively using a
combination of existing and newly developed visualisation tools. The methods described
are useful for spatial analysis (fraction images), for a rapid visual analysis of the results
which retains the relationship between classes within pixels (Correspondence images)
and for an overview of the network response at every node as a function of the actual
dominant class of pixels (Node Response Graphs). However, qualitative analysis alone is
not sufficient. A numerical analysis is also necessary to provide actual values of
classification accuracy. This chapter is concerned with quantitative techniques to evaluate
the performance of the neural network for soft classification.

As Wang (1990a) states, measuring accuracies of fuzzy classification is the most
challenging aspect of mixture classification. Traditional confusion matrices, the most
common method of classification analysis, cannot deal with the added dimensionality
brought about by mixed pixels. As discussed in chapter I, different techniques have been
suggested. Hardening the results from a soft classification consisfs in only considering the
maximum output value from the vector of soft outputs. In effect, this methods reverts to
pure interpretations of classification (Foody, 1992; Wang, 1990b). Measures to compare
performance of soft classifiers have been investigated including ‘Entropy’ (Maselli et al.,
1996) and the ‘Closeness’ between land cover and fuzzy membership values calculated
for example by a Euclidean distance (Foody, 1996a). However, ‘Entropy’ assumes that
the reference data is pure and that only the classifier results are fuzzy and indices such as
the ‘Closeness’ index only provide an overall value, not a class by class and position by
position breakdown.

Several authors have developed partially soft tools for the analysis of classification
results. In a paper on ordinal classification of sub-pixel forest cover, Foody (1994) divides
forest cover into four groups - large, intermediate, small, very small - and allocates pixels

to one of these groups. He then calculates a confusion matrix on this basis. However,

- 149 -




pixels cannot belong to more than one group. Gopal and Woodcock (1994) are concerned
with a slightly different problem from soft classification, since they assume that all pixels
can be assigned to only one class but that there is uncertainty in that class’ allocation
which is expressed by an integer number representing a linguistic concept. For example,
‘Absolutely right’ is given 5, ‘Understandable but wrong’ is given 2. Nevertheless, the
concepts are similar and the authors then calculate matrices which provide the number of
matches between opinions and the size of the differences between allocations. In a later
article, Woodcock et al. (1996) use a similar technique for calculating the accuracy of
assignment of secondary classes. Van Deusen (1995) considers that classification
produces measures of certainty of class allocation and makes a contingency table for the
results including the second closest classes, that is those which have the second highest
probability of allocation. Element [n][m] in the confusion matrix shows the number of
times class [n] had the highest probability of allocation and [m] the second highest
probability of allocation. Fisher and Pathirana (1990) use one matrix for each class to
study the correlation between fuzzy membership values and percentage cover of a class.
Moody et al. (1996) calculate the frequency of second classes classified as dominant and
vice-versa.

However, none of the articles provide a compact and portable method for analysing
soft classification results. This chapter describes two new types of confusion matrices
which have some similarities with the techniques described above and which provide a
quantitative analysis of the neural network’s ability to identify the correct components of
a mixture. Even though the matrices are used for neural network output results in the
thesis, they can be used to analyse the results from any soft classifier which produces a
vector of soft output values.

In the training stage, the neural network is provided with pixel data and a target to
aim for. The network only knows that pixels are different if their targets are different; each
target identifies the group to which pixels belong. Targets are therefore a vital part of the
neural network classification process since they provide the basis on which classes will
be differentiated. In the literature, the few articles which discuss neural network
approaches to soft classification usually provide the network with either a pure target
(Moody et al., 1996), or with targets which contain values of the percentage cover for each
class scaled between O and 1 (Foody et al., 1997; Atkinson et al., 1997; Warner and
Shank, 1997). The aim of the experiments discussed in this chapter is to compare the
performance of networks trained with different types of targets to represent the reference
data. The matrices are used to quantify the effect of using the different types of targets.
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Preliminary work relevant to this chapter is described in Bernard and Wilkinson (1996

and 1997).
7.1 Accuracy Measurement Techniques

7.1.1 The traditional confusion matrix

The most common type of classification accuracy reported in the literature is based
on some form of confusion matrix, also called error matrix or contingency table.
Confusion matrices are used to compare the actual class according to the reference data
and the class assigned by the classifier, in this case the neural network, for each pixel.
Figure 7-1 illustrates this type of matrix. The confusion matrix consists of an nxn array
where n is the number of pure classes. The vertical dimension represents the reference
data. The horizontal dimension represents network results. The order is sometimes
reversed (Lillesand and Kiefer, 1994; Rosenfield and Fitzpatrick-Lins, 1986b).

Values in the matrix refer to numbers of pixels. Matrix positions are referred to as
[n][m] where n is the reference class and m is the classifier class. Thus, if a pixel from
class a according to the reference data is correctly classified as class a by the classifier,
the counter in the position of the matrix [n=a][m=a] is increased by one. If a pixel of class
a according to the reference data is incorrectly assigned to class b by the classifier, the
counter at position [n=a][m=b] is increased by one. If a pixel of class b according to the
reference data is incorrectly classified as class a by the classifier, the counter at position
[n=b][m=a] is incremented by one. When all the pixels have been examined and the
relevant counters updated, measures such as overall accuracy and commission and
omission errors can be calculated.

The accuracies of classification for individual classes are calculated by dividing the
value in the relevant position of the diagonal (for example, for class 2, position
[n=2][m=2]) by the number of which belong to that class according to the ground data.
The overall accuracy of classification is calculated by summing all the members of the
diagonals, the correctly classified pixels, and dividing by the total number of pixels. High
overall accuracy does not imply that all classes were well classified, individual class
accuracies must also be examined. Commission error represents the number of pixels
from other classes which were incorrectly classified as a particular class. The omission

error represents the number of pixels of a class which were incorrectly classified as other
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Figure 7-1. Traditional confusion matrix for pure
classification analysis (adapted from Campbell, 1996)

classes. Commission and omission accuracies can be calculated from the matrix by
dividing the correctly classified pixels of a class by the relevant row or column total.

A high overall accuracy means that training areas were homogeneous, training
classes were separable, the testing set was representative of the training data and the
classification strategy worked well with these training areas. It does not indicate. how the
classifier will perform for other sets of data from the same image (Lillesand and Kiefer,
1994). The assumption that is made is that the training and testing data are representative

of the data from all the image and that therefore the confusion matrix represents results

which would be obtained with any similar data set from the image.




7.1.2 The Rank matrix

The problem with traditional confusion matrices is that they can only deal with the
dominant class of pixels. In mixed pixel classification, the identification of secondary or
more classes is relevant. In this work, a new type of matrix was developed which will be
referred to as a Rank matrix. It is complemented by a modified traditional confusion
matrix.

The Rank matrix calculates the number of times positions, that is dominant class,
secondary class and so on, are correctly identified; if they are not identified correctly, the
Rank matrix shows the position to which a class was assigned compared to its actual
position. The process to create the matrix is described below.

Figure 7-2 shows a hypothetical example of an output file for a group of mixed

pixels from a data set described by five pure classes.

A - Ground data B - Ground data
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Figure 7-2. Procedure for creating ground data Index arrays

The ground information vectors for the pixels are shown on the left (A); percentage cover
has been scaled between 0 and 1. From these, ground data ‘Index’ arrays as they shall be
called, are created by sorting classes in increasing order of percentage cover according to
the ground data (B). For example, the pixel indicated by ‘C’ in figure 7-2 is mostly
covered by class 3, followed by class 4, followed by class 2. These classes are ordered
from least dominant to most dominant from left to right, that is 2, 4, 3, and placed in the
Index array. A minimum percentage cover, usually 0%, below which the order of classes

is considered irrelevant, is set and classes with that, or less than that, percentage are
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ignored. In the example, classes 1 and 5 are not present in the pixel and therefore they are
not recorded in the Index array. If two or more classes cover the same percentage of a
pixel, for example classes | and 4 in pixel ‘D’, the algorithm orders them from left to right
from the last equal cover class to the first it came accross. Here, class 4 is placed as a third
class of the pixel and class 1 as the secondary.

Figure 7-3 illustrates the similar procedure which is carried out with the neural

network results.
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Figure 7-3. Procedure for creating neural network Index
arrays

The neural network output vectors (A) are sorted in increasing order of neural
network output values. A minimum value below which the order of classes is considered
irrelevant, for example -1.7, is set. Classes are ranked in the correct order to form the
neural network Index arrays (B). For example, according to the neural network results, the
pixel indicated by ‘C’ in figure 7-3, contains each of the following classes in increasing
order of network output strengths: 3, 4, 2 and 5. The network output value for class 1 is
equal to the threshold of -1.7 and therefore ignored by setting that position to 0.

Once the Index arrays have been created, they can be compared to determine
whether the neural network identifies the components of the pixel in the correct order.
Figure 7-4 illustrates the process. An array, called the ‘Comparison’ array records
whether a position, dominant, secondary and so on, has been correctly classified or not.
To create the Comparison arrays, the ground data Index arrays (A) and the neural network

Index arrays (B) are compared for each pixel. When a class is correctly positioned by the
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Figure 7-4. Procedure for creating the Comparison arrays

neural network, the element of the Comparison array (C) for that position is set to one. If
the class is incorrectly positioned, the corresponding element of the array is set to two. If
the position is irrelevant according to the ground data, the element of the array is set to
zero. For example, for the pixel indicated by ‘D’ in figure 7-4, the dominant class is not
identified by the neural network, and consequently flagged with a two in the Comparison
array, but the secondary class is correctly identified and consequently flagged with a one.
According to the ground data, there are no other classes contained in the pixel so
remaining elements of the Comparison array are assigned zero.

When two or more classes have the same percentage cover, this is taken into
account. If one class is positioned as the other, the relevant element of the Comparison
array is set to one as correctly classified. For example, in pixel ‘E’ in figure 7-4, classes
1 and 4 both cover 40% of the pixel as shown in figure 7-2. The ground data Index array
ranks class 1 as a secondary class and class 4 as a third class because of the sorting
algorithm. The neural network assigns class 4 as the secondary class. The routine to create
the Comparison array checks the percentage values of each class, and seeing that classes

1 and 4 have the same values, assigns that position as one, that is correct.
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From the Index arrays, and with the help of the Comparison arrays, a Rank matrix
is calculated. The vertical dimension of the matrix represents the positions within a
mixture according to the reference data. The horizontal dimension represents the positions
within a mixture according to the neural network. The Rank matrix has dimensions [n][m]
where n is the maximum number of components in a pixel according to the ground data
and m is the number of neural network output nodes and therefore pure classes in the data
set. The elements of the matrix are calculated as follows.

For each pixel, if the dominant class according to the ground data is a and the
dominant class according to the neural network is a, then the neural network has correctly
identified the dominant class and the counter at position [n=1][m=1] is incremented by
one. If the dominant class according to the ground data is a but the neural network has
assigned class a to a third position say, then the counter at position [n=1][m=3] is
incremented by one and so on.

Once the dominant class of the pixel has been analysed, the secondary position is
studied using the same method. If for a pixel, the secondary class is @ and the neural
network has also identified a as the secondary class, then position [n=2][m=2] is
increased by one. If the secondary class is a but the neural network has assigned a to a
fourth position, then position [n=2][m=4] of the Rank matrix is increased by one. All
mixture components which the ground data considers relevant, that is that are not equal
to zero, are studied in this way. Classes with equal percentages which have been ranked
one as the other are considered correct and the relevant counter is increased accordingly.

Figure 7-5 shows the Rank matrix formed from the reference data and neural
network output results shown in figure 7-2, figure 7-3 and figure 7-4. The rightmost
elements of the ground data Index arrays show the dominant classes. In this column, there
are five classes, shown in red, which are correctly identified by the neural network.
Consequently, in position [1][1] of the Rank matrix, which lists the number of correctly
identified dominant classes, the counter is set to five.

In pixel two, the dominant class, class 4, is assigned to position three by the neural
network. Thus, position [1][3] of the Rank matrix is filled with a one. In pixel four, the
dominant class, class 3, is assigned to position five by the neural network. Thus, position
[1]1[5] of the Rank matrix is filled with a one. Finally, in pixel six, the dominant class, class
3 is assigned to position four by the neural network. Position [1][4] of the Rank matrix is
therefore also assigned a one. Misclassifications are shown in green.

Having calculated the dominant classes, the same method is applied to the
secondary classes. There are two correctly identified classes, shown in red. In pixel eight,
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number of pixels. Since there may be less pixels with three components, for example, than
pixels with two components, overall accuracy may be higher for the third position than
the second position since the correctly positioned classes are divided by a smaller number.

It is possible that a secondary class of a pixel, say, is correctly identified although
the dominant class of the pixel was incorrectly identified. For this reason, two total
accuracies are reported. The first is the number of correctly identified classes for the
relevant position. The second total accuracy, entitled ‘True Accuracy’, is the number of
correctly identified classes for the position where the previous position was also correctly
identified. For example, the true accuracy for the secondary classes is 40.00% whereas
the percentage of correctly positioned secondary classes regardless of the position of the
first class was 60%.

Finally, next to these accuracies, the number of pixels with at least that number of
mixture components is reported. In other words, the number of pixels containing at least
one class, that is all the pixels, is listed for the first row; the number of pixels with at least
two mixture components is reported in the second row and so on. In the example, there
are eight pixels, five of which are covered by at least two classes and three of which have
three components.

In summary, the Rank matrix provides the following information:

» for each position, dominant, secondary and so on, the number of pixels where

the class was correctly identified, regardless of the class,

» for each position, the percentage of correctly identified classes; for positions
beyond the dominant class, the percentage of pixels where the classes in the

relevant position and all positions prior to it were correctly identified,

» for each position, the number of pixels containing at least that number of

mixture components,

* in addition, the matrix allows the user to determine for how many pixels,
classes in a position were incorrectly identified as belonging to another

position and to which position.

7.1.3 The Modified misclassification matrix

The Rank matrix provides no information on the distribution of misclassifications
between classes since only positions are compared, irrespective of the actual class. For
example, although the Rank matrix illustrated in figure 7-5 shows that the dominant class

of six pixels out of eight was correctly identified, it does not show what those classes
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it orders them as 4 followed by 1. Therefore, the total number of correctly identified class
1’s is three. Class 1 is not allocated as anything else, nor are any other classes identified
as class 1. There are two correctly identified class 2’s; one class 2 identified as class 5,
and one class 2 identified as class 1; and so on.

Overall accuracies for each class are calculated by dividing the number of correct
allocations, identified in the relevant diagonal element, by the number of pixels
containing the class. The column headed ‘Number of Pixels’ adjacent to each row
indicates the total number of pixels containing the class of the row. Thus row one indicates
the total number of pixels which according to the ground data contain class one. Similarly,
row two indicates the number of pixels containing class two and so on. This type of
confusion matrix allows the user to determine for how many pixels containing a class the
network assigned the wrong component class, and what that class was.

The Rank matrix provides a breakdown of the position misclassifications; in other
words, how the network orders classes compared to how classes are actually ordered
according to the reference data. The Modified misclassification matrix, on the other hand,
provides a breakdown of the class misclassifications; in other words, which classes the
network confuses. The two matrices are best used in conjunction as the performance of a
soft classifier is expected to be a function of class separability and class proportions within
pixels. If two classes are very similar spectrally they are likely to be confused at the
classification stage. However, even though two classes may be different spectrally, if they

each cover half a pixel, the resulting signature is also expected to confuse the network.

7.1.4 Limitations

There are limitations to these methods of quantitative analysis. The Rank matrix
does not take into consideration the percentage cover of classes other than for ranking
purposes. For example, figure 7-7 illustrates three pixels with their relative proportions of
classes according to the ground truth, and possible neural network outcomes. In the first
two columns of neural network results all the pixel interpretations would be considered
correct even though the percentage covers are very different; only relevant positions
according to the ground data are considered when creating index arrays. On the other
hand, the pixel interpretations which are labelled incorrect have similar percentage cover
to the ground truth. The Rank matrix seems to exaggerate the importance of small mixture
components for both the ground data and the neural network output values.

In addition, a class is considered dominant if it has the highest percentage cover

even though it may not actually be covering most of the pixel. For example, a mixture of
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7.2 Effect of Target Types on Soft Classification Accuracies

As discussed in chapter VI, the neural networks were run with traditional pure
targets which treat mixed pixels as if they were covered 100% by the dominant class. For
example, the targets for a pixel with a composition of [30% class 1 + 50% class 6 + 20%
class 10] or [10% class 2 + 90% class 6] or [40% class 6 + 30% class 2 + 30% class 7] are
assigned a value of +1 for class 6 and -1 for all other classes. This may be a source of
confusion for the network since pixels with different class compositions are assigned the
same target and some pixels are assigned to a class even though that class may not cover
the largest area of the pixel. The fact that in the experiments in chapter VI, neural network
output nodes all registered a small value whatever the expected pixel composition is
thought to be in part due to the target type.

Having developed tools for the quantitative analysis of soft classification results,
they can be applied to the problem of determining whether different target types have an
effect on classification accuracy and what that effect may be. This section provides a
systematic analysis of six different types of targets given the names: ‘Pure’, ‘Scaled(0,1)’,
‘Scaled (-1,1), ‘Bin (6)’, ‘Bin (4)’ and ‘Occurrence’. The effect of the target types is
evaluated by comparing the performance of networks run with constant parameters and
data sets but different target representation of the ground information. The performance

is measured using the Rank and Modified matrices.

7.2.1 Methodology

The Pure target is typically used in pure classification and is that employed up to
now in the experiments described in chapters V and VI. Training data are partitioned into
n classes where n is the number of pure classes. Regardless of the composition of a pixel,
a dominant class is identified and assigned +1 in the target vector. The other classes are
assigned -1 even if they also occur in the pixel. When there are two or more classes with
the same percentage cover, the last class in the ground data array from left to right with
that percentage cover is considered to be the dominant class. This type of target does not
provide the neural network with any mixture information and is expected to confuse the
network because classes that have similar proportions may be assigned different targets,
different class compositions may be assigned the same target and some pixels are assigned
to a class even though that class may not cover the largest area of the pixel. Dominant
classes are expected to be poorly identified since mixed pixels increase the variability of
spectral signatures within classes. Other class components within pixels are only expected

to be correctly identified if their signal is strong enough to activate the correct second,
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third or so on node. Furthermore, if a class only ever occurs as a secondary class or less,
it will have no target associated with it.

In order to provide the network with mixture information, it must be incorporated
in the target. Two types of Scaled targets were tested. The Scaled targets take ground
cover information and scale the percentage cover between minimum and maximum
values. For the first target, Scaled (0,1), the percentage cover of each class is scaled
between zero and one. The target vector consists of zeroes when classes are not present
and scaled values of cover when classes are present. The second type of Scaled target,
Scaled (-1,1), consists of percentage cover scaled between -1 and 1. Classes which are not
present in a pixel are assigned -1 and classes which are present in the pixel are assigned
the scaled value between -1 and 1 of their percentage cover.

These two types of targets provide accurate mixture information to the network,
pixels are partitioned into as many different groups as there are different mixtures, but
require very accurate ground data and the neural network must produce very precise
information. Furthermore, the first type of Scaled target, Scaled (0, 1), has a range which
only lies in the positive half of the activation function. As discussed in chapter III, section
3.3.1, the activation function for the network used in this thesis is a sigmoid tarh function
with a range between -1 and +1, scaled to improve performance so that neural network
outputs lie between -1.7 and 1.7. The Scaled (0,1) therefore only utilises half the
activation function and is expected to produce lower classification accuracies than the
second type of target, Scaled (-1,1). Although this type of target is that used in the
literature, the authors use activation functions which lie between zero and one (Foody,
1996b; Atkinson et al., 1997).

The third type of target was developed to reduce the need for very accurate ground
data and precise neural network output values. Instead of precise percentage cover
information, the Bin targets divide ground cover information into discrete ranges of
percentages. For example 25% to 50% cover may be represented by only one value. This
type of target is expected to be more flexible and less sensitive to inaccurate ground data
information as it allows the neural network to produce a range of output values to
represent the same percentage cover range. However, problems may arise when
percentage cover values lie around the border between two ranges which although very
similar in reality will be represented by two different bins. For example, if percentage
cover between 50% and 75% is represented by x and percentage cover between 76% and

100% is represented by y, proportions of 74% and 77% will be assigned to the two

different bins even though they are similar.




The Bin targets are created as follows. A number of bins is specified then the value
of each bin is decided. For example, bin 1 =-1; bin 2 = +0.2 and so on. Then the range of
cover proportions which fall within each bin is defined; for example, if cover is 0%, class
belongs to bin 1; covers 1% to 25% belong to bin 2 and so on. When all the birn values and
ranges have been defined, a target can be created for each pixel which describes the
classes and their proportions which the pixel contains. Two Bin targets were tested whose
characteristics are described in table 7-1. The first, referred to as Bin (6), consists of six
bins; the second, referred to as Bin (4), contains four bins. The values of the bins were

chosen to be symmetric about zero, so as to reflect the numerical range of the activation

function.
Bin Bin Values | BinRanges | Bin Values { Bin Ranges
Number for Target | for Target | for Target for Target
Bin (6) Bin (6) Bin (4) Bin (4)
1 -1.0 0% -1 0-25%
2 -0.6 1-25% -0.3 26-50%
3 -0.2 26-50% +0.3 51-75%
4 +0.2 51-75% +1 76-100%
5 +0.6 76-99%
6 +1.0 100%

Table 7-1. Description of Bin(6) and Bin(4)
Targets

Finally, the Occurrence target was created to determine whether the neural network
responded to the magnitude of its training target values or simply to the presence of a
value not equal to -1 to indicate mixtures. The Occurrence target is created by setting all
classes which occur in the pixel, regardless of percentage cover, to a value of 1 and all the
others to a value of -1. This type of target is not expected to perform well since a mixture
of [10% class 02 + 90% class 08] for example, will have the same target as a mixture of
[90% class 02 + 10% class 08]. In some ways, this target is the opposite of the Pure target.
The Occurrence target type assigns the same targets to pixels with different compositions
whereas the Pure target assigns different targets to pixels with similar compositions.

An example of a mixture composition for a seven class problem and respective
target representations for each target type are provided in table 7-2. Neural networks with
parameters settings as in table 7-3 were trained with each of the target types on the

‘Portugal fifteen class’ data set. This data set was chosen because it includes details of the

composition of mixed pixels and is typical of a land cover classification problem.




Target Type Target Value
Actual Pixel Composition 30% class | + 60% class 4 +10% class 6
Pure -1.0 -1.0 -1.0 +1.0 -1.0 -1.0 -1.0
Scaled (-1,+1) 04 -10 -1.0 02 -10 -08 -1.0
Scaled (0, +1) +.3 00 0.0 +0.6 00 +0.1 00
Bin (6) -02 -10 -1.0 Y02 -1.0 06 -10
Bin (4) -03 -1.0 -1.0 +0.3 -1.0 -1.0 -1.0
Occurrence +1.0 -1.0 -1.0 +1.0 -1.0 +1.0 -1.0

Table 7-2. Example of target representation of
ground information by each target type

Parameters Portugal 15 class

Number of iterations 600

Architecture: Input Nodes 6
Hidden Nodes 28
Output Nodes 15

Type of weight initialisation Constant seed value

Learning rate 0.1
Randomisation Once
Division ratio TR:TS=2:1=9,701:18,434

Table 7-3. Parameters for the neural networks
using different target types

7.2.2 Results and analysis: ‘Portugal fifteen class’ data set

The Rank and Modified confusion matrices for each target experiment with the
‘Portugal fifteen class’ data set are listed in table 7-5 to table 7-10. The overall accuracies
for each position in the Rank matrices will be analysed first as they provide a summary of
the results for each target type. Since each target type was tested on the same data sets,
using the same network parameters, the overall accuracies are directly comparable.
Individual matrices can then be studied to establish the patterns of mis-identification of
positions and mis-classification. Overall percentage accuracies for each position

(vertically) and each target type (horizontally) for the soff classification of the ‘Portugal

fifteen class’ data set are summarised in table 7-4. Figure 7-8 shows the same results in

the form of a bar chart.
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Overall accuracies

Table 7-4 shows that there are a maximum of four components in a mixture
according to the reference data for this data set. The numbers of pixels containing at least
each number of mixture components are listed in the last column on the relevant row. For
example, there are 8,182 pixels with at least three components (shown in bold). As
explained in section 7.1.2, the overall accuracies represent the number of times classes in
a particular position are correctly identified. For example, according to the results in table
7-4, the network trained with the Bin (4) type of target correctly identifies the secondary
class of 36.31% of the total number of pixels which contain at least two components
(shown in bold).

The table and the bar chart show that overall levels of accuracy generally decrease
from dominant to fourth component for all the target types and levels of accuracy are

particularly low beyond the dominant class.

* The dominant class was identified best by the network using Pure targets
(70.17%) and worst by the network using Occurrence targets (49.28%). Other

target types produce accuracies that are similar to each other (~62%).

* The secondary classes are identified worst by the network trained with the

Pure target (26.18%) and to a similar degree by the other targets (~40%).

* The networks using Pure and Bin (4) target types register the lowest accuracy
of identification of the third components (~21%) and the Bin(6) target type
the highest (50.16%); other target types are similar (~39%).

* The fourth component registers the highest accuracy for the network trained
with Pure targets (37.13%) and lowest for the network trained with Bin (4)
targets (22.60%).

If the network simply registered random values at its output nodes, each position
would have a 1 in 15 chance of being assigned the correct class or ~7% accuracy (6.66%).
Considering that overall accuracies are higher than 7%, it can be concluded that the
network does not allocate classes randomly. If neural network output values were solely
based on the frequency of classes, then the neural network would calculate an average
output vector in the training phase and output values for all unseen pixels would be
proportional to the number of times the classes occurred in the training set. This is not the
case and so network classification cannot be based only on the frequency of classes.
Furthermore, since accuracies for the same position differ between target types, the target

type must have an influence.
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The decrease in accuracy for each mixture component is to be expected. As
percentage cover decreases, the contribution of the class with that cover to the overall
pixel signal will probably decrease. For example, the second component in a [90% class
x + 10% class y] mixture will be difficult for the network to identify. In addition, in
situations where percentage cover is more or less equally divided between the
components, for example [30% class 2 + 30% class 5 + 40% class 7], the order of the
classes will be difficult to identify. Smaller percentages may also be more difficult to
estimate visually and the error in the ground truth may be increased.

The Pure target was not expected to classify the dominant class accurately. In fact,
the Pure target registers the highest accuracy for the dominant class of any target type.
This suggests that the network may be particularly robust towards increased variability in
class definition. The reason for which the Pure target performs better for the dominant
class than the other target types may be connected to the other target types’ representation
of reference data. For example, 70% cover is represented by +0.4 in the Scaled (-1,1) type
of target. The other Scaled and Bin target types are similar. Assuming that the network is
able to assign the correct output value to the correct node for a pixel covered 70% with a

class, the dominant class would only be misclassified in the following situations:
* for the Pure target, another output node must register a value higher than +1;

* on the other hand, for the Scaled (-1, 1) target, another output node only needs
to register a value greater than 0.4.
Furthermore, pixels which are covered by several classes whose individual cover does not
exceed 50%, will have Scaled and Bin target values that only contain negative numbers
or in the case of the Scaled(0,1) target type, only contain low target output values. These
pixels may confuse the network as the spectral signal from each class may be weak and
the network cannot use the full range of target values.

The Scaled and Bin (6) targets produce the highest accuracies of classification of the
second and third components. This suggests that identifying component classes is helpful
to the network. Nevertheless, classification accuracies are low. Surprisingly, the third
components are sometimes identified as well as or better than the second components.
This may simply be a result of fewer pixels containing at least three components.

The Bin (4) target perform less well for the third component than the other types of
similar targets but better for the dominant class. This may have to do with its
representation of reference data. In order for a class to be signalled by a value other than

-1 for this target type, the class must cover an area larger than 25% of the pixel. This
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means that for any pixel whose individual components do not cover more than 25% of the
total area, -1 will be assigned to all the classes. These pixels will be of no use to the
network. Furthermore, it is impossible to identify a fourth component with the Bin (4)
target since the minimum percentage cover for a class to be allocated a value larger than
-1 18 30% (since pixel percentage values are multiples of 10, see section 4.4.1) and it is
not possible to have a four component mixture where the fourth component covers 30%
of the area of the pixel. Therefore, it is not really surprising that the network trained with
the Bin(4) target type performs less well for these components. On the other hand, a class
only needs to cover 80% of the pixel for its target value to be +1 and the argument
advanced for the Pure target applies.

