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Abstract 

The observation of the underlying small x dynamics arising f rom the resummation of 

large terms in \nl/x in QCD descriptions of the gluon distr ibution have been searched 

for in deep inelastic scattering experiments at the electron proton collider HERA since 

the early 1990's. I t has been recognized that the first fu l ly inclusive measurements of 

the proton structure funct ion F2 are too inclusive to identify underlying dynamics. Less 

inclusive quantities need to be considered. 

In this thesis a modified form of the B F K L equation is derived which enables the 

structure of the gluon emissions to be studied in small x deep inelastic scattering. The 

equation incorporates the resummation of the vir tual and unresolved real gluon emissions 

and is solved to calculate the number of small x deep-inelastic events containing 0, 1, 2 

. . .resolved gluon jets, that is jets wi th transverse momenta qj > f.i. We study the jet 

decomposition for different choices of the jet resolution parameter [i, to look for possible 

signatures of B F K L dynamics in the x dependence of the exclusive observable quantities 

of the n— jet contributions to F2. 

We also study the application of the B F K L equation to forward jet events at HERA. 

We calculate the rate of deep inelastic scattering events containing two forward jets ad

jacent to the proton remnants and compare wi th the production rate of only one forward 

jet - the so-called Mueller process. We obtain a stable prediction for this two to one jet 

ratio, which may serve as a measure of the B F K L vertex funct ion. 
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Chapter 1 

Deep Inelastic Scattering at H E R A 

1.1 The structure of matter - an historical note 

In todays world the question "what constitutes the structure of matter that we see around 

us?" would receive a somewhat different answer than i f asked only one century ago. Today 

an answer would involve words such as: protons, neutrons, quarks and gluons, one hundred 

years ago even the proton was unheard of! 

The structure of matter as we understand i t has undergone radical changes over this 

last century. Then, matter was considered to be made f rom discrete ("fundamental") 

building blocks called atoms. However, wi th the discovery of the electron in 1897, the 

revolution leading to todays understanding of the structure of matter began. The atom 

was no longer the fundamental building block - the negative charge carried by the elec

trons had to be balanced by something of positive charge to produce an overall neutrally 

charged atom. But , how were these charges distributed? The answer to this question 

came in 1911 when Rutherford and his collaborators performed his famous alpha particle 

scattering experiment showing that the atom consists of a very small positively charged 

nucleus surrounded by negatively charged electrons at some distance. This leads to the 

amazing discovery that the atom consists mainly of "space"! Consequently, the advent of 

the quantum theory of the atom arose, in which the picture of a tiny, compact nucleus 

surrounded by electrons held together by the electromagnetic force, essentially remains 

the same over 85 years later. These nuclei were subsequently found to consist of discrete 

particles; protons (1919) and neutrons (1932) and i t is the structure of these spin 1/2 

nucleons which we are interested in understanding today. 

1 
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1.2 Experimental picture of the proton 

So what is the structure of the proton? Is i t an elementary particle and thus structureless, 

or, is there a more fundamental substructure? 

Already by 1933, the discovery by Frisch and Stern that the proton magnetic moment 

differed f rom that of the Dirac magnetic moment for a spin 1 /2 particle, provided the first 

experimental hints that the proton was not a point like elementary particle. Af te r the 

war, the invention of new photographic emulsions gave physicists the means to discover 

new types of particles not present in ordinary matter; muons (a heavier relative of the 

electron w i t h mass m M = 207?ne) and pions (mediators of the strong nuclear force) were 

discovered in cosmic ray showers. As intense beams of particles of increasingly high 

energies became available at accelerators, more and more hadrons were discovered. In 

1964, one explanation for this proliferation of particles was proposed by Gell-Mann and 

also by Zweig [1]. They found that all these new observed hadrons (which include the 

proton and neutron wi th the proton having the distinction of being the lightest baryon) 

could be interpreted as bound states of just three fundamental spin 1/2 particles, or 

bound states of a particle-antiparticle pair, assuming these "quarks" were allowed to have 

fractional electric charge. This provided additional theoretical motivation for the existence 

of something more elementary than the proton, although, as no free quarks were observed 

directly, the quark model became a useful tool in describing the properties of many new 

hadrons which were later found, but at the time was not considered a viable fundamental 

theory. 

In the late 1960's the second revolution leading to our present understanding of matter 

occured. High energy scattering experiments analogous to Rutherford 's scattering of 

alpha particles f rom a fixed target were repeated, this time using energies a thousand times 

higher in which the dynamical effects of the partons inside the proton were observed. In 

1968 at Stanford the scattering of electrons f rom a proton target proved that the proton 

does indeed have a structure - i t is not a point like object but is buil t up f r o m smaller 

partons. The proton (and neutron) are now known to be built f rom two types of quark, 

the up and down. Indeed, almost everything we observe in the visible world around us 

can be ul t imately decomposed into up and down quark constituents and electrons. 

Today, the idea that the proton is composed of quarks (fermions carrying spin = 1/2 
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and fractional electric charge) is a well established idea, even though none have, or can, 

be observed freely in nature. Potentially we do have an explanation for this confinement 

of the quarks to bound states, given by the theory of Quantum Chromodynamics (QCD) 

describing the quarks and their interactions, although there is s t i l l a long way to go to 

understand the origin of this confinement. 

W i t h the advent of collider technology, huge increases in the experimental invariant 

energy available for the creation of new particles, f rom the GeV (10 9 eV) to the TeV (10 1 2 

eV) scales have been achieved, resulting in the discovery of many new particles. Although 

the physical world around us can be described in terms of two quark components, the up 

and down, and one lepton family (the electron), experiment shows that nature provides 

us wi th two more (identical except for mass) replica sets. During the 70 's, heavier quarks 

(charm and bottom) were discovered, and also the heaviest relative of the electron (tau 

lepton), at electron-positron colliders. In 1983 heavy bosons ( W ^ Z°), the mediators of 

the weak forces between particles, were found in pp collisions at C E R N . Thus, by the 

early 90's the quark contents of the world around us could be divided into three families, 

w i t h the postulation of the existence of a top quark to fill the gap in the th i rd family, 

w i th the quarks increasing in mass as we go to higher generations. Only the postulated 

top quark remained to be discovered. 

The culmination of these discoveries came as recently as 1995 when the heaviest top 

quark was finally observed wi th a mass of 175 GeV at the pp collider at Fermilab. 

So far w i th the energies (TeV) reached by modern day experiments no fur ther sub

structure of matter, i.e. of quarks, has been observed. However, i t s t i l l remains to be 

seen, as experiments wi th larger and larger energies are bui l t , such as the Large Hadron 

pp Collider (LHC) which wi l l begin taking data in the early part of the next century, 

whether the quark remains the fundamental building block of matter or whether, as in 

the case of the atom and proton before i t , i t is observed to have its own structure. 

For reviews of the history of modern particle physics, see for example references [2, 3, 4] 

and others therein. 

charm (c) top (/ up (u) 
bottom (6) down (d) strange (s) 
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T h e basic interactions of matter 

As well as the basic constituents of matter, there exist particles which act as carriers of 

the forces which bind hadrons and leptons together. 

On the macroscopic scale, gravity is the dominant force which holds masses (e.g. 

planets, the solar system, galaxies) together, however, it is negligible at scales of atomic 

and nuclear size. Subatomically, i t is the electromagnetic interaction which is responsible 

for the formation of atoms, in which the exchange of vir tual photons between the electrons 

and nuclei constitutes a force which binds them together. A similar picture holds at 

smaller scales in which the protons and neutrons are bound together in the nucleus via 

the exchange of particles known as mesons (e.g. the pion). This "strong" nuclear force 

was later to be understood to arise f rom a more fundamental particle exchange in which 

the quarks of the protons and neutrons are held together by the exchange of spin 1 gauge 

bosons called gluons, analogous to the exchange of spin 1 photons for the electromagnetic 

force. This is the true strong force of nature. 

As well as these, there is a fourth force - the weak interaction, which is mediated by 

the exchange of heavy W ± (and Z) bosons, responsible for the decay of particles through 

/3-emission. 

So what now? Experiments over the last two decades have left us wi th a proliferation 

of partons - six quarks, together wi th six leptons, as well as the particles responsible for 

the mediation of forces, constituting the elements of matter we see in the universe today. 

One of the puzzles we face is, why two duplicate families of quarks and leptons, when the 

w rorld around us is adequately described by the first family (u, d\ e~, ue )l However they 

exist, and the question remains as to how do these "extra" constituents f i t into the simple 

quark picture we have of the proton - what is the structure of the proton? 

1.2.1 Deep Inelastic Scattering at H E R A 

To answer this question, the electron (positron) - proton collider H E R A 1 (Hadron Electron 

Ring Accelerator) was designed and buil t in which ~ 30 GeV electrons (or positrons) 

1 A n overview of HERA physics (experimental and theoretical) and the relevant kinematics can be 
found, for example, in [5, 6, 7, 8]. 
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collide wi th 820 GeV protons giving an invariant centre of mass energy 

~ 300GeV , 

which gives s ~ 10 5 GeV 2 , much larger than energies available at fixed target experiments 

for the production of new particles. This international, high energy physics program con

sists of four experimental detectors; two taking fixed target data, HERMES and H E R A - B , 

and two situated at collision points of the electron and proton beams, H I and ZEUS. Op

eration began earlier this decade in 1992 and for the first time new kinematic regimes were 

opened, never before probed experimentally. From the outset, results f rom H I and ZEUS 

showed many interesting features in the observables, such as strong rises of the measured 

structure functions, throwing down the gauntlet to theoreticians and phenomenologists 

to explain these novel effects. 

In this chapter, an overview of the deep inelastic scattering (DIS) process as observed 

experimentally wi l l be presented wi th a discussion of the kinematics and variables used. 

The novel results observed by HERA are shown, leading to the theoretical view of the 

proton as we understand i t today - pr imari ly we wi l l discuss the evolution equations used 

to describe experimental observables. The focus wi l l then be shifted to small x B F K L 

dynamics (chapter 2), expected to be important in the HERA kinematic regime, and a 

closer look taken at exclusive jet production to provide a deeper insight into the structure 

of the B F K L formalism. This wi l l be discussed in the later chapters (3 & 4) of this thesis. 

The basic lepton-proton scattering process, / + p —• I + X , relevant for the collisions 

at H E R A , is shown in Figure 1.1. A n incoming lepton (electron or neutrino), w i t h four 

momentum k'\ is scattered f rom the incoming proton which carries a momentum p' ' , 

via the exchange of a (vir tual) boson. There are two types of process that can occur 

- neutral current. (NC) and charged current (CC) interactions. The former is mediated 

by the exchange of a neutral photon or Z° boson, characterized by no flow of charge at 

the leptonic vertex; the incoming and outgoing lepton are the same except lor a change 

in the outgoing lepton energy. Through charge conservation at the upper vertex, in CC 

interactions the emission of an electrically charged, heavy boson requires that the 

incoming lepton be different f rom that in the final state. Either i/e —* e - , or, e~ —> t/e 

through the exchange of a W ~ . For the antiparticles, we would have the exchange of the 

VV+. 

Experimentally, the DIS process is observed through the presence of the scattered 
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f 

+ o 
Y , Z U , W 

p 

1 

X 

Figure 1.1: Basic lepton-proton scattering in which the interaction takes 
place via the exchange of a v i r tual photon, Z° boson (neutral current) or 

(charged current). The scattered lepton exchanges momentum — q2 

which determines the resolution wi th which the probe sees the proton. 
The proton is broken up, its remnants X passing down, or close to, the 
beam pipe. 

electron in the detectors accompanied by hadronic jets, either 1 or more, resulting f rom 

the interaction of the photon wi th the proton. The proton itself is broken up during the 

scattering process, and its remnants are emitted in the original direction of the proton, 

w i th the major i ty of the remnant jet passing down the beam pipe. 

We are interested in processes of electron scattering through the exchange of a highly 

vi r tual (large — q2) photon w i t h the proton, that is, the restriction — q2 <C M | , where 

Mz is the mass of the Z° boson, wi l l ensure that the dominant scattering process is via 

photon exchange and production of the Z° can be neglected. There are two important 

regions probed by the HERA collider experiments: the photoproduction region (—q2 = 0) 

in which the scattering occurs via the exchange of a real photon, and the deep inelastic 

region where the vir tual photon has a high vi r tual i ty (—q2 ^> 0). Because such a wide q2 

range is covered, previous gaps in the kinematic range between fixed target (low energy) 

and collider experiments (higher energies) have been filled. Cross sectional data now 

covers the entire energy region f rom the real, photoproduction regime described by non-
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perturbative physics, to the DIS region in which perturbative calculations can be made. 

This provides important information on the transition region between the two extremes. 

K i n e m a t i c variables of deep inelastic scattering 

Other than the energy variables, Ee^e>) of the electron (scattered electron) and the proton, 

Ep, using the notation k,p & q for the four momentum vectors of the electron, proton and 

photon respectively, then the relevant kinematic variables of the inclusive DIS process are 

[5, 7] 

s = (k + p)2 ~ 4EeEp 

Q2 = -q2 ~ iEeEe, cos 2(0/2) 

V = (p-q)/(p-k) ~ 1 -Eesm2(6/2)/Ee, (1.1) 

x = Q2/(2p • q) ~ Q2/ys 

W = (q + p)2 ~ -Q2 + ys, 

where s is the centre of mass energy squared of the process, Q2 the negative squared 

momentum transfer — </2, i.e. Q2 is positive, y the fraction of energy carried by the vir tual 

photon in the proton rest frame, x the famous Bjorken x variable (discussed below) and 

W the hadronic invariant mass of the system X. The angle 0 is that of the scattered 

electron defined in the HERA laboratory frame wi th respect to the proton direction. In 

reality, the process of ep scattering is given by the subprocess of 7*p scattering in which 

the incoming photon is not exactly parallel to the incoming electron. This defines the 

7*p collinear frame and care needs to be taken which angular definitions are used when 

applying experimental cuts on 0 to obtain theoretical predictions. In the above, particle 

masses have been ignored, although for future reference the protons mass w i l l be denoted 

by Mp and the electron mass me. 

The two most important Lorentz invariant variables required for discussion of deep 

(Q2 > M2) inelastic (W2 > M2) scattering at HERA are Q2 and x defined in (1.1). 

Q2 is directly measured f rom the kinematics of the scattered electron. For E m e , 

defining the .c-axis to lie along the electron direction and the outgoing electron scattering 

to lie in the xy plane, then the four momentum of the incoming electron can be wri t ten 

as 

F = ( £ e , £ e , 0 , 0 ) . (1.2) 
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Lett ing 9 be the angle between the scattered electron and the incoming electron direction, 

then the four momentum of the scattered electron is 

= ( £ e S £ e < c o s # , £ e , s i n f l , 0 ) • (1.3) 

The v i r tua l i ty of the photon 7* is given by the change in energy of the in i t ia l and final 

state electrons, thus, 

-q2 = - { k - k ' f 

= - k 2 - k ' 2 + 2k-k' . (1.4) 

From (1.2) and (1.3) we have A:2 = k'2 = 0 in (1.4) giving 

-q2 = 2k% 

= 2{EeEe, - EeEe, cos 9) 

= 2 £ e £ e , ( l + cos0) 

= AEeEe, cos 2(6»/2) 

as quoted in (1.1) where we note cos# = — cos 9. I t is this value of Q2 which sets the 

resolution scale at which the constituents of the proton are viewed. The larger the vir

tuality, the smaller the wavelength of the photon which allows us to "see" scales much 

smaller than the size of the proton - for small enough wavelengths the dynamical effects 

of the individual quarks are observed. Repeating the principles of earlier scattering ex

periments which discovered the nucleus wi th in the atom, and quarks w i th in the proton, 

i f there is another layer of substructure such as "preons" inside the quarks, then taking 

DIS experiments to higher Q2 energies, would be the logical step required to reveal any 

underlying picture that might be there - so far, none has been observed. 

The second important variable required is the dimensionless quantity Bjorken x, usu

ally denoted by xg. For simplicity, the notation xg = x w i l l be used. 

Later we shall see that the physical cross section is dependent on dimensionless quan

tities called structure functions. The Lorentz invariant quantities of Figure 1.1 are given 

by q11 of the photon and p M of the proton in the combinations: q2,q • p and p2. However, 

the proton is on mass shell and p2 = M2 and so is not a variable of the process. The 

relevant dimensionless quantities used to describe the scattering process are given by the 
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ratios 

Q2 , Q2 

and — - , 
2q-p Ml 

the former defining Bjorken x. In general the structure functions (F) depend on both 

these ratios, but for Q2 ^> M2 as for DIS, in which the photon probes scales much smaller 

than the size of the proton, it no longer cares about the proton size and we get scaling 

[9]. That is F(x,Q2/M2) -* F{x) only (see sections (1.2.2) & (1.3.1) for discussion of 

structure functions). 

A useful physical interpretation of x can be obtained if we consider the scattering 

of a virtual photon from a constituent in the proton where we restrict ourselves to the 

infinite momentum frame of the proton (i.e. vp ~ c). In this frame | p | ^> m,Mp 

thus we can neglect all parton masses and the proton can be imagined to be made of 

partons all travelling together in the direction of the proton. Defining the --axis to lie 

in the direction of the proton, and the four momenta of one of the incoming partons and 

photon as p*1 = (p, 0,0, p) , = (0,0,0, —Q) respectively, such that — q2 — Q2 and p is 

the longitudinal momentum of the parton, then for a photon of very small wavelength A 

(A = hjp), only one parton will be struck and subsequently reflected through 180°. This 

allows us to define the momentum of the scattered parton, p'^' — (p, 0,0,— p) and from 

momentum conservation determine that p = Q/2. Letting £ be the fraction of the protons 

momentum (P) carried by the parton then 

Taking the product of and gives 

Q2 

q-P 

and recalling that the definition of x is 

we obtain the relation 

x = ( . 

Thus for the infinite momentum frame, the physical interpretation of x is that it defines 

the fraction of the protons momentum carried by the struck parton in the DIS process. 
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This is the picture that will be used throughout the discussions for the observables studied 

at HERA in the remainder of this thesis. 

Experimentally, x is calculated from Q2 and y, see (1.1), and the accuracy with which 

it is known is dependent on the experimental resolution of the variable y. 

x,Q2 phase space at H E R A 

Before we take a look at the experimental results obtained at HERA, it is useful to make a 

small deviation and consider the x, Q2 phase space available. This will be helpful in later 

discussions, chapters 3 <fe 4, in which we will calculate physical cross sections theoretically 

for the DIS process. Due to experimental and detector practicalities, the available x,Q2 

phase space is constrained by cuts on the measured variables. As this thesis will deal 

with the theoretical aspects of DIS (section 1.3 onwards), in this introduction the aim is 

to give a brief summary of the experimental limitations and a physical explanation of the 

origin of the cuts used. More detailed cuts will be discussed as required in the relevant 

sections. 

Experimentally the kinematic variables of (1.1) are reconstructed through measure

ments of the angles and energies of the scattered electron and hadronic jets. The defini

tions are shown in Figure 1.2. Angles are measured with respect to the proton direction 

in the HERA frame. Note, here 0e = 6 of (1.1). 

The x,Q2 range at HERA is large. Q2 theoretically covers the range from 1 GeV 2 

to 5, whilst x lies in the approximate range 10 - 5 — 1. In reality, the upper limit of x 

is restricted to x < 0.7 because for very large x, reconstruction can only be made using 

hadronic measurements which are smeared clue to inaccuracies in the resolution of the jet 

angles and energies. 

The most stringent limits on the kinematic plane are determined by the beam pipe 

cuts. These set the restrictions on the angular emission of the electron (0e) and jets (0j) 

thus determining the low Q2 limit for detection of the electron and the highest .7: values 

that can be reached. In practice, this means that the limits of Q2 are dependent on which 

x bin is being studied, i.e. we have Q2(x) which can be calculated from [7] 

Q\x,ee) = sx (1.6) 
l + xEptan2(6e/2)/Ee ' 
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jet, Ej 

Figure 1.2: Schematic diagram of HERA final state kinematics. The 
beam pipe lies in the direction of the proton. Definitions of electron and 
jet angles are shown with respect to the proton direction. 

and 

The two equations above determine the electron acceptance region Q2{9e)> and the jet 

acceptance region Q2(9j) respectively. Both the electron and jet regions are also restricted 

by the electron (Eei) and hadronic {Ej) energy resolutions of the detectors. 

There is one other important cut to consider - a cut on the variable y. Practically this is 

restricted to the range 0.1 < y < 0.9. The upper cut is to remove uncertainties arising from 

background, radiative corrections, electron resolution etc, whereas the lower cut is not so 

well defined. The conservative (lower) cut quoted above is applied when reconstruction of 

y is obtained only from the scattered electron kinematics. If extra information is included 

from the hadronic sector, this cut can be lowered to y ~ 0.01 — 0.05. 

In summary, the accessible kinematic range at HERA for electrons with energy Ee = 

27.5 GeV, and protons with Ep = 820 GeV is determined by the cuts. 

e3 > 5° 

8° < ee < 175° 

Ej > 5GeV . 
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Ee, > 5GeV 

0.1 < y < 0.9 

10~5 < x < 0.7 (1.8) 

and is shown in Figure 1.3. It is important to remember that this shows only approxi

mately the phase space available; different processes measured at the different detectors 

will have slightly different cuts on the above variables. 

10 

0.1 < y < 0.9 
8° < -iV < 1 75° 

27.5 GeV 
820 GeV 10 

10 

10 

10 10 10 10 10 
X 

Figure 1.3: x,Q2 phase space available at HERA. 

1.2.2 The structure of the proton as seen at H E R A 

The scattering process of Figure 1.1 is mathematically described2 by two terms; a leptonic 

term which describes the lepton-photon vertex in the upper part of the diagram, and 

a hadronic term which describes the hard scattering of the photon-proton system. The 

leptonic contribution is fully determined by Quantum Electrodynamics, (QED), the theory 
2 The full description of Figure 1.1 is obtained when we include W,Z mediated processes which are 

described by the electroweak theory. 
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describing electromagnetic interactions of charged leptons and photons. However, the 

hadronic part is not fully understood. Our ignorance of this lower vertex (represented 

by the hatched blob) and how the proton is broken up through interaction with the 

photon, is parameterized by the dimensionless structure functions F-i and t\. These are 

functions of the independent kinematic variables x and Q2 discussed previously, i.e. we 

have Fi(x, Q2) and F-2(x, Q2) which are measured experimentally. The proton is described 

by two structure functions as it is a spin 1/2 particle. However, if the quarks of the 

proton were not spin 1/2 objects then F1 would be given by Fi — 0 which is not observed 

experimentally. 

The high energy differential cross section is related to these structure functions by 

[2, 10] 
da 4ira'2 

where y is defined as y = Q2/xs from (1.1). The fine structure constant cv is due 

to the coupling of the virtual photon to the quarks and leptons and the suppression 

da/dxdQ2 oc l/Q4 arises through the exchange of the photon with virtuality Q2 (see 

section (1.3.1)). Because the probe is a virtual photon, it possesses both longitudinal 

and transverse polarizations which define the longitudinal and transverse components of 

the proton structure functions Fi and FT respectively. These are related to F\ and F2 

through the relations 

FT = 2xF1 

FL = F2-2xF1. (1.10) 

Thus, we can rewrite (1.9) as 

da 4ira2 

dxdQ2 xQ4 
{ ( 1 - y)F2(x,Q2) +1-y2FT(x,Q2)} . (1.11) 

The above is for the electron-proton scattering process via interaction of a massless 

photon with the proton. If we instead were to look at lepton-nucleon scattering of WV —> 

H~N or VN —> f.i+N mediated by the heavy W bosons, (1.9) would be modified by the 

addition of a third structure function, F3(x,Q2), which is a parity violating term due to 

effects of the weak interaction. It would become 

w = § fe*ry>^Q2)+(1 - Q1) *'(>-!) *™*>* 
(1.12) 
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where the a 2 of (1.9) —• Gp, the Fermi coupling constant specifying the strength of the 

weak interaction. The l/Q4 dependence for the heavy W propagator becomes 

(Q2 + M'w)2 ( L 1 3 ) 

with Mw ~ 80 GeV the mass of the W boson. A similar propagator would be used for 

the neutral current Zo contribution with Mw —> Mz{~ 91.2GeV) in (1.13). 

In (1.9), Fi and F2 can only be distinguished if the cross section is measured at 

different values of y (i.e. y/s). In practice, the quantity FL = F2 — 2xF\ is small, which in 

measurements at fixed energy is often taken from the theoretical (i.e. QCD) estimates. 

Previous measurements of the proton structure functions from fixed target experi

ments, such as muon beams incident on stationary proton targets, had energies of the 

order 

s = ( P t l + P p ) 2 ~ 2MPE,. (1.14) 

which for a muon beam with E^ ~ 400 GeV gives s ~ 750 GeV 2. This is orders of 

magnitude lower than for collider energies 

s = ( P e + P p ) 2 ~ (Ee + Ep)2 — (Ee — Ep)2 

= 4:EeEp (1.15) 

as given in (1.1), which for HERA is ~ 105 GeV 2. Thus, these fixed target experiments 

could only probe the region x > 10 - 2 and the results showed that after an initial rise of the 

structure functions to x ~ 10 _ 1 the x dependence flattened. What happened afterwards 

at small x was a question theorists were trying to predict. 

The first results of the proton structure functions measured at HERA probed the region 

x < 10~2 and immediately showed a dramatic increase of F2 (and thus the cross section) 

with decreasing x which is shown in Figure 1.4. It is this dramatic rise of the structure 

functions we wish to describe in the next section in the framework of perturbative QCD. 

It should be noted that the recent data plotted below for F2

ep is that of e+p scattering as, 

in 1994, HERA began running with positron beams to increase luminosity. 
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BCDMS (1989) 
Q 15 GeV 1.8 NMC (1995) 

H1 (1994) \ 
6 ZEUS (1994) 

MRS(A) 1.4 

1.2 

0.8 4* 

0.6 
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0 
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Figure 1.4: Rise of the proton structure function F2 [11] with x measured 
at HERA for Q2 = 15 GeV 2. Earlier fixed target data (BCDMS, NMC) 
using up scattering showed flattening of structure functions at x ~ 10 _ 1 . 
The data plotted is for the most recent published data from the respective 
collaborations. The data errors are combined systematic and statistical. 
The solid line shows the QCD prediction of F2

P using MRS(A), AQCD = 
230 MeV [12], parton distributions fitted at large x. 

1.3 Structure of the proton in Quantum Chromo-
dynamics 

We have seen in the previous section that in ep scattering the proton is described by two 

structure functions F\ and F2, and that F2(x, Q2) shows a dramatic rise, Figure 1.4, as we 

move into the kinematic region x ~ 10~2 —> 10 - 4 . In this section we will consider how the 

proton is described by the field theory of Quantum Chromodynamics (QCD), in which the 

strong rise of the structure function F2 can be reproduced theoretically through careful 

choice of input to the DGLAP evolution equation (Eq. (1.29)), or, through BFKL (In \/x) 

evolution (Eq. 2.3). In Figure 1.4, the rise of the structure function F2 is predicted through 

DGLAP evolution of the variable Q2 (solid line) using MRS(A) parton distributions. 
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QCD is the theory of quarks and their interactions. In this framework the proton (and 

observed baryons) are interpreted as bound states of three quarks, whilst the mesons 

consist of a quark-antiquark pair. The proton is a uud state with all quarks carrying 

fractional charges, eu = 2/3 and ej. = —1/3. These quarks are held together in the 

proton by the strong force mediated by the exchange of spin 1 bosons - gluons. This 

is analogous to the origin of the electromagnetic force arising through the exchange of 

neutrally charged spin 1 photons. 

A colourful theory 

Fermi-Dirac statistics require that the baryon wavefunction be antisymmetric, which in

troduces the important constituent of QCD - each quark carries, as well as an electric 

charge, a colour charge quantum number which can have one of three values; red (•/•), 

green (g) or blue (b). The anti-quarks carry anti-colour, r,g and b. So as to prevent all 

combinations of q,q states occuring in nature. QCD has a very important restriction, only 

combinations of quarks and antiquarks forming colour singlet states can exist in nature. 

This is termed colour confinement which prevents states such as qqqq or qqq for example 

forming and theoretically predicting the existence of particles which we do not observe. 

The importance of glue in the proton 

One other important aspect of the colour charge in QCD is that it is also carried by the 

gluons. Unlike neutrally charged photons in QED which do not interact with each other, 

in QCD, the gluons do, allowing the existence of the three (ggg) and four {gggg) gluon 

vertices. The result is, the simple quark structure of the proton is inadequate - it is no 

longer described by the simple uud model. The quarks of the proton can radiate gluons, 

which in turn can radiate more gluons or a qq pair. It is the presence of these gluons (and 

other "sea" quark constituents) in the proton which produce the Q2 dependence of the 

structure functions. If they were not present then F2(x,Q2) —> ^ ( . c ) only, and we would 

observe scaling in the variable x. For the small-re, moderate Q2 range of HERA these 

gluon distributions are important, with the gluon providing the dominant parton density 

contribution in the proton. It is these gluon distributions which we will be considering in 

more detail in the following chapters. Thus, we should convince ourselves that this "glue" 

does actually exist. 
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The first indirect evidence for gluons was observed in the measurements of the mo

mentum distributions for the quarks in the proton. The known quarks only accounted for 

approximately half the protons momentum, i.e. 

J xq(x) dx = J dx x(uv + dv + us + us + ds + ds + s + Ja + ...) ~ 0.5 . (1.16) 

Here, q(x) is the probability distribution for finding a quark carrying fraction x of the 

protons momentum and ... represents the small component of momentum carried by the 

heavy quarks. Thus, approximately 50% of the momentum is carried by something else 

within the proton. After the first clear observation in 1979 at DESY [13] of three jet 

events arising from the process e+e~~ —> qqg, the existence of the gluon was established. 

Scaling and scaling violations 

As mentioned above, the presence of glue in the proton leads to an important feature of 

QCD - the observation of scaling violations in the structure functions of the proton. That 

is, F2 is observed to be a function of x and Q2 instead of just x. More formally, gluon 

bremsstrahhmg introduces a InQ2/^2 term to the mathematical description of the parton 

distribution evolution equations (1.29) producing the result F2(x) —> F2{x,Q2). 

For a photon probe of small enough wavelength then the individual quarks within the 

proton can be resolved. Naively the proton can be considered to be built from just three 

valence quarks; a combination of uud quarks. If these quarks were non-interacting then 

this would be signalled by the inelastic structure functions of the proton being independent 

of Q2 at a given value of x - the structure functions would exhibit scaling. This is indeed 

observed experimentally for the Bjorken x values, x ~ 0.2 — 0.3. However, this x range 

is found to be a pivot point. For x < 0.2 the structure functions are observed to rise 

with increasing Q2, whilst for ;r > 0.3, the structure functions decrease with increasing 

Q2\ i.e. we see scaling violations. However, unlike the cases of the atom and nucleon 

in which scaling violations pointed to the existence of another layer of substructure, this 

scaling violation does not lead to the need for an underlying "preonic" substructure for 

the quarks. This variation of the structure function with Q2 can be understood within 

the framework of QCD. 

For increasing Q2 we are viewing the proton with smaller and smaller wavelength 

photons and so are able to "see" more and more of the parton constituents making up the 
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proton. We see that the individual valence quarks are themselves surrounded by a cloud 

of other partons - gluons and sea quarks. These partons all share the total energy and 

momentum of the proton. For a quark (initially) carrying a large momentum fraction x 

there is a significant probability that its momentum will be degraded by the emission of 

a gluon. Thus, the momentum distributions of the quarks will be depleted in the high 

x —> 1 region, and weighted towards the smaller x values so producing an increase in the 

structure functions as we move to smaller x and conversely a decrease in the structure 

function at high x as we view the proton with greater resolution. In fact, these observed 

scaling violations are an experimental signature of the gluon emission in the proton. 

Confinement of quarks to bound states 

At short distances the quarks within the proton act as free particles. However, at large 

distances we know they are not as no free quarks are observed outside of the bound state 

producing nucleons. This is because the coupling constant as of QCD (analogous to the 

fine structure coupling a in QED between quarks and the photon) exhibits asymptotic 

freedom - that is, it runs as we vary the energy scale as shown in Figure 1.5. 

At low Q2, in the "soft" non-perturbative physics regime the coupling increases with 

as —• oo as Q2 —> 0. As we move to high Q2, the coupling decreases and we have 

asymptotic freedom. In this region as(Q2) is small (i.e. as <C 1), thus we can make a 

perturbative expansion in as which is the basis of calculations in perturbative theory. The 

DIS region is that of moderate to high Q2 in which "hard" scattering interactions take 

place and we can use perturbative QCD (pQCD) to provide a mathematical interpretation 

of the F2 structure functions. At the opposite end of the scale Q2 —> 0, we observe infra

red slavery. Here the force between the quarks is large. It is this behaviour of the coupling 

of the strong force, together with the condition of colour confinement (mentioned above) 

which prevent the existence of free quarks in nature. However, as confinment has its roots 

in the non-perturbative physics region which is not very well understood, the actual origin 

of the confinement of quarks and gluons to bound states is still not fully known - advances 

in lattice calculations are providing useful information and a method of calculation in this 

regime. 
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Figure 1.5: Running o s with Q2 for ny = 4 and AQCD — 230 MeV. Below 
the cut Q2 = 1 GeV 2 we define the infrared region in which as "blows 
up" and perturbative theory no longer holds. 

1.3.1 Theoretical description of DIS observables 

We are now in a position which allows us to describe the DIS process theoretically. Now 

we know the proton is composed of quarks, gluons and sea quarks, the interaction of 

the photon (of small wavelength) with the proton in Figure 1.1 can be reinterpreted as 

the interaction of the photon with a constituent of the proton. For the present we will 

consider the hard process of j*q scattering, but this can just as readily be taken as -y*9 

scattering which will be considered later. The "new" DIS process is shown in Figure 1.6. 

The kinematic variables are the same as discussed in section (1.2.1) where x is the fraction 

of momentum carried by the struck parton inside the proton. The label a runs over the 

quark, antiquark flavours. If we consider QCD as corrections to this process then a will 

also include the gluon with the modification that the gluon will couple to the photon 

through the fusion process 7*# —> qq. 

To obtain a theoretical description of the scattering process eP —> eX, we work in 

the infinite momentum frame where the proton travels with vp ~ c. Due to relativistic 
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Figure 1.6: Theoretical view of DIS in which the photon of virtuality Q2 

interacts with a. single parton carrying a momentum fraction x within 
the proton. The label a can be either </, or q. This forms the hard 
scattering process which can be calculated perturbatively. Using the 
mass factorization theorem which separates the long and short distance 
effects, allows a mathematical description of the physical cross sections 
of the process, s is the energy of the subprocess eq —* eq. 

time dilation the interaction time of the partons with each other inside the proton is 

much larger than the timescale ( 1 / \ / Q 2 ) of the photon interaction with the parton. Thus, 

the eP scattering hard collision is considered to be the scattering of the photon from a 

free parton within the proton. In this frame the transverse momentum of the partons 

is governed by the uncertainty principle and so is small (~ MeV) in comparison to the 

longitudinal momentum component. 

