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t triplet sept septet 



Abstract: New Amine-Substituted Cvclopentadienyl and Indenvl Ligands 

Sarah M. B. Marsh Submitted for the degree of PhD 

January 1997 University of Durham 

This thesis concerns the new amine-substituted cyclopentadiene and indene ligands 

C5H5(CH2)3N( tBu)H and C 9 H 7 (CH 2 ) 3 N( 'Bu )H which can co-ordinate to a metal through all 

five carbon atoms of the five-membered ring (r | 5) and/ or through the nitrogen (c). Chapter 

1 reviews the recent literature concerning Lewis-base functionalised cyclopentadienyl and 

indenyl ligands and their compounds with s-, p-, d- and f-block metals. 

Chapter 2 contains a brief review of possible synthetic routes to amine-substituted 

cyclopentadienyl and indenyl ligands with some examples from the recent literature, and a 

detailed account of the synthesis of C 5 H 5 (CH 2 ) 3 N( t Bu )H and C 9 H 7 (CH 2 )3N ( t Bu )H. The 

amino alcohol T^uNH(CH2)3OH was synthesised by the conjugate addition of l BuNH 2 to 

ethyl acrylate and reduction of the product ester T3uNH(CH2)2C02Et using LiAfflU. 

lBuNH(CH 2) 3OH was converted into tBuNH(CH 2) 3Br.HBr and lBuNH(CH 2) 3Cl.HCl by 

reaction with HBr or SOCl2. Reaction between 'BuNH(CH2)3Cl.HCl and two equivalents 

of N a ( C 5 H 5 ) gave CsHsCCH^NC 'Bu ) ! ! in good yield. Treatment of 'BuNHCCH^Cl.HCl 

with excess NaOH followed by reaction with L i ( C 9 H 7 ) gave CgH^CH^N^Bu) ! ! , also in 

good yield. 

Chapter 3 describes the synthesis of various main group and iron compounds of 

C 5 H 5 (CH 2 ) 3 N( t Bu )H and C 9 H 7 (CH 2 ) 3 N( t Bu )H. Lithium salts Li[C 5H4(CH 2)3N( 4Bu)H], 

Li[C 5H4(CH 2) 3N( tBu)]Li, Li [C 9 H 6 (CH 2 ) 3 N( t Bu )H] and Li [C 9 H 6 (CH 2 ) 3 N( t Bu)]Li were 

prepared for use as reactive intermediates and Li [C 5 H 4 (CH 2 ) 3 N( t Bu )H] was characterised as 

its THF-adduct by ' H NMR spectroscopy. The silyl derivatives (Me 3 Si)C 5 H 4 (CH 2 ) 3 NH t Bu 

and (Me3Si)C5H4(CH2)3N( tBu)SiMe3 were synthesised and characterised by NMR 



spectroscopy, and (Me3Si)C9H6(CH2)3N( tBu)H and (Me3Si)C9H6(CH2)3N( tBu)(SiMe3) were 

also synthesised. The amine-substituted ferrocene Fef^ -CsFL^CH^N^B^H^ was 

synthesised and oxidised to the corresponding ferricenium ion which was isolated as its PF6" 

salt. Exploratory work was carried out into the preparation of heterobimetallic species by 

reaction between Fe{ri 5-C 5H 4(CH 2)3N( tBu)H} 2 and M X 2 (M = Co, Ni, X = CI, M = Mn, X 

= Br). The substituted bis(indenyl) iron(II) complex Fe{ri5-C9H6(CH2)3N( tBu)H}2 was also 

synthesised. 

Chapter 4 is an account of the chemistry of {ri 5:o-C 5H 4(CH 2)3N tBu}Ti(NMe 2) 2 

which was synthesised by an aminolysis reaction between C 5H 5(CH 2)3NH tBu and 

Ti(NMe2)4. Reaction between this compound and various weak acids gave a 

range of new compounds including 

{Vio-CsFMCHxhN'Bu} Ti(0'Pr) 2, {r| 5:o-C 5H 4(CH 2) 3N tBu} Ti(S lBu)2, 

{ri5:o-C5H4(CH2)3N lBu}Ti(C5H5)(NMe2) , {Ti 5:c-C 5H 4(CH 2) 3N tBu}Ti(SnBu 3) 2 and the 

imido-bridged dimer [{Ti 5:o-C 5H4(CH 2)3N tBu}Ti(NHPh)] 2(|i-NPh) 2, the X-ray structure of 

which is reported. 

Chapter 5 describes the experimental procedures used, and chapter 6 gives lists of 

characterising data for each compound. Appendix A gives details of the methods used for 

magnetic susceptibility determinations; appendix B lists X-ray crystallographic data for 

[{r|5:CT-C5H4(CH2)3N tBu}Ti(NHPh)]2(u-NPh)2 and appendix C lists departmental colloquia 

attended. 
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CHAPTER 1 

Survey of Recent Literature Concerning 

Lewis-Base Functionalised Cyclopentadienyl 

Ligands 



1.1; Background to this project 

Cyclopentadiene and its substituted derivatives (such as pentamethyl 

cyclopentadiene, C5(CH3)5H, also known as Cp*H) are among the most important ligands 

in organometallic chemistry.1 The organometallic chemistry of CpH, Cp*H and other 

simple cyclopentadienes has been extensively investigated, and at this time some 80% of 

known organometallic species contain some form of cyclopentadienyl ligand. The steric 

properties of metal cyclopentadienyl complexes can be tailored by the introduction of up to 

five substituents,2 and alkyl or silyl substituted cyclopentadienes can be used to stabilise 

highly reactive metal ligand fragments.23 Cyclopentadienyl complexes are also very 

important in catalysis. Group 4 metallocenes dominate homogeneous Ziegler-Natta 

catalysis for the polymerisation of ethylene and propylene,3 and group 4 half-sandwich 

complexes are widely used for the polymerisation of styrene.4 

Two major lines of research currently dominate metal-cyclopentadienyl chemistry. 

The first concerns the synthesis of linked bis-(cyclopentadiene)5 or bis-(indene)6 species 

which can then be co-ordinated to a metal to form awsa-metallocenes. This area is being 

investigated particularly with regard to the synthesis of defined stereochemistry and chiral 

metal complexes which can be used as catalysts for important stereospecific reactions, 

including alkene hydrogenations, alkene epoxidations, imine and ketone reductions, alkene 

isomerisations and alkene polymerisations.7 The second line of research concerns 

cyclopentadiene ligands with a functionalised side chain containing a donor atom, usually N , 

O or P. It is this second area with which this project is concerned, and the rest of this 

chapter will concentrate on reviewing the literature in this area. 

2 



1.2: Donor-Functionalised Cvclopentadienyl Ligands: Reasons for Study 

Donor-functionalised cyclopentadiene ligands are important in organometallic 

chemistry for a variety of reasons. They can co-ordinate to a metal centre in several 

different ways, some of which are shown in figure 1.2.1. Complexes can be synthesised 

where the ligand is co-ordinated to the metal through the cyclopentadienyl ring only, leaving 

the functionalised side-chain pendant. The ligand can also co-ordinate intramolecularly 

through both the ring and the donor atom, essentially acting as a bidentate chelating ligand, 

or the ligand can co-ordinate to one metal through the ring and to a second metal (either the 

same or different) through the donor atom, giving oligo- or heterometallic species. 

Heteroatom-functionalised cyclopentadienyl ligands combine the properties of their 

constituent moieties. This thesis is particularly concerned with amine-functionalised 

cyclopentadienyl ligands, which (according to the definition of Pearson8) contain both a 

hard donor (the amine nitrogen) and a soft donor (the cyclopentadienyl ring). This is 

expected to have a profound effect on the reactivity of metal complexes of these ligands, 

especially in early transition metal chemistry where the metals themselves are strongly 

Lewis-acidic and the co-ordination of a Lewis-base to the metal centre would potentially 

affect the structure and reactivity of complexes. In particular we wished to investigate the 

effect on the structure and reactivity of familiar bis(cyclopentadienyl) metal complexes when 

one cyclopentadienyl ligand, which is a monoanionic 5 electron ligand, is replaced by an 

alternative species such as an amide, NR 2 \ which is a monanionic 1 or 3 electron ligand.9 

Such a change is expected to have dramatic effects on both the steric and electronic 

properties of the metal complexes, and hence on their structures and reactivities. 

Intramolecular co-ordination of the ligand is also expected to have a dramatic effect on the 

3 



catalytic activity and selectivity of these complexes in reactions such as alkene 

hydroboration10 and Ziegler-Natta polymerisation.11 

n 

M = e.g. Ti, Zr 

X 
Fe X = e.g. OR, NR2, PR 2 CI 

n Monodentate 
Monodentate 

\ M = e.g. Ti, Zr 
X = e.g. OR, NR 2 M M 
Y = e.g. CI, NlVte, 

n M X Y«w>"' 

Bidentate heterobimetallic Bidentate chelating 

M M M / 
n X 

n 

Bidentate oligometallic 

Figure 1.2.1: Some of the possible co-ordination modes of heteroatom functionalised 

cyclopentadienyl ligands 

These types of functionalised cyclopentadienyl ligands are also interesting because 

they do not always act as innocent spectator ligands in the way that cyclopentadienyl usually 

does. They are frequently hemilabile,12 since the heteroatom donor can sometimes be 

replaced by other ligands yet is always available to reco-ordinate to the metal because it is 

tethered to the cyclopentadienyl ring. Again, this is expected to influence the reactivities of 
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such metal complexes. It also means that these ligands have proved useful for stabilising 

highly reactive metal-ligand fragments, and this will be discussed in more detail, with 

examples, later in this chapter. 

Finally, in complexes where the ligand is co-ordinated through the cyclopentadienyl 

ring only, the presence of the heteroatom functionalised substituent chain can greatly 

influence the solubility of these complexes, giving rise to the possibility of carrying out 

organometallic chemistry in a variety of unusual solvents, including water.13 The 

heteroatom side chain can also be used to anchor the species to a surface, which could 

prove useful in catalytic applications. 

1.3: s- and p- Block Compounds 

1.3.1: Group 1 

Alkali metal complexes of this type of ligand have chiefly been prepared for use as 

intermediates in the preparation of other metal complexes. Consequently, while there are 

many examples in the literature, particularly of lithium compounds, to our knowledge none 

have been fully characterised. Lithium compounds, such as that shown in figure 1.3.1, have 

been widely used for the preparation of a variety of complexes of different metals including 

Al, Ga, In; 1 4 Si, Sn;15 Ge;16 Rh, I r ; 1 7 Ni, Pd, Pt. 1 8 Other examples of similar lithiated species 

have been used to prepare ferrocene-type compounds.19 

Potassium salts of Lewis-base functionalised cyclopentadienes are also fairly 

common in the literature, and some examples are shown in figure 1.3.2. They are chiefly 

used in the preparation of lanthanide compounds,20 though they have also been used to 

prepare titanium complexes of the 2-methoxyethyl cyclopentadiene shown in figure 1.3 .2. 2 1 
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NMe2 NMe2 

n-BuLi, THF 
Used to prepare 
other metal 
complexes 

NMe2 NMe2 

n-BuLi, THF 

Figure 1.3.1: Lithium salts of Lewis-base functionalised cyclopentadienide anions 

R 
KH, THF 

reference 20 (a) 
K N N o 

OMe OMe KH, THF 

reference 20 (b), 21 

Figure 1.3.2: Potassium salts of Lewis-base functionalised cyclopentadienide anions 

1.3.2: Group 2 

The Grignard reagent prepared from dimethylaminoethyl tetramethyl 

cyclopentadiene has been made, and is shown in figure 1.3.3 2 2 It forms as a halogen-

bridged dimer when isolated from non-polar solvents such as ether, and addition of THF 

causes the dimer to break apart giving a monomelic species with THF co-ordinated to the 

metal centre. X-ray crystal structures of both the dimer and the THF-substituted monomer 

are given in reference 22. 
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NMe 2 

RMgBr, Et-,0 
(R = Me, Et) 

N 
\ 

Mg Mg 
Br 

N 

THF 

Br 

Mg 
/ "**0 

N 

Figure 1.3.3: Grignard chemistry of dimethylaminoethyl tetramethyicyclopentadiene 

The bis(cyclopentadienyl) calcium salt of dimethylaminoethyl 

tetramethylcyclopentadiene has also been made, and is shown in figure 1.3.4.23 A feature of 

compounds of this particular ligand with metals of groups 2, 13 and some group 14 

elements is that the ligand is co-ordinated intramolecularly. This is thought to be due to a 

pronounced chelate effect, and these compounds are generally found to be considerably 

more air-stable than their cyclopentadienyl analogues. 

Bariocene analogues have been made of ligands of the type (CsH4)CH2CH2R where 

R = OMe, OEt, CH2OEt, NMe 2 and OCH 2CH 2OCH 3 . 2 4 Although to our knowledge these 

compounds have not been characterised by X-ray crystallography, there is evidence for 

intramolecular co-ordination of the Lewis-base to the metal centre, giving rise to increased 

stability compared to bis(cyclopentadienyl) barium. 
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NMe 2 

K 

Cal 

Ca 

Figure 1.3.4: Calcium salt of a Lewis-base substituted tetramethylcyclopentadienyl 

anion 

1.3.3: Group 13 

Group 13 complexes of the dimethylaminoethyl cyclopentadienyl ligand and its 

tetramethyl cyclopentadienyl analogues have been extensively investigated by Jutzi and co

workers, and are summarised in figure 1.3 .5. 

Di-alkyl aluminium25 and gallium26 complexes have been shown by X-ray 

crystallography to have r\ '-co-ordination of the cyclopentadienyl ring and intramolecular co

ordination of the amine nitrogen, as do di-halo aluminium, gallium and indium complexes.27 

A mono-cyclopentadienyl thallium complex has also been made and unlike Al, Ga and In 

complexes shows r|5-co-ordination of the cyclopentadienyl ring and no intramolecular co

ordination of the amine nitrogen.28 It is noticeable that all except the mono-

cyclopentadienyl thallium complex show intramolecular co-ordination of the amine nitrogen, 

and are described as having significantly increased stability to oxygen and water due to the 

stabilising effect of intramolecular co-ordination of the Lewis-base to the central atom. 
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M M 
N N 

C Me? 
R = Me, Et R^MCl 

M = Ga, In M = Al,Ga,In 
MC 

NMeo 

Li 

A1X 
///. .v\\ 

H3Al.NMe3 
X = Br A A 

y \ y N N 
H Me? Meo 

X = CI, Br, I 

NMe2 

NMeo 
TlOEt 

Tl 
Toluene 

0 
Figure 1.3.5: Group 13 complexes of amino-alkyl substituted cyclopentadienyl and 

tetramethylcyclopentadienyl ligands 

1.3.4: Group 14 Compounds 

Trimethylsilyl-derivatives of these types of ligand have been made, mainly for use in 

the preparation of transition metal complexes.29 Both the trimethylsilyl- and trimethyltin-

derivatives of the dimethylaminoethyl cyclopentadienyl ligand have been made, where the 
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ligand is attached to the metal through one carbon atom of the ring only, i.e. r|'-co

ordination. A germanium (II) complex has also been made,30 and like the group 2 and 13 

complexes already discussed, the ligand is co-ordinated to the metal centre both through the 

cyclopentadienyl ring (with r|2-co-ordination proposed on the basis of X-ray 

crystallographic evidence) and intramolecularly through the amine nitrogen, as shown in 

figure 1.3 .6. As in the cases of groups 2 and 13 there is evidence of a pronounced chelate 

effect in this system, and the intramolecularly co-ordinated Lewis base attached to the metal 

centre has a considerable stabilising effect. 

Me3Si NMe 

n 1) KH or "BuLi 
2) Me3 SiCl 

NMe2 

1) KH or n-BuLi 
NMe 2) Me3 SnBr 

NMe 
GeCU. dioxane 

THF Li Ge 

N C 
Me 2 

Figure 1.3.6: Group 14 complexes of a Lewis-base substituted cyclopentadienyl ligand 
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1.4: Early Transition Metal Chemistry 

Since early transition metal cyclopentadienyl complexes dominate homogeneous 

Ziegler-Natta olefin polymerisation chemistry, it is not surprising that their complexes with 

donor-functionalised cyclopentadiene ligands have been investigated in more detail than 

those of any other group of metals, and this is particularly true for titanium and zirconium. 

This section aims to give a review of the chemistry of these ligands with metals in groups 4, 

5 and 6, as well as the group 3 metal scandium. Complexes of various functionalised 

cyclopentadienes with yttrium and lanthanum will be discussed in section 1.6 along with 

complexes of lanthanide metals. 

1.4.1: Scandium 

Scandocene derivatives of the C5Me4SiMe2NR2" ligand (known as "Cp*-sinner") 

have been synthesised for use in mechanistic studies of the Ziegler-Natta a-olefin 

polymerisation system. The dimeric scandium hydride complex 

[(Cp*SiMe2NtBu)Sc(PMe3)]2(u-H)2, shown in figure 1.4.1, cleanly catalysed the 

oligomerisation of propene, 1-butene and 1-pentene in the absence of a co-catalyst.31 

This complex was converted into an alkyl-bridged complex (also shown in figure 1.4.1) 

which also catalysed the oligomerisation of these monomers.32 

Oligomerisation reactions using both catalyst precursors were sluggish and 

produced low molecular weight oligomers rather than polymers, but these scandium 

complexes are still of vital importance since they provide the first opportunity for study of 

Ziegler-Natta a-olefin polymerisation in the absence of MAO or another co-catalyst. 

Mechanistic studies are also more successfully performed with catalysts which proceed 

relatively slowly, allowing individual reaction steps to be observed. 
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Figure 1.4.1: Scandium complexes of the Cp'SiMezN'Bu ligand 

1.4.2: Group 4 

Complexes of a great many functionalised cyclopentadienyl ligands with group 4 

metals have been studied, with a view to preparing new catalytically active species, or 

stabilising catalytically active metal-ligand fragments to allow them to be studied. Since 

both metallocenes and half-sandwich complexes of group 4 metals are of great importance 

in olefin polymerisation, complexes of both these types have been made. 

Bis(cyclopentadienyl) complexes usually contain ligands which are co-ordinated to the 

metal through the cyclopentadiene ring only, leaving the donor group pendant. Half-

sandwich complexes have been made where donor groups are either pendant or are co

ordinated intramolecularly to the metal centre. 

The chemistry of the dimethylaminoethyl cyclopentadienyl ligand with titanium and 

zirconium has been investigated fairly comprehensively, and is summarised in figure 1.4.2.33 

The aim of the work was to prepare bent metallocene type complexes from which cationic 
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species might be generated, stabilised by a weak intramolecular nitrogen co-ordination but 

still active in catalysis. Reaction of alkali metal dimethylaminoethyl cyclopentadienides with 

TiCU or ZrCU yielded oligomeric and polymeric species, although an analogous 

diisopropylaminoethyl cyclopentadienyl ligand under similar conditions gave a monomelic 

bent metallocene dichloride, characterised by X-ray crystallography.34 The oligomeric and 

polymeric metallocene dichloride analogues of the dimethylethylamino cyclopentadienyl 

ligand underwent metathesis reactions with alkyl lithium salts to give monomelic 

metallocene dialkyl species which could be protonated at the amine nitrogen, giving rise to a 

dicationic species and offering the potential for organometallic chemistry in highly polar 

solvents, including water. The trimethylsilyl derivative of the dimethylaminoethyl 

cyclopentadienyl ligand reacted with CpTiCU to give a mixed metallocene species. It is 

interesting to note that reaction between the free ligand and Ti(NMe2)4 led to only one 

NMe 2 ligand being displaced from the metal centre, giving rise to a species in which the 

amine nitrogen is not co-ordinated to the metal centre. This is in contrast with primary 

amine substituted ligands (such as those studied by this group) in which the nitrogen also 

displaces an NMe 2 ligand, becoming intramolecularly co-ordinated as an amide.9 

A complex has been prepared of the dimethylaminoethyl cyclopentadienyl ligand in 

which the ligand is co-ordinated to titanium through the cyclopentadienyl ring and 

intramolecularly through the amine nitrogen.11 This complex, shown in figure 1.4.3, 

undergoes hydrolysis in the presence of moisture to give a dimeric, oxide bridged species 

with the amine groups protonated. The intramolecularly co-ordinated complex 

(C5H4(CH 2) 2NMe 2)TiCl3, activated with MAO, was tested for catalytic activity for the 

polymerisation of styrene, ethylene and propylene. The system exhibited relatively low 

activity and lower stereoselectivity towards styrene polymerisation compared to 
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(C 5H5)TiCl 3/MAO or ( C ^ T i C l s / M A O . In contrast, the system exhibited substantial 

activity towards the polymerisation of ethylene and propylene, for which (CsF^TiCU/MAO 

is virtually inactive. However, the propylene polymerisation was without stereoselectivity. 

It was thought that these effects on activity and stereoselectivity were due to the 

intramolecular co-ordination of the amino group. 

1) BuLi 

2) Me 3 SiCl 

3) C p T i C l 3 

Ti(NMeo)4 

2) TiCl 

NMe-> 

1) BuLi (M = Ti) or Na (M = Zr) 

2) MC1 4 

NMej 

NMe, 

R L i . 

R = alkyl 

N*HMe2 

cr 

Figure 1.4.2: Chemistry of the dimethylaminoethyl cyclopentadienyl ligand with 

group 4 metals 
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NMe, 
l)n-BuLi 

2)Me 3 SiCl 

3) TiCl 

T 
CI N 

CI i *'"me2 c 
NMe 

N +HMe,CI 
H,0 

CI 

c Si 
Ti TV 

7 a* 
c 

"CIMe 2H +N 

Figure 1.4.3: Half-sandwich titanium dimethylaminoethyl cyclopentadienyl complex 

with intramolecularly co-ordinated nitrogen 

A related group of ligands has been synthesised where the dimethylamino group 

attached to the two carbon chain has been replaced by a cyclic amine group as shown in 

figure I.4.4. 3 5 

CT3 
1)KH 

N n 2) Me 3SiCl 

3)TiCl N 

CI V _ (CM. 

CI»x W 

CI n = 4, 5 
(CH2)n 

Figure 1.4.4: Cyclopentadienyl ligands bearing cyclic amine-substituents 

Amine-functionalised ligands have also been prepared where an Me2Si unit replaces 

the carbon chain as a spacer between the cyclopentadiene and the amine. This leads to 
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increased strain in the system when the amine group is co-ordinated intramolecularly, which 

would in turn be expected to lead to greater catalytic activity compared to species with a 

two or three carbon chain. The complex (Cp*SiMe2NR)TiCl2, shown in figure 1.4.4, where 

R = 'Bu or Ph, has been shown to be a highly active catalyst for the polymerisation of 

ethylene and for the random co-polymerisation of 1-octene/ethylene when activated with a 

co-catalyst such as MAO or B(C6F5)3 3 6 Similar complexes have been made with the ligand 

('BuCsI^SiNrfBu), an example of which is also shown in figure I.4.5. 3 7 

t Bu 

Me-,Si 

\ Me->Si 

\ N- V""""' 

/ \ . 
'""'CI 

N '"""CI 

/ t Bu CI 

(Reference 35) (Reference 35) 

Figure 1.4.5: Amine-substituted cyclopentadienyl complexes with SiMe2 spacer units 

These silyl-spaced ligands have been further developed to produce tridentate ligands 

where a C2H4 chain bearing a further donor atom is attached to the amine nitrogen. Such 

ligands have been made based on both cyclopentadiene38 and on 

tetramethylcyclopentadiene.39 The third donor functionality is an ether or an amine, and 

complexes have been made in which the ligand is bidentate or tridentate as shown in figure 

1.4.6. 

Amine-functionalised indenyl ligands have been synthesised where the amine group 

is attached directly to the ring with no spacer units at all. This makes intramolecular co

ordination of the amine nitrogen impossible, but the presence of a strong Lewis-base 

directly attached to the ring leads to changes in the electronic properties of the ring which 
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have significant effects on the catalytic properties of titanocene and zirconocene complexes 

of these ligands. 3,4-diphenylcyclohex-2-enone has been used as a precursor to cyclic-

amine substituted zirconocenes and to linked zirconocenes with amine substituted 

backbones,40 and some examples are shown in figure 1.4.7. These complexes have been 

tested for olefin polymerisation activity in the presence of MAO co-catalyst. The N,N'-

dimethylethylenediamine linked species C proved to have high activity, but activity for the 

unlinked species A and B was low (letters A, B and C refer to figure 1.4.7). 

•T CI»>"V 'v . 
CI CI 

Li(NHCH,CH,L) 
L - NMe2, OMe 

SiMe? 
/ SiMe? Ti 

N \ 
L 

N CI ci 

ZrCI4(THF), or SlMe2 

(Li h / 
L 

N l)Tia,(THF), 
CI 

2)PbQ 

SiMe, SMe MeMgCl / / M M OS""'! N Me C 

Figure 1.4.6: Tridentate functionalised cyclopentadienyl ligands 
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Zr: Zr: ZrCU C / C / / Ph Ph N 
\ Ph 

Me 

A B C 

Figure 1.4.7: Amine-substituted zirconocenes 

1-dimethylamino indene has also been used to prepare a variety of zirconocene-type 

complexes, as has a bis( 1-dimethylamino indene) with a SiMe2 linkage,41 and some 

examples are shown in figure 1.4.8. The linked zirconocene complex polymerises propene 

in the presence of MAO co-catalyst with a rate and activity comparable to that of the 

unsubstituted SiMe2 linked bis(indenyl) complex {(C9H6)2SiMe2}ZrCl2. However, it exhibits 

an induction period which is unusual and could be due to the Lewis-base inhibiting the 

formation of catalytically active species. 

V 3 J? J? \ Me2N \ \ Me->N 2 i y ZrCI ZrCI ZrCI Me2Si Me2Si 
Me2N 

NMe2 

Me2N 

Figure 1.4.8: Zirconocene complexes of 1-dimethylamino indenyi ligands 

The work described in this thesis is primarily concerned with amine-substituted 

cyclopentadienyl and indenyi ligands which differ from those discussed so far in two ways. 
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Firstly, we are concerned with increasing the length of the carbon chain to three CH2 units, 

which has been shown for oxo-substituted ligands to give the ligand system more flexibility 

and reduce strain when co-ordinated intramolecularly.29 Secondly we are studying ligands 

where the amine group is secondary rather than tertiary, enabling the nitrogen to function as 

an LX ligand when deprotonated. This work is a continuation of earlier studies on 

zirconium and hafnium complexes of methylaminopropyl cyclopentadiene, shown in figure 

1.4.99 

M(NMe,) NHMe 
M 

""/// 2NHMe NMe 
N 

NMe 

Me M = Zr, Hf 

Figure 1.4.9: Group 4 complexes of a methylaminopropyl cyclopentadienyl ligand 

Nitrogen is not the only donor atom which has been appended to a cyclopentadienyl 

ligand. Within the field of early transition metals, the next most studied donor atom is 

oxygen. Ligands have been synthesised with ether substituents attached to a 

cyclopentadienyl or CsMe^ fragment. A complex has been made in which a 3-

methoxypropyl tetramethylcyclopentadienyl ligand is co-ordinated to titanium through the 

cyclopentadienyl ring only. This was then converted into a bidentate alkoxide complex via 

intramolecular C-0 activation as shown in figure 1.4.10.42 Various mixed metallocene 

complexes containing combinations of 2-methoxyethyl and 3-methoxypropyl 

cyclopentadienyl ligands have been made in order to study the effect of chain length upon 

chelation.43 These are shown in figure 1.4.11. 
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Figure 1.4.10: Bidentate alkoxide complex via intramolecular C -O activation 
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Figure 1.4.11: Complexes of 2-methoxy ethyl and 3-methoxypropyl cyclopentadienyl 

ligands 



In addition, a chiral chelating alkoxide ligand based on fluorene has been synthesised 

and converted into a zirconium complex as shown in figure 1.4.12.44 

l)2n-BuLt 

2)ZrCl,(THF), iTHF 

c 
OH 

HF 

Figure 1.4.12: Chiral alkoxide-substituted fluorenyl ligand 

ci e 
Ti 

c CI 

From reference 45 

Me O 
\ 
Si PPh, 

a Me NHR 
C 

TT C 
Me CI 

Si PPh, 
/ Me 

From reference 46 From reference 47 

Figure 1.4.13: Other donor-functionalised group 4 complexes 

Other donor functionalities have been used only rarely in the synthesis of group 4 

complexes, being for the most part better suited for co-ordination to late transition metals. 

However, examples exist in the literature of complexes of group 4 metals with vinyl-, 4 5 
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phosphine- and carboxylic acid- substituted cyclopentadienes. These are shown in figure 

1.4.13. 

1.4.3: Group 5 and 6 complexes 

Group 5 and 6 metals have been less widely studied with respect to donor-

functionalised cyclopentadiene ligands than have group 4 metals, mainly because potential 

catalytic applications are fewer. Cyclopentadienyl ligands with amine functionalities 

attached to the ring by a SiMe2 spacer unit have been used to prepare complexes of Mo, 4* 

Nb and Ta 4 9 by aminolysis as shown in figure 1.4.14. 

M o O M e ^ 

Q NHPh 
Si i Me Me M(NMe2)5 

\ M N j \""NM 
Z NMe, Ph 

Me2N 
\ Mo-N 

Ph 

M^Si;^ 
N 
PI 

M = Nb, Ta . 
Me2Si 

"̂"NMe2 

NMe2 

hv 

From reference 19 ii Me Me^ 

Si / 
Me2N 

M <T V'""NMe2 N 
Ph NMe, 

From reference 20 

Figure 1.4.14: Group 5 and 6 complexes of an amine substituted cyclopentadienyl 

ligand with an SiMe2 spacer unit 



A primary amine-substituted cyclopentadiene has been used to prepare a linked 

cyclopentadienyl-imido complex of niobium, shown in figure 1.4.15.50 The linked 

cyclopentadienyl-imido ligand is a 9 electron donor, yet occupies only a small part of the 

metal surface. This type of complex is expected to have very different properties to a bent 

metallocene since the metal has a greater positive charge yet is sterically less crowded. 