The Occurrence target was not expected to perform well since the network is taught
that class order is indifferent. However, it has relatively high accuracies in the second and
third positions. This implies that the network seems to identify the correct classes that are
present in a pixel. If the network is assumed to correctly identify component classes of a
mixed pixel then the probabilities with which it will assign then in the right order can be
calculated. For example, for a mixture of class 2 and class 8§, it has a 1 in 2 chance of
assigning the correct classes to the dominant and secondary positions. For a three
component mixture, each position has a 1 in 3 chance of being assigned the correct class
and so on. Consequently, always assuming that the network has actually learned which
classes are present within the pixel, the percentage of all dominant classes being correctly
identified is: 100% of pure pixels, 50% of two class pixels, 33% of three class pixels, 25%
of four class pixels. Since overall accuracies are only calculated at each position,
regardless of the order of classes before and after, the percentage of all secondary classes
being correctly identified is 50% of two class pixels, 33% of three class pixels, 25% of
four class pixels and so on.

For the ‘Portugal fifteen class’ data set used in these experiments, there are 1,115
pixels with four components; (8,182 - 1,115) = 7,067 only three component pixels;
(14,254 - 8,182) = 6,072 only two component pixels and (18,434 - 14,254) = 4,180 pure
pixels. So, the probability of correct classification of the dominant class, assuming that
the network can identify the correct classes, is (4180 + 3,036 + 2,354 + 279) / 18,434 =
~53%: that for the second class is ~40%:; that for the third class is ~32% and that for the
fourth class is~ 25%. The results in table 7-4 are relatively similar to these values. The
dominant class of 49.28% of the pixels, the secondary class of 40.42% of the pixels
containing at least two components, the third class of 38.74% of the pixels containing at
least three components and 23.41% of the pixels containing four components are correctly
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identified. The differences in the results are probably a function of the fact that the neural
network may not have learned the correct classes for each pixel and that different class
frequencies may bias the network.

The fourth component is identified best by the Pure target. The reason for this is
unclear since Pure targets provide no information about mixtures. If it is hypothesised that
the network can extract spectral signatures from mixtures, having been trained on Pure
classes, this does not explain why the network trained with this target type identified
secondary and third components least well of all the targets. All fourth components cover
a maximum of 20% of the pixel. It may be that the non Pure targets are confusing the
network by, in a way, attaching too much importance to four component pixels. Pixels
with four components will have approximately equally divided proportions between at
least the third and fourth and often the secondary, third and fourth classes (for example,
[70% class 6 + 10% class 2 + 10% class 1 + 10% class 10] or [30% class 5 + 20% class 3
+20% class 1 + 20% class 4]). Either way, the fourth component is a minor proportion of
the pixel and is expected to contribute little to the overall spectral signature. However, the
Scaled (-1,1), Scaled (0,1) and Bin(6) target types will provide the network with different
targets for [70% class 6 + 10% class 2 + 10% class 1 + 10% class 10] and [70% class 6 +
20% class 2 + 10% class 1] even though it is unlikely that the spectral signatures differ

very much.

True overall accuracies

The overall true accuracies are calculated by only considering a position as
correctly classified if the previous position was also correctly identified, as explained in
section 7.1.2. Thus, classification accuracies for second, third and fourth components are
expected to reduce substantially. The corresponding true accuracies for each target type
experiment described above are listed in table 7-11 and displayed in a bar chart in figure
7-9. The table shows, for example, that the network trained with Pure targets allocated the
correct dominant and second class for 21.27% of pixels with at least two components
(shown in bold) or that the network trained with Bin (6) targets allocated the correct first,
second and third classes to 28.01% of pixels with at least three components (shown in
bold).

As expected, the classification accuracies of secondary, third and fourth classes
have decreased. The difference between the overall accuracies and the true overall
accuracies for each target type and each position are shown in table 7-12. The accuracies

of identification of secondary (21.27%) and third components (6.80%) are lowest for the
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Pure target type. The change in accuracies for the secondary and third components is
largest for the Occurrence target. For example, for the secondary classes, whereas the
other targets average a change of -7%, the Occurrence target registers a change of -
14.36%. The Occurrence target results for secondary (26.06%) and third components
(13.15%) are now greater than those of the Pure target type but less than the accuracy
values of the other target types (approximately 32% for the secondary class and
approximately 24% for the third class). The identification of third components (7.31%)
by the network trained with Bin (4) targets is an exception as its value is between the Pure
and Occurrence values.

The results suggest that providing information about the components of pixels is
helpful to the network since Pure targets, which do not provide any mixture information
perform worst for the secondary and third classes. Furthermore, information which
suggests the ranking order of classes is of more value to the network than simply
indicating the presence of classes since Occurrence targets perform worse than the other
types of targets for the secondary and third components. The definition of targets has an
effect on the classification accuracy since Scaled and Bin targets register different
accuracies. There is little difference between the two types of Scaled targets. It would
seem that information that is too precise may confuse the network since Scaled targets
perform worse than Bin (6) targets. However, range definitions must be carefully analysed
since the Bin (4) target type performs better than the Bin (6) target in the dominant class
but worse that the Scaled and Bin (6) target type in the secondary and third classes.

For each position, the change in accuracy is approximately similar for most target
types. It can be speculated that it may be the same set of pixels whose order of classes is
being wrongly interpreted. Perhaps it is mainly those pixels whose area is divided up
approximately equally between classes or pixels whose reference data is wrong.
Unfortunately, these hypotheses cannot be verified due to the loss of locational
information at the stage of creating the data sets and because of the complexity of the data

sets.

First four components

Having compared the overall and true overall classification accuracies for the
different target types, the mixing information provided by the individual matrices can be
examined. The Rank matrices listed in table 7-5 to table 7-10 show that for all the target
types, frequencies of allocation tend to decrease as the position according to the neural

network increases from 1 to 15. In fact, the position to which a class is allocated to when
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it is mis-assigned seems to be more frequently one of the first four components than any
other position. Indeed for most targets each position is most frequently mis-assigned to
the position either immediately below or above it.

For example, in table 7-6, which provides the results for the soft classification of the
‘Portugal fifteen class’ data set using targets of the type Scaled (-1,1), the secondary class
is correctly identified in 5,598 pixels (shown in bold) out of 14,245 pixels with at least
two components, which is equivalent to 39.27%. The most common individual mis-
allocations of secondary classes for this target are to the first (2,647) and to the third (2,
016) positions, followed by to the fourth (1,333) position (shown in bold). Together, these
account for 81,3% of the pixels which contain at least two components.

The network trained with the other target types also allocate most mis-identified
classes to the first four components. However, the Pure target shown in table 7-5 registers
the third highest individual mis-allocation to the 15t position (shown in bold) for the
secondary classes (1,767 pixels). In fact, the Pure target shows a greater distribution of
allocations over all the possible network positions than the other target types. The other
target types tend to have more mis-allocations concentrated in the first few components.
This is with the exception of the Bin (4) target, shown in table 7-9, which also shows a
greater distribution of allocations over all the possible network positions for the secondary
and third components.

The percentage accuracy if assignment of the components of a pixel to any of the
first four positions was considered correct are calculated from the Rank matrices for each
target type and each position. Table 7-14 lists the values and figure 7-9 presents the same
results in bar chart format. As the table and the figure show, the large majority of
assignments are within the first four positions. For example, the dominant classes for
93.8% of pixels were assigned as the dominant, second, third or fourth components by the
neural network for the Scaled (0,1) target (shown in bold). Accuracies of allocation have
increased to ~94% for the dominant class, an average of ~80% for the second and ~75%
for the third and fourth components. This suggests that for the majority of pixels the
network is able to identify the components of the pixel, since these accuracies are high,
but that it has difficulty ordering the components, since the individual accuracies at each
position are low, as shown in the previous section.

Using this measure of accuracy, the target type with the highest accuracy of
identification of the dominant class is the Bin (6) target type (94.6%) although there is
little difference between the targets. The second and third components are best identified
using the Occurrence target type (93.5% and 93.9% respectively) whereas the Pure target
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type has the lowest accuracy for identifying these components (59.8% and 54.8%
respectively). The Scaled and Bin (6) target types have accuracies of (~84%) for the
secondary components and (~82%) for the third components. The Bin (4) target registers
values of 70.4% for the secondary and 55.9% for the third components. The fourth
component is identified with the highest degree of accuracy by the Bin (4) target type
(78.9%) and with the lowest level of accuracy by the Occurrence target (72.3%).

If the percentage of correctly identified positions is calculated as a function of the
number of pixels in only the first four positions according to the neural network
allocations, this provides an indication of the distribution of pixels within those positions.
The results are shown in table 7-14 and figure 7-11. The Occurrence target, which had the
highest overall accuracies in the previous table, is shown to distribute class allocation
more randomly between the first four positions since its accuracy of the dominant class
over the four positions is now the lowest, 53.1% compared to an average of ~66% for the
Scaled and Bin targets and 75.0% for the Pure target. This is to be expected since this
target type is not taught any order for the classes. The levels of accuracy for the secondary
and third components now average ~47 for both. The fourth component averages ~39%.

The results show that the neural network seems able to identify the components of
pixels but not to rank them in the correct order. Identifying the component classes and
their percentage cover is helpful to the network since secondary and third classes are
identified best by Scaled and Bin target types. However, the target definitions also
introduce an element of confusion since the Occurrence target achieves the highest

accuracy of identification when the order of the classes is considered irrelevant.

Modified confusion matrix

The Modified misclassification matrices in table 7-5 to table 7-10 show that the
distribution of misclassifications is similar for all the target types. For example, for all the
target types, Bare Soil (class 1) is usually most misclassified with Grass (class 10), Vines
(class 11) and Shrubs (class 12). In table 7-8 which shows the matrices for the network
trained with Bin (6) targets, Bare Soil is correctly identified for 5,362 pixels out of 11,
901 (= 45.06%) pixels which contain some Bare Soil. The single highest individual mis-
allocations (shown in bold) are then to Grass (1,494 = 12.55%), Shrubs (1,467 = 12.34%)
and Vines (1,116 =9.37%).

These misclassification were expected since these classes were shown to have
similar spectral signatures in chapter IV and Shrubs and Vines are intimate mixtures of
plants and Bare Soil. The misclassifications of Bare Soil are then to Stubble (class 7),
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Broadleaf (class 14) and Coniferous (class 15). The Stubble class is an intimate mixture
of plants and Bare Soil. The forest classes either contain some Bare Soil or are similar to
the Shrub class which is itself confused with Bare Soil.

A well defined class such as Water, classified with 79.14% for this target type, is
misclassified with Marsh and Grass mainly, followed by Broadleaf and Bare Soil. The
misclassification with Marsh is understandable. It is likely that the misclassification with
Grass occurs because Marsh can be misclassified with Grass and that the
misclassification with Broeadleaf occurs because that class ts confused with Grass for
some pixels.

Classes such as Fruit Trees and Vines were expected to be misclassified because
they never occupy 100% of a pixel. However, Vines is relatively well identified whereas
Fruit Trees is not. Fruit Trees is most misclassified with Grass. Since the Fruit Trees
are either intimate mixtures with Bare Soil or Grass this is not surprising.

These simple examples suggest that the misclassification between classes is not
unexpected and that the class definitions of some of the training samples, particularly
Bare Soil and Grass may be poor. The problems of calculating percentage cover were
illustrated in chapter 1V, section 4.5, with the example of different Vines percentage

cover.

7.2.3 Results and analysis: ‘Portugal seven class’ data set

For comparison purposes, the ‘Portugal seven class’ data set was also classified
using networks with parameters set to the values in table 7-15, and a subset of the target
types discussed above, namely Pure, Scaled (-1,1) and Bin(6). This data set is chosen
because it has fewer classes than the ‘Portugal fifteen class’ data set, only two component

mixtures and no 50-50 mixtures and the results are expected to improve.

Parameters Portugal 7 class

Number of iterations 600

Architecture: Input Nodes 6
Hidden Nodes 13
Output Nodes 7

Type of weight initialisation | Constant seed value

Learning rate 0.1
Randomisation Once
Division ratio TR:TS=2:1=3951:7901

Table 7-15. Parameters for the neural networks
using different target types for the ‘Portugal seven
class’ data set
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The targets for each composition within the ‘Portugal seven class’ data set are listed
in table 7-16. As can be seen from this table, the targets for the pure pixels are the same
for all the target types but differ for the mixed pixels. The compositions information for
the Bin (6) is less variable than that for the Scaled (-1, 1) target types since it assigns ranges

of percentage cover to the same value.

Composition Pure Scaled (-1,1) Bin (6) Num.
100% 01 Bare Soil | +1 -1-1-1-1-1-1 | +1-1-1-1-1-1-1 +1-1-1-1-1-1-1 984
100% 02 Sand -1+1-1-1-1-1-1 | -14+1-1-1-1-1-1 -1 +1-1-1-1-1-1 102
100% 03 Water l-1+1-1-0-1-1 | -1-1+1-1-1-1-] -1-1+1-1-1-1-1 1196
100% 04 Urban “l-t-T+1-1-1-1 ]-1-1-1+41-1-1-1 S1-1-1+1-1-1-1 528
100% 05 Cereals -1-1-1-1+1-1-1 | -1-1-1-1+1-1-1 -1-1-1-1+1-1-1 372
100% 06 Grass -1-1-1-1-1+1-1 |-1-1-1-1-1+1-1 -1-1-1-1-1+1-1 2827
100% 07 Vines l-1-1-1-1-14+1 | -1-1-1-1-1-1+1 -1-1-1-1-1-1+1 1024
20% 01 80% 06 -1-1-1-1-1+41-1 |-06-1-1-1-1+06-1]-06-1-1-1-14+06-1| 1,063
30% 01 70% 06 -1-1-1-1-1+1-1 |-04-1-1-1-1404-1|-02-1-1-1-140.2-1]225
40% 01 60% 06 -1-1-1-1-1+1-1|-02-1-1-1-1+02-1]-02-1-1-1-1+0.2-1| 248
70% 01 30% 06 +1-1-1-1-1-1-1 | +04-1-1-1-1-0.4-1 [+0.2-1-1-1-1-0.2-1 {270
80% 01 20% 06 +-1-1-1-1-1-1 [+0.6-1-1-1-1-0.6-1 |+0.6-1-1-1-1-0.6-1] 714
20% 06 80% 07 -1-1-1-1-1-1+1|-1-1-1-1-1-06+06|-1-1-1-1-1-0.6+0.6] 1419
40% 06 60% 07 -1-1-1-1-1-1+1 |-1-1-1-1-1-02+02 |-1-1-1-1-1-02+40.2 718
20% 03 80% 06 -1-1-1-1-1-1+41 |-1-1-06-1-140.6-1 [ -1-1-0.6-1-14+0.6-1 | 162

Table 7-16. Targets for each composition in the
‘Portugal seven class’ data set

Rank and Modified confusion matrices for each target type are in table 7-17 to table
7-19. Overall frue accuracies are compared in table 7-20 The frue accuracies of
classification of the dominant and secondary components for the ‘Portugal fifteen class’
data set by neural networks trained with Pure, Scaled (-1,1) and Bin (6) target types are
listed in the first three data columns of table 7-20. The frue accuracies of classification of
the dominant and secondary cases for the ‘Portugal seven class’ data set, for a network
trained with the same target types, are listed in the last three data columns of table 7-20.

The comparison between the true accuracies shows that the composition of pixels
is estimated more accurately for the ‘Portugal seven class’ data set than the ‘Portugal
fifteen class’ data set. The accuracy of identification of the dominant class averages ~84%
for the ‘Portugal seven class’ data set whereas it averages ~65% for the ‘Portugal fifteen
class’ data set. The accuracy of identification of secondary and dominant class for the

‘Portugal seven class’ data set averages ~54% whereas it average ~29% for the ‘Portugal

fifteen class’ data set. Therefore, the networks perform better with the simpler data set.




#File ussd in confusion matrix: Portugal 7 Target Pure.index

RANE  confusion matrix
pos_id | 1 z 3 4 5 6 7 Total ~ True - Number of
————————— j-——77-7-—-—-- === —————-——-—------—-------- Accuracy Accuracy Pixels
1 | 6730 603 3b4 99 59 26 30 == 85.18% - 85.18% - (7901}
2 | 160 1799 734 151 150 161 49 == 56.15% - 53.71% - (3204)
Modified MISCLASSIFICATION confusion matrix
class id | 1 2 3 4 5 6 7 Total - Number of
————————— e e bbb Accuracy Pixels
1 | 1501 0 0 362 1 96 349 == 65.01% - (2309)
2 | 53 1 0 15 0 0 0 == 1.45% - (69)
3 | 53 0 303 14 2 31 9 == 88.05% - (912)
4 | g 0 0 268 0 79 8 == 73.83% - (363)
5 | 14 0 0 119 0 112 8 == 0.00% - (253)
6 | 416 0 1 450 5 4021 193 == 79.06% - (5086)
7 | 45 0 0 20 0 113 1935 == 91.58% - (2113)
Table 7-17. Rank and Modified confusion
matrices for the Pure target classification of
the ‘Portugal seven class’ data set
#File nsed in confusicn matrix: Fortugal 7 Targst Ones.index
RANK confusion matrix
pos_id | 1 2 3 4 5 3] 7 Total - True - Number of
————————— | mmmmmmm o m———————————— Accuracy Accuracy Pixels
1 | 6587 792 318 106 59 18 21 == 83.37% - 83.37% - {7901)
2 | 524 1483 796 270 7z 17 4z == 46.29% - 43.29% - (3204)
Modi fied MISCLASSIFICATION confusion matrix
class_id | 1 2 3 4 5 6 7 Total - Number of
————————— |- ——————————————————- Accuracy Pixels
1 | 1747 0 i3 189 19 205 136 == 75.66% - (2309)
z | 53 0 0 7 0 4 0 == 0.00% - (69)
3 | 35 o] 794 52 3 2 4 == 87.06% - (912)
4 ! 1z 4 0 261 0 82 4 == 71.50% - (363}
5 | 0 0 0 78 60 111 4 == 23.72% - (253}
6 | 953 3 24 201 52 3597 256 == 70.72% - (5086)
7 | 75 0 0 20 i4 393 1611 == 76.24% - (2113)
Table 7-18. Rank and Modified confusion
matrices for the Scaled (-1,1) target
classification of the ‘Portugal seven class’
data set
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#File

B o M N L R S g

used in confusion matrix:

Portugal 7 Target Bin_6.index

RANK confusion matrix
1 2 3 4 5 5 7 Total - True - Number of
—————————————————————————————————————————— Accuracy Accuracy FPixels
6572 307 72 61 37 11 == 83.18% - B83.18% - (7901}
494 22 276 135 17 ] 56 == 69.19% - 66.54% -~ (3204}
Modified MISCLASSIFICATION confusion matri
i 2 3 4 5 6 7 Total - Number of
—————————————————————————————————————————— Accuracy Pixels
1617 0 0 204 34 354 100 == 70.03% - (2309)
50 0 0 17 o 2 0 == 0.00% - (69)
21 o 787 25 3 16 0 == 8§6.29% - (912)
1 0 0 264 0 94 4 == 72.73% - (363)
14 0 0 38 78 1i2 9 == 30.83% - (253)
251 0 10299 11 4263 255 == 83.94% - (5086)
59 0 0 1 0 279 1774 == 83.96% - (2113)
Table 7-19. Rank and Modified confusion
matrices for the Bin (6) target classification
of the ‘Portugal seven class’ data set
Overall True Percentage Classitication Accuracy
Portugal 15 class Portugal 7 class
Pos. Pure | Scaled Bin Pure | Scaled | Bin | Num.
-1,+1) | (6) (-1,+1) | (6)
Dominant | 70.17 | 62.70 61.77 | 85.18 | 83.37 | 83.18 | 7,901
Secondary | 21.27 | 32.59 31.73 [ 53.71 | 43.29 | 66.54 | 3,204

Table 7-20. Overall

‘true’ accuracies for each

position in a mixture and cach target type for the
‘Portugal seven class’ data set

In the experiments using the ‘Portugal seven class’ data set, the dominant class was

best identified by the network using the Pure target type (85.18%) although there is little

difference with the other two target types, Scaled (-1,1) and Bin(6), which registered

values of 83.37% and 83.18% respectively. These results are similar to those obtained

with networks trained and tested on the ‘Portugal fifteen class’ data set. On the other hand,

with this data set, the composition of the mixed pixels was identified worst by the Scaled

(-1,1) target type (43.29%). The Pure target achieved 53.71% accuracy and the Bin(6)

target type achieved 66.54%.




These results suggest that classification accuracy is not only a function of the target
type but also of the actual composition of the data set. Here, all mixture contain Grass and
most contain Bare Soil. Over half the pixels in the data set (5,086) contain Grass as can
be seen from the matrices (for example table 7-17 in bold). The network trained with Pure
target 1s therefore likely to assign a higher node value to any unseen pixel for the Grass
class or the Bare Soil class and most of the time it will be correct, hence the relatively
high accuracy of classification of the two component mixtures. In addition, the variability
of the targets for the Scaled (-1, 1) target type appears to confuse the network. The Bin(6)
target type seems to achieve the right balance between providing the network with

compositional information and not confusing it.

7.2.4 Summary

In summary, the experiments using the ‘Portugla fifteen class’ data set have shown
that different target types influence classification accuracies. It seems that providing
information about the composition of pixels is helpful to the network since Scaled and Bin
targets generally identify secondary and third classes better than Pure or Occurrence
targets. However, the information that is provided also seems to be the source of
additional confusion. Therefore, it would seem that target types must be defined so as to
strike the right balance between providing the compositions information and not adding
to the possibility of classes being confused.

In the literature, Moody ef al. (1996) carry out a classification of a testing data set
containing mixed pixels using a network trained with a Pure target. They identify the
second maximum value of the neural network output vector and assign the class with the
second maximum value to the dominant class, for pixels that were mis-classified and find
that classification accuracy increases. This suggests that the network assigns the correct
class either as the dominant or the secondary class.

Results using the ‘Portugal seven class’ data set show that the overall true
classification accuracies of the dominant and secondary classes of the ‘Portugal seven
class’ data set are higher than those of the ‘Portugal fifteen class data set’. Furthermore,
the Pure target identifies the composition of two component pixels more accurately than
the Scaled (-1,1) target. This suggests that the composition of the data sets may have a

strong influence on classification accuracies.

- 187 -




7.3 Summary of Chapter VII

The limitations of existing methods to evaluate soft classification accuracies led to
the development of two matrices for analysing neural network outputs. The Rark matrix,
discussed in section 7.1.2, analyses the frequency with which classes in each position
(dominant, second and so on) have been correctly identified and, if mis-identified, the
position to which the network assigned them. The Modified confusion matrix, discussed
in section 7.1.3, calculates the accuracies of classification of individual classes, regardless
of the position they are in.

Using the matrices developed, the effect that different target types may have on
classification accuracy was investigated. The experiments discussed in section 7.2
revealed that the network appears to be able to identify the components of pixels, that is
the classes which are present within the pixel, but that it has difficulty ordering the classes
correctly, that is determining which is the dominant class, the secondary class and so on.
For the large majority of pixels, the network assigns the correct classes to one of the first
four positions. Accuracies are ~90% for the dominant class, ~80% for the second and
~70% for the third and fourth classes if assignment of the correct class to any of the first
four positions is considered to be correct. However, when frie accuracies are calculated,
that is when a position is only considered to be correct if the previous position was
correctly identified, the overall percentage accuracies fall to ~60% for the dominant class,
~30% for the second, ~20% for the third and ~0% for the fourth component.

In fact, network trained with targets which specifically impose an order register
higher accuracies in the second and third components than networks trained with targets
that impose no order information. However, the network trained with a target which only
signals the presence of a class, without indicating its order, registers the highest accuracy
for identifying the component classes. This suggests that targets must strike a balance
between providing enough information for the network to be able to order classes
correctly and not provide information that is so detailed that the network has more
probability of being wrong.

Results from the classification of the ‘Portugal seven class’ data set show that the
overall frue classification accuracies for the ‘Portugal seven class’ data set are higher than
for the ‘Portugal fifteen class data set’. The composition of the data sets appear to have a
strong influence on classification accuracies since the network trained with the Pure
target identifies the composition of two component pixels more accurately than the

network trained with the Scaled (-1,1) target.

The Pure target generally produced lower accuracies than other target types for the
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second and third components. This suggests that the network is not able to extract sub-
pixel signatures and instead needs to be taught a pattern for mixed pixels. This is
investigated further in the next, and final experiments chapter, using a data set with only

two classes and very accurate ground data.

|




Chapter VIII

The previous experiments, described in chapters VI and chapter VII, have suggested
that network output values may be related to proportions of classes within pixels.
Although experiments with different target types in chapter VII using the ‘Portugal fifteen
class’ data set were inconclusive, the experiments with the ‘Portugal seven classes’ data
set showed that ~50% of pixels could be correctly assigned dominant and secondary
classes in the right order. It is thought that the size and complexity of the data set, although
simpler than the fifteen class data set, may be the cause of the low accuracies.

In chapter VI, section 6.3, Correspondence images for the network trained and
tested with mixed pixels from the ‘Portugal seven classes’ data set and a Pure target type
showed that secondary classes seemed to be identified for some pixels. The node response
graphs in section 6.4 for the network trained on pure classes from the Scotland site and
tested on mixed pixels, showed that it produced the correct network node responses for
several of the mixed pixels, that is high response for the appropriate classes and low
responses everywhere else. It is interesting to find out whether the network requires
examples of mixed pixels in order to accurately identify testing set mixed pixel
compositions or whether the network requires pure pixels, from whose signatures it then
derives mixed pixel compositions. If the network only requires pure pixels, then elaborate
ground data collection exercises to accurately measure percentage cover of classes may
no longer be required. On the other hand, it may be difficult to obtain pure pixels from
some low resolution satellite imagery such as that from the AVHRR.

As mentioned above, the size and complexity of the data sets from Portugal and
possible errors such as those described in chapter 1V, section 4.5 2, are thought to be
partly the cause of low levels of accuracy. For this reason, the structural data sets from
Scotland were created. As discussed in chapter IV, structural parameters of a forest such
as Height and Basal Area have been found to be strongly correlated with forest reflectance
values from Landsat TM imagery (Butera, 1986). The correlation coefficient for the

‘Scotland bio box’ data set between Height and Landsat TM band 2, for example, was -
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0.80 and that between Basal Area and band 2 was -0.74. In fact, Height and Basal Area
are actually related to tree growth which itself is linked to canopy cover. The higher
reflectance values for younger trees are thought to be attributable to the reflectance from
ground vegetation such as grass. As canopy closure occurs, the relationship breaks down
(White et al., 1995). Therefore, since Height and Basal Area are in effect a measure of
how much background can be seen, it is hypothesised in this thesis that they can be used
as surrogates for class proportions for forest stands which have not reached canopy
closure. The advantage of using such measures is that they can be measured on the ground
very accurately.

The aim of the work described in this chapter is to determine whether the neural
network can extract the relationship between Height and Basal Area measurements and
Landsat TM channel values, and consequently, proportions of Trees and Grass. A review
article by Kimes ef al. (1998) suggests that the non-linearity of the neural network makes
it particularly appropriate for this type of problem. This chapter aims to establish whether
the network requires examples of mixed pixels in the training set in order to effectively
predict values for pixels in a testing set, or whether the network can use only the pure end-
members in the training file to establish some type of regression estimate with which to
predict values for pixels in a testing set. As discussed in chapter II, the term ‘end-
members’ is typically used in unmixing models to signify ptre components, or composing
components of a mixture.

This chapter is divided into two main sections. The first set of experiments require
the network to invert the relationship between Landsat TM values and Height and Basal
Area values; that is, the network is trained with the scaled measurements of Height and
Basal Area. The targets are therefore continuous, in the sense that they are real values.
This is in contrast with previous targets such as the Pure target which is a binary type of
target. In a way, the scaled measurements are similar to the Scaled targets presented in the
previous chapter except that there is only one node and it does not refer to a class but to a
variable. The second set of experiments uses the same data sets but targets are no longer
real continuous values; instead binary type targets are used. Preliminary work relevant to

this chapter was described in Bernard and Donoghue (1996).

8.1 Correlation between Continuous Target and Network OQutputs

The aim of these experiments is, using a continuous value as a target, to ascertain
whether the network correctly estimates Height and Basal Area values for unseen pixels.

If the network is capable of doing this, it can be assumed that it is recognising a
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relationship between proportions of Trees and Grass on the ground and the Landsat TM
signal. In addition, the experiments serve to investigate the requirements for the network
to interpolate between data. Can the network be trained only with pure classes, in this case
100% Grass and 100% Trees, and when tested on mixed pixels correctly identify the
components of the pixel and their proportions, or must the network be provided with
examples of mixed pixels in the training data set in order to correctly identify the

components of mixed pixels in the testing data set?