In later chapters we will be calculating the cross sections of jet production at HER A, 

so it is useful to first consider how these are calculated. The differential cross section for 

the process of Figure 1.6 is written 3 as the sum over all the contributing quarks q 

where the hard scattering subprocess eq —> eq in the brackets is described from Feynman 

rules of the scattering process a + b —> c + d. / ,(£) describes the probability of finding 

3 A full description of t he method of calculation of scattering cross sections can be found, for example, 
in [2, 14] and other text books on particle physics 

( da 

dxdQ2 dxdQ2 
(1.17) 
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a. quark in the proton carrying a fraction £ of the momentum. Using the Mandelstam 

variables of the eq subprocess 

s = xs = 2xp • k 

t = t = -Q2 = -xys 

ii — —s — t = —x(l — y)s 

(1.18) 

then the subprocess eq —* eq of (1.17) can be written as, [2, 10] 

da 
di 

2-!ra2e2 ( s2 + u2" 
P 

1.1.91 

which from t2 = ( — Q2)2 gives the l/Q4 behaviour typical of virtual photon mediated 

processes. Substitution of (1.18) into (1.19) then gives 

d2a 
dxdQ1 

eq^eq 

2 T T Q 2 ' ; 2 

q T

± ( ^ + ( i - y Y ) H x - o 

4:wa2e2 x 
xQA 2 

1.20) 

Thus the full differential cross section for ep —• e.Y is obtained from substitution of (1.20) 

in (117) and performing the integration over £ to give 

da 
dxdQ' ep^eX 

iira2 

^ q 

4 7 T Q 2 

E ^ / , ( O c , 2 | ( l + (1 - ?/)2) 6(* - 0 

E / , ( ^ H 2 ^ l + ( l - 2 / ) 2 ) - (1-21) 
xQ4 

This gives the cross section dependence on the parton distribution fq(x) which should 

be compared with the alternative formalism stated in (1.9). The general formula of (1.9) 

is obtained from the standard calculation of cross sections from the matrix element given 

by 

da 
\MfdV 

(1.22 

where T is the incident flux factor, dV the Lorentz invariant phase space term and \M\2 

the matrix element of the general process a + 6 —> c + d squared. For the DIS process M. 

contains a leptonic (L) part and hadronic (W) part of the form 

M oc L^W" 

file:///MfdV
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The leptonic term 

spin 

= 2(k,kl + k'X-k'-kg^) (1.23) 

is calculated at the cy vertex in QED, where in the final result of (1.23) the electron mass 

m e is neglected. The unknown hadronic vertex describing the -yP interaction is written 

in the most general tensor form 

where the functions W\ and W2 are identified with the structure functions F\ and F2 via 

the relations 

F1 = MPW1 & F2 = ^ - W 2 . (1.25) 

Combining (1.23), (1.24) and (1.25) in (1.22) leads to the general scattering cross section 

of (1.9) 

dcr 4 T T Q 2 r , „ , „ i 
- { y 2 x F l + (l-y)F2} 

dxdQ2 xQ4 

= -xQ*-\yxF' + i l - y ) F 2 - — + —S 

= ^ { i y 3 ( 2 x F 1 - F2) + i ( l + (1 - y f ) F 2 } . (1.26) 

Thus, the form of the observable structure functions is apparent. On comparison of (1.26) 

with (1.21) we see that 

F2 = 2xF1 = [ \ e 2

q x f q ( O S ( x - 0 
, Jo 

1 

i.e. F2 exhibits scaling in that it is a function of x only. In the above, eq is the charge of 

the individual quarks and the sum is over all flavours. 

1.3.2 Parton distributions and their evolution in Q2 

The term fq(x) in (1.27) is the parton distribution of the quarks, and describes the prob

ability of finding a quark q inside the proton carrying a momentum fraction x. However, 
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QCD predicts corrections arising from the presence of glue in the proton. That is gluon 

emission from the quarks will lead to scaling violations of F-2 such that, -F2(.i') ~~* ̂ i-1'-, Q2) 

through the Q2 dependence of the parton distributions f{x) —> f{x,Q2). These are de

termined theoretically in pQCD. 

The order Q s gluon corrections to the bare f*q scattering process are shown in Figure 

1.7. Diagrams (a) and (b) show the real gluon emission from the parton, whilst (c)—>(e) 

4=> 
(a) 

(c) 

(e) 

Figure 1.7: Real and virtual gluon emission contributions of the leading 
order corrections to the DIS scattering process eq —> eq. 

show the virtual contributions. Diagram ( / ) is important as the photon is probing a gluon 

of the proton in which the interaction is through the process 7*5 —» qq. This will be 

the focus of the next section and remainder of the thesis. Lastly, diagram (g) represents 

interactions between the struck quark and the other partons in the proton. However, this 
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is a higher twist effect and as such is suppressed by a factor Qs/Q2 and can be neglected. 

In the next chapter the formalism of these x, Q2 dependent parton distributions will 

be discussed in detail for evolution of the variable x. Here a qualitative discussion will 

be made for the evolution in Q2, concentrating on the solution of the evolution equation 

and the implications it has for the observed structure functions. 

Including the contributions from gluon emission in Figure 1.7 to the structure function 

of (1.27), the mathematical formalism becomes, 

x Y J x y L V y j 2 i r W J * 
Q2 dk2. 

M2 k U2 
;i.28) 

where k\ is the transverse momentum of the struck quark, y = £ of (1.17) and P(x/y) 

is the splitting function determining the probability of finding a parton with momentum 

fraction x inside a parton with momentum fraction y. The 8 function term describes the 

"bare" process of Figure 1.6 in which there are no gluon corrections. The above equation 

(1.28) is finite because F2 is a finite observable, but to achieve this, singularities arising 

from the inclusion of the QCD corrections have to be taken into account. The coupling 

Q s runs to remove the presence of U V singularities. The 1/k2 singularity arising from 

the l/t pole of the Feynman calculation of the corrections of Figure 1.7 is regulated by 

the artificial cutoff M2 defining the mass renormalization scale. Initial state collinear 

singularities have been swept into the the parton distribution fq(x) introducing the Q2 

dependence of fq(x) —> fq(x,Q2). The result is that we have a factorized form of the 

structure function equation, in which the long distance (non-perturbative) effects have 

been separated from the short distance physics which is calculated theoretically; the Q2 

dependence of the parton distributions is described by pQCD. 

This Q2 dependence of the parton densities means they can no longer be determined 

absolutely, only their behaviour with Q2 which is described by the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) equation [15] 

dfq(x,Q2) os(Q2) fidy f / n 2 , p ( x \ 
~ d ^ = — L j - t ^ Q ) P [ y ) • ( L 2 9 ) 

Thus, the parton distributions can be calculated at any scale Q2 provided we know the 

distribution at some input scale QQ. This is determined experimentally at large values of 

x where the parton distributions can be measured accurately and are well known. The 

above evolution equation (1.29) is not the full story. There are contributions to the quark 
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partem density arising also f rom the process of g —> qq to be included. Glue is also 

produced through the processes g —> gg and q(q) —> gq{q). These determine the gluon 

distr ibution function g(x,Q2) and the f u l l evolution equation becomes 

dq(x,Q2 

dhiQ2 

= <ys(Q2) p 
2TT J I 

dy 
x y q(y,Q2)Pqg[-)+9(y,Q2)^ Q9 

X 

for the quark distr ibution, and, for the gluon distr ibution 

dg{x,Q2) as(Q 
d l n Q 2 

= as(Q2) / - i 
27T JX 

dy^ 

y 
g(y,Q'2)Pgg[-) ^jZq,(y-.Q2)P3q ( -

(1.30) 

( i . 3 i ; 
y j ~ \y, 

Here the notation f(x,Q2) = q(x,Q2) is used wi th the summation i over all quark and 

antiquark flavours. As before the spli t t ing functions Pji give the probabili ty of f inding 

parton / w i th momentum fraction x inside an in i t ia l parton i (?, / = q.g) w i t h momentum 

fraction y. 

1.3.3 Double Leading Logarithmic form of D G L A P equation 

In the HERA DIS kinematic regime x is small and the gluon is the dominant constituent 

of the proton. Thus, we wi l l concentrate on the fo rm of the gluon distr ibution w i t h Q2 

given by equation (1.31) and show that the D G L A P evolution equation is essentially 

a resummation of the [as\nQ2/Ql) terms to all orders. However, at HERA x is also 

small so we w i l l consider the region where \n(l/x) is large and obtain the double leading 

logarithmic ( D L L ) fo rm of the D G L A P evolution equation. 

I n the H E R A region the ratio x/y is small and the evolution equation of (1.31) can 

be approximated by the Pgg term only 

dg(x,Q2) as(Q2) dy . n „ ( x 
d\nQ2 - 2TT J x y * y » ^ ' 9 3 \ y , 

Equation (1.32) gives the contribution to the gluon distr ibution due to gluon emission 

f rom the probed gluon before interaction wi th the photon. For simplicity, i f we consider 

fixed Q s then the solution can be obtained by taking moments, defined as 

g(n,Q2)= I' dx xn-lg{x,Q2), (1.33) 
Jo 

of (1.32) giving 

dg(n,Q2) 
d\nQ2 2w Jo Jx y \ y j 

= ^ f d y y ^ g i y ^ r - P i J - ) ^ . (1.34) 
2TT Jo Jo y \y yn 1 
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Lett ing z — x/y then (1.34) becomes 

dg(n,Q2) 
^~g[n,Q2) j* dz Pgg(z)zn-1 

d\rxQ2 

For small x, i.e. small 2, the spli t t ing function takes the approximate form 

6 

1.35) 

P99 = 6 ( — + 1 
+ z ( l - z ] 

giving 

dg(n,Q2) 

dlnQ2 
= —Vin.Q2) f dz z» 

7T Jo 
3as g(n, Q2) 

7T n — 1 

Rearrangement of (1.36) allows us to write 

dg(n,Q2) 3a. 

(1.36) 

I dg(n, 
J g{n,i ,Q2) w(n-l)JQL 

which has the solution, in moment space, of the fo rm 

/ dlnQ' 
JQI 

3a., 
In 'Q2 

* ( n - l ) - \ Q 2

0 l 

g{n, Q2) = A exp 

Using the inverse transformation 

1 r*00 

xg(x, Q2) = — dn x - ^ g ( n , Q2 

Ziri J-ioo 

(1.37) 

(1.38) 

the solution of the gluon distribution can be obtained in x,Q2 space. Substituting the 

result of (1.37) into (1.38) and wri t ing 

a . - ( " - D = e X p (?i - 1) In ( -
\x 

we get 

xg(x,Q2) 
2wi /

i'X> 

-ioc 
dn exp 

V ; [ x j T r ( n - l ) 
g(n,Ql) (1.39) 

where we define t = ln(Q2/Ql). For small x and large Q2, as in the H E R A kinematic 

regime, then the ln ( l /a . ) and as \n(Q2/Ql) terms are large and have to be resummed, i.e. 

we require the solution to (1.39). The integration of (1.39) can be performed approxi

mately using the saddle point method of integration giving the result 

xg(x,Q2) ~ exp 

exp 

3a, 1/2 

x j \ 7 r ln ( l /x - ) + 3a J 3a, t -1/2-

7T \Trljl(l/x)i 

3a 
(1.40) 
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This is the D L L solution of the D G L A P equation for fixed as. The above D L L approxima

tion can also be performed analytically for running coupling as(Q2) in (1.32). The fo rm 

of the solution for the InQ2 terms is the same as that above after the simple substitution 

\Qo) JQl <i2 

in (1.37). 

For a constant starting distribution, xg(x,Ql) = Go, then (1.40) predicts that the 

gluon distr ibution w i l l grow faster than any power l n ( l / . r ) as x —> 0; the structure func

tions w i l l rise w i th decreasing x. 

Q2 evolution in ladder form 

Theoretically we can have mult iple gluon emission and allow n gluons to be emitted f rom 

the probed gluon before interaction wi th the photon. The D G L A P equation can then be 

considered to be bui l t up f rom n gluon emissions forming "rungs" of a ladder diagram 

[16] as shown in Figure 1.8. I t is important to remember this picture only holds in an 

axial gauge where the gluon has two physical polarizations. 

The important feature of LO D G L A P evolution is that the leading log contribution 

comes f rom the strong ordering configuration of the gluon emission along the chain as we 

move f rom the hard scale Q2, determined by the v i r tua l i ty of the photon, to the hadronic 

scale 

Q2 » k2 » k2

n_, » . . . » *?. (1.41) 

In the D L L region, we also have strong ordering of the longitudinal momentum xP such 

that 

x < xn-i < . . . < y . (1.42) 

The emission of n gluons is calculated f rom the modified "1 rung" integral equation fo rm 

of (1.29) 

, [Q2 dk2 3as yi 
x ^ Q ) = JQi - ^ — l d y y 9 ( y ) 

by the inclusion of n nested integrals 

* i dk 
\ 7r / J k± J k{ Jx xn-\ Jx2 xi Jx! y 

xgn(x:Q<) 
l n 

n Q n 1 3a 1 1 
n G n 1.43) 

Qo n n: 7T 
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Figure 1.8: Ladder diagram of D G L A P evolution of the gluon distribu
tion of the proton. The transverse momenta of the emitted gluons are 
strongly ordered along the chain. This shows the D L L approximation 
where we also include strong ordering of the longitudinal momentum x. 
For the D G L A P evolution which resums In Q2/Ql terms there is only a 
soft, kinematical ordering of the x's; x < xn-i < ... < x\. The "ladder" 
diagram is representative only in an axial gauge. The symmetry of the 
diagram is to indicate that the cross sections are obtained by taking the 
matrix element squared of the process. 

where the starting input Go = yg{y)- This is using the small z approximation of Pgg. Thus, 

the D G L A P equation for the gluon distribution xg{x, Q2) is given by the summation over 

n gluon rungs of the ladder diagram 

xg(x,Q2) = Y , x 9 n ( ^ Q 2 ) - (1-44) 
n 

From (1.43) and (1.44) we see that the leading logarithmic equation is effectively the 

resummation of the [as \n(Q2/Ql)]n terms. By relaxing the strong ordering of one pair of 

momenta in the gluon chain such that kt ~ frj-i, we would lose one power of \n(Q2/Ql) 

giving the next-to-leading logarithmic (NLL) D G L A P equation. 

For completeness, using the identity of the modified Bessel function[17] 



Chapter 1. Deep Inelastic Scattering at HERA 29 

and defining 

( 
Q2 3a 1 u n n 
Q X 0 

n 

then (1.43) gives the same result as obtained f rom taking the moments of (1.32). We have 

regained the result of (1.40) but from the treatment of the evolution equation as a sum 

over n gluon emissions. 

The form of the input G0(x, Ql) in (1.40) determines the form of the gluon distr ibution 

after evolution to higher Q2. A flat input at the scale Ql w i l l result in the fo rm of the 

D L L result of (1.40). 

The observables are now obtained using the parton distr ibution of (1.40) to give the 

structure funct ion F2 of (1.28) and hence the cross section. The success of the D G L A P 

evolution formalism in predicting the structure funct ion F2 of the proton at H E R A can 

be seen in Figure 1.4 where the solid line is calculated using Q2 evolution of the MRS(A) 

[12] parton distributions. 



Chapter 2 

The small x kinematic region 

Experiments at H E R A probe values of Bjorken x as low as x ~ 10~ 4 . For values this 

small logarithmic terms in 1/x become large indicating that the D G L A P formalism (1.32) 

which sums the leading 1 I n Q 2 terms is not enough. These logarithms in 1/x need to be 

considered and resummed. As for the D G L A P equation, in which the LO behaviour arises 

f rom the strong ordering of transverse momenta kx, the leading behaviour [ln l / x ] " terms 

arise f r o m a strongly ordered kinematic region, but this time of the longitudinal momenta 

i.e. 

X < Xn <£„_!... < x, . (2.1) 

This leading logarithmic resummation ( L L ( l / . r ) ) is performed by the Balitskii-Fadin -

Kuraev-Lipatov ( B F K L ) equation which effectively resums the leading [as \n{l/x)]n terms. 

The aim of this thesis is to study the B F K L equation and its application in making 

predictions for observable quantities at HERA. Because at present the B F K L equation is 

known only, for practical purposes, to LO (see section 2.4), modifications w i l l be made 

to the standard equation (2.3) to incorporate some effects of subleading contributions. 

A t LO the B F K L equation corresponds to a fixed coupling a s , however, at NLO running 

of the coupling is specified[19]. Also, one component of the f u l l NLO B F K L calculation 

is a kinematic constraint on the longitudinal momenta of real emitted gluons 2 . These 

(incomplete) subleading effects can be included wi th the LO B F K L equation to give a 

more "realistic" solution for the gluon distr ibution. These modifications w i l l be studied 

in greater detail in chapter 3 where we also make a further modification to the small qj 

'The coefficient, functions and anomalous dimensions of DGLAP evolution are known at NLO. [14, 18] 
2see section 3.5 

30 
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region 3 to allow exclusive jet production to be calculated wi th in the B F K L formalism. 

Here we split real gluon emission into two parts - gluons wi th very small transverse 

momenta qx, and those wi th larger qj. The low momentum real gluons w i l l then be 

resummed wi th the vir tual gluons before evolution in In 1/x is performed. This approach 

is useful in the production of f u l l B F K L Monte Carlo simulations which are required 

for experimental analysis[20, 21, 22]. Because the work in this thesis wi l l apply these 

modifications, in this introductory chapter the aim is to present the B F K L equation and 

discuss its properties which should be observable experimentally. Thus, only a brief outline 

of the equation wi l l be presented here. Detailed discussions of the origin and derivation of 

the B F K L equation can be found for example in [10, 14, 23, 24, 25]. The solution w i l l be 

given in detail in appendix B and can also be found in the above references. Discussion 

of N L O improvements can be found in section 2.4 and chapter 3. 

The B F K L equation is pictorially described by a ladder type diagram somewhat similar 

to that of the D G L A P evolution ladder of Figure 1.8, but, since we wish to sum only 

the leading In 1/x terms which arise f rom strong ordering of the longitudinal momenta 

(2.1), we now need to consider the f u l l transverse momentum dependence of the gluon 

distr ibution. That is, for a finite scale Q2, we must keep the f u l l Q2 dependence of the 

gluon distribution g{x,Q2), not just the LLQ2 terms. Thus, we unfold the k\ integration 

over the last rung of the gluon ladder and we must now work wi th the unintegrated gluon 

distr ibution f(x,k'T). The gluon distribution g(x,Q2), as discussed in chapter 1, is then 

obtained through integration of the transverse momenta up to the scale Q2. That is, 

Figure 2.1 shows part of the B F K L ladder diagram. However, the diagram of Figure 

2.1 is more complicated than that of Figure 1.8, as the B F K L ladder is only an effective 

diagram representing many different Feynman graph contributions f r o m both real and 

v i r tua l gluon emissions. Some of the gluon emission contributions to the B F K L ladder can 

be seen in Figure 2.2 which shows quark-quark scattering via ^-channel gluon exchange. 
3qx refers to the transverse momenta of real emitted gluons from the B F K L gluon chain. See Figure 

2.1 The B F K L equation 

Q2 dk 
9(x,Q2) = J *grfi*>%) (2.2) 

2.3 
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Figure 2.1: The unintegrated gluon distr ibution, f ( x , k j ) , is effectivelj ' 
the sum of ladder diagrams formed by the modulus squared of such am
plitudes. The leading as In 1 jx resummation is performed by the B F K L 
equation incorporating strong ordering in the longitudinal momenta x, 
as in (2.1). The k\{ are unordered along the chain. The vertical gluon 
is reggeized as indicated by the thicker gluon line than the real emitted 
(horizontal) gluons (see Figure 2.3). 

The tree level contribution is shown in Figure 2.2(a) and leads to the delta funct ion dr iving 

term for the integrated B F K L equation discussed in chapter 4. Diagrams 2.2(b)-(f) show 

corrections to the tree level process arising f r o m real gluon emission. On calculation of 

these graphs the results can be wri t ten as an effective vertex factor[10, 24] 

Here kj and k'T refer to the momenta of the vertical propagators below and above the 

emitted gluon which carries a transverse momentum qj. Thus the real gluon corrections 

can be described by a single effective diagram which is shown in Figure 2.3(a). 

The v i r tua l gluon corrections (at the same order as the real corrections) are shown in 

diagrams (g)-( j) of Figure 2.2. The overall effect of including these diagrams is to modi fy 

the real gluon emission effective diagram of Figure 2.3(a) by reggeizing the t-channel gluon 

propagator, see Figure 2.3(b). That is, the leading Ins behaviour of the amplitude for 

3as k 
r R a ..2 7r krrqr 
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Figure 2.2: (a) Parton-parton scattering via gluon exchange in the t-
channel. (b) - ( f ) Order a2

s corrections to the tree level amplitude (a) i.e. 
qq —> qq + g. (g)-(j) Vi r tua l corrections to the tree level amplitude (a). 

quark-quark scattering in the high energy Regge l imi t (i.e. s » —t) has the form 

( 
where 5 = (p^ + PB)2 and t — (PA — Pc)2 a r e the Mandelstam variables of the scattering 

process A(p^) + B(PB) —> C(pc) + D(PD) ( s e e section 4.2 for a f u l l description of these 

variables), wi th ag(kT = t) the Regge trajectory of the gluon. The B F K L gluon ladder is 

then buil t up f rom mult iple gluon emissions of the type shown in Figure 2.3(b) in which 

the vertical propagator is described by a reggeized gluon w i t h the rungs of the ladder 

corresponding to real gluon emission wi th an effective vertex VR. Both the effective 

vertex term and the vir tual corrections have the correct colour structure. 

Full calculation of Figure 2.2, keeping only the leading In s factors, leads to the famous 
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Figure 2.3: (a) Effective diagram for real gluon emission f rom the ex
changed gluon propagator. This contains contributions f r o m diagrams 
(a)-(f) of Figure 2.2 which are described by the vertex term TR as indi
cated by the black dot. (b) Modification of the effective real gluon dia
gram 2.3(a) in which the vir tual contributions (Figure 2.2(g)-(j)) reggeize 
the vertical gluon as indicated by the thicker line. 

B F K L equation[23] 

7T Jr. X J KT 

f ( x ' , k ? ) - f { z ' , % ) + f ( x ' . P T ) 

(2.3) 

Equation (2.3) gives the n = 0 form of the LO integral evolution equation for the unin-

tegrated gluon distr ibution f ( x , k ^ ) where n refers to the azimuthal projection exyj(in(p). 

I t has the boundary conditon 

/ ( x , 4 ) = / ( ° » ( x , 4 ) (2.4) 

at x = .To. For recursive computation of the solution / , / ' ° * ( . t , k^) is a suitable inhomo-

geneous driving term f r o m which the B F K L In 1/x evolution is started at the input scale 

x = x0. In the next chapter k j ) w i l l describe the proton gluon distr ibution, whilst 

in chapter 4, i n which DIS including forward jet events w i l l be discussed, the dr iving term 

w i l l be considered to be the fusion process 7*<7 —> qq which can be calculated f r o m the 

quark box (and crossed box) diagrams shown in Figure 3.11. One important feature to 

note for this equation is that the infrared divergence of the integral as k'jt —»• 0 cancels 

between the real and v i r tua l contributions. The factor 3cvs/7r arises f rom the real emission 

vertex TR. 

For future reference, i t is useful to write the B F K L equation of (2.3) in symbolic form 

/ = /<°> + A '<g>/ , (2.5) 
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in which K is known as the B F K L kernel. (2.5) is solved subject to the boundary condition 

(2.4) w i t h the convolution ® referring to integration in In l / x . Comparing (2.3) wi th (2.5) 

we observe that the explicit form for K 0 / is 

3 a , , , f*° dx' f dk£ . 6a 2 p clx' f dk 
7T Jx X' J t 

f ( x \ k ' 2 ) f ( x \ k T ) + f { x ' , k T ) 
(2.6) 

Here the real gluon emission is described by the first term of (2.6) whilst the second 

and th i rd terms give the vi r tual contributions. The cancellation of infrared divergences 

between the real and v i r tua l terms can be seen between the first and second terms of 2.6. 

E x p e c t e d smal l x behaviour of the gluon distr ibut ion from B F K L dynamics 

Before studying the solution of the B F K L equation in more detail, i t is instructive to look 

at the expected fo rm of the solution of (2.3). 

Let A be the leading eigenvalue of the kernel K, then 

0 1 d f = Kf = Xf , 
a l n ( l / x ) 

f rom which we see that / has the solution of the fo rm 

r Alnl/.r -A 
/ ~ e ' ~ x 

Indeed, this x~x behaviour obtained f rom the simple calculation above is the x dependence 

we wi l l observe when a more rigorous calculation of (2.3) is made in section 2.2. 

??-rung decomposit ion of the B F K L gluon f ( x , k T ) 

Similar to the picture of D G L A P evolution in which the total gluon distr ibution g(x, Q2) 

is made up f rom the sum of n gluon rung contributions to the gluon ladder chain (section 

1.3.3), the total B F K L unintegrated distribution, f(x,kj-), is also composed of the sum

mation over the n rungs of the B F K L effective ladder, i.e. 

/ ( * , * £ . ) = £ A s , # ) . (2-7) 
n 

This decomposition into the individual n rung components w i l l be used as the basis for 

the exclusive jet cross section calculation of chapter 3. 
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2.1.1 Double Leading Logarithmic form of the B F K L equation 

Both the B F K L and D G L A P equations describe the evolution of a gluon through emission 

of real and vir tual gluons. The D G L A P equation performs a resummation of the LLQ2 

terms whilst the B F K L equation resums the LL( l / a ; ) terms. How do these approaches 

compare in the D L L phase space region where ln ( l / a ' ) In Q2 is large? The D L L result for 

the D G L A P equation was presented in section 1.3.3 (Eq. 1.40). 

I f we consider the l im i t k\ 3> k j , then the B F K L kernel A' of (2.6) becomes 

K{kT, k'T) 
7T k% ' 

[2.8) 

Substituting (2.8) into the recursive fo rm of the B F K L equation (2.5), i.e. the n t h rung 

contribution to the gluon distribution is obtained f rom the (n — l ) t h rung, then we have 

,/;(*,4) = fJ?L jdk12 K ^ k ^ u ^ x ' , ^ ) 

1 dx' fk2

T „ , 0 3a, 1 
Jx X' J 1 7T k 7 2 / n - l (^'i ^7^ 

3a s 1 
- ) - l n ( ^ j f n ^ A i ) 

7T n \x/ n \/< / 
In 

Using (2.7) then the total unintegrated gluon distr ibution is 

3a, / 1 ^ 2 

E 
n 

E 

In ( - ) h J ^ ) f n ^ ( x , 4 ) 
x \ny \xJ \/' / 

1 
(2.9) 

Thus, after substitution of 

u2 

into the modified Bessel function of (1.45), Eq.(2.9) gives the result 

f ( x , k j ) ~ exp (2.10) 

which on integration of k j up to the scale Q2 reproduces the D L L approximation of the 

gluon distr ibution g(x,Q2) as obtained in chapter 1. 



Chapter 2. The small x kinematic region 37 

2.2 Solving the B F K L equation for fixed as 

For the B F K L equation wi th fixed coupling as, then (2.3) can be solved analytically. 

For completeness the solution of the B F K L equation and the kernel A' can be found in 

appendices A & B. Here a quick outline of the solution wi l l be presented[10]. 

Defining the moment equation 

f ( x ^ ) = / ( k 2 r w ' l f ( x , k 2 ) d k 2 ( 2 . i i ) 

Jo 

where for simplicity of notation we take k2 = k T , and applying (2.11) to (2.5), then the 

B F K L equation factorizes and the differential equation in moment space is 

= (2.12) 
cUn(l/:!-) 

K(io) is the kernel wri t ten in moment space which has the solution (see appendix A ) 

3cr 
K{u) = — [ 2 t f ( l ) - (u>) - (1 - u>)] . (2.13) 

is defined by the gamma functions ^(u) = T'(UJ)/T(UJ), w i th $ (1 ) = —7# = 0.5772... 

the Euler-Mascheroni constant. 

Knowing the solution for the kernel (Eq. 2.13), we can now solve the B F K L equation 

in moment space to give 

= / ( a * , . (2.14) 

Performing the inverse Mell in transformation of (2.14) and using saddle point integration 

gives (eventually) the result 

, r > / ( « . , l / 2 ) ( * ) * U - W I ? ) , ( , 1 6 ) 

XQ 2K{X"\n{xQ/x) + A)^ 2X"\n{x0/x) + 2A 

where A is the maximum eigenvalue of the kernel A' , and is given by 

A = ^ 4 l n 2 . (2.16) 
7T 

Also 

\ " = r ^ 2 8 C ( 3 ) . (2.17) 

C(3) is the Riemann zeta function wi th a value 1.202. A is defined as l / f c P f / d w 2 , and A- is 

an arbitrary scale to make the argument of the logarithm dimensionless. This calculation 

can be found in more detail in Appendix B. 
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2.2.1 Dynamical properties of the B F K L solution 

Let us now look at the properties of the B F K L solution for f(x,k.j) to determine what 

small x behaviour should be observable at HERA. 

To recap, the solution of the B F K L equation (for fixed coupling) is 

thus as x —> 0 we would expect to see an x behaviour of the gluon distr ibution / , where 

A, the maximum eigenvalue of the kernel, is defined in (2.16). This behaviour of the gluon 

distr ibution at small x (an unobservable quanti ty), w i l l feed through to the observable 

structure functions and cross sections measurable at H E R A . For fixed o s , then f r o m (2.16) 

we see that the value of A is fixed but is dependent on the scale at which cts is set. For 

reasonable values of ets ~ 0.2, then we find A ~ 0.5. Thus, we would expect an increase 

in the unintegrated gluon distribution f ( x , k j ) , and also the structure funct ion F2, as we 

move to smaller x values if B F K L dynamics are obeyed. This is to be compared w i t h the 

expected rise of the gluon distribution g{x,Q2) obtained f rom D G L A P evolution which 

for suitable input g^°\x,Q2) can reproduce the rise of the structure functions obtained 

by evolution in l n l / . x . The following chapters wi l l address processes which neutralize 

(unwanted) evolution in Q2 and allow us to concentrate on the small x behaviour of the 

gluon distributions in order to t ry to observe this expected x~x rise characteristic of B F K L 

One other important feature to notice in the result of (2.15) is the exponential term 

in k2. This is of Gaussian form and as such has a wid th Tg equal to 

w i t h A" of (2.17) and A defined above in section 2.2. The consequence of this is we observe 

a diffusion in In k2 as we evolve f r o m a starting scale , T 0 down to some smaller value x. This 

diffusion in fact causes problems - the integral over k2 can now enter the non-perturbative 

infrared region of low k2 where the physics is not completely understood. This introduces 

uncertainties into the validity of results calculated using the B F K L equation. The most 

simple (and crude) way of removing this problem is to impose an infrared cutoff k^ on the 

lower l imi t of integration[26, 27]. This problem w i l l be addressed further in chapter 4. 

ln2(fc2A") 
A exp f ( x , P 2(\"ln(x0/x)+A) X 

1 1 
27r(X"\n(x0/x) + A)^\ x0 

dynamics. 

r s = y/(X"\n(x0/x) + A) 
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Thus to summarize, the characteristic features arising f r o m B F K L small x dynamics 

are 

(i) a strong increase of the gluon distr ibution f ( x , kj<) as x —• 0, of the form x~x. The 

rate of increase is determined by the value of A, the maximum eigenvalue of the 

B F K L kernel, which for fixed as is A = 3 a 4 4 l n 2 / 7 r ~ 0.5 (for relevant values of cvs) 

( i i ) a diffusion in the transverse momenta, the rate of which is determined by the in i t ia l 

conditions and the value of A" giving the curvature of A at the point w = 1/2. This 

arises directly f rom the lack of strong ordering in k2 of the emitted gluons. 

2.2.2 B F K L equation incorporating running as 

The above discussion of the B F K L equation and solution has been for fixed as. However, 

NLO corrections w i l l introduce running coupling [19] such that we now require a s ( k j ) . 

This can be incorporated into the B F K L equation without actually knowing the f u l l N L O 

corrections, to attempt to include some of the subleading effects. By including running 

coupling into (2.3), then the equation becomes 

/ ( . , 4 ) = / < ° > ( ^ ) + ^ 4 / f 
f ( x , k $ ) - f ( x , k $ ) , f i x . k f ] + (2.18) 

and we can no longer solve for / analytically. We must numerically solve (2.18) using the 

recursive nature / „ = K 0 / „ _ ! starting f rom a suitable input p°\ Thus, we explicitly 

solve the B F K L equation of the fo rm 

d4^p- = ! dk'2 A'(A£, k ' 2 ) f ( x , k'2) (2.19) 
a In 1 / x Jk\ 

where the input / ( 0 ) ( a : 0 , fcf.), w i th x0 ~ 0.01, can be determined (for example) f rom the 

M R S parton distributions[12] for the proton. Also, we must now explicitly include an 

I R cutoff, &Q, on the momentum integral to prevent the solution f rom entering the non-

perturbative region for large a s , (i.e. as(k2 —> 0) —> oo, see Figure 1.5). 

Numerical computation of (2.19) gives the solution 

f ( x , k 2

T ) ^ C r 
- A 

the form of which is achieved very quickly as we evolve downwards in x. I t is found [26] 

that A has the effective value 

A ~ 0.4 - 0.5 
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which is weakly dependent on the cutoff &g[26, 27]. More disconcerting though is the 

stronger dependence of the normalization C on k^. Due to this ambiguity, numerical 

computations of the gluon distribution using B F K L dynamics wi l l concentrate on the .r 

dependence of observables, rather than the normalization (see chapters 3 & 4). 

Recall, f ( x , k ^ ) is the unintegrated gluon distribution, then 

rQ2 dk2 

xg(x,Q2) = j ^ f ( x , k 2

T ) ~ x - \ 

that is the x~x behaviour feeds into the fu l ly integrated gluon distribution and also to the 

observable quantities such as F<±. 

Thus we see the numerical solution of the B F K L equation incorporating running cou

pling cts{k\) is successfully consistent w i th the analytic solution for fixed coupling. I t is 

this numerical fo rm which wi l l be used throughout the remainder of this thesis. 

2.3 Alternative formalism of the B F K L equation 

The above discussion has considered the general properties of the B F K L equation as given 

by (2.3), where we have integration over k j relating to the momentum of the vertical gluon 

propagator. In the following chapters we wish to use the B F K L formalism, which sums 

real and vi r tual gluon emissions, to provide an estimate of exclusive jet production, i.e. 

we w i l l identify the real gluon rungs of the ladder as individual jets i n the f inal state 

(subject to resolution cuts). Thus, i t is more convienient to have a form of (2.3) in which 

the explicit momentum dependence, q'j, of the emitted gluons is displayed. Below it wi l l 

be shown that (2.3) can be wri t ten equivalently as 

7T Jx X J 7T q\ 
(2.20) 

This is the f o r m of the B F K L equation that w i l l be used throughout the remainder of the 

thesis. 

The proof of the equivalence[28] of the two forms (2.3) and (2.20) of the B F K L equation 

is non-trivial and since we wi l l be using the form of (2.20) i t is worth while to show the 

proof here. This is in two parts, 
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(i) we will first quote the two dimensional form of (2.3) when we undo the azimuthal 

tp integration and show the equivalence with the fully integrated form, and 

(ii) the integration over k'£ will be performed using the Feynman parameter A which 

will allow us to rewrite the equation in terms of 

Performing the azimuthal integration 

The BFKL equation (2.3) written in the azimuthal unintegrated form is 

F(x,k2) = F° (x,k2

T + h m — / — / 

k2

T F{x\ k2

T 

d2k' 
k'T - kT | 2 +S2 

x\F(x',kp (2.2i: 
{k^+ | k'T - kT | 2 +62) J ' 

where we have chosen to work with the distribution F = f / k 2 as it is slightly easier to 

keep track of k2 factors. Equation (2.21) is equivalent to (2.3) under integration over 

azimuth ip between the vectors k'T and kj- The regulator 6 is included to remove any 

divergence problems under the integration over k'^ as we take the lower integration limit 

k2 - 0. 

By displaying the explicit azimuthal dependence of (2.21) we have, for the real emission 

terms 

F(x', k'2) d2k'T _ r d"k 
J 7T k'T - kT | 2 +62 

— / dkj f dip 
2ir J Jo 

F(x',k'2) 
ktf + k2~- 2k'TkT cos tp + 62 

(2. 221 

and virtual terms. 

Iy = — f dkj I dip 
2k J Jo 

(2.23) 

x + k\ - 2k'TkT cos tp + 82){k% + k$ + k2

T - 2k'TkT cos <p + <52)_ ' 

The tp integration in (2.22) can be performed using the standard integral4 

1 
R 

r2w 

/ d^ r 
Jo \x 

2 + y2 — 2xy cos <p + 62] 

integration performed using Mathematica 
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s/[{62 + x2 + y2- 2xy)(S2 + x2 + y2 + 2xy)} ' 

Taking the limit 6 —> 0 and setting a = x2/y2 we obtain, 

2ira 

x 2 ( i - a y 

which gives us the solution for the integrated real emission terms of (2.21) as 

j 1 [,U29 k'2 F(x',k'2) 

Similarly we can perform the <p integration in (2.23) using4 

[2.24] 

Iv = = / 
Jo 

= 2TT 

(x2 + y2 — 2xy cos <p -f S2)(x2 + y2 — 2xy cos Lp + x2 + <52) 

1 1 

w here, 

2 2 
^ - y 

D 2 = x V ( 4 . r 4 + y4) 

Here we have set 62 = 0. 

This gives, 
_ f J L , 2 ~k\ F{x', k j ) | f j,!2 k\ F(x', k\ 
- / a f C T ,,2 I U2 L2 

+ / dk 

Thus, combining (2.24) and (2.25) and changing variables back to / = k2F we obtain the 

azimuthal integrated form equation (2.3). 