Me-tSi 

N(SiMe3)2 

NbCl 

N X 
CI 

""'/CI 

Figure 1.4.15: Linked cyclopentadienyl-imido complex of niobium 

A dimethylaminoethyl cyclopentadienyl ligand with a methyl-substituent on the 

backbone has been used to prepare a molybdenum carbonyl complex in which the ligand is 

co-ordinated through the cyclopentadienyl ring only. Photolysis of this complex leads to 

loss of a carbonyl ligand and intramolecular co-ordination of the amine group.51 A 

molybdenum complex of the same ligand with a 1,3-hexadiene ligand has also been made. 

Again the ligand is co-ordinated through the ring only, and intramolecular co-ordination is 

achieved by removal of a carbonyl ligand using chemical means.52 This chemistry is 

summarised in figure 1 4.16. 
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Figure 1.4.16: Molybdenum complexes of the dimethylaminoethyl cyclopentadienyl 

ligand (references 51 and 52) 
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1.5: Late Transition Metal Chemistry 

1.5.1: Iron and manganese 

Manganese has not been very widely studied with regard to donor-functionalised 

cyclopentadienyl ligands, since potential catalytic applications are few. Only one example 

has been found in the literature: a lithium dimethylaminoethyl cyclopentadienide with a 

methyl-substituted backbone reacted with Mn(CO)sBr under vigorous conditions to give a 

cyclopentadienyl manganese tricarbonyl complex in which the substituted cyclopentadienyl 

ligand was co-ordinated through the ring only. Photolysis of the complex caused loss of 

one carbonyl ligand, enabling the amine nitrogen to co-ordinate intramolecularly to the 

metal centre, as shown in figure 1.5.1.51 

NHMe 

Li Me 

NHMe Mn(CO)5Br 
THF, 12hrs reflux 

Me 

Mn 

V CO 
OC hv 

Mn 
o c » w y \ V Me 

N 
OC ^Me 

Figure 1.5.1: Mn complexes of an amine substituted cyclopentadienyl ligand 
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By contrast, there are many examples of iron complexes of this type of ligand, 

particularly of ferrocene-type complexes, since these are easy to make and are generally air-

and moisture-stable. Ferrocene-type complexes have been made of cyclopentadienyl ligands 

with a wide variety of donor-functionalities including pyr idyl , 1 2 , 1 9 < a ) phosphine, 4 6 5 3 vinyl 5 4 

and carboxylic-acid amide.55 Some examples are shown in figure 1.5.2. 
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Figure 1.5.2: Some examples of ferrocene-type complexes with functionalised 

cyclopentadienyl ligands 



These ferrocene-type complexes are very stable and have a pendant donor 

functionality which is available for co-ordination to a second metal, making them highly 

suitable building blocks for oligo- and heterometallic systems. This will be discussed more 

fully in chapter 3. 

Complexes of iron where only one functionalised cyclopentadienyl ligand is present 

are much rarer, but a cyclopentadienyl ligand with a primary amine group attached to the 

ring by an SiMe2 spacer unit has been used to prepare an iron (II) carbonyl complex where 

the ligand is co-ordinated through the ring and intramolecularly through the amine nitrogen, 

as shown in figure 1.5.3.37 

Bu' -SiMe2NH'Bu Me2Si 

1) ^BuLi 

2) FeCl^THF),^ CO 

Figure 1.5.3: Iron (II) complex with an intramolecularly co-ordinated functionalised 

cyclopentadienyl ligand 

1.5.2: Group 9 

Cyclopentadienyl complexes of Co, Rh and Ir have been used in a number of 

important catalytic and stoichiometric reactions which rely on the formation of co-

ordinatively and electronically unsaturated species as reactive intermediates.56 

Functionalised cyclopentadienes should be ideal ligands for the stabilisation of such species, 

especially where the substituent is a hard donor (such as nitrogen) that would co-ordinate 
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only loosely to late transition metals, allowing it to be displaced by softer donors such as 

alkenes. 

The dimethylaminoethyl cyclopentadienyl and tetramethylcyclopentadienyl ligands 

have been widely studied with regard to their chemistry with Co, 5 7 and with Rh and I r . 1 7 

Complexes of the metals in the +1 oxidation state were prepared by classical routes as 

shown in figure 1.5.4. 

NMe 

Co 
Co2(CO)g 

OC CO 

NMe 2 

l)BuLi, THF 
NMe 

[(COE^IrCl], (COE 
cyclooctene) 

M 

v V 
M = Rh,Ir 

Figure 1.5.4: Preparation of Co, Rh and Ir complexes of an amine-substituted 

cyclopentadienyl ligand 

No intramolecular co-ordination was observed, and photolysis did not lead to 

intramolecular co-ordination. However, oxidation of the metal to +3 (for example with 

iodine) gave complexes in which the ligand was co-ordinated intramolecularly. The metal-

nitrogen bond was labile and could be displaced irreversibly by more strongly donating 
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ligands, such as C2H4. With less strong donors such as CO it was possible to design 

systems in which co-ordination of the amine group was truly reversible, as shown in figure 

1.5.5. It was concluded from this work that the co-ordination behaviour of the amino 

group depended on the formal oxidation state of the metal. No intramolecular co

ordination was observed for metals in the +1 oxidation state, while the co-ordination mode 

of the ligand to metals in the +3 oxidation state depended on the nature of the metal and the 

other ligands present.58 

NMe? 

I-> 

Co 
Co N 

Me, 
OC CO 

-CO CO 

NMe, NMeo 

Co Co 

r v V 
|\\x«<"" CO 

Figure 1.5.5: Co-ordination of the amino group in Co(HI) complexes of an amine-

substituted cyclopentadienyl ligand 
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A wide variety of ring substituted r|5-cyclopentadienyl complexes of iridium have 

been synthesised as potential C-H activation intermediates.59 The substituents used include 

(CH 2) 2NMe 2 and (CH2)2OMe. 

l /2Co 2 (CO) 8 

Co 

CO oc 

i%-co 

Co / si "in 
OC 

Na/ Hg 

Co. Co 

/ 

Co 

OC 

Figure 1.5.6: Cobalt complexes of a but-3-enyl cyclopentadiene ligand 

Cobalt complexes of a tetramethylcyclopentadienyl ligand with a but-3-enyl 

substituent have been studied in great detail. A complex in which the ligand is co-ordinated 

to a Co(I) centre through the ring only has been synthesised by a classical route,60 and can 
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be converted into a chloride-bridged dimer and thence into an intramolecularly co-ordinated 

species.61 The Co(I) complex can also be oxidised by iodine giving a monomelic species 

with the ligand pendant, which can either be converted to an iodide-bridged dimer or 

reduced to a Co(I) species in which the ligand is co-ordinated intramolecularly, as shown in 

figure 1.5.6. CpCo derivatives are known to catalyse the trimerisation of alkynes to give 

benzene derivatives, and the intramolecularly co-ordinated Co(I) 

tetramethylcyclopentadienyl but-3-enyl complex has also been investigated with regard to 

this reaction.62 It was found, however, that reaction of this complex with alkynes did not 

give benzene derivatives, but gave various metal complexes as shown in figure 1.5.7. 

Me^Si Co 

RC CSiMe R = SiMe3, Ph 

Co 

CR 2 R C 
Co 

Ph R = Ph. CO^Me 
Ph 

I,, R = Ph Ph 
Ph 

Co 

Figure 1.5.7: Attempted catalytic trimerisation of alkynes using a cobalt complex of 

an alkene-substituted cyclopentadienyl ligand 
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Phosphine-substituted cyclopentadienyl ligands have also been synthesised for co

ordination to late transition metals. Directly linked systems such as C5H4PPI12,63 or systems 

with short linkages such as C5H4CH(CH3)PPh2

53 (the ferrocene-type complex of which is 

shown in figure 1.5.1) tend to act preferentially as bridging ligands rather than chelating 

ligands, and will be discussed in chapter 3. A ligand has been synthesised in which the 

diphenylphosphino group is attached to the cyclopentadienyl ring by a two methylene unit 

chain, and this was found to act as a chelating ligand to rhodium and iridium in both the +1 

and +3 oxidation states as shown in figure 1.5.8.64 

I 
• Rh Rh 

OC 
Ph Ph 

[RhCl(CO)2]2 

Cx2> 
PPh PrClC 2H 4 

In Li x Ph 

IrCl(CO)(PPh3)2 

1' 

I 
r r 

OC Ph Ph 

Figure 1.5.8: Rhodium and iridium complexes of the CsH^CIfc^Plh ligand 
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1.5.3: Group 10 

Group 10 complexes of substituted cyclopentadienes have not been widely studied, 

with the exception of the CsH^CH^NMei ligand and its tetramethylcyclopentadienyl 

analogue, which have been comprehensively investigated for all three metals Ni, Pd and Pt 

as summarised in figure I.5.9. 5 8 ' 6 5 As with group 9, the workers were concerned as to 

whether or not the amino group would co-ordinate and hence whether it would be possible 

to stabilise catalytically active metal-ligand fragments for study. It was found that the 

amino group could not compete with CO, phosphine or 7t-allyl ligands, and intramolecular 

co-ordination of the amino group was not achieved for any of the metals in either the +1 or 

the +2 oxidation state. 

oo NMe, 
I,,2PMe, 

Ni Ni 
2 CO 

Ni 
PMe 

NMe 

Ni(CO),, CuCl, 
THF 

NMe 

Li 

1/4 [HtMe,] 1/2 [(C,H,)PdCl}, 
THF LiCl 

NMe NMe 

R Pd "Me 
Me Me 

Figure 1.5.9: Group 10 complexes of the dimethylaminoethyl 

tetramethylcyclopentadienyl ligand 
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1.6: Lanthanides (Including Y and La) 

The chemistry of functionalised cyclopentadienyl complexes of lanthanides is 

dominated by the 2-methoxyethyl cyclopentadienyl ligand. This can chelate to lanthanide 

metals, co-ordinating through both the cyclopentadienyl ring and the ether oxygen. Hence 

this ligand stabilises organolanthanide complexes and has been used to prepare a wide range 

of unusual complexes. For example, the ligand has been used to prepare monomelic, 

solvent free bis-cyclopentadienyl tetrafluoroborate66 and iodide67' 6 8 complexes of 

lanthanides, shown in figure 1.6.1, which are fairly rare. 

6 BF 
I Me Me 

La M 

Me Me 

M = La, Pr, Nd, Sm 

Figure 1.6.1: Iodide and tetrafluoroborate complexes of Ianthanides 

Bis(cyclopentadienyl) chloride complexes analogous to the iodide complex shown in 

figure 1.6.1 have been synthesised for the whole lanthanide series (except promethium) in 

order to investigate the effect of the lanthanide radius on co-ordination.69 From this work it 

was discovered that ether oxygen always co-ordinates intramolecularly to the metal centre, 

regardless of the lanthanide radius. X-ray crystallography was used to determine the 

structures of the La, Dy and Yb complexes, and showed that the lanthanum complex (which 

has the largest radius cation) forms a chloride-bridged dimer (in contrast with the iodide 

shown in figure 1.6.1 which is a monomer), while the Dy and Yb complexes form as 
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monomers. This ligand has also been used to synthesise tris(cyclopentadienyl) complexes, 

as shown in figure 1 6.2.2(a) 

Me 
Me OMe 

2 
Lnb 

K+ 

Ln = Sm, Yb 

Me 

Figure 1.6.2: Tris(cyclopentadienyl) complexes of lanthanides 

Pyridyl-functionalised cyclopentadienes have been used to make homoleptic 

lanthanocene (II) complexes, as shown in figure 1.6.3, which cannot generally be made from 

unsubstituted cyclopentadienyl or pentamethylcyclopentadienyl ligands due to the large radii 

of the lanthanides.2(Ka) The permethylated N-dimethylethylamino cyclopentadiene has been 

used to make a homoleptic samariocene complex analogous to the calcium complex shown 

in figure I.3.4.70 

1)KH 1) K H N 
2) YbX 2) YbX 

t R='Bu,x = 0 R = H, x = 1 

Figure 1.6.3: Homoleptic ytterbocene (II) complexes 
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1.7: Conclusions 

It can be seen from this literature survey that the chemistry of Lewis-base 

functionalised cyclopentadienyl Iigands is both rich and varied. Such ligands have been used 

to synthesise complexes of a huge range of different metals, with examples in the literature 

of complexes with s-, p-, d- and f-block metals. Many of these complexes have important 

implications for the study of catalytic processses. This thesis concentrates on the chemistry 

of tertiarybutylaminopropyl cyclopentadiene, in particular its synthesis and its compounds 

with various metals, particularly titanium. Lewis-base substituted indenyl ligands are rarer 

in the literature, but are expected to have an equally rich and varied organometallic 

chemistry. This thesis also contains reports of some prekminary work on the synthesis of 

tertiarybutylaminopropyl-2-indene and its complexes with iron and zirconium. 
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CHAPTER 2 

Ligand Synthesis 



2.1: Introduction 

There are several possible approaches to the synthesis of substituted 

cyclopentadienyl ligands. One route involves the construction of the five-membered ring 

around the carbon-chain substituent.1 An example of this method (taken from reference 1) 

is shown in figure 2.1.1 and is a variation of one of the standard syntheses of C5(CH3)sH. 

This approach is particularly useful for the synthesis of ligands containing other substituents 

in addition to the functionalised one, for example ligands based on the Cs(CH3)4R" fragment. 

This method was not considered for the synthesis of our ligands, since other substituents 

were not required, the starting materials and reagents are expensive, and the method would 

not be readily adaptable for the synthesis of indenyl species. 

4 U Et 2 o 

Br 

l ) X ( C H 2 ) n C 0 2 R , E t , 0 Li 
2) H 2 0 , NH4CI 

HO n 

vr n 

X = NMe2, CI 

Taken from reference I 

1 Fig. 2.1.1: Synthesis of a Lewis-base substituted peralkylated cyclopentadiene 
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1 
X, Y = electron 
withdrawing groups, 

R = alkyl, Z= good leaving 
aryl 

< < 
group 

O A 

M 

R = alkyl, aryl 
X, Y = electron 
withdrawing & 
good leaving groups 

T H H 
O 

R ^ X 

R = alkyl, aryl 
X = electron R = alkyl, aryl 
withdrawing X = leaving 

< 1 group group Y = leaving group 

Figure 2.1.2: Routes to pentafulvenes. 

In another approach, the use of pentafulvenes as intermediates offers a versatile 

route to a variety of substituted cyclopentadienyl species. Pentafulvenes themselves can be 

synthesised by reaction between C5H5" (as an alkali metal salt) and various electrophiles as 

summarised in figure 2.1.22 Once synthesised, pentafulvenes can be reduced to the 

corresponding cyclopentadienes using a hydride reducing agent such as LiAlIi j , or they can 

be reacted with a nucleophile to introduce further substitution as summarised in figure 

2.I.3.2 
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Nuc" - x 

Nuc 

X = good leaving group 

R MgX 

or R Li 

H + 

Figure 2.1.3: Introduction of further suhstituents into fulvenes by nucleophilic attack 

Fulvene systems are extremely versatile and can be used in the synthesis of Lewis-

base functionalised cyclopentadienes. They are particularly useful in the synthesis of 

peralkylated phosphine- and amine-functionalised cyclopentadienes as shown in figure 

2.1.4.3 In addition, they have been used in the synthesis of vinyl4 and pyridyl5 species as 

shown in figures 2.1.5 and 2.1.6 respectively. 
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l )LiXHR,thf H 

2)H,0 X = N,P 

all isomers 

From reference 4(a) 

PC 1) MgBr 
2) 20% H C ^ 

V 
DLiPPh 
2) I T 

Ratio 5 : 1 

PPh 2 From reference 4(b) 

Ph 2 PCH 2 Li 

THF 0 
From reference 4(c) 

PPh 2 

R = Ph, NMe 2 

Figure 2.1.4: Phosphine and amine functionalised cyclopentadienes from fulvenes 

Indenyl ligands are not easily prepared from fulvenes, although a recent synthesis of 

an alkyl-substituted indene has been reported and is shown in figure 2.1.7.6 However, while 

this synthesis offers the potential to introduce substituents into the 6-membered ring of 

indenyl species, we are more interested in putting substituents on the 5-membered ring. It 

also seems unlikely that this synthesis would tolerate the introduction of Lewis-base 

functionalities. Reaction of an electrophilic fragment with C9H7" still offers the easiest and 

most versatile route into Lewis-base substituted indenes. 
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Li 
1) LDA, THF 

2) n-BuLi 

FeC -> 
CpTiCl 3 

TiCl 

C 
Fe T 

CI \ c 
Ti 

CI 

Figure 2.1.5: Vinyl-substituted metal cyclopentadienyls from a fulvene 

o 1) n-BuLi r 
N N 

2) 

3)H20 

From reference 5 + isomers 

Figure 2.1.6: Synthesis of a pyridyl functionalised tetramethylcyclopentadiene 

Since our primary interest is in Lewis-base substituted cyclopentadienes with no 

further substituents on the ring, and since it was hoped to extend our research into similar 

indenyl ligands, it seemed best to concentrate on the synthesis of a suitable Lewis-base 

substituted carbon fragment for coupling with cheap, readily available C5H6,7 C5H5Me or 

C9Hg. The adopted ligand synthesis is therefore based on the synthesis of N-subsituted-3-

halopropylamines which can then react with C5H5", C5H4CH3" or C9H7". 
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o 
CpH, cat. 'BuOK, 

MeOH, rm T, 24 hrs 

7 

LA/ 
base condensation 

O 

tautomerisatior 

co 
Figure 2.1.7: A substituted indene via a fulvene intermediate 

2.2; Overview of Ligand Synthesis 

The synthesis used was developed from a literature synthesis8 and is summarised in 

figure 2.2.1. Initially, ethyl-3-tertiarybutylaminopropionate was synthesised via the 

conjugate addition of tertiary butylamine to ethyl acrylate. This ester was then reduced to 

the corresponding alcohol with lithium aluminium hydride. The alcohol functionality was 

converted to a halide, and the amine group was protonated in the same step. Finally the 3-

'butylamino-l-halopropane hydrohalide was coupled with a nucleophilic C5H5" or C9H7" 

fragment to give the amine-substituted cyclopentadienyl or indenyl ligand. 
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\ 
C0 2Et BuNH2, EtOH 

t NH Bu 
Et0 2C 

l )L iAlH 4 ,E t 2 0 

t HO NH Bu 
SOClo. C H X 1 

orHBr (aq) 
H 

t Bu 
N X 

H l)NaOH(lequiv) X 
2) Lithium ltidenide X = Br 2.3 

X = C12.4 NaCp 
(2 equivs), 
THF NH Bu 

NH Bu 1 // 2.8 

Fig. 2.2.1: Ligand Synthesis 

2.3: Preparation of Ethyl 3-Tertiary Butvlaminopropionate. 2.1 

= \ EtOH, rmT, 
'BuNH2 + V 

C02Et 48 hours 

— -C02Et 2.1 

It is possible to synthesise 3-alkylaminopropan-l-ols from two different precursors. 

The simplest and most commonly used route is the conjugate addition of a primary amine to 

ethyl acrylate9 shown in figure 2.3.1, giving a 3-alkylaminopropionate ester. 49 



R - N H 

Et 

OEt N 

H 

R 
N 
H 

• v . 

N OEt I 
H 

Fig. 2.3.1 Addition of a primary amine to ethyl acrylate 

An alternative method shown in figure 2.3.2 is to prepare N-formyl-3-aminopropan-

l-ol from ethyl formate and 3-aminopropan-l-ol. This can then be reduced to 3-

methylaminopropan-l-ol using LiAtf i j . 1 0 Although this reaction has the potential to be 

adapted for synthesis of species other than 3-methylaminopropan-l-ol, it can only be used 

to produce systems in which the N-substituent contains a CH 2 group. Hence this method 

would not be suitable for 3-lbutylaminopropan-l-ol. 

The ethyl formate route is advantageous for the synthesis of compounds with small 

substituents on the amine group, when the ethyl acrylate route produces a low yield of the 

desired product and large quantities of a useless side product as shown in figure 2.3.3. 

However, as is discussed in more detail below, it was hoped that the use of a bulkier amine 

would eliminate this problem from the acrylate reaction. The acrylate method uses cheaper 

and more readily available starting materials, and so is the method of choice if the 

disadvantages can be overcome. 
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H 2 N OH 
R N OH 

1 
2)H 20 

H 

l)LiAlH 4 > E t 2 0 

R N OH 

H R = H described in reference 6 

Fig. 2.3.2: Alternative synthesis of N-alkyl-3-hydroxypropylamine from ethyl formate 

It was noted by the original workers4 and later by members of our group7 that the 

addition of methylamine to ethyl acrylate gave the desired mono-substituted product in 

moderate yield (31%) together with a similar quantity of the undesired di-substituted 

product as shown in figure 2.3.3. The di-substituted product is produced exclusively under 

certain reaction conditions.11 Bulkier amines are known to give a higher yield of the desired 

product4 and it was hoped that use of tertiary butylamine would maximise the yield of this 

initial step. 

\ 
\ 

C 0 2 E t 

MeNH^ 
Me 

CO,Et 
MeHN 

N 
EtO?C CO,Et 

-30% 

Fig. 2.3.3: Formation of undesirable side-product in the reaction between 

methylamine and ethyl acrylate 
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Reaction in ethanol between ethyl acrylate and 'butylamine at room temperature 

over 48 hours and subsequent removal of solvent yielded a large quantity of a colourless oil, 

2.1. Reduced pressure distillation of this oil yielded a single fraction which was shown by 

l H and I 3 C{ ! H} NMR spectroscopy to be the desired product. Later work showed that the 

distillation step is unnecessary; if good quality starting materials are used, removal of the 

solvent will yield analytically pure product without further purification. Typically, the yield 

for this reaction was >95% of 2.1, which is extremely good and exceeds the literature yield 

of78%.9 

It is concluded that addition of tertiary butylamine to ethyl acrylate is a clean and 

simple method for building an amine-functionalised three-carbon chain. If the ethyl formate 

route could be adapted to prepare a tertiary butylamino species, it is doubtful whether the 

yield and efficiency would match that of the acrylate reaction. Even if our yields had 

only matched those given in the literature, this reaction would still represent a highly 

satisfactory first step in the multi-step ligand synthesis, since as well as being clean and of 

exceptionally high yield, the reaction can be carried out on a very large scale (typically ~90g 

were made at a time) with no adverse effect on the yield or purity of the product. 

2.4: Variation of the N-Substituent 

The ethyl acrylate reaction offers limited potential for varying the N-substituent. 

The problems encountered when the starting amine has only a small substituent group have 

already been discussed. The synthesis of ethyl 3-phenylaminopropionate by this method 

proved impossible as the reaction between phenylamine and ethyl acrylate (figure 2.4.1) 

yielded only unreacted starting materials even after prolonged reflux. Variations of solvent, 
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temperature and reaction time failed to produce the desired reaction, as did the use of 

lithium phenylamide instead of the free phenyl amine. 

\Z Ph \ C0 2Et LiPhNH ~ / \ ~ 

PhNH2 or 
N 

H C0 2Et 

Fig. 2.4.1 Unsuccessful reaction between ethyl acrylate and phenylamine 

Acrylonitrile is known to react cleanly and in high yield with aromatic as well as 

aliphatic amines.12 This reaction may prove to be a useful first step in the synthesis of N-

phenylaminopropyl species, since the resulting nitrile could be converted into the 

corresponding carboxylic acid by hydrolysis and then converted via the steps shown in 

figure 2.4.2 into a cyclopentadiene ligand. A phenyl substituent on the amine nitrogen may 

have an interesting and useful effect on the reactivity, solubility and crystallinity of various 

organometallic species, which could outweigh the difficulties which might be encountered in 

using toxic acrylonitrile as a starting material. 

An attempt was also made to synthesise a linked species by reaction between ethyl 

acrylate and ethylenediamine as shown in figure 2.4.3. It was hoped that this reaction, if 

succesful, could have been used as a first step in the synthesis of a linked cyclopentadiene 

with two amino groups incorporated into the backbone. However, ethylenediamine did not 

react with ethyl acrylate in the desired manner, probably because ethylenediamine is not 

bulky enough to prevent the formation of various side products. A highly complex mixture 

of products was formed from the reaction which proved to be too close in boiling point to 

be separated by fractional distillation. 
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Fig. 2.4.2: Proposed synthetic route to N-phenylaminopropyl cyclopentadiene 

\ NH 2 + H 2 N C0 2 Et 

H 
N E t 0 2 C ^ - \ 

C 0 2 E t N 
H 

MIXTURE OF MANY desired product not formed cleanly 
DIFFERENT ADDITION 
PRODUCTS 

via steps shown 
in fig. 2.2.1 

H 
N o N 

H 

proposed linked cyclopentadienyl ligand 

Figure 2.4.3: Reaction between ethylenediamine and ethyl acrylate 



2.5: Introduction of Substituents into the Carbon Backbone 

Members of our group have attempted to use the addition of an amine to a 

conjugated ester to introduce substituents into the carbon backbone of N-substituted 

aminopropyl species. Reaction between methylamine and ethyl-Zraws-cinnamate13 yielded a 

mixture of products, from which a small amount of the desired amino ester was isolated. 

This was subsequently reduced to the corresponding alcohol and converted into the chloride 

and thence into the cyclopentadiene. However, the quantity of cyclopentadiene which could 

be produced by this method was very small, which caused difficulties when synthesis of 

organometallic species was attempted. Recent literature indicates that cinnamate esters will 

undergo clean, high yield addition reactions with lithiated amines, (figure 2.5.1)14 and this 

may represent a better route to species with phenyl substituted backbones. 

Ph 

Ethyl-fraws-
cinnamate 

RNH> / 

\ 
\ 

RNH> 

CCfcEt 

MIXTURE OF 
P R O D U C T S -

(Reference 13) 

H H 

N 

LiRNH 

products isolated by 
crystallisation and 
distillation but yields are low. 

R C 0 2 B 

Ph 
(Reference 14) 

Fig. 2.5.1: Reaction between amides and ethyl-frans- cinnamate 
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Alternatively, the condensation reaction between benzaldehyde and malonic acid in 

the presence of ammonia to yield cinnamic acid and P-aminocinnamic acid (figure 2.5.2)15 

can be adapted for the synthesis of N-substituted p-aminocinnamic acids. For example, the 

condensation reaction between malonic acid and benzylidenemethylamine gives N-methyl-p-

aminocinnamic acid in 52.5% yield, along with frans-cinnamic acid in 34% yield.16 The 

major snag with this type of reaction is that the relative yields of the two acids are 

unpredictable and difficult to control. 

H 2N. 
~ ' " C 0 2 H 

Ph 
C0 2 E t P-Aminocinnamic 

EtOH, NH^, ^ acid 
reflux, 5 hours + 

C0 2 E t Ph P h 

C 0 2 H 
Trans- cinnamic 
acid 

Fig. 2.5.2: Reaction between malonic acid, benzaldehyde and ammonia. 

It is known that both crotonates and methacrylates react with amines, although 

requiring more vigorous conditions than acrylates, and this is another route into species 

with substituted backbones (figure 2.5 .3).1 7 Once the esters have been synthesised it should 

prove possible to use them to synthesise substituted cyclopentadienes via steps shown in 

figure 2.2.1. 
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N 
H H 

\ 
< \ 

COoR' C02R' 
crotonate 

RHN 
COoR RHN 

C02R' 

Fig. 2.5.3: Reaction between amines, methacrylates and crotonates 

2.6: Preparation of 3-Tertiarvbutyl Aminopropan-l-ol. 2.2 

1) LiAlH,, Et 20 

2) NaOH, H2O 
CC^Et 

The reduction of 3-alkylaminopropionates to the corresponding alcohols can be 

accomplished using LiAlHt followed by aqueous work-up. The original researchers 

achieved moderate yields (78% for 'butyl,5 38%5 or 48%18 for methyl), but later work on 

the reduction of the methylamino compound produced lower yields, c.a. 28%.7 

Initially, the reduction of 2.1 with L1AIH4 gave a reasonable yield (40%) of the 

product alcohol, 2.2. However, when the reaction was scaled up the yield dropped 

dramatically to <20%. It was necessary to improve the efficiency of this step if at all 

possible, since it was hoped to be able to prepare the final cyclopentadiene on a 20-3 Og 

scale, and by following the literature method it was only possible to make between 5 and 
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1 Og of this intermediate in a single reaction. 

Unlike similar, straight-chain N-substituted amino alcohols described in the 

literature,5 which are oils, 2.2 is a crystalline solid, readily soluble in diethyl ether. It was 

discovered that a large percentage of the product formed was becoming adsorbed onto the 

solid AI2O3.11H2O produced during the aqueous work up, so that ether extraction was 

removing only small quantities. To overcome this problem, the work-up was carried 

out using saturated aqueous NaOH solution, rather than water. This required a great deal 

of care due to the vigorous reaction between unreacted LLAIH4 and NaOH, but the high pH 

caused most of the hydrolysis products to dissolve in the aqueous layer. Typically, 

sufficient NaOH was added to maintain the pH at around 14. 

Extraction of the aqueous layer with several portions of diethyl ether followed by 

removal of the solvent gave the desired alcohol 2.2 as a white, crystalline solid in >80% 

yield. This product proved to be analytically pure without recrystallisation. 

2.7: Preparation of 3-Tertiarvbutvl Amino-1-Bromopropane Hvdrobromide 2.3 

cone. HBr (a< l) 

2.2 H 

reflux 

The synthesis of 3-alkylamino-l-bromopropanes as their hydrobromides was based 

on the preparation of 2-aminobromoethane first described by Gabriel.19 This compound 

was originally prepared by sealing ethanolamine into a glass tube with an excess of 48% 

aqueous HBr and heating to 170°C. The reaction was later shown to take place rapidly and 

in high yield at atmospheric pressure with no heating.20 An improved version of the same 

procedure was used for the preparation of similar compounds of the type shown in figure 
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2.7.1 which contain a tertiary amino group. Other methods for the preparation of 2-

aminobromoethane include the reactions between concentrated aqueous HBr and potassium 

phthalimide22 or ethyleneimine.23 However, neither of these methods seem particularly 

adaptable for the synthesis of compounds which contain longer carbon chains and/or 

secondary or tertiary amino groups. Moreover, the starting materials are not as easily 

available as the amino alcohols. 