8.1.1 Methodology

The experiments were carried out on the structural data sets ‘Scotland bio all” and
‘Scotland biobox’. As discussed in chapter IV, section 4.8, graphs of the mean reflectance
values for each band for increasing square kernels for the ‘Scotland bio all” data set, which
contains all the pixels from the digitised polygons, showed some variability within the
data (appendix B, section B.8). For this reason, the ‘Scotland bio box’ data set was created
which only contains pixels within a 5x5 box. Its graphs showed high homogeneity for
pixels within the 5x5 box. Both data sets include the same pure Grass pixels. The
‘Scotland bio box’ data set has less variability than the ‘Scotland bio all’ data set and 1s
expected to produce more accurate results.

The targets for the networks were Height or Basal Area values scaled between -1
and +1. In order to perform the scaling of the data, integer minimum and maximum values
of both variables for each data set were identified from the reference data (chapter IV,
section 4.6): 0 and 72 for Basal Area and O and 20 for Height. The test for the neural
network was to estimate these scaled values of Height and Basal Area for unseen pixels.

For each of the Scotland data sets, two pairs of training and testing files were

created.

* To test whether the network could approximate Height and Basal Area values
having been trained with a file including mixed pixels, pixels were
randomised and then divided in a 1:2 ratio between training and testing files.
This data set is referred to as the ‘representative’ data set since training

pixels should be representative of the testing pixels.

+ To test whether the network could approximate Height and Basal Area values
having been trained with a file which did not include mixed pixels, polygons
with complete canopy closure were identified and their pixels placed in a
training file including the Grass pixels. Pixels from the other polygons,

containing pixels of mixed Trees and Grass, were placed in the testing file.
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This data set is referred to as the ‘end-member’ data set because pixels in the
training file are pure examples of the components of the pixels in the testing
file.
The parameter settings for the network for each data set are listed in table 8-1. The same
settings were used for the ‘Scotland bio all” and the ‘Scotland bio box’ data sets. An
architecture of four nodes in the hidden layer was deemed sufficient for adequate
approximation.

The ability of the network to approximate the variable values is evaluated in graphs
of neural network estimated Height and Basal Area values against reference data Height
and Basal Area values. A perfect linear correlation would be shown by a 1:1 relationship.
Neural network output values were post-processed by scaling them between 0 and 72 for
the Basal Area and 0 and 20 for the Height; since this is post-process scaling it has no

effect on the algorithm or the results.

Parameters Representative End-Member

Number of iterations for training 600 600
Architecture of the network: Input Nodes |6 6

Hidden Nodes |4 4

Output Nodes || 1
Type of weight initialisation Constant seed value Constant seed value
Learning rate 0.1 0.1
Randomisation Once Once
Division ratio ‘Scotland bio all’ 1:2=312:624 (N/A) 367 : 569
Division ratio ‘Scotland bio box’ 1:2=172:343 (N/A) 291 : 226

Table 8-1. Parameter settings for the experiments
with the ‘representative’ and ‘end-member’ data
files for the ‘Scotland bio all’ and the ‘Scotland bio
hox’ data sets and the continuous target type

8.1.2 Results and analysis for the representative data sets

Figure 8-1 and figure 8-2 show the neural network estimations of Height and Basal
Area respectively, for the representative testing file of the ‘Scotland bio all’ data set. A
linear regression was fitted through the points for each graph whose equation is provided
at the top of the graphs. R values which show the strength and direction of the correlation,

and R? values which provides a measure of the explained variance were also calculated.

For the Height for this data set, R =+0.92, R? = 0.85; for the Basal Area for this data set,
R =+0.89, R?=0.79.










Second and third order polynomials were also fitted to the data to test whether they
would explain any more of the variance; in other words, whether the R? value increased.
It has been suggested that the sigmoid activation value causes the network to bias towards
extreme values (Foody, 1996a, Warner and Shank, 1997). The experiments here does not
confirm this since third order polynomials did not produce higher R? values. The fact that
the relationship between Landsat TM channel values and Height and Basal Area
decreases as canopy closure occurs (Peterson et al., 1996) could suggest a second order
polynomial. There was no evidence of this either however, as R? values were lower than

for the linear regression.

8.1.3 Results and analysis for the end-member data sets

Figure 8-5 and figure 8-6 present the results for the neural network trained on the
end-member training files of the ‘Scotland bio all’ data set. The training file contains
only pure pixels of Grass and Trees from closed canopy polygons. The testing file
contains only mixed pixels. For this reason, the full range of variable measurements is not
present in the testing file. The graphs show that there is no relationship between neural
network output values and reference Basal Area and Height measurements for this
experiment. Correlation coefficients have fallen to R =0.11 and R? = 0.01 for Height and
R=0.11and R =0.01 for Basal Area. The neural network therefore does not seem able
to predict Basal Area or Height of mixed pixels if it is trained only on pure pixels.

Surprisingly, although the network was trained with pure Grass pixels as well as
pure Trees pixels, when presented with mixed pixels, the network assigns all the mixed
pixels high Height and Basal Area values, as if they were pure Trees pixels; it does not
assign any of the pixels to Grass, that is zero Height and Basal Area values. This effect
cannot be attributed to a higher frequency of closed canopy Trees pixels, since pure
Grass pixels constitute 1:3 of the training set. Therefore, this may indicate either that the
network is biased towards positive values of a target or that the background Grass signal
must reach a threshold before the pixel will be assigned to Grass in preference to Trees.
This possibility was also raised in chapter V1, section 6.4.2, when Medium Density Trees
did not register high output values in the background node.

Figure 8-7 and figure 8-8 present the results for the end-member data files from the
‘Scotland bio box” data set. The results corroborate the previous findings that there is no
relationship between the neural network output values and expected Height and Basal
Area measurements. Correlation coefficient have dropped to R = 0.28 and R? = 0.08 for

the Height and R = 0.08 and R?=0.01 for the Basal Area.
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Scotland bio all Scotland bio box

Experiment R R? R R2

Height ‘representative’ 0.92 0.85 0.93 0.87
Basal Area ‘representative’ 0.89 0.79 0.91 0.82
Height ‘end-member 0.11 0.01 0.28 0.08
Basal Area ‘end-member’ 0.11 0.01 0.08 0.01

Table 8-2. Correlation coefficients

Predicting continuous variables is not very common with this type of network.
Pierce (1994) used a multi-layer perceptron to predict structural variables from a forest
using SAR imagery. The methodology was slightly different in that the input data
contained ancillary data and the output values were estimated together, for example
Height and Basal Area so that there were two output nodes. The author reports very good
predictions but the test sites were the same as the training sites with the only difference
being incidence angles and time of day. Gopal and Woodcock (1996) successfully used a

multi-layer perceptron to predict change in basal area.

8.2 Correlation between Binary Target and Network Outputs

The experiments were re-run using a binary target similar to the Bin targets used in
chapter VII. The advantage of these targets is that less precise information is required to
create them. Classification was carried out to test whether with this type of target the
results obtained in the previous section were confirmed. Since the network appears to
extract the relationship between structural variables and Landsat TM values with
continuous target values, it should reflect the composition of the pixel when it is trained

using a binary target.

8.2.1 Methodology

The same data files as those used in the previous section were used here: the
representative and end-member data files for the ‘Scotland bio all’ data set and the
‘Scotland bio box’ data set. The representative data sets contain both pure and mixed
pixels. The end-member data sets contain only pure pixels in the training file and mixed
pixels in the testing file. Neural networks were used with parameters set as shown in table

8-1, except for the output layer of the network which was set to two output nodes instead

of one.




The target vector 1s formed of two elements. The left-most node corresponds to the
Grass class, the right-most node represents the Trees class. Pixels of pure Grass were
given a target of 1 for the Grass node and -1 for the Trees node. Pixels of pure Trees were
given a target of -1 for the Grass node and 1 for the Trees node. Pixels of mixed Grass
and Trees were given target values of O for each node. This information is summarised in

table 8-3.

Description of Pixel Target
Pure pixel containing only Grass 1-1
Pure pixel containing only Trees -1
Mixed pixel containing Grass and Trees 00

Table 8-3. Target for each pixel.

The results from the neural network are displayed using the type of graph used in
chapter VI, section 6.4 The vertical axis shows the neural network output values. The
expected class 1s displayed on the x-axis. Class 1 is the Grass class, class 2 is the Mixed
pixels class, class 3 is the Trees class. If the network is capable of identifying mixed
pixels and their components, then pure Grass pixels in the testing file should be
represented at the output node level by strengths close to +1 and -1 respectively for nodes
1 and 2. Pure Trees pixels should be represented by strengths close to -1 and 1. Mixed

pixels’ node values should lie about O for both nodes.

8.2.2 Results and analysis for the representative data sets

Figure 8-9 shows the response of the network nodes for each class in the
representative testing file of the ‘Scotland bio all’ data set (a) and the ‘Scotland bio box’
data set (b). The response for the Grass pixels is close to +1 for the Grass node and -1 for
the Trees node, as expected. The response for the Trees class, class 3, is close to -1 for
the Grass node and +1 for the Trees node although there is some spread in the values.
There is a large spread of values for the mixed pixels, but the Grass node and the Trees
node do register strengths of 0. The large spread may be due to the fact that the mixed
pixels contain a range of mixture proportions. Thus, a pixel cover 75% by Trees and 25%
by Grass would be expected to have a different response than a pixel covered 50% by
Trees and 50% by Grass.

The results for the ‘Scotland bio box’ data set confirm those for the ‘Scotland bio
all’ data set. However, the spread in values, particularly for the mixed pixels, class 2, has

decreased and node strengths are closer to their expected values. This suggests that some
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Figure 8-9. Response of the network in each

node for pixels from the ‘representative’

testing file of the ‘Scotland bio all’ data set (a)

and the ‘Scotland bio box’ data set (b)
of the pixels in the ‘Scotland bio all’ data set may not actually be well represented by the
Height and Basal Area measurements of the single plot. For example, some of the pixels

from the polygons with older trees may actually have complete canopy closure, even

though the area within which the plot was measured may not.

8.2.3 Results and analysis for the end-member data sets

The same methodology was used for the end-member data sets. The results are
shown in figure 8-10. The testing set only contains mixed pixels and therefore they are all
plotted at the 0 value. The results show that all the pixels are classified as Trees. This
confirms the results from section 8.1.3 that the neural network cannot use the pure signals
it has been trained on to identify the mixed pixels by calculating an in-between target
value. Instead, all the pixels are classified as -1 for the Grass node and +1 for the Trees
node, indicating Tree class. As before, although the network has been trained with some

pure Grass pixels, none of the mixed pixels in the testing file are classified as such.
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Figure 8-10. Response of the network in each node
for pixels from the end-member data set
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8.2.4 Summary

The experiments described in this section confirm the results from the experiments
in the previous section, section 8.1, for a network trained using a binary target such as
those used in traditional pure classification problems. If mixed pixels are included in the
training data set, then mixed pixel targets are approximated as seen in section 8.2.2 On the
other hand, if the neural network is trained only on pure classes, mixed pixels targets are
not approximated as seen in section 8.2.3. This confirms the suggestion that the neural
network must be trained with examples of values that cover the range of data. It does not

seem capable of interpolating between pure ‘end-members’.

8.3 Summary of Chapter VIII

In chapters VI and VII, it was shown that the neural network may respond to the
sub-pixel components of a pixel, but a conclusive result as to the degree of accuracy which
could be obtained was obscured by the complexity of the data sets. The aim of this chapter
was to establish, with a simple, better defined data set, in what way the network responded
to the components of a mixed pixel. The data sets consisted of Height and Basal Area
measurements used as surrogates for proportions within a mixture.

The results from the experiments described in this chapter have shown that the
neural network cannot identify mixed pixels if it is not trained with mixed pixels. This
result is true regardless of the target type used to represent reference information. It could
be suggested that the neural network has overlearmed and therefore cannot predict values
in the testing data set. However, the error on the learning data set is still decreasing when
the network stops after 600 iterations and it seems unlikely therefore that the network has
overlearned.

Surprisingly, in the end-member experiments, the network misclassifies all pixels
as pure Trees and none as pure Grass. It is not clear why that may be but indicates that
the response of the network to the presence of Trees in a pixel may be non-linear.

The neural network estimations of continuous values have quite a large spread. This
suggests that the neural network may require even more precise information than that
which it was provided with here. This is confirmed by the reduced variability of the results
from the ‘Scotland bio box’ data set. The neural network estimations of target for the
binary target also have quite a large spread. This may be because the network responds to

the different proportions within the mixed pixels testing data set.
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Chapter IX

SUMMARY AND CONCLUSIONS

Previous research into extracting sub-pixel information suggests that neural
networks, and more particularly muiti-layer perceptrons, are an attractive alternative to
the other main methods that have been investigated such as linear unmixing models,
modified maximum likelihood and fuzzy c-means algorithms. Neural networks do not
assume that the spectral signature from components of a mixed pixel combine linearly;
they do not assume that data is normally distributed, they may not necessarily have to be
trained with pure pixels and they are not restricted to any number of classes.

The overall aim of the thesis was to investigate the relationship between neural
network output values and sub-pixel information. To do so, it was necessary to
address methodological issues concerning the identification of sub-pixel information
by the neural hetwork and to develop tools for the analysis of soft classification
results. This chapter synthesises the results of the experiments that were described in the

thesis.

9.1 Preparation

The experiments reported in the literature which suggest a relationship between
neural network output values and class proportions within pixels commonly use data sets
with simple characteristics. Sometimes the mixed pixels are generated synthetically;
often, high resolution data are degraded to produce a coarse resolution image. The number
of classes and the number of pixels per class are generally limited. In short, the data sets
used in the experiments reported in the literature do not reflect the complexity of typical
classification problems. Furthermore, actual pixel proportions are usually estimated from
classifications of higher resolution imagery and accurate ground data is not available.
Indeed, details of the reference data are not usually forthcoming. Yet without knowledge
of the characteristics of the training and testing data sets, the performance of the network
cannot be properly appraised. The data sets used in the thesis, described in chapter IV,

were created to be representative of the typical landcover classification problem.
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Few articles concerned with an application of neural networks describe the network
or the methodology for choosing particular parameters of the network in any detail.
Nevertheless, an initial study of the performance of the network over a range of values of
parameters is essential as it provides the framework within which subsequent experiments
can take place. The multi-layer perceptron network used throughout the thesis was
described in chapter IIl. Before carrying out any soff classification experiments, the
sensitivity of the network to changes to its parameters was evaluated. Results were
described in chapter V and show that for appropriate ranges of values, particular choices

of parameters do not unduly influence observations.

9.2 Analysis Tools

The overview of the literature summarised in chapter II highlighted a lack of
qualitative and quantitative tools for the analysis of soff classification results. Several new
techniques were developed in the thesis to compare neural network estimated sub-pixel
information and actual pixel compositions as provided by reference data and to describe

data sets.

9.2.1 Composition matrices

Composition matrices, described in chapter IV, section 4.4, characterize the data
sets by calculating the frequencies with which classes occur as dominant, secondary, third
and so on components within the reference data. From the Composition matrices, it is
possible to tell how many pixels contain each of the classes and how many times
individual classes occur as dominant, secondary and so on components. This provides an

a-priori overview of the data.

9.2.2 Correspondence images

Correspondence 1mages, described in chapter VI, section 6.3, provide a visual
account of the results of soff classification on the testing data set. Each pure class is
assigned a colour. For each pixel, compositions are represented by lines coloured
proportionally to the area covered by each class within the pixel. Reference data
percentages are scaled between zero and one and neural network output values are scaled
between zero and one and normalised. Correspondence images allow pixel composition
according to the reference data to be directly compared with pixel composition according

to the neural network output values.
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9.2.3 Node response graphs

Node Response Graphs, described in chapter VI, section 6.4, provide a graphical
representation of the neural network output values at every node for testing data set pixels
grouped according to their dominant class as provided by reference data. The graphs show
how classes are represented by network output nodes and interpretations as to the reasons

for particular patterns can be made.

9.2.4 Rank matrix

The Rank matrix, described in chapter VII, section 7.1.2, describes the soft
classification of the testing data in the form of a matrix. The matrix shows how many
classes were correctly identified by the classifier for each position of a mixture, that is
dominant, secondary, third and so on. It also shows to what positions mis-identified
classes were assigned. Using the Rank matrix, it is possible to tell how results were
distributed and whether, for example, the classifier tended to assign dominant classes as

secondary classes and so on.

9.2.5 Modified confusion matrix

The Modified confusion matrix, described in chapter VII, section 7.1.3, disregards
position information and calculates the frequencies of misclassification between classes.
Unlike the traditional confusion matrix, misclassifications are examined at every position.
From the Modified confusion matrix, it is possible to tell which classes were correctly

identified, which were not correctly identified and where classes where mis-allocated to.

9.2.6 Importance of the new analysis tools

Accuracies of classification are a function of class separability, class proportions
within pixels and characteristics of the training and testing data sets. Analysis of soft
classification results should therefore take each of these components into account. The
methods that have been developed are best used in conjunction for this reason.

The actual reference data are described by the Composition matrices which provides
a numerical overview of the characteristics of the data sets. The Correspondence images
provide the means for an immediate appraisal of the classification results and which
classes are confused one with the other. Large data sets may hinder analysis if all the
pixels are viewed at the same time but zooming facilities on image processing systems can
help. It is suggested that this technique would benefit from additional interactive features
such as the possibility of extracting the input spectral signature of a pixel or a group of

pixels, for example, or of bringing up the Composition matrix for the data set, and so on.
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The reasons for which pixel components may have been mis-identified can be
partially interpreted from Node Response Graphs. The response of a network is usually
only plotted for the node with the highest output value whereas the response of the
network at every node can provide more insight into the data. For example, pure classes
that are well defined may tend to have high output strengths in the correct node and low
output strengths in the others. Classes that contain mixed pixels may tend to have high
output strengths in more than one node. By plotting the output values at every node in
Node Response Graphs, the behaviour of the network in relation to each group of pixels
becomes apparent. In the thesis, pixels were grouped according to their dominant class but
any other grouping is possible, for example, by polygon number or by secondary class and
so on, although the graphs can get confusing when large numbers of classes are used.

The qualitative information that is provided in the graphs and images is
complemented by quantitative methods which provide a numerical basis on which to
compare results. The rare numerical methods in the literature are not designed to compare
all positions for all pixels. The Rank matrix provides detailed information about the
distribution of classes for every position and every pixel. This method is only concerned
with the relative proportions of classes, not with the classes themselves. The Modified
misclassification matrices complement the Rank matrices by providing the class by class
breakdown of results. Although the matrices have been shown to provide useful
information concerning the soff classification results, they would benefit from a study of
the full impact of some of their limitations, described in chapter VII, section 7.1.4.

In summary, the combination of qualitative and quantitative techniques developed
in the thesis can provide a better insight into soff classification results than was previously

available.

9.3 Neural Network Outputs and Sub-Pixel Information

The aims of the experiments described in chapter VI, VII and VIII were to
determine the strength of the relationship between neural network output values and class
proportions within pixels and to address some methodological issues that had been mostly

neglected unttl now.

9.3.1 Relationship between network outputs and sub-pixel information
In chapter VI, it was shown that the node outputs for network trained and tested with
a pure data set using a conventional pure target were different for correctly classified

pixels and incorrectly classified pixels. Hypothesising that incorrectly classified pixels
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may in fact have been mixed, the results indicated that the network may have the potential
to identify sub-pixel information.

Using a network trained with a data set containing mixed pixels and a conventional
Pure target, fraction images were created from the neural network outputs on the basis
that they approximate a-posieriori probabilities and may therefore reflect pixel
compositions. The images showed that the dominant classes were generally situated
where they were expected spatially. However, most pixels seemed to register a signal for
most classes. This was confirmed when Correspondence images of the same results were
created. Although the dominant class seemed to be correctly identified for most pixels,
which was confirmed by an accuracy of ~70%, all the output nodes produced a signal and
secondary classes did not appear to be well identified. Using a simpler data set with less
classes and fewer mixture types showed that secondary components may be identified for
at least some pixels. Node Response Graphs for the same data set suggested that classes
that were mixed or spectrally similar may produce high output node values in the
appropriate classes and low output node values elsewhere. This would suggest that the
correct components were being identified.

The qualitative analysis atforded by the Correspondence images and Node
Response Graphs could not provide the level of detail that would allow a conclusive
answer regarding the relationship between neural network output values and pixel
compositions. Furthermore, it was suggested that the type of target used, which only
considered the dominant class of pixels, may be responsible for the apparent lack of a
relationship. Quantitative analysis tools were therefore applied to test whether the target
type had an influence on classification accuracy and whether there was a relationship

between neural network output values and class proportions.

9.3.2 Influence of target types

In chapter VII, the influence of target types was investigated by comparing the soft
classification outputs for each target type using Rank and Modified misclassification
matrices. The results showed that the neural network appears to be able to identify the
component classes of mixed pixels but not their relative proportions. Classes were
allocated to the first four positions within a network with a high level of accuracy, but
individual position accuracies were low. Target types have a strong influence on the
outcome of a classification. Providing information in the target about the composition of
a pixel is helpful to the network. However, if the information is too detailed, the

classification accuracy can decrease. Target types must therefore be defined with
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particular regards to the actual distribution of mixture types. Experiments with a simpler
data set suggested that the composition of the data may cause class components to
seemingly be identified when it fact it is the nature of the mixing which means that the

appropriate secondary classes are highlighted.

9.3.3 Influence of the composition of the data sets

In chapter VI, a network was tested that had been trained only with pure classes.
The test pixels on the other hand were mixture of some of the pure classes. Node Response
Graphs showed that the appropriate nodes were registering high output values in some
cases. This suggested that the network may be able to identify components of a mixture
if it is trained only on pure classes. This hypothesis was tested in chapter VIIL using a
data set with only two pure classes and very accurate surrogate measurements for class
proportions. The results suggested that the network could not identify the components of
a mixture or their proportions if it was only trained on pure pixels. On the other hand, a
strong relationship between network output values and pixel compositions was obtained
if the network had been trained with mixed pixels. Therefore, the network functions as a

pattern matching algorithm and not as an unmixing model.

9.3.4 Importance of the results

Experiments in the literature have tended to suggest that the network can not only
identify components of mixed pixels, it can also approximate their proportions. However,
most experiments use very few classes and few pixels per class. In this thesis, complex
and large data sets were used. The results from the experiments suggest that classification
accuracy is a function of class separability, proportions within pixels and composition of
data sets. The complex inter-relationship between these factors decreases the accuracy
with which the network can identify sub-pixel information. It would seem that the
network cannot be used on a operational level to identify sub-pixel proportions although

it may be able to identify the sub-pixel classes that are present within a pixel.

9.4 Future Directions

The basis of methods which do not use linear or non-linear mixture models is that
a-posteriori probabilities reflect class proportions. Although it has been shown
emperically that this may be the case, it would be useful to understand the exact
mathematical reasons for which there may be a relationship between the two. The

accuracy of classification of a data set containing mixed pixels was demonstrated to be a
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function of class separability, proportions and composition of data sets. it would be
interesting to obtain a complete understanding of how these factors inter-relate and their
relative importance. The accuracy of the reference data was shown to be a contributing
factor to possible misclassifications. The use of reference data sets that were extremely
precise and accurate so that exact pixel compositions were known would provide a strong

foundation with which to continue the research into extracting sub-pixel information.
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Appendix A

SOFT CLASSIFICATION
SOFTWARE PACKAGE

This appendix provides an overview of the functionality of the software package
that was developed in the course of this thesis. For each routine, a statement of general
purpose, a list of required user inputs and the type of output produced are supplied. The
description of the routines is intended for the user and therefore technicalities of the
implementation are not discussed. The program was written in the ‘C’ language on a Sun
Unix system. The source code for routines which are contained in the software but which
were not implemented by the author is not included in this thesis. However, changes to
the original routines were listed at the top of each source file in header comments which
are included in section A.4. The computer source code for the routines written by the

author is listed at the end of this appendix in section A.5.

A.1 File Formats

ASCII format data files are expected. The neural network requires two training
files: one containing pixel information and the other containing target information
(discussed in chapter III). In the first, each row contains information for one pixel. There
are as many rows as there are pixels to be trained with; there are as many columns as there
are separate sources of information. For example, digital numbers from five Landsat TM
channels constitute five separate sources of information. The order of the columns
remains constant throughout the file. In the second training file, there are as many rows
as there are pixels in the first training file. Each row represents the corresponding target
information for each pixel. Targets are composed of n columns where n is the number of
pure classes in the classification problem. Testing files follow the same convention.

Targets are created from ground data information which may consist of an integer
class code, for pure classification, or of a ground data vector, for soff classification. The
format of the ground data vector is: xy = xy  xy and so on, where x is an integer

representing percentage cover and y is an integer class number. For example, a mixture of
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[30% class 2 + 40% class 4 + 25% class 6 + 5% class 1] and a pure pixel of class 7 must
be represented in the following way: ‘302 404 256 51’ and ‘100 7’ (without the

quotes). The order of the class-percentage pairs is unimportant.

A.2 Menu Options

This section provides an overview of the routines implemented by the author which
form the soft classification package. In addition to the menu option shown, all menus
include a “q - Quit” option which stops the execution of the program and returns the user
to the operating system’s prompt, and all menus except the top menu include a “b - Go

Back” option which takes the user from the current menu to the previous menu.

A.2.1 Upon entry

When the program is called, the user is shown the following menu.

Main Menu

1 - Prepare files for input to the neural network
2 - Neural network classification
3 - Analyse outputs from the neural network

The first option presents the user with a menu of operations to manipulate files and
prepare data for input into the neural network. The second option provides a menu of
neural network operations. The third option prints a menu of tools for the analysis of
neural network outputs. During the execution of routines, progress is monitored by
reporting the row number which is being processed. The user is asked every how many

rows should reporting take place.

A.2.2 Main Menu: 1 - Prepare files for input to the neural network

The following menu is printed to the screen:

Preparation Menu

1 - Divide data into training and testing sets

2 - Modify training or testing file for input to the NNet

3 - Randomise file

4 - Divide file vertically (e.g. into DN and Class file)

5 - Create target from file of ground data

6 - Change pixel codes using a Look Up Table

7 - Join files vertically

8 - Remove pixels that have the code given in the Look Up Table
9 - Check whether ground data percentages sum to 100%

10 - Sort ground data and provide statistics




Purpose: used to divide a data file into training and testing sets. Two options are available.
The data file can be divided by selecting the number of rows to place in the testing file for
every row in the training file. For this option, randomisation of the data file is
recommended prior to carrying out this operation. Alternatively, if each pixel has a code
such as a polygon code, a look up table (LUT) can be used which contains one column of

the codes for pixels which should be used as training data.

User Input:
e Name of input data file and Number of header lines to skip if any
* Option for dividing the data file (‘r’ by row or ‘c’ by code)
* Name of output training file and Name of output testing file

o If choice is ‘r’ then Number of ratio rows in the testing file for Number of

ratio rows in the training file

* If choice is ‘c’ then total Number of columns in the input data file and Name

of LUT file

¢ Training file (no header)

Testing file (no header)

p ion Menu: 2 - Modify traini ine file for i he NN

Purpose: used to centre and rescale data values so that the numbers are centred about 0.
Calculates the mean and standard of each band in the training file and saves them in a log
file which it then applies to the testing file. Therefore the training file must be modified

before the testing file. Implemented in the original software.
User Input:
* Option of training or testing file to be modified (‘t’ training or ‘v’
verification)
* Name of input data file and Number of rows
» Option of ground data being present of not (‘y’ present, ‘n’ not present)
e Number of data bands
* Option of modifying all the bands or only some (‘y’ all, ‘n’ some)
¢ if choice is ‘n’ some, List of the bands to be modified

* if choice is ‘v’ testing, Name of Log file to read




OQutput:

° Modified training or testing file

p tion Menu: 3 - Randomise fil
Purpose: used to randomise the rows of a data file. Required for adequate learning by the
neural network. The program expects no header lines for the input data file. If header lines

exist they will be randomised too.
User Input:
e Name of input data file and Number of rows in the file
* Name of randomised output data file
Output:
e Randomised output file (no header)
p ion Menu: 4 - Divide fil ically (e.g. into DN and Class file

Purpose: used to divide a data file into two files, for example one containing only data

information and the other containing the ground data information for the same pixels.
User Input:
* Name of input data file and Number of header lines to skip if any

* Number of columns to place in first file (n)

» Name of output first file and Name of output second file

* One file containing the first ‘n’ columns of the input data file (no header)

* A second file containing the remaining columns from the input data file (no

header)

Purpose: used to change pixel codes to other codes or ground data. For example, it may
not be possible to output anything other than an integer code for pixels when extracting
them from polygons using Arc/Info. This routine can be used to match integer codes to
the relevant ground data information. The LUT can contain in the first column an Arc/Info
code (for example ‘345’). The numbers after each code can represent ground data (for

example [301 204 50 8]). Alternatively, pixels from different classes can be merged
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together under a new class code using an appropriate Look Up Table which assigns the

same new code to different pixel codes.
User Input:

* Name of input data file and Number of header lines to skip if any

Total Number of columns of data in the data file

Name of LUT file and Number of header lines to skip if any

Name of output file

Output:
* File with the same information as the input data file but with different codes
or ground data information for each pixel (no header).
Pre tion Menu: 7 - Join fil icall

Purpose: used to join two files column wise. All the columns from the second file are

added to the first ‘n’ columns from the first file.

