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Gamma Ray Cerenkov Telescope Image Analysis 

by Jamie Holder, B.Sc. Ph. D. Thesis, University of Durham, 1997 

ABSTRACT 

The subject of this thesis is ground based gamma ray astronomy using the 

imaging atmospheric Cerenkov technique. The first two chapters are introductory, 

and describe the field of gamma ray astronomy, the generation of extensive air 

showers in the atmosphere and the Cerenkov radiation they induce. Chapter three 

describes the atmospheric Cerenkov telescope, including the development of the 

imaging technique for background discrimination. The characteristics of the three 

University of Durham atmospheric Cerenkov telescopes and the processing and 

calibration of their data products are outlined. Chapter four is concerned with 

periodic sources of gamma ray emission and includes a review of candidate sources 

and time series analysis techniques. An analysis of the Mark 3 telescope SMC X - l 

database is presented. An upper limit of 1.2 x 10"11 cnr2s" J above a cosmic ray 

threshold of 1 TeV is determined for the guard ring analysis of Mark 3 data. For an 

analysis of medium resolution Mark 3 imaging data, the upper limit is 

2 x 10"10 cm - 2 s"1 above a cosmic ray threshold of 500 GeV. Chapter five introduces a 

new method for the parameterisation of Cerenkov images of extensive air showers 

recorded by atmospheric Cerenkov telescopes. This method, involving the 

optimization of a bivariate Gaussian fit to the image, is shown to be significantly 

better than the standard moment based parameterisation using simulated images. In 

Chapter six, both of these methods are employed in an attempt to enhance the signal 

to noise ratio for observations of the pulsar PSR 1706-44 made with the Mark 6 

telescope and some evidence for steady emission is seen. The implied fluxes are 

(2.6 ±0.3 ± 0.1)xl0- n cm - 2 s'1 above 420 GeV for the bivariate Gaussian analysis 

and (1.7 ± 0.4 ± 0.2)xl0- n cnr2 s_1 above 500 GeV for the moment analysis. 
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PREFACE 

All of the work described in this thesis has been associated with the 

atmospheric Cerenkov telescopes in operation at the University of Durham Gamma 

Ray Observatory in Narrabri, New South Wales, Australia. The author participated in 

the collection of data using these instruments for a total of five dark moon periods. 

During a further three dark moon periods, he was involved with the construction and 

testing of the new Mark 6 telescope. 

In Durham, the author has been involved in the routine pre-processing of 

telescope data, and in the development of computer software for calibration and 

analysis purposes. He has also performed Monte Carlo simulations of the 

development of extensive air showers in order to help understand the telescope 

response to their Cerenkov images. A full re-analysis of the Durham Mark 3 

telescope SMC X- l database has been made. Observations of the pulsar PSR1706-44 

made with the Mark 6 telescope high resolution camera have also been analysed and 

a novel method for the parameterisation of these data developed. 

None of the material presented in this thesis has been submitted previously 

for admittance to a degree in this or any other university, except where due reference 

is made. 
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CHAPTER ONE - GAMMA RAY ASTRONOMY 

1.1 Introduction 

The presence of a flux of ionising radiation at the Earth's surface was first 

inferred by Rutherford and Cooke (1903) from observations of the discharge time of 

a gold leaf electroscope. The rate of discharge was seen to decrease when the 

electroscope was shielded with metal. This radiation was assumed to be terrestrial in 

origin until balloon experiments (eg. Goeckel, 1910; Hess, 1911) showed that the 

flux of radiation decreased only up to an altitude of 1 km. Above this, the flux 

steadily increased. This result led to the conclusion that the radiation was extra

terrestrial in origin and hence the term "cosmic radiation". These cosmic rays are now 

known to consist of a wide variety of highly energetic particles. The energy density 

of cosmic rays within the galaxy is approximately the same as that of starlight 

photons, of the turbulent gas motion in the interstellar medium and of galactic 

magnetic fields (Longair, 1994; Toller, 1990); however, full details of their origin 

remain unknown. 

The vast majority of the cosmic ray flux is composed of charged particles. 

Over interstellar distances, these particles are deflected by the galactic magnetic 

fields. By the time they reach the Earth, all information about the direction of their 

origin has been lost. The neutral component of the cosmic radiation, consisting of 

neutrinos, neutrons and gamma rays, retains its directional information and is 

therefore of great astrophysical significance. Neutrinos have an extremely small 

cross-section for interaction with matter and thus are difficult to detect, except in the 

rare circumstance of a nearby supernova explosion. Neutrons have too short a 

lifetime to provide significant flux over large distances. For example, a neutron 

generated at the galactic centre, ~ 7 kpc distant, would require an energy of ~ 1 EeV 

were it to survive to the earth without decaying. Gamma rays, conversely, are easily 

detected and can travel for intergalactic distances without interacting. Also, they are 
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destroyed rather than scattered by interactions and so any observed gamma ray has 

travelled directly from its source. The study of gamma rays can therefore provide 

valuable information about cosmic ray sources. It also enables us to explore the 

processes which occur in very high energy environments. 

1.2 VHE Gamma Ray Production 

Gamma rays are often defined as photons of energy greater than 0.511 MeV 

(the rest mass of the electron, m^. There are four processes which can result in the 

emission of gamma rays: transitions between nuclear energy levels, the annihilation 

of particles with antiparticles, the decays of elementary particles and the acceleration 

of charged particles. Very high energy (VHE) gamma ray astronomy is the subject of 

this thesis and is concerned with gamma rays of energy greater than those detectable 

by satellite experiments, from approximately 0.03 to 50 TeV. In this VHE band, the 

latter two processes dominate. 

1.2.1 Elementary particle decay 

Gamma ray emission by particle decay arises principally from the decay of 

the very short-lived neutral pion. These are produced during collisions between high 

energy nucleons: 

p + p — » p + p + 7r° 

The resulting pion then decays into two gamma rays, each of energy e0 = 68 MeV in 

the pion's rest frame (Fig. 1.1). 
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p, n, charged pions 

Figure 1.1 Elementary Particle Decay. 

P Nucleon 

o 

In the observer's rest frame, the gamma ray energies range between 

mi - - mi o 

where the initial pion velocity was |k. The resulting gamma ray spectrum has a peak 

ate0. 

Less common pion production mechanisms include the annihilation of 

nucleons with antinucleons, resulting in a sharply peaked gamma ray energy 

spectrum as the pion is created at rest in the centre of mass frame. Photo-pion 

production occurs in collisions between very high energy (>102 0 eV) protons and 

photons of the 2.7 K cosmic microwave background. The low flux of sufficiently 

energetic protons limits the importance of this process, except when considering the 

origin of the highest energy cosmic rays. 

1.2.2 Acceleration of Charged Particles 

The power radiated during the acceleration of a charged particle in an 

electromagnetic field is inversely proportional to the square of the particle's mass. As 

a result of this, electron acceleration dominates gamma ray production in the systems 

described below. 
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1.2.2.1 Synchrotron Emission 

Synchrotron emission occurs when an electron encounters a transverse 

magnetic field. The electron is forced to move in a helix around the direction of the 

field and this acceleration causes it to radiate. In the case of a relativistic electron, the 

emitted radiation is concentrated about the direction of motion of the particle (Figure 

1.2). The photons produced in synchrotron emission are several orders of magnitude 

lower in energy than the radiating electron. The presence of synchrotron radiation is 

therefore most useful in identifying regions in which relativistic electrons exist which 

may produce gamma rays by other mechanisms. 

B 

y 
Figure 1.2 Synchrotron Emission. 

1.2.2.2 Curvature Radiation 

This method of gamma ray production was proposed by Sturrock (1971) in 

order to explain the gamma ray emission from pulsars. Charged particles moving 

close to a neutron star are constrained to travel along the magnetic field lines, any 

motion across the lines being quickly damped by synchrotron radiation. Following 

the curved path of the field lines causes the particles to radiate photons of energies 

approaching their own (Figure 1.3). In order to generate gamma rays by this process, 

a magnetic field of at least 101 2 Gauss is required. 
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Figure 1.3 Curvature Radiation 

1.2.2.3 Bremsstrahlung 

When an electron encounters the electrostatic field of another charged 

particle, it is accelerated and emits a photon (Figure 1.4). The energy of the radiation 

depends upon the deflection of the electron and has a maximum almost equal to the 

kinetic energy of the electron. A feature of relativistic bremsstrahlung in 

astrophysical processes is that a power law distribution of electron energies results in 

an intensity spectrum for gamma rays of the same form (e.g. Longair, 1992). 