R - H, CH3, C2H5, 
11-C3H7,11-C4H9, 
t-C4H9 

Fig. 2.7.1 

The experimental procedure described in reference 21 was used as the basis for the 

preparation of 3-methylamino-l-bromopropane hydrobromide by Hughes,7 and the same 

procedure was used for the preparation of 3-tertiarybutylamino-l-bromopropane 

hydrobromide 2.3, with a few notable differences. Due to the fact that 2.2 is a solid (unlike 

the various amino alcohols described in the literature), 48% aqueous HBr was added 

dropwise to the alcohol rather than the other way round. This did not significantly affect 

the final yield and is more convenient and controllable than the addition of a solid to a 

liquid. 

Previously it has been found that 3-methylamino-l-bromopropane hydrobromide can 

be difficult to obtain in pure, crystalline form.7' 2 4 However, pure, crystalline 2.3 was 

obtained quite easily by dissolving the crude product in the minimum quantity of boiling 

acetonitrile, filtering and cooling to -30°C in stages. The white, needle-like crystals were 
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then filtered, washed in ether and dried under reduced pressure. However, due to the 

aqueous reaction conditions and the mildly hygroscopic nature of this compound, it was 

very difficult to obtain a sample which was completely dry (the JK spectrum of a sample of 

this compound taken after prolonged drying is shown in figure 2.7.2 and still shows strong 

water absorptions) and this may account in part for the problems experienced when this 

compound was used in the attempted synthesis of the cyclopentadiene. 

2.8: Preparation of 3-Tertiarvbutvl Amino-1-Chloropropane Hydrochloride, 2.4 

2.2 H 

SOCl 2, CH 2C1 2, 

trace HCI 

2.4 

Compound 2.3 was the initial choice of precursor for the preparation of the 

substituted cyclopentadienyl and indenyl species. However, due to problems described in 

section 2.7, this route had to be abandoned in favour of an alternative. One possibility was 

to convert the alcohol 2.2 to a tosylate, since it is known that treatment of 3-

methylaminopropan-l-ol with tosyl chloride in pyridine gives the corresponding tosylate in 

high yield.25 However, a simpler and cheaper alternative to both the bromide and the 

tosylate is the chloride. The method used for preparation of 3-tertiarybutylamino-l-

chloropropane hydrochloride 2.4 is based upon the literature method for preparing N-

dimethyl-2-chloroethylamine hydrochloride. 

Addition of neat thionyl chloride to solid 2.2 initially produced, on work-up, a 78% 

yield of 2.4, which after recrystallisation from boiling ethanol and subsequent thorough 

washing with light petroleum was sufficiently pure to be used in the next stage of the 
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synthesis. However, the third time this reaction was carried out, a problem emerged. 

Reaction between the product from this reaction and sodium cyclopentadienide yielded a 

much smaller yield of the desired product than previous runs (28%), and a correspondingly 

higher yield of N-'butylazetidine, 2.6, which it had been noted was always present as a 

minor impurity. NMR analysis of the materials used indicated that the azetidine was not 

forming during the reaction between the chloride and sodium cyclopentadienide, but was 

already present as a major impurity formed during the reaction between 2.2 and SOCI2. The 

*H NMR spectrum of this contaminated compound is shown in figure 2.8.2. It was noticed 

that previous preparations of the chloride 2.4 had been carried out using SOCI2 which was 

several years old and had been exposed to moisture over a long period of time and therefore 

contained a substantial amount of HC1 impurity. The problem of azetidine formation arose 

when a brand new bottle of dry thionyl chloride was used. It is thought that pure, dry 

SOCI2 reacts with solid alcohol to form free 3-butylanTino-l-chloropropane, 2.5, and HC1, 

but the HC1 forming in this reaction was escaping from the mixture as a gas (due to the 

absence of solvent and the rise in temperature caused by the exothermic reaction) and so 

was not available to protonate the amine. On refluxing in ethanol (to destroy excess SOCl2), 

2.5 was undergoing ring-closure to form N-butylazetidine 2.6. A suggested mechanism for 

this reaction, which is blocked by protonation of the amine, is shown in figure 2 .8 .1. 

To prevent formation of this side product, in subsequent preparations 2.2 was 

dissolved in CH2C12 and a few drops of concentrated (~10M) aqueous HC1 were added to 

begin protonation of the amine nitrogen. On addition of excess SOCI2, sufficient HC1 was 

evolved from reaction with water present in the mixture to ensure complete protonation of 

the amine nitrogen as well as conversion of the hydroxy group into a chloride. The use of a 

CH2CI2 solution of 2.2 rather than solid 2.2 allowed more efficient stirring of the reaction 
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mixture and significantly reduced loss of HC1 gas from the mixture. After stirring the 

mixture overnight in a fiime hood, removal of the solvent followed by refluxing in ethanol 

for 2 hours gave a good yield (typically 74%) of crystalline 2.4. This was washed in light 

petroleum and dried under reduced pressure. NMR studies showed that only a trace of N-

'butylazetidine was present. The ! H and 1 3C{ 1H} NMR spectra of this compound are shown 

in figures 2.8.3 and 2.8.4 respectively. 

t Bu 
t SOC1 Bu 

cr N C trace HC1 OH N 
H H 

SOC 

(anhydrous) 

t Bu Bu 
N 

EtOH N 
reflux H 

Fig. 2.8.1: Formation of N-'butylazetidine side-product 

Other workers in this group have experienced problems in obtaining pure, crystalline 

samples of analogous compounds.26 A dry, azetidine free, analytically pure sample of 2.4 

can be obtained by recrystallising the product a second time from the minimum quantity of 

boiling acetonitrile. It is noticeable that both 2.3 and 2.4 are considerably more crystalline 

and hence easier to purify than analogous compounds synthesised by this research group, 

particularly those with methyl substituents on the amine group. 8 ' 1 3 ' 2 4 , 2 6 
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2.9: Preparation of N-Tertiarvbutvlaminopropvl Ovclopentadiene. 2.7 

2NaCp, THF ^ ^ O ^ ^ N H ^ u 

2.7 

Initially it was hoped to synthesise the desired cyclopentadiene using 3-'butylamino-

1-bromopropane hydrobromide 2.3 as a precursor. However, addition of two equivalents 

of sodium cyclopentadienide to a THF solution of 2.3 followed by refluxing for 4 hours 

yielded no characterisable products after work-up. The reaction was repeated several times 

with different combinations of solvent, reaction temperature and time, but the desired 

product could not be obtained by this method. It is not certain why this is the case, since 

the reaction between 3-methylamino-l-bromopropane hydrobromide and sodium 

cyclopentadienide under similar conditions yields the substituted cyclopentadiene in good 

yield.7'8 It is possible that trace amounts of water present in the bromide might have been 

interfering with the reaction. However, whilst it would be reasonable to attribute a 

lowering of yield to trace moisture, it is difficult to see how such a small amount of water 

(detectable by ER spectroscopy only, not visible in *H NMR spectra) could totally inhibit 

formation of the cyclopentadiene 2.7. Some earlier preparations of similar compounds were 

earned out with HMPA present in the reaction mixture to promote nucleophilic attack. 

However, in view of the high toxicity of HMPA and the fact that its presence had been 

shown to be unnecessary in a similar reaction,7,8 it was hoped that its use could be avoided. 

Addition of two equivalents of sodium cyclopentadienide to a THF solution of 3-

'butylamino-l-chloropropane hydrochloride 2.4 caused formation of a fine, white precipitate 

in the pink reaction mixture. Refluxing for 4 hours followed by aqueous work-up 

(described fully in Chapter 7) gave a dark brown, free flowing oil. On allowing this oil to 
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stand for a few hours, a small quantity (<5% of total yield) of N-'butylazetidine crystallised 

and was removed by filtration. NMR spectroscopy showed the remaining oil to be a 

mixture of all three possible isomers of the substituted cyclopentadiene, 2.7, together with 

trace impurities. GC-MS confirmed that all three isomers were present, since the GC trace 

showed three strong peaks with masses of 179. GC-MS also identified the impurities as 

cyclopentadiene and dicyclopentadiene. 

The impurities were removed in two ways. Samples of the compound which were 

sufficiently pure for use in the synthesis of organometallic species were obtained by 

protonating the amine group using dilute HC1 to form a salt which was extracted into water, 

leaving impurities behind in the organic layer. The salt was then converted back to the free 

amine by addition of NaOH solution followed by extraction back into petrol or diethyl 

ether. An analytically pure sample of the cyclopentadiene, 2.7, was obtained by reduced 

pressure distillation, but this was less convenient because high temperatures were required 

and could cause decomposition. The *H NMR of the substituted cyclopentadiene is shown 

in figure 2.9.1. 

Two equivalents of sodium cyclopentadienide are required for the reaction since one 

equivalent is used to convert the amine hydrochloride, 2.4, to the analogous free amine 

together with sodium chloride and cyclopentadiene. The majority of this cyclopentadiene 

could be removed under reduced pressure together with the solvent and any remaining 

traces were removed at the protonation stage. 
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2,10; Preparation of N-Tertiarv Butvlaminopropvt-2-indene, 2.8 

Bu lHN 

2.4 
H 

N CI 2) LiCgH, 

l )NaOH 

CO // 
2.8 

The amine-substituted indene, 2.8, was prepared in a similar way to the 

cyclopentadiene, from 2.4 and lithium indenide. However, since lithium indenide (prepared 

from indene and "butyl lithium) is considerably more costly than sodium cyclopentadienide, 

it is preferable not to have to use two equivalents in the reaction. It would also be very 

difficult to remove the resulting CgHg from the final product, since this compound is not 

volatile enough to be removed with the solvent and the amine-substituted indene cannot be 

protonated. This is discussed in more detail below. 

These difficulties were avoided by deprotonating 2.4 using saturated aqueous NaOH 

solution. The free chloride, 2.5, was then extracted with toluene and added to a THF 

solution of lithium indenide as soon as possible. The free chloride, 2.5, appears to be stable 

at room temperature for several hours, but heat or prolonged storage will cause ring-closure 

to give N-'butylazetidine (for a full discussion see section 2.6, for experimental details and 

safety note see section 5.2.6). After addition of 2.5, the reaction mixture was refluxed for 4 

hours. Aqueous work-up (following the same procedure as that used for 2.7) gave a good 

yield (-50%) of a brown oil which was shown by NMR spectroscopy to be the desired 

substituted indene, 2.8. It was noted that whilst the substituted cyclopentadiene forms as a 

mixture of all three possible isomers, the indene forms as the single isomer shown in figure 

2.10.1. 
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H 

N 

t Bu 

Figure 2.10.1: The substituted indene, 2.8, formed as one isomer only 

The amine-substituted indene could not be purified by protonation since indenyl 

species are highly susceptible to cationic polymerisation.28 Addition of dilute HC1 to an 

ether solution of the indene caused immediate decomposition and formation of an 

intractable polymer. Analytically pure samples of the amine-substituted indene could only 

be obtained by careful reduced-pressure distillation. However, the reaction product was 

found to be sufficiently pure to be used in the synthesis of organometallics without further 

purification. ! H and 1 3C{'H} NMR spectra of this compound are shown in figures 2.10.2 

and 2.10.3 respectively. The spectra show a trace of N-'butyl azetidine impurity, along 

with a second, unidentifiable impurity (all impurities marked with an asterisk) which was not 

removed by distillation. 
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2.11: Conclusion 

The synthetic route chosen has proved to be a simple and relatively high yield route 

to N-tertiary butylaminopropylcyclopentadiene and N-tertiary butylaminocyclopentadienyl-

2-indene. Some problems were encountered, most notably the failure of N-'butyl-3-

bromopropylamine hydrobromide to react with sodium cyclopentadienide. The use of 

tertiary butylamine rather than methylamine as a substituent had several beneficial effects as 

far as the ligand synthesis was concerned, by increasing the yield and eliminating the 

formation of side-products in the initial step. The crystallinity of the halides 2.3 and 2.4 was 

increased, making their purification considerably easier and less time consuming. Although 

the use of tertiary butylamine as the substituent initially led to poor yields of the alcohol 2.2, 

this problem was succesfiilly overcome. Once the difficulties were solved it proved possible 

to synthesise both the cyclopentadienyl and indenyl species in ~25g batches in a relatively 

short time, the entire synthesis taking roughly a week to complete. The various 

modifications discussed should make this route readily adaptable for the synthesis of ligands 

which have different N-substituents, or which have substituents attached to the carbon 

backbone. 
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CHAPTER 3 

Synthesis of some Main Group 
and Iron Compounds 



3.1: Introduction 

Although the main work of this thesis is concerned with group 4 complexes of 

amine substituted cyclopentadienes and indenes (described in chapter 4), a variety of other 

compounds based on such ligands co-ordinated to other metals were investigated. Alkali 

metal salts, particularly lithium salts, formed by deprotonation of C5H5(CH2)3NHtBu, 2.7, 

and C9H7(CH2)3NH tBu, 2.8, were prepared chiefly for use as reagents in the synthesis of 

transition metal complexes, but some characterisation work was carried out on these alkali 

metal salts and is presented here. Trialkylsilyl species and Grignard reagents derived from 

2.7 and 2.8 were prepared as reactive intermediates, and some examples of these were 

characterised and are also described in this chapter. Iron(II) complexes of the substituted 

cyclopentadienyl and indenyl ligands were prepared and fully characterised, along with some 

of their derivatives, and ferrocene-type complexes were used in the preparation of some 

heterobimetallic complexes. 

3.2: Alkali Metal Compounds 

The amine substituted cyclopentadiene and indene, 2.7 and 2.8, undergo single and 

double deprotonation reactions (dependant on the stoichiometry of the reaction and the 

solvent employed) with strong bases such as "butyl lithium or potassium hydride. It was 

hoped that these alkali metal cyclopentadienides and indenides would prove useful for the 

preparation of transition metal complexes. In particular, lithium salts of Lewis-base 

substituted cyclopentadienides have found extensive applications, reported in the literature, 

for the preparation of other main group complexes,1 transition metal complexes2 and 

substituted ferrocenes,3 as is more fully discussed in section 1.3. 
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3.2.1: Reaction between 2.7 and n-butyl lithium in hexanes 

Compound 2.7 reacted rapidly and cleanly at room temperature in hexane with one 

stoichiometric equivalent of "butyl lithium to give a highly air-sensitive white solid, 3.1, 

which precipitated out of solution, thus preventing further reaction with any excess of "butyl 

lithium which might be present. Characterisation of 3.1 and other similar lithium complexes 

proved difficult, since as well as being highly oxygen- and moisture-sensitive they were 

insoluble in most readily available NMR solvents. However, 3.1 was characterised as its 

THF-adduct 3.1(THF)„, formed by recrystallisation of the unsolvated species 3.1 from dry, 

degassed THF. It was discovered that 3.1(THF)„ was soluble in CeD6 in the presence of a 

trace of excess THF. Due to the presence of THF in the NMR sample we were unable to 

determine the number of co-ordinated THF molecules present (i.e., n in 3.1(THF)„), but it 

was possible to deduce other information from the *H NMR spectrum thus obtained. 

t B u B u 
n BuLi N N 
Hexane Li + 

H H 
2.7 3.1 

Figure 3.2.1: Mono-deprotonation of 2.7 with n-butyl lithium in hexanes 

The *H NMR spectrum of 3.1(THF)„ clearly indicates that the parent 

cyclopentadiene, 2.7, has undergone deprotonation at the ring and not at the amine 

nitrogen, as shown in figure 3.2.1. This is to be expected, since cyclopentadienes are more 

acidic than amines (pK a of C 5 H6 in MeOH = 14-15,4 pK a of RNH 2 , R 2 NH = ~355). The 

complex set of peaks present in the aromatic region of the spectrum of the free ligand, 2.7, 

is found in 3.1(THF) n to have resolved into a clear A A ' B B ' spin system, JAB = 18Hz. IR 
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spectroscopy of 3.1(THF)„ shows an N-H stretch at 3200 cm"1. Unfortunately it proved 

impossible, despite repeated attempts, to grow crystals of 3.1 or 3.1(THF) n which were 

suitable for X-ray diffraction. The DME- and TMEDA-adducts of 3.1 were synthesised in 

the hope that they might prove more crystalline than the THF-adduct, but this was not the 

case. However, on the basis of IR and ' H NMR spectroscopy it is concluded that 2.7 

undergoes facile deprotonation at the ring with one equivalent of a strong base. It is 

possible to conclude with reasonable certainty from the *H NMR data that deprotonation 

occurs first at the ring rather than the amine, and this is in accordance with literature 

findings about the relative acidities of cyclopentadiene and indene compared to amines. The 

mono-lithium salt forms cleanly and easily, making it a suitable intermediate for preparing 

transition metal complexes where the ligand is co-ordinated through the cyclopentadienyl 

ring only. 

3.2.2: Reaction between 2.7 and "butyl lithium in T H F 

The di-lithium salt derived from double deprotonation of 2.7 was obtained in two 

ways. A THF solution of the free ligand, 2.7, reacted cleanly and rapidly with two 

equivalents of a hexane solution of "butyl lithium at room temperature to give the di-lithium 
o 
j 

salt, 3.2, or a THF solution of the mono-lithium salt 3.1 reacted with one equivalent of a 

hexane solution of "butyl lithium at room temperature to give 3.2. These routes are shown 

in figure 3.2.2. In both cases, the product was isolated by adding further hexane to the THF 

solution until cloudiness just appeared, then cooling to -30°C to give the product as a fine, 

white precipitate. Unfortunately, as with 3.1, it proved impossible to grow crystals of 3.2 

or of its THF-, DME- or TMEDA-adducts which were suitable for X-ray diffraction. 
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t Bu 
N 

n 2 BuLi. THF H 

N 

Li + 

Li 

(as THF adduct) 
n BuLi, THF t Bu 

N 

Li H 

•'Bu 

3.1 

Figure 3.2.2: Synthesis of the di-lithium salt, 3.2 

3.2.3: Reaction between 2.8 and n-butyl lithium 

Like the substituted cyclopentadiene, 2.7, the substituted indene, 2.8, undergoes 

single or double deprotonation by a strong base such as "butyl lithium. Depending upon the 

solvent used for the reaction, 2.8 reacted with one or two equivalents of "butyl lithium to 

give the mono- and di-lithium salts, 3.3 and 3.4, as highly air- and moisture-sensitive white 

solids. These compounds were synthesised specifically for use as intermediates in the 

preparation of other complexes. For this reason, and because they were so highly sensitive 

and were insoluble in most NMR solvents, no characterisation of these compounds was 

carried out. We would expect, from the relative acidities of indene and amines (pK a of 

indene in methanol = 18.51), that deprotonation would occur first at the five-membered ring 

and then at the amine nitrogen, as shown in figure 3 .2.3. 
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H 
2.8 

N 
Bu 

n 2 "BuLi. 

T H F 

+ Li i BuLi, hexane 

N 
t + Li Bu 

n BuLi, T H F H 

N 
Bu ^Li-

Figure 3.2.3: Synthesis of lithium and di-Iithium indenides, 3.3 and 3.4 

3.2.3: Other alkali metal salts 

The free cyclopentadiene, 2.7, reacted with one equivalent of potassium hydride in 

THF over several days to give, on work-up, a highly air-sensitive white powder, 3.5. It was 

hoped that this material might prove to be more crystalline than the lithium salts. However, 

the highly air-sensitive nature of this compound made handling very difficult, and all 

attempts at crystal growth led to decomposition of the material. Because of this, no 

characterisation work was possible for this compound, but it is assumed that deprotonation 

occurs at the cyclopentadiene ring to give the potassium cyclopentadienide, 3.5, as shown in 

figure 3.2.4. 

82 



Bu Bu 
N K H , T H F N 

H H 
2.7 

Figure 3.2.4: Synthesis of the potassium cyclopentadienide 3.5 

It is also probable that 2.7 would react with one equivalent of sodium metal in a 

suitable solvent, such as THF to give the mono-sodium salt, although this was not 

attempted. 

3.3: Trialkylsilvl Derivatives of 2.7 and 2.8 

The mono- and bis-(trimethylsilyl) cyclopentadienes and indenes were synthesised by 

reaction of the mono- and di-lithium salts with trimethylsilyl chloride. It was hoped to use 

them as precursors to transition metal complexes, particularly of groups 4 and 5, and they 

were also characterised as compounds in their own right. 

3.3.1: Preparation of a mono(trimethylsilyl) derivative of 2.7 

The mono-lithium salt 3.1, prepared as described in section 3.2.1, reacted cleanly 

and rapidly at room temperature in THF with one equivalent of MesSiCl. Although addition 

of one equivalent of "BuLi to a THF solution of the free ligand, 2.7, followed by addition of 

Me3SiCl once reaction had occurred (i.e., without isolating the lithium salt, 3.1) gave the 

desired silyl species, 3.6, it was found that better results in terms of yield and purity of 

product were obtained i f the lithium salt, 3.1, was isolated and purified before re-dissolving 

in THF and reacting with MesSiCl. Removal of the solvent under reduced pressure 

followed by extraction of the oily residue with hexane and filtering gave, on removal of the 
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volatiles from the filtrate, a yellow oil shown by 'H NMR to be the desired product 3.6 plus 

some impurities. This reaction is shown in figure 3.3.1. 

t Bu 

H 

b y 

Li 3.1 H 

MaSiCl, THF 

t Bu Me^Si 

H 

Figure 3.3.1: Synthesis of the trimethylsilyl cyclopentadienyl derivative 3.6 

An analytically pure sample of 3.6 was obtained by careful reduced-pressure 

distillation of the crude product. The product was found to be air-stable but moisture-

sensitive. The ! H NMR spectrum of this compound is complex, particularly the signals due 

to ring protons, and it is proposed that the compound forms as a mixture of isomers. It is 

possible to assign other signals, including those due to the protons in the backbone chain, 

the 'butyl group and the Me3Si group. The latter shows satellites due to protons coupling 

to 2 9Si ( I = 1/2, relative abundance 4.67%6), 2JH-si = 5Hz. A signal is also present at 0.96 

ppm which is assigned to the N-H proton. The I 3 C { 1 H ) NMR spectrum is also complex, 

but once again it is possible to assign the backbone, 'butyl and Me3Si signals. Since the 
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NMR sample was fairly dilute it is not possible to distinguish Si satellites from noise in the 

baseline. The ER spectrum shows a weak signal due to N-H stretches at 3400cm"1. 

3.3.2: Preparation of a bis(trimethylsilyl) derivative of 2.7 

The bis(silyl) compound, 3.7, was made in a similar manner to the mono(silyl), by 

reaction between a THF solution of the di-lithium salt, 3.2, prepared as described in 3 .2.2, 

and MejSiCl. Again, it was found that while the di-lithium salt could be prepared as a THF 

solution and used directly for reaction with MesSiCl, better results were obtained in terms 

of yield and purity of the product, 3.7, i f the di-lithium salt, 3.2, was first isolated and 

purified. Like the mono(silyl) compound, 3.6, the bis(silyl), 3.7, was a yellow oil, purifiable 

by reduced pressure distillation, which was air stable but moisture sensitive. The reaction is 

shown in figure 3.3.2. 

The NMR spectra of 3.7 are complex. The lVL NMR spectrum is similar to that of 

3.6 except that the signal proposed to be due to the N-H proton has disappeared, and the 

spectrum now contains two distinct SiMe3 signals, both displaying 2 9 Si satellites. The 

1 3 C{ 1 H} NMR spectrum also shows two SiMe3 signals, and due to the sample being much 

more concentrated, it is possible to see 2 9 Si satellites (for chemical shift values and coupling 

constants see section 6.3.4). This compound was stable in C D C I 3 over periods of several 

hours or even days, but when a sample which was several weeks old was examined by NMR 

it was discovered that the spectra had altered considerably, and it is concluded that this 

compound reacts with CDCI3 or HC1 over a period of time to give a complex and 

unidentifiable mixture of products. 
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Figure 3.3.2: Preparation of the bis (trimethylsilyl) cyclopentadienyl 3.7 

3.3.3) Trialkylsilyl derivatives of 2.8 

Mono- and bis(silyl) derivatives, 3.8 and 3.9, of the substituted indene, 2.8, were 

synthesised in an identical manner to those of the cyclopentadiene, 2.7, by reaction of the 

mono- and di-lithium indenides, 3.3 and 3.4, with one or two equivalents of MesSiCl. 

However, these were only prepared for use as intermediates in the preparation of other 

compounds and were not characterised in their own right. A scheme for their synthesis is 

shown in figure 3 .3 .3. 
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Figure 3.3.3: Synthesis of trimethyisilyl derivatives of 2.8 

3.4: Synthesis of Other Main Group Compounds 

3.4.1: Preparation of Grignard derivatives of 2.7 

As expected, the cyclopentadienyl ligand, 2.7, reacted with either one or two 

equivalents of an alkyl Grignard reagent, usually MeMgBr, as shown in figure 3.3.4 to give 

air-sensitive white solids, 3.10 and 3.11, which were highly insoluble in most readily 

available NMR solvents. For this reason, characterisation of these compounds was 

essentially limited to IR spectroscopy. Their insolubility in many solvents also made them 

of limited use for further chemistry. It is known from the literature that Grignard reagents 

prepared from secondary amine-substituted cyclopentadienes contain intramolecularly co

ordinated nitrogen (see chapter 1.3 for discussion and diagram).7 Due to lack of 
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characterising data it is impossible to deduce whether or not the Grignard reagents of the 

primary-amine substituted cyclopentadiene contain intramolecularly co-ordinated nitrogen. 

t Bu 
N 

H 

2 MeMgBr, MeMgBr 
THF E t 2 0 

t t Bu BrMg Bu BrMg N N 

MgBr H 3.10 3.11 

Exact structures of 3.10 and 3.11 are not known 

Figure 3.3.4: Grignard reagents derived from 2.7 

3.4.2: Reaction between 2.7 and dimethyl zinc 

It was hoped that 2.7 would react with one equivalent of Me2Zn to give a zinc (II) 

species { t | 5 : ri '-CsH^C^^N'BuJZn in which the ligand was co-ordinated through both the 

cyclopentadienyl ring and the amine nitrogen. Reaction did indeed take place to give on 

work-up a pale yellow oil. However, even after distillation of this oil, its NMR spectra 

were extremely complex, and it was concluded that a mixture of products was formed by 

this reaction. 
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3.5) Amine-substituted ferrocenes 

Many examples exist in the literature of Lewis-base substituted ferrocenes, some of 

which are discussed in section 1.4. These complexes are particularly interesting since they can 

potentially be used as redox-active ligands for other transition-metal ions.8 

3.5.1: Synthesis of a substituted ferrocene from 2.7 

An iron complex, bis(tertiarybutylaminopropyl cyclopentadienyl) iron (II), 3.12, was 

prepared using a modification of one literature synthesis of (C5H5)2Fe,9 which is known to be 

readily adaptable to the synthesis of Lewis-base substituted ferrocenes. Anhydrous FeCb was 

added to a freshly prepared THF solution containing two equivalents of the mono-lithiated 

ligand 3.1. The dark coloured reaction mixture was stirred overnight before the volatiles were 

removed and the residue extracted with petrol and diethyl ether to give a bright orange oil, 

3.12, shown by J H NMR to be the desired ferrocene. This reaction is shown in figure 3 .5.1. 

The substituted ferrocene, 3.12, was purified by careful reduced pressure distillation, 

since even when pure, this compound is an oil at room temperature. It was not possible to 

obtain crystals for X-ray diffraction since 3.12 remains liquid even down to low temperatures 

(-78°C). However, the product was characterised comprehensively by other methods. Yields 

for this reaction are low, seldom exceeding 40%. A number of modifications were tried in 

order to improve the yield, including isolating and purifying the lithiated cyclopentadiene 

before adding the FeCk, changing the solvent, temperature and reaction time, and using a 

more soluble iron (II) compound such as FeCl2(Py)4 as a starting material. None of these 

modifications had any noticeable effect on the yield. 
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Figure 3.5.1: Synthesis of the amine-substituted ferrocene 3.12 

The *H NMR spectrum of 3.12, shown in figure 3 .5 .2, proved misleading at first, since 

the cyclopentadienyl ring appears a singlet and we would expect an AABB' system. However, 

the product was obviously not free ligand, 2.7, since 2.7 gives complex multiplets in this 

region of the ' H spectrum. The 1 3 C{'H} NMR spectrum (figure 3.5.3) gave three signals for 

the cyclopentadiene ring as expected: one weak resonance at a high frequency for the ipso 

carbon, and two resonances for the other ring carbons. The chemical shift values for the ring 

protons and carbons were both comparable to those of ferrocene (CsHs^Fe (5*H, 250MHz, 

CDC13 = 4.28, 6 1 3C = 67.9 ppm1 0). 
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The ER spectrum of 3.12 (shown in figure 3.5.4) shows a strong, broad band at 3310 

cm'1 attributable to N-H stretches. It also shows strong bands assignable to aliphatic and 

aromatic C-H stretches, and to C-H bends of a co-ordinated cyclopentadienyl ring. The 

electron ionisation mass spectrum clearly shows the molecular ion, mass 412. A second 

strong peak at mass 234 corresponds to loss of one (C5H4)(CH2)3NHC(CH3)3 fragment. 

3.5.2: Oxidation of 3.12 

As expected, the amine substituted ferrocene, 3.12, was oxidised fairly easily to give 

the ferricenium ion IT^CsH^CHi^NrfBu^r , [3.13]+, which was isolated as its PF6' salt, 

[3.13]+PF6_. The oxidation was carried out as shown in figure 3.5.5, by addition of two 

equivalents of an aqueous solution of FeCl3 to a THF solution of 3.12. Reaction occurred 

immediately, giving a dark blue solution of the substituted ferricenium ion, [3.13]+, as its 

FeCLt" salt, [3.13]+[FeCI4]". Addition of one equivalent of N H 4 P F 6 to this solution caused 

precipitation of the ferricenium ion as its hexafluorophosphate salt, [3.13]+[PF6j. The 

ferrocenium ion, [3.13]+, could be easily reduced back to the ferrocene, 3.13, using 

magnesium as a reducing agent. 