User Inputs:
* Name of first input data file and Number of header lines to skip if any
¢ Number of columns to include from the first file (counting from left to right)
» Name of second input data file and Number of header lines to skip if any

* Name of output file

* File containing ‘n’ columns from the first and all the columns from the second
input files. Three header lines to the output file. Line one and two provide the

name of the first and second file respectively; the third line is blank.

Purpose: used to delete pixels with a specific code. For example pixels from a specific

polygon may have to be deleted because of missing information or pixels from a specific

class may have to be deleted for a new classification scheme without that class.
User Inputs:

» Name of input data file and Number of header lines to skip if any

* Number of columns in this file

» Name of LUT file and Number of header lines to skip if any

* Name of output file




Output:

¢ File containing all the pixels from the input data file less those pixels with a

code listed in the LUT file (no header).

Purpose: used to verify that the ground data information is correct at least in terms of
percentage cover by checking that they sum to 100. Assumes a file containing only ground

cover information.
User Inputs:

¢ Name of input file and Number of header lines to delete if any
Quitput:

* Message “WARNING: at row ‘x’ the total ground coverage was ‘y’ or

* Message “All ground data cover sums to 100%”

Purpose: used to sort the ground information in increasing order of percentage cover. Also
produces a matrix of ground data information which, for each class, counts the number of
times the class occurs in each position (dominant, secondary....). When two or more
classes have the same percentage cover, they are all assigned to their highest level of
component mixing. For example, if a mixture is [30% 1 + 30% 2 + 40% 3], both classes
1 and 2 will increment their counter in the secondary class. The matrix is called a
‘composition’ matrix and is discussed in chapter IV.

User Inputs:

* Name of ground data file and Number of header lines if any

* Number of pure classes

* Name of output sorted ground data file and Name of output composition

matrix file
* File containing ground data information sorted, for each pixel, in increasing

order of percentage cover

* File containing a matrix describing the composition of the data set
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A.2.3 Main Menu: 2 - Neural network classification

The following menu is printed to the screen:

Neural Network Menu
1 - Training
2 - Testing
3 - Classification

Chapter Il discusses network training, testing and classification.

N | Network Menu: 1 - Traini
Purpose: used for training a network

User Inputs:
* Learning rate, Threshold network error, Number of Iterations

* Option of initialising weights randomly ‘r’ or from a file ‘f” (option f is for

continuing training for example if want more iterations)

» if choice is ‘r’ (randomly) then Option of initialising with current time as a

seed ‘y’ or with a constant ‘n’

* Number of input nodes (number of bands), Number of output nodes, Number

of hidden layers, Number of nodes in each hidden layer
» if choice is ‘f” from a file, Name of Weights file
» Name of input Training data file and Name of input Training target file
* Number of pixels in the Training file
 Name of input Testing data file and Name of input Testing target file
e Number of pixels in the Testing file

* Root name for resulting files (all output files have this name followed by a

specific extension e.g. ‘.wts’ for weight file

« Option of producing performance matrices every 15 iterations (only if pure

classification) (‘y’ yes, ‘n’ no)

* File of weights
¢ File of error values

* if choice of performance matrices is ‘y’ File of Training performance

matrices and File of Testing performance matrices




e [ : 2 - Testi
Purpose: used for testing the network
User Inputs:

e Name of Weights file

e Option of producing a confusion matrix of the performance (Pure

classification only) (‘y yes, ‘n’ no)

e Option of producing a file of neural network output values for each node for

each pixel (‘y’ yes, ‘n’ no)
* Root name for output files

e Number of pixels in Testing file

 Either a confusion matrix for pure classification
e or/and a file of neural network output values
N IN k Menu: 3 - Classificati
Purpose: used for classifying a raw image in band interleaved by line format using the

neural network. Includes the possibility of producing fraction images. The original routine

was modified extensively.
User Inputs:
* Name of Image to be classified
* Number of rows and Number of columns in the image
* Name of Weight file
* Name of Output classified image
¢ Name of Output statistics image
* Option of creating fraction images (‘y’ yes, ‘n’ no)

» if choice is ‘y’ for fraction images, Option of Normalised ‘n’ or just scaled
outputs ‘s’ (Normalised makes sure the neural network output for each pixel

sum to 1 and are scaled between O and 1, Scaled just scales between 0 and 1)

* Root name for outputs

* Classified image

e if choice is ‘y’ for fraction images then one image per class




A.2.4 Main Menu: 3 - Analyse outputs from the neural network

The following menu is printed to the screen:

Analysis Menu

1 - Create index file

2 - Calculate rank matrices

3 - Linearise Nnet outputs

4 - Scale and/or normalise and/or noise treat NNet outputs
5 - Calculate sum, max, 2nd max and difference

6 - Make pixel Ref.NNet correspondence images

The options from this menu are the implementation of the analysis tools described in

chapter VI and chapter VII of the thesis.

\ nalysis Menu: 1 - C index fil

Purpose: used to compare the target provided to the neural network and the resulting

output vector. The classes on the ground are ordered in increasing order of coverage of

the pixel according to the target vector. The vector of output classes from the neural

network 1s ordered in ascending order of coverage. A vector is produced which compares

class rankings for each non-zero coverage class value. A correctly ranked class is

indicated by a 1, an incorrectly ranked class is indicated by a 2. Irrelevant classes are

indicated by 0.
User Input

Name of the target file and Number of header lines to skip if any

Name of the neural network outputs file and Number of header lines to skip
if any

Number of pure classes

Value for the target vector below which ranking is not of interest (usually set

to 0% coverage)

Value for the neural network output vector below which ranking is not of

interest (for example -1.5)

Name of the output file

File -so called index file - containing rows of three vectors. First vector is that
of the target with classes ordered in ascending order of coverage. The second
vector is that of classes ordered in ascending order according to the neural
network outputs. The third vector compares the rankings at each position.
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Purpose: Used to calculate rank misclassification matrices from the index file. Two
matrices are created. One of the matrices calculates the accuracy of positioning of the
classes. In other words, how many times the dominant class is correctly identified and if
it is not, where is it placed. The other matrix calculates misclassifications between classes
at every position, not only for the dominant class. Classes which have the same ground
coverage according to the reference data are said to have the same rank. The percentage
of correctly classified ranks and classes is output for each position and class. In addition,
for the rank matrix, the true percentage - i.e. the number of pixels where all the positions
are correctly classified is provided.

er Input:
» Name of the index file and Number of header lines to skip if any
* Number of pure classes

* Name of the output file

Output
» File - rank matrix file - containing two matrices.-The first - rank matrix -
provides information as to the positioning of classes. The second - modified
misclassification - provides information as to the misclassification between
classes.
A palvsis Menu: 3 - Li ise NNet out

Purpose: used to linearise the neural network outputs. The sigmoid function is applied to
the neural network outputs before their value is produced. This routine inverts its effect
a-posteriori so that neural network values are as if no sigmoid had been applied
User [nput:

* Name of the input neural network output file and Number of header lines to

skip if any

Number of pure classes

Name of the output file

File containing linearised equivalents of the neural network outputs

Purpose: used to scale and/or normalise and/or remove a set value from each neural
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network output. Used prior to creating correspondence images. Neural network outputs
lie between -1.7 and 1.7. To create the correspondence images, need outputs which sum
to 1. In addition, this routine can be used to study the effect of removing small amounts
from the neural network outputs, either from all of them or only from those which are less

than the amount.
User [nput:
» Name of the input neural network output file and Number of header lines to
skip if any
* Option of scaling file ‘y’ or not ‘n’

* If choice is yes ‘y’, user must provide old minimum, old maximum, new

minimum and new maximum values and Name of output scaled file
* Option of normalising file ‘y’ or not ‘n’

* If choice is yes, file is assumed scaled to positive numbers and user must input

Name of output normalised file
* Option of capping outputs ‘y’ or not ‘n’

| * If choice is yes, user must input the amount to threshold by and the method.

Option of renormalising ‘y’ or not ‘n’ the outputs. Name of output capped file

* Depending on the choices,
« afile containing scaled outputs (usually done before normalising),

« afile containing normalised output,

* afile containing ‘capped’ outputs.

Purpose: identifies classes with the maximum and next maximum neural network values.
Prints the sum of the neural network outputs and the difference between the two
maximums for each pixel.
User Input;
* Name of the input neural network outputs file and Number of header lines to
skip if any

* Number of pure classes

» Name of output file
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Output

¢ File containing for each pixel the sum of the outputs, the first maximum

value, the second maximum value, the difference between the first and the

second maximum values.

Purpose: produces a ground data/neural network correspondence image from a file
containing the vector of ground data (e.g. target file) and the vector of neural network
outputs. File produced is a raw image.

User Input:

* Name of the input image data file and Number of header lines to skip if any

Number of pure classes

Name of output image file

* Number of columns to represent 100%

¢ Raw band interleaved by line file showing the correspondence between the

ground data and the neural network outputs.

A.2.5 Preparation Menu: 5 - Create target from file of ground data

Third level menu which permits the following options

Create Target Menu

1 - Pure integer - class given as a column of integers

2 - Pure target - class info treated as if pure

3 - Scaled target - class % scaled between min and max

4 - Bin target - class % placed in bins

5 - Occurrence target - class given max. target value if it occurs
6 - Rescale vector - vector components scaled one by one

The options in this menu implement the types of targets described in chapter VII of the

thesis.

Purpose: Routine which assumes as input a file containing a column of integers indicating
the pure class to which a pixel belongs. Target created is for pure classification and

contains no mixture information. Class numbers must be sequential. and start at 1.
User Input:
» Name of the input class number file and Number of header lines to skip

-A12-



[+

Number of pure classes

]

Value to give to the class to which the pixel belongs (usually +1)

Value to give to the classes to which the pixel does not belong (usually -1)

Name of output target file

Output

File containing targets

Purpose: Routine which assumes a file of ground data as input (in the format % cl %
cl etc.) but which creates targets which do not take the information into consideration.

Only the dominant class is considered.
User Input:
* Name of the input class number file and Number of header lines to skip if any
e Number of pure classes
» Value to give to the class to which the pixel belongs (usually +1)
e Value to give to the classes to which the pixel does not belong (usually -1)

» Name of output target file

 File containing targets

Purpose: Routine which assumes a file of ground data as input (in the format % cl %
cl etc.) which creates targets of scaled values (usually ground data is scaled between 0 and

1 say, so that 0% coverage is assigned 0 and 100% coverage is assigned 1).
User Input:
» Name of the input class number file and Number of header lines to skip

* Number of pure classes

Value to give to the class to which the pixel belongs (usually +1)

Value to give to the classes to which the pixel does not belong (usually 0)

Name of output target file

File containing targets



e u: 4 - Bi - ed in bi
Purpose: Routine used to produce targets where each class is placed in a 'bin' on the basis
of its coverage of the pixel. User must input how many bins they are, what value they take

on and the percentage range which should be assigned to them.
User Input:

» Name of the input class number file and Number of header lines to skip
e Number of pure classes

* Number of bins

* For each bin, its value

* For each bin, the range which should be assigned to it

* File containing targets

Purpose: Routine which creates a target by assigning the maximum value (+1) to all

classes which are present in the mixture, regardless of actual percentage cover, and
minimum value (-1) to all classes which are not present in the mixture. In effect, this type

of target signals the presence or not of a class
User Input:
» Name of the input class number file and Number of header lines to skip

* Number of pure classes

Value to give to the class to which the pixel belongs (usually +1)
» Value to give to the classes to which the pixel does not belong (usually 0)

* Name of output target file

+ File containing targets.

Purpose: Routine used to rescale a vector's values 1 by 1. i.e.with different min.’s and
max.’s for each. Mainly used in the biophysical experiments to scale back from the neural

network outputs to height and basal area value - for example.
User Input:

» Name of the input class number file and Number of header lines to skip

-A 14 -



» Number of pure classes
¢ New minimum

+ New maximum

* Old minimum

¢ Old maximum

* File containing targets.

A.3 Miscellaneous
The code is organised into
* one file containing routines determining menu choices (NNsoft_Main.c),
* one file for preparation routines (NNsoft_Prepare.c),
« one file for analysis routines (NNsoft_Analyse.c),
* one file for routines to create targets (NNsoft_CreateTar.c) and

+ one file for routines which complement the routines originally implemented

(NNsoft_MyAdditions.c).

* A number of files for routines containing the neural network software
Figure A-1 shows the location of routines within each source code file and the routines
from which calls to other routines are made. The user need not know this information.
Alternatives to the routines exist. For example, the randomise routine can be

replaced by sorting using for example a UNIX command; division of data files can be

executed in awk, and so on.
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FILE: NNosoft_modifyd.c

DESCRIPTION:

Computes the meane and standard deviations for
each channel for centoring the pixel valuas of a
training data file.

‘The meana and atandard deviatiens are saved in a
log file which io then used to centre tha pixel
values of a verification set and/or an image file.
The new filea are created in a format suitable
for input in a neural network. (17/5/91}

AUTHOR: I. Kanellopouics {JRC)

LIST of routines: modifyl
user_session
readfile
writefile
scaledown
modi fyfile

NEW routines: NONE

DEPENDENCIES:

NNsoft_utils.c: dalloe
double_matrix
char_matrix
free_d_matrix
free_c_matrix

NNsoft_My_Additions.c: My F Open

My _Get_File

LATEST modification: 16-05-1998

- Declarations changed to ANSII C standard

- #include and some function declarations removed

now in NNsoft_neural.h

file_open function changed to My File Open and *

H), Get_File .

- values to definitions *
in NNsoft_neural.h .

- File *fpname declarations moved to within -
routines rather than global .

- When questions asked, relooping if invalid .

MODIFICATIONS: A.C. Bernard (JRC/Durham) N

answer implemented

- Use of tolower

- Some slight restructuring of some if loops e.g.
when some function called in both arms of the
if condition, removed to outside

- All use of clasa as an integer array changed to
grnd_data - a character array M

- Naming convention changed. No longer ask for
filename without extension, aek for full name to*
which add '.mod' for modified file and ‘.log’ .
for logname. .

- Header comments added (11-12-1397) M

- missing return statements added (16-05-1889}

.

FILE: NNsoft_gradient.c

DESCRIPTION:
Part of the neural network program where training
is carried out.

AUTHOR: I. Kanellopoulos {JRC}
LIST of routines: gradient_descent

Bystem_stat:
compute_current_error

NEW routines: NONE

DEPENDENCIES:
MNsoft_lipclassify.c

NNsoft_netarch.c
NNsoft_neuralnet.c : forward pass
asteta

LATEST Modification: 16-05-1998

MODIFICATIONS ~ A. C. Barnard (JRC-Durham]

- Removed declaration of routines and variables,
now in NNsoft_neural.h

-~ Error filenams now assigned in NNsoft_netarch.c

no longer here

NUMBER_OF_EPOCHS is no longer a variable but is

a defined conatant in NNsoft _neural.h

- No lenger have the 'epcimin:ien feature of .
if < ~1.0 = -1.0 and if > 0.9 = 1.0 as unsure of?

Added header to error file N
- Error file closing done in write_error routine *
removed from here .
Used definition ans(SMALL) for y/n answer .
instead of anawer{l0] .
No longer print gac and lac to error file .

because make no sense with FUZZY classification *
- Test_quality changed from returning a double .

to returning void, so usage changed here
- Header cowments added  (10-12-1997)

- missing return atatements added {16-05-1998)

srenae

. .

cerevevas

FILE: NNsoft_lipclassify.c

aes

Performs classification of images which are in
ERDAS/LIP. The image data is read with a specified
number of linea each time and each pixel is
centred using the means and variances which are
saved in a log file. Also tables for the confusion
matrices are written in files for both the
training set and verification set.

DESCRIPTION: .

Now rune with raw images - i.a. images which have
no header etc, just rows and coluzna of pixels
The classification routine is located in

NNsoft_MyAdditlons.c (A.C.Bernard)
AUTHOR: I. Kanellopoulos (JRC}

LIST of routines: generalisation
d_log
write_result
write_header
write_error

NEW routines: NONE

NNsoft_netarch.c:
NNsoft_neural net.c:

NNsoft_MyAdditions.c :

My _Write Result
NNsoft_utils.c: dalloc
int_matrix
double_matrix
free_d matrix
free_i_matrix

LATEST modification: 16-05-1996

MODIFICATIONS - A.C.Bernard (JRC-Durham)

- Routine declarations/definitions changed to ANSI

< standard

All declarations of routines etc moved to

NNsoft_Neural.h

var(int} usage changed to var|CONSTANT| where

CONSTANT is defined in NNsoft _Neural.h

Some filenames and pointer names changed to mt-

meaningful names

- Filenames and pointers changed to local vatxabh'
instead of global variables wherever poseible

- Clasaification option menu moved to NNsoft_ ) Hain.'

N
N
.
.
.
N
.
DEPENDENCIES : .
.

. s e e evstiessrreserasesveny

~

e v et e e s rereeteersesrrreveseteaoenenoerranse

- Looping added if invalid type of answer .

- Full filenames must be entered, automatic -
assurption of .dat extension no longer valid nor*
verified nor is .log extension assumed

- classid usage removed since target now read trom'
separate file

- Average omit and commit variables no longer .
calculated M

- classify_image routine commented out. routine to’
be used is My_Classify_Image in .
NNsoft_MyAdditions.c .

- Option to produce confusion matrix as opposed to®

de facto production added as well as option to *

produce file of neural network values

header added to resulting files

some file closing and freeing of memory added

write_result routine return value void instead

af double

write_header contents changed, idea tha same

Added Cycle number (NUMOFEPOCHS)

test_quality changed from this declaration:

dble tst_gltyinpatterns, filename, result_file}

to vd tst qlly(npattorru, indata_name.

intrgt_name, outres_name

- Header comments added (05 01-1998)

- missing rerturn statements added (15-05-1998)

cvseenen cessensese

eesrreracy

Arkbesuvestteaterines

FILE: NNsoft_netarch.c

DESCRIPTION:
Part of the neural network program concerned with
obtaining achitectura and paramater information

AUTHOR: I. Kanellopoulos

LIST of routines: read_parameters
read_net_arch
read_train_file
write_weights
archread
read_weights

NEW routines: NONE

DEPENDENCIES:

NNsofr_lipclassify.c: write_header

NNsoft_utils.c: double_matrix
get_dauble
dalloc
illoc

NNsoft_My_Additions.c: My_File Open
My Get_File

LATEST modificacion: 16-05-1998

MODIFICATIONS - A.C. Bernard {JRC/Durham)

- Removed option of default values for parameters

- Write out architecture chosen

- Changed some filenames to more meaningful names

- Made file pointers and names lccal rather than
global

- Looping if invalid type of amswer

- Added header to resulting files

~ COption to produce partial matrices rather than
de facto production

- Commented out any use of a-priori

- Momentum term not used

- int c declarations and use removed since read
carget from different file

- No more directory path option, nor assumption of
.dat extensions

- Target read from a upu—ua file to the data

- Some extra closing of file

- Header comments added (05- 01 1998)

r wved threshold of unclassified pixels since
used nowhere (12-03-1998)

- added missing return statewents (i§-05-1998)

shesssresnbbanines

Caerreransberaans

FILE: NNsoft_neural _net.c

DESCRIPTION:
Part of the neural network program where training
is started out, info obtained, etc

AUTHOR: I. Kanellopoulos (JRC)

LIST of routines: neural_net
initialise
init_weights
forward_pass
scale_0
a_priori
scale_back
set_eta
onintr

NEW routines: NONE

DEPENDENCIES -
MNsoft_gradient.c: compute_current_error
NMsoft_netarch.c: netarch

archread
read_train_file
read_weights
read_parameters
read_net_arch
free d_matrix
dalloc
NNsoft_MyAdditions.c: My_Init_Weights

NNsoft_utils.c:

LATEST modification: 16-05-1998

MODIFICATIONS - A. C. Bernard (JRC/Durhami

- Menu opticns moved to NNsoft_Main.c

- Added option of seeding weights with time rather
than a constant

For all questions, added looping if invalid
type of answer

- Header comments added {06-01-1398)

‘

- missing return statements added {16-05-1998}

FILE: NNsoft_utils.c

DESCRIPTION:
Contains utility routines far allocating memory
and freeing memory and a few others

AUTHOR: I. Kanellopoules (JRC)

LIST of routines: ullec
illoc
tfalloc
dalloc
Byta_matrix
int_matrix
float_matrix
double_matrix
frea_Byte_matrix
free_i_matrix
free_f_matrix
free_d_matrix
get_int
get_double
extension
file_open

NEW routines: get_file (moved from original
location netarch.c)

DEPENDENCIES: NONE
LATEST Modification: 16-05-1998

MODIFICATIONS - A. C. Bernard (JRC-Durham

- Routina definitions changed to ANSII C srandard
format

- All #define, variable and routiné declaraticns
etc. moved to NNsoft_neural.h file
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NNsoft_| Mamc S

1/3

NNsoft_Main.c

2/3

Jetitteatetteensery Tearesevenesreravnare printfi- Z:MndifylnimngorunmgﬁhfminpmmlheNNu\n"l;

* FILE: NNsoft_Main.c . printf(” 3:Randomise file\n*

. - printf (" 4: Divide file \:muuy {e.g.intn DN ﬁ!e and Cluss fleryw 1 :

* DESCRIPTION: - printf(* 5:Creaie targe) from file of ground data\n ™

. Top level routines that control . printf (" 6:Change pixet codes using a Look UpTuhle‘n 1

. tha choices of the three basic . printf (= 7:Join files vertically \n") ;

. modules: . princt{* 8:Remove pixels that have the code given in the Look Up Table \n") ;
+  A- file manipulations . printf{" 9:Check whether ground dais percentages sum to 100% % |

. B- neural network . printf{* 10:Sor pwnddnumdpmduu saatistics\a® ) ;

. C- analysis routines . printf(* q:Quit\in*

M M princé(* Bﬂ'ERulacmn(l 10.boeqi> *

* AUTHOR: A. C. Bernard *

* LIST of routines: Main ‘ /* Read in choice */

M Main_Select_Choice N scanf (*%sR*c", choaen} ;

. NNsoft_Prepare .

* Prepare_Select_Choice . )

* NNsoft_Analyse . /* If quit was chosen then sec the return value to -! else if
" Analyse. . back was chosen then set the return value to -2,

. NNsoft_NeuralNer 4 otherwi return the integer equivalenc of the cheoica
. NNet_Select_Choice N NOTE that if the user inputs -1 will assume chacr have
. NNsoft_CreataTar . input 'g’ or ‘Q' and similarly for -2 */

‘ Target_Selecc_Choice . 1f (tolowar{*chosen) == ‘q'}

. . return (-1);:

* DEPENDENCIES: NONE M °l'°:“ (?o;?\dez('chosen) == ‘b

. . return (-2);

’ HGDIFICATIONS N olas

@includs -NNsoft_neurath®

et MAIN #/
main{void)
[

int choice:

/* Print the header of the program and activate the function
which prints the Main Menu */
printf { “\n\n

Neursl Network Softy Classification Program  *\n*) ;
ne);

'\n‘):‘
(¢) JRC-SAL-EMAP. 19911998 *\a" } ;
printf(" ity

/* Repeat the menu until EXIT is chosen. Depending on
the choice, activate the relative function. If the
choicas are not 1,2,3 or g {=-1} the choice is
invalid */

for (::)

(

choice = Main_Select_Choice(}:
owitch (choice)
cass 1 : N'Nnoft Prepare(};
casa 2 : NNsott_Nnur.lNﬂ:()
case 3 : N‘Nlolt _Analyse();
cass -] :baxxcl(o).

default : printf(*\nlovalid Choice..\n*);
H

} /* End of for {;;) loop */
) /* END of main routine */

/ BRRE#R88089 SUBROUTINE: Main_Select_Choice FIRREEVRERE*/
Majin_Select_Choice(}

(
char chosen{SMALL};

/* Print the Main Menu to screen */
printf ("\o\n_MAIN MENUw\»©) ;

printf(* | : Frepare files for input o the nevral nelworkin ™) 5
Neural petwork classificationn* ) :

Analyse outputs from the neural networkn® ) ;

ui
printf { “ENTER selection {l-30rq)> "} ;

/* Read in the choice */
scanf{“%sR°c”, chosen);

/* If quit was chosen then set the return value to -1
otherwise return the integer equivalent of the choice
NOTE that if the user inputs -1 will assume that have
input ‘g or 'Q

12 (tolowsr(*chosen) == ’g‘}

xetumn (-1);
=les
t
print£ { “\tREPORT progress every bow many rows? > *} ;
scanf (*®d", &EVERY_ROW};
return atoi(chosen);

) /* END of Main_Selscrt_Choice subroutine */

/84348880888 SUBROUTINE: NNsoft_Frepare ##etssstsss’;
void NNsoft_Prepare()

int choice:

/* Repeat the menu uncil EXIT is chosen. Depending on
the choice, activate the relative function. If cthe
choices are not 1-11 or q (=-1) or b (=-2} the choice is
invalid. Choice b brings the user up ona menu */

Zoxr

choice a Prepare_Selact_Choicei}:
switch (choicel

: return;
i Divido Into_TrTs(};

: modify)()‘

cesa 3 Rnndoﬂkﬁ.(lv
break:;

: Dividi

)
break;
case 5 : Nllluft _CreateTar();
3

File();

br
case B Ch.angc Pixel_Codest{):
case 7 Join COJ.I(),
br
case § : Rm_som- Codest);
break

TeAK
case 9 : Check _Grnd(};
e 7

i0 Scr\'-v_cmd();
case -1 . exit(o);

default : printf{‘\lovalid Choice ... \a"};
)

} /* End of for (;;) leop */
} /* END of NNsoft_Prepare subroutine*/

/*RES#E88048¢8 SUBROUTINE: Prepare_Ssloct_Choice §¥8590884EE°/
Prepare_Select_Choica{]
{

char chosen{SMALL];

/* Print the Preparation Menu to the screen */
printf (“\n\n PREPARATION MENUwi\n") ;

printf(* b:GoBackwi") ;

printf (" 1: Divide datainto training and testing sets\n” ) ;

roturn atoi(chosen):

} /* End of Prepare_Select_Choice subroutine */

/REQSPIFIINS SUAROUTINE: NNsoft _NeuraiNec sssssdwisvsse’;
void NNsoft_NeuralNet(void)

int choice

/% Repeat the menu until EXIT is chosen. Depending on
the cholce, acrivate the relative function. If the
choices are not 0-11 or q (=-1) or b (=-2) the choice is
invalid. Choice 0 brings the user up one menu */

for ()

choice = NNet_Select_Choice();

switeh (choice)
(

-2 : yasturm;
1 : neural _nett}:
break;
o 2 : generalisation();
break:

case 3 : My Classify Image(};
break;

: oexit(D);

: printf (- Invalid Choice ...\n") ;

}

} /* End of for i(.:} loop */
} /* End of NNsoft_NeuralNet subroutine */

VAl 89F888 SUBROUTINE: NNat_Select_Choica #ydss#sesdns’/
NNet_Select_Choice()

char chosen[SMALL];

/* Print Neural Network Menu to the screen */
printf{~\n\n NEURAL NETWORK MENUWW» ") ;
princf(” b GoBack\n')

printfi-
print€(*
princf ("
princf{" s

princf(~ ENTEdeeﬂ.mn(l—J borqi>"):

/* Read in choice */
scant (“%s%*c", chosenl ;

/* If quit was chasen then set the return value to -1 eise if
back was chosen then set the return value to -2,
otherwise rerurn the integer equivalent of the choice
NO'I’B that if the user inputs -1 will assume that have

input 'g’ or ‘0" and similarly for -2 */

1f (tolower(‘chosen) ‘q)