Figure 1.4 Bremsstrahlung 

1.2.2.4 The Inverse Compton Effect 

A very efficient process for the generation of gamma rays is the interaction 

of relativistic electrons with lower energy photons (Figure 1.5). A photon of energy 

E p h which encounters a relativistic electron with energy E e = ymec2 will typically 

emerge with an energy E' p h = 4 / 3 Y 2 E p h (Lang, 1986). For an electron of velocity v, the 

Lorentz factor, y = (1 - v 2 / c 2 ) 1 / 2 . 
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Relativistic particle Low Energy Photon 

Figure 1.5 Inverse Compton Effect 

In the interstellar medium, photons are provided by starlight or the 

microwave background. In discrete sources, they may be produced at higher energies 

as the result of synchrotron emission. 

1.3 VHE Gamma Ray Absorption 

The principle mode of absorption for TeV gamma rays in regions of low 

matter density is via photon - photon pair production. When the product of the energy 

of two colliding photons is greater than (m ec 2) 2 : 

y + y -> e+ + e' 

Gamma rays of energy greater than 10 TeV may interact with photons of the 

ubiquitous microwave background (Gould & Schroder, 1966; Jelley, 1966). This 

process may attenuate the emission from galactic sources of gamma rays with 

energies in excess of 50 TeV (Fig. 1.6). Below 50 TeV, absorption is caused by pair 

production with background infrared and starlight photons. The interaction length of 

this mechanism is such that it is unimportant for galactic objects. 
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Figure 1.6 Mean free path for a gamma ray against the various 
background photon fields as a function of energy. 
(After Ramana Murthy and Wolfendale, 1986) 

It has been proposed (Stecker, et al. 1992) that the absorption of TeV gamma 

rays by the infrared background over intergalactic distances may be useful as a means 

of measuring the strength of the background. This is discussed in more detail in 

section 6.2.2. 

Pair production may also occur within the electrostatic field of a nucleus, 

provided that the incident photon has energy > 2 mec2. While this has little effect 

upon gamma rays in free space, it becomes important in regions of high matter 

density and may lead to absorption of photons close to their source. 

Finally, in the very strong (~1012 Gauss) magnetic field of a neutron star 

gamma rays, produced by the curvature radiation process, may interact with virtual 

photons of the field via pair production. 
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1.4 Detection Techniques 

The vast energy range (0.511 MeV to 100 EeV) covered by gamma ray 

astronomy has led to the development of a wide variety of instruments for use in then-

detection. The gamma ray emission from many of the sources which are typically 

observed follows a steep power law spectrum. Figure 1.7 is the differential spectrum 

of the unpulsed emission from the Crab nebula and illustrates the rapid decrease in 

photon flux over the energy range 10 MeV to 10 TeV. The gamma ray spectrum can 

be divided into a series of regimes based around the detection techniques employed. 

These are discussed in the following section. 

10 I — » 1 1 n u i | — i i u m i | — i i - 1 1 1 — i r n m q — i i i m i i |—I i u i m 

lo"8-

ld10 -

'> io-12 
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2 
t 

10 

14 

10' 

10 
.-20 'I • 1 1 ' ' """I I I I m i l l i . I I m i l l |, 1 H I 

IO1 IO2 IO3 io4
 IO5 IO 6 io7 

MeV 

Figure 1.7 Differential spectrum of the unpulsed emission from the Crab nebula 
(from Nolan, et al. 1993). 
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1.4.1 Low to High Energy 

At energies below 30 GeV, the Earth's atmosphere acts as an effective shield 

against gamma rays which necessitates the use of high altitude balloon or satellite 

experiments. 

The Compton Gamma Ray Observatory (CGRO) is the second of NASA's 

"Great Observatories" and was launched in 1992. It carries four of the most sensitive 

gamma ray detectors developed, a description of which demonstrates some of the 

techniques in use for observing low to high energy gamma rays. 

(i) Oriented Scintillation Spectroscopy Experiment (OSSE)(Fig. 1.8). 

This consists of four Nal(Tl) - CsI(Na) scintillation detectors with a 

collimated field of view of 3.8° x 11.4° full width at half maximum. It operates over 

the 0.5 to 10 MeV range and provides spectroscopy with an energy resolution of 

approximately 6%. Both the source and a background region can be monitored 

simultaneously, or more than one source can be observed. 

Figure 1.8 An OSSE detector (from Cameron, et al. 1992) 

(ii) Burst and Transient Source Experiment (BATSE) (Fig. 1.9). 

This comprises four pairs of uncollimated Nal(Tl) scintillation detectors at 
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each corner of the satellite which give full sky coverage. Each pair is made up of a 

large area (2025 cm2) detector with an energy range of 30 - 1900 keV and a smaller 

(127 cm2) detector to provide energy measurements in the 15 keV to 110 MeV range. 

From the relative signal strength in the four large detectors the location of a gamma 

ray signal can be estimated. BATSE's primary mission has been the observation of 

gamma ray bursts. 

Y \ +Z 
COMPTEL 

EGRET 

OSSE 

+x 

+x 

I 
-z +Y 

-X 

GAMMA R A Y OBSERVATORY BATSE DETECTOR ASPECT 

Figure 1.9 The location and aspect of the BATSE detectors (from Fishman, et al. 
1992) 

(iii) Compton Telescope (COMPTEL) (Fig. 1.10). 

In the 0.8 to 30 MeV energy range, Compton scattering is an important 

interaction mechanism. Imaging compton telescopes make use of this interaction to 

detect gamma ray sources with an angular resolution of one to two degrees. An 

incoming photon undergoes compton scattering in the first layer of scintillator (Dl) 

and is (ideally) completely absorbed in the second layer (D2). Knowing the energy 

deposited in each layer allows the Compton scatter angle to be calculated and 

combining this with the position of the photon in each layer defines a circle on the 

sky. The superposition of these circles reveals the presence of any point source of 
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gamma rays. COMPTEL also provides spectral information with a resolution of 10%. 
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Figure 1.10 COMPTEL (from den Herder, et al. 1992) 

(iv) Energetic Gamma Ray Experiment (EGRET) (Fig. 1.11). 

At higher energies (above 20 MeV) photons interact almost exclusively via 

pair production. A spark chamber experiment, such as EGRET, uses this fact to detect 

and determine the origin of high energy gamma rays. An incoming photon passes 

through the anti-coincidence shield and enters the spark chamber where it interacts 

with a tantalum foil to produce an electron positron pair. The cells of the spark 

chamber are at high voltage such that the passage of a charged particle ionises the gas 

within them and causes a spark. The position of the sparks follows the track of the 

charged particles and enables the arrival direction of the incoming photon to be 

calculated. Energy measurements are made by a scintillation detector below the spark 
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chamber. EGRET has a 40° field of view and provides an angular resolution of 5 to 

10 arcminutes as well as a spectral resolution of 22%. 

ANTI-COINCIDEN CLOSELY SPACED 
COUNTER SPARK CHAMBERS 

WIDELY SPACED 
SPARK CHAMBERS 

TIME OF 
FLIGHT 
COINCIDENCE 
SYSTEM 

PRESSURE VESSEL 

NdflT) ENERGY 
MEASUREMENT COUNTER 

Figure 1.11 EGRET (from Hartman, et al. 1992) 

1.4.2 Very High Energy 

Above 30 GeV the gamma ray flux becomes negligible for small area 

satellite-borne detectors. The air cerenkov technique is used to detect the cerenkov 

radiation from cosmic ray initiated electromagnetic cascades in the atmosphere and 

has a much larger effective collection area. This technique is described fully in 

Chapter three. 