Since the substituted ferricenium ion is paramagnetic, characterisation by NMR 

spectroscopy was not possible and the product could only be characterised by elemental 

analysis, IR spectroscopy and magnetic susceptibility measurements. The IR spectrum of 

p.lSJ^TFe , which is shown in figure 3.5.4 along with that of 3.12, showed a strong N-H 

stretch, in addition to bands characteristic of the C-H bends of a co-ordinated cyclopentadienyl 

ring, and a strong band at 836cm"1 which is characteristic of the PFe" anion. Solid state 

magnetic susceptibility measurements, carried out at room temperature as described in 

appendix A, gave an effective magnetic moment for the hexafluorophosphate salt 
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Figure 3.5.4: Infra-red spectra of 3.12 (top) and [3.13]+PF6 (bottom) 



[3.13| +PF 6, of 5.67uB , which is rather high for a ferricenium ion (the literature gives a value 

of \XeB « 2.6|i B for [Fe(CsH5)2][PF6]L1). This high value is probably due to traces of the FeCU" 

salt present in the sample, since the FeCU" anion is itself paramagnetic as it contains a 

tetrahedral, high spin iron(III) centre. To demonstrate this, the effective magnetic moment of 

[(C5H5)2Fe]+[PF6]', which had been prepared using a similar method (i.e., via the FeCU" salt) 

was measured and was found to be higher than expected by a similar amount.12 

H 

N 
Bu 

Fe 

N 1) 2FeCl 

2)NH4PF 3.12 
Mg 

l3(aq) 
H 

H 
+ 

N 
Bu PF 6 ' 

Fe 

Bu^ 
N 
H 

[3.13] +[PF 6] 

Figure 3.5.5: Oxidation of 3.12 to [3.13]+ 
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3.5.3: Preparation of an iron(II) complex of the substituted indene 2.8 

The bis(indenyl) iron (II) compound (CpH^CHb^NFfBu^Fe, 3.14, was prepared in a 

similar manner to the ferrocene, 3.12, as shown in figure 3.5.6. 

H 

N 
Bu 

2.8 

l ) n BuLi 

Bu 
N 

H 
Fe 

3.14 
Bu 

N 

H 

Figure 3.5.6: Synthesis of a bis(indenyl) iron(II) complex, 3.14 

Addition of FeCb to a freshly prepared THF solution of the substituted mono-lithium 

indenide, 3.3, gave, on work-up, a dark purple oil, 3.14, which was purified by reduced-

pressure distillation and characterised by IR and ' H and 1 3 C { 1 H } NMR spectroscopy. It 

proved impossible to obtain well-resolved NMR spectra, possibly due to paramagnetic 

impurities present in the sample. Bis(indenyl) iron(II) complexes are known to be more easily 

oxidised than bis(cyclopentadienyl) iron ( I I ) , 1 3 therefore it is possible that paramagnetic 

iron(III) impurities arising from reaction with oxygen or moisture were contaminating the 

compound. 1 3 C{ 'H} NMR spectroscopy proved more useful. The 1 3 C{ 'H} NMR 
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spectrum, shown in figure 3.5.7, showed resonances consistent with the expected compound 

except that only one C-H resonance was detected for the five membered ring, 5 = 118.8ppm. 

It is not known why this was the case, since the l H spectrum gave, as expected, two signals 

for the five-membered ring (8 = 4.50ppm and 8 = 4.41ppm), although these were broad. The 

1 3 C{ 1 H} spectrum also showed an extra signal, 8 = 29.1ppm, which the coupled 1 3C NMR 

spectrum (shown in figure 3.5.8), and the DEPT spectra (shown in figure 3.5.9) showed to be 

due to a CH 2 group. Some weak signals were also observed in the aromatic region of the 

spectrum due to CH and quaternary carbons which were not assignable to the expected 

product. Comparison with the 1 3C NMR spectrum of the free ligand (shown in figure 2.10.3) 

shows that these signals correspond to the same trace impurity present in the free ligand 2.8, 

and which survives distillation of both 2.8 and the bis(indenyl)iron, 3.14. It has not been 

possible to identify this impurity conclusively, though it was confirmed that it is not indene by 

comparison with the NMR spectra of indene (8 1 3C, 62.5MHz, CDC13 = 144.8, 143.7, 134.2, 

132.1, 126.2, 124.5, 123.7, 121.0, 39.9).1 4 
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3.6: Preparation of Heterobimetallic Compounds 

3.6.1) Background 

Lewis-base substituted ferrocenes have attracted a great deal of attention as possible 

building blocks for oligometallic and heterobimetallic complexes, since the Lewis-base 

functionality (which is not co-ordinated intramolecularly to the metal centre) is available for 

co-ordination to a second metal.3" Other Lewis-base substituted metal cyclopentadienyl 

complexes with uncoordinated Lewis-base functionalities have also been used.15 The 

phosphine substituted cyclopentadienyl ligand C5H5PPI12 has been widely used in the 

synthesis of heterobimetallic complexes since the phosphine group is attached directly to the 

ring and is sterically unable to co-ordinate intramolecularly to a metal.16 Many complexes 

of this ligand have been synthesised and used in the preparation of a variety of 

heterobimetallic species including Fe-Pt,17 Mo-Re, 1 8 Zr-Fe or Zr-Co 1 9 ' 2 0 and Ti-Mn. 2 1 Some 

examples are shown in figure 3.6.1. 

Other phosphine-substituted cyclopentadiene ligands with spacer units between the 

ring and the phosphine group have been used in the preparation of heterobimetallic 

species.16 The ferrocene derivative of the C5H5SiMe2CH2PPh2 ligand has been used to 

prepare Fe-Ni complexes,22 and a zirconocene analogue of the same ligand has been used to 

prepare Fe-Zr complexes as shown in figure 3.6.2.22 

The phosphine-functionalised ligand C5H5(CH2)2PPh2 has been used to prepare 

heterobimetallics based on the group 4 metallocene dichlorides ̂ t L ^ C I ^ P P l ^ M C L : ( M 

= Ti, Zr) with molybdenum as the second metal as shown in figure 3 .6.3 . 2 3 
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Figure 3.6.1: HeterobimetaUic complexes based on the C 5 H 5 PPh 2 ligand 
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Figure 3.6.2: Heterobimetallics based on the CsH5SiMe2CH2PPh2 ligand 
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Figure 3.6.3: Heterobimetallic complex of group 4 metallocene dichlorides of 

C s H 5 (CH 2 ) 2 PPh 2 

To date, phosphine-substituted ligands seem to dominate the chemistry of 

heterobimetallic complexes based on Lewis-base substituted cyclopentadienes. However, a 

few examples have been found in the literature of complexes based on cyclopentadienyl 

ligands with other functionalities. For example, an acetylene-substituted ferrocene has been 

used to prepare an Fe-Ru complex, shown in figure 3.6.4,24 and a pyridyl-functionalised 

ferrocene has been used to synthesis a Pd complex (shown in figure 3.6.5) with a view to 

preparing macrocyclic compounds containing iron and palladium.25 

The amine-substituted ferrocene 3.12 has two pendant amine groups available for 

co-ordination to a second metal, and a brief exploration of its co-ordination chemistry was 

carried out with the preparation of some simple heterobimetallic species. 
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Figure 3.6.4: Iron-ruthenium heterobimetallic based on an acetylene-functionalised 

ferrocene 
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Figure 3.6.5: Heterotrimetallic based on a pyridyl-functionalised ferrocene 



3.6.2: Preparation of heterobimetallics 

Addition of the ferrocene, 3.12, (as a THF solution) to a rapidly stirred suspension 

of M X 2 (M = Co, Ni , X = CI or M = Mn, X = Br) in THF gave no reaction. However, 

addition of a small amount of water caused immediate, exothermic reactions producing 

highly coloured precipitates which were filtered, washed and dried overnight under reduced 

pressure to remove unco-ordinated H 2 0 and give green 3.15 (Co), yellow 3.16 (Ni) and 

red-brown 3.17 (Mn) as dry, free-flowing powders. Since these compounds were 

paramagnetic and highly insoluble, characterisation was limited to IR spectroscopy, 

elemental analysis and magnetic susceptibility measurements. It is proposed that 3.12 reacts 

with M X 2 in the presence of H 2 0 to give monomelic complexes as shown in figure 3.6.6. 

In fact, the situation may well be considerably more complex, with oligomeric or polymeric 

species being formed (the insolubility of these species also suggests that they are oligomeric 

or polymeric). However, elemental analysis data does lend some support to the structure 

proposed in figure 3.6.6. ER spectroscopy shows N-H stretches and also shows H 2 0 to be 

present, even after prolonged drying of the compounds, indicating that co-ordinated water 

molecules are present. The IR spectrum of 3.15 is shown in figure 3.6.7 and is similar to 

those of 3.16 and 3.17 except for small differences in the frequencies of the major peaks. 
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H 

Fe M 
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OH 

Figure 3.6.6: Reaction between 3.12 and M X 2 

Solid- and solution-state magnetic susceptibility measurements of 3.15, 3.16 and 

3.17, obtained by methods described in appendix A, are shown in table 3.6.1. Table 3.6.1 

also includes measurements for HgCo(NCS)4, the standard compound which was used to 

calibrate the balance. For the purpose of these calculations the complexes were assumed to 

have the structures proposed in figure 3.6.6. Solid state measurements for the cobalt and 

nickel complexes compare well with literature values for Co 2 + and N i 2 + . 2 6 That for the 

manganese complex is considerably lower than expected, which could be due to the 

presence of diamagnetic impurities in the sample. Solution state measurements were 

consistently lower than expected but this was thought to be due to the insolubility of the 

complexes which meant that these measurements were very inaccurate. 
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Complex 

X M / crn'mol"1 

(solid) 

XM 

(solution) 

iWUs 

(solid) 

| W H B 

(solution) (literature) 

HgCo(NCS)4 
8.09 x I f / 3 4.35 4.352 7 

Co 9.48 x 10"3 3.56 x 10"3 4.68 2.92 Co 2 + = 4.1-5.226 

Ni 4.43 x 10'3 3.54 x 10"3 3.20 2.91 Ni 2 + = 2.8-4.026 

Mn 0.61 x 10'3 0.30 x 10'3 1.10 0.41 Mn 2 + =~5.9 2 6 

Table 3.6.1: Magnetic susceptibility measurements for heterobimetallic complexes 

From the information obtained thus far, it is impossible to propose structures for 

these complexes with any certainty. Elemental analysis confirms in each case that both the 

expected metals are present. The structure proposed in figure 3.6.6 is almost certainly an 

over simplification. X-ray crystallography would provide much more information about the 

structure of these compounds, but due to their insolubility it has proved impossible to grow 

crystals suitable for X-ray studies. However, this system offers a promising route to 

heterobimetallic complexes. Variation of the reaction conditions, and using a different 

ligand in place of water may lead to the formation of characterisable, monomelic 

complexes. 

3.7: Conclusion 

Lithio and silyl derivatives of the substituted ligands 2.7 and 2.8 can be synthesised 

cleanly and simply by standard routes. The mono-lithium salts 3.1 and 3.3 can be used to 
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synthesise the substituted-ferrocene and bis(indenyl) iron (II) complexes, 3.12 and 3.14. 

The substituted-ferrocene, 3.12, can be used as a nitrogen-donor bidentate ligand for co

ordination to other metals, and a fuller investigation of this system may be a fruitful area for 

future research i f the solubility and crystallinity of the resulting complexes can be improved. 

109 



3.8: References for Chapter 3 

1) (a) P. Jutzi, J. Dalhaus, B. Neumann and H.-G. Stammler, Organometallics, 1996, 15, 

747; (b) P. Jutzi, J. Dalhaus and M . Bangel, J. Organomet. Chem., 1994, 474, 55; (c) P. 

Jutzi, H. Schmidt, B. Neumann and H.-G. Stammler, J. Organomet. Chem., 1995, 499, 7. 

2) (a) P. Jutzi, M . 0. Kristen, B. Neumann and H.-G. Stammler, Organometallics, 1994, 

13, 3854; (b) P. Jutzi, T. Redeker, B. Neumann and H.-G. Stammler, J. Organomet. Chem., 

1995, 498, 127. 

3) (a) U. Siemeling, O. Vorfeld, B. Neumann and H.-G. Stammler, Chem. Ber., 1995, 128, 

481; (b) U. Siemeling, B. Neumann and H.-G. Stammler, Z. Naturforsch. B, 1995, 49b, 

683; (c) J. Okuda and K. H. Zimmmerman, J. Organomet. Chem., 1988, 344, C I . 

4) R. E. Dessey, Y. Okuzami and A. Chen, J. Am. Chem. Soc, 1962, 84, 2899. 

5) S. H. Pine, J. B. Hendrickson, D. J. Cram and G. S. Hammond, "Organic Chemistry", 

4th Edition, McGraw-Hill (Singapore), 1985, p200. 

6) N. N. Greenwood and A. Earnshaw, "Chemistry of the Elements", Pergamon Press 

(Oxford), 1984, p382. 

7) P. Jutzi and U. Siemeling, J. Organomet. Chem., 1995,500, 175. 

8) U. Siemeling, O. Vorfeld, B. Neumann and H.-G. Stammler, Chem. Ber., 1995, 128, 

481. 

9) (a) G Wilkinson, Org. Synth., 1956, 36, 31; (b) W. L. Jolly, Inorg. Synth., 1968, 11, 

120. 

10) Chemical shift values for commercially produced ferrocene (Aldrich) at 250MHz in 

CDC13. 

11) D. N. Hendrickson, Y. S. Sohn and H. B. Gray, Inorg. Chem., 1971,10, 1559 

12) Second Year Undergraduate Laboratory Course in Inorganic Chemistry, University of 

Durham, 1994, p74. 

110 



13) R. B. King, "Organometallic Syntheses", Academic Press (London), 1965, 1, 73 and 

references therein. 

14) NMR data for indene (Aldrich, tech grade) in CDC13 at 250MHz. 

15) M. D. Rausch, B. H. Edwards, R. D. Rogers and J. L. Atwood, J. Am. Chem. Soc., 

1983, 105, 3882. 

16) I . Lee, F. Dehan, A. Maisonnat and R. Poilblanc, Organometallics, 1994,13,2743. 

17) P. J. Stang, B. Olenyuk, J. Fan and A. M. Arif, Organometallics, 1996,15, 904. 

18) C. P. Casey, R. M. Bullock, W. C. Fultz and A. L. Rheingold, Organometallics, 1982, 

1, 1591. 

19) C. P. Casey and F. Nief, Organometallics, 1985, 4, 1218. 

20) W. Tikkanen, Y. Fujita and J. L. Petersen, Organometallics, 1986, 5, 888. 

21) (a) M. D. Rausch, B. H. Edwards, R. D. Rogers and J. L. Atwood, J. Am. Chem. Soc., 

1983, 105, 3882; (b) J. C. Leblanc, C. Moise, A. Maisonnat, R. Poilblanc, C. Charrier and 

F. Mathey, J. Organomet. Chem., 1982, 231, C43. 

22) D. J. Harvan, J. R. Hass, K. L. Buisch, M M. Bursey, F. Ramirez and S. Meyerson, J. 

Am. Chem. Soc, 1979, 101, 7410. 

23) J. C. Leblanc, C. Moise, A. Maisonnat, R. Poilblanc, C. Charrier and F. Mathey, J. 

Organomet. Chem., 1982, 231, C43. 

24) M. Sato, H. Shintate, Y. Kawata, M. Sekino, M . Katada and S. Kawata, 

Organometallics, 1994,13, 1956. 

25) T. Moriuchi, I . Ikeda and T. Hirao, J. Organomet. Chem., 1996, 514, 153. 

26) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 5th Edition, John 

Wiley and Sons, Inc. (Chichester), 1980, p 628. 

27) Second Year Undergraduate Course in Inorganic Chemistry, University of Durham, 

1994, p7. 

I l l 



C H A P T E R 4 

Synthesis of Group 4 Complexes of 
Amine-Substituted 

Cyclopentadienyl and Indenyl 
Ligands by Aminolysis Reactions 
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4.1: Background 

The work described here concerns group 4 complexes of the amine substituted 

cyclopentadienyl and indenyl ligands C5H5(CH2)3NH'Bu, 2.7, and C 9H7(CH 2) 3NH tBu, 2.8. 

This work is a development of earlier studies on zirconium and hafnium complexes of the 

C 5H 5(CH 2) 3NHMe ligand.1 The current work concentrates on titanium complexes of 2.7, 

although some zirconium complexes of 2.7 and 2.8 were also synthesised and are reported 

here. Unlike the work reported in reference 1, which focused on the chemistry of group 4 

halide complexes prepared via amide complexes, the work reported here concentrates on 

using amide complexes themselves as starting materials which can be used to synthesise a 

wide variety of new organometallic species by aminolysis reactions with weak acids. At the 

same time, this work was also concerned with investigating the effect on the organometallic 

chemistry of alkylaminopropyl cyclopentadienyl ligands when the methylamine group was 

replaced by the much bulkier tertiary-butyl group. 

4.2: Preparation of Group 4 Amide Complexes of 2.7 and 2.8 

Homoleptic group 4 metal amides such as M(NMe2)4 are known to react cleanly 

with one or two equivalents of cyclopentadiene, eliminating dimethylamine, Me2NH, and 

giving mono- or bis-cyclopentadienyl metal amide complexes.2 This reaction has already 

been applied successfully to the synthesis of group 4 complexes with a wide variety of 

ligands. Examples include titanium and zirconium complexes of C2B9H112" synthesised by 

reaction between C 2 B 9 H 0 and M(NMe 2)4, 3 rac-(ethylenebis(indenyl))ZrCl2

4 and rac-

(ethylenebis(indenyl))Zr(NR2)2,5 Me2Si-bridged awsa-zirconocenes6 and Me2Si bridged 

bis(indenyl)zirconium complexes such as rac-Me2Si(indenyl)2Zr(NMe2)2.7 The reaction has 
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also been applied to the synthesis of zirconium complexes of amine-substituted 

cyclopentadienyl ligands8 including the complex of C5H5(CH2)3NHMe shown in figure 

I.4.9.1 It can be seen that this aminolysis reaction is extremely versatile and can be used to 

synthesise group 4 complexes of a wide variety of ligands, and it can also be adapted to the 

synthesis of complexes of other early transition metals including group 5 and 6 complexes 

of the CpSiMe2NR ligand formed by the reactions shown in figure 1.4.14 between 

CpHSiMe2NHR and M(NMe 2 ) 5 (M = Nb, Ta) 9 or Mo(NMe 2 ) 4 . 1 0 

The advantages of the aminolysis route for the metallation of cyclopentadienes are 

that it is a simple, one stage procedure and that the elimination product (dimethylamine) is 

gaseous and easily removed from the reaction, thus making purification of the final product 

easier. The disadvantages are that the group 4 metal amides M(NMe 2)4 required for this 

reaction are time-consuming to prepare,1 1'1 2 and in the case of Zr(NMe 2)4 could only be 

prepared in variable yields (see section 5.1.4); and that at first sight cyclopentadienyl metal 

amides appear to be less versatile and useful as starting materials than do cyclopentadienyl 

metal chlorides. 

4.2.1: Preparation of group 4 amide complexes of 2.7 

The amine-substituted cyclopentadiene 2.7 reacts quickly and cleanly with a toluene 

solution of Ti(NMe 2) 4 or Zr(NMe 2) 4 (prepared by literature methods12' 1 3 as described in 

chapter 5) to give the desired titanium and zirconium dimethylamide complexes 4.1 and 4.2 

as highly air- and moisture-sensitive brown-yellow and yellow oils respectively as shown in 

figure 4.2.1. 
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> 

M(NMe,) 
N 

M 2Me,NH """NMe, t Bu N 
NMe, 

D U M = Ti 4.1 
M = Zr 4.2 

Figure 4.2.1: Preparation of group 4 amide complexes 4.1 and 4.2 

The *H and 1 3C NMR spectra of these oils (those of the titanium complex 4.1 are 

shown in figures 4.2.2 and 4.2.3 respectively) indicated that they were the desired 

complexes 4.1 and 4.2. The ! H NMR spectrum of the titanium complex 4.1, shown in 

figure 4.2.2, indicates that two NMe2 ligands have been displaced from Ti(NMe2)4, as the 

peaks assigned to the N(CH3)2 and C(CH3)3 protons give integrals of 12 and 9 respectively. 

The complex signals seen in the aromatic region of the *H NMR spectrum of the free ligand 

2.7 have simplified into an AATJB' spin system, indicating that the cyclopentadiene ring has 

undergone deprotonation and is now co-ordinated to the metal centre. The " C ^ H } NMR 

spectrum of 4.1, shown in figure 4.2.3, shows two signals for the cyclopentadienyl CH 

groups. The signal due to the /pso-carbon of the cyclopentadienyl ring is too weak to be 

visible, but all other expected signals are present. As expected, IR spectroscopy did not 

show any peaks which could be attributed to N-H stretches, confirming metallation of the 

secondary amine. The *H and 1 3 C{ 1 H} NMR and the IR spectra of the zirconium complex 

4.2 gave similar results. Both the titanium and zirconium complexes remain liquid even at 

low temperatures, ruling out X-ray crystallography as a method of characterisation. The 

titanium complex 4.1 proved unstable under mass-spectroscopy conditions, and although 
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the molecular ion can be clearly seen (mass 313) under chemical ionisation conditions, 

under electron impact conditions a second peak appears at mass 402. This is thought to be 

due to the bis(cyclopentadienyl) species 4.1a which is formed by rearrangement of 4.1 

under these conditions (see section 4.2.2) and is proposed to have the structure shown in 

figure 4.2.6. This spectrum also contains a peak at mass 224 which is thought to 

correspond to Ti(NMe 2)4 formed during the rearrangement. 

4.2.2: Rearrangement of 4.1 and 4.2 on heating 

Compatible with the observed rearrangement under mass spectroscopy conditions, 

attempted reduced pressure distillation of the titanium complex, 4.1, led to decomposition 

of the product before distillation temperature was reached. The decomposition product 

consisted of a dark brown, highly air sensitive solid, 4.1a, which was characterised by NMR 

spectroscopy. *H and 1 3 C{ 1 H} NMR spectra (shown in figures 4.2.4 and 4.2.5 respectively) 

indicate two C2-related C5H4 groups with the four hydrogen atoms inequivalent. The peak 

assigned to the NMe 2 groups has moved to a slightly lower frequency, consistent with 

Ti(NMe 2) 4 (8 'H , 250MHz, CDC13 = 3.09 ppm).1 3 In addition to this, two different signals 

could be seen for the tertiary-butyl group and for the backbone. From this data it is 

proposed that 4.1 is thermally unstable and on heating undergoes a rearrangement to give 

Ti(NMe2)4 and a bis(cyclopentadienyl) species, 4.1a, with the structure shown in figure 

4.2.6. The proposed structure of 4.1a is consistent with the available NMR data. Bearing 

in mind earlier work on this type of compound in which zirconium and hafnium complexes 

of the methylaminopropyl cyclopentadienyl ligand had been shown to distil cleanly and in 

high yield,1 it was expected that the zirconium complex, 4.2, would prove more stable to 
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distillation. However, attempted reduced pressure distillation of this complex caused 

decomposition in an identical manner to that of 4.1 to give a pale brown oil 4.2a which gave 

similar ! H and 1 3 C{ 'H} NMR spectra to those of 4.1a. Again it is proposed that the 

complex undergoes re-arrangement as shown in figure 4.2.6. It is not fully understood why 

these complexes should behave in this manner on heating, especially bearing in mind the 

ease of distillation of analogous complexes of the methylaminopropyl cyclopentadienyl 

ligand as described in reference 1. It is possible that replacement of the methylamino group 

with a tertiarybutylamino group is sufficient to raise the distillation temperatures of these 

compounds above their decomposition temperatures. 

heat 
M M (attempted distillation) ;'""//« '"HIM NMe2 t J - ' B u N 

NMe2 t Bu 
t Bu 

+ M(NM62)4 

M = Ti 4.1a M = Ti 4.1 
M = Zr4.2a M = Zr4.2 

Figure 4.2.6: Proposed re-arrangement of 4.1 and 4.2 on distillation 

4.2.3: Preparation of a zirconium amide complex of the substituted indenyl ligand, 2.8 

In an NMR reaction, the titanium amide Ti(NMe 2)4 failed to react with one 

equivalent of the amine substituted indene, 2.8, in CeA;, despite prolonged heating to 60°C. 

Reaction also failed to take place between these compounds when heated to 90°C in toluene 

for over a week in a Schlenk tube which was regularly evacuated to remove any liberated 
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NHMe2 gas. The failure of this reaction is probably due to the fact that the small size of the 

titanium metal centre inhibits formation of the transition state in the reaction with the bulky 

indene (discussed further below). 

In contrast, reaction between 2.8 and Zr(NMe2)4 in toluene at 60°C over 7 days 

gave a red-brown, highly air sensitive oil, 4.3, which was characterised by ' H , 1 3 C { I H } and 

1 3C NMR spectroscopy. The *H NMR spectrum shows a complex multiplet for the C-H 

protons of the 6-membered ring, and an AB system for the two C-H protons of the five 

membered ring. The 1 3 C{ 1 H} and i 3 C NMR spectra were of poor quality due to the fact 

that the compound was prepared in very small amounts and NMR samples were very dilute, 

but on the basis of lH NMR data it is proposed that the aminolysis reaction takes place as 

shown in figure 4.2.7 giving the zirconium indenyl complex 4.3, presumably as a mixture of 

both enantiomers although they are indistinguishable by *H NMR. The *H NMR spectrum 

shows that some unreacted 2.8 is present as an impurity and this was difficult to remove 

since distillation led to decomposition of the zirconium product. However, this does not 

necessarily make 4.3 an unsuitable starting material for further chemistry, particularly i f it 

could be converted into a solid, crystalline derivative which would be more easily purified. 

H \ t Bu N 

ZrCNMe,) 
2.8 

Zr toluene, 60 C, 7 days 
""'NMe2 

N 
NMe 

(both isomers) 

Figure 4.2.7: Reaction between 2.8 and Zr(NMe2>4 
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These reactions indicate that the substituted indenyl ligand, 2.8, does not react with 

Ti(NMe2)4 but does react with Zr(NMe 2) 4, although the reaction is slow and incomplete. 

This is in accordance with the findings of Lappert,1 who found that the reaction between 

homoleptic group 4 amides M(NMe 2)4 and acidic hydrocarbons such as cyclopentadiene and 

indene is extremely sensitive to steric effects, so that Zr(NMe 2)4 reacted with one equivalent 

of indene to give (r) 5-C 9H7)Zr(NMe 2)3 but Ti(NMe 2)4 failed to react because formation of 

the transition state is sterically hindered due to the small size of the titanium metal centre 

and the bulkiness of indene. 

4.3: Attempted Conversion of the Amide Complexes 4.1 and 4.2 to Halides 

Metal halides are generally considered to be more useful starting materials than 

metal amides since they can be used to prepare a variety of interesting complexes, 

particularly metal alkyls. It was therefore hoped to be able to convert the titanium and 

zirconium amide complexes to halides by reaction with dimethylammonium halides, 

Me 2 NH 2 X (X = CI, Br, I) as shown in figure 4.3.1. The dimethylammonium halides act as 

anhydrous sources of HX which can be weighed and used stoichiometrically. This has been 

used very successfully to convert {T) 5;C-(C 5H4)(CH 2)3NMe}Zr(NMe 2) 2 to {r j 5 :o-

(C5H4)(CH2)3NMe}Zr(NHMe2)X2

1 However, reaction between the metal amide complexes 

4.1 and 4.2 and Me 2 NH 2 X (X = CI, Br, I) failed to yield any characterisable products, 

despite repeated attempts and variation of solvent, reaction conditions, and halogen. It is 

not known why these reactions failed, and their failure led to subsequent work being 

concentrated on the metal amides as starting materials. The conversion of 4.3 into a halide 

complex by this route has not been attempted. 
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Me2NH2X 
M M NHMe 1 

X 

NMe % N N 
NMe 

R 
R = Me, M = Zr, Hf, X= CI, I 

(R = 'Bu,M = Ti,Zr, 

X = CI, Br, I: no isolable 

product fromed 

Figure 4.3.1: Potential conversion of group 4 metal amides to halides using R 2 NH 2 X 

4.4: Attempted Preparations of Group 4 Metal Halide Complexes of 2.7 

Although the aminolysis route is a simple and highly efficient way of synthesising 

group 4 complexes of the substituted cyclopentadiene, 2.7, it was hoped that it would also 

be possible to synthesise group 4 halide complexes of this ligand by a direct route, especially 

bearing in mind the difficulties encountered in converting the group 4 amide complexes 4.1 

and 4.2 into halides. The traditional route to cyclopentadienyl and bis(cyclopentadienyl) 

halide complexes of group 4 is reaction between lithiated or silylated cyclopentadienes and 

the metal tetrachloride. Both lithiated14 and silylated15 cyclopentadiene derivatives have 

been successfully used in the preparation of group 4 halide complexes of Lewis-base 

substituted cyclopentadienes, and some examples are shown in figure 4.4.1. 
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Me Me 
t t Bu Si NH Bu S / \ N Me n 2 BuLi 

TiCl4(THF) 2 + Me 2L 

Reference 14(b) 
Me2Si 

\ Ti., "ic\ N 
C t Bu 

Me-»Si NMe? NMe2 a n"BuLi 

2) Me 3 SiCl 

T i C L 

Reference 15(a) 

Ti 

N c T C i 

Me Me 

Me 3Si TiC 
n OSiMe i i n T 

C 
CI 

Reference 15(b) 

Figure 4.4.1: Preparation of group 4 complexes via lithiated and silylated 

cyclopentadiene derivatives 

It was hoped that one or both of these methods might prove suitable for the 

preparation of titanium complexes of 2.7 by the reaction proposed in figure 4 .4.2. Addition 

of TiCU to a toluene solution of the bis(silyl) derivative, 3.7, at -78°C caused immediate 

reaction with the solution changing colour from yellow to dark red. However, on work-
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up a dark, insoluble solid was obtained which proved impossible to characterise due to its 

insolubility. Reaction between the di-lithium salt, 3.3, and TiCL»(THF)2 in THF solution 

yielded similar results. It is possible that the products of these reactions were polymeric. 

Various modifications of solvent, reaction temperature and reaction time failed to produce 

the desired complex, and it was concluded that this route was not applicable to the 

preparation of titanium complexes of 2.7, so that an alternative route had to be sought. 

t Me>Si Bu 

N 

SiMe^ 

TiCL, toluene 

ST'""//// 

X I 

'"""/CI 
N 

TiCLCTHFV,, THF t Bu 

Product which forms is 
t Bu extremely insoluble and 

may be polymeric in N 0 
structure. 