(2.25) 

Feynman integration over A to give integral form 

Returning now to equation (2.21), we wish to show this can be written equivalently in 

terms of the momenta of the emitted gluon qT. To do this we introduce the Feynman 

parameter A, so we can rewrite the virtual contributions in the form 

f d2k'T 

J 7T 
k2 F(x', k%) 

k'T - kT | 2 +62}[k$ + | k'T - kT | 2 +S2} 
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f1

 d X f (Pk^ k2F(x',k2) 
JO 1 J 7T [(i - A)[| k'T - kT | 2 +S2] + \[kj+ | k'T - kT | 2 +62}f 

/>/ d2k'T k2

T F{x\k2

T) 
[\k$+ | k'T - kT |2 +S2]2 

Writing 

d2k'T = i dk'f dip 

and making the substitution 
kT 

(2.26) 

k'T = K+ — i - (2.27) 
•A + 1 

then we have 

d 2 ^ = c/2/v = irf/c2^ . (2.28) 

Considering the denominator of I v then we have, making the above substitutions of (2.27) 

and (2.28), 

l ^ - M 2 = ^ + *-K(T^F + 1 - u T I ) ) + ' I ' ^ ( n T l ) - 2 ) 

^ ^ G r V ' ^ M i T T A ) - 1 ) 
•2 ^ 2 , 2 2A 

= " + ( T T A F ^ - ( T T A ) ' £ ' ^ -

which gives 

A A2 \ 
\k,2+\k'T-kT\2 = K 2 ( I + A) + 4 ( ( 1^A ) 2 + 

(1 + A) 2 (1 + A) 2 , 

= « 2 (1 + A) + ^ ^ I A 4 ( 1 + A) 

= K 2 ( 1 + A ) + ( T T A ) A -

i.e. there is no longer azimuthal dependence in the denominator. Thus, the virtual 

contributions can be written as 

1 [2* F{x\ k? 
iv = 4 ( dx r ^ . l r t ^ M — -

J o J o 2 7 r J o ((1 + A)K2 + ( i ^ ) ^ r + <52)' 
(2.29) 
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which on performing the integrations over dn2 and dip gives 

Iv = 
( l + A)7o 

d\ F{x\k2

T) 1 + X ) K 2 + 
X 

(1 + A) 
kl + S' 

(1 + A) Jo 
dX 

F(x',kj.) 

dX 
A + g-(l + A) 

This leaves the integration over A giving 

62 
Iv = log\k4)+o(f \ , 

which we write as 

J62 irqj \ kj J 

(2.30) 

(2.31) 

2.32) 

Thus, all we have to do now is substitute the virtual contribution Iy of (2.32) back into 

(2.21) and change the variable of integration of the real emission contribution to 

qT = k'T - kT , 

to obtain the BFKL equation as shown in (2.20). 

2.4 Higher order corrections to the B F K L equation 

The equivalent BFKL equations of (2.3) and (2.20) are a resummation of the 0(as In l / x ) n 

terms which describe the evolution of the gluon propagator in transverse momentum in 

the ^-channel. However, the equations presented above are only to leading order i.e. the 

BFKL equation only resums the region in which all gluon emissions are strongly ordered 

in rapidity, related to the strong ordering of the longitudinal momenta 

x < xn <C < * i • (2-33) 

The LO BFKL formalism has a few drawbacks. First, it does not conserve energy 

(E) and longitudinal momentum {xP) which are desirable for a working theory[29]; the 

terms producing the violation being subleasing. But obviously this could be very im

portant phenomenologically for application of the BFKL formalism to real processes. A 
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method of removing this problem is to explicitly include energy/momentum conservation 

in Monte Carlo programs using the BFKL equation. Secondly, (2.3) and (2.20) have fixed 

as. We know scale variations of the coupling constant are important, but change of scale 

effects appear only in NLO logarithmic terms. The practical inclusion of running coupling 

into the LO equation has been discussed briefly in section 2.2.2, and will be considered 

throughout the remaining chapters of this thesis. Another problem is that perturbative 

QCD tells us that the high energy behaviour of the total cross section for parton-parton 

scattering is ~ s0 5. That is, the cross section increases with increasing centre of mass en

ergy. However, the Froissart-Martin bound imposes the constraint that the cross section 

cannot grow faster than In 2 s, where 5 is the squared centre of mass energy. Evidently, if 

this 50 '5 behaviour continues without slowing down, this parameterization will eventually 

violate the bound. The required deceleration of the growth of the cross section as we 

move to higher energies is also linked to subleading effects such as parton saturation. 

This describes the situation when the gluon density becomes so large the partons (inside 

the proton) are no longer free objects and their interactions must also be considered. One 

model that describes these shadowing effects i.e. the inclusion of interactions between 

the gluons, is treated through multiple exchanges of BFKL ladders in the same scattering 

process[30, 31]. In fact, unitarity requires that such contributions exist. The good news 

appears to be, that for the present energies reached by HERA, these shadowing correc

tions are not observed in the data. However, this is a hot topic of debate with recent 

studies of the unitarity and Froissart bound limits applicable in BFKL calculations of F2 

and the gluon density, showing that the saturation region of gluons is reached for HERA 

energies [32] - there still remains a lot of work to be done in this area before absolute 

conclusions can be drawn as to whether shadowing corrections are necessary in the kine

matic regimes probed by todays experiments HERA and the TEVATRON. However, for 

the next generation of high energy colliders, e.g. the LHC which will have yjs ~ 14 TeV, 

then parton densities will be very large and we would expect these corrections to become 

necessary. Thus, it is very important that the ful l NLO corrections be known before an 

accurate description of the gluon density using BFKL dynamics will be achieved. 

NLO corrections to the BFKL equation have been considered for a long time from two 

viewpoints: i) the need for the BFKL theory to obey unitarity[30, 33] (Bartels, Gribov, 

Levin, Lipatov, Wiisthoff) and ii) the full computation of the NLO corrections to the 

BFKL gluon[19, 34]. This calculation was begun in 1989 by Fadin & Lipatov (et al.), 
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and has recently been completed at the end of last year (1996) / beginning of this year 

(1997). However, the form of the answer is such that it is not easily incorporated into 

practical calculations of the BFKL gluon as yet[35, 36]. The first calculations of the size of 

these subleasing effects indicate the NLO corrections produce a dramatic decrease in the 

exponent A of the BFKL solution [36]; the decrease being from XLO ~ 0.5 to XNLO ~ 0.2, 

which will result in a (very) large suppression of the strong rise of the LO BFKL gluon 

f(x, kl) as x -> 0. 

The message is clear though - as the NLO correction is so large, we will have to include 

even higher order corrections to obtain an accurate description of the gluon density / using 

the BFKL formalism. 

In comparison, the LO ([23] & appendix B) and NLO[19, 35, 36] calculations of the 

eigenvalue A of the BFKL kernel give 

XLO = « s 41n2 (2.34) 

X N L O = c7 s4ln2M - 3.4q s - 0.15—^-J (2.35) 

where in (2.35) the result is the full NLO calculation of the corrections by Fad in & 

Lipatov[19] and Caminci & Ciafaloni[36]. as = Ncas/w, where Nc is the number of 

colours. We note that the NLO result is dependent on the number of flavours Nj. Also, 

the NLO corrections appear with "-ve" sign; since all other quantities (cts, Nc, N/,w) are 

"+ve", then the NLO corrections obviously have the effect of reducing the value of A. 

One contribution to the full NLO calculation is described by a kinematic constraint 

(kc) on the longitudinal momentum of real emitted gluons. This requires that the virtu

a l ly of the exchanged gluons along the chain be dominated by the transverse momentum 

component, | k' |2~ k j . Defining the variable z as x' = x/z then the constraint can be 

written as[37] 

!> zcff . 

At NLO the kinematic constraint has the effect of reducing the BFKL exponent A to 

A f e c = a s 41n2( l - 4.2a s . . . ) . (2.36) 

So in comparing (2.35) and (2.36), it "appears" the kinematic constraint is a major part 

[38] of the NLO corrections. The effect of this constraint on the BFKL equation has been 

studied in detail by Kwieciriski et al. [37, 39], and will be discussed further in section 3.5. 
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Since the kinematic constraint appears to be a very large part of the NLO corrections, 

we will just consider the effect of applying it to the BFKL equation to obtain an idea 

of the behaviour of the solution for A at higher orders. An important feature of the 

calculation of the BFKL gluon including the kinematical constraint is that it can be done 

to all orders. Full details of this calculation can be found in [37]. A summary of the 

results is shown in Figure 2.4. 

LO l 

A 

alio 0.5 

NLO 
0.2 

a 

Figure 2.4: Sketch of the exponent A of the x~x behaviour for the BFKL 
gluon. A is shown as a function of fixed as = 3as/ir. The curve (LO) 
shows the solution A = a s41n2 for the BFKL equation of (2.3). Applying 
the kinematic constraint to the LO BFKL equation and keeping only 
the NLO contribution, (2.36), produces the curve denoted (NLO). Also 
sketched is the curve (all 0 ) showing the solution of A when the kinematic 
constraint is done to all orders[37]. 

As we can see, the NLO effect is very dramatic and only agrees with the LO behaviour 

for very small values of as. Taking an arbitrary value of a s , then at LO the solution is a 

specific value \LO- Let us consider the point marked by the black dot on the (LO) curve 

in Figure 2.4. If we now include just the NLO correction to the BFKL equation with 

the kinematic constraint then, following the dotted line downwards to the curve marked 

(NLO), we obtain the corrected value, \NLO-, which is much smaller than \io- This 

decrease is very large indicating that higher order corrections are still very important. 

However, as mentioned above, the kinematic constraint calculation can be performed to 

file:///nlo-


Chapter 2. The small x kinematic region 48 

all orders. If we include the all order calculation, then the effect on the exponent A is 

to increase its value again (following the dotted line upwards to the value given by the 

curve (all 0 ) ) . The important point to notice about the "all orders" calculation is that 

the exponent Xaiio still lies below the LO value \LO- This has the effect of decreasing the 

steep Xio ~ 0.5 rise of the BFKL gluon (which we would like) and gives a much better 

result than performing just the NLO corrections. 

In this chapter the BFKL formalism for resumming the large In 1 /x terms has been 

discussed briefly to give an overview focussing on the points important for phenomeno-

logical applications to physics at HERA. The BFKL equation (Eq.(2.3) and Eq.(2.20)) 

presented in sections 2.1 and 2.3 is only a. leading order resummation of the [ a s l n l/x]n 

terms and, as has been discussed in this section, we realize that this LO equation can 

only be considered as an approximation - it is very important to know higher order cor

rections to the BFKL kernel of Eq.(2.6) before a completely accurate description can be 

obtained for the gluon distribution / , In the following work, we will look at modifications 

to Eq.(2.20) which will include some of the subleading effects in an attempt to obtain a 

more physically accurate description of /( . r ,&y) and use the equation to obtain predic

tions for observable quantities at HERA to search for signatures of the small x BFKL 

dynamics. 



Chapter 3 

Jet structure at H E R A as a probe 
of B F K L dynamics 

3.1 Introduction 

With the advent of the DESY electron (positron) - proton collider HERA, tests of QCD 

in the small x regime have now become possible. The HERA measurements of the proton 

structure function F2(x,Q2) show a striking rise with decreasing x, which with the latest 

data is now known with considerable precision [40, 41]. Theoretically, as discussed in 

chapter 2, we know that for sufficiently small x, such that as ln( l / x ) ~ f, that it is 

necessary to resum the (05 In l/x)n contributions in order to obtain reliable perturbative 

QCD predictions. At leading order this is accomplished by the BFKL equation Eq.(2.20) 

[23] which effectively corresponds to the sum of gluon ladder diagrams of the type shown 

in Figure 2.1 in which the transverse momenta qj are unordered along the chain. This 

should be contrasted with DGLAP evolution (see chapter 1) where, in the leading \\\Q2 

approximation, the transverse momenta are strongly ordered from the hadronic to the 

hard scale Q2 which in deep-inelastic lepton scattering is provided by the virtuality of the 

photon, namely 

Q2 > k2

T > k2

nT > . . . . (3.1) 

Both BFKL and DGLAP evolution lead to an increase of the deep-inelastic scattering 

structure functions with decreasing x and it is possible to obtain a satisfactory description 

of the observed rise using both approaches, on their own, or with unified treatment [12, 42, 

43]. The ambiguity lies in the inclusive nature of the structure function F2 which makes 

it extremely difficult, even with the precise HERA data, to use the observed x behaviour 

49 
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to reveal the underlying dynamics at small x. This is not surprising as the leading 

behaviour obtained from BFKL is an x~x growth, whereas DGLAP evolution predicts an 

increase of the double logarithmic form exp (^A[\n(t/t0) \n(l/x)}^ where t — ]n(Q2/A2) 

(1.40). However, these are asymptotic predictions. For instance subleading ln( l / , r ) effects 

will weaken the BFKL growth in the HERA regime [37, 44] and moreover, the DGLAP 

behaviour is dependent on the choice of a non-perturbative input form at some scale 

Q2 — Qo'i the steepness of the rise of F-j can be controlled by varying the starting scale Ql 

or the input distribution g^(x, Ql). Because we are concerned with the small x region, 

we are interested in looking for signatures of BFKL dynamics which will enable us to 

distinguish them from those produced by DGLAP evolution. It has been realized that 

the intimate relation between the increase of the cross sections with decreasing x and 

the absence of transverse momentum ordering, which is the basic property of the BFKL 

dynamics(section 2.2.1), should reflect itself in the properties of the final states in deep-

inelastic lepton scattering. The solution is thus to look for a less inclusive quantity than F2 

in which we can observe the BFKL behaviour, and in which contributions from DGLAP 

evolution will be neutralized. To this aim several dedicated measurements have already 

been proposed and are being experimentally studied at HERA; such as, deep inelastic 

events in which an energetic forward jet is observed [45], measurements ol transverse 

momentum flow [46], azimuthal correlations [47] and the study of transverse momentum 

spectra of final state particles [48]. The first process of deep inelastic scattering events 

including forward jets will be discussed in more detail in chapter 4. 

One less inclusive quantity that can be studied is exclusive jet production in deep 

inelastic scattering i.e. F2{x,Q2) (and ultimately the total cross section a) can be decom

posed into components F^x^Q2) (<r„), which will correspond to the production of a fixed 

number n of "resolved" gluon jets that is, jets each with a transverse momentum qj > // 

in the final state where is chosen sufficiently large that the jets can be experimentally 

identified. As seen in chapter 2, the BFKL equation can be pictured as a gluon ladder 

in which the rungs are formed via real gluon emission from a reggeized gluon in the t-

channel. This leads naturally to the idea of multi-jet production in the final state from 

ha.droniza.tion of these emitted gluons. In this chapter we will make a detailed study of the 

properties of the partonic final state produced by gluon emissions along the BFKL chain 

and in this way gain insight into the BFKL equation, as well as detailing observables with 

which to probe the underlying small x dynamics. In particular we will study the possible 

http://ha.droniza.tion
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jet configurations in the central region between the current jet and the proton remnants. 

One interesting feature resulting from BFKL dynamics, specifically the diffusion in kT 

with evolution in ln( l / . i ' ) , is the possibility of producing jets even for > Q and one of 

the aims in this work is to quantify the yield of such jet configurations. 

The BFKL equation of (2.20) resums all gluon emissions, real and virtual, which allows 

us to make predictions for inclusive [49, 50] quantities. We wish to look deeper into this 

gluon production and identify the real emissions as jets. But what is the definition of an 

observable jet? Theoretically we could define that all real gluon emission produce a jet in 

the final state, however, practically there must be some minimum transverse momentum 

carried by the gluon. To this end we introduced above the idea of a resolution parameter 

fi, that defines the minimum allowed transverse momentum of the real emitted gluon -

practically this will be a reasonablly large cut of the order 5 GeV - such that we can split 

the real emission terms in the BFKL equation into two components, real resolved gluon 

emission which will be identified as a jet and real unresolved emission in which the gluon 

has a transverse momentum less than the required resolution. 

As has been seen previously, there is a delicate cancellation between the real gluon 

emissions and the virtual contributions in the BFKL equation. Clearly this cancellation 

will be affected by the resolution qr > that will be imposed. In particular we must ensure 

that the appropriate cancellation between the virtual contributions and the unresolved 

real gluon emissions with qx < ft is maintained throughout the calculation. It is therefore 

necessary to first derive a modified form of the BFKL equation which will enable us 

to quantify the number of energetic resolved jets 1 produced along the gluon chain, but 

in which the virtual and unresolved contributions are treated on an equal footing and 

resummed. 

Exclusive jet production in the C C F M formalism 

The process of exclusive jet production has been addressed previously by Marchesini[51] 

using the theoretical framework of the CCFM (Catani-Ciafaloni-Fiorani-Marchesini) equa

tion [52, 53] which provides a unified treatment of the x,Q2 kinematic phase space. The 

important feature of the CCFM formalism is that it is based on the coherent radiation of 

^ e r e the word resolved applies only to qr- In particular there are no criteria imposed to ensure 
that the jets can be sufficiently kinematically separated so that they could be individually identified 
experimentally. 
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gluons. This leads to an angular ordering in their emissions. It reduces to the BFKL equa

tion in the leading ln( l / . r ) limit and the DGLAP equation in the leading In Q2 limit. It 

has been recognized in this formalism that the multi-regge kinematic region is unsuitable 

for calculation of exclusive jet rates due to the presence of double logarithms in l n ( l / ~ ) 

which only cancel between the real gluon emission and virtual corrections for inclusive 

quantities - they remain explicit in the exclusive case. The origin of these double logs 

arises due to the presence of coherence and angular ordering which imposes a z' dependent 

infrared cutoff on the logarithmic integration over the transverse momentum. However, 

if one introduces a finite resolution n on the transverse momentum of the emitted gluons 

and makes a resummation (see [28] Sz section 3.2) beforehand of the unresolved real radi

ation and virtual corrections, then the problem of explicit double logarithms disappears. 

Specifically, the infrared cutoff on the real gluon transverse momentum is now given by 

/.i and is independent of the z's. Within the CCFM formalism this requires that the non-

Sudakov form factor be modified by the introduction of an extra Q{kj — ^2) function. 

The application of the resolution cut and the resummation of the unresolved and virtual 

corrections in the CCFM equation has been discussed previously by Kwieciriski et al. and 

can be found in detail in [28]. 

In summary, for the CCFM equation, if one introduces a finite resolution and resums 

the unresolved radiation and virtual corrections beforehand then the infrared cutoff on 

the transverse momentum integrals becomes max[qz', /<]. For finite /.i then this becomes 

independent of z and we do not get enhancement of the exclusive rates by powers of 

logarithms. It should be stressed that in the following analysis we will be working with 

finite j.t, ~ few GeV, thus, by ensuring that we resum the unresolved radiation and virtual 

corrections first to control the problems in the infrared region then we can safely work 

within the modified BFKL formalism to calculate exclusive jet quantities. We will now 

discuss the required modifications to the naive BFKL equation which will ensure the 

infrared problems are kept under control. 

3.2 The B F K L equation incorporating jet resolu
tion qt > /i 

The concept of using gluon emission from the BFKL ladder to describe the production of 

jets is not new and it provides a natural starting point for calculations of jet production 
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using Monte Carlo methods for solving the BFKL equation which are presently being 

studied (see for example Refs. [20, 21, 22]). Problems arise when we wish to study 

exclusive jet production as it is important to ensure that cancellation of infinities between 

the real and virtual gluon emission remains intact. The introduction of the arbitrary 

parameter fi does not necessarily ensure that this cancellation will remain explicit in 

the numerical integration of the real and virtual parts individually - especially for larger 

values of the cut /.i which are necessary in the definition of physical observable jets. Thus, 

it is important to modify the BFKL kernel to include this jet resolution parameter in 

which the contributions from the unresolved real gluon emission and the virtual gluons 

are treated on an equal footing. 

In the small x regime the dominant parton is the gluon. Since there is no longer 

strong-ordering in the transverse momenta along the gluon chain in Figure 2.1 it is neces

sary to work in terms of the gluon distribution f(x,k^) unintegrated over its transverse 

momentum kr- The relation of the unintegrated distribution / to the conventional gluon 

distribution is 

•>-<li,r.Q2) = f ^ / ( • ' • - ( 3 - 2 ) 

Choosing to use the rapidity variable y = ln(l/.c) instead of x, then the unintegrated 

gluon distribution which satisfies the BFKL equation (2.20) may be written [52, 53] 

= f{0)(y,k2

T)+as Tdy' f -
JO J 7T< 

d QT 

q2 
ft- f ( y ' , k 2

T ) e ( k 2 - q

2

T ) (3.3) 

with as = NCOS/TT- The integration in (3.3) has come from the replacement 

dx' 

The notation 

k'2 = \qT + kT\2 (3.4) 

has been introduced for convenience. It is important to note that the dependence on kj 

makes the angular integration in d2qT nontrivial. The term / ' °^ in (3.3) is the inhomoge-

neous driving term of the BFKL equation and corresponds to the uno-rung" contribution 

of Figure 2.1. This non-perturbative term has to be input in order to solve (3.3) numeri

cally and the form [54] 

f°Hy) = 3iV(l - t-yf exp(-k2/Ql) (3.5) 
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is taken where the normalization N is fixed so that the gluon, integrated over the region 

kT > Ql, carries half the momentum of the proton (see Eq. (3.11)). In the following Ql 

is set to Ql = 1 GeV 2. The kT dependence of / ( 0 ) reflects the usual non- pert u rbat i ve 

fall-off with increasing kT and this guarantees that the non-perturbative integrated gluon 

distribution exhibits Bjorken scaling for sufficiently large Q2. Also, the product of 

theta functions 

Q(Q) - k'2) Q(k'2 - Ql) (3.6) 

is implicitly included under the d2qx integral in (3.3) so that the emitted gluon is con

strained to the domain Ql < kj < Q2*. Essentially the integral over q2 can extend to 

oo which we numerically limit by the term Q2 = large number. Ql is set as above and 

Qj = 104 GeV 2. 

The dependence on x of the nonperturbative input / ° 

The above shape of the input / ( 0 ' (Eq.(3.5)) in y = ln(l/x) is based on the conventional 

parameterization of the non-perturbative gluon distribution g*0* which is related to f ( 0 ) 

through (3.2); that is it is assumed to have a l/x "soft" Pomeron behaviour as x —> 0 

and to satisfy the spectator counting rules as x —> 1. 

The standard parameterization [12, 54, 55] of the parton distributions /,-, where i = 

q,q, or g, are given by the form 

x f j ( x , Q2) oc . r _ A ' (1 - x f ' (polynomial in x) (3.7) 

where the terms containing the parameters A; and fli describe the parton distribution 

behaviour as x —> 0,1 respectively. It is this behaviour we wish to incorporate in the 

driving term for the BFKL gluon. 

Bjorken x is defined (1.5) as x — Q2/2p-q, thus for fixed Q2, the kinematic region x —> 0 

corresponds to p • q —• oo; we are dealing with the high energy limit (s — (p + q)2 —> oo) 

which is well described by Regge theory. This gives the high energy cross sections for the 

scattering process 7(4) + P{p) —> 0• + P 

<r ~ fas**-1 + fa"*-1 (3.8) 

where the first term describes the leading high energy behaviour of the valence quark 

components and the second the gluon behaviour (and sea quarks which are driven by the 
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gluon through the process g —» qq). The x behaviour of the valence quark distributions 

is controlled by the intercept of the Regge trajectory, Q R , in (3.8) which for the leading 

meson trajectory gives 

Q f l(0) - 1 ~ -0.5 . 

This gives the result A, = 0.5. On the other hand, the gluon (and sea) distributions are 

controlled by the Pomeron trajectory (ap) and have the form 

\ G = \ S E A ~ Q p(0) - 1 = 0 

predicting the behaviour of xfg[x,k2) —> x° (and ultimately xg(x,Q2)) as x —> 0 which 

gives the "soft" Pomeron behaviour: f(x,k2) —> l/x. More precisely, experiment shows 

the effective pole to have a value of 0.08. 

For the high x region (x —> 1) the parton distributions have the form 

fi(x) ~ (I - x)*3* 

where naive counting rules suggest /Si ~ 2ns — 1. ns is the minimum number of spectator 

partons accompanying the probed parton, thus, for the gluon we have ns = 3 (valence 

quarks of the proton) which gives the result /Sl = 5 in (3.7). 

Normalization of the B F K L gluon 

One problem in applying the BFKL equation to obtain absolute predictions for magni

tudes of cross sections and other physical observables is how to fix the normalization of the 

non-perturbative input. Here, a brief outline of the normalization chosen in Eq.(3.5) 

is discussed which will be used throughout for the results presented in this chapter. 

The normalization of the / ' ° ' input is fixed such that upon integration over k\ in Eq. 

(3.2), the input gluon distribution g^ carries half the protons momentum 

/ dX f i f ^ = / d X X 9 { * ' Q 2 ) = \ ( 3 ' 9 ) 

with the initial unintegrated gluon distribution / ' ° ' given by (3.5). Setting the lower 

cutoff at QQ in the momentum integration we have 

r*%e-#T,Ql / 1 ^ 3 7 V ( l - . T ) 5 = i (3.10) 
JQI kf Jo • 2 

which gives the normalization 

N = e/Q2

0. (3.11) 
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3.2.1 Resummation of unresolved and virtual gluon emissions 

Jet structure is embodied in the BFKL equation via real gluon emission from the gluon 

chain prior to its interaction with the photon probe (which takes place through the usual 

fusion subprocess —>• qq (see section 3.4.2)). An observed jet is defined by the resolu

tion parameter /.i which specifies the minimum transverse momentum that must be carried 

by the emitted gluon for it to be detected. For realistic observed jets in the experiments 

at HERA, the lowest choice for the resolution cutoff parameter is fi = 3.5 GeV. In section 

3.4 results will also be presented for // = 6 GeV and, so as to gain theoretical insight, for 

the low values of fj, — 1 and 2 GeV. 

As discussed above we wish to obtain a modified form of (3.3) in which the unresolved 

radiation is treated at the same level as the virtual corrections to ensure that the singu

larities as q\ —> 0 cancel in the q\ integration. To do this the BFKL equation (3.3) is 

written in the symbolic form 

/ = / ( 0 ) + f dy'K.®f{y'), (3.12) 
Jo 

where @ denotes the convolution over qj. The real resolved and unresolved gluon emission 

contributions are divided using the identity 

Q(q$-H2) + Q{p2-q2

T) = 1, (3.13) 

where the first term denotes the real resolved (R) emission and the second the real unre

solved (U) emission. This splits the BFKL kernel K of (3.12) into the components 

K = K R + Ku + Kv 

where the subscript V denotes the (-ve) contributions from the virtual terms. The unre

solved component is then combined with the virtual contribution [56] such that, 

/ = / ( 0 ) + I" dy'(KR + K u v ) ® f(y'), (3.14) Jo 

where Kuv — Ku + Ky. By comparing (3.14) with (3.3) the identification of the kernel 

components can be made. The convolution of the kernel KR for the resolved emissions 

with qx > fi, and gluon distribution f ( y ) can be identified as 

KR ® f ( y ' ) = as(k2

T) k2 I ̂  e(q2 - /?) ± f ( y \ k ' f ) , (3.15) 
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w hile Kuv, the combined unresolved and virtual part of the kernel, satisfies 

Kuv ® f ( y ' ) = a s ( 4 ) I - ? T k f W > t i T ) * t f - 4 ) - / ( V , 4 ) e ( 4 - < ? r ) 

(3.16) 

with k'^ given by (3.4). The q%. —> 0 singularity is now cancelled between the unresolved 

and virtual contributions of (3.16), and by working with the combined kernel Kuv ensures 

that the cancellation will remain intact throughout the numerical computation. 

To obtain a BFKL equation for the real resolved emissions in which the unresolved 

and virtual contributions have been resummed, the BFKL equation (3.14) is first written 

in the differential form 

~ = + KR ® / ) + K u v ® / , (3.17) 

where the expression in brackets is treated as the inhomogeneous contribution. The 

inhomogeneous equation can then be solved in the usual way by first finding a solution to 

the homogeneous equation and then obtaining the ful l solution via an integrating factor. 

The homogeneous version of (3.17) is 

^ = Kuv <8> A (3.18) 
dy 

with solution 

A(y) = exp(yKuv). (3.19) 

It is important to note that (3.19) is an operator equation. Thus the integrating factor is 

A - 1 = exp( — y Kuv) a n d the ful l solution of (3.17) is 

/(») = £ iy'&iy) 8 A - V ) 8 + A r 8 ny')\ 

f 
Jo 

dy>e(y-y)Kuv 0 + K r f{y>)j . ( 3 .20) 

Equation (3.20) now provides us with the modified form of the BFKL equation for the 

gluon distribution / in which the unresolved and virtual terms have been resummed in 

the exponential factor. The equation is of the form 

f ( y ) = f [ ° H y ) + I" dy'K ® f ( y ' ) (3.21) 
Jo 

where the driving term has become 

f ( 0 H y ) = [ dy'e^-y'^ ® ^ (3.22) 
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and the new kernel 
K = e(v-v')Kuv @ A r . (3 23) 

It is important to recall at this point that the original BFKL kernel, KR + Kyy of (3.3), 

has no y (i.e. x) dependence. However, the resummation of the unresolved and virtual 

radiation has generated an explicit y dependence which will be important when we come 

to solve for the modified BFKL kernel numerically. In fact the kernel K of (3.21) is a 

function of only the difference y—y' (i.e. of In x' jx) and not y and y' individually, see (3.23). 

3.2.2 Analytical solution at low /.i 

Before performing the full numerical calculation for the BFKL equation (3.3) which will 

be discussed in more detail in section (3.3), and by iteration determination made of the 

probability of the emission of n gluon jets with qT > //, it is informative to derive an 

approximate form of the above equation which holds in the (theoretical) limit of small 

f.i2/kj>- In this limit it is possible to resum the unresolved and virtual contributions in a 

closed analytic form. The crucial observation is that for small / / 2 / ^ r we may write 

k$ = \qT + kT\2 « h\ (3.24) 

in the integrand for the unresolved real emission term in (3.16). Equation (3.16) then 

simplifies to become 

Kuv®f(y') = a s ( 4 ) f(y') I ~Y~ [ e ( ^ - ? r ) - © ( 4 " 9 r ) ] + O 

= -as(k2

T) In f ( y ' ) + O , (3.25) 

where the "-ve" sign arises through inversion of the term \n(}i2/kj,). Thus through sub

stitution of the solution to Kuv from (3.25) into (3.19), the homogeneous solution of the 

BFKL equation (3.17) is 

A(y) = exp foAW) = exp(-yas(k$) l n (4 /A* 2 ) ) , (3.26) 

that is the resummation is given by a simple analytic form. As a consequence, in the 

small /< limit, the modified BFKL equation (3.21) becomes 

f ( y , 4 ) = fi0)(y,k2

T) + as(k2

T) [' dy'A[y-y\k*) t ^ e { q l - S ) ^ f { y \ k ? ) (3.27) 
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where here kj = \qT + fcj|2, and the driving term is given by 

/ " " ( / y . A4) = [ dy' My ~ </'• 4 ) ( 3 - 2 8 ) 

Let us now solve for / '°) semi-analytically to obtain an insight into the structure we 

expect to see for the n resolved gluon emission contributions to f ( y , k j . ) when we solve 

(3.21) using the full kernel of (3.23). 

For small / i , then most gluon emission from the BFKL chain will be virtual, and 

effectively we are calculating the 0-jet contribution to / . The resummed BFKL kernel 

A(t/) is now given by the effective kernel of Eq.(3.26). Substituting (3.5) and (3.26) into 

(3.28) gives 

f°(y,B) = f d y ' 157Ve-<4/«o2) (i _ e-y'f e-v' M^T/S) (y-y') {32Q) 
Jo 

where the normalization N is given by (3.11) with Ql = 0. For convenience of notation 

the 0-jet rate is denoted by / ' °* = / ' ° ' . Defining 

C = 15Ne-krfQ2° 

B ( 4 y ) = as(k$)ln(4/n2) (3.30) 

then (3.29) becomes 

f<°)(y, kl) = C [" dy'e-p(y-yl)e-y'(l - e - y ' ) 4 . (3.31) 
Jo 

By making a binomial expansion of the term (1 — e~y')4, we can solve the y' integration 

of (3.31) to give the analytic solution of (3.28) as 

f(0\v,4) = c rV^-^B-r'f* e-(i+i)y' 
\ J i 

i=0 

where 

n \ _ n\ 
k j " k\(n - k)\ 
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Figure 3.1: Analytical solution (Eq.(3.32)) of f 0 ( x , k j ) for the approxi
mation Eq.(3.24) in the limit of small /.i2/k^, for resolution cutoff // = 1 
GeV and kr = 2 GeV. 

Figure 3.1 shows the structure of the 0-jet contribution to the unintegrated gluon distri

bution for the analytical solution (3.32) with the low cutoff fi = 1 GeV and kj = 2 GeV. 

The prediction is that the 0th jet (and as we shall see from numerical calculation, also 

the nth jet) contribution will increase as we move to smaller values of Bjorken x, reach a 

maximum and then decrease as we continue moving down in x. This structure is seen in 

the numerical calculation when the results for the full input f° of (3.22) are presented in 

section 3.4. Obviously, these results will not use the low /.i approximation, although to 

gain insight the ful l prediction of (3.22) for / ' 0 ) will be compared with the approximate 

0{fi2/kl) result given in (3.28). 

In this thesis we are interested in making predictions for physical jets which can be 

experimentally observed (i.e. large ^ l imit) , thus, this comparison will provide an indica

tion of how realistically the resummation of the unresolved and virtual gluon emission at 

small fj, is in describing physical jet production using the approximation of (3.24). 

The application of including a resolution parameter was introduced previously for 
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computational reasons [28], but only for the above approximation of /.i very small, i.e. 

fi ~ O.lGeV. For very small values of f.i, as discussed above, the form of the combined 

unresolved and virtual parts of the BFKL kernel simplify as in Eq.(3.25) which makes 

the numerical calculation for the ful l (recombined KR and A W ) kernel simpler. For 

larger values of the cutoff, the approximation f { y , k j ) —> f ( y , k j ) cannot be made and 

no factorization occurs in (3.16). This leads, as we have seen, to the resummation of 

the unresolved and virtual terms of the kernel producing the exponential form of (3.23). 

Numerical methods need to be devised for obtaining the solution of (3.23) which as we 

shall see later are unstable for very low values of /.i, (/.i < lGeV) due to the difficulty of 

having to model the delta function numerically. This will be discussed in more detail in 

sections (3.4.1) and (4.3.5). 

3.2.3 Jet decomposition of the B F K L gluon 

The BFKL equation was expressed in the form (3.21) specifically in order to decompose 

the unintegrated gluon distribution / into the sum of contributions with different numbers 

of resolved gluon jets with transverse momenta qj > fi. That is 

oo 
f(y) = E r(v;n2) (3-33) 

n = 0 

where f n denotes the contribution to the unintegrated gluon distribution / arising from n 

resolved jets in the chain, each with qx > /u, as shown in Fig. 3.2. This n-jet contribution 

f n obviously depends on the resolution //, whereas the sum / does not. Using (3.21) 

we can obtain an iterative equation for the nth jet contribution in terms of the (??. — l ) t h 

contributions 

f n ( y ) = fV dy'K ® p-\y') (3.34) 
Jo 

which lends itself naturally to numerical computation. Here the 0-jet (starting term in 

(3.34)) contribution is just the modified non-perturbative input f° = / ' 0 ) calculated in 

(3.22) and K the ful l resummed kernel of (3.23). 

3.3 Numerical computation of the B F K L equation 

In this section the numerical techniques required in the computation of the modified 

BFKL equation will be described. The equation we wish to solve is given by (3.21) 
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Figure 3.2: The n-jet contributions to the BFKL equation / are described 
by the lower part of the gluon ladder in which evolution in l n ( l / x ) is 
started from the proton. Each resolved gluon emission is identified as 
a jet in the final state. The black circles are to indicate the presence 
of both virtual and unresolved gluon emissions. The component F-1 is 
calculated by the A^-factorization theorem, which has the symbolic form 
F? = F?9 ® / n , see (3.63) and (3.68). 

in which the integration in the kernel K — K(y, k^Kw, H2) is over the momentum of 

the emitted gluon, qr, subject to an extra restriction on the real emission terms by the 

introduction of the resolution parameter //. The calculation of the full BFKL equation, 

i.e. all radiation from the reggeized gluon is soft and is resummed with the virtual 

contributions, corresponds to all gluon emissions in Figure 3.2 being unresolved - we set 

the resolution parameter to // = oo. In practice, in the following the upper limit of the 

momentum integration will be set to a value y,2 = Qj = 104 GeV 2. 