1.4.3 Ultra High Energy 

The remainder of the gamma ray spectrum, from 50 TeV and above , is 

accessible to ground based scintillator arrays. At these high energies, the particle 

cascades resulting from an incoming cosmic ray maximize close enough to ground 

level at mountain altitudes to be detected directly by scintillation detectors. Given 

sufficient resolution, it is possible to estimate the shower core location and the energy 

and arrival direction of the primary cosmic ray. Any excess point sources can then be 

ascribed to a celestial source of neutral particles, probably gamma rays. A typical 
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array, such as the Tibet I I air shower array (Fig. 1.12) consists of 200 scintillation 

detectors spread over 105 m 2. 

• • • • • • 
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with density measurement * 

15m 
0.5 m density detectors 

Figure 1.12 Tibet I I Air Shower Array (from Amenomori, et al. 1995) 

1.5 Summary 

The gamma ray region of the electromagnetic spectrum was the last to be 

exploited as an astronomical window. The subject of this thesis is very high energy 

(VHE) gamma ray astronomy using the imaging atmospheric Cerenkov technique. 

Observations made with the EGRET instrument have particular relevance to VHE 

gamma ray astronomy as they are adjacent in energy range, with the highest energy 

EGRET photons separated from the lowest energy VHE photons by approximately an 

order of magnitude. 

The most important results from EGRET have been summarised by Fichtel 

(1996). Over fifty active galactic nuclei have now been detected. These sources have 

been associated with blazars which are flat spectrum radio loud galaxies. They can 
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exhibit extreme variability on a timescale of weeks to months. An extrapolation of the 

typical power law spectra of these sources implies that many of them should be 

detectable at VHE energies, although emission from the more distant sources would 

be attenuated by pair production on the extragalactic infra-red background (section 

6.2.2). Pulsed gamma rays from seven pulsars have also been observed, again with 

smooth power law spectra whose extrapolation to TeV energies lies above the flux 

sensitivity of atmospheric Cerenkov telescopes in some cases. The observation of 

these sources at TeV energies, whether with positive or negative results, is extremely 

important for determining the gamma ray production mechanisms involved and the 

nature of the relativistic particles from which they originate. 

There are forty unidentified EGRET sources at low galactic latitudes and 

associations between some of these and supernova remnants have been suggested by 

Stumer and Dermer (1995). Supernova remnants are strong candidates as the sources 

of cosmic ray nuclei and the unambiguous detection of TeV emission from the decay 

of neutral pions formed in collisions between high energy hadrons would provide 

significant evidence in support of this theory. In addition, the greater angular 

resolution of the imaging atmospheric Cerenkov technique may allow mapping of the 

supernova remnant and reveal where in the remnant the emission is strongest. 

In summary, the aim of VHE astronomy is to explore the sites of gamma ray 

production in order to determine the nature of the source, the type of relativistic 

particle which produces the photons and the particle acceleration mechanisms 

involved. This information may in turn enable us to determine finally the source of 

the cosmic rays. The success of the EGRET experiment has provided a guide for 

VHE observations which may help fulfil these aims. 
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C H A P T E R T W O - C E R E N K O V R A D I A T I O N 
F R O M E X T E N S I V E AIR S H O W E R S 

2.1 Introduction 

As mentioned in Chapter one, VHE gamma rays can be detected by the 

Cerenkov radiation they cause the atmosphere to emit. This is produced by the 

electromagnetic cascades which result when a VHE photon interacts in the 

atmosphere. This chapter includes a description of the development of the extensive 

air showers (EAS) initiated by both nucleons and photons. The mechanism by which 

Cerenkov radiation is produced and the implications of this upon Cerenkov emission 

from charged particles in the atmosphere are also discussed. Finally, the characteristic 

differences in Cerenkov emission between air showers with nucleon and photon 

primaries and some of the methods by which gamma ray initiated showers may be 

recognised are examined. 

2.2 Extensive Air Showers 

The EGRET experiment on board the CGRO is the largest spark chamber 

ever operated on a satellite and has an effective area of approximately 1000 cm2. The 

flux of gamma rays from a typical source becomes negligible for this detector above 

an energy of 30 GeV. Extensive air showers are generated when a high energy 

cosmic ray particle interacts with the Earth's atmosphere. The height of the 

atmosphere allows the products of such air showers to spread laterally, resulting in 

much larger effective collection areas for detectors at ground level. The composition 

and temporal and spatial spread of the shower are dependent upon the nature of the 

primary particle. In principle, this allows the detection of gamma ray initiated 

showers over the prevalent background of those with hadronic primaries, which are ~ 

1000 times more numerous in the VHE range. 
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2.2.1 Nudeon Initiated EAS 

A cosmic ray nucleus comprised of N nucleons will interact with an 

interaction length X,N in the atmosphere, where 

, A m P 

and 

o N = *Rj(14.5 l / 3 + N 1 7 3 - 8) 

with R 0 = 1.47fm, 8 = 1.12, A = 14.5 (the average atomic mass number for a 

molecule in air) and nip is the mass of the proton (Westfall, et al. 1979).This 

interaction length is longest for a single proton primary (90 gem-2 for a 1 TeV 

proton), in which case the energy dependence of the interaction length becomes 

important. 

The air shower begins with a process known as pionisation. This is the result 

of collisions between the incident cosmic ray and nucleons in the atmosphere. 

Approximately half of the primary energy of the incoming particle is lost in the initial 

collision during which pions and some kaons are produced. The charged pions, kaons 

and other nuclear fragments which have not decayed then go on to interact with other 

nuclei and produce further hadrons. Pion interactions differ from nucleon interactions 

in that all of the energy of the pion is lost. This nucleonic cascade continues until the 

energy of the constituent particles is below the threshold for pion production (about 1 

GeV), at which point they decay or are brought to rest by ionisation losses. 

If the primary particle is a heavy cosmic ray nucleus then the shower will 

develop more rapidly. The simplest model for the interactions of a cosmic ray nucleus 

is the superposition model (de Beer, et al. 1966). If the nucleus has a primary energy 

E p and an atomic mass A, then the resultant shower is considered to be a 
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superposition of A showers, each of energy E p /A. This method tends to overestimate 

the rate of development of the shower and underestimate the fluctuations in the 

cascade. 

The three pion types are produced in approximately equal numbers. The 

charged pions may decay via: 

n+ -> u + + 

ft" -* u." + 

with a half-life of 2.6 x 10"8 or interact further. Obviously, the higher energy pions 

with extended lifetimes due to time dilation are less likely to decay. The four kaon 

species produced at approximately one tenth the rate of the pions can also interact 

further or decay, producing pions, muons and electrons. 

The neutral pion decays very rapidly into two photons which initiate an 

electromagnetic cascade similar to that observed in a shower with a gamma ray 

primary (see section 2.2.2). 

ft0 -> y + y 

The muon component of the shower is produced mainly in the decay of 

charged pions produced in the nucleonic cascade, although photopion interactions, 

kaon decays and pair production (Y — » \ i + + \r) also contribute. Muons have a very 

small cross section for nuclear interactions and lose energy at the rate of 2MeV/gcnr2 

by ionisation. They may also decay via: 

u + -» e+ + ve + 

\i' -> e" + v e + 

with a lifetime of 2.2 x 10"6 s, the resultant electrons contributing in a small way to 

the electromagnetic component of the shower. A muon with a Lorentz factor >20 will 

live long enough to reach ground level if vertically incident. Muons are produced 
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high up in the atmosphere by pions with transverse momenta ~ 0.5 GeV. This results 

in a wide lateral spreading of the muons as the shower develops. For muons with an 

energy E^ > lGeV, the lateral distribution at sea level as a function of the total 

number of shower particles, N, and the radius from the shower core, r, is given by 

(Greisen, 1960): 

Atmospheric 
Depth 
Ogctri' 

electromagnetic 
shower 

1000 gem2 

primary 
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ray 

nucleonic 
cascade 

electromagnetic 
shower 

electromagnetic 
shower 

Figure 2.1 A schematic diagram of a nucleon initiated EAS (from Longair, 1992). 
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2.2.2 Gamma Ray Initiated EAS 

A gamma ray photon in the atmosphere will produce an electron positron 

pair in the electrostatic field of a nucleus (y —» e+ + e~). Photonuclear interactions 

may also occur, resulting in the production of pions and kaons, but the probability of 

this relative to electron positron pair production is only ~ 2.8 x 10 3 . This results in an 

air shower which is principally electromagnetic in nature, with the electrons and 

positrons producing further photons via bremsstrahlung with an interaction length of 

37 g cm - 2. At TeV energies, approximately 0.1% of the cosmic ray background is 

composed of high energy electrons (Nishimura, 1994). These will initiate an 

electromagnetic cascade in the atmosphere which is essentially the same as that 

caused by a photon primary, the first interaction being Bremsstrahlung and not pair 

production. 