. _return (-1);

eles 12 (tolower('chosen} == ‘b'}
return (-2}:

retuxn atoi{chosen);

} /* End of NNe:z_Select_Choice subroutine */

/*H#BPRERRVIEY SUBROUTINE: NNsSoft_Analyse Nesssssssse-/
void NNsoft_Analyse{void}
{

int choice=0:

/* Repeat the menu until EXIT is chosen. Depending on
the choice. activate the relative function. If the
choices are not 0-11 or q (=-1) or b (=-2) the choice is
invalid. Choice 0 brings the user up one menu */
gor {;;)
t
choice = Analyse_Select_Choice();
switch (choice}
{

return:
: c:eate Index File{).
break
2 : Crenta_Rank_Halrices();
bresk;
case J : Creave Linear():
4
5

break;
: Nermalisel):
reak;

+ Sum _Diff{};
break;
case 6 : Make_Image(};
break;
=1 ¢ exiti0y;

default : printf(*\alnvalid Choice ..\n" ) ;
}

) /* End of for {;;) loop */
)} /* END of NNsoft_Analyse subroutine®/

/4044848040 # SUBROUTINE: Analyse_Select_Choice ##M¥#4RNNRE*/
Analyse_Select_Choice()
{

char chosen|SHALL] :

/¢ Print Analysis menu to the screen */
printf(-\i\n  ANALYSIS MENUan- )

princfi” b:GoBackinY) ;
princf (" |:Create index file\n" ) ;
printf(* 2:Calculate rank matrices' :
printf{" 3:Lineanse NNetoutputs \n*) ;
print£[” 4 : Scale and/or normalise andvor “nojse” treat NN:lwlpuu\n 1;
printf(* S:Cnmlm sumt. max. 2od max. and ifferenceln

printf(* 6: Make pixel Ref/NNet comespondance imagesin® }

printf(* q:Quitola*
prin:i("lgNTERsclecunntl«é borgy>=);

/* Read in choice */
scanf {"%s%*c” . chosen) ;

/* If quit was chosen then set the return value to -1 else if
back was chosen then set the return value to -2,
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NNsoft_Mainc. .. 33

otherwise return the integer aquivalent of the choice
NOTE that if the user inputs -1 will assume that have
inpuc ‘q’ or 'Q‘ and aimilsrly for -2 */

12 (tolowar{*chosen} a= 'q')
retura (-1);

el@o if (tolower(*choaen) == 'b’)
rotuxn (-2}

else
roturn atoi({choaen);

) /¢ END of Analyse_Select_Choire subroutine’/

/*4#RERISONNE SUBROUTINE: NNsoft_CreateTar ##F42R34
void NHsoft_CreateTar{void)

int choice =0;

/* Repeat tha menu until EXIT is chosen. Depending on
the choice, activate the relative function, If the
choices are not 0-11 or q (=~1) or b (=-2} the choice is
invalid. Cholca 0 brings the user up one menu
)

choice = Target_Select_Choice():

switch (choicae)

cage -2 : return

cage 1 Pure_ Inuqar().
ronk;

cuses 2 : Pure_Target(l:
break;

case 3 : Scaled Target();
break;

case 4 : Btnn-d_'l‘uqe:().
break;

cane 5 : Oes _Targat();

case 6 : Rucuh _Vector():
b H

cage -1 : exit{0);

dafeult : printcf{-\alnvatid Choice..\n"1;
}

} /* End of for (;;) loop */
} /* END of NNsoft_CreateTar subroutine */

/*RERSSERERIE SUBROUTINE: Target_Select_Choice ##RSS#REESR"/
Target_Select_Choice(}

{
char chosen{SMALLL;

/* Print Target Creation Menu to the screen */
printf(*\n\a  CREATE TARGET submenuin\n®} ;
printf{®b:GoBackn®};

printf(* ):Pureimteger -~ class given as & colump of integers™ ) ;
printf(® 2:Puretargel  ~class info data treated as if pure\n®) ;
printf (* 3: Scaled target  — class % scaled between min and maxin"} ;
printf (" 4:Binned turget -~ class $% placed in “dins™\a") ;

printf (5 : Occurence largel - class given max. target value if it oceurs ") ¢
printf(*6: chcl.ltvstnr - vector components scated one by one\n® ) ;
printf {“ q: Quit)

printf (*ENTER ukcnon(l-b borg>*):

/* Read in Choice */
scanf {*%s%*", chosen) ;

/* If guit was chosen then set the return value to -1 else if
back was chosen then set the return value to -2,
otherwise return the integer aquivalent of the choice
NOTE that if the u inputs -1 will assume that have
ut ‘g’ or ‘Q and umxnly for -
1z (tolow.r(':holnnl == 'qQ')
Tetura (-1);
al it (tolo\ur('chn-ml == b’}
retuza (-2);
.

return atoi{chosen);

} /* END of Targer_Select_Choice subroutine */
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NNsoft_Prepare.c ~ N 1/6

NNsoft_Prepare.c

2/6

iiederevasedentorerrraanraerrerontorrers

* FILE: NNaoft_Prepare.c .
* DESCRIPTION: M
* Module of program NNsoft programs used to prepare M
¢ files for uge with the neural nectwork. .
* AUTHOR: A. C. Bernard .
¢ LIST of routines: Divide_Into_TxTs i
N Randomise N
. Divide_Fila .
. Change_Pixel_Codes .
. Join_Cols .
- Rm_Some_Codes M
N Check_Grnd .
. Sore_Grnd N
* DEPENDENCIES: .
¢ NNsoft_MyAdditions.c : My File Open, My Get_File M
. My _Write_Result ’
* NNsoft_utils.c double_nacrix M
M free_d_matrix .
M . matrix .
* MODIFICATIONS: .
P R R R LR TR LR R TP R Y]

@include “NNsoft_neuralh~

Z*#E#R0E#49#0 SUBROUTINE: Divida_Into_TrTs #e#s#sddeei*/
void Divide_Into_TrTs{void)
(

/* Routine used to divide a file into training and testing sets.
Division can be done by row ratio or by looking up the codes
of the pixels which should be placed in the training set */

FILE *fpout_tr, *fpout_ts, *fpin_file, *fpin_liu;

char outtr_name({MAX _PILENAME), oytts_name(MAX_PILENAME];
char  infile_name(MAX_PILENAME), inlu_name(MAX_FILENAME]:
char  code[MAX_STRING_SI2E], lu_code{MAX_STRING_SIZE):
char  ans, inpuu(HAX‘S‘mING_leEl:

double *input_value:

int nres,nrer, num_cols, row,col. row_num=0;

/* Open files and obtain information
del_header is used to ignore any header lines */
fpin_filesMy Get_File{"wINPUT:Dauafik >, infile_name, *I");

del_header (fpin_file):

/* Find out the choice of the user: row ratio or codes */
foxr {;:)
{

printf ( “\nDivide inwo Training and Testing file by") :
printf (" row ratio (R} ar by code (C)?> *;

scanf {*%c®h*c*, &ans);

if (tolower{ans} ==

|| tolowar(ans} == ‘c’)

(break;)
printf(*laveld choice .. \a" ) ;
)

fpout_tr=My_Get_File(*\wOUTPUT: TRaining file > *, cuttr_name, "w*};

fpout_ts=My_Get_File["\nOUTPUT: TeSting file > *, cutts_name, "w");

/* If the choice is by row ratio. then do the following.
The assumption is that the file has been randomised previously */
i1f (tolower{ans) == ‘r’})

t

/* Find out information for division */
printf (*\nNumber of retio rows in the TRaining |k’> "5
scanf(*%d%*c" &nrtr);
printf{ “\nNumber of ratio rows in the TeSting fite? > ") ;
scanf ("Rd%*c" . &nrea) ;

princ (*WDividing..\a") ;

/* while the f character of the lnpuz file
hai not been reached...then do

for(:

[

/* If the EOF character has been reached then come out */
it (feof (fpin_file))
{br

/* For number of training rows, print the rows to
the training file. Chack the end of file at every row */
for (row = 0; row < nrtr; row ++|
i
1f (tfeof(fpin_filel}
(

fgets (inputs, MAX ! s‘mmc _SI2E, fpin_file}:
tscanf (fpin_file, *\n"
fputs(inputa. fpout_ :n;

/* Keep track of progre by printing the row
nunber when it 15 a multiple of EVERY_ROW */
row_num +=
1t {row_ num\EVKRY _ROW == 0)
{printf (*Row = %d\*, row_num};)

} /* End of if (!feof) condition */
} /* End of for (row) loop */

/* For mumber of testing rows, print the rows to
the testing file */
for (row = 0; row < nrta; row ++)

{
if (!foof(fpin_file)})
{

fgets{inputa, MAX_STRING_SIZE. fpin_file):
facank (fpin_file, “\a");
fputa (inputs. fpout_ta};

/* Eeep track of progress by printing the row
number when it is a multiple of EVERY_ROW */
row_num += 1;
4if (row_numBEVERY_ROW == 0)
(printf{*Row= %dn", row_num);)

/* End of if (!feof) condition */
) /¢ End of for (row) loop */

} /¢ End of while (!feof) loop */
)/* End of if 'r’ part of condition. Start of if ‘¢’ part */
7% else if {tolower('ans) == ‘c’) and choice is therefore by Code */
olse
/* Obtain relevant information "/
printf (“\Numberaf columns in the input fide 7> *) :
scanf (*%d%%c” . &num_cola);
fpin_lu= My_Get_File{"\nINPUT: Name of LU file (codes for TRaining file) > *, inlu_name. *r*1;
/% Allocate memory */
input_values dalloc(num_cols - 11;
printf (“\aDividing..\n*) ;
for{;;)
i
/* If the EOF character has been reached then come out */
if (feof(fpin_file)}
{break;)
/* Keep track of progress by printing the row
number when it is a multiple of EVERY_ROW */
row_num += 1;

it (row_numSEVERY_ROW =2 0)
iprince (“Row=%d\n", row_num};)

/* Read each input data source column and then the code.
print che input data source to the new file
tor(col = col < num_cols - 1: col ++)
{£scanf (fpin_file, *®I%%c", &inpur_value(col}!:}
fscanfifpin_file, "%s%%*. codel;

/* If the EOF character has been reached then ccme cut */
1t (feof(fpin_file)}
(break;}

/¢ while old class in the input file and in the LU file
are not equal and EOF in LU hasn’'t been reached. read
the new information (class or ground dacal */

*lu_code = ‘%’
while (stromp(lu_ccde, code) = 0 && !feof (£pin_lu})
{Escanf(fpin_Lu. ~%s%*”.lu_code) : |

/* if class was found 1n the LU File print row to :raining file
otherwise {(eof reached) princ the row in the testing file */
ifi{strompl(code, lu_ccde) 0)

for{cel = 0; col < num_cols - 1; col ++}
{Eprine€ (fpout_cr, "%O.6H ", inpuc_valuefcolli: |
fprintf{fpouc_cr, " %s\a", codel;

olso
{
fortcol = 8; coi < num_cols - i; col «»)
(fprintf(fpouc_ts, "%8.6If *, inpuc_valuefcolii;}

fprincf(fpout_ts. * %s\n*,code};
) /* End of if {stramp) condicien */

rewind(fpin_tu);
)/* End of whila !faof loop */

} /* End of if ‘r’ or 'c’ coendition */

/* Free arrays and clo:e files */
if (tolower(ans) == il

free(input_value);
feloseifpin_lu):
)
fclose(fpin_file):
fclose(fpout_trh:
fclose(fpout_ts):

printf (* WPREPARE : | ~ Drvide dats into uaining and testing sets_COMPLETEV" ) ;
Teturn;

) /* END of Divide_Into_TrTs subroutine */

/#2880 0 448§ SUBROUTINE: Randomize KS#0BNIEeNs*/
void Randomise{void)

{

/* Routine used to randomise a file’'s rows. Uses random numbers
which it then sorts. Alternative is to use
system(sort -x.y filenamein > filename out] but
this is dependant on the operating system therefore less
portable */

FILE *fpin_file, ‘*fpout_new:
char infile_name [MAX_FILENAME), cutnew_name{MAX_FILENAME):
char **inputs;

inc  *inputs_ran, *inputs_index;
int  rand_num, rew_num=0, row, nwA_rows, i=0:
time_t t;

/* Open files and obziin information *
fpin_file = My _Get_File("\nINPUT: Data file > -

infile_name. "'):

printf {*\nNumber of rows ? > * 1 ;
scanf {"%d%%c®. &num_rows):

fpout_new = My_Get_File(*\iOUTPUT: Randomised data file > *, sutnew_name, w"];

/* Allocate memory */

inputs = char_matrixi{num_rows+l, MAX STRING_SIZE!:
inputs_rans=illoc(num_raowsel):

inputa_index = illeocinum_rowsel);

/* Seed random nu.'nbers -uth time */
print £ (*\nRandomising...

srand{{unsigned int) time({kt});

inputsii] = “0*;
while (!feof(fpin_files
i

ie= 1;
fgats{inputs{i].MAX_STRING_SIZE. fpin_file):
}

/* Add a random number cto each line */
for(row=0;row< num_rows:rowes+)

rand_num = rand(}:
inputs_ran{rowi=rand_num:

/* sort the lines in ascending order of random number '/
indexx(num_rows, inputs_ran, inputs_index):

/* print each line in this new order, without the random number */
£OT( row = 1; row <= num_yows: rYowes)

t
/* Keep track of progress by printing the row
number when it is a multiple of EVERY_RGW */
row_num +3 1;
1f {row_numeEVERY_ROW == 0}
(printf{Row=Fdwn*. row_mam);}

fputsiinputslinputs_index{row)], fpout_new]:

/* Free arrays and clcse files */
freelinputs_ran);
free(inputs_index) :
free_c_matrix(inputs. num_rows!;

fclose(fpin_file);
fclose(fpout_new);

printf (™ \WPREPARE : 3 - Randomise file.. COMPLETEWWn ") ;
return;

}/* END of Randomise subroutine */

OMIRIRN##804 SUBROUTINE: Divide_File $480%80808s+/
void Divide_File(void)

(

/* Routine used ta divide file vertically. i.e. puc x
columns in one file and y columns in another. Used
mainly for dividing into data and target files */

FILE *fpin_file, *fpout_dn, *fpout_cl;

char infile_name (MAX_FILENAME}, outdn_name(MAX_FILENAME];
char ocutcl_name[MAX FILENAME|, *grnd_data:

double input_value;

inc num_cols, col. i, row_mum=0;

/* Obtain filename and information
del header used to ingore any header lina */
fpin_file = My Get_File{(°\sINPUT: Datafile (e.g. filemod) > =, infile_name, -17):

del_header{fpin_file):

printf(*\nNumber of cols in first e » * ) ;
scanf {"%4%% ", knum_cols) ;
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fpout_dn= My Get_File( \wOUTPUT: Fimifile(eg. DN)> ", cutdn_name, *w-"};
fpout_cl= My_Get_File(*WOUTPUT: Second file (e.g. class) > *, outc)_name, “w*);

/+ Allocate mamory and initialise arrays */

grnd_data = clloc{MAX_STRING_SIZE

for (i=0; i<MAX_STRING_SIZE; ie+}
grnd_dacali) = ‘0':

printf ( “\nDividing..\n*) ;

for ;!
(

/* If the EOF character has been reached then come out */
iz (feofifpin_file))
(broak:)

/* Keep track of progress by printing the row

number when it is a multiple of EVERY ROW */
row_num ¢= 1;

i (row_num$EVERY_ROW

{printf{*Kow = %dn"

o)
row_num) ;)

/¢ Read in data band values, print them to output file */
for(col=0; col<mm_cols; colts)

Escanf (fpin_file, *%I%%". &input_value):
fprintf (fpout_dn, "®ID6If *, (flcat) input_value);

i
fprintf (fpout_dn, *\a*1

/* Get ground data information, print it to output grnd data file */
fgets{grnd_data, MAX_STRING_SIZE, fpin_file};
£scanf(fpin_file, “\a"};

Eputs(grnd_data, fpout_cl};
}/* End of for (;;) locp */

/* Frae arrays and close files */
free(grnd_data};

fclose (fpin_filel;

£clome (fpout_dn)

fclose (fpout_cl);

printf ("\nPREPARE: 4 - Divide file vertically (e.g. into DN file and Class {ile..COMPLETE\n\n* | ;

roturn;

1 /* END of Divide_File subreucine */

/*#B###ERES#E SUBROUTINE: Change_Pixel Codes FRRESBENESE‘,

void Change_Pixel Codes(void}

{

/* Routine used to substitute ccdes with others or with ground
data using a LU file */

FILE *fpin_file, *fpin_lu, *fpout_new;

char  iufile_name(MAX_FILENAME], inlu_name(MAX_FILENAME:
char  outnew_name{MAX_FILENAMR], class{MAX_STRING_SIZE];
char lu_class[MAX_STRING_SIZE], grnd_data{MAX_STRING_SIZE]:
char  thistime(MAX_STRING_SIZE]. lasttime(MAK_STRING_SIZE!;
double input_value:

int  col, num_cols. row_mum=0;

/¢ Obtain pames of files and information about structure */
fpin_file = My_Get_File("WINPUT:Daiafile>*, intile_name, *1");

del_header (fpin_filaj;

printf (“\nNumber of columns ?> ") ;
scanf (*%d%%c*, &num_cols);

fpin_lu= Hy_Get_Fila{ \nINPUT: Look up file > -
del_feader (€pin_lu};

inlu_name, “r*};

£pout_new= My_Gat_File(*\WiOUTPUT: New file > *. outnew_name, "w°i;

printf { *\WChanging the codes... \a”) ;
/* For

goxr
{

ch row. until the end of the input file */

/* If the EOF character has been reached then come out */
it (feof(fpin_File))
(break;}

/* Reap track of progress by printing the row
number when it is & multiple of EVERY_ROW */
row_num = 1;
if (row_mum3EVERY_ROW == 0)
(printf ("Row=%d\n", row_num}:;)

/* Read aach input data scurce column and then the class.
print the input data source to the new file */
foricol = 0; col < num_cols - 1; col ++}

«
fscanf (fpin_file, “%W%*c", &input_value);
fprintf{fpout_new, "%8.6l *, input_value) :

fscant (£pin_file,*%1%*c".class) :

/* While old cla in the input file and in the LU file
are not equal and EOF in LU hasn’t been reached, read
the new information {class or ground data) */

= "%
stramp(iu_class,class] ts 0} &k !feof {fpin_lul}

Escant (fpin_lu, "%s®*c", lu _clas:
fgets{grnd_data, HAK_! STRJ.NG SIZE fpln 1uy;

/* if you have reached the end of the lu file check whether
it is because actually the old code didn‘t exist - only
print error message once per class not found- otherwise
print the new information to the new file */

it feofifpin_lu}
strcpyithistime, class):
if (strcop(thistime,lasttime) =0}
{
printf (*\nThere was no new LU class for old class :* ) ;
printf{" ‘%s in the input file\n*, classl ;

fprintf (fpout_new, “%s\n®,
strepy(lasttime, thistime) ;

class):

se
fputs(grnd_data, fpout_new) :
rewind(fpin_lu};
}/* End of do while not eof input file loop */
/* Free arrays and close files */
felose(fpin_file) :
fclose({fpin_lul;
fclose!fpout_new) ;
printf (* \WPREPARE : & - Change pixel codes using a Look Up Table..COMPLETE\i* } ;
return:

} /* END of Change_Pixel_Codes subroutine®/

/*##9#9424388 SUBROUTINE: Join_Cols #4308688888%/
void Join_Cols{voidl
{

7% Routine used to join x columns of a firsc
€ile with all the columns of a second file */

FILE *fpin_first, *fpin_second,
char  infirst_name(MAX_FILENAME],
outnew_name {MAX FILENAME] ;
char  inputs_second[MAX_STRING_SIZE],

double *inputs_first, input _value;
int col, num_cols, row, row num=0:

“fpout_new;
insecond_name (HAX_FILENAME],

/* Find out information and open files

delheader used to skip any header lines */
fpin_first=My_Get_File{ "\nPlease input name of F{RST file > ", infirst_name, *r*):
del_header (fpin_£irst);

printf (~\iHow many cohumns from the firsi? > ° ) ;
scanf (*%d%*c”, anum_cols) ;

£pin_second=Hy_Get_File{*\Plkas input name of SECOND file > *, insecond_name,

del_header {fpin_second) :

£pout _new=My_Get_File (*\nPicase input name of OUTPUT juined fike > ", sutnew_pame, "w=1;
/* Allocate memory */
inputs_first = dalloc{num_cols);

printt [ “\ifoining files .. \1") ¢

/¢ Prine header to output file */
£print(fpout_new, *#FIRST file : %s\n", infirsc_name):
€print(fpout_new. "#SECOND file: %s\nw*, insecond_name;

tor i)

«

/* If the EOF character has been reached then come out '/
i2 (fecf(fpin_€irst) || feof {fpin_second!)
(break: )

/* Kesp track of progress by printing the row
number when it is a multiple of EVERY_ROW */
row_num += 1:
12 (row_num¥EVERY_ROW == 0)
{printf(“Row=%d\n*, row_numi;)

/* Read in the columns of data for the row of the
first file and print them to the outpur file*/
foricol=0;col<num_cois:cols+}
[

fscanf{fpin_first, "%)i%%c", &input_value):
fprintf{fpouc_new, *%8.6lf *, input_value! ;

)
/* If the EOF characcter has been reached then come out */
1f (feof(fpin_first))
{break;}

/* Print some spaces and obtain and print che
cotresponding row of data from the second file */
fprintf(fpout_new,* ");
fgets{inputs_second, MAX_STRING_SIZE, fpin_seccnd) :
fputs{inputs_second, fpout_new);
} /* End of for loop */

/* Free arrays and close files */
free(inputs_second) :
freelinputs_fizst);

fclose(fpin_first);
fclose(fpin_second! ;
fclose (fpout_new!;

princf{ WPREPARE: 7 - Join files vertically. COMPLETEWnwn ") :

return:

} /* END of Join_Cols */

/HRERSRIRRRR SUBROUTINE: Rm_Some_Codes s¥#Rxeésse-/
void Rm_Some_Codes{veid)

{

/4 Routine used to remove pixels with a given code
Used for example if a polygon is found to be
erroneously digitised or a class spectraliy indiscincc
.

FILE *fpin_file, *fpin_lu, *fpout_new;

char  infile_name[MAX_PILENAME|, inlu_name(MAX_FILEMAME],
outnew_name [MAX_FILENAME] :
aum_cols, class. lu_class. col,

double “input_value;

row_num;

/* Open files and obtain information
del header used to ignore header lines if any */
fpin_file = My _Get_File(~\aPlease input name of inputdata file > * . infile_name, “r*}:

del_header(fpin_filel;

printf (*How many columns are there in this file > 1 ;
scanf (*&d%*c" , knum_cols}t;

£pin_lu=My_Get_File{\1Plesse input name of LOOK UP file > * . inlu_name, "1*);
£pout_new=My_Gat_File(*\nPlease input name of NEW data file > *, sutnew_name, "w"};

/* Allocate memory */
input_value = dallocinum_cola};

printf(*\WRemoving..\a") ;

for |
{
/* If the EOF character has been reached then come out */
if (feof(fpin_filej)
{break;)

/¢ Keep track of progress by printing the row
number when it is a multiple of EVERY_ROW */
row_pnum += 1;
1€ (row_numdEVERY_ROW == 0}
(printf(*Row =%dn". row_num):)

/* Read in all the non code information */
foricol=0; col<num_cols - 1; col++}
fscanf(fpin_file. "%U%*c*, &inpur_value{colll:

/* Read in the code */
fscanf {(fpin_file, “%d%*c*. &class):
lu_class = -1;

/* while the class read and the LU do not correspond, read down the
U file */

while( (class != lu_class] && (!feof(fpin_lu)) )
fscanf (£pin_lu, "%d%*c", klu_class) ;

/* if class is not egual to a LU code then it wasn't in the LU file and
therefore keep that row , otherwise discard it */

1f({classt=1lu_class)
{
tor{col = 0: col < num_cols-1; col «+)

fprintf (fpout_new, “%8.6lf", inpur_valuelccl]) :
tprintfifpout_new, * %da’,class):

rewind{fpin_lu);
} /* End of for ;; loop */

/* Free arrays and close files */
frea(input_value);

fclose{fpin_file);

fclose(fpin_lu) :

fclose(fpout_new);

printf( *WPREPARE: 8 - Remove pisels that bave the vode given in the Look Up Table.. COMPLETE\n\n") :
return;

} /* END of Rm_Some_Cocdes subroutine */
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7*4488 #8402 84 SUBROUTINE: Check_Grnd #44#s#ssssss/
void Check_Grndl)
3

/* Routine ugsed to check whether the given ground data
percentages sum to 100% */

FILE *fpin_tar:

char intar nam-(w PILENAMR}. c:

inc a8, swn_per;

int row_num=0, ok=TRUE:

/* Obtain filenames and information */
fpin_tar = My Get_File{"\nINPUT: Gmnnddm file> ", intar_name, “r*);

del_header (fpin_tar);
printf (“\Checking... \a*) ;

for
3

/* If the EOF character has been reached then come out */
it (feof (fpin_tar)}
{break;}

/¢ Keep track of pregress by printing the row
number when it is a multiple of EVERY _ROW */
row_num += l;
if {row_numdEVERY_ROW == 0)
(printf("Row=%dn*, row_numi:}

count_row += 1;

/* Read in the first pair percentage + class */
fscanf (fpin_tar, *%d%*c %d%*c", apercentaga, &class):
/* Read in all the percentages and calculats the sum for that pixel */
sum_per = percentage;
¢ = getc(fpin_tar):
while(c (= ‘\n‘}

fscanf (fpin_tar, "%d%*c ®d%*c", &percentage, kclass):
c = getc(fpin_tar);
sum_per = aum_per + percentage;

}

/* Print warning message if sum was not 100 */
‘fl!\m_pur t= 100}

pnntf ( \nWARNlNG o1 row Fd the Iotal ground coverage was %d F%\W". count_row, sum_per);
ok=FALSE:
)
)

/* Print OK message */
if (ok == TRUE} pnntn'\nmugrwnddmvecmnxummlm%\n ¥i

/* Close file */
fclose(fpin_tar);

printf{ “WIPREPARE: 9 - Check whether ground data percentages sum o 100%%..COMPLETE " ) ;
return;

) /* END of Check_Grnd */

/*ORSRRFFR N SUBROUTINE: Sore_Grnd $R44RERENIS/
void Sort_Grnd(void)

t

/* Routine used to sort ground data in increasing order
of percentge cover and to calculate compogition marrix.
Composition matrix reports for each class the number of
times it occurs as a dominant, secondary,
third...class. If thera are more than one percentage
the same then for both classes counted in the higest
positions. E. 40% 408 20%, both classes with ¢at
would be added 1 in their dominant claszs */

FILE *fpin_tar, *fpout_tar, *fpout_comp;

char intar_name[MAX_FILENAME]. outtar_name(MAX_FILENAME]

char cutcomp_name{MAX_ FILENAME] ;

int *percentage, ‘class, *sor_per. c;

int i, j.nun_classes, row_num=0, old_per, hew_per, equals0, num_equal
ine v*count_claas, “count_class_tot, ‘count_pcs_tot, tot_tot=0, track
int old_track = 0, x:

/* Obtain filenames and information and open files
del header used to ignore any header lines */
fpin_tar = My Get_Ffile(“\nINPUT: ground data filename > *, intar_name, “r*);

del_header {fpin_tar);

printf { “\sHow many ‘purc’ classes are there 7> * ) ;
scanf (*&d%%", knum_classes);

fpout_tar = My_Get_File{*\WwOUTPUT: new ground data filename > *, outtar_name. "w");
fpout_comp = My_Get_File( “\OUTPUT: composition matix > *, cutcomp_name, "W} ;
/* Allocate memory and initialise arrays */

percentage = illoc(num_classes+l):
clasa = illocinum_clas

+1, num_classesel};
count_class_tot = illoc(num_classes+l);
count_pos_tot = illoc(num_classes+l);

for( i = 0; i <= num_classes: i++ )
t

count_class_tot[i] = 0;

count_pos_tot(i) = 0;

forij = 0; je= mm\_clalsn. 3 ++)
(count. clu-[illjl = 0:}
)

printf (“\nSarting & Cslcylating ... \n") ;
foxr (;:}
{

/* If the EOF character has been reached then come out */
it {(feof(fpin_tar))
[£24