To solve for any arbitrary function, / ( # ) , the Chebyshev approximation [28, 57] can be 

made in which the function is discretized as a series polynomial of order n. The Chebyshev 
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polynomial is given by the explicit formula 

Tn{x) — cos(n arccos(;r)) n = 0,1, 2. (3.35) 

/hich can be written in the recursive form 

Tn+i = '2xTn(x) - T ^ x ) n > 1 

where T0(x) = 1. The first five polynomials are shown in Figure 3.3 for the interval 

[—1,1]. The important properties of these polynomials are that they are orthogonal over 

the interval [—1,1], and the zeros of the polynomial are located at the points 

' * ( * - l / 2 ) \ 
xk = cos k = 1.2.../?. (3.37 

-0 .6 -0.4 0.2 0.4 0.6 0. 

Figure 3.3: Chebyshev polynomials defined by Eq.(3.36) in the interval 
[—1,1] for T 0 to Tn. For n = j there are j nodal points in the above 
range which are bounded by ± 1. 

The formula from which we can now approximate any arbitrary function f ( x ) in the 

interval [—1,1], where all the zeros of Tn(x) are known, is given by 

r N 

f(*) - ck Tk_x{x) 
1 

(3.38) 
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where the coefficients Cj are defined as 

Cj = T j T , f M T i - i ( x k ) . (3.39) 
j V k=i 

The values Xk are the zero nodes defined in (3.37). Equation (3.38) is exact for x equal 

to all the N nodes of T p j ( x ) . 

We will now apply the Chebyshev approximation of (3.38) to the unintegrated gluon 

distribution of (3.21) to allow us to numerically solve for the BFKL equation. 

3.3.1 Chebyshev approximation of the B F K L equation 

We wish to make a practical application of the Chebyshev polynomial expansion to the 

unintegrated gluon distribution f{y,kj). The starting point is the mapping of the region 

Ql < k j < Q2 into the interval [—1,1] in terms of the variable r defined by 

^ = 2 i n ( & ) / ' " ( ! ) • 
The gluon distribution / is expanded in the polynomial form 

f(y,k2

T) = j r C ! : ( r ( 4 ) ) / t ( y ) (3.41] 
i=i v ' 

where fi(y) are the values of f ( y , k^) at the {k^.)l nodes obtained from 

_ [QfV (3.42) 
QjQo \Qo J 

with r j defined by 

T l = cos[(i - 1 ) t t / J V ] , (3.43) 

the zeros of the polynomial given in Eq.(3.37), and N the number of terms in the ex

pansion. The k\ dependent functions C; are obtained from the Chebyshev polynomial 

functions of (3.35) and are given by 

Cdr) = ^ E " n T n ( T ) T n ( T i ) , (3.44) 
^ n - l 

where vn = 1 for n > 1, and vx = | . A good approximation for the k\ dependence of / 

is obtained with typically N = 10 — 20. For the results presented in this chapter we set 

N = 20. 
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The expansion (3.41) is then substituted into the BFKL equation (3.21) to give the 

discretized (symbolic) form 

N 

My) = f l 0 ) ( y ) + I" dy1 £ KAy - y') fk(y'), (3.45) 

where the ful l kernel (3.23) now becomes 

Kit = Y , ^ y ~ y ' ) K u v h K U k (3-46) 

and the input distribution f\°\y) of (3.22) is 

f ' 0 ) ( y ) = £ dy' £ [ z [ y - y ' ) K u v U (3.47) 

The substitution of (3.41) into (3.15) and (3.16) gives the explicit form of the kernels 

and Kuv respectively. The BFKL equation (3.45) is a Volterra-type integral equation 

which can now be solved iteratively for the / t-(y)'s. The gluon distribution /(j/ ,A' |0 1 S 

then reconstructed from (3.41). 

3.3.2 Calculating the exponentiated kernel: exp(KuvY) 

The discretized form (3.45) of the BFKL equation now includes a discretized version of 

the resummed unresolved and virtual contributions to the kernel Kyv (3.46) and is y (i.e. 

x) dependent. Recalling from section 2 that the original BFKL kernel is y independent, 

we now have to devise a method of including this new explicit y dependence in the 

exponential term of (3.46). The process of approximating the gluon distribution / with a 

Chebyshev polynomial produces the transformation that the convolutions over kj in the 

original equation now become nothing more than a matrix multiplication over the discrete 

elements of the exponential, 

e(Y Kuv) _^ \e(Y K'uvY 
I J i,k 

with the functions fk(y )- It should be noted that the discretization requires us to calculate 

the i,kth nodes of the exponential term above which are not just defined by taking the 

exponential of the kth nodes of the discrete form of the kernel [Kuy]ltk of (3.16). 

The Y = y — y' dependence of the matrix elements of the exponential matrix in (3.46) 

and (3.47) is also calculated using Chebyshev interpolation. For convenience we denote 
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the matrix elements 

[<YKrv\,.k = V/ (V) , , (3.48) 

and as before we expand in terms of Chebyshev polynomials 

M(Y\k = £ C3{T{Y))Mlk (3.49) 
3 = 1 

where M3 are the values of M(Y') at the nodes Y r Here we take J — 10. We map the 

relevant region 0 < Y < V m a x , where Y'max — l n ( l / ; r m m ) , into the interval —1 < r < 1 by 

choosing 

T(Y) = (2Y - I m a x ) / F m a x . (3.50) 

The Cj is given by (3.44) (together with (3.43) and (3.35)) with i replaced by j . It remains 

to calculate M(Y) at the nodes Y — Y'j. We do this by solving 

dNUAY) = ^ ( A r v ) | ; . U ( , ( n (3.51) 

using the Runge-Kutta method with the boundary condition Mi^(Y = 0) = i.e. the 

iteration is begun from the unit matrix / . In the next chapter in which the BFKL equation 

is applied to the calculation of deep inelastic scattering events including two identified 

forward jets, we shall see that this initial input of the delta function produces difficulties 

numerically in giving stable results for cross sections when we only require a contribution 

from the BFKL resummed kernel K of (3.23) and not the ful l BFKL equation of (3.21). 

Substituting equations (3.47) and (3.51) into (3.45), we can produce the numerical 

solution to the BFKL equation of (3.21) at the k f i nodes. The results are plotted (crosses) 

in Figure 3.4 for the x range, 1 0 - 6 < x < 1, for the kj, node i = 10 which corresponds 

to a value of kf. ~ 12 GeV 2. This solution is for the modified BFKL kernel in which we 

have treated the unresolved real radiation and virtual radiation on an equal footing. For 

comparison (solid line in Figure 3.4) is also shown the numerical solution to the original 

form of the BFKL equation (2.20) in which the kernel has no explicit y dependence over 

the same x range. For the applicable x range at HERA [x > 104) there is no difference 

between the two methods of calculating the BFKL equation. At the very small x values 

(x ~ 10 - 6 ) differences appear at the 10% level with the resummed BFKL kernel predicting 

slightly larger magnitudes for the BFKL solution. 
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Figure 3.4: Numerical solution of the BFKL equation defined by 
Eq.(2.20) (solid line) in which the BFKL kernel has no x dependence, 
and the BFKL equation (3.21) (crosses) in which the unresolved and vir
tual gluon radiation is resummed producing an explicit x dependence in 
the modified kernel K. 

3.3.3 Exclusive n-jet iteration 

In sections 3.3.1 and 3.3.2 we have seen how to calculate the BFKL equation numerically 

by treating all gluon emission as unresolved and virtual. 

In order to calculate a specific number n real resolved gluon emissions we need to also 

consider the real resolved terms by reinstating the role of the resolution cutoff parameter, 

i.e. /< is set to the required physical cutoff (e.g. /j, = 3.5 GeV). This now restricts the 

integration region over q\ in the resummed kernel to q\ < / / 2 , with the momentum region 

q\ > integrated separately to give the resolved contributions to the ful l BFKL kernel 
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(A'H). 

The discretized ful l kernel of (3.23) is easily obtained by matrix multiplication of the 

resummed unresolved and virtual contributions with the real resolved kernel 
N 

Ki,k(y ~ V'\ /'2) = E [ e ^ ' ^ ^ ] . (Knhk , (3.52) 

which is then used to obtain the n-jet contributions to / . The BFKL ladder of Figure 

3.2 can be considered as an infinite sum over the n gluon emissions explicitly given in Eq. 

(3.33), with the 0-jet contribution described by no real resolved gluon emission emitted 

between the proton and the current jet - A' is purely the resummed unresolved and virtual 

terms. For the 1-jet contribution, that is one physical jet is observed in the rapidity region 

between the proton and current jet, we only allow one real resolved gluon to be emitted, 

for the 2-jet case, two gluons are emitted with momenta q\ > fi2 with the radiation 

between the two emitted jets described by the resummed BFKL kernel and so on. This 

picture of each real resolved gluon emission producing a jet in the final state naturally 

leads us to an iterative relation (for the discretized form of the BFKL gluon of (3.41)) 

between the nth and (n — l ) t h resolved emitted gluon 

/ f ( 2 / ; / ' 2 ) = j V Y . d y l k ^ { y - y ' ) f r \ y ' ) (3.53) 
J o

 k=i 

where the 0-jet contribution is described by Eq.(3.47). Equation (3.53) is solved by using 

the Chebyshev approximation of sections 3.3.1 and 3.3.2, and the nth jet contribution 

obtained by iteration starting from the input of f ' 0 ' . 

Testing the numerics 

The recursive relation of the n-jet contributions was tested numerically against a given 

input to which the analytic solution was known. The aim was to devise a method of 

testing the full numerical program structure and to obtain an insight into the expected x 

dependence of the fully calculated exclusive jet contributions to the BFKL equation. 

The test function was defined as 

f ( y ) = 1 + ( A W + KR) I" dy' f ( y ' ) (3.54) 
Jo 

and the y (i.e. x) dependence of / fixed as 

/ ( / / ) = eXy (3.55) 
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where A is a constant. Similarly we set the BFKL kernel to 

K = Kuv + KR = A = \ u v + X) (3.561 

where A{/y and XR define the unresolved & virtual and resolved components respectively. 

Writing the differential equation from (3.54) as 

d f ( y ) 
dy 

= ^uvf(y) + X R f ( y ) (3.57) 

in which \ R f ( y ) is regarded as the inhomogeneous term of (3.57), then we can write the 

solution as 

fan = < x ' x u + <X, V*\H fV
 dy1 < " x " "/(//.) . (3.58) 

Jo 
Inputting the test form for the driving term / ( 0 ) ( :y ) given in (3.55), and using (3.56). then 

f ( y ) = e X u v y + e X u v y \ R f y dy' eXRy' 
Jo 
\ e

x m I 
= e X u v y + e X u v y X R -

A / j A / 
_ e^uvy e^RV 

We can now write the resolved emission terms as a series expansion for the exponential 

and identify that the individual ??.-jet contributions are given by 

f n ( y ) :.3.59) 

Thus, we predict that each jet contribution will reach a peak at some value of y and then 

decrease in magnitude. 

The numerical test of the program was performed by defining the kernel as the diagonal 

matrix in which, 

[KR\l3 = XR6ij (3.60) 

so as to reproduce the form (3.56). The diagonal matrix input ensures the results are 

independent of the Chebyshev nodes i, and allows us to test the ful l program structure of 

the n-jet iteration routines. Using (3.60) we can construct the exponentiated unresolved 

and virtual kernel as 

J<uw J<vw 
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The comparison of the numerical solution of (3.54) with the analytic form of (3.59). 

using the input (3.60) with values 

. _ . 1 
X — X U V + X R — — 

and setting Xuv = —1 and A# = 3/2, is shown in Figure 3.5 for the first four jet contri

butions. As we can see there is very good agreement. 

1.2 rmr 

0 j e t s 

1 jet 

2 jets 
0.8 

3 jets 

4 jets 

V 

- Ja i „k - -« t 

10 10 0 10 1 10 

Figure 3.5: Comparison of (3.59) with (3.54) in which the solution is 
obtained from the input (3.60) to test the numerical program structure. 
Stars show the accuracy of the numerical solution with the analytic form 
(lines). 

This is only a test function; including the ful l BFKL kernel will effectively smear the 

delta function input and have the effect of shifting the peaks of the distributions to smaller 

x values, especially for the higher jet contributions. 

Check of the // independence of inclusive solution 

Each individual jet contribution to the BFKL gluon distribution is dependent on the 

arbitrary resolution parameter (i. However, the original BFKL equation is independent 

of any momentum cut, thus, the summation over the jet contributions (3.33) must also 
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be independent of y and sum to give the full BFKL solution of (3.21). The accuracy of 

this yt/ independence can be seen in Figure 3.6 which shows the summation over 20 jet 

contributions to the BFKL equation for three different resolution cuts at a scale kj — 5 

GeV 2. For resolution cuts as small as /< = 1, 2 GeV a large number of jets was required to 

obtain the required resolution independence, but nevertheless there is very good agreement 

over the entire ,T range spanning six orders of magnitude. 

/U = 2 GeV 

H = 3 GeV 

H = 5 GeV * 

10 

Figure 3.6: fi independence of the summation over n = 20 jet contribu
tions to f ( x , f c j ) at the scale k? = 5 GeV 2. Results are plotted for the 
scaled BFKL solution F(x,k2) = f ( x , kj)/k\. 

3.4 Observable jets from the B F K L chain 

We now have all the numerical techniques required for calculation of the exclusive n-jet 

contributions to the BFKL equation. In this section the results for the jet decomposition 

of the unintegrated gluon distribution of Eq.(3.21) will be presented, and the extension 

made to calculations for observable quantities in experiments at HERA. 
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3.4.1 n-jet components of the B F K L gluon 

Using equation (3.53) we can now solve for f n of (3.34). Although the sum f ( y ) of (3.33) 

is independent of /j,, as discussed in section (3.3.3), the individual contributions fn(y) 

are not. Figures 3.7, 3.8 and 3.9 show the decomposition of / ( y , k j ) for the scale values 

kr = 2, 5 and 10 GeV respectively, for three different values of the resolution, namely 

fi — 1, 2 and 3.5 GeV. As the BFKL gluon density is not a physical observable it is 

not necessary to restrict ourselves to the higher fi resolution cuts, and we can look at 

the smaller, non-physical values of the cutoff to gain an insight into the structure of the 

BFKL gluon. Thus, the low choices of the resolution cuts shown in the following figures 

are solely to help us gain an insight into the composition of the BFKL gluon from higher 

jet contributions, with the highest cutoff = 3.5 GeV being set at the lowest limit of 

experimental jet resolution in deep inelastic events at HERA. 

The results show the following features: 

(i) Gluon jets with [i > kj occur; the probability increases as x decreases. 

(ii) The lower the value of fx, the greater the number of resolved jets, that is the greater 

the preponderance of multijet configurations. 

(iii) As x decreases, the greater the diffusion in l n t / j s o that an n-jet configuration first 

increases in probability and then decreases as higher jet-configurations take over. 

(iv) The higher the value of k\ the sooner in x (as x decreases) will a given multijet 

configuration go through this rise and fall. 

(v) As k\l\i2 increases the 0-jet contribution drops rapidly to zero. 

The most instructive plot for the n-jet decomposition of the BFKL gluon is Figure 

3.7 as it shows the n-jet contributions f n for low values of kr = 2 GeV. Attention should 

be drawn to the third graph in which the "high" resolution cut of /t = 3.5 GeV is shown. 

Here we have f.i > kx and we can clearly see that, even for the HERA x range of x < 1 0 - 2 , 

there are contributions arising from the production of higher (n > 1) gluon emissions. 

In Figures 3.8 and 3.9, for the experimental fi cut above we also see contributions from 

n > 1 jets, but in this case we have the higher scales ki = 5 and 10 GeV; this means 

/j < k-T so this resolved gluon emission is not surprising. 
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Figure 3.7: The n-jet contributions to the unintegrated gluon distribution 
f(x,k,j,) for three different values of the jet resolution parameter /i and 
for kT = 2 GeV. 

For the very low values of eg /j, = 1 GeV, we are exposing the role of the virtual 

corrections in the BFKL kernel as contributions from the unresolved gluon radiation are 

weakened, whilst the virtual contributions remain unchanged for fixed k j . The results for 

low values of the resolution parameter /t show that the functions fn have a maximum, as 

predicted analytically (section 3.2.2), which shifts to smaller values of x with increasing 

n. This maximum is a consequence of the virtual corrections which, in the low /.i region, 

are not entirely compensated by (unresolved) real radiation. The sensitivity of the gluon 
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Figure 3.8: The same as Fig. 3.7 but for kf = 5 GeV 

structure f n to this resolution cut is clearly seen - the virtual corrections are only dominant 

for the small cut of p, = 1 GeV. When we increase this parameter to say /t = 2 GeV, the 

contributions from the unresolved real radiation are stronger and the maxima disappear. 

This structure is the same for all values of kj with only the 0-jet contribution showing 

a turn over at x ~ 10~2. The higher jet maxima (which are actually very weakly peaked) 

are delayed to values x ~ 1 0 - 5 which is outside the HERA experimental kinematic region. 

For the even larger experimental resolution cut of fi = 3.5 GeV, there are no longer any 
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Figure 3.9: The same as Fig. 3.7 but for k j = 10 GeV 

maxima to be seen in the jet contributions and, for the entire x range shown, the n-jet 

contributions are seen to be rising - any maxima are delayed to extremely small values of 

x < 10" 6. 

One interesting feature to note from the above figures is the rapid decrease in the 0-jet 

contribution for larger kj.. Some insight into this behaviour can be obtained from the 

analytic form presented in section 3.2.2, which applies when [i2jk\ is small. In this limit 

the virtual and unresolved real terms lead to a suppression factor 

My) = e~Av (3-61) 
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where A = asln(kj//.i2). Thus from (3.28) we obtain the 0-jet contribution 

f = fW(y,kl) = e~Ay I" dy'eAv' We^M A. (1 - e S f , (3.62) 
Jo dy' 

that is the k j dependence of f° is essentially the same as the kr dependence of the driving 

term / ' ° ' of (3.5). This exponential suppression ( e - ^ / ^ ) explains the origin of feature 

(v) in which the 0-jet contributions fall to zero with increasing k\. However, this does 

not mean the 0-jet observable quantities will be negligible as physical quantities can only 

be obtained through convolution of these theoretical gluon distributions with the hard 

scattering process j*g —> qq (at the scale Q2) using the ^-factorization theorem (3.4.2). 

Before applying the n-jet decomposition of the BFKL gluon to make predictions for 

exclusive jet production in deep inelastic scattering, it just remains to be seen whether the 

ful l numerical calculation of the resummation of the unresolved and virtual terms in the 

BFKL kernel is actually necessary, or, whether we can apply the approximation for A(y) 

(3.26) calculated in the limit of a small cutoff // —» 0. Figure 3.10 compares the analytic 

approximation (3.28) with the ful l result (3.22) for p2 = 1 GeV 2 and h\ = 4 GeV 2. As can 

be seen, in the low /f approximation, the analytic form successfully reproduces the shape 

of the numerical solution, but it fails in the normalization. There is also a small shift 

in the position of the peak in the numerical prediction to smaller x. Thus, for physical 

predictions, the analytical approximation cannot be used as a valid representation for 

jet contributions, even if we could take the resolution as low as 1 GeV 2 experimentally, 

and the ful l numerical calculation of the gluon distribution as discussed in section 3.3 is 

justified. 

We now have predictions for the n resolved gluon emissions from the BFKL chain, but 

what does this structure imply for the distributions of n observable jets experimentally? 

The smallest x values probed at HERA are x ~ 10 - 4 . For the experimental cut = 3.5 

GeV, from Figures 3.7, 3.8 and 3.9 it is clear that higher n-jet contributions are non-

negligible and arise for as many as four resolved gluons. This would indicate that we can 

expect to observe a significant number of events in which multiple jets are seen in the 

central rapidity region between the current jet and the proton remnants in deep inelastic 

scattering experiments, but, until we perform the integrations over x, Q2 and k\ (including 

kinematic constraints for the experiments at HERA) to give the n-jet cross sections, we 

are not able to determine the actual physical ratios of 0, l ,2.. .n jet production. 
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Figure 3.10: The comparison of the analytic and numerical solutions for 
the 0-jet contribution f°(x,kj>) to the unintegrated gluon distribution. 

3.4.2 Numerical results for n-jet observables at small x 

We are now in a position to estimate the probability of the different multijet configurations 

in the small x observables that are driven by the BFKL gluon. The most relevant process 

to study is deep-inelastic scattering at HERA. Losing the results of section 3.4.1, we 

calculate the jet decomposition of the proton structure functions Fj(x,Q2). In other 

words we determine what fraction of events that make up the inclusive measurement of 

Fi(x, Q2) contain no-jets, one jet, two jets etc. as a function of x, Q2 and the jet resolution 

parameter /i. Recall that our jets are gluons emitted with transverse momentum qr > 

and that we do not impose any constraint on the rapidity (?/) or azimuthal ( ( f ) separation 

of the individual jets. 

In this study, as we are calculating the gluon emission distributed over the ful l rapidity 

gap between the current jet and proton remnant, we do not expect the lack of this rj,<f 

space cut to affect the jet rates drastically. For the majority of jets produced we assume 

the emitted gluons are well separated, although for large numbers of rc-jet emissions we 

realize this may not hold true. Thus, in the following results we restrict ourselves to 

the calculation of n < 3 for the fully integrated cross sections. Theoretically, there are 
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no such ambiguities when we look at the observable structure functions and it is the 

decomposition of F2{x,Q2) into its different n-jet contributions in which we will look 

for possible experimental signatures of BFKL dynamics. In chapter 4 in which study of 

the production of multiple jets in the forward direction of the proton will be made, this 

separation of the giuons is very important for making reliable predictions to compare with 

experimental cross sections. 

Factorization of the structure functions 

From knowledge of the BFKL gluon / we can determine the behaviour of the structure 

functions via the fcy-factorization theorem. This is shown diagramatically in Figure 3.2 

where the lower portion ( / " ) describes the perturbatively calculated BFKL gluon ladder 

as discussed previously, and the upper part ( F l g ) the photon-gluon fusion process in 

which 7*g —> qq. In deep inelastic scattering, the photon probing the proton is highly 

virtual and so we have both longitudinal (L) and transverse (T) polarization contributions 

to consider for the proton structure functions. These are given by the A'j-factorization 

formula[58] 

where to lowest order, the photon-gluon fusion F19 (as shown by the box in Figure 3.2) 

corresponds to the quark box and crossed box contributions shown in Figure 3.11. It is 

Figure 3.11: The quark box and crossed box diagrams describing photon-
gluon fusion, F19 in (3.63). 

important to remember that the k\ integration is sensitive to the infrared region (low 

FT,L(x,Q2) - / " ^ / ^ r / ( ^ * r ) Fl%{x\k2

T,Q2) (3.63) 
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A.y), thus numerically we prevent the BFKL gluon entering this non-perturbative regime 

by including a lower cutoff k$ in (3.63). In the following 2 k$ is set to k^ = I GeV 2. To 

carry out the integration over the quark line in Figure 3.11 we express its four momenta 

K in terms of the Sudakov variables 

K = ap — f3q' -f Kf 

where q' = q + xp and p are the basic light-like momenta (q and p are the 4-momenta of 

the virtual photon and proton respectively). The variable a is fixed by the quark mass-

shell constraint, leaving integrations over (3 and K j . Evaluating the box contributions, 

equation (3.63) then becomes [24, 25, 59, 60] 

12 - dk\ 

X (32 + (l-(3y 
...2 

DiD2 

m: 
D\ Di D2 

(3.64) 

x o s f i ^ k r 
1 1 

Dj ~ DlD2 

where the denominators 

[3.651 

D2 

4 + /3)Q2 + m 

\KT-kT\2 + [3(1-/3)Q2 + m] 

and where K'T = KT — (1 — The x' integration of (3.63) is implicit in the CPK'T and 

dj3 integrations. Indeed x' is fixed in terms of K'T and [3 

x = 1 + 
4 + m2 

+ — 

Q2 
(3.66) 

0(1 -P)Q2 

which ensures that the requirement 0 < x' < 1 is satisfied. Of course the integration 

regions of (3.64) and (3.65) must be constrained by the condition 

x'((3,K'lk2

T,Q2) > x (3.67) 
2The magnitude of the BFKL solution is sensitive to the choice of cutoff k%. Increasing the cut from 

ICQ = 1 GeV2 to (say) IC'Q = 4 GeV2 will produce a decrease in the magnitude of the solution F by a 
factor ~ 2 for x ~ 10~4. The sensitivity of the solution to this cut has been investigated in [27] and an 
improved treatment of the infrared region i.e. k~ < can be found in [59, 60]. 
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so that the argument z = x/x' of f satisfies the requirement z < 1. In (3.64) and (3.65) 

the sum is over the quark flavours: masses are taken to be mq = 0 for u,d,s quarks. 

mr ~ 1.5 GeV and mj, ~ 4.3 GeV for the charm and bottom quarks respectively. The 

argument of as is taken to be K'J + m2,, which allows integration over the entire region 

of Krj. The term acts as a regulator and fixes the scale of as to prevent as —> oo as 

k'p —»• 0. For the light quarks (u,d,$) m2, = 1 GeV 2. The results are found not to be very-

sensitive [59] to variations of mo about this value. For the heavy quark contributions, the 

regulator would be fixed at the quark masses, ie m2, = m^mf. In the following results, 

only contributions from the light quarks are shown (this simplifies the forms of (3.64), 

(3.65) and (3.66)). 

The contribution of n-jets to the proton structure function F2{x,Q2) 

The jet decompositions of FL,T a r e simply obtained by substituting the n-jet unintegrated 

distribution / " into (3.64) and (3.65). In this way the observables are broken down into 

their component n-jet contributions, for example for F2 = FL + Fj we have 

0 0 

F2 = £ Fn

2. (3.68) 
n=Q 

Figures 3.12 and 3.13 show the components F%{x, Q2) for deep inelastic events containing 

n observed jets for the experimental resolution cuts = 3.5 GeV (upper plot) and = 6 

GeV (lower plot). Figures 3.12 and 3.13 correspond to scales of the virtual photon, 

Q2 = 10 and 20 GeV2 respectively. For these choices of jet resolution, especially in the 

HERA x regime, it can be seen that the 0-jet configuration dominates. That is most of the 

emission from the BFKL ladder is in the form of unresolved and virtual gluon radiation. 

As expected the n-jet configurations first become important (with decreasing x) for the 

lower resolution, /< = 3.5 GeV, and the higher Q2 value, Q2 = 20 GeV 2, and begin to 

compete with the 0-jet rate for x < 10 - 5 . Indeed this is also true for the lower scale of 

Q2 = 10 GeV 2. In fact, even the 4-jet rate becomes comparable with the 0-jet rate for 

x ~ 10"6 in Figure 3.13. 

Although the 0-jet configuration dominates in the HERA kinematic regime, there is 

still a non-negligible contribution from resolved jets. For example, for f.t = 3.5 GeV at 

Q2 = 10 GeV 2 and x = 2 x 10~4, the 1- and 2- jet contributions are each approximately 

I of the 0-jet rate, and even the 3- and 4- jet configurations occur at a reasonable rate. 
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Figure 3.12: The decomposition of the proton structure function 
F2(x,Q2) into contributions coming from different numbers of resolved 
gluon jets for experimentally accessible values of the resolution parame
ter fi = 3.5 and 6 GeV. The decomposition is shown as a function of x 
for Q2 = 10 GeV 2. 

This 0-jet contribution is especially dominant when we impose the higher resolution cut of 

fj, = 6 GeV in which we demand the gluon emission to have a high transverse momentum 

for it to produce a "physical" jet. The important feature to notice in Figures 3.12 and 

3.13, for the higher resolution cut, is the production of resolvable jets with // 2 > Q2. This 

occurs as a straightforward consequence of diffusion in kj, which as we recall is one of the 

features of BFKL dynamics. 

The experiments at HERA show that the (inclusive) structure function F2 rises as x 

decreases (Figure 1.4). How is this rise made up from the various multijet configurations? 

First we look at the results for the lower jet resolution, \i, — 3.5 GeV. Although the 0-jet 
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Figure 3.13: The same as Figure 3.12 but for Q2 = 20 GeV 2. 

rate dominates, its increase with decreasing x is relatively weak compared to the data. 

The rise of F2 comes from the increasing importance of the higher jet configurations. On 

the other hand at the higher resolution, j.i = 6 GeV, the 0-jet configuration is even more 

dominant and shows a steeper rise over the same x range, as is required for consistency of 

the results. It is this characteristic difference between the n-jet contributions that could 

hopefully distinguish BFKL dynamics arising from the momentum diffusion and be seen 

in the x dependence measurement of individual jet structure functions. However, a word 

of caution - for the minimum jet resolutions experimentally possible (// = 3.5 GeV), we 

are still in the regime of the 0-jet configuration dominating with only small contributions 

arising from the higher jets at very small values of x. Due to experimental cuts restricting 

the scattering of the incoming positron we are restricted to x values x > 10 - 4 thus we 

cannot physically look to smaller x to see the domination of these higher jets. Obviously, 

the smaller the resolution parameter n, the weaker the 0-jet rate is and we could expect 
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to see stronger rises in the higher jet contributions. Unfortunately, the value // = 3.5 GeV 

is probably as small as experimentalists will be able to go, so even though theoretically 

we can see a difference in the behaviour of the x dependence of the structure functions 

(for low / / ) , experimentally this will be a very difficult measurement to make. 

Exclusive n-jet cross sections 

Using these predictions for the n.-jet contributions to the differential structure functions, 

we can now obtain numerical results for the exclusive n-jet cross sections at HERA. 

The cross section for deep-inelastic scattering is readily calculated from the total struc

ture functions FT,L and is given by (1.9) 

a = 47TCV2 / ^ / ^ {y2 xF^x.Q2) + (1 - y) F2[x,Q2)} (3.69) 

where as usual y = Q2/xs, FT = 2xF\ and FL = F2 — 2xF'i. a is the electromagnetic 

coupling arising from the jq vertex in Figure 3.2. 

As the individual n-jet components of the F^s were obtained by substitution of the n-

jet contributions to the BFKL gluon distribution ( /") into the equations for F,, similarly 

the f i-jet contributions for the structure functions FJ1 are substituted into (3.69) to give 

the individual jet cross sections an. The total inclusive jet cross section at HERA is then 

given by the summation over the exclusive jet contributions, 
oo 

a = 5 > " . (3.70) 
n=0 

The results presented below are for the component cross sections, a'\ for deep-inelastic 

events containing n-jets with qj > / i , again for the two choices of resolution /j, = 3.5 and 

6 GeV. 

First, to approximately reproduce the HERA kinematic domain we take ^/s — 300 

GeV and integrate a over the interval 0.01 < y < 0.5. The effect of applying tighter 

kinematical constraints (including cuts on the scattered electron energy and angle) will 

be investigated in the later part of this section. 

Figure 3.14 shows the 0-, 1-, 2- and 3-jet cross sections integrated over x and Q2 bins 

of size Ax = 2 x 10 - 4 and AQ2 = 10 GeV 2, where the two entries in each bin correspond 

to a gluon jet with resolution f.t = 3.5 and 6 GeV respectively. The important thing we 
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Figure 3.14: The cross-section (in pb) for deep-inelastic scattering in 
which there are 0—,1 —,2—,3— resolved gluon jets shown in different 
x,Q2 bins in the region accessible at HERA. The width of the bins are 
AQ2 = 1 0 GeV 2 and A . T = 2 x 10~ 4 except when modified by the experi
mental cuts of the accessible HERA domain. The upper and lower values 
correspond to the resolution parameter fi - 3.5 and 6 GeV respectively. 
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notice is the presence of an appreciable number of identifiable jets. For example, if we 

take a resolved jet to be one with qx > 3.5 GeV and an integrated luminosity C = 10 

p b " \ then in the bin defined by 0.8 x 10~3 < x < 10" 3 and 15 < Q2 < 25 GeV 2 we 

predict 2686, 2097, 1093 events containing 1-, 2-, 3-jets as compared to 12506 events with 

no identifiable jet. 

Recall that the predictions are obtained by numerically solving the BFKL equation 

for the gluon. The normalization is dependent on the choice of the cut-off k$. Here we 

have taken the cut-off to be 1 GeV 2, which was found to give a satisfactory description 

of the inclusive F2 [59] distribution. However, the fraction of events containing 0-, 1-, 2-, 

. . . identifiable gluon jets is independent of the choice of the cut-off. For example, for the 

above (Ax, AQ2) bin and for the lower jet resolution of /< = 3.5 GeV we find 69% of the 

cross section contains no observable jet and that 1-, 2- and 3-jets occur 14, 10, 5% of the 

time respectively. Only 2% of the events contain more than 3 jets. For the higher jet 

resolution of fi = 6 GeV we predict that the BFKL chain will give 88% of the events with 

no observable jet, leaving only 12% of the total to be split between 1-, 2-, . . . jet events. 

Because we integrate over k\ in the earlier calculation of the structure functions, and 

we do not have the explicit dependence of the final state variables in our formalism, it is not 

a straightforward task to include the experimental kinematic separation criteria between 

the emitted jets. This will be left to the later calculation of 1- and 2- jet cross sections 

in deep inelastic scattering including forward jets in the next chapter. However, we can 

perform a more rigorous calculation of the cross sections by including (approximate) 

restrictions on the energy and scattering angle of the outgoing electron to see how large 

a suppression we obtain in the magnitudes of the cross sections for the same x,Q2 bins 

above. The cuts selected below are to approximately reproduce the entire kinematic region 

probed by HERA. 

For an incoming electron of Ee = 27.5 GeV and proton with energy Ep = 820 GeV, we 

restrict ourselves to the kinematical region of the scattered electron having an outgoing 

energy, Ee< > 5 GeV lying in the angular region 8° < 0ei < 172° and cut on the y variable 

using 0.1 < y < 0.5. The effect of applying these cuts can be seen in Figure 3.15. 

Including the above cuts allows more accurate calculation of the outer phase space 

bins as these regions are affected by the extra constraints. The results of Figure 3.15 

show that the kinematical constraints applied do not affect the central bins in which most 
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Figure 3.15: The cross-section (in pb) for deep-inelastic scattering in 
which there are 0—,1 — ,2—,3— resolved gluon jets for the x,Q2 bins of 
Figure 3.13 including kinematical cuts on the scattered electron: Ee< > 5 
GeV, 8° < 6e> < 172° and 0.1 < y < 0.5. The upper and lower values 
correspond to the resolution parameter /( = 3.5 and 6 GeV respectively 
as before. 
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experimental data would lie; cross sections in both Figures 3.14 and 3.15 are identical. 

The effects of the kinematical constraints are only obvious for the "part" bins which are 

cut by the imposed restrictions. The greatest effect is noticed in the lower Q2 region 

where the angular cut $e> < 172° dominates the y > 0.1 (and also y > 0.01 in Figure 3.14) 

cut. Here we see a. dramatic reduction of the cross sections in the 10 < Q2 < 15 GeV 2 

region. For the upper Q2 region, by restricting the upper limit of the Q2 integration in 

(3.7), in which the energy, angular and y cuts are determined previously, we obtain more 

accurate results for the Monte Carlo integrations in the edge of phase space bins - for all 

??.-jet cross sections we observe a slightly increased result than in Figure 3.14. 

Thus, the effect of including these extra constraints is that they are not very important 

for the majority of the phase space covered by the HERA experiments, only in the limiting 

phase space bins where measurement becomes difficult. If we include a higher cut for the 

required energy of the scattered electron (say Ee> > 11 GeV as in chapter 4) then this 

would begin to reduce the magnitudes of the cross sections. However, we can conclude 

that the approximation of taking the y cut constraint only (as used in [61]) is a good first 

approximation to the calculated cross section magnitudes. 

An interesting point to notice arising from the above results is that the 2-jet rate 

is comparable with the 1-jet rate. These calculations predict that for any 1-jet event 

seen at HERA there is ~ 80% probability that a second jet will be found somewhere 

in the rapidity region between the current jet and proton remnant. Moreover, the 2-

je t / l - je t ratio increases with increasing resolution \i as we look to the lower Q2 bins . 

For completeness, Figure 3.16 shows the ratio of the 2-jet to 1-jet cross sections. This 

type of behaviour is consistent with the expectations of the conservation of transverse 

momentum. 