A highly simplified model which reproduces the main features of an 

electromagnetic cascade is reviewed by Allan (1971). The interaction length for 

Bremsstrahlung, Xq, is approximately the same as the radiation length for pair 

production and so the probability of interaction is half at some distance, X R , given by: 

e x « = 0.5 

If we then further approximate that the energy is equally split in each interaction then 

the average energy of each particle and photon after n interactions is: 

n • J ? 

where E 0 is the energy of the gamma ray primary. This results in a shower composed 

of electrons, positrons and photons in equal numbers, shown schematically in figure 

2.2. 
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Figure 2.2 A simple model for a photon initiated EAS (from Longair, 1992) 

The number of photons and particles in the shower continues to double after 

each interaction length until the average energy of each drops below the critical 

energy for air, E c ~ 80 MeV. At this point, ionisation losses become more important 

than bremsstrahlung for the particles (Fig. 2.3). The cross-section for pair production 

from the photons also falls until compton scattering and photoelectric absorption 

dominate (Fig. 2.4). At shower maximum, the total number of particles is: 

E 
o N ~ £ 

and the atmospheric depth is given by: 
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Figure 2.3 Energy loss of electrons Figure 2.4 The probability of a photon 
through ionization or radiation as a undergoing Compton scattering or pair 
function of energy (Rossi, 1964) production in air (Rossi, 1964) 

More complete models take account of the ionisation losses and longitudinal 

dispersion during the growth of the cascade and thus predict fewer particles at shower 

maximum.The lateral spread of the electromagnetic shower is determined almost 

entirely by multiple Coulomb scattering of the electrons and positrons (section 2.4.3). 

2.3 Cerenkov Radiation 

2.3.1 The Cerenkov Effect 

The Cerenkov effect was first observed by scientists working with 

radioactive material as a faint blue Light emitted from transparent substances close to 

a radioactive source. A remarkably accurate classical prediction of this effect was 

given by Heaviside (1892) and investigations into the nature of the radiation were 
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first performed by Mallet (1926), but it was not until the experiments of Cerenkov 

(eg. Cerenkov, 1937) and the subsequent theoretical treatment by Frank and Tamm 

(1937) that the phenomenon was given a quantum mechanical explanation. 

The following qualitative description of the Cerenkov effect is based upon 

that given by Jelley (1958). When a charged particle passes through a dielectric 

medium, it induces a polarization in the atoms surrounding it. These polarized atoms 

are symmetrical, both axially and azimuthally, about the charged particle and so 

cause no resultant field at a distant point. If the particle is moving with a velocity 

close to the phase velocity of light within the dielectric then the axial symmetry is 

lost (Fig 2.5). 

Figure 2.5 The polarization of atoms in a dielectric for a slow moving (left) and fast 
moving (right) charged particle. 

This results in a pulse of radiation from each element along the path of the particle. 

Generally, this radiation will interfere destructively and will not be observed at a 

distance; however, if the particle moves faster than the phase velocity of light then 

the radiation can constructively interfere in certain directions as illustrated in Figure 
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2.6. 
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v = 0.8c/n v=1.25c/n 

Figure 2.6 Huygen's constructions for charged particles of different velocities. 

I f the velocity of the particle, v = Pc then in a time t the particle moves a 

distance = tpc. The distance travelled by the radiation in the same time = tc/n, where 

n is the refractive index of the medium. From this we can derive the angle 8 at which 

the radiation is observed: 

The light from each element in the medium is produced in the form of a 

cone. This conical effect is somewhat analogous to the shock wave produced by a 

projectile moving faster than the speed of sound in air. 

Cerenkov radiation will be produced only when the particle velocity is above 

v = P^c, where p ^ = 1/n. At this velocity, the Cerenkov radiation is emitted at an 

angle 0 = 0. The maximum angle of emission 0 m a x occurs when P = 1, therefore: 

The conditions for Cerenkov radiation cannot be met i f the real part of the refractive 

index is less than one. In air, this constrains the spectrum of the radiation to 

wavelengths of ultraviolet and longer. 

J _ 
pn 

9, max 
i n cos 
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2.3.2 Cerenkov Radiation in the Atmosphere 

The refractive index for all gases is always close to unity, and for air at 

standard temperature and pressure (s.t.p.) n = 1.00028. Using: 

c o s emax = H 

and writing n = 1 + T| where r\ is very small, we obtain: 

To determine the threshold energy Ey for production of Cerenkov radiation 

in air we can write P(1+TI) = 1 which gives the relation: 

The majority of the Cerenkov light from E A S is produced by electrons 

(Boley, 1964), due to their average energy and number spectra. For electrons in air at 

s.t.p., Bjnax ~ 1.3° and E j = 21 MeV. It is also possible to estimate the photon yield, N, 

per unit path length, dx, using the expression derived by Frank and Tamm (1937): 

« - 2 ^ ( 1 - ± ) s i n > e r a „ 

where a is the fine structure constant = 1/137 and X,j and X2

 W Q m e boundaries of the 

wavelength range of the emission. Approximating sin 0 m a x as B m & x and assuming a 

wavelength range of 350 nm to 500 nm gives: 

dN 
dx - 390 0 ^ » 780 ti 

which at s.t.p. corresponds to 0.2 photons per cm. 

The refractive index of the atmosphere is proportional to its density and 

hence pressure and temperature. Since the atmospheric pressure varies approximately 
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exponentially with height h above sea level, we can write: 

_h 

where r | 0 = 0.00028 and the scale height of the atmosphere, h 0 = 7.1km. The 

relationship between refractive index and density implies similar correlations with the 

properties of the Cerenkov emission, such that: 

dx 0 0 P 

dN 
x 

0 * [p 

These relationships are illustrated in Figure 2.7. At shower maximum for an air 

shower initiated by a gamma ray of energy 1 TeV, the atmospheric depth is 

~ 300 gem - 2 and the average particle energy is ~ 80 MeV. This produces radiation 

with a Cerenkov angle ~ 0.65° at the rate of ~ 0.07 photons cm - 1 particle - 1. 
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Figure 2.7 The variation with atmospheric depth of different properties of the 
Cerenkov radiation (from Ramanamurthy and Wolfendale, 1986). 

The nature of the Cerenkov flash is therefore dependent upon the 

development of the EAS. The maximum intensity of Cerenkov production occurs 

when the number of particles in the cascade is greatest, i.e. when the average particle 

energy is at E c , the 80 MeV critical energy discussed in section 2.2.2. Once emitted, 

the radiation can be attenuated by Rayleigh scattering, aerosol scattering and ozone 

absorption, with approximately half of the emitted photons surviving to ground level. 

2.4 Differences in Cerenkov Emission from Nucleon and Photon 

Initiated EAS 

2.4.1 The Cerenkov Image of EAS 

Figure 2.8 illustrates some of the differences between a typical photon and 

proton initiated EAS. Of immediate note is the much greater width of the proton 

shower, due to the production of pions with large transverse momenta in strong 

interactions. The Cerenkov light produced by either type of shower forms an image in 
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the shape of a column in the sky which is aligned with the arrival direction of the 

primary particle. In the case of the photon initiated shower, half of the Cerenkov light 

is emitted within 21m of the shower axis and at a median altitude of 8km for 

vertically incident showers. For the proton induced shower the same proportion of 

light is emitted 500m closer to the ground and within 70m of the shower axis (Hillas, 

1996), making the proton shower image appear much broader to an observer at 

ground level. The measurement and parameterisation of this image allows the 

identification of photon initiated showers. The imaging technique of gamma ray 

signal enhancement is discussed in greater detail in Chapter three. 
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Figure 2.8 Simulation of the development of gamma ray and proton initiated EAS. 
The lateral scale is exaggerated by a factor of five and the picture is thinned down by 
showing each particle track as a sparsely dashed line (from Hillas 1996). 