/* Keep track of progress by printing the row
number when it is a multiple of EVERY_ROW */
row_num +=
1f (row_numEVERY_ROW == 01
(printf("Row=%d\n", row_num);)

/* Initialise arrays which much be initialised every
row */
old_track = 0;
tox1 i = 0; i <= num_classes; ies }
(
percentagefi} = 0;
class[i) = 0;
sor_per{i}l = 0:

/* Read in the information into a percentage array and
a class array which correspond until an eol
character has been reached */
i=1;
facanf (fpin_tar, *S%d%d*, Lpercentage(i}. kclassfii};
count_class_tot(claas{ii} +=
c=getc{fpin_tar);

/* If the EOF character has been reached then come out */
12 (feof(fpin_tar))
{break:}

whila(c != ‘\a’}
3

iezl;
fscanf (fpin_tar, “%d%d*, &percentage(i], &class(i]);
count_class_toticlase(i]] +=1;
c© = geccifpin_tar);
}

/* index the percentage array in increasing order of
percentage from left to right */
indexx(num_classes, parcentage, sor_per):

/* While classes have 0 percentage, ignore them */

i= 1:
equal =0:
while (percentage(sor_per{il] == 01 {i = i»i;)

/* Keep track of the mixture compenents °*/
old_track = num_classes -itl:
AT {track < old_track)
(track = old_track:}

old_per=percentageleor _perlil];

/%, Prine che arrays in che sorted order -/

fprintt(tpout tar, "%02d%02d ", percentage{sor perli]], class[sor_per[i)]};
x=
vhile {percentagelsor_per{il] == percentagelsor_perli+x]])

[x=x+1:}

/* Count the oceurence of each class in each position */
count_class{classlsor_per(i]l}][num_classes-i-(x-1}-1}+=1L

for (j=i+l;j<=num_classes; j+e}

fprincf(fpout_tar. “%02d%02d *. percentage(sor_per[jll. class(sor_periilil}
x=1;
while (pezcentage[scr_pet(]]) == percentage(sor_par{j+xll)

[x=x+1:}

count_class(classisor_per(j}}) [num_classes-j-ix-1)+1}+=

/¢ Account for equal percentages */
new_per = percentage(sor_per{jll:
i (new_per == old_per} (equal = i:}
old_per=new_per;

fprintf{fpout_tar."\"!;

/* Kepp track of whether there are pixels with equai
percentages in their composition e.g. 403 408 208 */

1f {equal==l} {num_equal = num_equal+l;:}

| /* End of for {;;] loop */

/* Princ the COMPOSITICH macrix */
fprintf{fpout_comp. *#File used in composition mawix: %s\a”. incar_name) :

/* Print the header nf the matrix */
fprintf{fpout_comp, C()MPOSITION Matrix\nin" ) ;
fprintf{fpout_comp, " Posid>Wwn" l
fprintf (fpout_comp, *Class Numl*)
fori i = 1; i <= track: i++)
{fprincf (fpout_comp, "%6d*, i):)
fprintf{fpout_comp, * Class
fpnntflfpcu: conp, '\n——l IR
for( i = 0; i < track: is+ )
{fprintf{fpout_comp. - MRS}
fprinef (fpout_comp, “-—");
fprintf (fpout_comp., * Totwal”}:

/* For as many positions as the maximum number of mixture components
print */
foxi{i = 1;i <= num_classes ; i++ )

fprintf (fpout_comp., “\%6d I*, i};

for (j=1; j<= track; js=)
(fprintf (fpout_comp. *%6d". count_classti)[j]

ot
fprintf{fpout_comp, ~ == %d%". cocunt_class_tot[il};

fprintf(fpout_comp, "\n");

for{i = 1;i <= num_classes : i+« )

for(j=1;j<=track;j++!
{count_pos_tor{j] += count_class(ij[j]:}
¥

for{i = l:i <= num_classes ; i++ )
{tot_tot = count_class_tot(i) + tot_tot:}

fprintf (fpout_comp, "——————I"};
gor{ i = 0; i < track: i+s }
(fprintf (fpout_comp, * ;)

forintf( fpout_comp, *

fprint€(fpout_comp, ~\nPos Touil");

forii = 1:i <= track ; iss )
{ fprintfifpout_comp. ~%6d", count_pos_tot[i]};)

fprintf{fpout_ccmp. - == %dn", tor_totr):
fprintf(fpout_comp. "\i\nThere were %d pixels with equal coveragesin®, rum_equal) :

/* Free arrays and clcse files */
free(percentage :

free(class};

freeisor_per);

freelcount_class_tot}:
free(count_pos_tot);
free_i_matrix(count_class, num_classessl):
fclose(fpin_tar);

fclose(fpout_tar):

tclose(fpout_comp) ;

printf (“WPREPARE: 10 - Sont ground data and produce statistic:

Teturn;

) /* END of Sort_Grnd */
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Jeetceevervenes svsessrr Tee Tee

* FILE: MNsoft_Analyse.c . (fprintf (fpout_index, * 0*1;)

* DESCRIPTIGN: . | X

* Third main module of Soft Neural network program. * fprintf(fpout _index."” "}:

* Containg routines for the analysis of the output *

© from the neural network. In particular, routines *

* for indexing the outputs in ascending order, . . .

* producing position snd confusion matrices N /* Compare index arrays. For classes where the ranking was set to 0
° scaling, normalising, removing noise torm, suzming® comparison is 0. If classes of the same rank are tha same. Chen

* the ocutputs and producing a "bar’ image that . princ 1, if chey are different, check that the ground cover of the
* campares the ground data percentage coverage and * calculatad class is the same as the ground cover of the target

* thar predicted by the neural nstwork. . class. If it 1s, then the ranks are the same princ L, if not, then
. . they are different print 2

* AUTHOR: A. C. Bernard . 1

. . for( col = 1: col<=a num_classes:col++}

° LIST of routines: Create_Index_File M

. Create_Rank_Matrices H if ((vector_nninn_index_arraylcol]] <= min_nn)|| ttargec_grnd(grnd_index_arr
M Create_Linear ‘ ayleoll] <= min] ] .

M Normallse * (fprincf(fpout_index, “07);)

. Sum_Max_Difference . olss if { igrnd_index_arrayicoll nn_index_array{coll}) || (target_grndinn
i Make_Image i index_array{col]| arqat__gmd(gmd index_arrayfcoll]) |

. . {fprincf(fpout_index, *t*

* DEPENDENCIES: M eloe

* NNsoft_My Additions.c: My_File_Open . {fprinti(fpout_index, "2"1;}

M My_Gec_File 4 }

¢+ NNscft_utils.c : illec, dalloc... . X L

N . fprincf (fpouc_index. *\W*);:

* MODIFICATIONS : . } /* End of for (;;) loop */

LT T T L T P P P PP ST LR TRy /¢ Free arrays and close files */

#inciude "NNsofi_neuralh-

SRRV RES SUBROUTINE: Create_Index_File resssasssst*/
void Create_lndex_File(void)
¢

#¢ Routine used to creats a file containing for each pixel,
a4 vector of ground data classes ordered in increasing order
of coverage of the pixel; a vector of neural network data
classes ordered in lucreasing order of value; a vector which
which indicates correct clagsification of a position by 1.
incorrect classification by 2. 0 indicates positions of
no relevance. For example., ordering of clagses with 0t on
the gmund Classes with the same percentages ara accounted
for

FILE  *fpin_nn, *fpin_grnd, *fpout_i

char  innn_name [MAX_FILENAME]), mqmd nm-(m FILENAME| ;
char  outindex_name [MAX_FILENAME] ;

float ‘*vector_nn, “target_grnd, min=0.0, min_nn=0.0;
int *nn_index_array, *grnd_indax_array:

int num_classes, col, row_num=0;

/* Open files and obtain information

del_header is used to ignore any header lines */
fpin_grnd = _Get_File{~\aINPUT: Ground data target/coverage file > *, ingrnd_name, "r“}:
del_header fpin_grnd) ;

fpin_nn = My_Get_File{ *\nINPUT: Neural perwork outputs file > *,  innn_name. °r
del_header (fpin_nn);

printf { “\iNumbes of pure classes 7> ° 1 ;
scanf {*%d%*c, knum_classes) ;

/* The ranking of classes with minimum coverage (or neural network oucput
valuel e.g 0% for the ground {or a.g -1.7 for the neural nectwork] is not
s¢. Valuew below which data are not to he considered ¢.g 0% for
ground data (or e.g. -1.6 for the neural network) ara chosen hers */
printf(“\nValue in tie ground target vector for the minimum? > * ) ;
scanf (“%fRvc, &min) ;

printf(*\nValve in the neural octwork vector for the minimum? > *) ;
scanf{~%f%%", &nin_nn) ;

fpout_index = My Get_File ("\nOUTPUT:Index file>~, outindex name. "w="}:

/* Set aside memory and initialise arrays */
vector_nn = falloc{num_claases+l};
target_grnd = falloc{num_i cluuld).
nn_indax_array = illoe(num_cl.
gmd index_array = illocinum clas

!01)

for{ col = 0; col <= num_classes; col++ |
t

veceor_nn{col] = targee_grndicol] = 0.0;
nn_index_array(col] = grnd_index_arrayfcel} = 0:
1

/* Print header on index file */

fprintf (fpout_index, "#TARGET file: %s\n", ingrnd _nama):
forincf (fpout_index, *#NNETfile :%s\w*, innn_nami
fprintf (fpout_index, ~#Minfor GRND: %3.3f\n*, min);
fprintf (fpout_index, "#Minfor NNet: %3.3\n\a", min_nn):

printf ( “\naindexing.... \a*) ;

/* while the eof character of the neural necwork file
has not been reached...then do */

for{;:}

{

/* If the EOF character has been reached then come out */
if (feof (Epin_nn) || feof (fpin_grnd))
Ibreak;}

/* Kesp track of progress by printing the row
number when it is a multiple of EVERY_ROW */
row _mum ¢z 1;
12 (row_numSBVERY_ROW == 0}
{printf{*Row=%d\n", row_num);}

/* Read in the values of each class for the ground
data rarget and the neural network outputs */
for( col = 1; col <z num_claaae. colss )
(
tscanf (fpin_nn, ~%{%°%",&vector_nn(col}):
facanf (fpin_grnd, “®f%*", Ltarget_grndlcol}])

/* If the EOF character has been reached then come out */
12 (feofitpin_nn} || feofifpin_grndi)
(break;

/* Rank classes in i order of
but do not modify arrays. instead pradu:- an index u'uy ./
indexx {num_cla ,vector_nn,nn_index_array) ;
indexx inum_classaes, target_grnd, grnd_index_array} ;

/* Print the ground index array. If the value in the ground target
is leas than or equal to the minimum specified above, e.g 0%
coverage, then print 0 - we are not interested in the ranking of
clagses with ninimum fe.g.0%) coverage */

for{ col = 1; col <= num classes: col++ |

12 {rarget_grnd[grnd_index_array(col)} > min)
(fprintf{fpout_index, “%4d", grnd_index_array[col]);)

{fprintf(fpout_index, * 0¢);}

fprintt (fpout_index, *

/* Print the neural network array. If the value in the neural network
targst is less than or equal to the minimum specified above. e.g -1.6
then print 0 ~ we are not interested in the ranking of
classes with minimum {e.g. -1.6) output values */

for( col = 1; col <= num_classes; cole+ )

12 (vector_nninn_index array[col)l > min_nn
{tprintf (fpout_index, ", nn_index, arny[ccll).)

free{vector_nn)
free{target_grnd);
freeinn_index_array);
freeigrnd_index_array);

fclose(fpin_nn):
fclose{fpin_grnd) :
fclose (fpout_index)

prinef (“\MnANALYSE: [ - Create index file. .COMPLETEWW ") ;
return;

'} /* END of Create_Index_file subroutine */

JoRRBREFRRINY SUBROUTINE: Create_Rank_Matrices F4###RONNNS°/
void Create_Rank_Matrices(void,

/* Routine used to create 2 matrices for analysis of the neural
network cutputs. The first 'Rank Matrix' analyses classes at
every position of the array. It is like a cenfusion matrix in
chat it provides information as to where a class in position x
has been classified. However it makes no differentiaticn between
classes. The 2nd matrix analyses the arrays for misclassificacion.
It looks at the class which the neural network gwes for
each position compared to the neural network. */

FILE  *fpin_index, *fpout matrix:

char  inindex_name{MAX_FILENAME], outmatrix_name(MAX_FILENAME]:

char  del linelMAX_STRING_SIZE):

int tipos_count, **miss_class, *pos_tot, ‘mise_tot. *count_true:

x'n. *nn_index_array, ‘grnd_index_array, ‘vector_corr. prev_max=0, max=0;
mmn_classes, col. 3. %, all, i;

doubh *per. ‘per_true,

/* Obtain filenames and information
del_header is used to ignore any header lines */
fpin_index = My_Get_File{ \nINPUT: Index file > =, inindex_name. ~¢"};

del_header(fpin_index);

printf(~\iNumber of pure classes 7> "} ;
scanf (“%d%*" . &num_classen);

fpout_matrix = My Get_File{"\WwOUTPUT: Matrices file > *, >utmatrix_name, “w"]:

/* Set aside memory and initialise arrays .
pos_count = int_matrix(num_classes+l.num_classes+l);
miss_class = int_matrix(num_classes+l. num_classeseli:

nn_index_array = illoc(num_classes¢l);
grnd_index_array = illoc{num_classes+i);
vector_corr = illocinus_classessl);
count_true
pos_tot = . :
miss_tot = illec num_classesel):

per = dallocinum_classes+l);
miss_per = dalloc(num_classes+l);
per_true = dallocinum_classessl):

for{ col = 0; col <= num_classes: coles+ |}

for ( j = 9: ] <= num_claeses: j+*)

tpos_countfcol] (j] = mise_classlcoll[j) = 0:}
nn_index_array{col] = grnd_index_array(col] = vector_corr(coll=d
count_true{coi]=0: pos_tot{col]

miss_tot{coll = 0;
per(coll= miss_per(coll= per_truelcol}=0.0:

printf (“\irCalculating..\a") ;

/* While the EOF character of the index file
has not been reached...then da */

for (:;}

(

/* If the EOF character has been reached then come out */
Af (feof(fpin_index))
(break: )

/* Keep track of progress by printing the row
number when it is a multiple of EVERY_ROW */
row_num e= 1;
1£ (row_mmeEVERY_ROW == 0}
{princf("Row = &d\n", row_numi;}

/* Read in the ground index array, the neural network index
array and the array showing correctly/incorrectly classified
classes. Since the arrays are in ascending order. read chem
in backwards for ease of comprehension of the matrix aftereards */
for( col = 1; col <= nwm_clas coles )
{fscanf (fpin_index, -~%d%%c*,&grnd_index_array(num_clasees -coi+1i);}

for( col = 1; col <= num_classes: coles )

{fscanf{fpin_index. "%d%*c",&nn_index_arrayinum_clasaes-ccl+111;]
for( col = 1; col <= num_classes: col+s )

{fscanf{fpin_index, *%d%*c" &vector_corr(num_classes-colel]);]

/* If the EOF character has been reached then come out */
it (feof (fpin_index} |
{break;}

/* Initialise variables which must be reinitialised for each
pixel vector ¢/

/* While the ranking of the ground data is of interest fand
therefore not indicated by 0/ and there are stil]l classes
to compare, then produce the position matrix */

whils { (col <= num_classes) && Ivector_corrlcol} != 0) )

/* Find the position of the class given in the ground index array
in the neural network index array while they differ.
col is the position In the ground array, j is the position 1n
:he neural necwork array '/

whu.. ({grnd_index_array[col}
(3=i+1;

nn_index_array[jl) && Ij<:num_classes)}

/* If the classes of the same rank are different but have the

A O
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sams coverage on the ground f(vector_corr == 1) then the
misclassification and rank matrices count the class as
classified correctly otherwise the relevant incorrectly
classified misclassification and rank counters are
increased by 1
i# {vector_corricol} =e 1)} /* and therefore rank is the same '/
{

miss_class{grnd_index_srray(col}}{grnd_index_arrayfcol]] e=1;
pos_counticoll{col] = 1;

1
elme /* if(vector_corr{col) == 2) and therefore ranking is different */
¢

miss_class|grnd_index_arrayicol]} [nn_index_array{coll] +=1;
all = FALSE:
pos_count[col)[j] ¢= 1;

1

/* If previous positions were correctly classified and true has therefore
then increment the counter for truly correctly
by 1. Truly correctly classified positions are those
where previous poaiticns are also correctly classified */
1f tall !'s FALSE)

[count_true(col) += 1:}
col o= 1;

) /* End of while (col<= num_classes) loop */

/* Keap a tag on che largest number of mixtures */
max = col;
it (max>prev_max] (prev_max = max
count_true(l| = pos_countilj{ll:

) /* End of for (;:} loop */

/* For each row in the matrices, calculate the sum of the row '/
for{col=1: col<=num_clas
{

or(j=1; j<=num_classes; j++)
{

pos_tot{col}l = pos_tot[coll ¢ pos_counc(col) (3]
miss_tot[col] = mise_tor{coll + miss_classicel][il;

)

/* For each possible position within a mixturs (e.g. dominant, secondary etc)
until the largest, calculate the percentage of ths correctly classified
pixels for that position and the percentage of truly correctly classified
pixels */

foricol = 1; col < prev_max; col ++)

(

per(col] = {doublelpos_count [cal}(col]/(doublelpos_tot{col]® 100.0;
per_true(col} = {doublelcount_true{col]/{doublelpons_tot(col)* 100.0;
1

/* For each class, calculate the percentags of correctly classifed
pixels */
for(col = 1;col <= mu_classes: col ++)

if (miss_tot{col) != 0)

{niss_pericol] = (double)miza_classicol][col}/(doubleimiss_tot[col]" 100.0:)
else

[miss_perjcel] = 0.0;}

/* Print the rank confusion matrix and the moedified misclassification
macrix to a file. Print the header: name of the index file on which
the matrices are based */

fprint€(fpout_matrix. 'lﬁunsedmwnfumnmnnx %s\Wn*, inindex_name);

/* Print the header a[ the Rank matrix */

fprintf(fpout_matrix, RANK coafusion matrix\o\n”) ;

fprintfifpout_matrix, * pos iy

gor( i = l:; i <= num_classes; i++)
{fprintf {fpout_matrix, *%6d*, 1)

fprintf{fpout_matrix, * Toul TRUE Numberof"); fprintf{fpout_matrix. “\n

—i"):

fox{ i = 0: i < num_cl,
{fprintf (fpout matrix, * ‘i

forintf (fpout_matrix. * Accwsy Accwacy Paeis®);

tes )

/* For as many positions as the maximum number of mixture components
print the rank matrix values, the percentage correctly cl 1fed
per rank, the true percantage and the number of pixels which contain
that many componencs '/

for( col = 1; col <prev_max; cols+ )

{

“\o%6d 1°, coll;
ae)

fprintf{fpout_matrix
fox (j=1: j<= num_cla
(fprintf{fpout_matrix, -%8&d*, pos_counticel](j]1:}

fprintf{fpout_matrix, * =%620%%". per[col]);
fprintf(fpout_matrix, ° -%6.2%%",per_true(coll):
fprintf(fpout_matrix, * —(%d)*,pos_tot{coll);

)
fprintf(fpout_matrix, *Wn*);

/* Print the header of the modified misclassification matrix */
fprinti{fpout_matrix, "\n\\n Modified MISCLASSIFICATION confusion matrixva\n® ) ;
Eptmtf(!pouz matrix, “clus ili*);
for{ i = 1; i <= num_cl s}

{fprintf(fpout_matrix, *%éd", i):)

fprintf{fpout_matrix. * Towl - Numberof*):
fprintf (fpout_matrix. “\o )
gor( i = 0; i < num_clal ies )

tfprincf(fpout matrix, “———"):}
fprincf (fpour_matrix, " Accuacy Pixels®):

/* For all the classes, print the misclassification matrix and
the percentags of correctly classified pixel positions */
fori col = 1; col <enum_cl coles )
{
fprintf{fpout_matrix, "WwH6d I*, col};
for {j=1; j<= num_classes; 3j++}
{fprintt(fpout_matrix, "#6d*., miss_class{col](jl}:}
fprintf (fpout_matrix, " =s=%6.2[%%", miss_per(col)};
fprintf{fpout_matrix. * -(%d)*, miss_tot{col)};

}
tprintf(fpout_matrix, *W*};

/* Free arrays and close files */
free(count_true);

free(per);
free(miss_per}:
free(per_true};
fres{pos_tot);
free(miss_tot):
freeigrnd_index,
freeinn_index_.
free{vector_corrl:
free_i_matrix(pol
free_ i matrix{mi,

1
. tum_classea);

fclose (fpin_index) ;
£close ( fpout_matrix};

printf ("\nANALYSE: 2 - Caculate rank matices... COMPLETEW ) ;
xeturn;

} /¢ END of Create_Rank MNatrices subroutine */

S RIANPE$#I4E SUBROUTINE: Create_Linear FIs&If8sses,
void Create_Linear{void}
(

/* Routine used to linearise the neural network outputs. The sigmoid
function is applied to the neural network outputs before their
value is produced. This routine inverts its effect a-posteriori so
that neural network values are as if no sigmoid had been applied */

FILE *fpin_nn, ®fpout_lin:

char  innn_name {MAX_FILENAME]|, outlin_name{MAX_FILENAME):
double nn_value, out lin;

int col. num_cl. row_num=0, inf:

/* Obtain filenames and information
del_header is used to ignore any header lines */
fpin_nn = My_Get_File("\WINPUT: Neunl nerwork outputs filename > *, inan_name, “r*);

del_header{fpin_nn):

fpout_lin = My_Get_File(~\iOUTPUT: Lincarised outputs filename > =, sutlin_name, *w'}:
printf{“\nNumberof classes 2> *) ;
scanf (*Fd%F*c™, enum_classes) ;

/* Print header to file */
fprincf{tpouc_lin, “sNNET ouipuss file: Fs\n\n*, innn_name):

printf(*\nLinearising... ") ;

/* ¥hile the EOF character of the lndex file
has not been reached...then do

inf = FALSE;

fori;;)

/* If the EOF character has been reached then come out */
it (feofifpin_nn))
{break;)

/* Keep track of progress by printing the row
number when it is a multiple of EVERY RO */
row_num += 1;
if{row_numiEVERY_RAOW == 0}

(printf(*Row = %d\n". row_numl ;!

Lor(col=1; col<= num_class coles)

£scanfifpln_nn, "HE*c", &nn_value);

/* Having read the neural network value which is a result of applying che
activation funecion on the sum at that node. invert the effect of the
activation function. activation funcrien = tanh(i, SCFACT = 1.7000;
FACTOR = 1.

IF nn_value = +/- 1.7, the inversion will lead to log 0 = Inf. Therefore
set out_nn_lin to +/-7 as being a very high valus compared to the
others, but not infinite */

if(nn_value ~SCFACT)
{
out, = -7.0;
inf

}
elss if(nn_value == SCFACT}
[

out_nn_lin = 7.0;

inf = TRUE:
}
else
{out_nn_lin = (log{SCFACT+nn_value} -1log(SCFACT-nn_value))/FACTOR:}

/* Princ the new linearise value to zna oucpu: file */
fprintfi{fpout_Llin, %36l ", out_nn_li

} /* End of for icol! loop "/

fprintf(fpout_lin. "wr);

}/* End of for (;;) loop */

/* If there was a neural network output value which equaled ~/-1.7600 and
which therefore causes the inversion algorithm to have to take the low
of 0 which is infinite, print & warning message */

1t {inD)

{

printf (“\nThere was at least one neural aetwork oulpat values = +/~ 1. 7000
printf {* which meant thal the linearised output was +/—{nf and therefore” ) ;
printf (* setto +/~7.0. CHECK output filen*) ;

)

/* Close files */
fclose(fpin_nn);
fclose(fpout_lin):

print£(*WMANALYSE: } - Lincarise NNet outputs . COMPLETEWa ) ;
return:

} /* END of Create_Linear subroutine °/

/*#82200 44499 SUBROUTINE: Normalise ##h38f8%8ke~/

void Normalise (void)

t

/* Routine used to scale and/or normalise and/or remove a
set value from each neural network oucput. Used prior
to creating correspondance images */

FILE  *fpout_scaled, *fpout_normed, *fpout_noise, *fpin_nn;

char  outscaled_name(MAX_FILEMAME]. cutnommed_name|MAX FILEMNAME} ;
char  innn_name[MAX_FILENAME]. outnoise_name{MAX FILENAME]:

char ans_sca, ana_norm, ana_noise, ans_renorm, ans_all;

double *scaled_val, *tmp_in, ‘noise_norm. ‘normed;

double noise, max, oldmax, min. oldmin;

double a.b, chk_sum, noise_sum:

int  num_classes, col. row_num = 0, count_sum=0,ccunt_noise=0;

/* Open files and obtain information
fpin_nn = My Get File(-\INPUT: Neunlnﬂwmkoulpuuﬂe >*, innn_name, “ro);

del_header(fpin_nn};

printf(“\aNumber of classes ?
scanf {*Fd% %", knum_ chsu-i.

/* Find out whether outputs have already been scaled */
for (::)
{

printe (“\nScale Fite 7ty/n} > *) ;
scanf{*%c%*c*, &ans_sca):
if (tolower(ans_sca)
{break:}
printf { “\nlavalid answer.

|| tolowerians_sca)

/% If the input file does not contain scaled outputs.
get information for the scaling */

if [ tolower(ans_sca) == 'y*

¢

fpout_scaled = My _Get_File(“\nOUTPUT: Scaledfile > “. ourscaled_name. “w");
printf (“\Min. vlhu: ol scalod output 1> <} ;

ascanf (%l ,

princf (“\iMax. v-lue afscated output ? > *J ;

scanf {*Filf%*c ax) ;

printf(” \nOld Mm value 7> "1 ;

scanf{~FUR’c", Loldmin);

printf(*\n0M Max. value ? > "} ;

scanf{"%U%"c", ioldmax};

{min~max) l {oldmin-oldmax

((oldmin*max)- lmn'eldmuxl }/{oldmin-oldmax) ;

/* Find out whether to normalise the outputs */
gor (::)

printf ( “\nNormalise outpul file ? (y/0) > =} ;

scanf{"%c%®c*, &ans_norm};

it ( rolower(ans_norm) == ‘y’ || tolower(ans_norm) == 'n°1
[break: }

prince (~[nvalid answer...

)

/* If the input file is to be normalised, find out
name of output ncnm!lllcd Ix'ln ‘s

1f { toloweri(ans_norml ¥’
{fpout_normed = My_Get Fxle( \OUTPUT: Normalised file > *, outnormed_name. “w=*i;}

/* Find out whether to remove an amount from each output 7
for(:;)
t

printf (“\n'Noise’ normalise outpul file ? (y/m)> ") ;
scanf(*%c%*c*, Lans_noise);

~A. 24 -
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i2 {tolowor(ana_noiso) a= 'y’ || tolower(ans_noise) == 'n’ )

rook ;
printf(*\alovelid enswes...*} ;
)

/* If 'noise’ is to bo removed, find out how and how much */
i (tolower(ans_noise} es ‘'y')

/* Find out whether to remove the fixed amount from each output or
whethar to seC outputs with a value <= to tha fixed amount to
0.00 but lw. the other outputs untouched */

for (:;)

printf { “\nRemove from all ?{y/n) > *) ;

scanf (*%c®*", kans_all);

if { tolower{ans_all) == 'y’ || tolowerians_all} == 'n’ )
{break: )

printf(“lovalid answer.." } :

printf(-\o'Noise level 7> *
ecanf {"®ifF*c" ,&nole

/* Find out whether to renormalise resulting outputs or not °/
for t;;)
i

printf { “\nRe-normalise as well 7 {y/n} > *} ;
scanf {"%cR®c®, &ans_rsnorm)
12 (tolower(ans_renorm) ==
{break;}
princf{" Invnhdlnnm
1

|| tolowsrians_renorm) == ‘0’ }

/¢ Find out name of output file containing modified ourputs */
fpout_noise = My _Get_File{*\WwOUTPUT: 'Noise  treated file > *, outnoise _name.