3.5 Kinematic constraints at small x 

So far we have calculated physical cross sections for exclusive n-jet production by modify

ing the BFKL equation to systematically control the cancellation of singularities between 

the real and virtual gluon emissions. In this formalism, the BFKL equation was written in 

the form of Eq.(2.20) in which integration is performed over the momenta of the emitted 

gluon. This formalism has drawbacks for performing realistic calculations of experimental 
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Figure 3.16: Ratio of the 2 to 1 exclusive jet cross sections calculated from 
Figure 3.15. The upper and lower values correspond to the resolution 
parameter \i = 3.5 and 6 GeV respectively as before. 

observables, in that the application of experimental cuts is difficult. In the above results, 

there are no cuts on the angular separation of the jets from the beam pipe or cuts on the 

rapidity-azimuth space of neighbouring jets. Thus, the quoted cross sections should not 

be compared directly with experiment. 

Another drawback is that the BFKL equation above is given only to leading order 

(LO). That is, it only resums the leading powers of o s l n l / x . We still do not know 

precisely how large an effect subleading In 1 f x terms will have on predictions made using 

the BFKL equation. This calculation of the next-to-leading order (NLO) corrections has 

recently been performed by Lipatov et.al. [19, 35] and Caminci & Ciafaloni[36] and it 

is only now that the first calculations have been made of the size of these subleading 

effects. The first indications are that the inclusion of NLO diagrams to the BFKL ladder 

effectively reduce the value of A. This would have the result of weakening the steep rise of 
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the BFKL gluon distribution and so reduce the magnitudes of predictions for observables 

made using the LO equation (for fixed ots). It is found however, that the NLO correction 

(on its own) produces a very large reduction in the value of A, reducing A ~ 0.5 —>• 0.2. As 

the NLO result is such a large effect, higher order corrections are still required. One part of 

this NLO correction is a kinematic constraint on the longitudinal momenta of the emitted 

gluons which indeed appears to be a major part of these NLO corrections. However, this 

kinematic constraint can be performed to all orders, which has the effect of increasing the 

value of A (above XNLO), which still lies below Xio so giving a better description for the 

exponent (see section 2.4). Thus, this kinematic constraint is an important modification 

to the LO BFKL formalism and may have a significant impact on the production of higher 

n-]ei rates. 

Defining the variable z such that x' = x/z (as shown in Figure 3.17), then we have 

the constraint [37, 44, 52] 

This arises because we require, in the small z region, the virtuality of the exchanged 

gluons to be dominated by the transverse rather than the longitudinal components of the 

momentum. That is, for a gluon link of the chain we require 

(3.71) 

12 

2 
3 

x , k T 2 ) 
3 
3 

' 3 x / z , k T o ] 
3 
=5 

Figure 3.17: Portion of gluon ladder showing kinematic variables relating 
to the application of the kinematical cut k\ > zq\. 

So far in the literature, this constraint has been discussed in relation to the BFKL 
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equation in the framework of the CCFM (Catani-Ciafaloni-Fiorani-Marchesini) formalism. 

See for example Kwieciriski-Martin-Stasto[39] in which this constraint has been studied 

in detail numerically. This is a unified evolution equation which combines both DGLAP 

and BFKL equations as solutions in the limits of the respective x, Q2 kinematic regimes. 

The CCFM equation is based on the coherent radiation of gluons which leads to angular 

ordering of these emissions. The above constraint (3.71) dominates over the angular 

ordering restriction 

2 . Q 2 

in the small z regime, i.e. the region in which the CCFM equation reproduces the BFKL 

limit. Thus, it is natural that we can also apply the same kinematic constraint to the 

original BFKL formalism. Full details of the CCFM equation can be found for example 

in [28, 43, 53]. 

Let us explore the use of cut (3.71) on the BFKL equation for the calculation of 

exclusive n-jet production. 

Defining the notation 

x 

Z ~ x~' 

and recalling that previously we worked with the rapidity variable y = l n l / a \ then we 

can write 

\n- = y - y ' . (3.72) 
z 

Thus, the kinematic constraint we need to apply to the BFKL equation (written symbol

ically in (3.12)) becomes 

ey-y' > | | . (3.73) 

This imposes the extra restriction 

Q{k2

Tey-y' - q2

T) (3.74) 

on the momentum integration of the real gluon radiation. It is important to note that 

this constraint does not affect the virtual emissions, but it does the unresolved contribu

tion. Thus, we now need to reformulate the resummation of the unresolved and virtual 

contributions of (3.14) including the extra constraint (3.74). 
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Applying (3.74) to (3.3) we have 

/(!/,#) = f{°Hy,k2

T) + os(k2

T) f dy' I -
J0 J K 

' k 
k 

d 2 q x 

% f ( y \ k , 2 ) Q ( k 2

T e ^ ' - q 2

T ) - f ( y \ Q{k2

T - q 2

T ) (3.75) 

where we still include the implicit integration limits Q(Q2 — kj)Q{kj — Ql) of (3.6). 

Identifying the kernel components 

Splitting the unresolved and resolved components of the real gluon emission as before 

using (3.13), then we can identify 

d2qT k \ 

r k ^ p 
x f ( y ' , k ' 2 ) (3.76) 

Afl (y)S>/(y) = «5 ' ( 4 ) f dy' f Q(q2

T - ^ ) Q { k 2

T e ^ ' - q * ) 
Jo J irqT KT 

and 

Kuv{y) ® f ( y ) 
d2_qr \k2n 

f { y ' . k 2

T ) Q ( k 2

T - q 2

T ) 

o s ( k 2

T ) f dy' / ^ % 9 t f - q l m % e y - < -qlmy'.kQ) 
Jo J TTQT KT 

(3.77) 

From (3.76) and (3.77) we notice that the forms of the kernels KR and KUV now have an 

explicit y dependence before the resummation is performed (c.f. (3.15) and (3.16) from 

section 3.2.1). Thus, (3.75) can now be written symbolically as 

f ( y , k 2 ) = f{0)(y,k2

T) + 

j dy' Kuv(y - y')f(y') + J dy' KR(y - y')f(y') . (3.78) 

3.5.1 Imposing integration limits on the real radiation 

As mentioned above there are no changes to the virtual contributions, thus, the numerical 

calculation remains the same. Considering the unresolved and real contributions, then 

from (3.6) using kT' = (qT + kT), we have 

Ql < qj + k j + 2kTqT cos <p < Q2 
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where ip is the azimuthal angle between the vectors qT and kT. By considering the limits 

on the azimuthal integration then, 

r — t < cos p < . (3. /9 

From (3.79) the limits are identified using 

Qo ~ IT ~ _^ 
2q?kj 

and 

Q } ~ IT ~ < j 
2qxkx 

leading to the integration restriction 

qT < (Qf + k T ) 2 . 

Including cuts from the resolution /< and the kinematical cut (3.74), then the unresolved 

real momentum integration is constrained by the condition 

Ql<q2

T< min k2

Tey~y\ (Qf + kT)2} . (3.80) 

Similarly for the real resolved radiation we find that the condition 

H2 <q2

T< min [k2

Tey-y\ {Qf + kT)2] (3.81) 

must be satisfied, subject to the restriction /( 2 < k\ey~y<. 

3.5.2 Resumming the B F K L kernel including kinematical con
straint 

The resummation of the unresolved and virtual terms is performed as in section 3.2.1. 

Rearranging (3.78) we have 

f ( y ) = f { 0 ) ( y ) + I" dy' [Kuv(y - y') + KR[y - y')) fW) Jo 
= f ( 0 ) ( y ) + K®f(y) 

where the convolution ® is over the integral y' and K is the combined resummed KW+KR 

terms. Defining the moment equation as 
POO 

r = / dy f ( y ) 
J o 

e m y 
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then we can take the moments of the kernel to give 

r = i ( 0 ) m + u<uv + i < R ) f m 

= (f(°» m + K%fm) + K%vfr' 
j'(0)m J^m 

( l - A ' S V ) ( l - A W ; 
Multiplying (3.82) by m/m and defining the resummed kernel as 

1 

+ T, ^ r r / m • (3-82) 

(3.83) 
( 1 - K f f v ) m 

then the moment equation becomes 

f m = A m f { 0 ) m + AmK%fm . (3.84) 

The significance of multiplying by m/m removes the necessity of having to numerically 

model A from the input S{y) which is very unstable to the Chebyshev expansion method. 

After rearrangement and conversion to y space of the moment equation for A, (3.83) is 

constructed from 

A = / + f dy1 K u v ( y - y ' ) M y ' ) 
Jo 

using the driving term of the unit matrix I. 

Converting (3.84) back to y space, then 
f ( y ) = ^ dy' A{y-y)——— + ^ dy dy A{y - y ) — f{y ) 

from which we identify the new driving term 

f { 0 ) ( y ) = £ d y ' A { y - y ' ) ^ f > , (3.85) 

and the ful l resummed kernel 

K{y-y ) = Jo dy A{y-y) — . (3.86) 

Differentiating the real resolved kernel 

From (3.86) it is obvious that the new form of the BFKL kernel including the kinematical 

restriction of (3.71) is much more complicated than before due to the extra differentiation 

of the real resolved kernel term. Writing 

dKR(Y) dKR(y - y") 
[ dY d ( y - y " ) 
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J 7TQt fi-T 
3.8i 

then we have from (3.76) and (3.86), 

d2qx k'x 

where the extra theta function, 0 ( 1 ) , is inserted due to the implicit constraint Y > 0. 

Rearrangement of Q(k^ey — q\) —> 0(1'" — ln(</j.//4)), and using dQ(y)/dy = <5(1'"), allows 

differentiation of (3.87) giving 

K(Y) = as(k2 

+ 
2 /,/ 

3.88) 

k ( y - y ) = M y - y ) ^ s { k T ) — T T ^ 
J 7T O r K t 

Substituting (3.88) into (3.86) and performing the y' integration using the 8 functions, 

gives the resummed full kernel as 

X [S(k2

T - q2

T)Q{ql - / i 2 ) 0 ( ( Q , + kT? - 4)} 

+ (3.89) 

«s(k2

T) ( ^ % A ( y - y " - \ n q $ / k 2

T ) 

X [e(q2

T - k2

T)Q(q2

T - »2)Q{{QS + M 2 - q*T)e(k*e»-»" - q2)} , 

where Q(qj — k j ) of the second term is from rearrangement of © ( I n q ^ / k j ) . 

Equations (3.85) and (3.89) are combined to give the ful l BFKL equation incorporating 

the kinematical constraint and are solved under the restrictions of section 3.5.1. 

The effects of solving the BFKL equation including (3.71) are shown in Figure 3.18 

for the first four jet contributions. As we see, the cut reduces the amount of higher jet 

emissions as we go to smaller x. Thus, the cross sections of the exclusive n-jet emission 

would be reduced in respect to the results of Figures 3.14 and 3.15. It should be noted 

that the numerical calculation of the BFKL gluon, including the kinematical constraint, 

was made with N=10 Chebyshev nodes (c.f. N=20 in section 3.4). This was purely 

to give practical running times for the numerics due to the more complex discretized 

kernel structure. The effect of reducing the number of Chebyshev nodes in the discretized 

approximation gives a ~5% difference in the BFKL solutions at the very small x values 

of ~ 10~6. These differences reduce as we move to higher Bjorken x. 
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Figure 3.18: BFKL unintegrated gluon distributions for the exclusive n = 
1,2,3 & 4-jet contributions showing the effect of including the kinematic 
constraint of equation (3.71) to the BFKL equation. Results are given 
for a resolution cut j.i = 3.5 GeV and kr = 2 GeV. Solid lines show 
the solution for BFKL + kinematic cut. Dashed lines show the original 
BFKL solution. 

3.5.3 n-jet cross sections including kinematical constraint 

Figure (3.18) shows the reduction of the higher jet contributions to the BFKL gluon 

distribution under the constraint that we require the gluons to have a large transverse 

momentum component. As we can see, the constraint is more restrictive for the higher 

jet emissions. 

Using the BFKL gluon of (3.75), the resulting n-jet cross sections are shown in Figure 

3.19 for the lower transverse momentum cut \i = 3.5 GeV with the HERA phase space 

and kinematical jet cuts of 3.4.2. These are compared with the corresponding /< = 3.5 

GeV cross sections of Figure 3.15. 
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Figure 3.19: The cross-section (in pb) for deep-inelastic scattering in 
which there are 0-, 1-, 2-, 3- resolved gluon jets for the x,Q2 bins of 
Figure 3.15 for n = 3.5 GeV. The upper value corresponds to the cross 
section of Figure 3.15 with the lower value the corresponding n-jet cross 
section calculated including the kinematical constraint of (3.71). 
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Obviously the effect of including the kinematic constraint (3.71) is significant for the 

higher jet rates, with all n > 1 jet cross sections reduced. The 0-jet cross section re

mains unchanged under the imposition of cut (3.71) as essentially the 0-jet contribution, 

for relatively small resolution parameter /x, is the resummed virtual gluon contributions 

which remain unaffected by the cut on the longitudinal momentum. The small deviations 

between the numbers in the first plot of Figure 3.19 are due to the numerical computation 

being performed with N = 10 Chebyshev nodes instead of N = 20 for the cross sections 

without kinematic constraint. The reduction of the cross sections increases for higher ??,, 

producing a greater suppression of the n-jet rates. For the 1-jet cross section, we observe 

a factor of 1.4 between the cross sections calculated with only the HERA phase space and 

kinematic cuts compared to those with the inclusion of the extra kinematic constraint. 

This factor increases to ~ 3.5 for the 2-jet cross section, and higher still to a factor ranging 

between ~ 6 — 13 for the n — 3 rate. This introduces an interesting point; the effect of 

including the kinematic constraint becomes dependent on the ,r, Q2 bin studied (the factor 

1.4 is constant between the 1-jet rates) for the higher jet emissions. This dependence is 

especially marked in the x,Q2 bins bordered by the phase space cuts. See for example 

the bin x = 0.0002 - 0.0004, Q2 ~ 10 - 15 GeV 2 which has a factor 13.2 between the 

calculated cross sections, compared to a factor 6 in the bin of the top right hand corner 

of the plot for the 3-jet rates. 

We can now make a similar comparison to that of Figure 3.16 to see if we still observe 

similar emission rates for the 1- and 2- jet cross sections when we include the cut of (3.71). 

The ratio of the 2-jet to 1-jet cross section including kinematical constraint is shown in 

Figure 3.20. 

Recall, from Figure 3.16 we observe that the 2 jet/1 jet ratio is ~ .75 — .80; there are a 

substantial amount of 1-jet events that will contain a 2nd jet somewhere in the detector. 

In Figure 3.20, this ratio falls to ~ 30% for the percentage of 2:1 exclusive jet events at 

HERA. Thus, in this analysis, the imposition of the kinematical constraint produces a 

significant impact on the exclusive jet production rates. One interesting test would be to 

see experimentally the rate of 2:1 exclusive jet cross sections. This would show whether 

the imposition of this kinematical cut is required, or, whether we really do see a high 

proportion of 2:1 jet rates experimentally. 

From other analyses including the kinematic constraint on the unified DGLAP and 
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Figure 3.20: Ratio of the 2 to 1 exclusive jet cross sections including the 
kinematical constraint of (3.71). 

BFKL equation, the inclusive unintegrated gluon [39] shows a significant reduction under 

the inclusion of the above cut which has been compared, favourably, at the structure 

function level with experiment. Thus, the observed reduction in the above n-jet cross 

sections is consistent with our understanding of this subleading effect. 

3.6 Summary 

In this chapter we have made a theoretical study of the BFKL equation to give an insight 

into its structure and to give a first exploration of the interesting effects that can be 

observed when application is made to the small x kinematic regime at HERA. Explicitly 

we have formulated a modified form of the BFKL equation which allows an exclusive 

analysis of the multijet yields in deep-inelastic lepton scattering in the small x regime. 

The jets are defined as gluon emissions from the BFKL chain which have transverse 
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momenta, qj greater than a specified resolution [i. First the modified BFKL equation was 

solved to determine the jet decomposition of the unintegrated gluon distribution f(:i\kj) 

and then the ^-factorization theorem used to determine the jet decomposition of the 

structure function ^ ( . t , Q2) (hence also the total deep-inelastic electron-proton scattering 

cross section) in the HERA small x regime. The jet decompositions were presented as a 

function of the kinematic variables and for different choices of the jet resolution parameter 

fi. 

The modified BFKL equation is shown symbolically in (3.21) and the kernel K in 

(3.23). The equation embodies a resummation of the virtual contributions together with 

the unresolved real gluon emissions with qx < /<. As a consequence the kernel K has an 

explicit y = In 1 jx dependence, which depends on the amount of unresolved radiation and 

so is a function of \i. Indeed for unrealistically low values of fi, for pedagogic purposes, 

the analytic form of the y dependence of the kernel was derived, see (3.26). For the more 

realistic numerical solutions presented, the correlation between the x dependence of the 

n-jet cross sections and the resolution parameter \i is apparent. 

The behaviour of the ??.-jet contribution to the gluon / , or to F2, exhibits a character

istic behaviour as x decreases, rising to a maximum and then falling back to zero. The 

higher the value of n the lower the value of x at which the maximum occurs. In the 

HERA small x regime the behaviour is only apparent for low choices of the parameter /t, 

for example n ~ 1 GeV, see Figures 3.7, 3.8 and 3.9. For experimentally realistic values of 

the resolution parameter (say \i — 3.5 or 6 GeV) the maxima shift to very small values of 

x and lie below the minimum experimental x limit available. The dominant contribution 

in the HERA range then comes from events with no resolved gluon jets emitted from the 

BFKL chain. Nevertheless the 1-, 2-, 3-, . . . je t rates are still significant. An interesting 

feature of the multijet cross sections is that they are non-negligible even if \x > Q. The 

existence of such jets with qj > Q is a straightforward consequence of the characteristic 

In kj, diffusion along the BFKL gluon chain. 

In summary, an exploratory study of a form of the BFKL equation which allows the 

final state jet configurations to be determined in a consistent manner has been made. 

The equation was solved and a selection of results presented to illustrate the properties 

of these gluon jets which occur in deep inelastic scattering at small ;r as a result of 

BFKL dynamics. Of course the normalization is dependent on the choice of input 
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and the cut-off Q$. Our choice is such that the predictions for the totally inclusive F2 

are compatible with the measurements at HERA. On the other hand the shape in x of 

the individual jet contributions, and the predicted values of the jet ratios are much less 

sensitive to the input. In addition there are In 1/x and fixed-order QCD jet contributions 

to consider. These may modify the predictions in the HER A regime, but with decreasing 

x the BFKL behaviour should become increasingly dominant. One non-leading effect, 

is the imposition of the constraint q\T < xnk\jx (in the notation of Figure 4.13) which 

follows from the requirement that the virtuality of the gluon links is dominated by — k\ 

[37, 44]. This constraint is very important as initial studies of the NLO BFKL corrections 

indicate that this cut is a major contribution of the ful l NLO calculation. This means 

that in applying the constraint of (3.71) to the LO BFKL equation as used in this thesis 

provides a good (first) insight into the effects of higher order corrections. This constraint 

is also important as it can be done to all orders within the BFKL formalism and not just 

to NLO which provides a much better solution to the BFKL equation (see section 2.4). 

In applying this cut, the available phase space for multijet production is limited and, as a 

consequence, applying the kinematically constrained BFKL gluon distributions (3.75) to 

calculate fully integrated exclusive jet cross sections, reduces the yield of multijet events. 

The effect of applying the constraint to the BFKL gluon is shown in Figure 3.18 and the 

resulting decrease in the observable n-jet cross sections in Figure 3.19. The application 

of (3.71) to the real gluon emission has the effect of dramatically reducing the emission of 

higher numbers of jets compared to the results without the constraint (see Figure 3.15). 

Thus, this exploratory study is of importance for a ful l experimental analysis of exclusive 

jet production at HERA, and also has applications to pp and pp collisions with further 

modification. 

In the next chapter we will further the study of this modified BFKL equation, which 

enables us to make calculations of final state jets, and apply it to the process of deep 

inelastic scattering including identified forward jet emission in an attempt to isolate sig

natures of BFKL dynamics at HERA. 



Chapter 4 

The B F K L formalism of forward 
jets 

4.1 Introduction 

The HERA kinematic range covers the region of small Bjorken x, and it is precisely at 

small x (i.e. high energies) where we would expect the BFKL equation to be valid. How

ever, problems arise when we wish to observe signatures of these dynamics experimentally 

as the measured observables such as the rise of the proton structure function F-2{x,Q2) 

can be described satisfactorily by both BFKL evolution in Inl/x and, by using a suit

able choice of input at the scale Ql, DGLAP evolution in \nQ2 of the gluon distribution. 

This leads to the conclusion that the structure function F2 is too inclusive to act as a 

discriminator of the underlying small x dynamics. 

One focus of recent studies at HERA has been to look for less inclusive quantities in 

which to distinguish, one way or another, whether the BFKL or the DGLAP description 

is the correct picture to apply in the kinematic regime of HERA. In particular, attention 

is being focused on final state physics as it is expected that hadronic final states will 

provide additional information and be more sensitive to the parton distributions. 

In the previous chapter, we have discussed the process of exclusive jet production in 

DIS to try to find observables sensitive to BFKL dynamics and thus to provide signatures 

that could be observed experimentally. In this chapter, the focus will be shifted to another 

less inclusive quantity - the production of an extra jet in the forward region of the detector 

accompanying DIS events. 
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The small x region at HERA is the range 10 - 4 < x < 10~2. Here, In l/x terms are 

large, and, as these are precisely the terms summed by the LO BFKL equation, we would 

expect it to give a valid description of physical observables in this region. 

BFKL dynamics are characterized by the absence of transverse momentum ordering 

of the emitted gluons and its x~x behaviour where A has an effective value1 ~ 0.5 in 

the small x deep inelastic regime accessible at HERA. Thus, we would expect to see 

evidence of these in the experimental data. However, there are some ambiguities in 

the BFKL formalism which need to be considered before we can conclusively prove that 

BFKL dynamics have been observed. Firstly, the BFKL equation of (2.20) requires a non-

perturbative input, / ( 0 ' ( . T , k y ) , from which the Lipatov In l / x evolution is started. This 

introduces uncertainties from our lack of knowledge of the non-perturbative regime into 

any quantitative predictions we make. Secondly, the absence of transverse momentum 

ordering along the gluon chain leads to a diffusion in fcj*, allowing the unintegrated gluon 

distribution f ( x , kj<) to enter the non-perturbative region during its evolution. This makes 

it difficult to distinguish whether the steep rise of the structure functions as predicted 

by the BFKL equation, are clue to the Lipatov behaviour or to evolution of the non-

perturbative input. 

The solution to these problems has been known for some time. In 1990, the measure

ment of the less inclusive quantity of DIS events plus an energetic forward jet (Figure 

4.1) was proposed by Mueller [45, 49, 62] as a method for eliminating these uncertainties. 

In this scenario, jet production is studied in the phase space region away from the struck 

parton such that the current jet, arising from the interaction of the photon with the gluon 

through the qq box of Figure 3.11, is well separated from the forward jet of interest which 

travels in the direction of the proton remnant. Thus, experimentally this is observed as a 

2 (1 + 1) jet process. 

Recent work on jet production in DIS events [63] provides compelling evidence of the 

observation of BFKL dynamics in forward jet measurements. Full 0(a2

s) calculations of 

NLO QCD forward jet production, when compared to the expected BFKL cross sections 

are much smaller. On comparison of these fixed order predictions with preliminary HERA 

forward jet results [64], the fixed-order QCD prediction falls well below the data, whereas, 

BFKL predictions successfully reproduce the observed magnitudes of the cross sections. 

' T o r fixed as the exponent, A has the value A = os41n2, where as = 3cv s /7r 
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f 

Figure 4.1: Diagramatic representation of a deep-inelastic event contain
ing an identified forward jet, carrying longitudinal momentum XjP and 
transverse momentum k2. The photon scatters from the gluon chain 
described by the BFKL equation which resums all soft gluon radiation 
(indicated by thin, horizontal gluons). The forward jet can originate 
from either a quark or gluon within the proton. 

However, we should be careful. The identification of BFKL dynamics at HERA has not 

been conclusively proved - this evidence of BFKL dynamics is observed via. an enhance

ment of the forward jet cross sections over the NLO expectations, but additional data, 

especially for harder forward, i.e. larger transverse momentum, jets is still required before 

more reliable comparisons can be made. 

We will now consider these DIS including forward jet processes in greater detail. 

In DIS events, as discussed in chapter 1, the virtual photon acts as a probe of the 

proton (Figure 1.1). However, if we require that an identified jet with kinematic variables 

x.j, the longitudinal momentum fraction, and its transverse momentum, have Xj >• x 

with Xj ~ 0(1) such that it does not lie in the small x region, and k2 ~ Q2, then 

the photon now probes a specific parton within the proton. The evolution of the gluon 
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density now corresponds to the cascade of partons (gluons) which may be emitted before 

interaction with the virtual photon probe. This cascade can be described by either the 

DGLAP or BFKL evolution equation, although as we shall see. the measurement of DIS 

events including a forward jet is a clean method of neutralizing the Q2 DGLAP evolution. 

From experiment, for large x, the parton distributions of the proton are well known, 

see for example[12, 65]. Thus, for xj ~ 0(1) we no longer have to start evolution of the 

BFKL equation from an unknown non-perturbative driving term. Also, clue to strong 

ordering at the lower gluon-parton vertex (Figure 4.1), the exchanged gluon and jet have 

approximately the same transverse momentum i.e. k\ — k2. Because DGLAP evolution 

is characterized by the strong ordering of the transverse momenta of the emitted gluons, 

the selection of events with k\ ~ Q2 will suppress the phase space available for jet 

production arising from DGLAP dynamics. This allows us to focus directly on the small 

x/xj behaviour of the forward jets. In principle this provides a clean test of BFKL 

dynamics, and, recently data for the process DIS plus an identified forward jet has been 

published [66, 67] allowing direct comparison of BFKL predictions with the experimental 

cross sections. 

Neutralizing the B F K L kT diffusion into the I R region 

One of the main features of BFKL dynamics is the diffusion in kT Eq.(2.15) along the 

gluon ladder, that is, there is a random walk in the transverse momentum of the emitted 

gluons where 

and kTi can be both larger and smaller than the momentum of the previous rung. It is 

this diffusion which causes problems. The kT integration phase space can enter the infra 

red (IR) region which is described by non-perturbative physics. This is shown in Figure 

4.2(a) in which the evolution of the parton distribution is started at the input scales xo 

and k^. As we evolve to smaller values of x, the momentum changes from the input scale 

A"o —> klox, the scale set by the upper part of the diagram in Figure 4.1. During this 

evolution, for an input scale k% not very large, it is possible that the kj diffusion will 

enter the IR region introducing contributions from non-perturbative physics which are 

unknown. However, if we consider the process of DIS plus a forward jet (Figure 4.2(b)), 

because the momentum of the gluon-parton vertex is restricted to k\ ~ Q2, for large 
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virtualities of the photon where Q2 > few GeV 2 , then the diffusion in kT as we evolve 

towards smaller x no longer enters the non-perturbative region. The measurement of 

forward jet processes removes ambiguities arising f rom the effects of unknown physics. 

a 
InOO ln(k* 

2 k ~ Q box box 

V 0 s 

• I R 

x 0 

Figure 4.2: Representation of the diffusion in k j during B F K L evolution. 
Figure (a) shows the k-T of the gluons entering the non-perturbative IR 
region through diffusion during evolution f rom an input scale of k^ to klox. 
Figure (b) shows the diffusion in k j for the process of DIS including a 
forward jet . Due to a higher input scale, k%, there is no longer diffusion 
into the IR region, removing uncertainties arising f r o m unknown physics. 
These diagrams are known as "Bartels Cigar" [68]. 

2 je t events in the forward region 

As well as ident i fying the DIS including a single forward jet process, experimentalists 

have observed a few events in which two jets have been identified as being emitted in the 

forward direction. For the 1993 H I and ZEUS data, the ratio of processes involving two 

forward jets to those involving only one, is approximately 4% [67]. 

The B F K L formalism can readily be extended to include emission of a second jet 

when we allow an emitted gluon rung f rom the chain of Figure 4.1 to have a transverse 

momentum greater than some min imum cutoff P j j e l > Prmin- In the language of the 

previous chapter, we allow the gluon to be resolved as an identified jet . 

The aim of this chapter is to study the process of DIS including 2 identified forward 

jets wi th in the B F K L description, and to predict the ratio of 2:1 jet events in the forward 
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direction at H E R A . 

4.2 Forward jets in deep inelastic scattering 

We are interested in the DIS process including an identified forward jet , e + p —> jet + X 

shown in Figure 4.1, where the emitted jet originates f r o m either a quark or gluon wi th in 

the proton. 

In this process we wish to expose the dependence of the f inal state jet variables, thus, 

the cross section of (1.11) is wri t ten as the differential w i th respect to x3 and k2 as 

da Aira2 

dx.dk2 r dx.dk] 
14.1} 

dxdQ2dx3dk2 xQ4 

where the variables x, Q2, y and 5 are the usual DIS quantities of chapter 1. We have 

chosen to use the transverse (FT) and longitudinal (FL; F2 = FT + FL) structure functions 

as these are calculable f rom the 7**7 —• qq fusion process of the quark box in the upper 

part of Figure 4.1, see (3.64) and (3.65). 

The above differential structure functions have the leading small z = x/xj behaviour 

described by the Mueller formalism. Wri t ing the convolution equation for the structure 

funct ion i 

Fl(x.Q2.xJ.k;) = 4>r . f • (4.2) 

then represents the photon-gluon process and / the momentum distr ibution of the 

partons dependent on the jet variables. These contributions are shown in Figure 4.1. I t is 

useful to note, in this formalism the B F K L evolution of the gluon is contained in the term 

in which evolution is considered to start f rom the dr iving term ( $ ' 0 ' ) of the box at 

the top of the diagram. This is essentially "upside down" compared w i t h the description 

used in chapter 3. Here, the gluon evolution was considered to originate f rom the proton 

using the driving te rm /*°) derived f r o m non-pertubative considerations of the parton 

distributions inside the proton (see section 3.2). 

Formally (4.2) is wr i t ten [45, 62] 

dk) rdxj Ncas _ , . ^ i ( x / X j , k ] , Q 2 ) 
k] 

http://dx.dk2
http://dx.dk
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giving the differential structure function 

d F t ( x , Q 2

l X j , k 2 ) 3a 
= ^ r E ^ . i - ^ ) ^ ( ^ ^ ^ ) • (4-3) 

The term 1/kj arises f rom the gluon propagators giving the k~4 behaviour associated 

w i t h single jet production. The term <&i/kf is identified w i th the gluon structure funct ion 

integrated over the longitudinal momentum of the gluon and explicitly $, has dimensions 

of k2. The differential structure function (4.3) contains an "extra" factor as to the for

malism of chapters 1 & 3, because the above process involving an identified jet is 0{as) 

w i t h respect to the inclusive DIS structure functions F{ of (1.27). 

What does equation (4.3) imply for the observable structure function Fo? For the 

proton structure funct ion, using the naive parton model of (1.27) we have 

F2 = x^e2q(x^Q2) 
i 

where the partons at small x are dominated by the gluon distr ibution. From the B F K L 

equation(section 2.2.2), the gluon distribution has the behaviour 

xg(x,Q2)~Cx-\ 

thus, the expected dependence of the differential structure funct ion for DIS including a 

forward jet is 

i.e. we expect to be able to study the ( x / x j ) behaviour of the structure functions. 

For a forward jet carrying a momentum fraction Xj ~ O(l), the parton distributions 

fa{xj, k2) of the proton are well known f rom data, and the sum over the parton distribu

tions, Y^fa °f (4-3), is shown below to have the effective form 

Y,f*=9 + Uq + 9), (4-5) 

see (4.9), where g is the gluon distribution and q, q the sum of individual quark and 

antiquark distributions respectively. In the results presented later for DIS events including 

a forward jet , the index a runs over t i , d, s, c flavoured quarks and antiquarks which are 

obtained using the MRS(A) parton distributions [12] wi th a value S.QCD — 230MeV. 
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Effect ive parton distribution assuming ^-channel pole dominance 

The effective fo rm for the sum of the parton distributions quoted in (4.5), holds only 

in the l imi t of t-channel pole dominance for scattering processes. For completeness, a 

discussion w i l l be presented here on the origin of this form. 

Consider the 2-2 scattering process A + B —> C + D, shown in Figure 4.3(a), where 

the Mandelstam variables are given by the usual definitions 

s = (PA + PB)2 

t = (PA-Pc)2 

u = ( P A - P D ) 2 . (4-6) 

For scattering processes wi th parton exchange in the i-channel, the pole structure has 

t 

c 
0 B A 

D 

B D b (a 

Figure 4.3: (a) 2-2 scattering for the process A + B —> C + D showing the 
different scattering channels. The u channel corresponds to (PA — PD)-
(b) For ^-channel dominance, scattering of f inal state particles is at very 
small angles 0. 

the fo rm (Halzen & Martin[2] chapter 6) 

1 

which wi l l dominate the scattering amplitude in the l im i t t —> 0, i.e. for scattering of 

particles C & D into very small angles d, Figure 4.3(b). The scattering process of quarks 

and gluons, via gluon exchange, has three ^-channel processes (labelled qq, qg and gg) 

shown in diagrams (a), (b) and (c) of Figure 4.4 respectively. 
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Figure 4.4: Contribution to the scattering of partons via gluon exchange 
in the ^-channel. 

The cross sections of these parton subprocesses are proportional to the matr ix elements 

squared, which in the small t l imi t have the approximate forms 

\M\' ~ — 
C,2 

t2 

CFCA 
1 'gg f2 

C2 

\M\2 ~ ^ (4.7 

where Cp and C A are the colour factors w i th values Cp = 4/3 and CA — 3 for QCD. 

The tota l cross section for the scattering process is the sum over the contributions of 

Figure 4.4 where 

Labelling the individual quark and antiquark flavour distributions which can take part 

in the scattering as, u,d, ...u,d,... etc. and the gluon distr ibution g, then the tota l cross 

section for 2-2 scattering is the sum over all possible qiqj, qig, gg combinations and becomes 

G ~ 
C I CpCA (uu + del + ud -\-uu + ....)— + (u + d+...)g ^ 

+ g(u + d + ...) 
CpC A 

t2 99 • t2 

which factorizes as 

C2 r 

(7 ~ 
C Cp 

gg + g(u + d + ...)-£- + (u + d + ...)g— 
C M LA 

C2 

+(uu + dd + ud + uu + 
C A 
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/~»2 
L'A c 

L . 4 

c 
g+ -^(u + d + ...] 

(4.8) 

Using the notation 

u + d -f- ... and = u + <"/ + 

to describe the sum over all flavours of quarks and antiquarks respectively, then (4.8) can 

be wri t ten as 

r<2 

t2 

^A 
9 + ^ { q + t ) 

LA 

f rom which we identify that the sum over all parton distributions, in the l imi t ^ —s- 0, is 

given by 

£ / a = 9 + 7^{q + q) 

9 + \{q + q) (4.9) 

( f rom the explicit numerical values of Cp and C 4 ) , giving the fo rm as quoted in (4.5). 

The approximate forms for \M\2 of (4.7) only hold in the l imi t t —> 0, thus Yl fa of 

(4.9) gives the asymptotic sum of the parton distributions. 

G l u o n distributions at smal l z 

We are interested in the small z = x/xj behaviour of the gluon chain in Figure 4.1. This 

is given by the te rm $;(z, k2, Q2) of (4.3), which for fixed as satisfies the B F K L equation 

of (2.20) 

* dz' f d2qT 

q\ 

' 7.2 
U2 (4.10) 

where the label i represents the longitudinal(L) and transverse(T) contributions to the 

quark box driving term and as = 'Sas/n. Equation (4.10) is wr i t ten in the fo rm as used in 

chapter 3, in which the integral is over the momentum of the emitted gluon and where the 

singularities as q\ —» 0 cancel between the real (1st term under the integral in (4.10)), and 

v i r tua l , gluon (2nd term under the integral in (4.10)) contributions of the B F K L kernel. 

The vector k j is as usual given by k'^ = {kj + qr)2 • 
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4.2.1 Structure functions of DIS + forward jet processes 

As mentioned above, the driving term k T , Q2) is given by the respective longitu

dinal and transverse contributions of the quark (and crossed) box of Figure 3.11. I t is 

important to note that the driving term for the quark box, for small z, is independent of 

z i.e. ^ T ( ^ k h Q 2 ) ~ 02) [27]. 

The explicit forms for the polarization contributions of the driving term are given 

by [27] 2 

(4.11) 

> . Q A t i J l \ / ' J / J f'^' ,;2..ra2/i ,3\2l (_}_
 1 I 

where, assuming massless quarks 

A = K2 + B(l-/3)Q2 

D2 = ( K - k T ) 2 + /3(l - 0)Q2 . 