Li + L i 

Figure 4.4.2: Proposed route to titanium chloride complexes of 2.7 
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4.5: Aminolvsis Reactions of 4.1 and 4.2 

The amide complexes 4.1 and 4.2 are themselves potential starting materials for a 

wide variety of other complexes since they can undergo further aminolysis reactions with a 

wide range of acids. The pK a of secondary amines HNR 2 is in the range 3 5-40,16 and thus 

transition metal amides, M-NR2, will react with a wide range of weak acids. Reactions 

between the homoleptic group 4 metal amides, M(NMe2)4, or the cyclopentadienyl metal 

amides Cp2M(NMe2)2 and various weak acids have been studied and are summarised in 

figure 4.5.1. 2 It was expected that the metal-dimethylamide complexes 4.1 and 4.2 would 

undergo similar reactions with weak acids. 

Ph 
t t \ ^ 0 B u \ > S B u 

M. M 
O'Bu S'Bu M 

Ph 
t 2'BuOH 

2"BuSH 

Ph C H 

M 
NMe2 

2 C 5 H(, M = Ti, Zr, Iff 

CjHx. M = Ti 3 TtOH, M = Ti 
( M e j I W O ' P r ) , M(NMe2)4 

Ti e 2 N ^ \ M NMe2 Me2N 
x (SiMej)2NH. 

3 T I O H 
M - T i 

(Me2N)xTi{N(SiMe3)2) 

PrO' .^y \ x = 1, y = 3 
O'Pr PHO 

Figure 4.5.1: Reactions between group 4 metal amide complexes and weak acids 
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4.5.1: Reaction between 4.1 and propan-2-oI 

Compound 4.1 reacts rapidly and cleanly with dry propan-2-ol to give the 
bis(isopropoxide) complex, 4.4. This compound was characterised by fa and 1 3 C { f a } 
NMR spectroscopy and IR spectroscopy. The fa NMR spectrum, shown in figure 4.5.2, 
clearly shows that the singlet due to the NMe2 groups has disappeared and been replaced by 
a septet at 4.6 ppm and a doublet at 1.17 ppm corresponding to the CH and C H 3 protons of 
the isopropyl groups. No signals due to NMe2 groups are present, but a trace of propan-2-
ol is present as an impurity. The 1 3 C { f a } NMR spectrum is shown in figure 4.5.3, and as 
expected shows two signals due to the C-H carbons of the cyclopentadienyl ring at 110.0 
and 110.5 ppm (the signal due to the ipso carbon is too weak to be seen), the CH and CH 3 

carbons of the isopropoxide group appear at 77 .6 and 28 .9 ppm, and again no signals due to 
NMe 2 groups are present. IR spectroscopy showed no N-H or O-H absorptions, but did 
show absorptions characteristic of a co-ordinated cyclopentadienyl ring at 1230, 1160 and 
990 cm"1. Like the amide complex 4.1, compound 4.4 is unstable under mass-spectroscopy 
conditions, and the parent molecular ion (RMM = 344) appears only as a very weak signal 
indeed. The mass spectrum does show strong peaks due to some other identifiable 
fragments, notably C5H5(CH2)3NH tBu (mass 179) and the OCH(CH 3) 2 fragment (mass 59). 

Since 4.4 remains a liquid even down to low temperatures, it could not be 

characterised by X-ray diffraction. However, on the basis of other data, particularly fa and 

1 3 C { f a } NMR spectroscopy, it is possible to conclude with reasonable certainty that the 

reaction proceeds as shown in figure 4.5.4 to give the bis(isopropoxide) complex 4.4. 
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Figure 4.5.3: The 62.5 MHz nC{lB) NMR spectrum of 4.4 in C D C I 3 with solvent 

marked S and impurities marked * 
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Figure 4.5.4: Reaction between 4.1 and propan-2-ol 

4.5.2: Reaction between 4.1 and 'BuSH 

The amide complex 4.1 reacts rapidly and cleanly with tertiary-butyl thiol to give a 

deep red oil, 4.5, characterised by NMR spectroscopy. Since compound 4.5 smelled 

strongly of W y l thiol, it was handled in a fume hood at all times. 

The ! H and ' ^ { ' H } NMR spectra of 4.5, shown in figures 4.5.5 and 4.5.6 

respectively, show that the NMe 2 groups have been replaced by S'Bu groups In the ! H 

NMR spectrum, the NMe 2 signal of 4.1 has disappeared and been replaced by a singlet at 

1 61ppm corresponding to the C(CH3)3 protons of the tertiary-butyl thiol group, and a small 

quantity of free tertiary-butyl thiol is present as an impurity. Like the isopropoxide complex 

4.4, this complex remains liquid even down to low temperatures and so is not 

characterisable by X-ray diffraction. However, on the basis of the NMR data it is possible 

to conclude that the aminolysis reaction has taken place as shown in figure 4.5.7 to give the 

bis(tertiarybutyl thiol) complex 4.5. This compound gave better quality mass spectra than 

either 4.1 or 4.4, with the parent molecular ion clearly visible at mass 404 under chemical 

ionisation conditions. A peak at 315 corresponds to loss of one SC(CH3)3 fragment. 
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NMe2 
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N 

Bu 

4.5 

Figure 4.5.7: Reaction between 4.1 and 'BuSH 

4.5.3: Reaction between 4.1 and C 5 H 6 

Compound 4.1 reacts with one equivalent of C5H6 to give the mixed 

bis(cyclopentadienyl) complex 4.6 as a viscous brown oil, which proved to be very difficult 

to purify, since attempted distillation or sublimation led to decomposition to give 

unidentified species. However, a sample of this product characterisable by *H and ^ { ' H } 

NMR and IR spectroscopy was obtained by careful extraction of the reaction product using 

various solvents (see section 5.4.4). In addition to the two triplets corresponding to the 

protons of the substituted cyclopentadienyl ring, the J H NMR spectrum shows a singlet at 

6.04ppm corresponding to the protons of the unsubstituted cyclopentadienyl ring. The 

singlet corresponding to the NMe 2 protons has decreased in intensity relative to the singlet 

corresponding to the 'butyl protons, so that the ratio of NMe 2: C(CH 3) 3 is now 6:9, 

indicating displacement of one NMe2 ligand from the starting complex. Since the complex 

is so difficult to purify, and since only very small amounts were ever obtained, 

characterisation was essentially limited to *H and " C ^ H } NMR spectroscopy. From the 

NMR data it is proposed that the reaction shown in figure 4.5 .8 has taken place to give the 

mixed cyclopentadienyl complex 4.6. However, this reaction was unreliable and repeated 
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syntheses did not always give the same product. Purification of 4.6 was problematic since 

distillation led to decomposition, and the highly air- and moisture-sensitive nature of the 

product (as well as the small quantities obtained) make chromatography difficult. 

N 
^""NMe2 

NMe2 

C D 

N M a , V 

Ti 
N 

NMe, 
Bu 'Bu (both isomers) 

4.1 4.6 

Figure 4.5.8: Reaction between 4.1 and CsH 6 

In a similar reaction carried out in an NMR tube, 4.1 failed to react with indene, 

even though indene is in theory a strong enough acid to displace an amide ligand (pK, of 

indene in MeOH = 18).1 7 It is thought that this is due to steric factors, because the titanium 

metal centre is too small to accommodate a bulky indenyl ligand in addition to the 

substituted cyclopentadienyl already present. This is in accordance with the early work 

carried out on the homoleptic group 4 amides Ti(NMe2)4 and Zr(NMe2)4 where the 

aminolysis reaction between the amides and acidic hydrocarbons such as cyclopentadiene 

and indene was found to be highly sensitive to steric factors, as has already been discussed 

in 4.3.3 2 
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4.5.4: Reaction between 4.1 and "Bu 3SnH 

Reaction between the amide complex 4.1 and two equivalents of "Bi^SnH gives a 

pale yellow, air sensitive oil. Characterisation of this product by NMR spectroscopy proved 

difficult, since the signals due to the "BusSn groups tend to swamp all others, particularly in 

the ' H NMR spectrum where they are superimposed over the signals due to the protons of 

the tertiary-butyl group and the CH 2 groups of the substituent chain. The 1 3 C { 1 H ) NMR 

spectrum is slightly clearer and it is possible to see signals due to all four "butyl carbons, the 

CH 3 carbon of the 'butyl group, the CH carbons of the cyclopentadienyl ring and some of 

the carbons of the backbone chain. It was concluded from the NMR data that the reaction 

shown in figure 4.5.9 had taken place, giving the titanium trialkyltin complex 4.7. 

2 BiaSnH 
I- i-

/ Sy"'NMe2 
2 NHMe, """"SnBu, 

N N NMe, SnBu, 

t t Bu 4.1 Bu 

Figure 4.5.9: Reaction between 4.1 and Bu 3SnH 

The use of "butyl as the substituent on the trialkyl tin group made characterisation of 

this compound difficult. The obvious solution to this difficulty would be the use of Me3SnH 

instead of "BusSnH hydride. However, due to time constraints and to the high toxicity of 

MesSnH, this was never attempted. 
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4.5.5: Reaction between 4.1 and phenylacetylene 

In the course of early investigations2 into the chemistry of homoleptic group 4 

amides M(NMe2)4, it was found that all three amides (M = Ti, Zr, Hf) reacted with 

phenylacetylene liberating dimethylamine, as did the bis(cyclopentadienyl) metal amide 

complexes (C5H5)2M(NMe2)2. However, the titanium products were found to be unstable 

and were never isolated, although the zirconium and hafnium compounds were isolated and 

characterised. 

It was hoped that the presence of the intramolecularly co-ordinated amine-

substituted cyclopentadienyl ligand might lead to increased stability of titanium 

phenylacetylene complexes derived from 4.1, allowing their isolation and characterisation. 

A known quantity of the titanium amide complex 4.1 was dissolved in CeD6 in an NMR tube 

with exactly two equivalents of phenylacetylene. The tube was warmed to 60°C and *H 

NMR spectra were taken at regular intervals. After a period of seven days, the *H NMR 

spectrum was still identical to that taken at the beginning of the experiment, and was 

consistent with an unreacted mixture of 4.1 and phenylacetylene. It is possible that use of a 

sealed NMR tube as the reaction vessel was hindering the reaction by preventing the escape 

of liberated NHMe2 gas, but this seems unlikely since reaction still did not take place even 

in a Schlenk tube which was regularly evacuated to remove NHMe2 gas. It is concluded 

that no reaction takes place between 4.1 and phenylacetylene under these conditions. 
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4.6: Reaction Between 4.1 and Aniline 

Aromatic amines such as aniline, PKNH2, are stronger acids than aliphatic amines 

such as Me 2 NH (pKa CeHsNFk = 27, pK a R 2 NH = 35-4016). Hence it was expected that 

aniline would displace dimethylamine from the titanium amide complex 4.1 to give either a 

phenylamido or phenylimido species. 

Compound 4.1 reacted rapidly with two stoichiometric equivalents of aniline in 

toluene to give, on work up, a dark brown solid, 4.8, soluble in moderately polar solvents 

such as CH2C12 and aromatic solvents such as toluene, and insoluble in less polar solvents 

such as diethyl ether and petrol. Recrystallisation from a 1:1 mixture of CH2C12 and petrol 

gave pure, crystalline material. The compound was studied by X-ray diffraction, infra-red 

and mass spectroscopy, and by extensive NMR experiments. IR spectroscopy showed a 

very clear N-H stretch at 3292 cm'1, and other possible N-H stretches at 3400 and 3450 

cm"1, suggesting the presence of more than one amide or amine N-H. Mass spectra showed 

very little as the compound broke apart extensively under mass spectroscopy conditions. 

The only recognisable fragments were the substituted cyclopentadiene (EI + = 179, CI + = 

180) and aniline (EI = 93, CI = 94). No peaks of greater mass than 179 were observed. 

4.6.1: X-ray diffraction studies of 4.8 

Unlike other titanium compounds derived from 2.7 studied during the course of this 

work, 4.8 is a solid at room temperature and block-shaped crystals suitable for X-ray 

diffraction were obtained fairly easily by recrystallisation from a 1:1 mixture of CH2C12 and 
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petrol at -30°C. X-ray diffraction, carried out by Mr P. Ford as described in appendix B, 

showed 4.8 to be a dimer. The asymmetric unit of 4.8 contains two independent half-

molecules (designated A and B) located near to crystallographic inversion centres which 

generate the other half of each dimer. The two independent dimers are geometrically very 

similar with no significant differences in distances or angles. The structure of dimer A is 

shown in figure 4.6.2 together with the adopted numbering scheme. It can be seen from the 

X-ray structure that 4.8 is the product of the loss of both NMe 2 ligands from 4.1 as Me 2NH, 

together with cleavage of the Ti-N bond of the substituted cyclopentadienyl ligand as shown 

in figure 4.6.1, leaving the ligand co-ordinated through the cyclopentadienyl ring only. 

From the X-ray structure it can be seen that 4.8 contains both phenylamido (PhNFT) and 

phenylimido (PhN2 ) ligands as well as a free tertiarybutylamine group attached to the 

cyclopentadienyl ring. Hence 4.8 contains free amine, singly deprotonated amine and 

doubly deprotonated amine groups within the same compound. 

t Bu 
N 
H 

Ph H / Ti 2PhNH2 Ph '"UN i f l 

Ti N N S ^""NMe2 2MC2NH Ph N N H NMeo / Ph 
H Bu 
N 

Bu 

4.1 4.8 

Figure 4.6.1: Reaction between 4.1 and aniline 
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A full list of crystallographic data for 4.8, including tables of atomic co-ordinates, 

bond lengths and angles is given in appendix B. The central core of the structure of 4.8 

contains two phenylimido ligands bridging two titanium metal centres, Ti(u-NR)2Ti. Within 

this core the Ti-NPh distances are 1.902(2)A and 1.991(2)A for molecule A and 1.891(2)A 

and 2.008(2)A for molecule B. The terminal Ti-NHPh distances are 1.969(2)A and 1.967A 

for A and B respectively. It can be seen that the Ti(u-NPh)2Ti core suffers some distortion 

with one Ti-N distance being slightly longer than the other, the differences in length AM-N 

being 0.089A and 0.117A for A and B respectively. Comparison of the metal-nitrogen 

distances in other structures containing the M(u-NR) 2 M core shows that compounds with 

this core fall into two classes: those which have relatively undistorted structures with AM-N 

values between 0.0 and 0.15A; and those which have highly distorted structures with AM-N 

values between 0.36 and 0.516A. The high degree of distortion in the second class is 

believed to be due to a second-order Jahn-Teller effect 1 9 although alternative explanations 

have been proposed. 2 0' 2 1 The titanium complex 4.8 falls into the first class of this type of 

compound, having a relatively undistorted Ti(u-NPh)2Ti core structure. This compound is 

not expected to undergo Jahn-Teller distortion and the small distortion in the Ti(u-NPh)2Ti 

core is more subtle in origin. 

The X-ray diffraction studies show that the titanium complex 4.8 is a dimer in the 

solid-state and that the Ti-N bond of the intramolecularly co-ordinated amine-substituted 

cyclopentadiene ligand of 4.1 has been displaced by reaction with aniline. Compound 4.8 is 

thought to be the first complex of this type, containing as it does free amine, amide and 

imido groups within one complex. 
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4.6.2: NMR studies of 4.8 

Initial characterisation of 4.8 was carried out using NMR spectroscopy, and further 

NMR experiments were carried out after the X-ray structure had been determined. Both *H 

and 1 3 C{ 'H} NMR spectra of pure, crystalline, 4.8 in CDCI3 were considerably more 

complex than expected, and it was quickly realised that two different species, 4.8a and 

4.8b, were present, with one (4.8a) clearly dominating. 

The 4 0 0 MHz *H NMR spectrum of 4.8 in C D C 1 3 is shown in figure 4 .6.3, with 

peaks assigned to the minor compound 4.8b marked with an asterisk. The cyclopentadienyl 

ring of 4.8a gives an AA'BB' spin system at 6 .13 and 6 . 1 9 ppm, l J A - B = 2.6 Hz. A broad 

signal at 3 .8 ppm, integrating to one proton, was assigned to N-H of a phenylamide group 

on the basis of selective homonuclear decoupling experiments run at 2 5 0 MHz, in which it 

was seen that decoupling of this peak led to some simplification of signals in the phenyl 

region of the spectrum. The signal at 2.38 ppm assigned to the CH?N of the substituted 

cyclopentadiene was unexpectedly a quartet, ' J H - H = 7.3 Hz (rather than a triplet), indicating 

apparently equal coupling to three protons. Selective decoupling of this signal caused a 

triplet at 0.45 ppm, ' J H - H = 7.3 Hz (integrating to a single proton) to simplify to a singlet; 

and selective decoupling of the triplet at 0.45 ppm caused the quartet at 2 .38 ppm due to 

CH2N to simplify into a triplet. From this information it is possible to assign the triplet at 

0.45 ppm to an amine N-H on the substituted cyclopentadiene. Hence it is possible to 

deduce by NMR that the substituted cyclopentadiene is no longer co-ordinated 

intramolecularly through the cyclopentadienyl ring and the amine nitrogen, but through the 

142 



1 

j 

00 —J 

\ \ 
/ 

\ 
1 
z / N 

/ 

\ 00 
• CD i n 

C/3 

1 

J 

oil 

00 

143 



s 

00 

00 

s 
00 

00 

\ 
21 / n 

z 
\ 1 

Z 

z 
/ 

12 SO \ 
J O 

en 

144 



ring only with the amine group pendant. X-ray diffraction studies discussed in the previous 

section confirmed this. 

The l3C{lH} NMR spectrum of 4.8 in CDC13, shown in figure 4.6.4, also showed 

two compounds, 4.8a and 4.8b. It can be seen that the aromatic region of the spectrum is 

considerably more complex than would be expected i f just one phenylamide group in one 

symmetry environment were present. However, only one phenylamide N-H signal could be 

found in the *H NMR spectrum, leading to speculation that the remaining signals in the 

phenyl region of the NMR spectra are due to a phenylimido group PhN2". Once the X-ray 

structure of 4.8 had been determined, it was possible to deduce that the major species 4.8a 

present in the NMR spectra is the dimeric phenylimido bridged complex shown in figures 

4.6.1 and 4.6.2 and which is the only species present in the solid state. Since all NMR 

spectra were run using samples of the same analytically pure, crystalline material used for 

X-ray diffraction studies, it is possible to rule out impurities as the source of the extra 

signals. It is believed that the dimeric species 4.8a undergoes some dissociation in solution 

to give a second, monomeric species 4.8b with the structure proposed in figure 4.6.7. Two-

dimensional NMR experiments, specifically ^-COSY and ^-"C-HETCOR (shown in 

figures 4.6.5 and 4.6.6 respectively) confirm that two distinct species are present, and 

comparison of the NMR data with the X-ray structure of solid 4.8 allowed assignment of 

most signals due to 4.8a and 4.8b. The signals in the ! H and ' ^ { ' H } NMR spectra due to 

4.8b support the structure proposed in figure 4.6.7. In the 'H NMR, the C-H protons of 

the cyclopentadienyl ring appear at 6.21 and 6.16ppm respectively. The signal at 6.16ppm 

is a triplet as expected for an AA'BB' system, but that at 6.21 is a quartet. It has not been 

possible to deduce why this is the case, but 2-dimensional NMR experiments support the 
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assignment of these signals. The phenyl signals due to 4.8b were to some extent swamped 

beneath those due to phenyl protons of 4.8a, but careful examination of the 2-dimensional 

spectra allowed fairly comprehensive assignment of the phenyl ' H and 1 3 C{ 1 H} signals of 

both 4.8a and 4.8b. Assignment of signals due to the protons and carbons in the substituent 

chain and tertiary-butyl groups of 4.8a and 4.8b was fairly straightforward, with the signals 

due to 4.8b consistently appearing at slightly higher frequencies than the corresponding 

signals due to 4.8a, as was also the case with the phenyl and cyclopentadienyl signals. 

Some solid state MAS NMR studies were also carried out on 4.8 by Miss L. A. 

Crowe.2 2 The solid state 1 3C NMR spectrum is shown in figure 4.6.8 and is consistent with 

the dimeric solid-state structure obtained from X-ray diffraction studies. Unfortunately it 

was not possible to obtain good quality, solid-state 1 5 N NMR spectra of 4.8. 
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Figure 4.6.7: Proposed dissociation of 4.8 in solution 
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4.7: Reactions Between 4.1 and Small Molecules Containing Multiple Bonds 

Early transition-metal amides, including the homoleptic group 4 amides M(NR 2 )4 (M = 

Ti, Zr, Hf), are known to undergo insertion reactions with a variety of small molecules 

containing carbon-heteroatom multiple bonds, including C O 2 and C S 2 , which can insert into 

the metal-nitrogen bond.2 2 Some exploratory reactions were carried out to investigate 

whether the cyclopentadienyl amide complex 4.1 would react in a similar fashion. 

4.7.1: Reaction between 4.1 and C O 2 

A stream of C O 2 gas was bubbled through a toluene solution of 4.1 over a period of 1 

hour as described in chapter 5.4.9. Reaction took place with the solution growing paler in 

colour. On work up a pale brown solid 4.9, soluble in mildly polar solvents and insoluble in 

non-polar solvents, was isolated in low yield. Due to the low yield of this reaction it was not 

possible to obtain a pure sample for characterisation. From IR and ' H NMR spectra of the 

crude product it is possible to conclude with certainty that the compound is not 4.1, and that a 

reaction has taken place. It is not, however, possible to deduce exactly what reaction has 

taken place. On the basis of earlier studies on T i ( N M e 2 ) 4 described in reference 4, a possible 

reaction is that shown in figure 4.7.1 with 4.1 reacting with excess C 0 2 which inserts into the 

Ti-N bonds of both the T i - N M e 2 ligands and the intramolecularly co-ordinated amide attached 

to the cyclopentadienyl ring. 
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Figure 4.7.1: Possible reaction between 4.1 and CO? 

4.7.2: Reaction between 4.1 and C S 2 

A toluene solution of 4.1 reacted with excess C S 2 at -78°C with the solution changing 

colour from brown to bright red. On allowing the solution to warm to room temperature, 

further reaction took place with precipitation of a bright orange solid 4.10. This precipitate 

was isolated and found to be air- and moisture-stable. Unfortunately it also proved to be 

insoluble in every solvent tried, including H 2 0 , DMSO and C S 2 itself. Because of its 

insolubility, crystals could not be grown for X-ray diffraction and solution-state NMR studies 

were not possible. Characterisation of this product was limited to infra-red spectroscopy, 

elemental analysis and solid-state MAS NMR spectroscopy, with the latter proving very 

informative. 
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IR spectroscopy showed a strong absorption at 1510cm'1 attributed to a C-N stretch. 

The IR spectrum showed no N-H stretches and, more surprisingly, none of the characteristic 

bands caused by C-H bends of a co-ordinated cyclopentadienyl ring. Solid state 1 3 C { ' H } 

MAS NMR spectroscopy, run by Miss L. A. Crowe and shown in figure 4.7.2, confirmed that 

the substituted cyclopentadienyl ligand was no longer present in 4.10. However, signals were 

present which could be attributed to CH 3 carbons, indicating that the NMe 2 groups were still 

present in some form. The solid-state l 5 N MAS NMR spectrum of 4.10, shown in figure 

4.7.3, showed four sharp signals, indicating that nitrogen is present in four different symmetry 

environments. It is unusual for a solid-state 1 5 N spectrum to be so sharp and well defined, 

since signals are usually very broad. 

zoo 

15 Figure 4.7.3: Solid-state 1 J N MAS NMR spectrum of 4.10 
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Figure 4.7.4: Proposed reaction between 4.1 and C S 2 

It is concluded that CS2 completely displaces the substituted cyclopentadienyl ligand 

from 4.1 and probably inserts into the Ti-N bonds of the Ti-NMe2 ligands to give some form 

of dithiocarbamate complex. One possibility for the structure of 4.10 is the bridged dimeric 

titanium dithiocarbamate complex shown in figure 4.7.4. Depending on the conformation of 

the molecule in the solid-state, this structure is consistent with the NMR data. Elemental 

analysis also lends some support to this structure. It has not been possible to deduce what 

happens to the substituted cyclopentadienyl ligand in this reaction, since work-up of the 
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filtrate, after the precipitate of 4.10 had been removed, yielded a complex, air-sensitive 

mixture of products, the only identifiable one of which was a trace of unreacted 4.1. From 

observing changes in appearance as the reaction mixture was allowed to warm from -78°C to 

room temperature, it is proposed that reaction between 4.1 and CS2 takes place in two stages, 

with initial formation of a thermally unstable species which has not yet been isolated or 

characterised. It is possible that this species could be the complex formed by insertion of CS2 

into all the amide Ti-N bonds of 4.1 and which then re-arranges on heating to give 4.10. 

4.7.3: Other attempted reactions 

According to the literature, a wide variety of other small molecules containing carbon-

heteroatom multiple bonds will insert into the M-N bonds of homoleptic early transition-metal 

amides, including CH3CN, DMSO and small ketones. Reactions were attempted between 4.1 

and CH 3CN, DMSO and acetylacetone but failed to yield any characterisable products. Since 

reactions between 4.1 and CO2 or CS2 also failed to yield the expected products it is 

concluded that although 4.1 behaves very much like Ti(NMe2)4 in its reactions with weak 

acids, it differs significantly in its reactivity towards small, multiply bonded molecules. 
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4.8: Conclusions 

It can be seen from the work described in this chapter that the aminolysis reactions 

between the substituted cyclopentadienyl and indenyl ligands 2.7 and 2.8 and homoleptic 

group 4 amides, M(NMe2)4, represent the simplest and most efficient route into group 4 

complexes of these ligands. Although attempts to convert the amide complexes 4.1 and 4.2 

into halides failed, it was realised that these complexes are themselves versatile starting 

materials for a wide variety of new compounds by their reactions with weak acids. The 

reaction between 4.1 and aniline led to the formation of an interesting and unusual 

phenylimido-bridged dimer 4.7. Reactions between 4.1 and small, multiply-bonded molecules 

failed to give the expected products, leading to the conclusion that while the reactivity of 4.1 

towards weak acids is similar to that of Ti(NMe2)4, its reactivity towards small, multiply 

bonded molecules is very different. 
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C H A P T E R 5 

Experimental 



5.1: General Information and Preparation of Startin£ Materials 

Unless otherwise stated, all reactions were carried out under an atmosphere of dry 

nitrogen (BOC) using standard Schlenk-line and glove-box techniques. Glove-box work 

was carried out in a Braun Labstar 50 glove-box. 

Solvents were pre-dried by storing over 3 A molecular sieves (Lancaster) before 

refluxing over the appropriate drying agent under nitrogen for 6 hours, collecting and 

storing in dry 500ml Young's ampoules. Degassing of all solvents except toluene was 

carried out by the freeze-thaw method. Toluene was de-oxygenated by bubbling nitrogen 

through the dry solvent for 15 minutes using a dry canula. Drying agents used were sodium 

lumps (toluene), lithium aluminium hydride (diethyl ether), potassium (THF, hexane), 

sodium benzophenone (THF) and calcium hydride (acetonitrile, dichloromethane). NMR 

solvents were stored in 50ml Young's ampoules over 3 A molecular sieves (CDCI3, CeDg) or 

calcium hydride (CD3CN), degassed by freeze-thaw and manipulated by vacuum transfer. 

Grignard reagents, where necessary, were standardised by titration against n-propanol using 

1,10-phenanthroline as an indicator to determine the exact concentration.1 

Solution state NMR spectra were run in CDCI3, CeD6 or CD3CN on a Varian XL-

200 (*H at 200MHz), Briiker AC-250 (*H at 250.13MHz, 13C at 62.9MHz, 19F at 

235.36MHz and 3 1P at 101.2MHz) or Varian VXR-400 (*H at 400MHz, 13C at 100MHz) 

NMR spectrometer. Solid-state NMR spectra were run on a Varian VXR-300 solid-state 

NMR spectrometer. Infra-red spectra were run as thin films on KBr plates (liquids) or as 

KBr discs (solids) on a Perkin-Elmer 1615 FTIR spectrometer. Solid-state magnetic 

susceptibilities were measured on a Johnson-Matthey-Evans balance and solution state 

magnetic susceptibilities were measured on a Briiker AC-250 NMR spectrometer and 
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calculated using Evans' method.2 These procedures are described in detail in appendix A. 

Mass spectra and micro-analysis were carried out in-house at the University of Durham. X-

ray structures were determined as described in appendix B. Starting materials were used as 

received except where otherwise stated. "BuLi was purchased as an approximately 1.6M 

solution in hexanes (Aldrich) and was titrated on receipt by Mr B. Hall to determine the 

exact molarity. 

5.1.1: Lithium Dimethylamide 

Pure, dry dimethylamine (approx. 0.5 mol) was produced by dripping 80ml of 40% 

aqueous dimethylamine solution onto sodium hydroxide pellets (60g) under vacuum and 

condensing the liberated gas into a Young's ampoule cooled to -78°C on a vacuum line as 

shown in figure 5.1.1. Throughout this procedure the pressure of gas in the vacuum line 

was carefully monitored using a mercury manometer, and addition of the aqueous Me2NH 

solution to the NaOH pellets was carried out at such a rate that the pressure did not exceed 

150mmHg. The dimethylamine was vacuum transferred into a 3L 3-necked flask fitted with 

a reflux condenser and containing toluene or THF (500ml of sodium wire dried). The 

solution was allowed to warm to 0°C under nitrogen and "butyl lithium (280ml of 1.62M in 

hexane, 0.5mol) was added dropwise over 2 hours. The pale cream suspension of 

Li(NMe2) was allowed to warm to room temperature and stirred overnight with the flask 

vented through a mercury bubbler before being used without further purification in the 

preparation of M(NMe2)4 (M = Ti, Zr). 
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5.1.2: Ti(NMe2)4 

This compound was prepared according to the method of Diamond and Jordan.3 A 

toluene solution of Li(NMe2> (0.5mol, prepared using the procedure in section 5.1.1) was 

cooled to 0°C and TiCU (19g, 0.1 mol) was added dropwise. After stirring overnight, the 

solvent was removed under reduced pressure. The residue was extracted with dry, 

degassed light petroleum (4 x 100ml ofb.pt. 40-60°C). The extracts were filtered through 

celite using a 4cm diameter, medium porosity glass frit and the solvent removed under 

reduced pressure to give a brown oil which was distilled (b.pt. 59°C at 0.8mmHg) to give a 

highly air-sensitive yellow oil. Obtained 17g, 76% yield with respect to TiCU. 