2.4.2 The Temporal Spread of Cerenkov Photons 

The arrival times of Cerenkov photons at ground level can be used in two 

ways to discriminate between photon and nucleon initiated showers. In the first 
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method the Cerenkov light is sampled at a number of points on the ground, enabling 

the angle of the shower front and hence the arrival direction of the primary particle to 

be derived. The Durham group used this method of wavefront sampling to observe 

the Crab Pulsar for a total of 34 hours in 1981. They observed two significant bursts 

of emission pulsed at the period seen at other wavelengths and lasting 15 minutes 

each (Gibson, et al. 1982). Further observations during 1982-83 showed evidence for 

weak persistent emission in 103 hours of exposure with the arrival direction of the 

pulsed flux being clustered around the source position (Dowthwaite, et al. 1984). 

Pulse shape discrimination methods involve sampling the Cerenkov 

wavefront at a single point and examining the structure of the signal time profile. 

Showers with nucleonic primaries are expected to show more features in their pulse 

profile than those with photon primaries as their greater lateral spread and less 

uniform distribution of shower particles leads to the Cerenkov light emitted being 

detected after travelling a range of path lengths. The penetrating muon component of 

nucleon initiated EAS will emit Cerenkov light closer to ground level which is 

received before the majority of the pulse. Turner, et al (1990) report the detection of 

gamma ray emission from the Crab Nebula with a significance of 4.2 a after rejecting 

95% of showers on the basis of a manual analysis of their pulse shapes. More 

recently, Roberts (1993) has attempted to parameterise the pulse profile in terms of its 

rise-time, fall-time, pulse maximum and ful l width at half maximum. This method 

would appear to be less subjective and less susceptible to electronic or sky noise 

effects. 

2.4.3 The Cerenkov Light Pool on the Ground 

The differences described above between the development of nucleon and 

gamma ray initiated EAS lead to differences in the distribution of the Cerenkov light 

at ground level. The exponential nature of the atmosphere results in many interaction 

lengths being traversed in a short space of time. This produces a thin disc of 
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secondary particles, the lateral extent of which is defined by the opening angles of the 

interactions and by multiple Coulomb scattering. 

Gamma rays, with an interaction length of 37 gem 2 , initiate an 

electromagnetic cascade high up in the atmosphere. This leads to a Cerenkov light 

pool on the ground of approximately 150 m radius. The distribution of light across 

the pool is essentially flat; however, there is a region of increased photon density 

around the circumference of the pool known as the Cerenkov shoulder (eg. Hillas, 

1996). As the density of the atmosphere increases, so too does the angle of Cerenkov 

emission, causing a focussing effect at large radii (Fig. 2.9). 

Atmospheric Depth 
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1000 gem2 y 
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/ / / / / / / / / / / / / / / 

Photon density 
at ground level 

Figure 2.9 Focussing of Cerenkov light due to changing angle of emission. 

At shower maximum the focussing is less effective due to multiple Coulomb 
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scattering of the low energy electrons.The effect of multiple Coulomb scattering is 

given by (Gaisser, 1990): 

= (#) * 

where E s ~ 21 MeV and 8t is the distance travelled in gem - 2. For electrons of energy 

E = 100 MeV, <59)R M S ~ 12°. Beyond the shoulder, the photon density falls off 

rapidly as 1 / r 2 

Nucleon initiated EAS typically begin much lower in the atmosphere as the 

interaction length for a VHE proton in the atmosphere is ~ 100 gem - 2. This results in 

a Cerenkov light distribution on the ground which is sharply peaked about the shower 

core. In addition to this, other peaks are caused by electromagnetic cascades initiated 

by pions produced with large transverse momenta in the nuclear interactions. The 

penetrating muon component of the shower also generates Cerenkov radiation from 

lower in the atmosphere, giving rise to intense local peaks of emission. 

a) 

(b) 

Figure 2.10 Simulations of the Cerenkov photon densities on the ground from EAS 
initiated by a) 320 GeV gamma ray b) ITeV nucleon, both vertically incident. The 
shower axis is at the centre of each figure and the grid spacing is 50 m (from Hillas 
and Patterson 1987). 

30 



2.4.4 The Ultra-Violet Component of the Cerenkov Light 

The Cerenkov light produced by an EAS undergoes absorption in the 

atmosphere. Attenuation of the UV component of the light is greater than at other 

wavelengths due primarily to ozone absorption. It has been suggested (e.g. Fegan, 

1992) that the penetrating muon component of nucleon induced EAS may produce 

UV light at low altitudes which will not be so effectively absorbed as light emitted by 

other shower particles higher up in the atmosphere. This could lead to spectral 

differences between the detected Cerenkov light from gamma ray and nucleon 

initiated EAS. Monte Carlo simulations by Hillas (1996) suggest that these 

differences are small for a detector at an altitude of 2.3 km. It is possible that the 

differences may be more pronounced for a detector at sea level. 

2.4.5 The Polarization of the Cerenkov Light 

The final feature to consider is the intrinsic polarization of the Cerenkov 

radiation from air showers. I f all of the emitting particles were travelling along the 

shower axis, the resulting radiation would be polarized along the direction of the 

shower axis. In practice, the direction of motion of each particle in the shower can 

vary widely from the shower direction but the expected differences in polarization 

between gamma ray and nucleon initiated EAS are modest (Fig. 2.11) and difficult to 

measure (Hillas, 1996). 
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Figure 2.11 Polarization of Cerenkov light (from Hillas, 1996). 

2.5 Summary 

In this chapter the development of extensive air showers and the 

characteristics of the atmospheric Cerenkov radiation they produce has been 

discussed. These characteristics define the specifications of an instrument for gamma 

ray detection using the atmospheric Cerenkov light flash. A large flux collector of 

reasonable optical quality on a steerable mount is required to collect as many 

Cerenkov photons as possible. This light must be focussed on to a high gain detector 

with a response time ~ Ins, which is sensitive over the relevant wavelength range (~ 

300 to 500 nm). The signal recorded in the detector must be observable over the 

detector response to background sky light. Finally, the system must be designed to 

have some discriminatory power between the EAS induced by nucleon or gamma ray 

primaries. 

There are three basic systems currently in use: single dish telescopes, 

coincidence telescopes and stereo systems. Single dish telescopes are simple to 

engineer and allow a large mirror area on a single mount; however, the detector gain 
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must be kept reasonably low to prevent false sky noise triggers and they wil l also 

record the Cerenkov light produced by penetrating muons close to the telescope. 

Coincidence telescopes have more than one flux collector in close proximity and 

require the detectors from each flux collector to trigger simultaneously for a 

Cerenkov event to be recorded. This allows the detector gain to be increased without 

swamping the system with false sky noise triggers. Furthermore, spatial coincidence 

requirements limit the number of penetrating muon triggers. Coincidence telescopes 

are more complex to engineer than single dish systems and the total mirror area is 

split between each of the flux collectors. Stereo systems also use more than one flux 

collector but these are widely spaced to provide parallax which permits the three-

dimensional reconstruction of the Cerenkov light distribution in space and hence 

better gamma ray selection capabilities. The requirement that a shower be observed 

by widely spaced detectors reduces the effective collection area for each individual 

detector and these systems are also costly to construct. 

The design of an atmospheric Cerenkov telescope is discussed in more detail 

in the next chapter, with particular emphasis on the coincidence telescopes used by 

the University of Durham gamma ray astronomy group. 
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CHAPTER THREE - THE ATMOSPHERIC 
CERENKOV TELESCOPE 

3.1 Introduction 

Extensive air showers and the Cerenkov radiation caused by them have been 

discussed in Chapter two. This chapter deals with the methods for detecting this 

Cerenkov radiation at ground level and how this can be used for gamma ray 

astronomy. The basic elements of an atmospheric Cerenkov detector are examined, 

followed by a summary of their application and the current status of ground based 

gamma ray astronomy. A description of the three telescopes operated by the 

University of Durham is given, as well as the calibration methods and routine data 

processing necessary to interpret their observations. 

3.2 The Generic Atmospheric Cerenkov Telescope 

Al l atmospheric Cerenkov telescopes (ACT's) consist of three principal 

components: the steerable optical system, which collects the flux of Cerenkov 

photons, the detector package and the data acquisition system. The contributing 

factors which influence the design of these components are examined in this section. 