Again /3 and K arise f rom the Sudakov decomposition of the four momentum of the quark 

line of the box diagrams of Figure 3.11. These should be compared wi th the f o r m of (3.65) 

in which the quark box is convoluted wi th the already x dependent B F K L gluon density 

However, for the results presented below, the azimuthal integration of (4.11) between 

K and k j was removed by the introduction of the Feynman parameter A, which after some 

algebraic manipulation, allows us to write 

,as(k'T) 

Q2) = 2 H e ^ a M ) f Q /J d2K[p2(l - (3)2} ( ± 

^ H & Q 3 ) = £ e ^ ™ A 4 Q 2 f d p f d X r dK'2 {(32 + [l - ,df 
„ H 7T JO JO JK!? L 

A 

x (2A - 1 ) * " + (1 - A) [A( l - X)k2 + fll - m 2 ] ( 4 1 2 ) 

[^2 + A ( 1 _ A ) p + / ? ( 1 _ ^ ) g 2 ] 3 

and 
2 The integration K is over the momentum of the quark line of the box diagrams (Figure 3.11). The 

lower cut KQ is explicitly included in this integral since, as one cuts on the gluon virtuality then one 
ought to do the same for the quark. However, there is no need for this cut on the integral of the quark 
transverse momentum i.e. we can set K Q = 0 (and also K'Q = 0 in (4.12) & (4.13)) . The importance of 
this cut will be observed in the discussion relating to the normalization of the B F K L gluon in section 
4.2.3. 



Chapter 4. The BFKL formalism of forward jets 112 

*L0,(#,Q2) = I > 9

2 ^ # V / ^ A T f k ' 2
 /3(1 -

a 7T2 Jo JO J« ' 2 

X 
1 6A(1 - A) [4:iTK'2k2 + 2 x ^ 4 ( l - 2A) 2 ] 

2 [ K ' 2 + P A ( 1 - A ) + / 3 ( 1 - / 3 ) Q 2 ] 4 

(4.13) 

To arrive at the above results we make the change of variable f t = K' + k(l — A ) . These 

equations are then numerically solved w i t h the integration over K'2 regulated by the cut 

K'2 = 1 GeV 2 . 

In reality, the contribution f rom FL to the structure function F2 is only a small amount, 

w i t h FL ~ 2Fj/9. I t is often omitted in earlier work on the calculations of F2 [27, 69]. 

For the results of DIS including forward jet cross sections presented below (sections 4.2.4 

& 4.4), the longitudinal component is included in the description of F2. 

As before, we w i l l solve for the B F K L equation using the running coupling as(k2). In 

this formalism, we w i l l use the " f u l l " B F K L solution of chapter 3 in which all gluon radi

ation of the gluon chain is treated as soft and is resummed wi th the vi r tual contributions. 

The f u l l B F K L kernel is given by the exponential of the unresolved and v i r tua l emissions, 

KJJV of (3.19), i.e. the resolution parameter fi of chapter 3 is effectively p = oo. 

To include running as in (4.10), i t is convenient to work wi th the funct ion 

H(z,k*,Q2) = aa(k*)$(z,k$,Q2) ( 4 . 1 4 ) 

where as = 3as/ir. This is to remove the necessity of having two different scales of as 

for the real and v i r tua l terms (as(k'^) & a s ( k j ) ) in the [ ] term of (4.10). By using the 

variable H we only have one scale to deal w i th during computation. Thus, rewri t ing 

(4.10) gives 

*dz' fd2qT 

H(z,k2,Q2) = H^(k2

T,Q2) + as(4)l ~jr j ~ 

^H(z',k'2)-H(z',k2)e(k2

T-q2

T) 

Symbolically this is wri t ten as 

H = # ( 0 ) + K 0 H 

(4.15) 

(4.16) 

where the kernel is given by K = A = e x p ( A W y ) of (3.19), and # < 0 ) = H^\Hl°] is 

obtained by applying (4.14) to (4.12) and (4.13). 
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In the following, (4.15) was solved using the numerical techniques of section 3.3 wi th 

N = 10 Chebyshev nodes for the kT dependence. 

T h e L i p a t o v effect 

Is i t possible to observe signatures of B F K L dynamics in the structure functions at HER A? 

We can observe the effect of the Lipatov dynamics i f we compare the structure funct ion 

F2 when we use the f u l l fo rm of (4.15) in which we allow evolution of the gluon, to 

that in which the struck parton interacts directly wi th the photon probe and couples 

directly through the $ = <&^JX term only. This comparison is shown in Figure 4.5 for 

the differential structure funct ion (4.3) as a funct ion of the jet longitudinal momentum 

fraction. This is shown for the kinematic choice, k2 = Q2 = 5 GeV 2 for three choices of 

Bjorken x = 0.01, 0.001 and 0.0001. The solid line shows the F2 structure funct ion i f we 

allow no gluon radiation f rom the struck parton. Obviously, the effect of including the 

B F K L gluon summation is to increase the magnitude of the proton structure funct ion. 

The results of Figure 4.5 are calculated using the resummed B F K L kernel A = 

exp(Kuvy) as derived in chapter 3, and the MRS(A) parton distributions. This plot 

reproduces the fo rm of the differential structure functions presented in [27] providing a 

check of the numerical methods used. The magnitude here is larger due to a higher choice 

of AQCD in Qs of the B F K L gluon calculation, and the use of different parton distributions 

to those in [27]. The numerical calculation is a direct modification of the full B F K L gluon 

distr ibution f rom the previous chapter, in which, evolution is now started f rom the top of 

the ladder chain instead of the bottom. 

In (4.15) we have the integration f*° dz'/z', in which the upper l im i t is restricted via 

a cut ZQ ^ 1, such that we restrict Xj > x. The restriction z < z0 ensures we w i l l probe 

the small z region. z0 determines the point, at which the evolution in Inl/z starts, i.e. 

the point at which the gluon chain is matched to the quark box <$>\°\ In the above, 

ZQ = 0.1. Essentially z0 is a free parameter which w i l l be fixed to match the B F K L 

result to the DIS plus 1 forward jet cross section data. This w i l l then be used to make 

predictions for different kinematical cuts and the 2 forward jet production rate. Of course, 

this normalization is dependent on how rigorous a calculation is made of the quark box, 

subject to how many quark flavours are included and how many flavours are summed over 
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Figure 4.5: Differential structure function F2 as a function of jet momen
t u m fraction xj. Solid line shows the contributions f rom the quark box 
only - that is for no gluon radiation f rom the probed gluon before interac
t ion w i t h the photon. Dot/dash lines show the increase of the structure 
funct ion when we include contributions f rom the B F K L resummed soft 
gluon radiation. This is shown for three choices of fixed Bjorken x for the 
kinematic choices, k\ — Q2 = 5 GeV 2 , w i th a lower cut K.Q = 1 GeV 2 in 
the integrations of (4.12) and (4.13). MRS(A) parton distributions are 
used w i t h AQCD = 230 MeV. 

in the identified jet . A more detailed discussion of the normalization chosen for the final 

results presented later is discussed in section 4.2.3. 

4.2.2 DIS + 1 forward jet - experimental cuts 

The f u l l y integrated cross section is readily obtained by inserting the solved B F K L equa

tion of (4.15) into (4.1). To make a valid comparison of the DIS including 1 forward jet 

cross section wi th the data, we need to include the experimental kinematical cuts to the 

integration phase space. These essentially are the same as those discussed in section 1.2.1, 

although the forward jet region has a very large cut on the allowed scattering angles of 

the final state electron compared to those listed in (1.8). 
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Unless otherwise stated, the following analysis imposes the constraints as used by the 

H I collaboration for forward jet event selection [66]. We are constrained to the x,Q2 

phase space, such that, for an incoming electron wi th energy Ee = 27.5 GeV and proton 

energy Ev = 820 GeV, we restrict the energy of the scattered electron to be Ee> > I I 

GeV and its angle wi th respect to the proton direction to be 160° < Qe' < 173°. The 

allowed electron acceptance region is shown in Figure 4.6 for two upper restrictions on 

the kinematic variable y E q . ( l . l ) . That is, we impose 

0.1 < y < 0.5 (1.0) 

where the smaller and larger upper l imits are shown by the solid and dashed lines re

spectively. The importance of this upper l imi t cut on y wi l l be discussed in section 4.2.4. 
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Figure 4.6: Electron acceptance region for forward jet identification using 
H I experimental cuts f rom [66] . 

Comparing Figure 4.6 wi th Figure 1.3 showing the " f u l l " phase space of H E R A , we see 

that the most restrictive cut is f rom the lower electron angle l im i t of 160°. This dominates 
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the ycut restriction. In fact, the l imi t $ e, > 163° restricts the available a' region for forward 

jets to 10" 4 < x < 10" 2 . 

As well as cuts for the scattered electron, we require that the forward jet itself have a 

min imum transverse momentum pT]et > H I have published data for the cuts //, = 3.5, 5 

and 6 GeV. I t must also have a min imum energy set by E.)et > 28.7 GeV and lie wi th in 

7° < 9j < 20° wi th respect to the proton (see Figure 1.2). The restriction on E)el > E m m 

forces the integration of the jet longitudinal momentum fraction to Xj > 0.035, through 

the relation E3 ~ XjEp. This also gives xy > 0.035 for the 2 forward jet calculation of 

section 4.3. 

One other important kinematical cut, especially for the 2 forward jet production, is 

the restriction on the allowed momentum of the emitted jets. We restrict prjet ~ Q2 and 

set 

max[fi\Q2/2]<P

2

Tjet<2Q2 . 

This is implemented to minimize D G L A P ln(Q2) evolution and to prevent background 

f rom one of the qq constituents of box contribution being identified as an individual jet 

in the forward detector region. We assume the qq pair are close enough together to be 

observed as one current jet. 

To implement these cuts on the jet kinematics, they are translated to the integration 

l imits for the DIS variables x, Q2, Xj, kj and azimuth through the manipulation of the 

energy/angle forms of the variables in (1.1). 

4.2.3 Normalizing the B F K L gluon 

Before we look at the B F K L predictions for cross sections of DIS including a forward jet , 

we should consider the normalization of the B F K L gluon and the stabili ty of the results 

obtained. 

There are two main contributions to the integrals of the box driving term which wi l l 

affect the normalization of the 1 forward jet cross section. These are: 

(i) the number of quark flavours in the qq box diagram contribution to and less 

significantly, the number of heavy quarks we allow in the summation fa-
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(i i ) The integration cutoff K'0

2 of (4.12) and (4.13). 

However, once the normalization is fixed, this is not changed throughout for the results 

of the next sections. 

As mentioned above, the normalization is determined by the point at which the starting 

scale of the In l / z evolution is fixed. The upper l imi t is set to z0 where we define 

x 
— — 

wi th x0 the min imum value of the jet momentum fraction. The larger the value of z0, 

the longer the evolution length in In 1/x, thus producing a greater contribution f r o m the 

B F K L growth. 

Let us consider the two contributions affecting the normalization. 

The aim of the work in this chapter is to ult imately calculate the ratio of 2:1 DIS 

event cross sections including forward jets at HERA, thus, since contributions f rom the 

input of (4.11) wi l l essentially cancel between the two jet rates, we can make some 

approximations to allow practical numerical computation which should not affect the 

accuracy of the f inal results. To this end, explicit heavy quark (c, b) contributions were 

neglected in the equations of the quark box as the inclusion of these essentially doubles 

the computation running time. Only massless quarks are included. 

Another component affecting the normalization is the inclusion of heavy charm in the 

forward jet . However, this produces an increase in the cross sections for the smallest x 

bins of only a few pb and as such is not very important i n f ix ing the normalization. Charm 

contributions in the forward jet are included in the £ f a term for the parton distributions 

in the following results. 

Using a lower integration cut K'Q — 1 GeV 2 in (4.12) and (4.13), normalizing the 1 

forward jet results to the H i data of [66] we obtain the starting value z0 = 0.5 (see Figure 

4.7(a)). This can be compared to the inclusion of an explicit charm contribution to the 

input quark box. Charm provides an approximate 20% contribution to the structure 

function F2, increasing the overall cross section and reducing the starting input to a value 

Zo ~ 0.1 for accurate description of the magnitude of the cross section data. 

The resulting magnitude of the B F K L solution ( $ ) is also sensitive to the cut K 0

2 of 

the box integration. The above normalization ZQ = 0.5 is set using the lower cut K'Q = 1 
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Figure 4.7: F i t t ing the B F K L DIS + 1 forward jet cross section to ex
perimental data for no heavy quark masses in the box diagram of Figure 
3.11. (a) Shows the normalization required to obtain the correct mag
nitude when the integration l imi t is set to n'0

2 = 1 GeV 2 and (b) the 
reduction of the normalization Zo when the integration l im i t is set to 

0. J2 

GeV 2 as used in [27]. I f instead K'Q = 0, there is approximately a factor of two increase 

in the the overall DIS plus 1 forward jet cross section at x ~ 10~ 4; the higher x bins are 

less sensitive to changes of the normalization parameter. The results for the 1 jet cross 

section using the cut K'Q = 0 are shown in Figure 4.7(b) for a range of starting values 

2 0 = 0.2 - 0.3. 

Choosing Zo = 0.26 to give the "best" fit wi th the data, we can compare the cross 

sections for the two choices of normalization: K'0

2 = 1 GeV 2 & z0 = 0.5, and, n'Q

2 = 0 & 

z0 = 0.26. These are shown in Figure 4.8 and we can conclude that, wi th in experimental 

data errors there is no "best" choice of normalization - one choice is as valid as the other. 
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Figure 4.8: Comparison of the two choices of normalization for the B F K L 
result wi th the H I data of [66]. 

The question we should ask is, how stable are our results to calculations of the B F K L 

solution w i t h different choices of normalization? From Figure 4.8 we see that the experi

mental data has relatively large error bars allowing some flexibi l i ty in choosing the "best" 

normalization, and there is a possibility the data points for the 1 jet cross section wi l l 

shift [70] when the newest experimental data sets are published. Obviously the absolute 

magnitudes of the 1 and 2 forward jet cross sections w i l l be dependent on the explicit 

choice of normalization used. To f ix the "correct" normalization to give predictions for 

magnitudes of absolute cross sections would require the inclusion of heavy quark masses 

in the box integrations. However, we are interested in the ratio of 2:1 jet cross sections, 

providing the motivation for the above mentioned approximation. Thus, i f the experi

mental cross section data were to be reduced, and so shift the normalization to smaller 

values of z0, how would this change of normalization affect the predictions for the 2:1 jet 

cross section ratios? 

To show the stability of the calculated results, we w i l l j ump ahead of ourselves and 
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look at the dependence of the 2:1 jet ratios 3 on the choice of normalization z0. For an 

x bin corresponding to the range 0.0001 < x < 0.004, min imum transverse momentum 

of the jet pTmin = 3.5 GeV, kinematic cut p2/Q2 < 2, and using an integration cutoff 

K'Q — 1 GeV 2 , then for three choices of normalization z0 = 0.5, 0.4, & 0.35 we f ind , 

for a separation R c u t — 1.7, the ratio of 2:1 forward jet cross sections is 3.3% for all ZQ 

values. Similarly, for a second choice of jet separation Rcut = 2.0 we f ind the ratio is, again 

for all Zo, 2.9%. The value Rcut determines the minimum, separation required in pseudo 

rapidity(?7)-azimuth(<£>) space between the two emitted jets for them to be resolved as 

individual objects (see section 4.3.2). Thus as expected, we see that the ratio of the two 

jet rates is independent of the normalization used, and we can assume the approximations 

made above w i l l not determine the f inal results. To a first approximation, we can neglect 

the effects of the box contributions to the cross sections as the information required, at 

least for the ratios of the jet rates, is contained in the bot tom half of the diagram of 

Figures 4.1 and 4.12. 

From the above discussion i t is clear that the absolute normalization of the B F K L 

equation is s t i l l much of an unknown quantity and there are certain ambiguities that arise 

through theoretical computation such as; what are the "correct" integration l imi ts in the 

box calculation to take or, which observable (F2,(r) should we use to determine the best 

values of ZQ! A t present there is no answer to the normalization problem, although the 

latest calculation of the N L O lnl/x effects of the B F K L equation may go some way to 

answering this question in the future. 

The ambiguity of the normalization prompted this study of jet ratios rather than 

calculation of absolute magnitudes of the cross sections in order to remove, as f u l l y as 

possible, these problems. However, by essentially f i t t i n g the DIS plus 1 forward jet data, 

the normalization is f ixed and we can now make predictions for other quantities such 

as cross sections of the 2 forward jet rate. To a first approximation, allowing for the 

simplifications made above, this should provide a good indication of the magnitudes of 

the cross sections. 

In summary, for this study there is no one answer as to which normalization is the best, 

and the choice of normalization that w i l l be used throughout in the following sections is 

K'2 = 1 GeV 2 and z0 = 0.5 . (4.17) 

3For calculation and results of DIS + 2 forward jet cross sections, see section 4.3. A discussion of the 
stability of the 2:1 forward jet cross sections will be given in-greater detail in section 4.5. 
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4.2.4 B F K L predictions versus experiment 

In the previous sections we have seen the cuts required to define the allowed experimental 

phase space for forward jet production at HERA (section 4.2.2) and the choice of normal

ization that wi l l be used (section 4.2.3), thus, we can now present the DIS + 1 forward 

jet cross section results using the B F K L formalism. 

Recall that the fu l ly integrated cross section is obtained by substitution of the solved 

B F K L equation (4.15) into (4.3) and (4.1) wi th the integration l imits subject to the restric

tions of section 4.2.2. The resulting cross sections for one forward jet events, comparing 

the theoretical results w i th the published H I data are shown in Figures 4.9 and 4.10. 

Figure 4.9 shows the cross section for integrated x bins of size 5 x l O - 4 and a min imum 

transverse momentum cut // = 3.5 GeV of the forward jet . I t also indicates the importance 

of the experimental phase space cuts on the measured cross sections. 

I t is worth exploring here the importance of the kinematical cut y of (1.1) on the cross 

sections in the very small x regions. The upper cut on y is imposed to remove background 

arising f r o m radiative corrections and electron resolution, and so is quite often chosen 

conservatively. Using the cut y < 0.5, as used in section 3.4.2 for the exclusive jet cross 

sections, and the normalization z0 = 0.5 (solid curve) gives a good description of the data, 

but we notice a deficiency in the cross section for the smallest x bin, 0.0005 < x < 0.001 

compared wi th the central data point. The importance of this upper phase space cut 

can now be seen. This deficiency is removed i f we allow a slightly larger phase space 

bounded by y < 1 (Figure 4.6), as shown by the dashed line. I t is this larger y < 1 

cut that is shown in Figure 4.8 to f ix the normalization for the smallest x bin of section 

4.2.3. However, i f we move to the next smaller x bin, 0.0001 < x < 0.0005, this depletion 

in the cross section is observed even for the larger y cut value; we see a turnover in the 

production rates. The importance of these phase space cuts on the very small x region 

can be seen more clearly for the DIS including 2 forward jet cross sections, see section 

4.4, where the lower constraint (y < 0.5) actually produces a turnover in the cross section 

for the small x bin (0.0005-0.001). For the 1-jet case this bin st i l l shows an increase in 

the cross section. The DIS + 2 forward jet cross sections w i l l be discussed in detail f r o m 

section 4.3 onwards. 

Figure 4.10 also shows the DIS + 1 forward jet cross section but for the larger integra-
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Figure 4.9: DIS + 1 forward jet cross section calculated for a min imum 
transverse momentum of emitted jet prjet > 3.5 GeV, and x bin size 
A x 5 x l O - 4 , in comparison wi th H I experimental DIS + 1 forward jet 
data. The resummed (unresolved and vi r tual radiation) B F K L kernel is 
normalized wi th z0 = 0.5, for y < 0.5 (solid line) and y < 1 (dotted line). 

t ion x bins of size 1.5 x l O - 3 for different choices of the min imum transverse momentum 

cuts; pTjet > Af — 3-5, 5 and 6 GeV. These are shown for the cut y < 0.5. The horizontal 

lines show the experimental data error bands wi th the B F K L result given by the solid 

star. The results for the larger x bins (0.002 — 0.0035) show very good agreement w i t h 

experiment for all momentum cuts. For the lower cut fi = 3.5 GeV, the results in the 

smaller x bin (0.0005 — 0.002) agree well w i th the central data values. Recall, the nor

malization was fixed for the kinematic cut \x = 3.5, in section 4.2.3, so we would expect 

good agreement, but, for the higher cuts [i = 5 and 6 GeV in the smallest x bins, the 

calculated cross sections are rising wi th the prediction for p = 6 GeV lying above the 

data error bars. However, it is this very small x region in which the normalization is so 

dif f icul t to f ix . Here the B F K L solution rises steeply and is very sensitive to the phase 

space cuts imposed. Applying the larger phase space cut of y < 1 increases the cross 

sections in the smaller x bin by approximately 25, 20 and 10 pb for the cuts // = 3.5, 5 
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Figure 4.10: Same as Figure 4.9 but for different values of min imum 
transverse momentum of the forward jet , (prjet > 3.5, 5, 6 GeV), and 
for larger integrated integrated x bins of size l . S x l O - 3 w i th cut y < 0.5. 

and 6 GeV respectively, which is s t i l l in reasonable agreement wi th experiment. 

Using the slightly different kinematical cuts for forward jet event selection as presented 

in [67], we can again compare the B F K L prediction w i t h the data. This is shown in Figure 

4.11 for the explicit cuts 

in i t ia l state energies : Ee — 26.7 GeV and Ep = 820 GeV 

scattered electron cuts : 160° < 0ei < 173° 

Ee, > 12 GeV 

0.1 < y < 1 

forward jet cuts : 6° < 0j < 20° 
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Figure 4.11: DIS + 1 forward jet cross sections showing the 1993 H E R A 
data wi th the kinematic and phase space cuts of (4.18) for the two x 
bins A x = (0.0002 - 0.001) and (0.001 - 0.002). The solid line shows 
the corresponding B F K L prediction using the normalization z0 = 0.5 of 
section 4.2.3. 

W i t h i n the large experimental errors we again see good agreement of the data w i t h 

the B F K L expectation for the cross sections. 

Overall, we can conclude that there is good agreement of theory w i t h experiment for 

different kinematical cuts. In the next section, we w i l l use the the basis of this calculation, 

w i t h the inclusion of an extra resolved gluon jet and our normalization of (4.17), to predict 

the production of DIS events including two forward jets at H E R A . 

4.3 Two forward jet production at H E R A 

I n the previous section we have seen that equations (4.3) and (4.15) using the B F K L 

resummation of soft gluon emission successfully describe the data for DIS + 1 forward jet 
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production. We now want to modify this by extending the B F K L formalism to include 

emission of an extra jet in the forward direction. The kinematics of the process 7* +p —> 

jeii +jet2+X is illustrated in Figure 4.12, where the second jet is identified as real resolved 

gluon emission f rom the B F K L ladder chain. By resolved we require that the emitted gluon 

=5 

ijfiMfl&b̂  4» x 2 

J *~ k j , , x , 

K R 

A 

Figure 4.12: Diagramatic representation of a deep-inelastic event con
taining 2 forward jets. The first forward je t is as for Figure 4.1, carrying 
longitudinal and transverse momenta x^P and k2-r respectively. The sec
ond forward jet originates f rom a resolved (prjet > I-1) gluon f r o m the 
B F K L chain, carrying momenta x2P and Ar|2. Soft gluon radiation is 
represented by the th in gluon lines. Here we also allow soft gluon radi
ation between the two forward jets described by the resummed B F K L 
kernel A of (3.19). 

has a transverse momentum greater than some min imum cut, i.e. fc|2 > Prmin

 = / ' 2 - This 

is exactly the same as for the 1 forward jet case. Labelling the kinematic variables of 

the forward jets as 1 and 2, w i th the 2nd jet referring to that of the real gluon emission 

f rom the B F K L ladder, then the differential cross section for two forward jet production 
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is obtained from the cross section of (1.9) as 

da 

dxdQ2dx-idkj-[ dx2dk2

2 

4TTO 
xQ4 

n , dF2 1 2 dFj 

dx\d k2

}l dx2d k]2 2' Ox id Jx dx2d k]2 

(4.19) 

4.3.1 Differential structure functions for 2 forward jets 

Figure 4.12 diagramatically shows how the differential structure functions for 2 forward jet 

production are bui l t f r o m the components of the 1 jet structure function w i t h modifications 

arising f r o m the emission of a single real gluon f r o m the B F K L ladder. 

Symbolically, by identifying the individual contributions, we can write for the structure 

functions i 

Ft = $i®KR® A ® / (4.20) 

where as before for the one forward jet emission, $ t contains knowledge of the B F K L soft 

gluon radiation in which evolution is started f rom the driving term of the box diagram; 

this takes the same fo rm as (4.10). Again / describes the ("f i rs t") emitted jet arising f rom 

a parton; q,q or g, w i th in the proton which is given by the effective sum of all parton 

momenta of (4.5). 

The presence of a second forward jet arises when we emit a real gluon f r o m the B F K L 

ladder of Figure 4.12. The 2-jet structure funct ion is then obtained by the modification of 

the one jet differential structure funct ion by the inclusion of a real emission kernel term, 

KR, as shown in the diagram. The requirement that this real gluon have some min imum 

transverse momentum for i t to be resolved as a jet i n the final state w i l l be implemented 

through kinematic cuts on the phase space l imits of the integrals for the integrated cross 

section in the numerical computation. The second forward jet need not be emit ted f r o m 

the bot tom of the gluon ladder, there can st i l l be more soft gluon radiation emitted 

between the two forward jets. This is the origin of the A term shown in Figure 4.12 which 

resums the unresolved and vi r tual gluon emissions: However, as we shall see in section 

4.3.4, this "extra" B F K L summation is not necessary and w i l l be omit ted for the final 

DIS + 2 forward jet results presented in this thesis. In the following sections we w i l l 

study the inclusion of this resummed gluon emission between the two forward jets, and 

by physical considerations of the allowed phase space argue that i t is not required. This 
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is fortunate, as the inclusion of this extra B F K L term produces numerical computation 

problems when the In 1 jx evolution is started f rom the in i t ia l boundary condition of the 

delta funct ion A ' 0 ' = 8(kj — k\). This w i l l be discussed in sections 4.3.4 & 4.3.5. 

Notat ion for 2 forward j e t variables 

Before presenting the explicit mathematical form for the 2 forward jet structure functions 

i t is useful to define the notation that w i l l be used in this section. This is summarized in 

Figure 4.13. 

Figure 4.13: Kinematic variable definitions for DIS + 2 forward jets. 

Figure 4.13 shows the emission of the two forward jets. The first jet originates f r o m the 

4fifififiMQ> k j 2 , x 2 => Y 2 

« 
K ; i . X Y 1 

proton and is labelled by its transverse momentum k^ and the longitudinal momentum 

fraction x^. Similarly, the second jet is labelled by k2

]2 and x2-

We w i l l again work wi th the rapidity variable Y defined as 

Xi x2 n and Y Y1 n (4.21) 

such that the difference 

Xi 
r n 

X-2 
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I t is important to remember that the quantity \\ — Y2 is not the rapidity gap between 

the two emitted jets as the fu l l expression for rapidity also includes the jet transverse 

momentum. 

In Figure 4.13 the black dot represents the resummation of the soft real, and v i r tua l 

gluon emissions f r o m the gluon propagator between the two jets. This is described in our 

notation by A in Figure 4.12. A is dependent on the momenta of the gluons spanning 

the blob, and the rapidity variable difference between the two jets, i.e. 

A = A(k%,Y1-Y2,k2

d). 

In the presence of soft gluon emission between the 2 forward jets then A*̂  ^ Ar^. 

The labels £:J and k\ refer to the i-channel gluon transverse momentum, below (down) 

and above (up) the real emitted gluon producing the second jet . We have the relation 

h\= (kd + k J 2 ) 2 , (4.22) 

which, due to the angular dependence between the vectors kd and k J 2 means the angular 

integrations of the structure functions are non-trivial . 

Note: In the following the individual transverse momenta of the forward jets are 

labelled k2

x and k2

2. For discussions applying to either jet or both jets, e.g. kinematic 

cuts which apply equally to both jets, then the general term p\ w i l l be used. 

A n g u l a r definitions 

For completeness, the definitions of the azimuthal angles of the jets are shown in Figure 

4.14, where we define the first forward jet to lie along the x-axis. 

The individual momentum vectors have the azimuthal angles ( ^ 1 , ( ^ 2 a n c ' ^Pd for the 1st 

jet , 2nd jet and down momentum vectors respectively. However, not all of these angles 

are independent and we have the following relations 

<p2d = | ^ 2 — ¥d\ 

f u = I V 2 - V 1 I , (4-23) 

and 

¥>i2 = ¥u + f2d • (4-24) 
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92 

<Pld 

Figure 4.14: Azimuthal angles of the emitted jets. 

2-jet differential s tructure functions including soft gluon radiat ion 

From the identification of the different components of the structure funct ion as shown in 

Figure 4.12, and using the notation of Figure 4.13, we can write down the explicit fo rm 

for the 2 forward jet structure function as 

dFt , ^ . , , 0 , 1 / - cPkH 

• d2kji d2k « s ( ^ ) £ x M x u k ) x ) '±-1— A ( ^ l 7 YX - Y 2 : kt 

a s ( k j 2 ) 
k2 

k2k2 
(4.25) 

The running scale dependence of as is taken as the transverse momenta of the emitted jets 

and the 1/k4 behaviour associated wi th jet emission is clearly seen for the first jet in the 

term. The ratio of the B F K L vertex funct ion, k 2 / k 2 k 2

2 , is just the real gluon B F K L 

emission kernel denoted by Kr in Figure 4.12. We again see here the 1/k4 behaviour, this 

t ime for the 2nd jet emission. (4.25) is wri t ten using the variable Y where we have used 

the replacement 

d d 
dx 8Y 

in (4.19) 

Expl ic i t ly showing the azimuthal dependence of (4.25) then 

8Fi f cPkji d2kl2 d2kd 

dY\dY2 

f d kji d k j 2 d _ , 2 \ t i i 2 \ 
/ a s ( k j x ) £ X! fa(X! , A: ! ) 

J 7T 7T 7T n 

as(k]2) k2

d 

and using 

7-4 . L2 1,2 
K j l Ku K j 2 

UklY2,Q2) (4.26) 
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we can wri te 

i)Y\i)Y 

L4 L2 L2 
K j l fi'u h j > 

4.27) 

where the angles are defined in Figure 4.14. From (4.27) we see the azimuthal dependence 

on and also </>12, is t r iv ia l and we lose a factor ( 2 x ) 2 on integration in the above. 

However, due to the presence of the term k2 = (kj, + k J 2 ) 2 , which brings in a dependence 

on (/?2d, the azimuthal integration over this variable is non-trivial and we obtain the 

differential structure funct ion for the 2 forward jet process 

dFt 1 f 
2<i 

ocs(kji) E a x i f a { x u k2

n) as{k]2) 
X 

Mi (k'd + k h + 2 ^ % 2 cos(v?2r f)) k]2 

Mk2,.Y{ - K 2 , k j ) $t((k2 + k2

2 + 2kdkr2 cos( r - 2 , )} . } 2 , Q 2 ) ] .(4.28) 

The differential structure funct ion (4.26) has a t r iv ia l dependence on the angles ipi and 

ipi2. However, the calculation of the fu l ly integrated cross section imposing all kinematical 

and phase space cuts wi l l generate a non-trivial dependence on ipv2. This is due to the 

requirement of a separation cut in r/, ip space of the two emitted jets which w i l l allow them 

to be resolved as individual objects in the detector (see Equations (4.31) and (4.32)). 

4.3.2 DIS + 2 forward jet cross sections 

The two forward jet cross section is readily obtained by the substitution of (4.26) into 

(4.19) which gives 

4 7 T Q 2 

a2iet 

= / 

J dx J dQ2 J dYl J dY2 -

dx dQ2 

dY\ dY2 

xQ4 

dk% dk% 
kA P 

1 2 dFj 
dY\dY2 T 3YxdY2 

Aira2 

dkd d(f t d(p12 dip2d 

x ' ^ k\ (2nf 

x \as(k]l)Yl*M*i,kji) °s(k2

j2) g A(kl,Y\ - Y 2 , k 2

d ) 

1 
x (1 - y)F2(Y2, kl Q2) + -y2FT{Y2, k2,Q2) (4.29) 

Equation (4.29) gives the explicit form of the DIS + 2 forward jet cross section. This w i l l 

be used as the master equation to which we w i l l apply different cuts and approximations 

and w i l l lead to the equation for the 2-jet cross section of (4.37) f rom which we w i l l obtain 

the final 2-jet, and ult imately the ratio of 2:1, forward jet cross sections. 
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K i n e m a t i c cuts for the 2 forward jet cross sections 

The integrated cross section of (4.29) is obtained subject to the imposition of the experi

mental cuts required for forward jet event selection. These are identical to those imposed 

on the DIS + 1 forward jet cross section as discussed in 4.2.2, w i t h the addition that the 

kinematic cuts on the forwTard jet are also applied identically to the 2nd jet . Thus, we 

have the extra restrictions 

E j e t 2 > 28.7 GeV 

7° < 9j2 < 20° 

PTjet2 > n = 3.5, 5 or 6 GeV 

m a x [ / ; 2 , Q 2 / 2 ] < p2

Tjet < 2Q2 

x2 > 0.035 . (4.30) 

By imposing these constraints on the 2nd jet , which must be satisfied simultaneously wi th 

the 1 forward jet cuts, we drastically l imi t the available phase space for jet production. 

This w i l l suppress 2 forward jet emissions and we would expect to see only small cross 

sections for the DIS + 2 forward jet process. 

The identification of a 2nd jet in the forward region of the detector requires one other 

cut. We have to ensure that the two emitted jets are sufficiently separated in the detector 

for them to be resolved as individual objects and not combined experimentally to fo rm 

one broad jet . I f we only impose the cuts of section 4.2.2 w i t h the additional restrictions 

of (4.30), this gives the "absolute" DIS + 2 forward jet cross section. In the following 

results this w i l l be calculated and compared wi th the cross sections where we impose a 

cut on the separation of the jets to observe the effect of this experimental resolution. 

Experimentally an observed jet wi l l lie in a cone of certain radius R, defined in pseudo 

rapidity-azimuth (??,v?) space as 

R= V[(^V2) + ( A ^ 2 ) ] . (4.31) 

Typical ly R — 0.7 or 1, w i t h the larger the cut, the smaller the observed rate of higher 

numbers of jets. Conversely, the smaller the value of R, the more likely i t is that an event 

wi l l contain mult iple jets. For the identification of 2 forward jets, the angular separation 

between them is defined in terms of the variable R, such that we place a cut on the 
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min imum separation of the axes of the two jet cones. This requires the cut 

Rout > 2R (4.32) 

for successful detection of two individual objects. This can be seen diagramatically in 

Figure 4.15. Experimentally, Rcut > 1.7[71]. 

Figure 4.15: Schematic diagram of the separation cut between two emit
ted jets for identification of individual objects. Rcut is required to be 
greater than 2R where R is the radius of the jet cone. 

For the theoretical cross section calculations we wi l l cut on the 1 7 , ^ space of the two 

partons producing the forward jets, where the pseudo-rapidity is obtained f r o m 

v = - log (tan0 
and 6 is the angle of the jet w i th respect to the proton direction. Recall that we have the 

restriction 7° < 9 < 20° for the identification of forward jets at H E R A . The value of 9 for 

a given jet configuration can be calculated f r o m the relations of (1.1), (1.6) and (1.7) for 

a given set of kinematic variables under the integration of (4.29). 

In the following we wi l l show results for the DIS + 2 forward jet cross sections for 

values of Rcut = 0, 1, 1.5, 1.7 and 2. 

4.3.3 2 Forward jets including B F K L gluon resummation 

We w i l l now use the master equation of (4.29) to obtain an expression for the DIS + 2 

forward jet cross section including the presence of soft gluon radiation between the two 

forward jets. 
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If we neglect imposing a cut on the separation of the emitted jets, then the azimuthal 

dependences of and tp12

 a r e both t r iv ia l and we can perform the two azimuthal inte

grations to produce a factor 4ir2. However, i f we include the cut (4.32) on the separation 

of the two jets, then the quantity Aip of (4.31) is just given by ip12. Thus, this integration 

in (4.29) becomes non-trivial . We st i l l have the integration over tpi producing a factor 

2 T T . 

We can write the explicit form for the 2-jet cross section, including kinematic cuts 

(4.30) and (4.32) as 

4?ra' f dx dQ' 2 , 2 

T2jet = 77r\2 / 7vT d * 1 ^ 2 d k H d k j 2 d k d / « V l 2 d<f2d 
( 2 7 T j Jxbin X JO 

4?ra2 f dx dQ2

 J V . J v J l 2 J l 2 J l 2 f** 

I a K j l K j 2 K u 

X ; i - y)F2(Y2, kl Q2) + ±y2FT(Y2, kl Q2) (4.33) 

where the integration l imits of the kinematic variables are determined by the specific 

Xbin studied, i.e. we have Q2(x),Yi(x),k?{Q2(x)). The dependence on <p12 appears in the 

restrictions for the allowed kinematic phase space and ip2t{ is contained in 

kl = k2 + k)2 + 2kdk]2 cos(^ 2 d ) . 