To mercury System under static vacuum 
manometer 

C 
To vacuum EJIeed needle Rubber pump 

hosing 
closed \ \ 

\ 500ml Young's 
ampoule 

\ Septum \ 
Dry ice 
slush bath 

Dropping funnel (not 
pressure equalised) 

Dimethylamine 
Dimethyiamine condenses 

) 
40% aqueous 
solution 

NaOH p e l l e t * " 

Figure 5.1.1: Apparatus for liberating free Me2NH from an aqueous solution. 
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5.1.3: ZrCl 4(THF) 2 

ZrCU (30g, 0.13mol) was dissolved in dry, degassed CH2CI2 in a large Schlenk tube. 

The solution was cooled to 0°C and THF (50ml) was added dropwise, causing a rapid, 

exothermic reaction with formation of a white precipitate. After warming to room 

temperature and stirring for 1 hour, hexane (50ml) was added to ensure complete 

precipitation of the product, which was filtered, washed (2 x 20ml hexane) and dried under 

reduced pressure to give ZrCLi(THF)2 as a white, micro-crystalline powder. Obtained 41g, 

84% yield with respect to ZrCL». 

5.1.4: Zr(NMe2)4 

This compound was prepared according to the method of Bradley and Thomas.4 

Li(NMe2) (0.5mol) was prepared as a THF solution using the procedure described in 5 .1.1. 

ZrCl4(THF)2 (38g, 0.1 mol) was added in lg portions from taped sample-vials prepared in a 

glovebox. After stirring overnight the mixture was refluxed for 2 hours before both liquid 

and solid phases of the reaction mixture were decanted into a large Schlenk tube via a wide-

bore canula. The solvent was removed under reduced pressure and the resultant white solid 

(consisting of the desired product and LiCl) was transferred to the sublimation apparatus 

shown in figure 5.1.2. It is possible to filter the liquid away from the solid at this stage, but 

the process is time-consuming and removal of the solvent from the filtrate gives crude 

Zr(NMe2)4 as a sticky solid which was extremely difficult to manipulate. The presence of 

lithium chloride on the other hand gives a dry, free-flowing powder which is easily 

transferred to the sublimation apparatus using addition tubes or a glovebox. The product 

was sublimed away from the LiCl (60°C at O.OlmmHg) and formed as white, highly air-
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sensitive crystals on the sides of the sublimator. Obtained 7g, 26% yield with respect to 

ZrCl4(THF)2. This yield is considerably lower than the 59% yield reported in the literature.4 

Use of ZrCU as a starting material and toluene as the solvent according to the method of 

Diamond and Jordan gave an even lower yield of 12%, compared with a literature yield of 

83%.3 It is not known why the yields were so low, and various modifications to 

temperature, reaction time, solvent and work-up procedure failed to improve this yield. 

5.1.5: Sodium Cyclopentadienide 

Sodium lumps (9g, 0.39mmol) were carefully cut into small pieces and placed in a 

nitrogen purged 1L flask containing THF (300ml, not dried) which had been degassed by 

one freeze thaw cycle. The flask was stirred until all evolution of hydrogen (from reaction 

between sodium metal and any moisture present in the solvent) had ceased (monitored using 

a silicone-oil bubbler). Freshly cracked cyclopentadiene (23g, O.35mol) was added 

dropwise, evolving hydrogen. The mixture was stirred overnight and the pink solution of 

sodium cyclopentadienide was filtered and either used directly for reaction or stored in a dry 

Young's ampoule as an approximately 1.16M solution in THF. 

5.1.6: Lithium Indenide 

Indene (8.7g, 75mmol) was dissolved in dry, degassed hexane in a large Schlenk 

tube. The solution was cooled to 0°C. "Butyl lithium (46ml of 1.62M in hexane, 75mmol) 

was added dropwise over a period of two hours with the Schlenk open to a mercury 

bubbler. After warming to room temperature and stirring overnight, the white precipitate of 

lithium indenide was filtered by canula, washed with hexane (2 x 50ml) and dried under 
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reduced pressure to give lithium indenide as a free-flowing, highly air-sensitive powder 

which was stored in a glove-box until required. Obtained 9. lg, 99% yield with respect to 

indene. 
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To vacuum 
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Figure 5.1.2: Apparatus for the sublimation of Zr(NMe2)4 
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5.2 Experimental for Chapter 2 

Bu 

N 

5.2.1 Synthesis of 2.15 H C02Et 2.1 

In a typical reaction, ethyl acrylate (50g, 0.5 mol) was added to a stirred solution of 

tertiarybutyl amine (40g, 0.6 mol) in ethanol (50ml) at room temperature in a fume hood. 

The mixture was stirred in air for 48 hours, after which the ethanol was removed under 

reduced pressure to give a colourless oil which was shown by NMR to be the desired 

product 2.1, sufficiently pure for further reactions. 2.1 can be further purified by distillation 

at reduced pressure (b p. 90°C at 18mm Hg; literature 90-92°C at 20mmHg). Obtained 

89g, 98% yield. 

A 3-litre, 3-necked flask was fitted with a reflux condenser and a pressure-equalised 

dropping funnel. LiAlHt (16g, 0.42 mol) was loaded into the flask, which was purged with 

nitrogen through the condenser. Diethyl ether (1L, not dried or degassed) was added and 

the suspension stirred until evolution of gas ceased (approximately 10 minutes). The 

suspension was cooled to 0°C and 2.1 (87g, 0.50 mol) was added dropwise over a period of 

4 hours. The mixture was allowed to warm to room temperature and was stirred overnight 

under a slow nitrogen purge before refluxing for 2 hours to ensure complete reaction. The 

contents of the flask were slowly added to excess ice cold concentrated aqueous sodium 

hydroxide solution with rapid stirring and cooling. Sufficient sodium hydroxide was used to 

OH N 
H 

Bu 

5.2.2: Synthesis of 2.2s 
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make the aqueous layer strongly alkaline and to dissolve most of the solid (approx. 25g 

NaOH in 150ml water). When reaction had ceased, the ether layer was decanted off and the 

aqueous layer extracted with further portions of ether (4 x 100ml). The combined ether 

extracts were dried over MgS04 and filtered before the solvent was removed on a rotary 

evaporator to give a white, crystalline solid 2.2. This was shown by NMR and elemental 

analysis to require no further purification. Obtained 48g, 72% yield. 

t Bu 

Br Br N 

5.2.3: Synthesis of IS H 2.3 

CAUTION: 2.3 and analogous compounds such as 2.4 and 2.5 are potentially nitrogen 

mustards and should be handled at all times in a fume hood using the appropriate protective 

clothing. 

2.2 (10.3g, 80mmol) was loaded into a 250ml round bottom flask fitted with a 

septum seal and a reflux condenser. The flask was cooled to 0°C and HBr (60ml of 48% 

aqueous solution) was added directly to the rapidly stirred solid over a period of 1 hour. 

After stirring at room temperature overnight, the mixture was refluxed vigorously for 1 

hour. The condenser was altered to form a distillation apparatus, and as much water as 

possible was distilled off at atmospheric pressure. The mixture was refluxed for a further 

hour before the remaining volatiles were distilled off (b.pt. 180°C). N.B. Cold traps and 

receivers from the distillations must be handled with extreme caution after this experiment 

as they contain high concentrations of HBr. 

The sticky solid residue was extracted in the minimum quantity of hot acetonitrile 

and filtered rapidly through a hot gravity filtration apparatus. The filtrate was cooled in 
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stages to -30°C to give very pale brown, needle-like crystals of 2.3 which were filtered, 

washed in diethyl ether (3 x 50ml) and dried under reduced pressure. A further crop of 

crystals was obtained by adding an equal amount of diethyl ether to the filtrate and re-

cooling to -30°C. Product obtained by this method was analytically pure. Obtained 12.7g, 

60% yield with respect to 2.2. 

A 1-litre, 2-necked flask was fitted with a reflux condenser and charged with 2.2 

(48g, 0.37 mol). CH2CI2 was added to form a slurry which was cooled to 0°C in a fume 

hood. A few drops of concentrated HC1 (1ml of ~10M aqueous solution) were added to the 

rapidly stirred slurry to ensure protonation of the amine. Thionyl chloride (50g, 0.42mol) 

was added dropwise by syringe, causing evolution of heat and white fumes. The mixture 

was stirred overnight before the dichloromethane was removed under reduced pressure to 

leave a dirty white solid. This was refluxed in ethanol (200ml) for two hours to decompose 

any unreacted thionyl chloride which might be present. On cooling the resulting ethanol 

solution, white solid 2.4 appeared which was filtered, washed with ether and dried under 

reduced pressure. Recrystallisation from the minimum quantity of hot acetonitrile yielded 

white, needle like crystals of analytically pure, anhydrous 2.4. Obtained 51g, 74% yield 

with respect to 2.2. 

Bu 

ci 

5.2.4: Synthesis of 2.47 

c N 
H ^ / + 

H 2.4 
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H 
N 

t Bu 5.2.5: Synthesis of 2.7 

A solution of 2.4 (30g, 0.16mol) in dry THF (150ml) was cooled to 0°C in a 

nitrogen purged 1L flask fitted with a reflux condenser. Sodium cyclopentadienide (freshly 

prepared from sodium (9g, 0.39 mol) and cyclopentadiene (23g, O.35mol) as described in 

5.1.5) was added dropwise to the rapidly stirred solution. The solution turned pink in 

colour and a fine white precipitate appeared. After refluxing for 4 hours water (100ml) was 

added. The mixture separated into a pale brown aqueous layer and a dark organic layerr. 

Occasionally the water-THF mixture formed an emulsion and a small quantity of saturated 

aqueous MgS04 solution was added to separate the layers. The organic layer was decanted 

and the aqueous layer extracted with ether (2x100ml) and petrol ( l x l 00ml, b.pt. 40-60°C). 

The combined organic extracts were dried over MgS04 and filtered before the solvent was 

removed on a rotary evaporator to give crude 2.7 as a brown, free flowing oil. On standing 

overnight, a small quantity of white, needle-like crystals appeared. These were filtered and 

shown by NMR to be N-tertiarybutyl azetidine 2.6 formed by ring closure of free N-'butyl-

3-chloropropylamine 2.5 (see section 2.8). The remaining brown oil was shown by *H and 

l 3C NMR and GC-MS to be a mixture of all three isomers of the desired product 2.7 along 

with some CsHs and C10H12 impurity. 

The oil was taken up into petrol (100ml, b.pt. 40-60°C), and dilute aqueous HC1 

(30mls of ~1M solution) was added. The organic layer was decanted off, and the aqueous 

layer extracted with further portions of petrol (1 x 50ml, b.pt. 40-60°C) and diethyl ether (2 

x 50ml). The organic extracts were discarded. Diethyl ether (100ml) was added to the 

aqueous layer which was then treated with aqueous NaOH solution (40ml of ~1M added 
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dropwise) until alkaline. The ether was decanted off and the aqueous layer extracted further 

(2 x 50ml ether, 1 x 50ml petrol). The combined organic extracts were dried over MgS04 

before the volatiles were removed on a rotary evaporator to give an oil shown by NMR to 

be the desired product free from organic impurities. An analytically pure sample was 

obtained by careful reduced-pressure distillation of the crude, azetidine free oil (b.pt. 180°C 

at 0.05mmHg). Obtained 20g, 69% yield with respect to 2.4. 

2.4 (14g, 75mmol) was placed in a 500ml beaker in a fume hood with a large 

magnetic follower. Toluene (200ml) was added to form a suspension. Saturated aqueous 

NaOH solution was added to the rapidly stirred suspension until the aqueous layer was 

strongly alkaline and most of the solid had disappeared. The pale yellow organic layer was 

decanted, dried over NaOH pellets for 15 minutes and used within 1 hour. 

N.B. The free amine 2.5 appears to be stable at room temperature for a period of 

several hours, but if stored for longer or allowed to warm above room temperature it will 

undergo ring-closure to form N-'Butyl azetidine. 

Bu 1 

5.2.6: Conversion of 2.4 into 2.5 
C N 

H 2.5 
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t Bu 

5.2.7: Synthesis of 2.8 H 2.8 

Lithium indenide (9.1g, 75mmol) was dissolved in dry, degassed THF in a 500ml 2-

necked flask fitted with a reflux condenser and purged with nitrogen. A freshly prepared 

toluene solution of 2.5 (from 14g 2.4, 75mmol) was added to the stirred solution using a 

syringe. The mixture was refluxed for 4 hours, after which the reaction was worked up 

using the same procedure as that used for the substituted cyclopentadiene 2.7 to give crude 

2.8 as a dark brown oil. A small amount of N-'butyl azetidine crystallised on standing and 

was removed by filtration to give 2.8 which was sufficiently pure for further reactions. An 

analytically pure sample was obtained by careful reduced-pressure distillation (b.pt. 250°C 

at O.OOlmmHg). Obtained 14.7g, 85% yield with respect to 2.4. 
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5.3: Experimental for Chapter 3 

N 
Bu 

5.3.1: Synthesis of 3.1 H 3.1 

2.7 (1.27g, 7.1mmoi) was dissolved in dry, degassed hexane in a nitrogen purged 

Schlenk tube. "BuLi (5 ml of 1.71M, 8.6 mmol) was added dropwise. A white precipitate 

formed immediately. After stirring at room temperature for 30 minutes, this precipitate was 

filtered, washed (2 x 15 ml hexane, 1 x 15ml ether) and dried under reduced pressure to 

give 3.1 as a highly air-sensitive white powder which was used immediately or stored in a 

glovebox until required. Obtained 1.3g, 98% yield with respect to 2.7. 

2.7 (0.5g, 2.8mmol) was dissolved in dry, degassed THF (20ml) in a Schlenk tube 

under nitrogen. "BuLi (3.5ml of 1.62M, 5.6mmol) was added dropwise. After stirring for 

30 minutes at room temperature, the solution was reduced in volume to 10ml, and hexane 

(30ml) was added. The resulting white precipitate was filtered, washed (2 x 10ml hexane, 1 

x 10ml diethyl ether) and dried under reduced pressure to give 3.2 as a white solid which 

like 3.1 was highly air-sensitive. Obtained 0.3 lg, 58% yield with respect to 2.7. 

5.3.2: Synthesis of 3.2 

t Bu 
N 

e 
/ "-u Li 
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t Bu 

N 

Li H 

5.3.3: Synthesis of 3j3 

2.8 (0.5g, 2.17mmol) was dissolved in hexane in a nitrogen-purged Schlenk tube. " 

Butyl lithium (1.34ml of 1.62M, 2.17mmol) was added dropwise. After stirring at room 

temperature for 30 minutes the white precipitate of 3.3 was filtered, washed in hexane 

(10ml) and diethyl ether (10ml) and dried under reduced pressure. Obtained 0.45g, 88% 

yield with respect to 2.8. 

«Bu 

Li 

5.3.4: Synthesis of 3A 

"Butyl lithium (2.68ml of 1.62M, 4.34mmol) was added dropwise to a solution of 

2.8 (0.5g, 2.17mmol) in THF (20 ml). After stirring for 30 minutes the THF solution was 

filtered. The filtrate was reduced in volume to 5ml and hexane was added before cooling to 

-30°C to give 3.4 as a white solid which was filtered, washed (2 x 10ml hexane, 1 x 10ml 

diethyl ether) and dried under reduced pressure. Obtained 0.28g of 3.4, 54% yield with 

respect to 2.8. 
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5.3.5 Reaction between 2.7 and KH ' ^ H 3.5 

2.7 (0.5g, 2.8mmol) was added dropwise to a suspension of excess KH in THF 

(20ml). The suspension was stirred at 60°C for seven days after which it was filtered. The 

filtrate was reduced in volume to 5ml and hexane (20ml) was added to give 3.5 in low yield 

as a highly air-sensitive white solid. 

5.3.6: Synthesis of 3j6 

t Bu MeiSi 
N 

H 

2.7 (0.5g, 2.8mol) in hexane (10ml) was allowed to react with "BuLi (1.75ml of 

1 62M, 2.8mol) at room temperature. The resulting white precipitate of 3.1 was stirred for 

30 minutes at room temperature, filtered, washed, dried and re-dissolved in THF. Me3SiCl 

(0.3g, 2.8mmol) was added dropwise. After stirring overnight, the mixture was filtered. 

The volatiles were removed from the filtrate under reduced pressure to give 3.6 as a yellow 

moisture-sensitive oil which was further purified by reduced-pressure distillation (b.pt. 

200°C at O.OlmmHg). Obtained 0.47g, 66% yield with respect to 2.7. The trimethylsilyl 

indenyl derivative 3.8 was obtained in an identical manner. 
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Me 3 Si Bu 
N 

5.3.7: Synthesis of 3.7 SiMe3 3 o 7 

2.7 (2g, 1 lmmol) in THF (20 ml) was allowed to react with n-BuLi (13ml of 1.62M, 

22 mmol) at room temperature for 30mins. Me3SiCl (2.4g, 23mmol) was added and the 

mixture stirred overnight before filtering. The solvent was removed from the filtrate under 

reduced pressure to give a yellow, moisture sensitive oil 3.7 which was purified by reduced 

pressure distillation (b.pt. 220°C at O.lmmHg). Obtained 2.25g, 63% yield with respect to 

2.7. The bis(trimethylsilyl)indenyl 3.9 was synthesised using an identical procedure. 

2.8 (0.25g, 1.4mmol) was dissolved in dry, degassed ether in a Schlenk tube. 

MeMgBr (0.47 ml of 3.0M in ether (Aldrich), 1.4mmol) was added dropwise, giving 

immediate formation of a white precipitate. The mixture was stirred overnight before 

removal of the solvent to yield 3.10 as an off-white powder. 3.11 was prepared in a similar 

manner using THF as the solvent and two equivalents of MeMgBr solution. 

5.3.8: Synthesis of 3.10 and 3.11 

BrMg. t Bu 
N 

\ H 3.10 

t Bu BrMg 
N 

MgBr 3 > 1 1 
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5.3.9: Reaction between 2/7 and Me2Zn 

2.7 (0.5g, 2.8mol) was dissolved in dry, degassed hexane. Me2Zn (1.4ml of 2M in 

toluene (Aldrich), 2.8mmol) was added dropwise. After stirring overnight the solvent was 

removed to give a pale yellow oil. 

5.3.10: Synthesis of 3.12 

H 
N 
t Bu Fe 

H 
N 

3.12 

2.7 (2g, 0.01 lmol) was dissolved in dry, degassed THF in a Schlenk tube under 

nitrogen. n-BuLi (6.8ml of 1.62M, 0.01 lmol) was added dropwise. After stirring for 30 

minutes, anhydrous FeCk (0.64g, 5mmol) was added. The dark coloured mixture was 

stirred overnight. The solvent was removed under reduced pressure and the residue 

extracted with petrol (b.pt. 40-60°C) and filtered. The filtrate (which was no longer air 

sensitive) was reduced in volume on a rotary evaporator to give a bright orange oil 3.12 

which was further purified by reduced pressure distillation (b.pt. 150°C at O.OlmmHg). 

Obtained lg , 44% yield with respect to 2.7. Use of FeCl2(Py)4 or FeCl2(THF)„ instead of 

anhydrous FeCk failed to improve the yield of this reaction. 

176 



Bu 
Fe 

H 
N' 

H. 

Bu1 

5.3.11: Oxidation of 3.12 J [3.13][PF6] 

3.12 (0.5g, 1.2 mmol) was dissolved in thf (10 ml) in a 50 ml round bottomed flask. 

An aqueous solution of FeCl3.6H20 (0.65 g, 2.4mmol in 20 ml water) was added. The deep 

blue solution of [3.13][FeCl,] was stirred for 20 minutes before NHiPFe (0.2g, 1.2mmol) 

was added. The resulting dark blue precipitate of [3.13] [PF 6] was filtered, washed with 

water and dried in air. Obtained 0.44g, 66% yield with respect to 3.12. 

2.8 ( lg , 4.35mmol) was dissolved in dry, degassed THF in a Schlenk tube under 

nitrogen. n-BuLi (2.68mls of 1.62M, 4.35mmol) was added. After stirring for 30mins, 

anhydrous FeCh (0.28g, 2.2mmol) was added. The mixture was stirred overnight at room 

temperature after which the solvent was removed under reduced pressure. The dark 

coloured residue was extracted with hexane (3 x 20ml). The hexane extracts were removed 

by canula filtration and the solvent removed under reduced pressure to give 3.14 as a deep 

purple oil which was purified by reduced pressure distillation, b.pt. 120°C at O.OOlmmHg. 

Obtained 0.66g, 59% yield with respect to 2.8. 

5.3.12: Synthesis of 3.14 

H 
N 
t Bu 

Fe 

4 H 
N 

Bu 
3.14 
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5.3.13: Reaction between 3.12 and Transition Metal Halides 

3.12 (0.5g, 1.2mmol) was dissolved in THF in a 100ml round-bottomed flask. One 

equivalent of anhydrous MCI2 ( M = Co, Ni) or MBr 2 (M = Mn) was added as a solid. After 

stirring for several hours, no noticeable reaction had occurred. Addition of water (10ml) 

caused an instant exothermic reaction. The colour of the mixture changed from orange to 

bright green (Co), bright yellow (Ni) or red-brown (Mn), and a solid precipitated. After 

stirring for a further 1 hour the precipitates were filtered, washed and dried under reduced 

pressure overnight to ensure complete removal of any non-coordinated water, giving 3.15 

(Co), 3.16 (Ni) and 3.17 (Mn) as free-flowing powders. 

5.4: Experimental for Chapter 4 

5.4.1: Synthesis of 4J. and 4j2 'Bu 

Ti(NMe2)4 (15.27g, 0.068mol) was dissolved in toluene (50ml) in a medium sized 

Young's ampoule. 2.7 (12.21g, 0.068mol) was added by syringe at room temperature. The 

mixture was heated to 60°C under nitrogen and stirred for 2 hours, after which the solvent 

was removed under reduced pressure to give a yellow-brown air- and moisture-sensitive oil 

which was shown by NMR to be the desired product 4.1, sufficiently pure for use in further 

reactions. Obtained 15.7g, 74% yield with respect to 2.7. Attempted distillation at 

O.OlmmHg caused decomposition of the product before distillation temperature was 

C '"""NMe, N 
NMe, 
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reached. 4.2 was synthesised in an identical manner from 2.7 (1.34g, 7.5mmol) and 

Zr(NMe 2) 4 (2g, 7.5mmol). 

5.4.2: Synthesis of 4.3 

Zr(NMe 2) 4 (0.5g, 1.87mmol) was dissolved in toluene in a Schlenk tube. 2.8 

(0.43g, 1.87mmoi) was added and the mixture was stirred at 60°C under nitrogen for 7 

days. The resulting red solution was filtered and the solvent removed under reduced 

pressure to give 4.3 as a deep red oil. 

C T '""'O'Pr N 
O'Pr 

5.4.3: Synthesis of 4A l B u 4.4 

Propan-2-ol (0.438g, 7.3mmol, dried over molecular sieves) was added dropwise to 

a solution of 4.1 (5mls of 0.73M, 0.365mmol) in dry, degassed toluene (10ml) in a Schlenk 

tube. The solution changed colour from brown to pale yellow. After stirring overnight at 

room temperature the solvent was removed to give a pale yellow air and moisture sensitive 

oil 4.4. Obtained 0. lg , 73% yield with respect to 4.1. 

5.4.4: Synthesis of 4J5 

c Ti t """'SlBu 
V N 

t S'Bu 
t Bu 

In a fume hood, 4.1 (5mls of 0.73M, 0.365mmol) was diluted with dry, degassed 

toluene (lOmls) in a Schlenk tube under nitrogen. 'Butyl thiol (0.66g, 0.73mmol) was added 
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dropwise using a syringe. After warming to 60°C for 2 hours the solvent was removed 

under reduced pressure to give an air and moisture sensitive deep red, viscous oil 4.5. 

Obtained 0.12g, 81% yield with respect to 4.1. 

5.4.5: Reaction between 4J_ and C 5 H 6 

Ti 

N 
M62N 

u 4.6 

4.1 (5mls of 0.73M in toluene, 3.65 mmol) was dissolved in toluene (10ml). Dry, 

freshly cracked cyclopentadiene (0.24g, 3.65 mmol) was added dropwise at room 

temperature using a syringe. After stirring at room temperature for 24 hours the solvent 

was removed under reduced pressure. The dark brown residue was extracted with petrol (2 

x 10ml) and filtered. The solvent was removed from the filtrate, and the resulting brown oil 

was warmed to 40°C under reduced pressure to remove all traces of unreacted C5H6, 

leaving 4.6 as a brown, viscous oil. 

4.1 (2.5mls of 1.36M in toluene, 3.4mmol) was dissolved in toluene (10ml) and 

cooled to -78°C. "Bu3SnH (1.98g, 6.8mmol) was added dropwise using a syringe. The 

mixture was allowed to warm to room temperature and then refluxed for 2 hours. The 

5.4.6: Reaction between 4J. and "Bu3SnH 

Bu3Sn«" 
N 

Bu,Sn 

feu 4.7 
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solvent was removed under reduced pressure and the dark brown residue extracted with 

petrol (2 x 10ml) and filtered. The solvent was removed from the filtrate to give a yellow, 

free flowing oil. 

5.4.7: Reaction between 4J_ and phenyiacetylene 

4.1 (0.0lg, 0.03mmol) was sealed into a 5mm NMR tube under vacuum with 

phenylacetylene (0.006g, 0.06mmol) and CeD6 (1.5ml). The tube was warmed to 60°C for 

7 days with NMR spectra being taken at 1 hour intervals for the first 6 hours and 

subsequently at 12 hour intervals. 

Bu 
N 
H 

Ph H 
Ti- • " I I I I I M Ph 

N N Ph N T 
H / Ph 

H 
N tD., / 5.4.8: Synthesis of 4j8 4.8 Bu 

4.1 (5mls of 0.73M, 3.65mmol) was dissolved in a further 20mls of toluene. Aniline 

(0.68g, 7.3mmol) was added. The mixture was stirred overnight to give a red-brown 

solution. The solvent was removed under reduced pressure and the residue re-dissolved in 

dry, degassed dichloromethane (25ml). Addition of petroleum ether (25ml, b.pt. 40-60°C) 

followed by cooling to -30° overnight gave brown, block shaped crystals of 4.8 suitable for 

X-ray diffraction which were filtered, washed in petrol (2 x 15 ml ofb.pt. 40-60°C) and 

carefully dried under reduced pressure. 
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5.4.9: Reaction between 4A and C O 2 

4.1 (5mls of 0.73M in toluene, 3.65mmol) was dissolved in more toluene (20mls) in 

a Schlenk tube. C 0 2 gas, generated by allowing solid C 0 2 to evaporate, was bubbled 

through the solution for two hours using a canula. The resulting pale brown solution was 

filtered and the solvent removed from the filtrate under reduced pressure to give a pale 

brown, air-sensitive solid 4.9 in low yield. 

5.4.10: Reaction between 4A and C S 2 

4.1 (lOmls of 0.73M, 7.3mmol) was dissolved in toluene and cooled to -78°C under 

nitrogen. CS2 (5ml, excess) was added dropwise, causing the solution to change colour 

from brown to bright red. On warming to room temperature a bright orange precipitate 

4.10 appeared which was filtered, washed in diethyl ether and dried under reduced pressure. 