3.2.1 The Steerable Optical System 

Unlike other telescopes, the collection area for the photon flux for an ACT is 

defined not by mirror size, but by the size of the Cerenkov light pool on the ground. 

This being the case, the choice of mirror area is influenced by the need to collect as 

many photons as possible in order to lower the telescope's detection threshold and by 

engineering considerations. 

The scale of the Cerenkov image of an EAS as seen by an ACT is ~ 1° and 

the scale of meaningful structure within the image is ~ 0.2° (Weekes, 1988). Mirror 
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quality is therefore less important than in other optical systems. The shape of the 

reflector is also not critical, although the use of a paraboloid removes on-axis 

spherical aberrations and ensures the isochronous arrival of light at the detector. This 

improves the efficiency of the telescope triggering system by giving maximum 

illumination of the detector within its response time. Off-axis aberration in the form 

of coma is still present but can be reduced at the expense of isochronous performance 

and on-axis image quality. 

The choice of mirror surface is dictated by the spectrum of the Cerenkov 

emission. The differential spectrum is proportional to X'2 with atmospheric absorption 

due to ozone cutting the spectrum off at approximately 300 nm (Jelley, 1967). The 

surface chosen for the University of Durham ACT's is anodised aluminium. This 

material has a specular reflectivity of ~ 80%, peaking at a wavelength of 400 nm. The 

mirrors are vacuum formed to the required shape and consist of a thin reflective 

surface bonded to an aluminium honeycomb backing which is plated with a thicker 

aluminium sheet (Fig. 3.1). A full description of the mirror manufacturing process is 

given by Dickinson (1995). 

A N O D I S E D A L U M I N I U M S H E E T 

D U R A L S I D E P L A T E 

D U R A L B A C K SHEET 

A L U M I N I U M 
H O N E Y C O M B 

Figure 3.1 Cross-section of a Durham telescope mirror segment. 
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Financial and engineering considerations dictate that most large ACTs are 

steered by an alt-azimuth mount and not equatorial. Observations can be performed in 

three operational modes. Drift scanning entails setting the detector attitude at a 

constant zenith and azimuth angle and allowing the candidate source to transit across 

the field of view. An equal angular region either side of the source is observed to 

provide a background for comparison. In tracking mode, the candidate source 

position is maintained at the centre of the telescope field of view to provide the 

maximum on source exposure time but no background. This technique is most useful 

when searching for pulsed emission from a source. 

The chopping mode provides a control background by displacing the 

telescope pointing away from the source direction and has been exploited in two 

slightly different ways. In the first method, the source is observed for two minutes, 

followed by a background region alternately two degrees right and left of the 

candidate source position (Bowden, et al. 1992a). This method minimizes the effects 

of large scale changes in sky brightness throughout the observation but results in a 

changing background field as the region of sky viewed appears to rotate around the 

source. The second method involves tracking a source region for a longer period of 

time (normally fifteen minutes for Durham observations) and then steering the 

telescope back to track the same region again after the candidate source has passed. 

The second scan then provides the background for the first. This method reduces the 

time spent steering the telescope between source and background regions but may be 

subject to count rate changes caused by changing sky conditions. This effect can be 

minimized by keeping the on source/off source cycles shorter than the typical time 

scale for atmospheric changes, subject to a minimum of - 1 0 minutes to ensure the 

off source region does not overlap the on source. 

3.2.2 The Light Detector Package 

As described in section 2.3.3, the Cerenkov image from an EAS is formed by 
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a thin disc of particles moving at approximately the velocity of light in vacuum. This 

results in a very brief ( ~ 2 ns) pulse of light at ground level, with photon densities of 

~0 .1 photons n r 2 GeV 1 for gamma ray initiated cascades, which can be detected 

over the background of night sky light. What is required then, is for a detector with a 

very fast response time, sensitive over a suitable spectral range and with high gain 

and photon detection efficiency. The photomultiplier tube (PMT) is ideal for this 

application, having a rise time - 2 ns, a gain of 103 - 108 and a spectral response 

which can be defined by the choice of window and cathode material (Fig. 3.2). The 

quantum efficiency of a PMT describes its photon to photoelectron conversion 

efficiency and is of the order of 25%. 
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Figure 3.2 Spectral response characteristics for two different types of PMT. 

PMTs in atmospheric Cerenkov telescopes usually operate in a state of 

photoelectron "pile-up", in which more than one background photoelectron is 

recorded per resolution time per detector. In this mode of operation, the background 

light is observed as a D.C. offset in the PMT output. The ability of the detector to 

resolve the Cerenkov pulse is then limited only by the noise fluctuations of the 
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background. 

Following Weekes (1988), the standard deviation in the number of 

photoelectrons due to the noise fluctuations, N, is given by: 

where A is the mirror area, e, the PMT quantum efficiency, T , the integration time, £1, 

the solid angle subtended by the PMT and <j>, the night sky background flux. As the 

recorded Cerenkov signal, S oc Ae, then the signal to noise ratio varies as: 

and the minimum detectable signal is proportional to the inverse of this function. 

An improvement in the signal to noise ratio and associated decrease in 

detector threshold can be achieved by the use of coincidence techniques. Here, the 

signals from more than one mirror/detector system are required to exceed a 

discrimination threshold within a narrow time interval for an event to be recorded. 

The rate, R, at which the coincidence requirement is fulfilled by chance is given by: 

where C is the number of PMT's in coincidence, n is the count rate of each PMT and t 

is the coincidence gate width. Maintaining a low rate of chance coincidences is 

necessary to improve the signal to noise ratio. As more detectors are added to the 

coincidence criterion the gain, and hence detection efficiency for true Cerenkov 

signals, can be increased for a constant chance coincidence rate. The University of 

Durham telescopes operate with a three-fold spatial coincidence requirement, which 

has been shown to provide 85% of the maximum detector efficiency (Brazier, 1991) 

while remaining cost effective and mechanically feasible. Coincidence techniques 

also remove background events caused by the passage of local muons through the 

N oc 

4 Ae 
oc N Tl2<b 

R = C! n c tv ,c t ( c - i) 
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transparent window material of PMT's in the detector. 

The size of the detector package is determined by the required field of view 

and the associated sky noise acceptance. The Durham telescopes have a field of view 

of ~ 3° in diameter which collects the majority of the light produced by an EAS. 

3.2.3 Electronics and Data Acquisition 

PMT Amplifier Discriminator Trigger 
Logic 

ADC 

Data 
Logger 

gate 

Clock 

l l l l l l l bus 

Figure 3.3 A schematic representation of the Data Acquisition system for an ACT 

The essential elements of the data acquisition system for an ACT are shown 

in Figure 3.3. The signal from the PMT is amplified and passed through a 

discriminator. I f the peak voltage of the pulse exceeds a preset discrimination level 

then the signal has "triggered" and a logic pulse is output to indicate this to the trigger 

logic unit. The trigger logic unit is used to decide i f all of the trigger conditions are 

met. In the case of the Durham telescopes, the trigger conditions are satisfied i f a 

trigger pulse is received from corresponding PMTs in the other two detector 

packages within the coincidence gate time, t ~ 10 ns. For single mirror systems, the 

trigger logic may require a coincident trigger from any two PMT's within the detector 

package. 

When the trigger conditions are met, a gate is opened to the analogue to 

digital converter (ADC) and the integrated analogue pulse from each PMT is 

recorded in the form of digital bits by the data logger, along with a time stamp and 

any other information about the event. The integration time,T , should be matched to 
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the duration of the Cerenkov pulse and be as short as possible to reduce the amount of 

integrated background noise. 

3.3 The Development of the Atmospheric Cerenkov Technique 

3.3.1 Early History 

The possibility of a Cerenkov component in light from the night sky was first 

considered by Blackett (1948). He estimated its contribution to the total night sky 

flux to be ~ 10"4. The detection of such a small fraction is infeasible as it is much 

smaller than fluctuations in the mean background light. 

Galbraith and Jelley (1953) realised that the very large number of charged 

particles in an EAS might produce a detectable pulse of Cerenkov light. Their early 

experiments consisted of a small (25cm diameter) parabolic mirror with a PMT at the 

focus connected to an amplifier, pulse height discriminator and oscilloscope. They 

detected showers in coincidence with a particle detector array. 