} /* End of if (noise) condition */
alse /* no noige to be ramovad */

ans_renorm
ans_all =

/* Print headers of fil
if (tolower{ans_sca}

according to request ¢/

¥y

fprintf (fpout_scaled, “#Scaled file calculated from : %5 \n*, innn_name) :
fprintf(fpout_scaled, *#QOldMin: %Il Old Max.: ®th\a*, oldmin, oldmax);
fprinef(fpout_scaled, ‘#Min : Rif. Max. : %ifow*, min, max):

12 (tolowerlans_nomm} =e 'y')
(fprintf (fpout_normed, "#¥Normalised file calculated from : ®s\o\n®, innn_name)

if (tolower(ans_noise) == ‘y’)
(

fprintf {fpout_nois *# Noise treated file calculsied from : %s\n*, innn_name) ;
fprintf (fpout_nois *#Noise jevel :%f\n". nois
fprintf{fpout_noise. “#From alloutpuls : Fc\n*, ans_all);

fprintf{fpout_noise. *#Repormalised : %c\\a*. ansa_renomm);

/% Allocate memory and initialise arrays °*/
top_in = daltloc(num_classas};

d_val = dalloc(nwn_class
norm = dallec({num_cl

printf (*\aCalculating.. \n" ) :

/* For each pixel in the input file */
fox(:;}
{

/* If the EOF character has bean reached then coma out */
1t {feof (fpin_mn))
{break:}

/* Knnp track of progress by printing the row
r when it ig a multiple of EVERY_ROW */
zou_mm +s 1:
12 (row_numSEVERY_ROW == 0)
{printf(*Row =%d\n", row_num};)

/* Initialise value which pust be initislised at every pixel °*/
chk_sum = 0.0;
neine_sum = 0.0;
for {col = 0; col < mum_clas

8; coles)

t
/* Read in the values */
€scant (fpin_nn. *aifbrcr, stmp_inlcoll);

/* If scaling is necesaary, scale */
{tolower tan. == "y‘}

scaled_vallcol] = tmp_in{col]l*ash:
tprintE(fpout_scaled, *%3&f-, scaled_val{coll);

1
else /* ans_sca == ‘n‘ */
(scaled_val{col] = tmp_in{col};}

chk_sum += scaled_valfcoll;
/* If noise must be removed, remove noise - in which ever way
/

was chosen
if (tolower{ans_noiss} == 'y’)

it (tolower{ans_all} 'y

(

noise_normlcol] = scaled valfcol] - noise;

if (noise_norm(col]l < 8.00) noise_normlcoll = 0.00;

i
olss /* ans_all = no */

iz (lc-\-d val{col]<znoiae)
noiss_norm{col] 2 6.60;
else
noise_norm(col] = scaled_valifcol);
+

noise_sum = noise_sum + noise_norm(col];
) /% Bnd of if (ans_noise} condition */

} /* End of for {col) loop */

/* If either sums of outputs are 0 set them to ! - Highly

unlikely for scaled value, more likely for noise sum */
it {(chk_sum =s €¢.0
{chkx_sum = 1.0;]

it (noise_sum 23 0.0)
inoise_sum = 1.0;)

/¢ Print the scaled/normalised/noise values as requested */
for {col = 0: col < num_classes; colss)

if (tolower(ans_norm) == ‘y’)
fprintf{fpout_normed, "%36[*, scaled_vallcol}/chk_sum) ;
if {(tolower (ans_renorm} 'y’
Epnntf(fwut noise, "%36f*, noise_norm(coll/noise_sum);

ol
Torintf(fpout_noise. "R36f-. noise_normicolll;
)

12 (tolower{ans_sca) =3 'y'}

€printf(fpout_scaled, "\n"j;
if (tolower{ans_noisa} == 'y’)
tprintf(fpout_noize, *\a*1;

if (tolower (ans_norml
fprintf (fpout_normed, "Wa*);

) /* End of for (;;) loop */

wy;

/* Free arrays and close files '/
free{noise_norm);
Eree{scaled_vall;
free{trmp_in
free{normed

1 (tolower(ans_sca)
€close{fpaut_scaled
1f (tolower(ans_noisel == ‘y')
fclosetfpout_noisel
12 (tolowear(ans_norm)
fclose{fpout_normed
fclose(fpin_nnj;

printf{"WANALYSE: 4 ~ Scale and/or nommalise andfot “noise’ treat NNet outputs.. COMPLETEwWa" ) ;
return;

} /* END of Normalise subroutine */

ZCRPPRRVIORYE SUBROUTINE: Sum Diff MIRESERNENN*/
void Sum Diff(void)
t

/* Routine which identifies classes with the maximum and next maximum
naural network values. Prints the sum of the neural network outputs
and the difference between the two maximums for each pixel */

FILE  “fpout_chk, *fpin_nn;
char outchk_name [MAX_FILENAME}. innn_name{MAX_FILENAME]);
in row_num=0, col. num classes:

doublu “exp_in, max_one, max_two. prevmax, sum:

/* Open files and obtain information
Epin_bn = Ky_Get_File{*\nINPUT: Neursl aetwork outputs file > *, innn_name, "r};
del_header(fpin_nn):

printf(~\aNumber of classes 7: *) ;
scanf ("%d% %", knum_classes) ;

fpout_chk = My Get_File (*\wOUTPUT: Sum and/or differences file > . outchk_name, “w");
/* Print header */

fprintf(fpour_chk, *#Sums calculated for NNet file : %s\n*, innn_name):
fprintf{fpout_chk, *W#PixelSum First Second Differencewn\n” ) :

/* Allocate memory and initialise arrays */
tmp_in = dalloc(num_classes):

for {csl=l: col<num_classes; coles+]
{emp_inlcel]l = 0.0:}

printf(-wCakulating..\n" ) ;

/¢ while the eof character of the neural network file
has not been reached...then do */
Loxi; ;)

/* If the EOF character has been reached rhen come out */
iz {(feocfi(fpin_nn))
{break;}

/* Keep track of progress by printing the row
number when it is a multiple of EVERY_RGW */
row_num += 1;
12 (row_numREVERY_ROW == @)
(printf{“Row=%dwn", row_num);)

/* Inicialise the sum of the neural newtwork outputs for each new pxxel
Read xn the neural network ocutput vactor, sum its ccmponents */
sum = 0.0;
for {col = 0: col < num_classes: colee)

fscanfifpin_nn, “SU%*c”. &ump_inicol}l);
sum = sum + tmp_in[coll:
}

/* Determine which is the maximum of the neural network output vector
and which is the second maximum */
prevmax = tmp_in{0];
max_two = min{prevmax,tmp_in(l]):
for (col = 1; col < num_classes: coles}
{
max_one = max(prevmax, tmp_in(collt;
if{ max_one > previmnax )
[
max_two = prevmax:
prevmax = max_one:
1
else
{max_two = max(max_two. tmp_in{coll);)

}

/* Print the pixel number, the sum of the vector, the first maximum,

the second maximum and the difference between the last two to the

output file */
tprintf(fpout chk “FFSARSAURSAURS A W, row_num, sum. max_one.max_two, max
_one-max_two) ;

/* Free arrays and close files '/
free(tmp_in):
£close({fpout_chk}:

fclose (fpin_nn);

printf ("\IANALYSE : 5 ~ Sum and/or dil

between first two COMPLETEW\2* ) :

ratura:

} /*END of Sum Diff subroutine*/

/*#894084499% SUBROUTINE: Make_lmage #O#FsEsREses/

void Make_Image(void)

{

/* Routine which produces a ground data / neural network
correspondance image from a file containing the
vector of ground data (e.g. target file) and the vector
of neural necwork outputs. File produced is a raw

[

*fpin_dat, *fpout_:

indat_name [HAX_| FILENAHEL outnew_name (MAX FILENAME! :
buffer_grnd (MAX_BUFFER_SIZE|, buffer_nnec [MAX_BUFFER_SIZE]:
buffer_brun{BTWN_SIZE};

*grnd, ‘anet;

thickne pos. pos_start, pos_finish. nun_classes:

col, row_num=0, num_cols. i;

/* Open filas and cbtain information */
fpin_dat = My _Get_File{ "\nINPUT: mage Damafile > ", indat_name., "f"i;

del_header (fpin_dat);

printE (“\aNumber of classes ?: %) ;

acanf("%d%** . anum_classes) ;

fpout _new = My_Get_File(*\iOUTPUT: Correspondance lmage file > . outnew_name, “wh<);
printf (-\nHow many columns o represens LOOR% 2> "} ;

ascanf [*%d%*%*, &num_cols);

/* Allocate memory and initialise arrays °/

grnd = dalloc(num_classas);

nnet = dalloc{num_classes);

for (col = 0: col < num_classes: col ++)
{grnd{col] = nnet(col) = 0.0

/* Buffer BTWN is the array seperating the ground data
and neural network */
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for { col = 0; col < BIWN_SIZE; col ++)
{buffar_btwnicoll= (Byte}l;}

for (col= col « MAX_BUFFBR_SIZE: col ++)
(buffer_grand(col]) = buffer_nnet(coll= (Byte)O0:|

princt | “\nMaking [mage.\a") ;

row_num = 0:
Lox (::)
i

/* Keep track of progre
row_num +x
1f{row_numSEVERY_ROW == 0)

(printf ("Row=%dw". row_num};)

*/

/* Read in arrays */
tor ( cel = 0; col < num _classes; col ++)
{tscanf (fpin_dat, “®if%*c*, &grndfcoll):}

for tcol = 0; col < num_cla
{fscant{fpin_dar, ~SEU%™

s: col e}
annet(col));)

/* If the EOF character has been reached then come out */
i¢ {feof (fpin_dat})
{break;)

/* Calculate positions of start and end for sach class and
assign the appropritate class to the buffer arrays */

pos_£finish=0

fox [(col=

f

; col < num_classes; col ++}

pos_start = poa_finish;
pos_finieh += {(int) (grnd{col]*num_cols);
for( poa = pos_etart; pos < pas_finiah; poses}
buffer_grnd(pos} = (Byte){col+l):
}

pos_£inish=z0;
for (cols0; col < num _classes; col ++)

pos_start = pos_finish;

pos_finish += {int) (nnet{col)*num_cois};

for{ pos = pos_start; pos < pos_finish; pose+}
buffer_nnet(pos] = (Byte){col+l]:

far (col=0; col < BTWN_SIZE; cal ++}
{buf fer_btwnlcol) = (char)d;)

fwrite (buffer _grnd,sizsof|Byre}, num_cols-1, fpout_new):
fwrite (buffer btwn.siseofiBytae), BTWN_SIZE, fpout_new
fwrite (buffer_nnet,sizeofiByte), num_cols-1, fpout_new};

fprintfifpout_new, “\o");
) /*end of for (;;} loop */

/* Free arrays and close files */
free(gmmnd) ;

€rea(nnet) ;

free(buffer_btwn);
fres(buffar_nnet);
Erea(buffer_grnd);

fclose(fpin_dat);
fclose{fpout_new) ;

print £ { “ANALYSE: 6 - Make pixel Rel/NNet info correspondance images..COMPLETEW* ) ;
return;

) /* END of Make_Image subroutine */
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. . /* Initialise arrays ac each pixel */

* FILE: NNsoft_CreateTar.C . for{ i = 0: i < num_classes; i++ }

. . i

* DESCRIPTION: . class{i] = percentagelil = 0; R
* Routines called by the Create Tar Menu of Prepare * target[i) = min: ;
* Menu within NNsoft_Main. Contains different target®

¢ options, namely. scaled between a min and max *

¢ {e.g. -1 and +1), from a pure integer {usual i /* Read in the grnd data information whichis in the formac
* target min and max as ®.g. above}, from ground . per class per class aetc +/

* data but representation is pure (i.e. 60 3 é0 2 is* jao;

* represented as pure in class 3) and binned target * fscanf{fpin_tar, "%d*c Fd*c”. kpercentage(jl. &cliass{jl);
* where ing to the ge get a * c = getc(fpin_tar);

* value (e.g. 0 = -1, 1-30% = ~0.4 etc ). Also has * while ({c ‘') && !feof(fpin_tar) )

* so called occurence target option where if a class* {

* ig present then it is signalled by a 1 and if not * je=l:

* by 0, regardless of percentage M fscanf{fpin_tar, “%d% %d*c", &percentagelj]. &classijl);
* . c = getc(fpin_tar};

* AUTHOR: A. C. Bernard ‘ 1

. .

* LIST of routines: Pure_Integer . /+ Determine the class with the dominant coverage °*/

. Pure_Target . node = class{0];

. Scaled_Target . prevmax = percentage(0};

. Binned Targst . foxr( i 1; 1 < num_classes: i++ |}

. Occ_Target - {

. Rescale_Vector . maxout = max(previmax, percentage(il):

. « L£( maxout > prevmax}

* DEPENDENCIES: M (

* NNsoft_MyAdditions.c: My_File_Open . prevmax = maxout;

* My_Get_File . node = class{il;

* NNsoft_utils.c: dalloc, illec ... . 3

. . } /* End of for {i) loop */

. . -

* MODIFICATIONS: . target[node-1} = max;
TRy /* Print the target to the output file */

for {i=0: i < num classes; i++)
fprintf(fpout_tar, "%6.4if *,cargec(il);
8include "NNsoft_neuralh” fprintf(fpout_tar. "\n*1;

} /* End of for (;;) leop */

/*ARRRISRE82S SUBROUTINE: Pure_Integer ###R¥EFRR4Y*/

void Pure_intager{void) /¢ Free arrays and close file */
i free(percentage) ;
/* Routine used to create a target fram the grnd data when the frea(target);
grnd data is provided as a pure class integer */ tres{class);
FILE *fpin_tar, *fpout_tar; fcloselfpin_tar) ;
char intar_name[MAX_FILENAMB], outtar_name{MAX_FILENAME): fclose(fpout_tar] ;
double max, min, *target;
int i. j, num_classes. class_id, row_num=0; printf {“0CREATE_TAR : 2 - Pure target. COMPLETEW "1 :
Teturn;

/* Obtain filenames and information */
fpin_tar = My_Get_File{*\a[NPUT: Intoger class pumber file > *, intar_name, “r"); ) /* END of Pure_Target subroutine */

del_header (fpin_tar):

/¢844 ##4#84484 SUBROUTINE: Scaled Target F4setgetsss«/

printf ( “\nTotal number of pure classes ?2: 1 ; void Scaled_Target{void)

scanf (*%d*" , &num_classes):

/* Routine which scales the grnd data between min and maximum values
[

printf ("\nMax vatue io the value which *} e.g -1 and +1 or 0 and +1
printf (*is given to the class with 100%% > *) ; .
scanf (“FIf¥c™, &max); FILE *fpin_tar, *fpout_tar;
char intar_name{MAX_FILENAME], cuttar_name(MAX_FILENAME], c:
printf (*\aMin value i.e the value which =} ; int num_classes, *percentage. *class, i. j. row_numsD;
printf ("is given o the class with 0%% > ") ; double max, min, *target;
scanf (“%Ifc*, &min);
/* Obtain filenames and information */
fpout_tar = My _Get_File(*WOUTPUT: Targeifile> ", outtar_name,“w"); fpin_tar = My_Get_File( “\nINPUT: Ground dau file>", intar_name, “r*};
/* Allocate memory* */ del_header(fpin_tar);
target = dallocinuwm clasaesa);
printf (“\nMaking the target..\a" } ; printf (“\nTotal aumber of classes 7: "} ;
scanf{"%d*c*, knum_classes) ;
for (:;) printf(“\aMia value i the value which °) ;
princf(*is given to the class with 0%% > 1
/* If the EOF character has been reached then come out */ scanf (“%If%c", &min);
42 (fecf (fpin_tar)}
{break:;} printf(“\nMax value i.e the value which ) ;
Printf(*is given to the class with |00%% > ") ;
/* Keep track of progress by printing the row scanf {*%il*%c", &max);
number when it is a multiple of EVERY_ROW */
row_num += 1; fpout_tar = My Get_File("\nOUTPUT: Targetfile > *, cuttar_pame, " ;
i€ {row_num$EVERY ROW o)
{printf("Row=%da", row_num);} /* Allocate memory */
target = dalloc(num_classes+l):
/* Initialise target vector for every pixel */ percentage = illoc{num_classes+1);
for ( i = 0; i < num_classes; i++ ) class = illoc(num _classes+l);

target(i] = min;
printf (“\nMaking the wrget. \n") ;
/¢ read in integer number, create target */

fscanf (fpin_tar, "%#d%", &class_id):

targeticlass_id-1} = max; for {::)
for { i = 0;: i < muon_clasases; is+e {
fprintf (fpouc_tar, “®6.4if*, targetii}); /* If the EOF character has been reached then come out */

tprintf{fpout_tar, *W*

1f (feof (fpin_tar))
{break:

)} /¢ end of for (;;) loop */

/* Reep track of progress by printing the row

number when it is a multiple of EVERY_ROW */

/* Free arrays and close files */ row_num 4= 1;
free({target); if {row_numiEVERY_ROW 0)
fclose{fpin_tar}; (printf(*Row=%d\n", row_num);}

fclose (fpout_tar);
/* Initialise arrays at every pixel */

printf {“\nCTARGET: 1 - Pure integer. .COMPLETEWW" ) ; for( i = 0; i < num_clas ite )
return; class[i] = percentageli] = 0;
targetfi] = in:

} /* END of Pure_Integer subroutine */

/* Read in grnd data information */

§30;
/* #8840 ##4648 SUBROUTINE: Pure_Target $8858888888%/ fscanf (fpin_tar, *%d% %d%°, &percentage(i], &class(51);
void Pure Target{void) ¢ = getc{fpin_tar);
t while {(c '= "Wn’') && !feof(fpin_tar) )}
/* routine which produces a target which ignoras all information {
besides the dominant class in a ground data file */ j+=1
fscanf (fpin_tar, *%d* %d*c", apercentage(j]. &class{jl);
FILE *fpin_tar, *fpout_tar: c = getcifpin_tar):
char intar_name{MAX_FILENAME}, outtar_name(MAX_FILENAME]), c; }
double max, min, *target;
int *percentags, *cla prevmax, maxout, node, row_num=0: /* Calculate scaled equivalent of grnd data for each class */
int 1, j, num class for{ i = 0; i < num_classes; i++ )
ig{class(i] '= 0}

target(class(i]-1] = (double)percentage{i]/100.0%(max-min) + min;
/* Obtain filenames and information */ b 9 ! f ’

fpin_tar = My_Get_File("\nINPUT: Ground datafile > *, intar_name, "r*); /* Print target to output file */

for (i=0; i < num_classes; i++]
fprintf{fpout_tar, “%64If *, varget(il};

fprintf (fpout_tar, -“\n");

del_header (fpin_tar}:

printf ( “\nTotal number of pure classes 7: *) ; } /* End of for (;;j loop */
scanf (*%d*", &num_classes);
/* Frea arrays and close files */
printf (“\nMax value ie tbe valve which “} ; free(percentage) ;

printf {“is given o the class with 100%% > *) ; free(target):

scanf | %If*c", &max); free{class);

printf { *\naMin velue i.e the value which * } fclose(fpin_tari;
Printf (is given to the class with 0%% > 1 ; close( fpout_tar ;
scanf ("%|f*c*, &mini;:
rintf (“\WTARGET: 3 - Scaled target..COMPLETEWn" ) ;
fpout_tar = My_Get_File(*WOUTPUT: Targetfile> =, outtar_name,*w*); P get. COMPLETE W)
return;
/* Allocate memory */
target = dalloc(num_classea+l); 3}
percentage = illoc{nun_classes+l);
class = illoc(num_classes+l);

/* END of Scaled_Target subroutine */

printf ( "\aMaking the target.\n* ) ; /T #RRERRARANE SUBROUTINE: Binned Target #RMRBARER#R*/
void Binned_Target (void)
for (;:) /* Routine used to produce targets where each class is placed in a
'bin’ on the basis of its covera £ th i .

/* If the EOF character has been reached then come out */ 7e @ @ pixel /
12 (feof(fpin_tar)) FILE *fpin_tar, *fpout_tar;

(break;) char intar_name{MAX_FILENAME|, outtar_pame{MAX_FILENAME}, c;
double *bin_value, ‘*targec;
int *bin_pos, num_bins, num_classes, ‘percentage. *class;
int i,j. row_num=0;

/* Keep track of progress by printing the row
number when xt is a multiple of EVERY_ROW */
row_num += i
it (row_ numiBVBRY ROW [3]
(printf{"Row=%Mn". row_num);}

/* Obtain filenames and information */
fpin_tar = My Get_Filei"WINPUT: Grounddatafile > ", intar_name, “r*};
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del_header (fpin_tarl; fscanf tipin_tar, “%d*c 4%, apercentagel3l, aclassiil): st

e = getc{fpin_tar): -
while ({c '= ‘\n') &k !feof({fpin_tar) )
(

printf (“\nTotal aumber of pure classes 7: )

scant (*%d*c* , knum_classes) ; jmiel;

fecanfifpin_tar, “%d% %d*c*. &percentage{j}, &class(j}i;
princf [ ~\wNumberof bins> *) ; c = getcifpin_tar):
scanf ("Rd%c", &num_bins); }
/* Allocate memory */ /* For any class which has a percentage larger than the minimum,
bin_pos = ulac(mm\_binul, assign max value to it */

bin_value = dalloc{num_bins): for (i=0; i<num_classes; i++)
target = dalloc{num _classes) A2 (percentage{i] > min)

percentage = illoc(num_classes): targat(class{i]-1] = max:
class = illoc(num_cla 1

/* Print target to ouctput file */

/* Find our the target value for each bin '/ for (is0; i < num_classes: i++)
for (i = 0; i< num_bine; ise) fprintf(fpout_tar, “F6.4if “ target[i]):
[ fprinctifpout_tar, “\a%):
printf("\nTerget vatue for binno. Rd> =, i+l);
scanf (*®Ifc”, &bin_value(i]): } /* End of for (;;i loop */
/* Free arrays and close files */
/* Find out the range for each bin */ free({percentage) ;
Printf("\i0%% <=x <= 7%% =%3.2f> *, bin_value(0]); free(target);
scanf (“%d%", &bin_pos(0]]: Ereeiclass);

for(i = L: i < nuwm_binas; is++]
1 Eclose{fpin_tar};
printf|"\0AdRFE<x <=1%% = %2> ", bin_pos{i-11, bin_value(i]): fclome(fpout_tar):
scanf {“%d*", &bin_pos(il};
printf {"WTARGET: § - Occurence target.. COMPLETEW\n™ ) ;

fpout_tar = My Gat_File{"WOUTPUT: Target file> ", ouctar_name,“"w~}; roturn;

} /* END of Occ_Targetr subroutina */
printf (“\wMaking the urges..\*) ;

gor {;;}
{ /#0804 24408¢ SUBROUTINE: Rescale_Vector ##RIBESIINE‘/
/* If the EOF character has been reached then come out */ void Rescale_Vector{veid!
¢ (feof (fpin_tar)} !
{break;) /° Routine used to rescale a vector‘s values I by 1. i.e.

with different mins and maxs for each. */
/* Reep track of progress by printing the row

number when it is a muitiple of EVERY ROW */ FILE *fpin_tar. *fpout_tar;
row_num *= 1; char intar_name[MAX _FILENAME], outtar_name{MAX_FILEMAME].
if (row_num¥EVERY_ROW == 0) int oum_cla; s, i, i. num_cols. row_num=0;
{printf{*Row=%da", row_num};} double max., min, oldmin, oldmax., a, b. skip. *old_target. *new_target:
/% Initialise arrays at every pixel */ /* Obtain filenames and information */
fort i = 0; i < num_classes; i++ ) fpin_tar = My Get_File!"WINPUT:datafile >, intar_name, “¢*);
classfi] O; del_header{fpin_tar);
percen . )
target[i] = (doublc) bin_value(0]; printf ("\aNumber of cotupins 1o skip 7: *) ;

scant {*%d%c*, knum_cols);

/* Read in ground data information */ printf{*WnTowl number of classes 7: =)
3=0; scant {*%d%", knum_classes);
fscanf (fpin_tar, *%d*c ®d*c", &percentage[j]. &claasfjl): printf (" \nMin value of new petwork terget> * ) ;
¢ = getc(fpin_tar); scanf ("RIf*c". &min) :
whilsiic ‘= ‘\n’) &k !feofifpin_tar} )
( printf(“\nMaa value of new netwrk taaget > )
j+=1; scanf ("%, amaxi;
fscanf (fpin_tar, -~%dc %d*c*, &percentagelj]. &classiil};
c = getc(fpin_tar}; print £ *\nOld Min value 7> *1 ;
1 scanf ("%if*c*, &oldmin):
for (i=0: i < num_classes: i++} printf("\OidMax value 7 > *) ;
{ acanf{*%#If*c”, koldmax):
i o= 0:
while{percentage{il > bin_pes{jl) Epout_tar = Wy_Get_File{-\nQUTPUT: Targei file > *. curcar_name.“w"):
3= i+l
target {class({i]-1} = bin_valueij}:
/* Allocate memory */
old_target = dalioc(num_cla :
/* Prine target to output file */ new_target = dalloc(num_classes);
for {i=0: i < num_classes; i+s)
fprintf(fpout_tar, *R64l * target{il); /* Calculate acaling factors -/

fprintf{(fpoutr_

Pl B3 a = (min-max)/toldmin-oldmax)
b = {{oldmin®max)-(min* oldmnx))/(oxd:nn~oldmax)
} /* End of for (;;) loop */

/* Free arrays and close files */

freeipercentage); princti*\nMaking the targel. \n") :

free{target);

free{class); for (::}

free({bin_value);

free(bin_pos); /* If the EOF character has been reached then ccme out */
1f (feot(fpin_tar))

fcloselfpin_tar); (break:)

fclose(fpout_tar);

/* Keep track of progress by printing the row

princf{*\TARGET: 4 - Binned terget..COMPLETEW\n" ) ; number when it is a multiple of EVERY_ROW */
row_num = 1;

return; it (row_s num\m‘{ ROW == 0)

{princf({*Row=%d\wn". row_num):)
} /* END of Binned_Target subroutine */
/* Initialise targer */
for{ i = 0: i < num_classes: is+ }
neaw_tsrgetii] = min;

A kil ## SUBROUTINE: Occ_Target #i##RNessse‘/
void Occ_Target{void)
{ /* Read in values to be skipped and print them to the output file */
/* Routine which creates a target by assigning the maximum value (+1] to for({ i = 0; 4 < num_cols; i+e
all cla. i dle of acrual {
percentage cover, s which ar fscanf [fpin_tar, -%If*c*, &skip);
not present in the mixturs. In effsct, this type of target signala the fprintf(fpout_tar, “%63U ",skip};
presence or not of a class */
FILE “fpin_tar. *fpout_tar /* Read in old target */
char intar_name{MAX_} Fn.ml. outtar_name (MAX_FILENAMER). c; fox{ i = O; i < num_cl, e )
double max, min, *tar facanf(fpin_tar, "Rif%c®, &old_targetii]):
int ‘percentage, ‘*cla pravinax, maxout, node, row_numso;
int i, j, num_class /* Scale old target */
for{ i = 0; i < num_classes; Le+ |
naw_tquutlil = old_target{ii *a +b;
/* Obtain filenames and information */
fpin_tar = My_Get_Pile({"WINPUT: Gmnnddmﬁle>' intar_name, "17); /* Print new target ro fi 4
for (i=0; i < num_clas ies)
del_headar (fpin_tar); fprinef {fpout_rar, “%64U * new_targec(i));
fprintf{fpout_tar, *“\n°l:
princt (“\aTotal aumber of pure classes 7:
acanf { *%d**", &num_cla: 8} ; ) /* End of for (;;) loop */
printf { “\oMin valye i s the value which /* Free arrays and close file */
printf (s given to the class with 0%% > =) ; free(target) ;
scanf("®U%*, &amin); fclose(fpin_tarl;

fclosa(fpour_tar);
princf (“\aMax valuc ie the valoe which *

printf (*is given o the class with 100%% > ) i princf ("WTARGET: 6 - Rescale vector. .COMPLETEWn* } ;
Bcanf {“GifPc”, &max);

return:

fpout_tar = My _Get_ File{ "WOUTPUT: Tuwgetfile> ", cuttar_name,“w*);

/% Allocate memory */

target = dalloc(num_clas:
percentags = illoc(num clas
class = illoc(num_classes+l):

printf { “\aMaking the Lasget \a* ] ;
for (::)
{

/* If the EOF character has been reached then come out */
it (feofifpin_tar})
{break;}

/* Keep track of progress by printing the row
nurber when it is a multiple of EVERY_ROW */
row_num += 1;
4f {row_nmum%EVERY _ROW == 0)
{printf (“Row=%d\n", row_num};)

/* Initislise arrays */
for{ i = 0; i < num_class

i+e )

clasali] = 0;
percentage{i} :
target(il = min;

/* Read in ground data information ¢/

A 2Q
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' NNsoft_MyAdditions.c 2/4

Jeee wesvesetbencrinn

FILE: NNsoft_MyAdditions.c

DESCRIPTION:

Contains routines that replace scme of the
original routines written for the nsural network
In addition, a few general utility routines

AUTHOR: A. C. Bernard

LIST of routines:

My_Init_Weights
My_Get_File
My_Fi

Compare_Int_Arrays

DEPENDENCIES :
NNsoft_lipclassify.c : read_log
NNsoft_netarch.c : archread

: read_weights
NNsoft_neuralnat.c forward_pass

initialise

MODIFICATIONS:

.
.
‘.
.
.
.
.
.
.
.