4.10 was later found to be air- and water-stable. The volatiles were removed from the 

filtrate to give a viscous, air-sensitive yellow-brown oil which was shown by NMR to be a 

complex mixture of products. Obtained 3.2g of 4.10, 83% yield with respect to 4.1 i f the 

structure given in figure 4.7.4 is assumed for 4.10. 
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CHAPTER 6 

Characterisation Data 
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6.1.1: t BuNH(CH 2 ) 2 C0 2 CH 2 CH 3 (2.1) 

Boiling point: 90°C at 18 mmHg (lit. 90-92°C at 

20mmHg)1 

IR: v /cm'1 3300 (N-H stretch) 

1730 (C=0 stretch) 

'H NMR: S/ppm, 250MHz, C D C I 3 

4.00 (q, 2H, 3 J H . H = 7.0 Hz, CHzCHa) 

2.69 (t, 2H, 3J H- H = 6.5 Hz, 'BuNHCHj) 

2.35 (t, 2H, 3 J H . H = 6.5 H Z , CHj-CChEt) 

1.27 (t, 3H, 3 J H - H = 7.0 Hz, CH^Jfc) 

0.97 (s, 9H, C(CH3)3) 

l3C{lH} NMR: 5/ ppm, 62.5MHz, CDC1 3 

173.0 (C0 2Et) 

60.1 (CH 2CH 3) 

50.1 (C(CH 3) 3) 

37.8 ( lBuNHCH 2) 

35.4 (CH 2C0 2Et) 

28.8 (C(CH3)) 

14.0 (CH2CH3) 

MS(EI, CI) : m/z (%) 173 (100) [M+] 

Analysis: C H N 

calc 63.9 15.1 8.3 

found 64.0 15.2 8.1 



6.1.2: t BuNH(CH 2 ) 3 OH (2.2) 

Melting point: 67-70°C (Literature 64-67°C) 2 

IR: v/cm"1 3244 ( O - H stretch) 

3086 (N-H stretch) 

*H NMR: 5/ppm. 250MHz, CDCI 3 

3.83 (t, 2H, 3 J H - H = 5.0 Hz, C H J J O H ) 

3.10 (t, 2H, 3 J H - H = 5.0 H Z , ' B U N H C H S ) 

1.69 (quin, 2H, 3 J H . H = 5.0 Hz, C H 2 C H 2 C H 2 ) 

1.23 (s,9H, C(CH3) 

13C{lB} NMR: 5/ppm, 62.5MHz, CDC1 3 

64.9 (CH 2OH) 

50.5 (C(CH 3) 3) 

43 .0 ( lBuNHCH 2) 

31.5(CH2CH2CH2) 

28.8 (C(CH 3) 3) 

MS (CI): m/z (%] ) 131 (100) [M4"] 

Analysis: C N H 

calc 64.1 10.7 13.1 

found 63.5 11.2 13.2 



6.1.3: , BuNH(CH 2 ) 3 Br.HBr (2.3) 

IR: v/cm"' 3162 (N-H) 

' H NMR: 5/ppm, 250MHz, CDC1 3 

8.9 (broad s, 2H, "NH2) 

3.6 (t, 2H, 3 J H - H = 6.0 Hz, CtLBr) 

3.2 (m,2H,NCH2) 

2.7 (quin, 2H, 3 J H - H = 6 H Z , CH2CH2CH2) 

1.56 (s,9H, CCCHj)) 

1 3 C{ 1 H} NMR: 5/ppm, 62.5MHz, CDC1 3 

58.2 (C(CH 3) 3) 

40.9 (CH 2Br) 

29.8 (NCH 2) 

28.9 (CH2CH2CH2) 

26.0 (C(CH 3) 3) 

analysis: C N H 

calc 30.6 5.1 6.2 

found 30.6 4.9 6.4 



6.1.4: , BuNH(CH 2 ) 3 Cl.HCI (2.4) 

'H NMR: 8/ppm, 250MHz, CDCI 3 

9.40 (broad s, 2H, NH) 

3 .79 (m,2H, CH^Cl) 

3 .20 (broad m, 2H, ClitN) 

2.60 (broad m, 2H, CH2CH2CH2) 

1.58 (2, 9H, C(CH 3) 3) 

l3C{l\l} NMR: 8/ppm, 62.5MHz, CDC1 3 

57.3 (C(CH 3) 3) 

42.0 ('BuN+HaCHj) 

39.5 (CH2C1) 

29.1 (CH2CH2CH2) 

26.0 (C(CH 3) 3) 

IR: v/cm' 3410 (N-H) 

Analysis: C N H 

calc 44.9 7.5 9.7 

found 45.3 7.4 9.5 



6.1.5: C 7 H I 5 N (2.6) 

Melting point: 50-52°C 

IR: v/cm"1 2939 (aliphatic C-H stretch) 

'H NMR: 5/ ppm, 250MHz, CDCI 3 

3.84 (t, 2H, 3 J H . H = 5Hz, CJfcN) 

2.87 (t, 2H, 3 J H - H = 5Hz, CFLN) 

1.73 (quin, 2H, 3 J H . H = 5Hz, CH2CH2CH2) 

1.16 (s, pH, C(CH3)3) 

l3C{lH) NMR: 8/ppm, 62.5MHz, CDC1 3 

64.6 (CH 2N) 

50.4 (C(CH 3) 3) 

42.7 (CH 2N) 

31.6(CH2CH2CH2) 

28.7 (C(CH 3) 3) 

MS (CI): m/z (%) 112(100) [W] 

Analysis: C H N 

calc 74.3 12.4 13.3 

found 74.1 12.5 13.4 



6.1.6: CsH 5 <CH 2 ) 3 NHC(CH 3 ) 3 (2.7) 

N 
t 

H H 
N 

Bu Bu 

A B C 

Boiling point 180°Cat0.05mmHg 

LR: v/cm' 3059 (N-H) 

1098, 1024, 806 (C-H stretches of Cp ring) 

'H NMR: 8/ ppm, 200MHz, CDC1 3 

6.5, 6.3, 6.2, 6.0, 5 .5 (multiplets, CH=CH of all 3 isomers) 

3 .0 (d, 2H J = 1.4 Hz, 2H, ring CH 2 of A or B) 

2.9 (d, 2H, J= 1.3Hz, ring CH 2 of A or B) 

2.6 (td, 6H, 3 J H - H = 7.2 Hz, 4 J H . H =1.5 H Z , CHj-NH'Bu of all three 

isomers) 

2.4 (m, 6H; CjHtCJfc of all three) 

1.8 (m, 6H, C H 2 C H 2 C H 2 o f all 3) 

1.13 (s, 27H, C (CH3) 3 of all three) 

1 3 C NMR: 8/ppm, 62.5MHz, CDC1 3 

149, 147 (ipso) 

135, 134, 132, 126, 125 (ring CH) 

50 (ring CH 2) 

43 (C(CH 3) 3 

42 ( lBuNHCH 2) 

41 (C 5H 5CH 2); 

29 (C(CH 3) 3 

27 (CH 2CH 2CH 2) 



GC/MS peaks at: 70 (Mass = 66, C5H6, trace amount) 

436 (Mass= 132, C10H12, trace amount) 

688 (Mass= 179, strong peak, 2.8) 

1035 (Mass= 179, medium peak, 2.8) 

1048 (Mass= 179, medium peak, 2.8) 

Analysis: C H N 

Calc: 80.5 11.7 7.8 

Found: 80.4 11.6 7.6 



/ 
H—N 

Bu 

6.1.7: C9H7(CH2)3NHC(CH3)3 (2.8) 

Boiling point: 250°C at O.OlmmHg 

IR: v/cm 1 3398 (N-H) 

1098, 1078, 1018 (ring C-H bends) 
l H NMR: 5/ ppra, 250MHz, C D C I 3 

7.57 - 7.29 (complex multiplets, aromatic C-H) 

6.32 (m, 2H, HC=CH of 5-membered ring, superimposed) 

3.42 (d, 2H, l J H . H = 2Hz, ipso CH) 

2.77 (t, 2H, ^H-H = 7.2Hz, C9H7CH2) 

2.69 (td, 2H, 'JH-H = 7.2Hz, 2 J H . H = 0.25Hz, 'BuNHCH^) 

1.98 (quin, 2H, % - H = 7.2Hz, CH2CH2CH2) 

1.21 (s, 9H, C(CH3)3) 
1 3 C NMR: 8/ppm, 62.5MHz, CDC1 3 

131.7 (s, quaternary C of ring) 

134.0 (s, quaternary C of ring) 

129.4 (dd, 'JC-H = 120, 2JC.H = 5Hz, CH of 6-membered ring) 

127.3 (dd, 'JC-H = 120, 2JC.H = 2Hz, CH of 6-membered ring) 

124.4 (dd, 'JC-H = 165, 2JC.H = 11Hz, CH of 6-membered ring) 

123.6 (dd, 'JC-H = 145Hz, 2 J C . H = 10Hz, CH of 6-membered ring) 

118.7 (dd, 'JC-H = 172Hz, 2 J C . H = 10Hz, HC=CH of 5-membered ring) 

50.2 (s, C(CH 3) 3) 

42.4 (t, ^C-H = 135Hz, C 7H 9CH 2) 

37.6 (td, 'JC-H = 116Hz, 2 J C -H = 10Hz) 

28.9 (q, ' 1 ^ = 126Hz, C(£H3) 3) 

25.3 (t, 'JC-H = 126Hz, CHzCHzCHj) 

MS(CI): m/z (%) 230 (100) [ N f ] 

Analysis: C H N 

Calc. 83.5 10.9 6.1 

Found 83.0 10.0 5.9 



6.2: Pata for Chanter 3 

6.2.1: Li[C sH 4(CH 2)3NH tBtt](THF.) (3.1(THF)„) 

1079, 1024 (ring C-H bend) 

' H NMR: S/ppm, 250MHz, 

6.35 (t, 2H, 3 J H . H = 1.8HZ) 

6.20 (t, 2H, 3 J H - H = 1 8HZ) 

3 .70 (m, THF) 

3.05 (t, 2H, 3 J H -H = 5.5Hz, Cs^CH^) 

2.65 (quartet, 2H, 3 J H . H = 5.5Hz, 'BuNHCEb) 

1.90 (quin, 2H, 3 J H . H = 5 .5 .Hz, CH2CH2CH2) 

1.60 (m, THF) 

1.01 (s,9H, C(CHj) 3) 

IM: v/cm' - i 3200 (N-H stretch) 
0 



6.2.2 Me3Si(C5H4)(CH2)3NH tBu (3.6) 

IR: v/cm'1 3400 (N-H stretch) 

3047 (aromatic C-H) 

t Bu Me3Si 
N 

H 
2959, 2863 (aliphatic C-H) 

1097, 1015, 982 (ring C-H bends) 

l H NMR: 8/ppm, 200MHz, CDCI 3 

6.62, 6.05, 6.17, 5.60, 5.20 (m, 4H, ring CH of all three isomers) 

2.64 (t, 2H, 3 J H .H = 7.5Hz, 'BuNHCH^) 

2.55 (t, 2H, 3J H- H = 7.5Hz, 

1.80 (quin, 2H, 3 J H - H = 7.5Hz, CH2CH2CH2) 

1.18 (s, 9H, C(CH3)3) 

0.96 (t, 1H, 3 J H -H = 7.5Hz, NH) 

0.15(s,9H,Si(CH3)3) 

1 3 C{'H} NMR: 8/ppm, 62.5MHz, C D C I 3 

132.1 (ringCH) 

124.7 (ring CH) 

56.3 (C(CH 3) 3) 

50.1 ('BuNHCHj) 

43.4 (C5H4CH2) 

31.1 (CH2CH 2CH 2) 

29.0 (C(CH 3) 3) 

0.98 (Si(CH 3) 3) 
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6.2.3: Me3Si(C5H4)(CH2)3N ,BuSiMe3 (3.7) M e 3 S i 

IR: v/cm"1 3045 (aromatic C-H) 

2950, 2862, 2842 (aliphatic C-H) 

1101, 1051, 1015 (ring C-H bends) 

*H NMR: 8/ ppm, 200MHz, CDC1 3 

5.45 (broad t, 2H, 3 J H . H = 12Hz, ring CH) 

5.08 (broad t, 2H, 3 J H -H = 12Hz, ring CH) 

2.47 (m, 2H, C5H4CH2) 

1.92 (m, 2H, tBuN(SiMe 3)CH 2) 

1.55 (m, 2H, CH2CH2CH2) 

1.06 (s, 9H, C(CH3)3) 

0.09 (s with 2 9 Si satellites, 2 J H . S i = 6Hz, 9H, NSKCH^) 

-0.11 (s with 2 9 Si satellites, 2JH-si = 6Hz, 9H, CsHtS^CHOj) 

l3C{lB} NMR: 8/ppni, 62.5MHz, CDC1 3 

136.2 (ring CH) 

132.1 (ringCH) 

130.3 (ringCH) 

50.2 (C(CH 3) 3) 

42.4 (C5H4CH2) 

31.2 ( lBuN(SiMe3)CH2) 

29.1 (C(CH 3) 3) 

27.5 (CH2CH2CH2) 

4.1 (with 2 9Si satellites, 'Jc-s; = 40Hz, NSi(CH 3) 3) 

-0.8 (with 2 9 Si satellites, 'Jc-s; = 45Hz, C 5H 4Si(CH 3) 3) 



6.2.4: {C 5H 4(CH 2)3NH tBu}2Fe (3.12) ^ a j ^ ^ ^ s / " ^ , 

Boiling point: 150°C at O.OlmmHg 

IR: v/crn 1 3350 (N-H) 

3087 (aromatic C-H) 

1101, 1039, 1021 (ring C-H bend) 

lH NMR: 8/ppm, 250MHz, CDCI 3 

4.08 (s, 3.5H (see note below), C5H4) 

2.66 (t, 2H, 3 J H -H = 7.4Hz, CJHJCHJ) 

2.46 (t, 2H, 3 J H -H= 7.2HZ, CH 2NH tBu) 

1.91 (quin, 2H, 3 J H . H = 7.7Hz, CH 2CH 2CH 2) 

1.21 (s,9H, C(CH3)3) 

N.B. The insensities of signals due to protons of co-ordinated cyclopentadienyl rings are 

consistently lower than expected. This is due to the long relaxation times of such protons. 

1 3 C { l H } NMR: 8/ppm, 250MHz, CDC1 3 

88.8 (C-ipso) 

68.5 (ringCH) 

67.7 (ring CH) 

50.7 (C(CH 3) 3) 

42.5 ('BuNHCH2) 

32.2 (C 5H4CH 2) 

28.9 (C(CH 3) 3) 

27.3 (CH2CH2CH2) 

MS (CI): m/z (%) 412 (100) [NT] 

Bu 

Analysis: C H N 

calc 69.9 9.7 6.8 

found 69.5 10.1 6.5 
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6.2.5: [{C 5H 4(CH 2) 3NH tBu} 2Fe][PF 6] ([3.13][PF6] 

PF6" 

Bu 

IR: 3246 (N-H) 

1095 - 1032 (ring C-H bends) 

836 (P-F stretch) 

Magnetic data: (solid-state, 298k) 

Xg= 13.6 x 10"3gmol"' 

|0 e f f= 5.67(iB 

Analysis: 

calc 

C 

51.7 

H 

7.8 

N 

5.0 

found 29.0 5.2 3.81 

N.B. Compound [3.13] [PF 6] is believed to be contaminated with [3.13][FeCLt], accounting 

for the high value for u«ff and the low analysis results. 
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6.2.6: {CHsCCHzkNH'BuhFe (3.14) 
N' 

Bu 

Boiling point: 120°C at O.OOlmmHg 
Fe 

H 

5R: v/cm" , - i 3312 (N-H stretch) 

3055, 3015 (aromatic C-H stretches) 

Bu 
N 
H 

1019, 1118, 1232 (indenyl C-H bends) 

! H NMR: 8/ppm. 250MHz, CDC1 3 

7.6 (d, 1H, 3 J H -H = 6Hz C-H of 6-membered ring) 

7.45 (d, 1H, 3 J H -H = 6Hz, C-H of 6-membered ring) 

7.37 (d, 3 J H -H = 6Hz, 1H, C-H of 6-membered ring) 

7.27 (d, 1H, 3 J H -H = 6Hz, C-H of 6-membered ring) 

4.50 (broad, 1H, C-H of 5-membered ring) 

4.41 (broad, IH, C-H of 5 membered ring) 

2.75 (m, 4H, CH2N and CoHeCFb superimposed) 

2.00 (quin, 2H, J H - H = 7 5HZ, C H ^ l f c C H , 

1.21 (s, 9H, C(CH3)3) 

1 3 C NMR: 8/ppm, 62.5MHz, CDC1 3, ipso missing. Only one 1 3 C resonance was observed 

for the five-membered ring, and this is discussed in more detail in section 3.5.3. 

1277 (dd, lh.H= 146, 2JC.H = 2Hz, C-H of 6-membered ring) 

125.9 (dd, "JC-H = 153, 2JC.H = 2Hz, C-H of 6-membered ring) 

124.4 (dd, 'JC-H = 137, 2JC.H = 2.5Hz, C-H of 6-membered ring) 

122.7 (dd, 1 J C -H= 135, 2 J C -H= 2.5HZ, C-H of 6-membered ring) 

118.8 (dd, 'JC-H = 154, 2 J C -H = 5Hz, C-H of 5-membered ring) 

50.2 (s, C(CH 3) 3) 

42.5 (t, 1Jc-H= 137, C9H6CH2) 

37.6 (td, 'JOB = 130, 2JC.H = 2.5Hz, CHjNrfBu) 

29.0 (q, ^ = 1 2 7 , C(CH 3) 3 

25.6 (t, 'JC-H = 128, CH2CH2CH2 
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6.2.7: Data for 3.15 (from 3.12 + CoCl 2) 

H 2 Q 
Bu 
N 
H 

Co Fe 

CI 
Bu 

O H 

IR: 3491 (O-H stretch of H 2 0) 

3178 (N-H stretch) 

3090 (aromatic C-H stretch) 

2604 - 2950 (aliphatic C-H stretch) 

1620 (O-H bendofH 2 0) 

815, 994-1096 (C-H bend of ring) 

357, 454, 485 (Co-Cl) 

Solid state: X M 6.483 x 10" 3 mof 1 

!le<r 3 .94 UB 

Solution: X M 3.56 x 10"3 mol"1 

2.92 u B 

Analysis: c H N Fe Co CI 

calc 49.9 7.7 4.8 9.7 10.2 12.3 (calc for proposed struct.) 

found 52.2 8.1 4.4 8.8 9.2 9.1 



6.2.8: Data for 3.16 (from 3.12 + NiCl 2) 

H 2 0 
t Bu 
N 

Fe 
H 

CI 
Bu 

O H 

IR: 3430 (O-H stretch of H 2 0 ) 

3178 (N-H stretch) 

3088 (aromatic C-H stretch) 

2600- 2965 (aliphatic C-H stretches) 

1 6 1 6 (O-H bend o f H 2 0 ) 

802, 815, 1018- 1095 (C-H bends of ring) 

357 (Ni-Cl) 

Magnetic susceptibility: 

X M 3.7( 

3.00 HB 

Solid state: X M 3.766 x 10"3 mol' 1 

Solution: X M 3.536 x 10"3 mol"1 

H* F F 2 .91 u B 

Analysis: C 

calc 49.8 

found 44.7 

H N Fe Ni 

7.7 4.8 9.7 10.2 

6.9 3.8 8.1 10.4 

12.3 (for proposed structure) 

13.7 
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6.2.9: Data for 3.17 (from 3.12 + MnBr 2) 

t Bu 
N Br H 

,>» v V 

IV n Fe 

Br 
Bu 

O H 

IR: 3429 (O-H stretch of H 2 0 ) 

3178 (N-H stretch) 

2600- 2970 (aliphatic C-H stretch) 

1589 - 1688 (O-H bend of H 2 0) 

803, 814, 1010- 1096 (C-H bend of ring) 

Magnetic susceptibility 

Solid State: %M 0.517 X 10"3 mol' 1 

H«ff 1.11 U.B 

Solution: %M 0.3042 x 10"3 mol"1 

jltfr 0.85 | i B 



y'""NMe2 

NMe2 

6.3: Data for Chanter 4 

6.3.1: (C5H4(CH2)3NtBu)Ti(NMe2)2 (4.1) 

IR: 3090 (aromatic C-H stretch) 

2760 - 2960 (aliphatic C-H stretch) 

963, 1046-1140 (C-H bends of 

cyclopentadienyl ring) 

'H NMR: 5/ppm, 250MHz, CaD* 

5.90 (t, 2H, 3J = 2.5Hz, ring) 

5.85 (t, 2H, 3J=2.5Hz, ring) 

3.12 (s, 12H,N(CH3)2) 

2 57 (m, 4H, CsHtCIfcand CPL-N'Bu superimposed) 

1.71 (quin, 2H, 3J=7Hz, CH2CH2CH2) 

1.02 (s, 9H, C(CH3)3) 

1 3 C{ X H} NMR: 5/ppm, 62.5MHz, CDC1 3 

110, 109 (ring C-H) 

49 (N(CH 3) 2 

42.5 (C(CH 3) 3) 

42 (CHztfBu) 

39 (C5H4CH2) 

29 (CH2CH2CH2) 

358 (33) [Nf + HNMe 2], 313 (100) [NT], 269 (40) [NT - NMe 2] 

402 (48) [4.1a], 358 (40) [4.1a - NMe 2 ], 313 (100) [Wt], 269 (82) [M* 

- NMe 2], 224 (12) [Ti(NMe 2) 4], 210 (44) [W - 2NMe 2 - CH 3 ], 180 

(24) [Ti(NMe 2) 4 - NMe 2] 

C H N 

61.3 10.0 13.4 

61.2 10.5 13.8 
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MS (CI): m/z (°/0/ 

MS (EI): m/z (%, 

Analysis: 

calc 

found 



6.3.2: 4.1 after distillation (4.1a) 

IR-.v/cm"1 3086 (aromatic C-H) 

2760-2961 (aliphatic C-H) 

950, 1040-1136 (C-H bends of ring) 

! H NMR: 5/ppm, 250MHz, CDCI 3 

r > 

t L ^ B u 
t Bu 

6.13 (t, 2H, 3 J H -H = 3Hz, ring CH) 

5.95 (t, 2H, 3 J H -H = 3Hz, ring CH) 

5.86 (t, 2H, 3 J H .H = 3Hz, ring CH) 

5.70 (t, 2H, 3 J H .H = 3Hz, ring CH) 

3.10 (s, 12H, Ti{N(CH3) 2 }4) 

2.61 (m, 8H, C5H4CH2 and CHjN superimposed) 

1.76 (m, 4H, CH2CH2CH2) 

1.13 (s, 18H,C(CH3)3 

"CfK} NMR: 8/ppm, 62.5MHz, CDC1 3 

111.1 (ringCH) 

110.0 (ring CH) 

109.1 (ringCH) 

108.9 (ring CH) 

51.0(C(CH 3) 3) 

50.1 (Ti{N(CH 3 ) 2 } 4 ) 

42.4 (C5H4CH2) 

31.9(CH2N*Bu) 

29.0 (C(CH 3) 3) 

27.0 (CH2CH2CH2) 



6.3.3: (C5H4(CH2)3N tBu)Zr(NMe2)2 (4.2) 

'H NMR: S/ppm, 250MHz,C6D6 

6.16 (t, 2H, 3 J H -H = 3Hz, ring CH) 

6.14 (t, 2H, 3 J H -H = 3Hz, ring CH) 

3.11 (s, 12H,N(CH3)2) 

2.45 (m, 4H, CjKtCHj and C H ^ B u ) 

1.60 (quin, 2H, 3 J H . H = 8Hz, CH^l fcCH,) 

1.16(s,9H,C(CH3)3 

1 3 C{ 1 H} NMR: §/ppra, 62.5MHz, C6B6, ipso missing 

109.7 (ringCH) 

109.5 (ringCH) 

49.3 (C(CH 3) 3) 

44.7 (N(CH 3) 2) 

41.9 (C 5H 5CH 2) 

33.1 ( C H ^ B u ) 

29.1 (C(CH 3) 3) 

26.7 (CH2CH2CH2) 

-ZH-

Bu1 
J Y""'NMe2 

NMe2 
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6.3.4: (C9H6(CH2)3N ,Bu)Zr(NMe2)2 (4.3) 

IR: v/cm" 
£ 3 

3066 (aromatic CH) 

2765-2962 (aliphatic CH) 

940, 1019-1130 (CH bends of ring) 

! H NMR: 5/ppm, 250MHz, CDCI 3 

7.20-7.65 (m, CH of 6-membered ring) 

5.06 (d, 1H, 3 J H -H = 3Hz, CH of 5-

membered ring) 

4.97 (d, 1H, V H = 3Hz, CH of 5-membered ring) 

2.72 (s, 12H, N(CH3)2) 

2.50 (m, 4H, C9H6CH2 and C H ^ B i x ) 

1.94 (quin, 2H, 3 J H . H = 6.5Hz, CH2CH2CH2) 

1.93 (s,9H, C(CH3)3) 

l3C{lH} NMR: S/ppm, 62.5MHz, CDC1 3, ipso missing 

125 .9 (CH of 6-membered ring) 

124 .4 (CH of 6-membered ring) 

123 .6 (CH of 6-membered ring) 

121.9 (CH of 6-membered ring) 

118.2 (CH of 5-membered ring) 

115.8 (CH of 5-membered ring) 

50.3 (C(CH 3) 3) 

43.2 (N(CH 3) 2) 

42.4 (C9H6CH2) 

37.6 ( C H ^ B u ) 

29.0 (C(CH 3) 3) 

25.6 (CH2CH2CH2) 

' Z r N ^ " ' ' « / / N M e 2 

NMe2 

*Bu (both isomers) 
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6.3.5: (C5H4(CH2)3N ,Bu)Ti(O iPr)2 

IR: v/cm"1 3046, 3090 (aromatic C-H stretch) 

2859-2961 (aliphatic C-H stretch) 

^ ' N 
990, 1100-1230 (C-H bends of ring) 

l H NMR: 8/ppm, 250MHz, CDC1 3 *Bu 

6.21 (t, 2H, 3 J H -H = 2.5Hz, ring) 

6.12 (t, 2H, 3 J H -H = 2.5Hz, ring) 

4.60 (septet, 2H, 3 J H . H = 6Hz, (CH 3) 2CHO) 

2.68 (m, 4H, C5H4CH2 and CH 2N tBu superimposed) 

1.80 (quin, 2H, 3 J H . H = 7Hz, CH2CH2CH2) 

1.18 (d, 12H, 3 J H -H = 7Hz, OCH(CH3)2) 

1.17 (s, 9H, C(CH3)3) 
1 3 C NMR: 5/ppm, 62.5MHz, CDC1 3 

111.5 (ringCH) 

111.0 (ringCH) 

50.2 (C(CH 3) 3) 

42.4 (OCH(CH 3) 2) 

31.2CBuNCH2) 

28.9 (OCH(CH 3) 2) 

27.3 (C5H4CH2) 

25.9 (NC(CH 3) 3 

25.3 (CH2CH2CH2) 

MS(CI): m/z (%) 343 (10) [ M f ] 

179 (70) [C 5H 5(CH 2) 3NH tBu)] 



6.3.6: (C5H4(CH2)3N tBu)Ti(S tBu)2 (4.5) 

'H NMR: 8/ppm, 250MHz, CDCI 3 

6.62 (t, 3 J H -H = 2.5Hz, C5H4) 

6.50 (t, 3 J H .H - 2.5Hz, C5H4) 

2.86 (t, 2H, 3 J H -H =7.6HZ, CJfctfBu) 

2.68 (q, 2H, 3 J H . H = 7.6Hz, CH2C5H4) 

1.86 (m, 2H, 3 J H -H = 7.6Hz, CH 2CH 2CH 2) 

1.61 (s, 18H, SC(CH3)3) 

1.17(s,9H,NC(CH 3) 3) 
1 3 C NMR: 8/ppm, 62.5MHz, CDC1 3 

113.6 (ring) 

111.8 (ring) 

53.7 (SC(CH3)3) 

50.2 (NC(CH 3) 3 

42.1 (CH2N'Bu) 

34.9 (SC(CH3)3) 

32.5 (C5H4CH2) 

29.5 (CH2CH2CH2) 

29.0 (NC(CH 3) 3) 



6.3.7: (C 5H 4(CH 2)3N tBu)Ti(C 5H 5)NMe2 (4.6) 

IR: 3055 (aromatic C-H) 

2760- 2960 (aliphatic C-H) 

1017- 1137 (C-H bends of 

co-ordinated Cp rings) 

H NMR: 8/ ppm, 200MHz, CDC1 3 

6.04 (s, C 5 H 5 ) 

5.92 (t, 3 J H -H = 2.7Hz, C5H4CH2) 

5.83 (t, 3 J H -H= 2.7Hz, C5H4(CH2) 

3.05 (s, 6H, N(CH3)2) 

2.56 (m, 4H, 3J H- H = 1Hz, C5H4CH2 and 'BuNHCH^ superimposed) 

1.73 (quin, 2H, 3 J H . H = 1Hz, CH 2 CH2CH 2 ) 

1.08 (s, 9H, C(CH3) 3) 

" C ^ H } NMR: 5/ppm, 62.5MHz, CDC1 3, all quaternary C's missing 

118.0(C 5H4CH 2) 

117.5(C 5H4CH 2) 

116.9 (C 5H 5) 

52.1 (N(CH 3) 2) 

46.0 (CHjNH'Bu) 

43.9 (C5H4CH2) 

39.0 (CH2CH 2 CH 2 ) 

28.9 (C(CH 3) 3) 
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6.3.8: (C5H4(CH2)3N ,Bu)Ti(SnnBu3)2 (4.7) 

H NMR: 5/ppm, 250MHz, CDCI 3 

6.03 (t, 3 J H . H = 3 H Z , C 5 H 4 ) N 
""""SnBifc 

5.93 (t, 3 J H -H = 3HZ, C5H4) 
SnBU3 

Bu 
1.80 (t, 3 J H -H = 8Hz, CH2CH2 of "Bu) 

1.45 (q, 3 J H -H = 8Hz, CH2CH3 of "Bu) 

1.14 (t, 3 J H -H = 8Hz, CH2CH2 of "Bu) 

1.10 (s, C(CH3)3) 

0.99 (t, 3 J H -H = 8Hz, CH2CH3 of "Bu) 

Note: signals for C5H4CH2, CH2CH2CH2 and ClfcNH'Bu are swamped by the signals due to 

"Bu protons. This is discussed in section 4.5.4. 