Morrison (1958) was the first to propose a search for sources of extra

terrestrial gamma rays and Cocconi (1960) predicted a flux of TeV photons from the 

Crab nebula 1000 times more intense than the background flux of nucleons. 

Predictions such as these led to the first searches for celestial point sources using 

ACT's. Two groups, one in Ireland and another in the USSR were particularly active 

and performed drift scan observations on various radio sources such as supernova 

remnants, quasars and magnetic variables (Chudakov, et al. 1962, Fruin, et al. 1964). 

These observations failed to confirm the optimistic predictions and by the late 1970's 

there were still no reliably detectable sources. 

3.3.2 The Imaging Technique for VHE Gamma Ray Astronomy 

Photographs of the Cerenkov image of EAS were produced by Hil l and 

Porter (1961) using an image intensifier device. It was quickly realised that the 
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information available in the image might provide some means of gamma ray signal 

enhancement (Porter and Long, 1963) but technical problems and the high energy 

threshold ( > 10 1 5 eV) of the experiment precluded further development. Simulations 

based on analytical models of cascade development also suggested that the 

differences between the images produced by gamma ray and nucleon initiated EAS 

would be small (e.g. Zatsepin, 1965). 

Weekes and Turver (1977) were the first to suggest the use of a large array of 

PMT's at the telescope focus. They envisaged a system with a large (3.5°) field of 

view which would allow the monitoring of an on-source and off-source region of sky 

simultaneously. The selection of images with a centre close to the centre of the field 

of view would then provide a gamma ray rich sample. This methodology has been 

exploited by the Durham telescopes via the use of a "guard ring". In this technique, a 

central on-source PMT is surrounded by a ring of off-source PMT's separated by a 

suitable angular distance (~ 2°). Events which trigger the telescope can then be 

classified into three groups: those which trigger the on-source detector alone, those 

which trigger only guard ring channels and those with a trigger in both (Fig 3.4). By 

selecting only those events which trigger the on-source channel alone, ~ 60% of the 

background of nucleon initiated shower images are rejected. Nearly all of the gamma 

ray events are retained, thus improving the signal to noise ratio by a factor of 2 to 3. 

The obvious limitation to this technique is that the signal to noise ratio 

cannot be improved beyond the ratio of gamma ray to nucleon events as viewed by 

the central PMT. As well as this, the steeply decreasing energy spectrum of cosmic 

rays results in many of the Cerenkov images being detected at a level just over the 

threshold of a given channel. In the case of the on-source channel, this type of event 

may well have a reasonably large component of its image within the field of view of a 

guard ring PMT, indicative of an off-source nucleon event. Because of this, selection 

of single channel on-source triggers leads to a bias towards faint flashes of any origin. 

This problem increases for observations made at large zenith angles where the 
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Cerenkov image decreases in size due to the greater distance of the maximum 

development of the shower from the telescope. 

The problem of faint flashes can be solved by a further selection process. The 

signal below the triggering threshold for the off-axis tubes is recorded for each event. 

We then demand that this signal must be less than some preset level relative to the 

central tube in order for the event to be accepted. With this criterion, all events are 

treated in the same manner regardless of the total signal size, the only limit to the 

technique being set by the inherent PMT noise. A typical guard ring analysis of data 

from an ACT is presented in Chapter 4. 

o o 
o o 

o o 
Centre channel response only 

ACCEPTED 

Image of Cerenkov Flash 
in Focal Plane 

o 

O O Centre channel plus off-axis response O REJECTED 
by hardware selection O o or relative response selection 

O O 
o o Off-axis channel response only 

REJECTED 

O o 
Figure 3.4 Illustration of the guard ring technique for background rejection 
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In the 1980's, the rapid growth of computing power and the application of 

"Monte Carlo" techniques allowed much more accurate simulations of the Cerenkov 

light from EAS to be made. The most influential of these was by Hillas (1985) and 

based upon the response of the 37 element PMT camera of the Whipple Observatory 

ACT. As the shower images are approximately elliptical, Hillas parameterised the 

images he produced using standard moment fitting procedures (Fig. 3.5). The 

parameters are described in Table 3.1. 

LENGTH 

WIDTH 
m 

MISS 

DISTANCE Source Position 

AZWIDTH 

Figure 3.5 The Hillas parameters 
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Table 3.1: The Hillas parameters 

WIDTH The RMS length of the semi-minor axis of the image. 

Width is sensitive to the lateral spread of the shower. 

LENGTH The RMS length of the semi-major axis of the image. 
Length is sensitive to the longitudinal development of 
the shower. 

MISS The perpendicular distance between the major axis and 
the centre of the field of view. The miss parameter is a 
measure of image orientation and as such is 
sensitive to the arrival direction of the primary particle. 

DISTANCE The distance from the centre of the field of view to the 
centroid of the image. 

AZWIDTH An abbreviation of azimuthal width and defined as the 
RMS width of the image perpendicular to a line joining 
the centre of the field of view and the image centroid. 
The azwidth parameter is dependent upon both the 
width and the orientation of the image and wil l be 
smallest for narrow images pointing to the centre of the 
field of view. 

FRAQ2) The ratio of the two largest tube signals to the total 
tube signal. 

Some additional derived parameters have developed since the original publication, 

most notably ALPHA = sin^iMISS/DISTANCE). This is the angle between the major 

axis of the image and the radius drawn from the centre of the camera through the 

centre of the image. 

Applying this parameterisation to simulated images of EAS revealed 

significant differences between gamma ray and nucleon initiated showers. These 

differences can be understood qualitatively as follows. The nucleon initiated showers 

have a larger average lateral spread than the gamma rays, producing broader images. 

Also, i f the axes of the showers are aligned parallel with the optic axis of the detector 

then the major axes of the images wil l point towards the centre of the field of view. 
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This wi l l be the case for gamma ray showers originating from the source position, but 

not for the isotropic background of nucleon initiated EAS. An example of a simulated 

gamma ray and proton initiated shower as parameterised in an imaging camera are 

shown in Figure 3.6. Rejecting events on the basis of the Hillas parameters can 

therefore be used to enhance a gamma ray signal, with azwidth being the best single 

discriminant. A quality factor, Q, is used to quantify the efficiency of a set of cuts and 

is defined by: 

Q = 

where i\i and t | N are the fractions of gamma ray and nucleon events retained by the 

cuts, respectively (Fegan, 1992). 
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Figure 3.6 Examples of a simulated gamma ray and proton image. 

The value of the imaging technique has been demonstrated on observations 

of the Crab nebula (Weekes, et al. 1989) taken in the chop mode. Using an azwidth 

cut value determined by the simulations to reject ~ 99% of the nucleon event 

background, an excess of events from the on-source region was seen in 82 hours of 

on-source data, significant at the 9a level. This was the most significant detection of 

a VHE gamma ray source at the time and, unlike many of the other detections, the 
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flux appeared to be constant over a timescale of years. 

3.3.3 Recent Developments in the Field 

Developments over the last decade have proceeded in two main directions: 

improved background rejection and lower energy threshold for the detection of 

gamma ray EAS images. The Whipple Observatory detection of the Crab nebula 

using the imaging technique has resulted in the development of a number of imaging 

ACT's worldwide. These systems tend to have more pixels and therefore higher 

resolution than the original Whipple camera in order to provide more accurate 

measurements of the image parameters and hence improve the background rejection. 

A summary of some current imaging systems and their characteristics is given in 

Table 3.2. 

Table 3.2: Summary of some current imaging systems 

Name Pixels Resolution Mirror Area 

Durham Mk6 (Chadwick et al. 1995b) 109 0.24° -120 m 2 , 3 dish 

Whipple 10m (Fegan, 1996) 109 0.23° -70 m 2 , 1 dish 

HEGRA CT1 (Rauterberg et al. 1995) 127 0.24° -5 m 2 , 1 dish 

BIGRAT (Patterson et al. 1995) 37 0.25° -38 m 2 , 3 dish 

CANGAROO 3.8m (Kifune et al.1993) 220 0.12° -12 m 2 , 1 dish 

Systems are currently under construction with > 500 pixel detectors (eg. Lamb, 

1995). 