The B F K L resummed gluon radiation is contained in A( /c | 1 , Y, kd) which is given by the 

operator A of (3.19) acting on the delta funct ion i.e. 

A = e

{ ? K u v ) <g> 82{kn - kd) . 

Equation (4.33) is solved numerically using the methods of section 3.3. 

4.3.4 Omitting the B F K L kernel 

I f we consider what the production of two jets in the forward direction of the proton 

at H E R A implies, then we can make an approximation which wi l l s implify the 2-jet 

cross section of (4.29). The presence of 2 forward jets wi l l require that the longitudinal 

momentum fract ion of both jets satisfy the relation 

x2 < x, ~ 0 ( 1 ) , (4.34) 

such that neither jet enters the small x region and ensures that we do not enter the 

strongly ordered configuration of x2 <C . ^ l ~<D(1). We impose soft ordering of the jets 
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x-2 < Xi. Essentially, through the tight restrictions which require that both jets be emitted 

into a very small phase space region (4.30), and f rom (4.34) we do not expect that there 

w i l l be a large rapidity difference between the emitted jets, then we can assume that 

there wi l l be l i t t l e opportunity for the emission of a significant amount (if any) of gluon 

radiation. Thus, we can neglect (soft) gluon radiation between the jets and approximate 

the A term of (4.29) by the two dimensional delta funct ion 

A = S2(kn - kd) . (4.35) 

This is equivalent to the removal of the black blob in Figure 4.13, i.e. we have that 

k j 1 — kd-

Thus, in the absence of gluon radiation between the jets we can write (4.29) as 

47ra2 r dx dQ2 r2K itra' f dx dQ* 2 2 2 <r2jet = — j^ - — , 1 ) ^ ) , dkn dkj2 d kd I d,x # 12 

X 

X 

a ' ( k j i ) £ x i f a i x i , ^ ) as(k2

2) 
k2 

Kd 1.4 h2 L2 
'\:\ '' ,2'' U 

6 2 ( k n - k d ) 

(1 - y)F2(Y2, k2

u, Q2) + ±y2FT(Y2, k^ Q (4.36) 

in which we can perform the implicit integrals over k\ and <~p2d through the presence of 

the two dimensional delta function. This gives the result 

4yra 2 f dx dQ2

 2 2 /2?r 

a23et = — ] M n - n l d Y 2 d k j l d k j 2 J Q d^12 

2 k Jxbin X Q 4 

x i * > ( k j i ) 12 ^ifaixuk2,) as(k]2) 
1 

h2 h2 h2 

X 
1 

(1 - y)F2{Y2, kl Q2) + -y2FT(Y2, fc2, Q2) 
} • 

(4.37) 

where now 

K = kl + k% + 2 k j i k j 2 cos(^ 1 2 ) . 

Equation (4.37) is also evaluated numerically using the Chebyshev approximation methods 

of section 3.3. 

N u m e r i c a l predictions - w i th and without the B F K L kernel A 

The numerical predictions of the DIS + 2 forward jet cross sections, using both methods 

for the inclusion and omission of the soft gluon radiation are shown in Figure 4.16 for two 
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choices of kinematic cut Pj/Q2 < 2, 5. The min imum transverse momentum of the jets 

is set to // = 3.5 GeV. 

- p T

2 /Q 2 < 5 
- \ P t V Q 2 < 2 
- \ A: full resummed BFKL A 
- \ A a: A = a(2>(k/ - O 

\ /u.=3.5 GeV 
\ no angular cut between 

L \ a \ 
emitted jets : R c u l=0 

A \ \ 

a ... \ 

0.001 0.002 0.003 0.004 0.005 0.006 0.007 

x Bjorken 

Figure 4.16: DIS + 2 forward jet cross sections for two choices of kine
matic cut Px/Q2 < 2,5 shown by the dotted and dashed lines respectively. 
The increase of the cross sections can be seen when we include soft gluon 
radiation between the two emitted jets ( A ) when we solve (4.33) above 
the approximation when we allow no radiation between the jets (6) for 
the solution of (4.37). These are shown for the min imum transverse mo
mentum cut /< = 3.5 GeV and y < 0.5 and for no separation between the 
jets - i.e we show the "absolute" 2 forward jet predictions. 

In both cases we see that the relaxation of the kinematic constraint p^/Q2 < 2 —> 5 

produces a large rise in the 2 jet cross section (see section 4.4.1). However, the surprising 

feature is the large increase in the cross sections between the results w i t h and without 

the inclusion of the extra gluon radiation. The ratio between the two cross sections 

( c r ( A ) / a ( 6 ) ) , for both kinematic cuts, is ~ 1.5 for x ~ 1 0 - 3 — 1 0 - 2 , but is actually larger 

wi th a. factor of two difference in the small x region of ~ 10~ 4 . Since we would expect 

very l i t t l e gluon radiation between the emitted jets, we would expect the resummed B F K L 

kernel to produce a much smaller increase of the cross section over the approximation in 

which we allow no gluon radiation between the jets. 
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4.3.5 Choosing the "correct" DIS + 2 forward jet description 

As mentioned previously, we do not expect a substantial amount of gluon radiation to 

be emitted between the two forward jets due to t ight restrictions of the allowed rapidity 

phase space. But we are observing at least a factor 2 increase in the cross sections when 

we include the B F K L kernel A , as given by (4.33), over the numerical result when we 

omit the gluon radiation, as given by (4.37) - see Figure 4.16. Which description do we 

believe gives the correct result? 

Recall, for the two jets to both be emitted in the forward direction of the proton then 

rapidity differences between them (Y1 — Y 2 ) may be small. The formalism of the B F K L 

equation as used in this thesis holds for the approximation of large Y. That is, i f we 

consider the full (analytic) fo rm of the B F K L equation then we have[23, 62] 

2 ( X s C a 5fte (* (1) - * ( ( m + l ) / 2 + iv) (4.38) 

f r o m which we see that the full azimuthal dependence of the B F K L equation is given by 

the summation over all azimuthal projections m in the exponential exp(irrup). For large 

rapidity values of Y then the B F K L equation is, to good approximation, given by the first 

azimuthal projection m = 0. This gives us the B F K L equation as discussed in chapter 2. 

For one forward jet emission then we have large rapidities and the equation of (4.10), 

as used in this analysis, gives a good description of the B F K L gluon. However, we require 

two jets to be emitted in a very small rapidity phase space, x2 ^ a-'i ~ 0(1), which would 

imply that the rapidi ty variable difference Yi — Y2 (related to Xi through (4.21)) can be 

small. Thus, the approximation of using only the m = 0 term in the above may not 

hold true when we deal w i th the insertion of the B F K L gluon radiation t e rm A between 

the forward jets of (4.33). To give the f u l l azimuthal dependence of the B F K L kernel i n 

our formalism we would need to make the modification that the B F K L kernel of (3.19) 

becomes 

A = £ A m ( J t 1

2 , k l ) e i m v i i (4.39) 
m 

where the notation refers to general momentum vectors 1 and 2 spanning the blob ( A ) of 

Figure 4.13. That is, the exp(zmy>i2) introduces an extra cos(9?i2) term ( f rom considering 

the real parts only) into the computation of the B F K L kernel. However, in i t i a l studies 

including this extra azimuthal dependence appear to produce only very small reductions 

in the magnitude of the B F K L solution which cannot explain the large (factors of 2) 
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differences we are seeing. This inclusion of the extra tp dependence does however solve 

one of the numerical mysteries we encountered during this analysis, in that the kernel 

solution A at first (for small Y values) decreases before the onset of the expected B F K L 

increase of the gluon distribution wi th decreasing x. W i t h the inclusion of say m = 10 

terms in the summation of (4.39), this decrease at small Y is removed. 

Thus, the inclusion of the extra azimuthal projections does not appear to explain the 

large increase of the 2 forward jet cross sections when we include soft gluon radiation 

between the jets. 

Other serious problems were encounterd in the numerical computation of equation 

(4.33). For the 1 forward jet cross section the B F K L gluon evolution is started f rom the 

input of the quark box of the j*g —> qq fusion process and is contained in the term 

However, when we wish to insert an extra B F K L kernel corresponding to the resummation 

of soft gluon radiation between the two forward jets, to numerically compute this term 

we have to start evolution f rom an input of the delta function 8(k2 — k2). This makes the 

Chebyshev expansion of the k2 dependence of the B F K L solution unstable. We observe 

large oscillating tails away f rom the delta funct ion peak k2 = k\ which can make the final 

results dependent on the number (N) of Chebyshev nodes used in the approximation (e.g. 

for small values of ./V ~ 10 — 20). To remove the above problem and to obtain results 

for the numerical computation of (4.33) we note that the momentum vector does not 

appear in the final state and we can approximate the integration J dkj as a summation 

over the Chebyshev nodes. This produces the stable result as shown in Figure 4.16. 

However, these problems were also encountered when we made an in i t ia l investigation of 

two forward jet production at the T E V A T R O N in pp collisions[49, 72]. This also requires 

the insertion between the two jets of the B F K L gluon $ numerically solved f r o m the delta 

funct ion input . In this case we sti l l have not been able to control the stability of the cross 

section solutions as the variables of integration are those of the jets in the final state. 

Here the problem is also enhanced due to the large energy scale (\/s = 1.8 TeV) allowing 

jets to have larger transverse momenta than those at H E R A . We are required to model a 

larger range of k2 values for A(k2,Y, k%) which enhances the problems of the oscillating 

tails away f r o m the delta funct ion equality k\ = k\ using the Chebyshev approximation. 

I n conclusion, the modelling of the B F K L gluon distr ibution when we only have evo

lut ion f r o m an input of the delta, funct ion is very diff icul t to achieve numerically using 
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the Chebyshev techniques of this thesis. For the deep inelastic scattering case at H E R A 

this problem has been overcome and stable results achieved. However, we feel that the 

magnitudes of the two jet cross section as shown in Figure 4.16 for the inclusion of the 

extra B F K L soft gluon radiation is too large - we see a very large enhancement over the 

delta function contribution. In the above discussions i t has not been possible to pinpoint 

the cause of the large increase we are observing between the 2 forward jet cross sections 

when we include gluon radiation between the jets and when we omit this radiation (in the 

l im i t Y —> 0 the two results should be equal!). The discrepancy is probably due to some 

problem in the numerical calculation which we have been unable to detect. However, 

the argument that we do not expect much gluon radiation between the two jets f r o m the 

phase space considerations is perfectly valid, thus, this is the fo rm we wi l l assume gives 

the "correct" description of the DIS + 2 forward jet structure funct ion and cross section. 

We w i l l now use this to predict the ratios of 2:1 jet production in the forward region at 

H E R A . 

4.4 Numerical predictions for DIS + 2 forward jets 
at H E R A 

We w i l l now present predictions for DIS events including 2 forward jets for the kinematic 

phase space at H E R A using the B F K L formalism to describe the gluon distributions but 

neglecting emission of soft gluon radiation between the two forward jets. The cross section 

results for 2 forward jet rates, using Equation (4.37), are shown in Figures 4.17 and 4.20. 

In this section we w i l l explore the sensitivity of the 2 forward jet cross section to 

changes of the phase space and kinematical constraints. That is, we w i l l study the effect 

of the cut y on the magnitudes of the cross section in the very small x region and the 

increase of the cross section when we relax the constraint Pr/Q2 < 2 in the definition of 

a forward jet . Here we w i l l observe the effect of these cuts. In the following section (4.5) 

we w i l l make a closer examination of these cuts and discuss their validity in relation to 

(preliminary) experimental observation. 

Figure 4.17 shows the fu l ly integrated cross section ( in pb) for x bins of size Ax — 

5 x 1(T 4 and fi = 3.5 GeV wi th y < 0.5 for the two choices of cut p\\Q2 < 2 and p2

T/Q2 < 5 
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Figure 4.17: DIS + 2 forward jet fu l ly integrated cross sections using 
the same x bins as for the DIS + 1 forward jet results. a 2 is plotted for 
pTjet > 3.5 GeV for two choices of upper cut on the transverse momenta; 
PT/Q2 < 2 and p T / Q 2 < 5 (dashed and solid sets of curves respectively), 
for four different cuts on the min imum separation between the 2 forward 
jets i.e. {R > V[(Ar? 2) + (A<^ 2 )]) , for R=0 , R = l , R=1.7 and R = 2 w i t h 
y < 0.5. The smaller the separation cut, the higher the cross section. 

for cone separations 4; R = 0, 1, 1.7 and 2. Two striking effects can be seen here. First, 

for the lower curves which have the cut p\jQ2 < 2, there is a turnover in the cross section 

for the smallest x b in . This effect has two origins; a) The allowed momenta of the two 

jets can only vary between max[/x 2, Q2/2] and pT/Q2 <2 thus restricting the p\ of the jet 

to low values of Q2. The effect is removed when we relax the constraint to say, p\jQ2 < 5 

and b) the cut y < 0.5. When the larger x, Q2 phase space is implemented allowing 

y < 1, the reduction in the cross section at very small x is also eliminated. Increasing 

the phase space to y < 1 produces a corresponding increase in the cross sections for the 

higher kinematic constraint pT/Q2 < 5. This dependence of the DIS + 2 forward jet cross 

section for the small x bin 0.0005 — 0.001 on the phase space cut y can be found in Table 

4.1. 

*For s impl ic i ty we w i l l use the no ta t ion Rcut — R for the separation of the jets in the fo l l owing 
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cr-2 in pb 

PT/Q2 < 2 < 5 
R y < 0.5 y < i y < 0.5 y < l 
0 •5.7 7.2 34.6 39.6 
1 4.9 6.2 30.0 34.5 

1.7 4.0 5.1 25.4 29.0 
2 3.6 4.6 22.8 26.2 

Table 4.1: Dependence on phase space cut y for the DIS + 2 forward jet 
cross section wi th = 3.5 GeV and small x b in=Aa; = 0.0005 — 0.001. 

The second interesting feature is that for the higher kinematical cut, Pj/Q2 < 5, we 

observe a significant increase in the cross section over the result for the lower cut. For the 

DIS + 1 forward jet process, when we relax the above kinematical constraint we obtain 

an increase in the cross section by a factor of ~ 2.5 for the small x bin 0.0005 — 0.001, 

which is reduced to a factor of ~ 1.5 for the largest x b in . Similarly for the DIS + 2 

forward jets cross section we would expect some increase as we allow a larger range of 

jet momentum values to be identified as a forward jet , however, we would expect this 

increase to be balanced by the fa l l off in higher jet multiplicities as we allow larger p\ of 

the jets. For the 2 forward jet case, the predicted increase is by a factor ~ 5.5 for the bin 

Ax = 0.0005 - 0.001, and ~ 2.5 for Ax = 0.003 - 0.0035. An explanation for this large 

increase can be found i f we inspect Figure 4.18. 

4.4.1 Relaxing the kinematic cuts 

Figure 4.18 shows the differential DIS + 2 forward jet p2

T spectrum, where we constrain 

AtJ1 = k2

2 for an integrated x bin = 0.001 — 0.0015. The plot shows the differential 2-jet 

cross section wi th respect to dk2

}l and dk2

2 for fixed Q2 versus p\jQ2 for f.i = 3.5 GeV. The 

Q2 dependence is indicated by the different curves. When we make the cut p\jQ2 < 2, 

i.e. we essentially draw a vertical line at p\jQ2 = 2 and remove all contributions to 

the right of this line, then we remove a substantial contribution to the cross section 

f rom the low Q2 region. By cutt ing at Pj/Q2 — 5 we immediatly see that there are 

large contributions now included to the fu l ly integrated cross section f r o m the low Q2 

region. This effect is enhanced by the jet resolution cut p\ > f.i2, which requires the cross 

section to be zero when fi2/Q2 < 2 as indicated by the vertical arrows in the bo t tom 
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Figure 4.18: prjet spectrum for DIS + 2 forward jets. The differential 
cross section, for fixed Q2, is plotted versus pj/Q2 for k2

r — k2

2, for 
a single x bin (0.001 - 0.0015), R = 0 and p T j e t > 3.5 GeV. Lower 
momentum cutoffs are indicated by the vertical arrows in the bot tom 
left hand corner of the plot. 

left hand corner of the plot. These l imits occur above the lower bound pT/Q2 = 1/2 

for both Q2 = 15 and 12 GeV 2 for /.t — 3.5 GeV. Thus the resolution constraint has 

significant impact at the lower values of Q2. This, together w i th the large contribution 

f rom the low Q2 region, causes the large increase in the cross sections between the lower 

and higher kinematical cuts Pj/Q2 < 2 and pT/Q2 < 5. I t is interesting to note that 

the peak for the p\ distr ibution of the low Q2 contribution occurs for Pj/Q2 ~ 2. Thus, 

in relaxing the constraint f rom Px/Q2 < 2 (the experimental cut) , to say pT/Q2 < 3 

or 4 should also produce a significant increase in the 2 forward jet cross section, and 

correspondingly an increase in the ratio of the 2:1 forward jets. This dependence of the 

DIS + 2 forward jet cross section on the kinematical constraint can be seen in Figure 4.19 

for x bins of size Ax = 0.0005 for no separation cut between the jets (R = 0), and y < 1. 

The decrease in cross section due to phase space cuts is clearly seen in the lowest x bin 

0.0001 — 0.0005 for all kinematic cuts (c.f. DIS + 1 forward jet results). By increasing the 

upper l im i t p\jQ2 < 2 —> n the momentum phase space of the jets becomes asymmetric. 
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However, calculation of cross sections for different lower cuts Q2/n, where n = pj/Q'2, 

shows this asymmetry does not have a large effect on the cross section. This is due to the 

lower momentum constraint being dependent also on the min imum transverse cut //, ie 

p\ > max[yu2, Q2/n]. I t is important to remind ourselves that these large increases for the 

cross sections are calculated at the parton level. Experimentally corrections to the data 

are required at both the hadron and parton levels for accurate comparison of theory and 

experiment. Unfortunately, losses due to hadronization effects are strongly dependent 

on the Monte Carlo models used which may produce difficulties in measuring the large 

increases we predict in the cross sections. This w i l l be discussed in section 4.5. 
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Figure 4.19: DIS + 2 forward jet cross section (in pb) dependence on 
kinematical constraint p\jQ2 < n, for no separation constraint between 
the two jets and y < 1. 

The 2-jet cross sections, this time for larger integrated x bins and different values of 

the min imum transverse jet momentum are shown in Figure 4.20 for both p\JQ2 < 2 

(Fig.(a)) and p\jQ2 < 5 (Fig.(b)) . The large increase in the cross section w i t h change of 

kinematic constraint is readily observed, e.g. for the cut f.i = 3.5 GeV, y < 0.5 and an 

experimental cone separation R = 1.7, the cross section increases f r o m 11.5 to 55.6 pb in 
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the lowest x bin, and f rom 5.3 to 15.3 pb for the higher x bin - similar effects are observed 

for all pTjet > n cuts. However, as we have larger x bins than in Figure 4.17, the increase 

in cross section is less marked when the y cut is loosened to y < 1, wi th the cross sections 

for the x bin 0.0005 — 0.002 rising by approximately lpb and 'ipb for the cuts \.i = 3.5 h 5 

GeV respectively for both p T / Q 2 < 2, 5. For the larger transverse jet momentum /< = 6 

GeV this increase falls to ~ 0.5 & l p b for the respective kinematic cuts p \ I Q 2 • Figure 

4.20 also shows the dependence on the 2 forward jet cross section when we vary the cone 

separation f rom a value of R = 0 (the "absolute" 2 forward jet cross section) to R = 2. 

As we expect, the larger the cone separation cut, the greater the reduction in magnitude 
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Figure 4.20: Same as for Figure 4.17 but for larger x bins and different 
min imum pTjet cuts wi th y < 0.5. 

of the 2 forward jet cross section in relation to the absolute cross section. However, i t is 

interesting to note that these predictions show that the relaxation of the kinematic cut 

P T I Q 2 < N should produce a greater increase of the observed 2-jet cross sections than in 

t ry ing to resolve jets w i th smaller and smaller cone radii which is experimentally d i f f icul t . 
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R a t i o of 2:1 forward jet cross sections at H E R A 

Recall, to calculate the DIS + 2 forward jet cross section we first f i t ted the B F K L solution 

of the DIS + 1 forward jet cross section to H i forward jet data (section 4.2.3) and used 

the parameter z0 to make predictions for the 2 jet cross section; thus, an interesting 

quantity to study is the ratio of the 2:1 DIS + forward jet rates in which any ambiguities 

through approximations we have made wi l l be reduced. Because the B F K L functions 

$, are common to both the single and two jet cross sections, taking the ratio of the 

( T 2 j e t / ^ l j e t rate in which the $-'s wi l l essentially cancel, gives us a measure of the B F K L 

vertex function {KR of Figure 4.12). Figures 4.21 and 4.22 plot the 2:1 forward jet cross 

sections for the two choices of kinematical constraint as earlier, for four choices of the 

experimental cone separation R = 0, 1, 1.7 & 2 (Figure 4.21), and for a larger range 

including R = 1.5 in Figure 4.22. Figure 4.22 also shows the dependence of the ratio 
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Figure 4.21: Ratio of the 2:1 DIS + forward jet cross sections for x bins 
of size 0.0005, and prjet > 3.5 GeV for the four selected cone separation 
cuts as in Figure 4.17 and y < 0.5. Shown for two choices of upper 
momentum cut, pT/Q2 < 2 (lower four curves) and pT/Q2 < 5 (upper 
four curves). 
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Figure 4.22: Ratio of the 2:1 DIS + forward jet cross sections for x bins 
of size 0.0015, and for different values of pTjet > 3.5, 5, 6 GeV wi th 
y < 0.5. Ratios are given for cone separations of R > 0 (upper solid 
curve), R > 1, R > 1.5, R > 1.7 and R > 2 (lower solid curve), and two 
choices of upper transverse momentum cuts, p\jQ2 < 2 given in column 
(a), and pT/Q2 < 5, column (b). 

on the jet resolution parameter // (but using larger x bins). We note that the fraction 

is rather insensitive to the value of the jet resolution fi, see Figure 4.22(a). These plots 

allow us to investigate the effect of the experimental kinematic and phase space cuts on 

the observed jet rates. 

The 2-jet cross section increased significantly w i th the relaxation of the cut p\jQ2 < 2 

to PT/Q2 < 5 (Figures 4.17 and 4.20). In the case of the 2:1 forward jet ratio of the cross 

sections we observe an increase by a factor of ~ 2 — 2.5 for the smallest integrated x bins 

(dependent on the x integration range), and ~ 1.8 for larger x bins. We also see that 

the rat io shows an increase as we move f rom lower to higher values of x. This results 

from the imposition of the ordering .r 2 < x\ of the two emitted jets which means that 
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the reduction of the cross section due to decreasing evolution length is less for 2 forward 

jets than for single jet production. The effect of increasing the phase space cut y < 0.5 

to y < 1 produced a rise in the magnitudes of the DIS - f 2 jet cross section for the small 

x bin 0.0005 - 0.001. When we take the ratio of the 2:1 jet rates this corresponds to an 

increase of only ~ 1% for the cut pj/Q2 < 2 and falls to ~ 1/10% wi th the cut p2

T/Q2 < 5, 

i.e. we f ind the ratio is insensitive to changes in phase space cuts. For completeness, the 

dependence on y for the small x region is shown in Table 4.2 for the HERA experimental 

jet separation cuts R = 1.7 & 2. 

R = 1.7 R = = 2 
P'T/Q'2 < 2 P'T/Q 

J < 5 2 < 2 ti/Q 
GeV y < .5 y < i y < -5 y < i y < -5 y < i y < .5 y < i 
3.5 3.2 3.5 7.1 7.1 2.8 3.1 6.3 6.4 
5 3.2 3.6 6.7 6.9 2.9 3.2 6.1 6.2 
6 3.1 3.4 6.3 6.4 2.7 3.1 5.7 5.8 

Table 4.2: Kinematic {PT/Q2) and phase space (y) dependence on the 
ratio of 2:1 forward jets in the small x bin A.r = 0.0005 — 0.002. 

A z i m u t h a l signatures of B F K L dynamics in 2 forward je t processes 

A characteristic feature of the B F K L chain is that soft gluon emission produces an angular 

decorrelation of jets, such that, two jets which would normally be produced "back-to-back" 

in azimuth space w i l l be emitted at some angle ^ 180°. This has been of interest for some 

time, especially for jet production in collisions at the pp collider the T E V A T R O N as well 

as at HERA (see for example [47, 49, 72]), as a method of searching for signatures of 

B F K L dynamics. Thus, i t is interesting to look at the azimuthal dependence of the two 

forward jets at H E R A arising through the term $ i ( Y 2 , Q 2 ) in the description of the 

structure functions. Due to the lack of /^-ordering the ku gluon of Figure 4.13 can bring 

significant transverse momentum into the two jet system and hence considerably broaden 

the back-to-back peak in the azimuthal distr ibution A</> = <p>\ — ^>2-

Here we present results for the azimuthal dependence of the DIS + 2 forward jet cross 

section. The differential cross section wi th respect to dAip is shown in Figure 4.23 for both 

choices of kinematical cuts p\IQ2 and a min imum transverse momentum \.i = 3.5 GeV. 
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Figure 4.23: Azimuthal dependence of DIS + 2 forward jet cross section 
plotted for two choices of x bin for each pT/Q2 < 2,5 cut and y < 0.5. 
The dependence on the min imum cone separation is given for R = 0 , R = l 
and R=1.7. 

We predict a peak in the distribution at A(p — ire. However, in order to remove the infrared 

k j —• 0 infinities in the B F K L equation we impose the cut k\ = k]x + kj2 > 1 GeV 2 . This, 

together w i th the ambiguity due to hadronization, means that the distributions near the 

back-to-back configuration cannot be predicted. Rather i t is the tails of the distr ibution 

which w i l l charaterize the lack of k j ordering. 

We impose the separation cuts R = 0, 1 & 1.7, the effects of which are clearly 

noticeable as a cut-off of the tails of the distributions. Unfortunately this jet separation 

cut, which is likely to be R. > 1.7, w i l l effectively remove the whole of the ta i l of the 

distribution (see Figure 4.23). The azimuthal decorrelation is thus unlikely to be a way 

of identifying the small x dynamics. 
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4.5 Accuracy of the theoretical predictions 

Let us now return to the discussion of DIS + 2 forward jet cross sections and see i f we 

can obtain a feeling for the accuracy of the predictions that were presented in section 

4.4. Recall that the unintegrated B F K L gluon distr ibution has no constraint on its nor

malization other than the magnitude of the DIS including 1 forward jet cross section was 

fixed to agree wi th the experimental data. The normalization chosen was a cut-off K'Q = 1 

GeV 2 in the box integration and a matching point z0 = 0.5. However, a different choice 

of cuts can reproduce the same 1 forward jet cross section magnitude (see Figure 4.8). 

W i t h the present accuracy of experimetal errors, no one choice of normalization is better 

than another. 

In our formalism, the magnitude of the 2 forward jet cross section is directly dependent 

on the magnitude of the 1 forward jet cross section, and so affected by the choice of nor

malization used. Unfortunately, at present there is no published DIS + 2 forward jet cross 

sectional data that the above predictions can be compared wi th to give a straightforward 

check of the accuracy of our calculations. Although below in section 4.5.2 a discussion of 

the validity of these results wi l l be given in the light of in i t i a l studies of the 2 forward jet 

rates observed at H E R A . 

4.5.1 Stability of numerical results with change of normaliza
tion 

The B F K L functions $ 4 are common to both the single and two forward jet rates, see 

(4.3) and (4.25). Thus the ambiguities in our calculation due to numerical approximations 

should be reduced in the prediction of the ratio cr2jet/crijet. Before discussing further the 

results of the calculation i t is useful to first check how sensitive the individual cross 

sections are to variations of the normalization 2 0 , a i l ( i more importantly, how insensitive 

the ratio of the jet cross sections is to these changes. The following ratios were presented 

in section 4.2.3 in the discussion of the normalization of the B F K L gluon. Here we w i l l 

split the contributions to the ratio into the individual 1 and 2 forward jet cross section 

components to observe the variations in the magnitudes of the cross sections for each 

quantity. 

The magnitude of the two forward jet cross section is also dependent on the separation 
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cut between the jets as well as the choice of normalization for the B F K L gluon distr ibution. 

In table 4.3 the ratios of the 2:1 forward jet cross sections at H E R A are shown for two 

choices of experimental separation cuts R = 1.7 and R = 2, for a selection of normalization 

parameters z0. The integrated x range corresponds to the region Ax = 0.0001 - 0.004 for 

a momentum cut // = 3.5 GeV and pT/Q2 < 2 w i th the smallest Q2(x) values constrained 

by 0.1 < y < 1. See (4.40) for a list of the f u l l kinematic cuts. 

~0 

<r(ljet) pb <r(2jet) pb <r(ljet)/<7(2jet) 
~0 

<r(ljet) pb 
R = 1 7 T R = 2 R = 1.7 R = 2 

0.35 
0.4 
0.5 

520 
553 
611 

16.9 
18.0 
20.1 

15.1 
16.1 
17.9 

0.033 
0.033 
0.033 

0.029 
0.029 
0.029 

Table 4.3: Ratio of 2:1 forward jet cross sections in DIS events at HER A 
to show its sensitivity to changes in the normalization of the B F K L gluon 
distr ibution. See text for exact phase space parameters used. 

As expected we observe an increase in the magnitudes of the individual jet cross 

sections wi th increasing ZQ, i.e. we allow a longer evolution length for the B F K L equation. 

In changing f r o m a starting point z0 — 0.35 to z0 = 0.4 there is an approximate 6.5% 

increase in the DIS + 1 forward jet cross section, and approximately a 10% increase 

in changing f rom z0 = 0.4 to z 0 = 0.5. However, this increase in the 1 forward jet 

cross section is exactly matched by a corresponding increase in the 2 forward jet cross 

section, thus proving that the 2 forward jet rate in our formulat ion is directly controlled 

by the B F K L contribution to the 1 forward jet cross section. This is a good check of the 

numerics since we have omit ted any soft gluon radiation between the two forward jets. 

The result is that the ratio of the 2:1 forward jet cross section is independent of the choice 

of normalization used (see columns 5 & 6 of Table 4.3) as expected. Thus, the results for 

the cross sectional ratios are stable to any ambiguities in our normalization of the B F K L 

gluon and w i l l not be affected even i f the experimental data for the 1-jet cross section, to 

which we fixed the normalization, is modified at some later date. 

This stability of the ratios allows us to assume the approximation made of not includ

ing charm contributions to the quark boxes of Figures 4.1 and 4.12, is to first order valid, 

as the "interesting" information for forward jet production in ep scattering is contained 

at the "proton end" of the diagrams. Of course, for reliable predictions of the absolute 
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magnitudes of cross sections the inclusion of heavy quarks to the box diagrams is im

portant. Thus, we can assume the values for the calculated ratios of 2:1 DIS + forward 

jet cross sections presented in section 4.4 and 4.5.2 are accurate even wi th our numerical 

simplifications. 

4.5.2 Comparison of forward jet events with data 

In the publication of forward jet rates in DIS events at H E R A [67], the first experimental 

estimates of the ratio have been made, but so far only to give an indication of the size of 

the effect. A value of approximately 4% is quoted for the ratio of 2- je t / l - je t events for the 

slightly different choice of kinematic cuts than those in section 4.2.2. The DIS including 1 

forward jet data has already been compared wi th our cross section calculation (see Figure 

4.11) for the relevant experimental cuts of (4.18). We observe good agreement of the one 

forward jet cross sections for the different x bins. Apply ing the same phase space and 

kinematic cuts to the 2 forward jet cross section we obtain the results o^jet = 45.7 pb for an 

x bin Ax = 0.0002-0.001 and, a 2 j e t = 38.9 pb for the bin Ax = 0.001-0.002. This gives, 

for each x bin, a ratio for the 2:1 forward jet cross sections of c^jet/o'ijet = 0.055, 0.084 

respectively. These are calculated for a jet separation cut R = 2. Thus, for the forward jet 

phase space region at H E R A , for the kinematic cuts of (4.18) we find that ~ 6.6% of DIS 

events including a forward jet should contain 2 jets in the forward region. This is in the 

"ball park' 1 of the experimental observation and provides encouragement for the validity 

of our 2 forward jet calculation presented for the different experimental cuts of section 

4.2.2 in which we predict that the ratio of 2:1 forward jet cross sections lie in the range 

~ 2 —> 4% wi th increasing Bjorken x for the experimental cut R = 2 and kinematical 

constraint pT/Q2 < 2 (see Figure 4.21). 

We have also seen in section 4.4.1 a large increase in the magnitude of the 2 forward jet 

cross section when we relax the kinematic constraint Pj/Q2 f r om 2 —> 5 (see Figures 4.17 

and 4.19). This would indicate that experimentally a relaxed cut of Pj/Q2 < 5 should 

greatly increase the observed 2 forward jet cross sections. 

In the previous sections a large sample of numerical predictions for forward jet pro

duction at H E R A has been presented. This was to investigate the effects of the many 

different phase space and kinematical cuts and to investigate the x dependence of the ob

servable quantities in order to see possible signatures of B F K L dynamics. Unfortunately, 



Chapter 4. The BFKL formalism of forward jets 151 

the measurement of 2 forward jets at HERA is diff icul t due to very low statistics, thus, 

the observation of a dependence on the kinematic variables x and Q2 is, at the present 

t ime, not practical. For a possible comparison of our results wi th experiment, at some 

later date, we should look at the forward jet region of H E R A as a whole. 

J e t cross sections in the forward region at H E R A 

Let us consider the f u l l experimental forward jet region as measured by H I and calculate 

the ratio of 2:1 forward jets. We wi l l consider the experimental phase space bounded by 

the explicit parameters 

in i t ia l state energies : Ee — 27.5 GeV and Ep = 820 GeV 

scattered electron cuts : 160° < # e ' < 173° 

Ee, > 11 GeV 

0.1 < y < 1 

forward jet cuts : 7° < B3 < 20° 

prjet > 3.5 GeV 

x j e t > 0.035 

0.5 < p2

T/Q2 < 2 . (4.40) 

Using these constraints we obtain the cross section for the DIS + 2 forward jet process 

for the single x bin Ax = 0.0001 - 0.004 as 

< T 2 j e t = 20.1 pb for R = 1.7 

cr 2 j e t = 17.9 pb for R = 2 . (4.41) 

The DIS + 1 forward jet cross section for the same cuts is 

< 7 L J E T = 611 pb . (4.42) 

This gives the ratio of 2:1 forward jet events at H E R A as 3.3% for the jet separation cut 

R = 1.7, and 2.9% for R = 2. First indications f rom experiment would appear to show 

the ratio w i l l be less than a couple of percent for the same kinematic cuts at the hadronic 

level[73]. However, we must remember that statistics for the 2 forward jet cross sections 

w i l l be extremely small. 
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We can also look at the increase in the 2-jet cross section for the relaxed kinematic 

cut Px/Q2 < 5. In section 4.4 we predict that by increasing this constraint we should 

observe a significant increase in the cross sections. This gives the results 

1479 pb 

95.2 pb for R = 1.7 

85.5 pb for R = 2 , (4.43) 

f rom which we observe an increase by a factor ~ 5 between the cr 2j et results of (4.41) and 

(4.43). However, preliminary experimental analysis does not show such a large increase. 

The results of (4.43) give a ratio for the 2:1 jet cross sections for the kinematic cut 

p2xlQ2 < 5 as: 6.4% for R = 1.7 and 5.8% for R = 2. Thus, we predict that by relaxing 

the kinematic cut Px/Q2 f r om the experimental cut of 2 —> 5 then there should be an 

increase of approximately a factor 2 in the statistics for the ratio of the cross sections. 

Between preliminary experimental observation[73] and our theoretical calculations for 

the 2:1 DIS + forward jet cross sections there may be at least a factor 2 discrepancy. 

This factor may even increase for the absolute magnitudes of the cross sections for the 

relaxed kinematic constraint pT/Q2 < 5. However, for a direct comparison of experiment 

wi th theory, measurements need to be corrected f rom the hadron to the parton level. 