#include *NNsoft_peurnib*

/8844042008 SUBROUTINE: My Classify_Image #0R¥ESIENE:/
void My_Classify_Image()
4

used to classify an image which must be in Band
ved by line format. Includes the possibility
of producing fraction images. Requi neural network
module. Replaces tha routipe Cls.l ify_Image written by
Icannis Kanellopoulos in the neural network software */

FILE *fpin_image, *fpout_gis. **fpout_per, *fpout_stats;
char inimage name(MAX_FILENAMR|, outgis_neme (MAX FILENAME] ;
char outper_name[MAX_FILENAME), root_name({MAX PILENAMREI;
char outstats_name {MAX_FILENAME] :
char ans, ans_norm, ext[SMALL+3j;

d

B; 'clauuxfi

b line_norm, **pixel_line_sca, *eum_line;
inc total_num_pixels, lines, columnas, i. j, &
int offset, prevmax, maxout, node, row. row_num=0, ‘stats;

/* Open files and obtain information "/ o
fpin_image = My_Get_File("wiINPUT: lmlgembednnﬁed) *. inimage_name. °r*}:

princf [ “\pNumber of Rows 1> *);
scanf (*%d%"c" . &lines):

printf (~\aNumber of Columns 7> *) ;
scanf (*%d%*c", kcolums) ;

/* Read architecture of network from weights file
initialise network, read trained weights */
fclose (My_Get_Pile("\iINPUT: Weights file > =, weights_name, “r*}):

archread{weights_name) ;
initialieel):
read_weights(

/* Read tha values from the training log file */
read_log{) ;

/* Open Classified and Stats files '/
fpout_gis = My Get_File(*\n\nOUTPUT: Classified imsge file > *, outgia_name,*w"}:

fpout_stats = My Get_File(*\WOUTPUT: Sutistics filename > ", outstata_name, “w*)

/* Find out whether fraction image should be created */
foxr {;:}
{

printf (" \nProduce percentage coverage files (1 per class)? (yn)> ) ;
scanf (“%c®%", Lane);

12 (tolower(ans) == 'y’ || tolower(ans) == 'n’}
)

( rux
el
[princf('lnv-lid option..\n" ) ; }
} /* End of for {;;} loop */
/* If fraction images are to be created then find out how.

find out the root name, create the full name, open the files */
it (tolower(ans) == ‘y')
(

tor |
{
printf { “\nNormalised or Scaled cutputs 7 (nfa) > *) ;
scanf ("®ch®c”, Lans_norm};
1f (tolower{ans_norm} == ‘n
(break;

|| tolower{ans_norm) == ‘s'}

lae
{printf { “invalid optien..\n* ) ; }
} /* End of for (;;) loap */

/* Allocate memory for each fraction image */
fpout.pet = FILE *+1malloc mun.out_nodes alkeof (FILE *)) ;

/* Find out name to call each fraction image. Each image

filename made up of root_name + _c + clase number +.bil */

prince(* filename for percentage files? > =} ;

scanf("%s%h*c”, root_name);

strcat(root_name. °_¢*);

stropy (outpar_name, raot_name) ;

gor { ®m = 0; m < num_out_nod

t
sprintflext, *%d°. m+l):
strcpy (outper_name, root_name);
streat(outper_name, extl:
strcat (outper_name, *.bil");:

més )

/* Open each fraction image *
fpout_per(m] = My_Pile Openfoutper_name, “w-);

] /¢ End of for (m) loop */
1 /* End of if (tolower(ans) == y | condition */
/* Print the number of rows, cols, and total number of pixels to
the screen */
total_nwn_pixels = lines‘columa:
printf(: \numg: : \aRows = %d. Cols = d. Tout Pixels = %da=, lines, columns, totai_n

prlntf( NumbuafBM:‘id Number of Classes = #d\a* . num_in_nodes. num_sut_node

/* Set aside memory and initialise arrays */

stats = illoec(num_out_nodes);

pixel_lines double_matrix{num_out_nodes,columns);
pixel_line_norm= double_matrix{num out_nodes,columne):
pixel_line_sca = double_matrix{num_out_nodes,column
sum_line = dalloc{columnal;
classified= ulloc{columns};
tor{ m = 0: m < pum out_nod

mee )

stacain} = 0;
tor (5 = O;
{

§ < columns; je« )

pixel_linelml (3] = 0.0;

pixel line nora(ml (3] = pixel_line_scalnl(§) = 0.;
sum lineij] = 0.

classifiedij] = 1Byt-)o:

)
/* End of for (m) loop */

buffer = ulloc{columne*num_in_nodes);

input doubh_matxix(columns. num_in_nodes};
Lox{j = j < nun_in_nodes*colwnns; j+l
(buu-r(jl = {Byteld;}

for{j c 0; ) < columns; j+¢}
for (m=0: menum_in_nodea: mes)
{input{jl(m] = 0.0:}

printf (~\n\nClassifying...\n" 1 ;

/* For esch row of the image..."/
for{ row = 0: row < lines; rowss |
t

/* Keap track of prograss by printing the row
numbar when it is a multiple of EVERY_ROW */
row_nunm += 1
12 (row_num! Y_ROW == 0]
(prmtt(‘l{uw=qd\u' row_num} ;)

/* Read in the DN valu of 1 line, all bands, to the buffer array*/
fread{(Byte *}buffer, sizeofiByte), columns*num_in_nodes, fpin_image):

/* For each pixel in the line, for each band assign the DN to the
input array, modify it */
for { § = 0; j < colusms; jes }
¢

fori m = 0, offpet = 0; m < num_in_nodes: me+ 1

input{ji(m] = (double) bufferi{jecffseti;
offeet += columns;
)
for{m = 0: m < num_in_nodes: m++ |
finput (jlim} = t input[jlIm] - mean(m} )} / sdeviatiocnim}:)

} /¢ &nd of for (j) loop */

/* For each pixel in the line */
fox( j a 0: 3 < columns: jee )

(
/* Pags the pixel through the network */
forward pass(j);

/* Initialise all variables for each pixel.
Note char the scaling assumes naural necwork outputs between
-1.7 and +1.7 */
prevmax = ourputs{num_hidden_layers+1]{0};
node = m = 0;

pixel_linelm}{j]= (double)outputs|nun_hidden_layerssi}iml;

pixel_line_sca{m}{j] = pixel_line|m](j|/(2*SCFACT} + 0.5;
sum_Lina[j] = pixel_line_scalm]{jl:

/* For sach next oucput node "/
for|i m = 1; m < num_out_nodes; m++ )
4
/* Determine the class with the maximum output */
maAXoUt = max{previtax, outputs(nws_hidden_layerss1l][ml);
18t maxout > prevmax )

prevmax = maxout;
node = m;
t

/* If fraction images are to be produced, caiculate values */
“ [tolower {ans) 'y

p).x.l line{m) [j]= {(double) outputs{num_hidden layeuul][m],
pixel_line_scalm}[j} = pixel_line(m] {3}/ (2°SCFACT} +0.
sum_1ine{3] = sum line(3] + pixel_line_scalmi{jl;

[
} /* End of for (m) loop */

/* If fraction images are to bl normaiised, calculate value */
1f (tolower{ans_norm) )
t
for{ m = 0; m < num_out_nocdea; m+~ |}
{pixel_iine_norm{m] (3] = pixel_line_sca[m}()]*100/sum_linefj}:}
t

/* Add 1 to the counrer of dominant class array */
stats{noda]++;

/* The value of the classified image for the pixel being considered
is the node with the maximum neural network output value '/
classified[j] = {Byte) (node + 1);

}/* End of for (3) loop */

/* Write the denunnnl: class of the lineof pixels to the output
classified file
fwrite({Byte *)classified, siseof(Byte), columns. fpout_gis|:

/* If fraction images were to ba produced write the value of the
line to the rnpncnvo files, scaled or nomal;aed */
12 { tolower(ans} == 'y' k& tolower(ans_norm)

for( m = 0; m < num_out_nodes; m++ )

for( 1 = 0: j < columns; j+¢+
{fprintf (fpout_perxim), "%c", (charipixel_line_norm{m)[3)): )

1¢ { tolowerlans) == 'y' && tolower(ans_norm) == ‘s’ }

for{ m ¢ 0: m < num_out_nodes; mees |
= J < columns; j++ }
(Eprint((fpout_p-r(n) "@%c. (char) (pixel_line_scalm][31°100));)
) /* End of if condition */

} /* End of for row loop */

/* Print the number of pixels for each class given by the

neural network */
foxr(i = 0: i < num_out_nodes; i+s

fprincf (fpour_stat Clu!‘izdhldmplnls\l;eltemlgcoflnulﬁélﬁ'}\n' i+l sracs(i},
stats(i)*100/(float) total num pixela);

/* Free arrays and close files */
fclose({tpin_image) :
fcloseifpout_gis);
if(tolowsriana)=="y")

forim=0; m<num_cut_nodes; ms++)
{fcloaa{fpout_perimi};i

|
fclose (Epout_scats)
frea_d_matrix{fpout_per, nwm_out_nodes);

frea(buffer);

free(classified):

free(mean) :

free{sdeviation);

free_d matrix(input.columns);
_d_matrix(pixel_line. num_out_nodes):
free_d_matrix{pixel_line_norm, num_out_nodes]
frea{sum_linel:

printf {*\MaNEURAL NETWORK: 3 - Classification..COMPLETE\n =
return:

] /* END of My Classify_Image subroutine */

/*4454800889 SUBROUTINE: My Write_Result EESRERSERE*/
void My _Write_Result(int npatterns, char *cutvec_name}

/* Routine used to write out a file of neural network
cutputs at the testing scage of the neural network.
Called in NNsoft_lipclassify.c */

FILE  *fpout_v¢
int row, col;
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i
/* Open the autput file provided a4s a parameter ¢/ free{{char *} v}:
fpout_vec = My_File_Open{outvec_nama, "3°);
roturn;
/* For every input pattern in the test file ..*/ } /* End of free_c_matrix subroutine */
for( row = 0; row < npatterns; rows+
(
/* Pags the pattern through the neural network. */ /*PRESI#4BRY SUBROUTINE: Compare_Int, _Arrays BREUARREFI/
forward_paes(row); int Coxpare_Int_Arrays{int *first_array, int *secoénd_array, int num_cciurms}
4
/* Print each output value to the cutput file */ /* Routines which is not used anywhere but kept for
for ( col = 0; col < num_out_nades; col++ ) eventual use. Used to compare t¥o integer arrays. If
{fprintf(fpout_vec, *#3SH*, outputslnum_hiddan layera + 1)lcol});) they are equal returns 1 else returns ¢ °*/
fprintf(fpout_vec, *\n"}; int col=0, are_equal=TRUE;
} /* End of for (row} loop */ /* Compare arrays element by element. is soon as s difference
is encountered, locp ends °/
/* Cloae files */ whila {are_equal && {(col < num_colwms})
fcloae (fpout_vec); 4

1¢ (first_array(col] != second_arrayi{coi})
roturn; (are_equal = PFALSE;)

} /* END of My _firite Result */ <ol +¢;
}

roturnisre_equal};
/*2 80800088 SUBROUTINE: My_Init_Weights $#55080808°/
void My_Init_Weights(} } /* END of Compare_Int_Arrays subroucine */

(

/* Function that uses the current time

to seed the initial weights - consequently, every

time the net ig run, the weights have a different
initial value. The function ran3 which is part of
numerical racaipes in C can be replaced by any other
randon numbar generator which, like ran3, produces values
batween 0 and 1. In this way weights are scaled betwean
=0.5 and +0.5. Routine called by MNsoft_nsural net.c*/

int i, 3:
int idum;

/*® Seed idum with the curreat time ¢/
idum = time(HULL)*-1;

/* For as many hidden layers and as many hidden nodes in each
layer - so in other words for was many weights as there are,
initialise weights, deltas and qndienc W4

fox( j : 0: 1 < num_hidden_layezs + 1: j++ )
for{ ® 0; i < {num_hidden nodu(jlou * num_hidden_nodes{j+1]; L++ )
*{weights{j) + H = (double) (rand(&idum) - 0.5);
*(deltas(i] + i) = 0.0;
*{gradient{j]+i} = 0.0;

reoturn;

} /* END of My Init_Weights subroutine */

/*#ERIP#$ 44 SUBROUTINE: My Get File $idd##vevé~)
FILE *My_Get_Plle(char *prompt,char *filename, char *mode)

s
FILE *fp;
/* Loop until a correct filenams has been entered °/
for (i)
{

/* Ask for tilame And read answer */
printf (*%s* , promp!
scanf (" %1%, filnnan!l.
/* If the filenanme exits (fopen does not return NULL)
open the file, otherwise print that cannot find file */
if ( {fp = fopen (filename,mode)) != HULL)
(bzeak;}

printf{"Cannot find file '%s’ \n”, filename);

roturn fp:

} /* IND of My Get_File subroutine */

/#24¢Ra¢d#34 SUBROUTINE: My Fila_Opan #R##84seg°/
FILE *My_ Fils Cpen(char filename[MAX FILENAME]), char mode(SMALL})

{
/* Modified from ioannis‘ file_open */
FILE *fp:

/* Loep until a correct filename has been entered */
while ( (fp = iopen (filename, mode) )== NULL}
L

printf(*Cannot find file "%s \a*, filename);
printf{*\nINFUT filename sgain > *} ;
scanf ("#aGvc*, filename);

}

return fp;

} /* END of My_File_Open gubroutine */

/*##ES82144F SUBROUTINE: del_header S##Ri¢ides*/
vold del_headar (FILE *fp}

{
/* Routine used for reading and ignoring X hndu—
lin in a file. Used in most routines

char del_line(MAX_STRING_SIZE);
int num _heads, row;

/* Find out how many linas to skip */

printf (“\aNumber of header lines to skip 7> %) ;

scanf (“%d%‘c", &num heads):

/* Skip the lines */

for{ yow = 0; Tow < num hieads; rowss )
fgetsidel_line HAX_STRING_SIZE, fp);

roturn;

) /* End of de]_header subroutine */

Vs : clloc s
char *clloc(int size)

/* Routine written on the model of those in
NNsoft_utils.c written by Irannis Kanellopoulos
and used allocate memory for a character matrix */

char *v;

i12{ ( v = (char *} mallocleizeof{char) * size ) ) =» NULL }
printf (“\nEmos: Memory allocation failed in clloc()."} 5
exit{l}:

}

roturn v;

} /* END of clioc */

/ed335s8endé SUBROUTINE: free_c_matrix #32ff#sifse/
void frae_c_matrix{char **v,int vsiza)

gl :£1ls.c written by Ioannis Kanellopoulos
and used ta Iree a character matrix */

ine i

for{i = 0: & < vsize; i++)
{£xeel (char *) v{i});)
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B.1 Sample Survey Sheet for the Portugal Site

LAND COVER TYPE:-

Appendix B

COMMISSION OF THE EUROPEAN COMMUNITIES - JOINT RESEARCH CENTRE
CORINE LAND COVER UPDATING PROJECT - LISBON FIELD EXPERIMENT 1991

FORM B: HOMOGENEOUS LAND COVER PARCEL DESCRIPTION (Min. 4ha

TEST SITE:- E] [::Jq

LAND COVER PARCEL NUMBER:- D
[should be shown on air-photos & maps with boundary]

DATE SURVEYED:-‘_JMLN_I—EE]

: Orc
11: Samora Comeia 8- -

TIME:- D] :[:D

FILM/PHOTO:- [ ] /|:] SURVEYORS' INITIALS:- 1.

(Please be specific and brief)

GENERAL CONDITIONS:-

VEGETATION DETAILS:-
HEIGHT %COVER DOMINANT SPECIES
LAYER 1:
LAYER 2:
LAYER 3:

SURFACE DETAILS (Where not covered by vegetation):-

PREDOMINANT COLOUR:

WETNESS: VERY WET / WET / DRY (Circle which one applies)

_~ Type?

COMPOSITION: WATER SOIL " (circle one): STONES ROCK CONCRETE

(AREA %)

010 00 s 0 OO ULU

TILE METAL ASPHALT OTHER (Name:

(10 O o o

_______________________________________________________________

____________________
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B.2 Quantile-Quantile Plots for the ‘Portugal 16 Class’ Data Set
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Figure B-1. Quantile-quantile plots for all the bands

for classes 1-4 of the ‘Portugal sixteen class’ data set
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Figure B-3. Quantile-quantile plots for all the

bands for classes 9 to 12 of the ‘Portugal

sixteen class’ data set
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Figure B-4. Quantile-quantile plots for all the

bands for classes 13 to 16 of the ‘Portugal

sixteen class’ data set
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A3  List of 4001 1006 5009 3001 3010 1012 3013
Mixtures in the
5001 1006 4010 1001 4010 50 13
‘Portugal Fifteen 100l 3010 4013
Class’ Data Set 2001 8007 2001 3010 5013
3001 7007 6001 1010 3013
. 4001 6007
Mixture types are 1001 2010 7014
to be read as follows: data 1001 90 08 1001 4010 50 14
are in pairs, the first 3001 7008 1001 6010 3014
integer represents the 8001 2008 1001 7010 2014
percentage cover of a 2001 4010 4014
solygon by the second 3001 7009 2001 5010 30 14
4001 6009 5001 3010 20 14
integer which is the class. 6001 4009 001 1010 2014
The number of mixture
components is indicated 4001 5009 1010 2001 2010 5014 1015
by the number of pairs on 2001 4010 2014 2015
a line. Percentage cover 1001 90 10 2001 4010 3014 1015
st add to 100%. 2001 80 10 3001 3010 2014 2015
3001 70 10
4001 60 10
Mixtures present in the 7001 3010 1001 2010 7015
‘Portugal fifteen class’ data 8001 2010 2001 4010 4015
set
10001 2001 5010 3011 4001 60 11
10002 2001 6010 2011 6001 40 11
10004 2001 7010 1011 7001 3011
10006 3001 1010 6011 8001 2011
10007 3001 4010 3011 9001 1011
10008 5001 2010 3011
10010 5001 3010 2011 4001 5011 1013
4001 3010 3011 5001 2011 3013
2001 8004 6001 1010 3011 5001 3011 2013
6001 2010 2011
1001 9005 8001 1010 1011 6001 2012 2013
6001 4006 3001 2010 4011 1013 1001 3012 60 14
8001 2006 3001 5010 1011 1013 2001 6012 20 14
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2001 3012 2014 3015 6010 4014
3001 5012 1014 1015
3010 7015
1001 3012 6015
2001 7012 1015 4012 60 14
6001 1012 3015
2012 3014 5015
5001 5013 2012 5014 3015
1003 9012 1012 9015
2012 8015
1004 9005 3012 7015
2004 8005 4012 6015
6012 4015
2004 8010 8012 2015
5005 5010 Total Number of
Mixtures = 108
6006 4010
4006 6012
6006 4012
5008 5010
9008 1014
1010 9012
90 10 1012
2010 4012 4014
3010 5012 2015
S010 4012 1015
70 10 3013
80 10 2013
1010 9014
4010 60 14
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A4 List of
Mixtures Removed
to Form the
‘Portugal  Fifteen

Class’ Data Set

Mixtures not included
in the ‘Portugal
fifteen class’ data set

0201 9807

2501 7507

5001 5007

0501 9508

6501 3508

8501 1508

9501 0508

5001 5009

7501 2509

8501 1509

0501 9510

5001 5010

7501 2510

9901 0110

1501 8511

5001 5011

7501 2511

8501 1511

9501 0511

9701 0311

98 01 0211

0501 9515

9504 0510

0506 9510

0203 9812

9508 0513

9910 0112

7510 2513

2510 7514

6510 3514

7510 2514 7001 2511 0513
9810 0214 8001 1511 0513
0510 9515 0101 9512 0413
0212 9815 0101 6012 3914
0612 9415 0201 1812 8014
6512 3515 0201 6312 3514
8512 1515 0101 4912 5015
9912 0115 0101 9812 0115
4001 0203 5811 0201 0812 9015
0501 0503 9012 0201 4012 5815
0801 0203 9012 0201 5812 4015
1501 1503 7012 0201 9412 0415
1501 1504 7005 0201 9712 0115
5001 2506 2509 1801 8012 0215
7801 2006 0209 0101 4014 5915
3801 6008 0210 1503 0506 8012
9001 0508 0514 0203 7010 2812
9301 0209 0510 0503 0510 9015
6001 2509 1513 0103 9012 0915
0501 8510 1011 5006 4510 0512
2001 6510 1511 0406 8110 1513
2001 7510 0511 0506 0510 9015
6501 0510 3011 9810 0112 0114
6501 2010 1511 0601 9003 0306 0110
7001 0510 2511 1001 0303 8312 0415
7501 1010 1511 4701 0203 0406 4709
9001 0110 0911 0201 0206 1812 7815
9001 0510 0511 0501 6506 1512 1515
0201 9010 0812 2001 1506 6010 0513
0201 9710 0Ot 12 4001 0506 5010 0513
0901 %010 0112 5001 1508 2009 1513
1501 8010 0512 0501 6510 2811 0213
0301 6910 2813 2001 5010 2511 0513
0801 9010 0213 3501 3010 3011 0513
4501 0510 5013 3501 5010 1011 0513
7501 0510 2013 4001 0510 5011 0513
0501 3510 6014 4001 2510 1511 2013
5001 4810 0215 4001 5010 0511 0513
5001 4811 0213 7501 0510 1511 0513
6501 3011 0513 8001 1010 0511 0513
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0501 1510 4012 4014 8012 2013 0501 5010 2012 2515
0501 5410 4012 0115 5012 5015 1001 8610 0212 0215
1001 4010 2514 2515 9012 1015 4501 2010 1512 2013
2001 1010 3514 3515 4501 0506 5009 1001 2010 3514 3515
0501 4512 3514 1515 1001 6007 3010 6001 0511 2012 1515
0303 0206 8012 1515 4001 5007 1013 4001 2012 2014 2015
0403 0606 7012 2015 5001 2008 3013 1501 0203 0106 &1 10 0113
0206 7010 0512 23 14 6001 2008 20 10 1501 0203 0206 7610 0513
1001 1003 1506 3510 3013 1501 7009 1510 001 0306 310 101 1013
4501 0303 0206 4510 0515 2001 3509 4510
4501 0503 2512 2014 0515 6001 2009 2010 To'tal Number of
0201 0206 3510 0512 5614 8001 1509 0510 Mlthll‘eS=70
0201 0306 2510 4012 3013
0503 6006 1010 1512 1015 3001 5009 2013
4001 1009 5013
Total Number of 001 BB » B
Mixtures = 125 4501 5010 05 11
5001 4010 1011
Mixtures removed 8001 0510 1511
when buffering 0501 6010 3513
100 03 1001 6010 3013
6001 4005 1501 8010 0513
1001 9007 2001 2010 6013
2001 BOOR 3001 1010 6013
5001 5008 3001 2010 SO13
7001 3008 4001 3010 3013
7001 3009 4001 4010 2013
8001 2009 5001 3010 2013
2001 1009 7001 0510 2513
9701 0309 1001 8010 1014
0201 9810 7501 0510 2014
6001 4010 1001 7010 2015
9001 1010 7501 0512 2014
9501 0510 0401 9512 0115
9801 0210 1506 8010 0512
9901 01 11 1006 8010 1014
2001 8013 1501 0203 7312 1015
2001 1013 0101 2406 6010 1513
80 06 2010 7401 0108 0509 2013
8510 1511 6501 1010 2011 0513
4010 60 15 0301 7510 0212 2013
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B.5 Composition Matrices for the ‘Portugal 15 Class’ Data Sets

#File used in composition matrix: Portugal_l5 Dataset
COMPOSITION Matrix

Pos id |->

Class Num| 1 2 3 4 Class
————————— |-=-==oommremeeeee------- Total
1 | 5485 8119 4234 0 == 17838
2 [ 102 o 0 0 == 102
3 | 0 133 0 0 == 133
4 | 1282 358 0 0 == 1648
5 | 208 9] O 0 == 208
5 | 713 281 181 0 1175
7 | 938 0 0 0 == 938
3 | 672 5 0 0 677
9 | 129 6 0 0 == 135
10 | 11493 3641 2238 0 == 17372
i1 | 2135 3970 72 0 == 6237
12 | 1640 2199 565 52 == 4456
13 | 63 135 72 129 == 399
14 | 1914 4564 765 0 == 7243
15 | 2141 1281 764 131 == 4317
,,,,,,,,, |,*v-ﬁﬁ,‘__________________
Pos Total| 28985 24690 8851 312 == 62878
There were 5256 pixels with equal coverages.
#File used in composition matrix: Portngal_15_Training
COMPOSITION Matrix
Pos id |->
Class Num| 1 2 3 4 Class
————————— |m e e ee-------— Total
1 | 1779 2739 1419 0 == 5937
2 33 0 0 9] == 33
3 0 40 0 0 == 40
4 428 151 Q 0 == 579
5 | 91 0 0 0 == 91
[ | 237 98 57 0 == 392
7 | 321 0 0 0 == 321
8 231 1 0 0 == 232
S 45 2 0 0 == 47
10 3865 1175 724 0 == 5764
i1 | 712 1302 24 0 == 2038
12 | 551 725 187 20 == 1483
13 | 22 39 23 36 == 120
14 647 1496 252 0 == 2395
15 718 415 253 35 == 1421
Pos Total] 9680 8183 2939 91 == 20893
There were 1734 pixels with equal coverages.
#File used in composition matrix: Portugal_ 15 Testing
COMPOSITION Matrix
pPos id |->
Class Num| 1 2 3 4 Class
————————— |=---mmemmememmemmmm-eeee- ToRal
1 | 3706 5380 2815 0 == 11901
2 69 0 0 0 == 69
3 | 0 93 0 0 == 93
4 | 864 205 0 0 == 1069
5 | 117 0 0 0 == 117
6 | 476 183 124 0 == 783
7 | 617 Q 0 0 == 617
8 | 441 4 0 0 == 445
9 | 84 q 0 0 == 88
10 | 7628 2466 1514 0 == 11608
11 | 1483 2668 48 0 == 4199
12 | 1089 1474 378 32 == 2973
13 | 41 96 49 93 == 279
14 | 1267 3068 513 0 == 4848
15 | 1423 866 511 96 == 2836
_________ I_________AA,_,_d_____>-,__
Pos Total] 19305 16507 5952 221 == 41985

There were 3522 pixels with equal coverages.
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B.6 Composition Matrices for the ‘Portugal 7 Class’ Data Sets

#File used in composition matrix: Portugal_7_Dataset

COMPOSITION Matrix

Pos id |->

Class Num| 1 2 Class
————————— |--------------  Total
1 | 1968 1536 == 3504
2 | 102 0 == 102
3 | 1196 162 == 1358
4 | 528 0 == 528
5 | 372 0 == 372
6 | 4525 3121 == 7646
7 | 3161 0 == 3161
_________ ‘______________
Pos Total| 11852 4819 == 16671
There were 0 pixels with equal coverages.

#File used in composgition

matrix: Portugal_7_Training

COMPOSITION Matrix

Pos id |->
Class Num| 1 2 Class
————————— [-~=-=-----=---  Total
1 | 1286 1023 == 2309
2 69 0 == 69
3| 799 113 == 912
4 | 3863 0 == 363
5 | 253 0 == 253
6 | 3018 2068 == 5086
7 | 2113 0 == 2113
_________ I__________,___
Pos Totall 7901 3204 == 11105
There were 0 pixels with equal coverages.

#File used in composition

matrix: Portugal_7_Testing

COMPOSITION Matrix

Pos id [->

Class Num| 1 2 Class

————————— |- - Total
1 | 682 513 —= 1195
2| 33 0 == 33
3 l 397 49 == 446
4 | 1865 0 == 165
s | 119 0 == 119
6 | 1507 1053 == 2560
7 | 1048 0 == 1048

_________ S

Pos Total| 3951 1615 == 5566

There were 0 pixels with equal coverages.
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B.7 Sample Survey Sheet for the Scotland Site

mAy
APRIE 11-13,1996
DATE (2[os |46 |SLOPE o° @
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