1 3 C{'H} NMR: 8/ppm, 62.5MHz, CDC1 3, quaternary C's missing 

110.0 (ring CH) 

109.0 (ring CH) 

49.5 (C5H4CH2) 

42.3 ( lBuNCH 2) 

30.6 (SnCH2CH2CH2CH3) 

29.0 (NC(CH 3) 3) 

27 4 (SnCH 2CH 2CH 2CH 3) 

27.0 (CH2CH2CH2) 

13.6(SnCH2CH2CH2CH3) 

9.9 (with 1 1 9Sn and U 7 Sn sats appearing as finely spaced doublets, 'Jc-sn 

= 60Hz, SnCH2CH2CH2CH3) 
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6.3.9: [(Cp(CH 2) 3 NtBu)Ti(NHPh)]2(jl-NPh)2 4.8 

3038 (aromatic C-H) 

2860, 2956 (aliphatic C-H) 

994, 1025, 1069, 1099 (ring C-H bends) 

761, 816, 857 (ring C-H bends) 

J H NMR: S/ppm, 250MHz, CDCI 3 (all are 4.8a unless otherwise stated) 

8.67 (N-Hof4 .8b) 

7.40 (t, meta C-H of phenyl) 

7.3 (m, meta C-H of phenyl groups) 

6.95 (m, phenyl of 4.8b) 

6.87 (t, phenyl of 4.8b) 

6.78 (d, 3 J H -H = 7.8Hz, ortho C-H) 

6.59 (d, 3 J H -H = 7.5Hz ortho C-H) 

6.31 (q, C5H4 of 4.8b) 

6.21 (t,C 5H4 of 4.8b) 

6.19 (t, 3 J H -H = 2.6Hz, C5H4) 

N 
H 

Ph H / 
Ph "iiiN 

N N 
Ph N -Ti 

H / 
Ph 

H 
N 

to.. / Bu 

Bu 

IR: v/cm 3392 (N-H stretch) 



6.13 (t, l J H . H = 2.6Hz, C5H4) 

3.74 (broad s, 2H, C 6H 5NH) 

2.38 (q, 4H, 3 J H . H = 7.3Hz, CHzNrfBu) 

2.23 (t, 4H, 3 J H -H = 7.3Hz, CsHjCHa) 

1.50 (quin, 4H, 3 J H . H = 7.3Hz, CH^HsCH,) 

1.13 (s, C(CH3)3 of 4.8b) 

1.09 (s, 18H, C(CH3)3 of 4.8a) 

0.45 (t, 2H, 3 J H -H = 7.3Hz, CH 2NH lBu) 

"C^H} NMR: S/ppm, 62.5MHz, CDC1 3, 4.1a unless otherwise stated 

157.9 (para-CH of phenyl) 

155.3 (para-CH) 

128.9 (meta-CH) 

128.5 (meta-CR) 

122.5 (phenyl CH of 4.8b) 

120.3 (ortho-CU) 

119.1 (phenyl (CH of 4.8b) 

118.5 (phenyl CH of 4.8b) 

111.6 (ortho-CH) 

114.7 (ring CH of 4.8b) 

114.1 (ring CH of 4.8b) 

113.9 (ring CH) 

113.6 (ring CH) 

50.0 (C(CH 3) 3) 

42.7 (CH 2NH'Bu of 4.8b) 



42.0 (CJ^NrfBu) 

32.2 (C 5H4CH 2of4.8b) 

31.7(C5H4CH2) 

29.2(C(CH 3) 3of4.8b) 

29.0 (C(CH 3) 3) 

27.0(CH2CH2CH24.8b) 

26.9 (CH2CH2CH2) 

1 3 C NMR: 8/ppm, 75MHz, solid-state 

158, 154 (CN of phenyl) 

129, 121 (CH of phenyl) 

50 (CH 2) 

42 (CH 2) 

30 (C(CH 3) 3 

X-ray data: see appendix B 



6.3.10: 4.1 + CS 2 (4.10) 

NMe2 

I 

A s' Ns s 
/<' \ / \ / °\ 

Me2N C : Ti Ti : c — N M e 2 

w , / v 

C 4.10 

NMe2 

IR: v/cm"1 2850-2960 (aliphatic C-H) 

1506 (C-N) 

1 3 C NMR: 5/ppm, 7SMHz, solid-state 

206.9, 206.1, 204.8, 204.2 (CS) 

41.8, 41.2, 39.2, 38.5, 37.7 (N(CH 3) 2) 

1 5 N NMR: S/ppm, solid-state 

-238.5 

-235.8 

-232.2 

-230.3 

Analyisis: C H N S 

calc 25.0 4.2 9.7 44.4 

found 23.9 4.5 10.2 44.8 
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Appendix A: Magnetic Susceptibility Determination 

A l : Solid-state magnetic susceptibilities 

Magnetic susceptibilities were determined using a Johnson-Matthey-Evans (JME) 

magnetic susceptibility balance using a variation of the Gouy method1 which involves 

monitoring the change in weight of a sample of paramagnetic compound when it is placed in 

a magnetic field (and hence the force exerted on the sample by the magnetic field). 

Procedure 

An empty sample tube was placed in the JME balance and the reading R q was noted 

(Ro is always negative as glass is diamagnetic). The tube was carefully packed with an 

accurately weighed, finely powdered sample and a second reading R was taken (if the 

compound is paramagnetic the R is positive and high). The length of the sample 1 (in cm) 

was also noted as was the temperature T (in K) in the balance room. The balance was 

calibtated and the balance constant C determined using HgCo(NCS)4 as a standard 

compound (u^ff = 4.35 U b at 298K).1 

Calculation 

Mass susceptibility Xg-
Xg-CKR-Rp) cmg-1 

8 1 0 9 m -

Molar Susceptibility Xm: 

Xm = M X g cmmol"1 

Effective Magnetic Moment u e f f 
U e f f = r 3 k T x m Y / 2 u B 

substituting constants gives: 

u e f f = 2 . 8 2 8 ( x m T ) ^ u B 
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(C = balance constant, 
m = mass of sample in g) 

M = relative molecular mass 
of sample) 

T = temperature in K 



A2: Solution magentic susceptibilities 

Solution state magnetic susceptibilities were determined using Evans' NMR method2 

in which the change in the *H NMR chemical shift value observed when a paramagnetic 

species is dissolved in a solvent is used to calculate the magnetic susceptibility of the 

paramagnetic species. 

Procedure 

Exact weighed samples of the paramagnetic compounds 3.15, 3.16 and 3.17 were 

dissolved in exactly weighed quantities of CDCI3 in 5mm NMR tubes. NMR spectra of all 

three samples and of a sample containing blank solvent were run at 250MHz. 

Calculation 

I f the protons of the solute do not interact with the solvent then the shift in 

frequency Af is given by: 

Xnuss = 3Af + Xo + XaCdori) 

4rcfm m 

where: Af is the change in frequency on dissolving the paramagnetic species 

(Hz) 

f is the spectrometer frequency (250 x 106Hz in this case) 

m is the mass of substance in 1ml of solution (gml 1) 

Xmaas is the mass susceptibility of the solute 

Xo is the mass susceptibility of the solvent 

do is the density of the solvent (gem"3) 

d is the density of the solution (gem'3) 
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The last two terms of this equation are in practice small, of opposite sign and almost 

eequal magnitude and so can be neglected. The factor of 3/4% is a function of the 

orientation of the magnetic field of the Fourier Transform NMR spectrometer. 

From this: 

Xmass 3 Af 
47cfm 

molar susceptibility Xm = XmassM (M = R.M.M. of solute) 

and using the same equations as for the solid state calculations above, the effective magnetic 

moment is given by: 

u e f f =2.828(x M T) 1 / 2 U b 

A3: Magnetic data for 3.15,3.16 and 3.17 at 298k 

Solid-state: 

Compound m/g I/cm r-r 0 Xmass/g X M / H I O I 1 

HgCo(NCS)4 9.59 x 10"3 2.7 491 1.644 x 10"6 8.09 x 10"3 4.35 

3.15 1.99 x 10"3 2.8 98 1.4 x 10"5 8.1 x 10'3 4.39 

3.16 2.99 x 10"3 2.5 77 6.5 x 10"6 3.8 x 10"3 3.00 

3.17 4.17 x 10"3 2.4 13 7.6 x 10'7 0.5 x 10"3 1.11 
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Solution-state: 

Compound ra/gml1 Af/Hz 

3.15 0.9 x 10"3 1.29 6.2 x 10-6 3.6 x 10"3 2.92 

3.16 0.9 x 10'3 1.28 6.1 x 10"6 3.5 x 10"3 2.91 

3.17 1.4 x 10"3 0.14 0.45 x 10^ 0.0 x 10'3 0.85 

References 

1) Procedure taken from second-year undergraduate laboratory course in inorganic 

chemistry, University of Durham, 1996. 

2) S. K. Sur, J. Mag. Res., 1989, 82, 169. 
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Appendix B: X-ray Crvstallographic Data for 4.8 

C21 
C5 

Cll C22 C6 C20 CI 

C8 
C7 

C3 Hto 
C2 

C9 N3 C23 
CIS Til 

HI 
C24 

era KJn cie C12 
C17 C13 N2 N2o 

H3na Ct6 Tlla CIS Hlo 
CU 

B l : Procedure 

The X-ray structure of 4.8 was determined at the University of Durham by Mr P. 

Ford. A red-brown crystal (0.2x0.1 x 0.1mm) of 4.8 was selected in a perfluorinated oil 

and mounted at 150K on a glass filament in a Siemens SMART diffractometer equipped 

with a dry N 2 stream low temperature device. Lattice parameters were obtained by least 

squares refinement of 25 high angle reflections. A graphite monochromator, X = 0.71073 

A, MoKa was used. Data were collected at room temperature, using omega scans. All 

computation used SHELXTL 1, data reduction and corrections were by XPREP. 16296 

reflections were collected with 11067 reflections independant [R(int) = 0.0877] and 10912 

reflections with I > 2a(I) used for refinement. The structure was solved by direct methods 

using XS and refined by Fourier and least-squares using XL. Fourier difference maps 

indicated which Ti-bound N atoms bore hydrogens but these were placed geometrically 

along with other hydrogens and refined isotropically. Tables of atomic co-ordinates, 

thermal parameters and bond lengths and angle have been deposited at the Cambridge 

Crystallographic Data Centre. 

218 



B2: Crystal data and structure refinement 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calc) 

Absorption coefficient 

F(000) 

9 range for data collection 

Index ranges 

Reflections collected 

Independant reflections 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F 2 

Final R indices [ I > 2o(I)] 

R indices (all data) 

Largest diff. peak and hole 

293(2)K 

0.71072 A 

Triclinic 

PI 

a= 11.57050(10) A 

b= 12.0315(2) A 

c= 17.2718(3) A 

2180.18(6) A 3 

2 

1.247 Mgm" 3 

0.406 mm"1 

872 

3.46- 34.56° 

- 1 8 < h < 11,-18 < k < 13, 22 < 1 < 24 

16296 

11067 [R(int) = 0.0877] 

Full-matrix-least-squares on F 2 

19012/0/175 

1.116 

Rx = 0.0647, wR 2 = 0.1615 

R t = 0.0880, wR 2 = 0.2183 

+0.677 and -0.929 eA"3 

a = 78.3580(10)° 

3 = 83.0390(10)° 

7 = 67.9640(10)° 

219 



B3: Tables of data 

Table B 1: Atomic co-ordinates ( x 104) and equivalent isotropic displacement parameters 

( A 2 x 10 3 ) for 4.8. U(eq) is defined as one t 

tensor. 

* 

Ti(l) 9305(1) 5753(1) 4331(1) 27(1) 
Ti(2) 10715(1) 9145(1) 629(1) 26(1) 
N(5) 9724(2) 10822(2) 468(1) 28(1) 
N(3) 9032(3) 7474(2) 4315(2) 35(1) 
N(2) 11020(2) 4926(2) 4549(1) 30(1) 
N(6) 12420(2) 9159(2) 534(2) 35(1) 
N(4) 6889(3) 7409(2) -553(2) 37(1) 
C(37) 9176(3) 11764(2) 913(2) 27(1) 
C(43) 13578(3) 8586(3) 890(2) 33(1) 
C(13) 12166(3) 4629(2) 4113(2) 29(1) 
C(18) 12424(3) 5533(3) 3536(2) 36(1) 
C(19) 8488(3) 8665(2) 3917(2) 33(1) 
C(26) 9175(3) 8590(3) 1460(2) 35(1) 
C(31) 8424(3) 7435(3) 282(2) 34(1) 
C(29) 11164(3) 7197(2) 1478(2) 34(1) 
C(42) 9881(3) 11930(3) 1461(2) 33(1) 
C(30) 9620(3) 6742(3) 727(2) 35(1) 
C(25) 9973(3) 7500(2) 1187(2) 32(1) 
N(l) 7794(3) 1081(3) 5559(2) 44(1) 
C(14) 13093(3) 3457(3) 4235(2) 35(1) 
C(3) 9657(3) 5238(3) 3056(2) 40(1) 
C(4) 8636(3) 6330(3) 3013(2) 40(1) 
C(38) 7939(3) 12582(3) 818(2) 37(1) 
C(5) 7643(3) 6108(3) 3500(2) 40(1) 
C(32) 8043(3) 6648(3) -146(2) 38(1) 
C(34) 6208(3) 5713(3) -716(2) 44(1) 
C(41) 9369(3) 12897(3) 1877(2) 40(1) 
C(24) 9082(3) 9510(3) 3854(2) 38(1) 
C(33) 6475(3) 6866(3) -1111(2) 39(1) 
C(27) 9875(3) 8925(3) 1933(2) 39(1) 
C(40) 8159(3) 13706(3) 1771(2) 42(1) 
C(23) 8551(4) 10689(3) 3445(2) 44(1) 
C(28) 11098(3) 8068(3) 1945(2) 39(1) 
C(l) 8048(3) 4859(3) 3845(2) 39(1) 
C(7) 7918(3) 2975(3) 4793(2) 44(1) 
C(20) 7342(3) 9063(3) 3568(2) 43(1) 
C(2) 9300(3) 4322(3) 3578(2) 39(1) 
C(22) 7438(4) 11062(3) 3088(2) 48(1) 
C(17) 13568(3) 5268(3) 3118(2) 43(1) 
C(16) 14476(3) 4112(3) 3243(2) 42(1) 
C(44) 14089(3) 7319(3) 1107(2) 42(1) 
C(48) 14248(3) 9270(3) 1040(2) 41(1) 
C(15) 14227(3) 3204(3) 3803(2) 43(1) 
C(6) 7215(3) 4244(3) 4351(2) 46(1) 
C(8) 7052(4) 2345(3) 5232(2) 48(1) 

C(39) 7448(3) 13537(3) 1241(2) 45(1) 
C(9) 7111(4) 339(3) 6043(2) 48(1) 
C(47) 15367(3) 8700(4) 1419(2) 50(1) 
C(35) 5259(4) 7843(3) -1436(3) 54(1) 
C(45) 15204(3) 6768(3) 1496(2) 47(1) 
C(46) 15844(3) 7436(4) 1658(2) 49(1) 
C(21) 6829(3) 10242(3) 3148(2) 50(1) 
C(10) 8070(5) -960(4) 6210(3) 64(1) 
C(ll) 6053(4) 310(4) 5594(3) 64(1) 
C(36) 7456(4) 6571(4) -1789(2) 53(1) 
C(12) 6610(8) 806(5) 6812(3) 103(2) 
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Table B.2: Hydrogen co-ordinates (x 104) ind isoptropic displacement parameters (A 2 xl0 3 ) 

for 4.8. 

X y z U(eq) 

H(3N) 9651(35) 7412(33) 4578(23) 41 H(35B) 4959(4) 7547(3) -1816(3) 68(13) 
H(6N) 12357(34) 9887(35) 292(22) 42 H(35C) 5415(4) 8566(3) -1685(3) 76(14) 
H(4N) 6269(36) 7602(34) -160(24) 45 H(45A) 15518(3) 5927(3) 1648(2) 59(12) 
H(18A) 11823(3) 6311(3) 3437(2) 38(8) H(46A) 16583(3) 7060(4) 1923(2) 80(15) 
H(26A) 8272(3) 8973(3) 1399(2) 51(10) H(21A) 6076(3) 10482(3) 2908(2) 54(11) 
H(31A) 7751(3) 7785(3) 655(2) 39(9) H(10A) 8383(5) -1250(4) 5719(3) 88(18) 
H(31B) 8540(3) 8099(3) -102(2) 27(7) H(10B) 7680(5) -1482(4) 6535(3) 61(13) 
H(29A) 11891(3) 6462(2) 1415(2) 42(9) H(10C) 8749(5) -962(4) 6481(3) 81(16) 
H(42A) 10695(3) 11390(3) 1546(2) 28(7) H(11A) 6391(4) 9(4) 5110(3) 115(21) 
H(30A) 9517(3) 6053(3) 1090(2) 30(7) H(11B) 5445(4) 1118(4) 5477(3) 83(16) 
H(30B) 10300(3) 6426(3) 349(2) 33(8) H(11C) 5663(4) -214(4) 5916(3) 95(17) 
H(IN) 8221(38) 707(37) 5152(26) 52 H(36A) 8216(4) 5962(4) -1585(2) 74(15) 
H(14A) 12943(3) 2846(3) 4610(2) 48(10) H(36B) 7612(4) 7294(4) -2039(2) 73(14) 
H(3A) 10437(3) 5099(3) 2730(2) 64(13) H(36C) 7159(4) 6273(4) -2169(2) 74(14) 
H(4A) 8583(3) 7093(3) 2659(2) 63(12) H(12A) 6011(8) 1619(5) 6703(3) 91(18) 
H(38A) 7447(3) 12482(3) 469(2) 36(8) H(12B) 7285(8) 807(5) 7085(3) 92(19) 
H(5A) 6792(3) 6698(3) 3546(2) 37(8) H(12C) 6216(8) 288(5) 7138(3) 98(18) 
H(32A) 8702(3) 6299(3) -528(2) 33(8) 
H(32B) 7905(3) 5988(3) 231(2) 22(6) 
H(34A) 5590(3) 5902(3) -290(2) 53(11) 
H(34B) 6963(3) 5095(3) -511(2) 53(11) 
H(34C) 5906(3) 5424(3) -1099(2) 54(11) 
H(41A) 9849(3) 13000(3) 2232(2) 48(10) 
H(24A) 9838(3) 9278(3) 4089(2) 50(10) 
H(27A) 9533(3) 9570(3) 2256(2) 71(14) 
H(40A) 7825(3) 14353(3) 2049(2) 65(13) 
H(23A) 8957(4) 11235(3) 3412(2) 53(11) 
H(28A) 11759(3) 8023(3) 2268(2) 43(9) 
H(7A) 8460(3) 2483(3) 4418(2) 35(8) 
H(7B) 8441(3) 3037(3) 5169(2) 42(9) 
H(20A) 6913(3) 8533(3) 3616(2) 41(9) 
H(2A) 9800(3) 3450(3) 3673(2) 56(11) 
H(22A) 7096(4) 11849(3) 2810(2) 54(11) 
H(17A) 13729(3) 5876(3) 2746(2) 64(12) 
H(16A) 15240(3) 3943(3) 2958(2) 39(9) 
H(44A) 13682(3) 6841(3) 990(2) 46(10) 
H(48A) 13943(3) 10110(3) 884(2) 58(12) 
H(15A) 14827(3) 2424(3) 3888(2) 52(10) 
H(6A) 6634(3) 4187(3) 4014(2) 65(13) 
H(6B) 6731(3) 4752(3) 4734(2) 76(15) 
H(8A) 6584(4) 2771(3) 5657(2) 60(12) 
H(8B) 6463(4) 2357(3) 4873(2) 51(10) 
H(39A) 6630(3) 14073(3) 1170(2) 63(12) 
H(47A) 15804(3) 9165(4) 1515(2) 55(11) 
H(35A) 4643(4) 8028(3) -1008(3) 40(9) 
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Table B.3: Bond lengths (A) for 4.8 

Ti(l)-N(2) 1.902(2) 
Ti(l)-N(2)#l 1.991(2) 
Ti(l)-C(2) 2.361(3) 
Ti(l)-C(5) 2.398(3) 
Ti(D-Ti(l)#l 2.8688(9) 
Ti(2)-N(6) 1.967(3) 
Ti(2)-C(27) 2.348(3) 
Ti(2)-C(28) 2.381(3) 
Ti(2)-C(25) 2.426(3) 
N(5)-C(37) 1.405(3) 
N(3)-C(19) 1.397(3) 
N(2)-Ti(l)#l 1.991(2) 
N(4)-C(32) 1.471(4) 
C(37)-C(38) 1.407(4) 
C(43)-C(48) 1.399(4) 
C(13)-C(14) 1.408(4) 
C(18)-C(17) 1.385(4) 
C(19)-C(24) 1.407(4) 
C(26)-C(25) 1.425(4) 
C(31)-C(30) 1.528(4) 
C(29)-C(28) 1.420(4) 
C(30)-C(25) 1.510(4) 
N(l)-C(9) 1.480(4) 
C(3)-C(4) 1.395(5) 
C(4)-C(5) 1.416(5) 
C(5)-C(l) 1.418(4) 
C(41)-C(40) 1.381(5) 
C(33)-C(36) 1.526(5) 
C(27)-C(28) 1.404(5) 
C(23)-C(22) 1.374(6) 
C(l)-C(6) 1.520(4) 
C(7)-C(6) 1.524(5) 
C(22)-C(21) 1.394(5) 
C(16)-C(15) 1.398(5) 
C(48)-C(47) 1.391(5) 
C(9)-C(10) 1.533(6) 
C(47)-C(46) 1.400(5) 

Ti(l)-N(3) 1.969(2) 
Ti(l)-C(3) 2.356(3) 
Ti(l)-C(4) 2.377(3) 
Ti(l)-C(l) 2.412(3) 
Ti(2)-N(5) 1.891(2) 
Ti(2)-N(5)#2 2.008(2) 
Ti(2)-C(26) 2.359(3) 
Ti(2)-C(29) 2.408(3) 
Ti(2)-Ti(2)#2 2.8633(9) 
N(5)-Ti(2)#2 2.008(2) 
N(2)-C(13) 1.402(4) 
N(6)-C(43) 1.408(4) 
N(4)-C(33) 1.480(4) 
C(37)-C(42) 1.410(4) 
C(43)-C(44) 1.401(4) 
C(13)-C(18) 1.414(4) 
C(19)-C(20) 1.398(5) 
C(26)-C(27) 1.422(4) 
C(31)-C(32) 1.520(4) 
C(29)-C(25) 1.416(4) 
C(42)-C(41) 1.391(4) 
N(l)-C(8) 1.470(4) 
C(14)-C(15) 1.388(5) 
C(3)-C(2) 1.431(4) 
C(38)-C(39) 1.388(4) 
C(34)-C(33) 1.540(4) 
C(24)-C(23) 1.391(4) 
C(33)-C(35) 1.536(5) 
C(40)-C(39) 1.392(5) 
C(l)-C(2) 1.408(5) 
C(7)-C(8) 1.520(4) 
C(20)-C(21) 1.395(4) 
C(17)-C(16) 1.387(5) 
C(44)-C(45) 1.394(5) 
C(9)-C(12) 1.513(6) 
C(9)-G(ll) 1.540(6) 
C(45)-C(46) 1.365(5) 
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Table B.4: Bond angles (°) for 4.8. 
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Table B.5: Anisotropic displacement parameters (A 2 x 10'3) for 4.8. The anisotropic 

displacement factor takes the form -27i2[h2a*2 U l 1 + + 2hka*b* U12] 

U l l U22 U33 U23 U13 U12 

Ti(l) 35(1) 23(1) 22(1) -1(1) -7(1) 10(1) 
Ti(2) 34(1) 22(1) 23(1) -2(1) -6(1) -9(1) 
N(5) 38(1) 23(1) 26(1) -5(1) -4(1) -11(1) 
N(3) 46(1) 26(1) 31(1) 0(1) 10(1) 12(1) 
N(2) 39(1) 22(1) 28(1) -2(1) -6(1) 12(1) 
N(6) 40(1) 28(1) 36(1) 2(1) -15(1) 12(1) 
N(4) 45(1) 30(1) 40(1) -3(1) -12(1) 15(1) 
C(37) 36(1) 23(1) 24(1) -M.D -3(1) -10(1) 
C(43) 36(1) 30(1) 3(KD -5(1) -5(1) 10(1) 
0(13) 35(1) 28(1) 25(1) -3(1) -6(1) 12(1) 
C(18) 44(2) 3CKD 31(1) -1(1) -3(1) 13(1) 
C(19) 42(2) 24(1) 28(1) -2(1) -1(1) -8(1) 
C(26) 41(2) 33(1) 29(1) -3(1) 0(1) -15(1) 
C(31) 39(2) 30(1) 34(1) -5(1) -4(1) 15(1) 
C(29) 41(2) 24(1) 33(1) 4(1) -12(1) -11(1) 
C(42) 40(2) 30(1) 30(1) -7(1) -5(1) 12(1) 
C(30) 47(2) 26(1) 34(1) -2(1) -11(1) -16(1) 
C(25) 43(2) 25(1) 27(1) K l ) -9(1) -14(1) 
N(l) 57(2) 39(1) 41(2) -4(1) -3(1) -26(1) 
C(14) 40(2) 28(1) 34(1) -2(1) -7(1) . -9(1) 
C(3) 58(2) 42(2) 23(1) -7(1) -5(1) -21(2) 
C(4) 56(2) 43(2) 25(1) 3(1) -15(1) -22(2) 
C(38) 39(2) 33(1) 35(2) -6(1) -8(1) -8(1) 
C(5) 47(2) 41(2) 34(2) 3(1) 16(1) -19(1) 
C(32) 49(2) 29(1) 40(2) -3(1) 13(1) 18(1) 
C(34) 52(2) 32(2) 52(2) -5(1) 10(2) -20(1) 
C(41) 55(2) 39(2) 34(2) -13(1) -3(1) -22(1) 
C(24) 53(2) 29(1) 33(2) -7(1) -2(1) -15(1) 
C(33) 46(2) 33(2) 40(2) -3(1) 11(1) -18(1) 
C(27) 61(2) 35(2) 23(1) -3(1) -2(1) -21(1) 
C(40) 55(2) 28(1) 40(2) -12(1) 2(1) -10(1) 
C(23) 66(2) 28(1) 37(2) -8(1) 7(2) -20(2) 
C(28) 59(2) 36(2) 27(1) 3(1) -14(1) -22(1) 
C ( l ) 54(2) 39(2) 33(2) -2(1) -14(1) -26(1) 
C(7) 57(2) 37(2) 46(2) -5(1) -6(2) -26(2) 
C(20) 42(2) 33(2) 48(2) (XI) -6(1) -9(1) 
C(2) 58(2) 34(2) 31(1) -9(1) -9(1) -19(1) 
C(22) 60(2) 26(2) 42(2) K D 2(2) -3(1) 
C(17) 49(2) 46(2) 36(2) -2(1) 1(1) -24(2) 
Q I 6 ) 35(2) 53(2) 41(2) -14(1) 2(1) -15(1) 
C(44) 44(2) 29(1) 49(2) -3(1) -5(1) 12(1) 
C(48) 41(2) 31(2) 52(2) -8(1) -8(1) -12(1) 
C(15) 41(2) 39(2) 46(2) -9(1) -7(1) -8(1) 
C(6) 54(2) 45(2) 47(2) 3(1) -17(2) -29(2) 
C(8) 57(2) 42(2) 53(2) 0(2) -10(2) -29(2) 
C(39) 48(2) 32(2) 45(2) 12(1) -5(1) -1(1) 
C(9) 70(2) 45(2) 40(2) -6(1) 5(2) -34(2) 
C(47) 41(2) 57(2) 55(2) -20(2) -9(2) -15(2) 
C(35) 59(2) 39(2) 67(2) 1(2) -29(2) -17(2) 
Q45) 42(2) 34(2) 49(2) 8(1) - K D -4(1) 
C(46) 35(2) 63(2) 38(2) -4(2) -9(1) -4(2) 
C(21) 45(2) 38(2) 51(2) 3(1) -8(2) -2(2) 
C(IO) 85(3) 49(2) 62(3) 7(2) -14(2) -37(2) 
Q l l ) 57(2) 51(2) 88(3) -3(2) -2(2) -30(2) 
C(36) 64(2) 67(2) 38(2) -10(2) -7(2) -32(2) 
C(I2) 192(7) 86(4) 54(3) -29(3) 42(4) -84(5) 
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B6: Reference 

1 ) Siemens SHELXTL, Version 5.03, Siemens Analytical Instruments 
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Appendix C: Departmental Colloauia Attended 

1993-94 

October 4 Prof. F.J. Feher, University of California, Irvine, USA 
"Bridging the Gap between Surfaces and Solution with Sessilquioxanes" 

October 20 Dr. P. Quayle, University of Manchester 
"Aspects of Aqueous ROMP Chemistry" 

October 21 Prof. R. Adams, University of South Carolina, USA 
"Chemistry of Metal Carbonyl Cluster Complexes: Development of Cluster 
Based Alkyne Hydrogenation Catalysts" 

November 24 Dr. P.G. Bruce, University of St. Andrews 
"Structure and Properties of Inorganic Solids and Polymers" 

January 26 Prof. J. Evans, University of Southampton 
"Shining Light on Catalysts" 

February 16 Prof. K.H. Theopold, University of Delaware, USA 
"Paramagnetic Chromium Alkyls: Synthesis and Reactivity" 

February 23 Prof. P.M. Maitlis, University of Sheffield 
"Across the Border : From Homogeneous to Heterogeneous Catalysis" 

March 10 Prof. S .V. Ley, University of Cambridge 
"New Methods for Organic Synthesis" 

March 25 Dr. J. Dilworth, University of Essex 
"Technetium and Rhenium Compounds with Applications as Imaging 
Agents" 

April 28 Prof. R. J. Gillespie, McMaster University, Canada 
"The Molecular Structure of some Metal Fluorides and Oxofluorides: 
Apparent Exceptions to the VSEPR Model" 
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1994-95 

October 5 Prof. N. L. Owen, Brigham Young University, Utah, USA 
"DeterminingMolecular Structure - the INADEQUATENMR way" 

October 19 Prof. N . Bartlett, University of California 
"Some Aspects of Ag(II) andAg(III) Chemistry" 

November 2 Dr P. G. Edwards, University of Wales, Cardiff 
"The Manipulation of Electronic and Structural Diversity in Metal 
Complexes - New Ligands" 

November 3 Prof. B. F. G. Johnson, Edinburgh University 
"Arene-metal Clusters" 

November 9 Dr G. Hogarth, University College, London 
"New Vistas in Metal-imido Chemistry" 

November 10 Dr M. Block, Zeneca Pharmaceuticals, Macclesfield 
"Large-scale Manufacture of ZD 1542, a Thromboxane Antagonist 
Synthase Inhibitor" 

February 8 Dr D. OUare, Oxford University 
"Synthesis and Solid-state Properties of Poly-, Oligo- and Multidecker 
Metallocenes" 

March 1 Dr M . Rosseinsky, Oxford University 
"Fullerene Intercalation Chemistry" 

March 22 Dr M . Taylor, University of Auckland, New Zealand 
"Structural Methods in Main-group Chemistry" 

April 26 Dr M. Schroder, University of Edinburgh 
"Redox-active Macrocyclic Complexes : Rings, Stacks and Liquid Crystals" 
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1995-96 

November 15 Dr Andrea Sella, UCL, London 
"Chemistry of Lanthanides with Polypyrazoylborate Ligands" 

November 29 Prof. Dennis Tuck, University of Windsor, Ontario, Canada 
"New Indium Coordination Chemistry" 

February 12 Dr Paul Pringle, University of Bristol 
"Catalytic Self-Replication of Phosphines on Platinum(O) " 

February 21 Dr C R Pulham, Univ. Edinburgh 
"Heavy Metal Hydrides - an exploration of the chemistry of stannanes and 
plumbanes" 

February 28 Prof. E. W. Randall, Queen Mary & Westfield College 
"New Perspectives in NMR Imaging" 

March 6 Dr Richard Whitby, Univ of Southampton 
"New approaches to chiral catalysts: Induction of planar and metal centred 
asymmetry" 

March 7 Dr D.S. Wright, University of Cambridge 
"Synthetic Applications of Me 2N-p-B lock Metal Reagents" 

March 13 Prof. Dave Garner, Manchester University 
'Mushrooming in Chemistry" 

TexeXeaxai 
(Part of John 19:30) 
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