Unfortunately, preliminary studies of the corrections required show that the corrections 

in changing f rom hadron —> parton level results are very sensitive to the Monte Carlo 

model used. Also, these hadronization corrections appear to be of greater significance 

to the 2 forward jet measured cross section than for the 1 forward jet . A t present, 

depending on the Monte Carlo model used, for the relaxed kinematic cut p\jQ2 < 5 

where the correction factor is actually greater than for the lower cut pT/Q2 < 2, the 

correction factor for the number of parton jets / number of hadron jets ranges between 

the values 0.36(MEPS) 5 and 2 .2 (CDM) 6 ! This would indicate that a direct comparison 

wi th experimental observations wi l l be diff icul t un t i l these corrections can be more fu l ly 

understood. 

Thus, our first analysis for the ratio of the 2 forward jet cross section to the 1 forward 

5 M E P S - M a t r i x Elements + Par ton Shower Monte Carlo in which the par ton evolu t ion is based on 
the D G L A P scheme. 

6 C D M - Colour Dipole Model Monte Carlo in which there is no pj order ing. B o t h C D M and M E P S 
use J E T S E T hadronizat ion models to calculate the hadron —• par ton corrections, thus, the difference in 
the factors between the two Monte Carlos cannot be caused by differences in hadroniza t ion . [70] 

^ l j e t = 

< 7 2jet = 

< T 2jet = 
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j e t cross section i n D I S events is encouraging. However, at t he level of t he absolute magn i 

tudes of the cross sections there are ind ica t ions we m a y see somewhat large disagreement 

between observat ion and theory , especially f o r f o r w a r d je ts w i t h m i n i m u m transverse mo

m e n t u m pTj£t > 3.5 G e V and re laxed k inema t i c c o n s t r a i n t 7 p\fQ2 < n fo r n > 2. A t the 

present t i m e however, decisive conclusions about the accuracy of t he p red ic t ions fo r the 

absolute magni tudes cannot be made due t o the large uncer ta in t ies (e.g. the a p p r o x i m a 

t i o n i n neglec t ing heavy quarks and the a m b i g u i t y of the n o r m a l i z a t i o n ) i n the t heo re t i ca l 

ca lcu la t ions of t he cross sections. For detai ls of the e x p e r i m e n t a l measurement fo r the 

D I S + 2 f o r w a r d j e t cross sections at H E R A see [73]. 

4.6 Summary 

T h e measurement of D I S sca t te r ing events (x,Q2) c o n t a i n i n g a very f o r w a r d energetic 

j e t ( x j , k j j ) , w i t h Xj x and k\- ~ Q 2 , has long been advoca ted as a favourab le way 

o f i nves t i ga t i n g the dynamics w h i c h under l ie smal l x physics. I n th i s chapter we have 

s tud ied these f o r w a r d je ts us ing the B F K L f o r m a l i s m presented i n chapter 3 i n w h i c h we 

have p e r f o r m e d a r e s u m m a t i o n of the real and v i r t u a l g luon emissions t o give a m o d i f i e d 

expression f o r the B F K L equa t ion (Eqs. (3.21) and (3 .23) ) . T h i s provides a m e t h o d 

of c a l c u l a t i n g exclusive j e t rates i n the final state a l l o w i n g us t o e x t e n d the p i c t u r e t o 

i nc lude the p r o d u c t i o n of an e x t r a j e t i n t he f o r w a r d d i r e c t i o n . T h e a i m of th i s w o r k 

was t o calcula te the cross section of 2 f o r w a r d j e t emissions i n ep coll is ions at H E R A , 

and also the r a t i o of 2:1 f o r w a r d j e t rates. Theo re t i ca l l y we are a l lowed t o i nc lude g l u o n 

r a d i a t i o n between the t w o f o r w a r d je t s . T h i s was s tud ied i n d e t a i l w i t h the 2 f o r w a r d 

j e t cross section g iven by (4 .33) . However , due to e x p e r i m e n t a l selection cuts f o r f o r w a r d 

j e t i d e n t i f i c a t i o n the avai lable phase space f o r g luon r a d i a t i o n be tween the j e t s is very 

l i m i t e d and we expect o n l y a smal l enhancement of the 2 f o r w a r d j e t cross sect ion w h e n 

we inc lude g luon r a d i a t i o n between the je ts compared to w h e n we o m i t i t (see sections 

4.3.4 & 4.3.5) . T h e s i m p l i f i e d f o r m f o r the cross section, w h i c h is used f o r the n u m e r i c a l 

p red ic t ions presented i n section 4.4, is g iven by Eq . (4 .37) . 

T h e f o r w a r d region is def ined by cuts of the t y p e g iven i n (1 .8) , w i t h large restr ic

t ions imposed on the m i n i m u m al lowed angle of the scat tered e lec t ron (0ei > 160° ) i n t he 

7See Figures 4.10 and 4.11 which show the BFKL prediction for the 1 forward jet cross section to be 
somewhat larger than the experimental data in the very small x region x ~ 10~ 4 — 1 0 - 3 . We can expect 
this "excess" to feed into the result for the 2 forward jet cross sections. 
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detector . Jet events are collected w h i c h t y p i c a l l y l ie i n the region 

l-Q2 < k2

Tj < 2Q2 (4.44) 

subjec t also to the j e t reso lu t ion cu t , k\} > /.i2. To o b t a i n suf f ic ien t s ta t is t ics the f i r s t 

measurements take / i = 3.5 G e V fo r a series of smal l x bins of size 0.0005, b u t idea l ly as 

t he in tegra ted l u m i n o s i t y at H E R A improves , i t w i l l be preferable to o b t a i n a DIS sample 

r e s t r i c t ed t o j e t s w i t h h igher transverse m o m e n t u m . A t present, f o r w a r d j e t cross sections 

f o r a h igher m i n i m u m transverse m o m e n t u m \i = 5, 6 G e V are presented o n l y f o r t w o 

large x b ins of size 0.0015. 

T h e D I S + f o r w a r d j e t data sample contains a sma l l f r a c t i o n of events w i t h t w o 

i d e n t i f i e d je t s [71] . For the set of kinema,tic cuts g iven i n (4 .40) , H i quote[67] a value of 

a p p r o x i m a t e l y 4 % f o r the r a t i o of 2:1 f o r w a r d j e t cross sections i n D I S events at H E R A . 

T h e m a i n purpose of th i s chapter is t o p red ic t t he f r a c t i o n of these events. O u r results 

f o r the above cuts (4 .18) , i n compar i son w i t h the e x p e r i m e n t a l observa t ion , gives the r a t i o 

i n an x b i n Ax = 0.0002 — 0.002 of ~ 6.6%. For the s l i g h t l y d i f f e ren t phase space cuts 

f o r f o r w a r d j e t observat ion as described i n section 4.2.2 [66], our results are shown by the 

lower set of h is tograms i n F igure 4.21 fo r \i = 3.5 G e V , and i n F igu re 4.22(a) f o r three 

d i f f e r en t values o f / t . W e see t h a t the f r a c t i o n of 2 j e t events f o r R — 1.7 is about 2.5% 

f o r the x i n t e r v a l 0.0005 - 0.001 r i s ing t o about 5% f o r Ax = 0.0025 - 0.003, see F igu re 

4 . 2 1 . T h e f r a c t i o n is ra ther insensi t ive ( i ) to the value of the j e t reso lu t ion paramete r /<., 

see F igu re 4 .22(a) , and ( i i ) t o ambigui t ies i n the f u n c t i o n $ t descr ib ing the B F K L g l u o n 

cha in since i t is c o m m o n to b o t h the 1-jet and 2-jet p red ic t ions and tends t o cancel i n t he 

r a t i o . T h e e x p e r i m e n t a l c o n f i r m a t i o n of the p red ic t ed 2- jet f r ac t i ons w i l l the re fore serve 

as a check on the B F K L ver tex f u n c t i o n w h i c h occurs i n (4 .25) . 

We have also inves t iga ted the effect of the e x p e r i m e n t a l k i n e m a t i c and phase space 

cuts on the m a g n i t u d e of the f o r w a r d j e t cross sections t o observe the s e n s i t i v i t y of 

the pred ic t ions t o changes i n j e t event selection c r i t e r i a . T h e analysis shows t h a t t he 

absolute magn i tudes are e x t r e m e l y sensitive to these cuts - especially i n the s m a l l x 

region (x ~ 1 0 - 4 ) where we w o u l d hope to observe signatures of t he B F K L dynamics . 

I n f ac t our studies show the magni tudes of the cross sections i n the very s m a l l x reg ion 

are con t ro l l ed p r i m a r i l y t h r o u g h the phase space y < 0 .5 ,1 cut and the k i n e m a t i c cu t 

k\3 ~ Q2. T h e sens i t iv i ty of the magni tudes of the cross sections t o these cuts has been 

t raced to the i m p o r t a n c e of the low Q2 region w h i c h provides a large c o n t r i b u t i o n t o 
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the f u l l y i n t eg ra t ed cross section (see F igu re 4.18). A p p l y i n g e x p e r i m e n t a l j e t selection 

cuts essential ly res t r ic ts the low Q2 region. T h e k i n e m a t i c d o m a i n (4.44) as used i n th is 

chapter is chosen such t h a t ~ Q2 so as to suppress D G L A P g l u o n emiss ion. T h e 

results fo r t he larger d o m a i n Q2/2 < < 5Q2 were presented s i m p l y t o gain ins ight 

i n to the behav iour of t he DIS - f t w o f o r w a r d j e t cross section. These can be seen i n the 

upper h i s tograms of F igu re 4.21 and Figures 4.20(b) & 4 .22(b) . T h e in t e r e s t i ng resul t 

is t h a t the analysis indicates t h a t a subs tan t ia l increase i n the t w o f o r w a r d j e t cross 

section s ta t i s t ics should be observed by re l ax ing th i s expe r imen ta l k i n e m a t i c cu t , and 

consequently also i n the r a t i o of the 2:1 f o r w a r d je ts . T h i s is useful as t he 2 f o r w a r d j e t 

e x p e r i m e n t a l measurement w i l l be r e s t r i c t ed by very low stat is t ics - i t is easier to re lax 

the c o n t r a i n t Pj/Q2 < n i n the selection c r i t e r i a of f o r w a r d je ts , t h a n t o separate smaller 

and smaller j e t cone resolut ions t o increase s ta t is t ics . 



Chapter 5 

Summary and Conclusions 

T h e e l ec t ron -p ro ton col l ider H E R A is now accumula t i ng large l u m i n o s i t y a l l o w i n g h igh 

precis ion tests of Q C D at very smal l values of B j o r k e n x. As we have seen, the desc r ip t ion 

of t he observables measured at H E R A is (usua l ly ) ob ta ined t h r o u g h e v o l u t i o n of the 

p a r t o n densities of the p r o t o n w i t h respect to one or o ther of the independent variables: 

. t , t he f r a c t i o n of m o m e n t u m carr ied by the s t ruck p a r t o n w i t h i n the p r o t o n , or Q2, the 

v i r t u a l i t y of the p h o t o n . T h e D G L A P evo lu t i on equa t ion w h i c h gives a r e s u m m a t i o n of 

the \IIQ2/QQ t e rms (and w h i c h is k n o w n to N L O ) successfully predic ts the rise of the 

s t r u c t u r e f u n c t i o n F2 and the rise of the cross sections as seen expe r imen ta l ly , p r o v i d i n g 

we choose the i n p u t ca re fu l ly at some s t a r t i n g scale f o r the e v o l u t i o n Q^. 

H E R A probes the smal l x region t o values as low as x ~ 1 0 ~ 4 . Here the d o m i n a n t 

p a r t o n d i s t r i b u t i o n of the p r o t o n is t he g luon . For values of x th i s smal l t h e n l o g a r i t h m s 

of t he f o r m In 1/x are large and have t o be resummed. T h i s r e s u m m a t i o n is p e r f o r m e d ( t o 

L O ) by the B F K L equa t ion , thus , we can also look at the e v o l u t i o n of the g luon densi ty 

w i t h respect t o x. T h i s f o r m a l i s m , w i t h i ts p red ic t ed x~x (A ~ 0.5) behav iour , also 

successfully reproduces the observed rise of the s t ruc tu re f u n c t i o n s and cross sections. T h e 

a m b i g u i t y lies i n the fac t t h a t the observable quant i t i es t h a t were first measured by H E R A , 

the t o t a l s t ruc tu re f u n c t i o n F2, and the t o t a l deep inelast ic ep s ca t t e r ing cross sect ion a, 

are too inc lus ive quant i tes w i t h w h i c h to d i s t ingu i sh the relevant u n d e r l y i n g dynamics . 

I n th i s thesis the a i m has been t o look fo r less inc lus ive quan t i t i e s w h i c h are observable 

at H E R A and w h i c h w i l l neu t ra l ize , as fa r as possible, e v o l u t i o n i n Q2 ( t he D G L A P 

f o r m a l i s m ) , and concentra te on exposing the role of the smal l x ( B F K L ) d y n a m i c s . To 

th i s end we have made a theore t ica l s t u d y of the B F K L equa t ion g i v i n g an ins igh t i n t o i ts 

156 
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s t r uc tu r e and have app l ied the resu l t ing g luon d i s t r i b u t i o n t o phys ica l processes app l icab le 

at H E R A - speci f ica l ly exclusive j e t p r o d u c t i o n and f o r w a r d j e t p r o d u c t i o n in deep inelast ic 

ep sca t te r ing . 

I n chapter 3 the process of exclusive j e t p r o d u c t i o n was s tud ied w i t h the a i m of using 

the B F K L f o r m a l i s m t o make q u a n t i t a t i v e predic t ions f o r t he n u m b e r of 0-, 1-, 2- . . .n- je t 

emissions w h i c h should be seen exper imenta l ly . T h e B F K L g luon is considered as a g l u o n 

ladder w i t h real g l u o n emissions f o r m i n g the rungs[23] . T h i s p i c t u r e lends i t se l f nicely 

t o t he concept of exclusive j e t p r o d u c t i o n where we consider each real g luon emiss ion, 

p r o v i d i n g i t s transverse m o m e n t a qj is greater t h a n a reso lu t ion parameter /«, t o f o r m a 

j e t i n the f i n a l state. However , g luon emissions w i t h qx < p, the unresolved j e t s , have 

to be t r ea t ed equal ly w i t h the v i r t u a l g luon emissions i n order to ensure cance l la t ion of 

i n f r a r e d divergences as qT —> 0. T h u s , f i r s t we m o d i f i e d the B F K L kernel (A') based 

on the m e t h o d discussed i n [28, 56] i n w h i c h the unresolved emissions were r e summed 

w i t h the v i r t u a l emissions. N o r m a l l y the B F K L kernel K o f Eq . (2 .6) is a f u n c t i o n of k j 

and k'T on ly , i.e. of t he transverse m o m e n t a of t he ^-channel g luon . I n p e r f o r m i n g the 

above r e s u m m a t i o n , the consequence is t h a t the kernel A' ob ta ins an e x p l i c i t y = In l / x 

dependence w h i c h is de t e rmined by the amoun t of unresolved r a d i a t i o n and thus is also a 

f u n c t i o n of the reso lu t ion p. For phys ica l je ts observable i n the detectors at H E R A then 

the reso lu t ion p is reasonably large e.g. p ~ 3.5 — 6 G e V . 

T h e r e s u m m i n g of the unresolved and v i r t u a l gluons t o give the m o d i f i e d kerne l K 

a l lowed decompos i t ion of the t o t a l g luon d i s t r i b u t i o n f ( x , k T ) i n t o i t s i n d i v i d u a l n - j e t 

components , f n ( x , k T ) . T h e character is t ic behaviour ob t a ined as x decreases is a rise 

i n / to a m a x i m u m and t hen a decrease back to zero. T h e h igher t he n t h j e t emiss ion, 

the lower the value of x f o r w h i c h the m a x i m u m occurs. U n f o r t u n a t e l y , f o r t he H E R A 

sma l l x regime th is behaviour is o n l y apparent fo r very s m a l l values of p ~ 1 G e V . For 

r ea l i s t i ca l ly large resolut ions , p ~ 3.5 — 6 G e V , the m a x i m a s h i f t to ve ry sma l l x values 

l y i n g we l l below the x range possible f o r s tudy at H E R A . For the phys ica l observables 

F% and <r n our analysis shows the 0-jet c o n t r i b u t i o n t o be d o m i n a n t , w i t h t he steep rise 

of the ( inc lus ive) s t ruc tu re f u n c t i o n w i t h decreasing x a r i s ing due to the onset of h igher 

j e t emissions, especially fo r the lower value p — 3.5 G e V . However , we do see s ign i f i can t 

amoun t s of 1-, 2-, 3-jet p r o d u c t i o n , w i t h the x dependence of the exclus ive j e t s t r u c t u r e 

f u n c t i o n s F 2 " ( the flatness of the 0-jet c o n t r i b u t i o n i n r e l a t i o n to the steep increase of 

the h igher j e t c o n t r i b u t i o n s ) be ing enhanced fo r lower j e t resolut ions and h igher Q2. A n 
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i m p o r t a n t observat ion of the analysis is t ha t we p red ic t a non-negl ig ib le a m o u n t of n > 1 

je t s a r i s ing f o r \i > Q, i.e. je ts w i t h m o m e n t a qT > Q, w h i c h arises as a d i rec t consequence 

of the charac ter i s t ic \nkj d i f f u s i o n of B F K L dynamics . I n f ac t , the p r o d u c t i o n of je t s 

w i t h qx > Q is d isa l lowed by D G L A P dynamics due t o s t rong o rde r ing i n the transverse 

m o m e n t a . 

T h e second process considered was D I S events i n c l u d i n g the p r o d u c t i o n of 2 f o r w a r d 

je t s as discussed i n chapter 4. T h e measurement of the D I S + 1 f o r w a r d j e t process has 

long been advocated[49, 62] as a m e t h o d of i nves t iga t ing the u n d e r l y i n g smal l x dynamics 

as i t e f fec t ive ly neutral izes a l l Q2 evo lu t i on of the g luon d i s t r i b u t i o n . These e x p e r i m e n t a l 

measurements have shown a smal l f r a c t i o n of events to con ta in 2 f o r w a r d je t s i n the 

d i r e c t i o n of the p r o t o n . T h e m o d i f i c a t i o n of the B F K L kernel t o a l low fo r exclusive je t 

p r o d u c t i o n enabled us t o easily w r i t e d o w n an expression f o r the cross section of D I S + 

2 f o r w a r d j e t events by i d e n t i f y i n g the second j e t as a r i s ing f r o m the emission of a real 

g luon f r o m the B F K L cha in . 

T h e in te res t ing observations of th is s tudy arose f r o m the inc lus ion of "ex t ra 1 1 B F K L 

r a d i a t i o n be tween the t w o f o r w a r d je ts . As there is very l i t t l e r a p i d i t y phase space be

tween the t w o je ts we expect l i t t l e or no r a d i a t i o n to be present. However , we f o u n d 

t h a t we p red ic t ed too m u c h enhancement of t he 2 f o r w a r d j e t cross section w h e n we i n 

c luded th i s r a d i a t i o n over the p r e d i c t i o n when we neglected r a d i a t i o n be tween the j e t s . 

T h u s , th i s analysis has a l lowed an ins ight i n t o the n u m e r i c a l p rac t i ca l i t i e s of m o d e l l i n g 

the B F K L g luon using the Chebyshev methods descr ibed i n th i s thesis. W e f o u n d t h a t i n 

m o d e l l i n g the g luon f r o m a s t a r t i n g d i s t r i b u t i o n of the de l t a f u n c t i o n 8{k\ — k%), ins tead 

of say t o the p a r t o n d i s t r i b u t i o n s of the p r o t o n or the p h o t o n g luon f u s i o n process o f the 

qua rk box d iagrams, t hen the so lu t ion becomes unstable a n d d i f f i c u l t t o w o r k w i t h . T h i s 

has d i rec t consequences i f we wish to app ly the ( n u m e r i c a l l y mode l l ed ) B F K L equa t ion 

t o o ther processes such as pp coll isions at the T E V A T R O N or pp coll isions at t he f u t u r e 

L H C col l ider - exclusive j e t and f o r w a r d j e t p r o d u c t i o n f r o m the B F K L g luon m a y no t be 

so easily mode l l ed here using exac t ly the same numer i ca l techniques as i n th is thesis as 

the i n p u t f o r the 0-jet p r o d u c t i o n is the above de l t a f u n c t i o n . However , th i s i n s t a b i l i t y 

was observed m a i n l y t h r o u g h problems in the n o r m a l i z a t i o n of t he r e su l t i ng cross sec

t ions ra ther t h a n the p red ic ted shapes thus , w i t h more s t udy of the n u m e r i c a l techniques 

r equ i r ed these p rob lems p robab ly can be overcome. 
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For the D I S + f o r w a r d j e t processes measured at H E R A we have successfully repro

duced the observed x dependence and n o r m a l i z a t i o n of the 1 f o r w a r d j e t cross sect ion. For 

the t w o f o r w a r d j e t p r o d u c t i o n , when we o m i t any B F K L r a d i a t i o n between the f o r w a r d 

je t s , we p red ic t a r a t i o of ~ 2.5% f o r 2:1 f o r w a r d j e t p r o d u c t i o n i n the smal l x region 

x ~ 5 x 10~ 4 w h i c h rises w i t h increasing x to ~ 5% at x ~ 3 x 1 0 - 3 , f o r the selection 

cuts o f sect ion 4.2.2 w i t h /« = 3.5 G e V and p\IQ2 < 2. T h e ra t ios of 2:1 j e t p r o d u c t i o n 

presented i n chapter 4 are ra ther insensi t ive to the value of the reso lu t ion pa ramete r /.i and 

also t o ambigu i t i e s i n the m o d e l l i n g of the B F K L g luon d i s t r i b u t i o n . O n the o the r hand , 

the absolute magni tudes of the 1 and especial ly the 2 f o r w a r d j e t cross sect ion are f o u n d 

to be very sensit ive to changes i n the parameters of the B F K L ca l cu l a t i on . I n t e r e s t i n g l y 

we observe t h a t f o r the very smal l x region x ~ 10~ 4 , the m a g n i t u d e o f the cross sect ion 

is con t ro l l ed by the exp l i c i t phase space and k i n e m a t i c cuts app l i ed . A l s o we p red i c t a 

d r a m a t i c increase, by a p p r o x i m a t e l y a f ac to r of 5 i n the 2-jet cross sect ion i n r e l a x i n g 

the k i n e m a t i c cons t ra in t p j / Q 2 < 2 t o p^/Q2 < 5. A l l these not iceable effects i n the 

sma l l x region have been t raced t o the i m p o r t a n c e of the low Q2 region p r o v i d i n g large 

c o n t r i b u t i o n s t o the f u l l y in tegra ted cross sect ion. 

T h u s i n conclus ion, th i s i n i t i a l theore t i ca l s tudy of the B F K L equa t ion t o ca lcula te 

exclusive observable quant i tes i n ep sca t te r ing indicates t h a t there are possible s ignatures 

of s m a l l x dynamics t o be seen. U n f o r t u n a t e l y , f o r the H E R A x range and w i t h present 

e x p e r i m e n t a l j e t resolut ions these w i l l be very d i f f i c u l t measurements t o make as the 

in t e re s t ing behav iour is v i s ib le on ly f o r very sma l l j e t resolut ions or ve ry smal l x, e.g. the 

onset of h i g h n = 3 ,4 . . j e t p r o d u c t i o n f o r je ts w i t h large p j w h i c h have reso lu t ion values of 

// ~ 5, 6 G e V w i l l not easily be observed except for x values smaller t h a n those w h i c h can 

be reached by H E R A . However , the e x p l o r a t o r y s tudy made here f o r ep collsions at H E R A 

is of i m p o r t a n c e fo r m a k i n g f u l l e x p e r i m e n t a l exclusive j e t cross sect ion measurements . 

T h i s also applies t o exclusive measurements at the T E V A T R O N and L H C w h i c h m a y 

a l low us to see sma l l x ( B F K L ) character is t ics w i t h the i r h igher energies. 

T h i s analysis has been made at L O b u t also i n c l u d i n g the m o d i f i c a t i o n s of r u n n i n g 

c o u p l i n g and a first look at a p p l y i n g the k i n e m a t i c cons t ra in t [39] on the l o n g i t u d i n a l 

m o m e n t a of e m i t t e d gluons t o exclusive j e t p r o d u c t i o n - these are N L O effects . N o t i c e a b l y 

the k i n e m a t i c cons t ra in t reduces the a m o u n t o f higher j e t emissions. T h u s the i nc lu s ion 

of t he f u l l N L O and higher order effects to the B F K L equa t ion are essential before we 

w i l l have a f u l l y accurate descr ip t ion of the B F K L g luon , w i t h these correct ions h o p e f u l l y 
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r e m o v i n g m a n y of the ambigu i t i e s encountered i n ca l cu l a t i ng the L O a p p r o x i m a t i o n , such 

as the g luon n o r m a l i z a t i o n . Thus w i t h the ca lcu la t ion of the N L O c o n t r i b u t i o n s of the 

B F K L equa t ion j u s t f i n i shed , deep inelast ic sca t ter ing at H E R A described using the B F K L 

f o r m a l i s m , and other closely re la ted areas, remains a very in te res t ing top ic of s tudy and 

w i l l cont inue t o be so f o r years to come. 



Appendix A 

Solution of the B F K L kernel 

I n th i s append ix the so lu t ion of the B F K L kerne l is ob t a ined f o l l o w i n g the m e t h o d de

scr ibed i n the P h D thesis of A . J .Askew[25] , and is i n c l u d e d here f o r completeness. T h e 

so lu t ion can also be f o u n d i n [24] fo r the B F K L equa t ion c o n t a i n i n g the f u l l a z i m u t h a l 

dependence tp, w h i c h has the general result 

X n ( u ) = 2 ( - 7 £ - fte [V((n - l ) / 2 + iu)]) 

where n refers t o the a z i m u t h a l p r o j e c t i o n exp(mc^) . For t he B F K L equa t ion used i n th i s 

thesis, we use t h e a p p r o x i m a t i o n t h a t the n = 0 p r o j e c t i o n gives an adequate desc r ip t ion 

o f / f o r large r ap id i t i e s . T h e s tandard integrals used i n these appendices are p e r f o r m e d 

using G r a d s h t e y n and Ryzh ik [17] unless o therwise s ta ted. 

T h e i n t eg ra l B F K L kernel is on ly dependent on k2 and is scale i nva r i an t such t h a t , 

under the t r a n s f o r m a t i o n k —• Xk, f o r A a number , t h e n ( A . l ) remains unchanged . T h i s 

al lows us to o b t a i n the so lu t ion of the B F K L equa t ion ( fo r f i x e d a s ) using M e l l i n t r a n s f o r m 

techniques. A p p l y i n g the d e f i n i t i o n of moments , Eq . (2 .11) , t o the B F K L equa t ion o f (2 .3) , 

t h e n we have 

a i n l / ; 

= K(u)f(x,u) , (A.l) 

where as — NcaS/K a n d K{LO) is the L i p a t o v kernel equa t ion i n m o m e n t space. Rear

r a n g i n g (2.11) we can w r i t e 

/(^•2) = ( i 2 r | 

161 
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and by m a k i n g the change of variables u = k ' 2 / k 2 such t h a t 

f ( x , k ' 2 ) f ( x , u k 2 ) 

t hen 
> _ [°°du 

K(u>) = aa / — 
Jo u 

u u - 1 

= u , 

+ 
u - 1 I (4w 2 + 1)! 

( A . 2 ) 

T h e above in t eg ra l can be p e r f o r m e d by s p l i t t i n g ( A . 2 ) i n t o t w o regions, [ 0 : 1 ] and 

[1 : oo] , w h i c h def ine the con t r i bu t i ons Ka and Kb t o the f u l l kerne l K, where 

K = Ka + Kb 

E x p l i c i t l y these are g iven by 

Ra(u>) = / -
J\ u u — 1 

and 

Kb{uj) — l i m 
r1 du u" f 1 du 1 r°° du 1 

Jo iLl~e (1 - u ) 1 _ f i Jo ul~c (l - u ) 1 ' 6 + Jo t t 1 - t ( 4 ' u 2 H 

( A . 3 ) 

( A . 4 ) 

, ( A . 5 ) 
( i l l 2 + 1)2 

where t o remove any divergences i n the region x —> 0 , 1 we have i n t r o d u c e d the regula tors 

e and 

A ' a ( u ; ) of ( A . 4 ) is s i m p l y evaluated by first m a k i n g the change of variables , 

1 
v = — 

u 

and reca l l ing t h a t the l o g a r i t h m i c de r iva t ive of the G a m m a f u n c t i o n [ 1 7 ] 

¥ ( * ) = / 
Jo 

i , tz~l - 1 
dt 

t - 1 
IE ; IE 

where 7# = 0.577215... is the Eu le r -Mascheron i constant , we then o b t a i n the s o l u t i o n , 

£ a ( u ; ) = tf(l)-tf(l-u;). ( A . 6 ) 

Kb(u) o f ( A . 5 ) is evaluated using the s tandard integrals f o r t he / ^ - f unc t i on 

/3(x, y) = C dt tx~l{l - t ) v - l d t ; » e ( i ) , » e ( y ) > 0 
Jo 

1 / ^ . - ^ 

V \ V V 

too T M - 1 
= / dx — ; SRe(i/),3He(/i) > 0 

Jo 1 + x " 
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w h i c h gives, eva lua t ing each in tegra l seperately, 

Kb(u>) l i m (S(UJ + c, 8) - /3(e, 8) + /3(e/2, 1/2 - e / 2 ) - ( A . 7 ; 

R e w r i t i n g ( A . 7 ) i n the g a m m a f u n c t i o n representa t ion , we o b t a i n the so lu t i on f o r A'(,(u;) 

as 

Kb(w) = l i m 
y e,5—o 

' r ( e / 2 + l ) r ( l / 2 - e / 2 ) 1 r ( £ + ! ) ! > ; + t) I 

r ( l / 2 ) e r(u> + e + <5) 5 

r ( l + e ) r ( l + £) e + <5 

r ( l + e + 6) 6 

We can then use the Tay lo r expansion, 

( A . 8 ) 

r ( i + z) ~ i + 1 E z + o ( z 2 ) + 

to take the l i m i t s e, 8 —> 0, p roduc ing , 

7 ^ 6 M = * ( 1 ) - * ( u ; ) . ( A . 9 ) 

T h i s o n l y leaves us t o subs t i tu t e the results of ( A . 6 ) and ( A . 9 ) i n t o ( A . 3 ) , i n c l u d i n g the 

p re fac to r cv s, t o give the so lu t ion f o r the B F K L kerne l of equa t ion (2.6) 

A ' (w) = a , [ 2 * ( l ) - *(u>) - * ( 1 - w ) ] . 



Appendix B 

Asymptotic solution of the B F K L 
equation 

Here we o b t a i n the ana ly t i c so lu t ion of the B F K L equa t ion (2.3) fo r f i xed as us ing the 

m e t h o d o u t l i n e d in [10] . T a k i n g the symbol ic f o r m fo r the de r iva t ive of the B F K L e q u a t i o n 

i n m o m e n t space, 

= * W ( * , " ) ( B . l ) 
a l n ( l / ; r ) 

where the kernel K(u>) has the so lu t ion ( A p p e n d i x A ) , 

K{LO) = a s [ 2 < J ( l ) - - (1 - to)}, ( B . 2 ) 

t h e n the so lu t ion t o ( B . l ) is of the f o r m , 

/ ( x , u ; ) = / ( x 0 , u ; ) ^ - J . ( B . 3 ) 

T h e scale x0 is some i n p u t s t a r t i n g value f r o m w h i c h we w i l l begin the l n ( l / a ' ) e v o l u t i o n , 

and as the usual n o t a t i o n f o r Ncas/ir. B o t h x and x0 are smal l enough so t h a t t he 

a p p r o x i m a t i o n i n w h i c h the L i p a t o v equa t ion is der ived is v a l i d and x <C XQ. 

T h e un in t eg ra t ed g l u o n d i s t r i b u t i o n f ( x , k 2 ) is t hen ob t a ined by t a k i n g the inverse 

t r a n s f o r m of ( B . 3 ) , 

f ( x , k 2 ) = — d w { k 2 r f { x 0 , u ) ( - ) , ( B . 4 ) 1 
X'O/ 

w h i c h is solved by n o t i n g t h a t the p o i n t w = 1 / 2 is a saddle p o i n t fo r the i n t e g r a t i o n , thus 

f o r x <C XQ, the in t eg ra l obta ins a m a x i m a l c o n t r i b u t i o n f r o m the region v ~ 0 a r o u n d 
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uj = 1/2. T h i s al lows the f u n c t i o n f ( x 0 , o j ) t o be evaluated by h i s t m a k i n g a Tay lo r series 

expansion of the relevant quan t i t i e s about th i s p o i n t . M a k i n g the change of var iab le . 

iv — UJ , 
2 

t hen f o r the u; dependent terms in (B .4 ) we o b t a i n : 

( k 2 y = (k2)1* e

i u X n { k ' 2 ) 

K(oo) = K(l/2 + iv) 

f ( x 0 , u ) ~ / ( . T o , 1/2) 1 — iv In k2 A 
9 

where we have def ined 

L e t t i n g A be an eigenvalue of the kernel such t h a t 

A ( 1 / 2 ) = A, 

and f r o m ( B . 5 ) we have UJ = 1/2 + iv, we can make the expansion 

A ( 1 / 2 + iv) = A ( 1 / 2 ) + iv ; -\ —— + ... 

~ A + iv\' - y A". 

T h u s by keeping o n l y the real te rms we get the resul t , 

Ike [ A » ] = A -

doJ2 

( B . 5 ) 

( B . 6 ) 

( B . 7 ) 

B u t f r o m ( B . 2 ) we a l ready know the eigenvalues of t he kerne l i n t e rms of $ f u n c t i o n s , 

thus , e x p a n d i n g ( B . 2 ) about the p o i n t w = 1/2, 

A'(l /2 + ii/) = Q i [ 2 * ( l ) - * ( l / 2 + i i / ) - $ ( l / 2 - i i / ) ] 

2 * ( 1 ) - [ t f ( l / 2 ) + i i /* ' ( l /2 ) - y * " ( l / 2 ) ] -

[ * ( l / 2 ) - i i / * ' ( l / 2 ) - T r ' ( l / 2 ) ] ( B . 8 ) 

and by keeping the real par ts 

A V ) ] = « s [ 2 * ( l ) - 2 * ( l / 2 ) + i / V ( l / 2 ) ] , ( B . 9 ) 
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we can equate ( B . 9 ) w i t h ( B . 7 ) , r eca l l ing A = $ ( 1 / 2 ) , to get the f amous value for the 

B F K L slope, 

A = a 8 4 l n ( 2 ) 

A" = - a s 2 t f " ( l / 2 ) = o7 s28C(3). (B .10) 

T h u s the kernel A'(u;) has i ts m a x i m a l value at A ' ( l / 2 ) = 4 I n 2 a long the con tour 

u> = 1/2 + iv. A f t e r s u b s t i t u t i o n of ( B . 6 ) and ( B . 7 ) i n to ( B . 4 ) we now solve f o r f ( x , k 2 ) 

using the saddle p o i n t m e t h o d of i n t eg ra t i on where the i n t e g r a t i o n con tour i n ( B . 4 ) is 

t aken as c = 1/2, t o give: 

v2A 
f ( x , k 2 ) = ± J ™ j J ( k 2 ) h ^ k 2 \ f ( x 0 , l / 2 ) l - ?:Wn(r) - — 

x0 

•A+A'V/2^ 

J - ( f c 2 ) ^ / ( . T 0 , i / 2 ; l x 

Air x0 

x 

/

oo 

-oo 
dv e l L , l n ( k 2 ) 1 - i v \ n { k 2 ) A , A " i / 2 \n(x/x0)/2 

where we have recognised t h a t , 

/ r \ - A + A ' V / 2 
e - \ \ n ( x / x 0 ) e\"v2ln(x/x0)/2 = ( _ ] 

\X0J 

Using the series expansion of e* and the s tandard in tegra l 

i 

[°° e - a t 2 + l b t d t --
J—oo 

we a r r ive at the so lu t ion of the B F K L equa t ion (2 .3) , 

M 2

 e-b2/4o 

a J 

f ( x , k ' ) = l -
/ ( * < , , 1/2) ( * 2 ) * - l n 2(P/P) ^ 

xo) [2TT (A"ln(a; / .To) + A)]* ^ \2X"\n{x0/x) + 2AJ 

as quo ted i n Eq . (2 .15) . 

( B . l l ) 

( B . 1 2 ) 
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