Further improvements in background rejection have been achieved by the use 

of multiparameter cuts. The current Whipple Observatory "Supercuts" recipe is 

estimated to reject - 99.7% of the nucleonic background showers whilst retaining 

- 50% of the gamma rays (Fegan, 1996). The cut values used have been optimized 

using data from observations of the Crab nebula. Various different parameter cutting 
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approaches have been investigated, such as neural networks (Reynolds, 1991), 

singular value decomposition (Danaher, et al. 1993), genetic algorithms (Lang, 1995) 

and cluster analysis techniques (Fegan, 1996) with varying degrees of success. 

The other major effort has been in reducing the energy threshold of ACTs 

for gamma ray images. Turver and Weekes (1978) predicted that the ratio between 

the Cerenkov light produced by gamma ray and proton showers would dramatically 

increase below a primary energy of 1 TeV from a value of ~ 2 to ~ 14 at 100 GeV 

(Fig. 3.7). It is also desirable to lower the threshold in order to explore the region of 

the electromagnetic spectrum between EGRET energies and current ACTs (~ 30 -

300 GeV). The simplest way to accomplish a reduction in threshold is with an 

increase in mirror area; however, this is costly and logistically difficult. The other 

option is to increase the gain of the detector package. This can be achieved, whilst 

maintaining a reasonable rate of events caused by random noise fluctuations, by the 

use of more sophisticated trigger logic. Spatial correlation between pixels in a single 

detector can be exploited, for example, by requiring that a certain number of pixels 

within the detector must trigger and that they must be adjacent. Detectors other than 

the PMT are also being considered. Solid state devices such as the avalanche photo-

diode have a quantum efficiency ~ 3 times higher than that of PMTs (Lorenz, 1993). 

These detectors are not practical for ACTs as yet, the major problem being the 

suppression of noise. 
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Figure 3.7 Cerenkov photon yield ratios for gamma ray and proton showers of the 
same energy at 100 m from the shower core (after Turver and Weekes, 1978). 

The operation of more than one ACT at the same observing site can produce 

improvements in both background rejection and energy threshold. A simplistic 

analysis of the improvement in quality factor obtained by using two telescopes (a 

"stereo" system) gives the combined quality factor (Thornton, et al. 1995): 

where Ql and Q 2 are the quality factors of each telescope, rfl and T | N the fraction of 

gamma ray and nucleon events, respectively, observed by both telescopes. The factor 

f is less than unity to indicate the existence of correlations between the image 

parameters derived by each telescope. An alternative approach to a simple 

combination of the information provided by each telescope about the image 

parameters is to define new parameters which exploit the correlations between the 

images seen in each telescope. These correlations wil l tend to be stronger for the 

more uniform gamma shower images. This type of analysis is discussed in section 

croj <4 

3.4.4 
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The stereo technique can be used to reduce the energy threshold for gamma 

rays i f the telescopes are operated in a hardware coincidence mode. This is essentially 

the same as the coincidence techniques which have been described in section 3.2.2. 

As more telescopes are added to the coincidence, the probability of noise fluctuations 

producing a chance coincidence falls and so the detectors can be operated with a 

higher gain and hence a lower threshold. Low thresholds are best achieved by placing 

the telescopes as close together as possible such that their collection areas overlap 

completely. High background rejection can be obtained by widely separated 

telescopes which view the showers from different angles (Chadwick, et al. 1996, 

Kohnle, et al. 1996). Any stereoscopic system will represent a compromise between 

these variables. 

The current status of any field of astronomy is best illustrated by its source 

catalogue. Table 3.3 presents those sources which are considered most credible. This 

is the catalogue presented by Weekes (1996) with the addition of the active galactic 

nucleus (AGN) Markarian 501. The recent report of emission from this source 

(Catanese, et al. 1995a), significant at the 8.4 o level warrants its inclusion in the 

catalogue. 
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Table 3.3: TeV source catalogue 

Source Nature Detections Variable Periodic 

Crab 
Nebula 

SNR Whipple, Sandia, Crimea, 
ASGAT, HEGRA, Themis., 
CANGAROO 

No No 

PSR1706-44 SNR CANGAROO No No 

Vela X - l X-Ray 
Binary 

Durham, Potchefstroom Yes Yes 

AE Aqr CV Durham, Potchefstroom Yes Yes 

Mkn421 AGN Whipple, HEGRA Yes No 

Mkn501 AGN Whipple Yes No 

It can be seen that there are a variety of different objects of interest in the 

TeV gamma ray sky. AGN, Supernova remnants (SNR), cataclysmic variables (CV) 

and X-ray binaries feature in the table above and transient emission has been reported 

from other examples of these as well as from isolated pulsars (see Weekes, 1988 for 

an earlier catalogue). While some of these earlier, less significant detections may 

have been statistical fluctuations, others may simply prove to be highly variable in 

nature and further observations with more sensitive telescopes wil l clarify their status 

as sources. 

3.4 The Durham Instruments 

The three ACTs of the Durham VHE Gamma Ray Observatory are located at 

the Bohena settlement near Narrabri, New South Wales, Australia, latitude 30° 28' 

20.6" south, longitude 149° 39' 36.5" east at an altitude of 260 m above sea level. The 

site was chosen as the southern skies contain the majority of X-ray binaries, the 

galactic centre and the large and small Magellanic clouds, all of which are of 

astrophysical interest. It was previously occupied by the University of Sydney giant 
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air shower array (SUGAR) and so fulfilled the logistical requirements. 

3.4.1 The Site Facilities 

A plan view of the site is shown in Figure 3.8. The Mark 3 and Mark 5 

telescope were the original stereo pair and are situated 100 m apart along an east/west 

line. The Mark 4 telescope has now been decommissioned. The Mark 6 was added in 

1995 and is approximately 20 m from the Mark 3, such that it may also form a stereo 

pair with the Mark 5. Each telescope has its own local control room constructed out 

of shipping containers. A further container is used as a general control room, known 

as the "annex", from which the operation of all three telescopes may be monitored. 

100 metres approx. 
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Figure 3.8 A plan view of the facilities at the Bohena site. 

To help with the operation of the telescopes, there is a sitewide computer 

network. Each telescope has its own local area network (LAN) and all computers are 

linked via a wide area network (WAN). A feature common to all of the telescopes is 

the performance monitoring system. This runs on an Archimedes microcomputer 

installed in each of the local control rooms and is used to display and record 

52 



environmental conditions, steering information, coincidence rates and instantaneous 

values of the anode current and noise trigger rate for every PMT. The same 

information is also displayed on remote monitors installed in the annex such that the 

observer may be aware of any irregularities in the operation of any of the telescopes. 

Accurate timekeeping is obviously of great importance when periodic 

analysis of millisecond pulsar signals is required. Timing information for each of the 

three telescopes is provided by a Rubidium atomic oscillator housed in the Mark 3 

control room. This Efratom model FRK-L Rb oscillator provides a 10 MHz output 

signal which is used to time stamp events to u,s accuracy. The oscillator is provided 

with a battery back-up power supply, sufficient to cover a 10 day mains failure. The 

Rb clock was first synchronised to an off-air radio time signal in January of 1987 and 

its constant drift rate has been measured regularly since. Initially this was by 

comparison with an Australian timing standard radio signal but this was replaced in 

April 1992 by a Global Positioning Satellite (GPS) system installed in a PC. An 

oscillator which loses its power and is restarted is prone to drift at a different rate and 

so such interruptions are avoided. Drift rate since the latest restart has been 0.05287 ± 

0.00005 ms day 1 (Dickinson, 1995). Figure 3.9 illustrates the remarkable stability of 

this drift rate relative to the value of UT (Universal Time) received from the GPS 

system. 
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Figure 3.9 The drift of the Rubidium clock delay measured relative to GPS. 

The site is manned for ~ 10 dark moon periods every year, a typical 

observing trip being three weeks long. The weather is generally excellent except 

during midsummer when lightning storms can cause serious problems. During the 

colder months, condensation and ice may form on the mirrors as they are radiatively 

coupled with the cold night sky. The adverse effect of condensation on the reflectivity 

of the mirrors is removed by spraying the mirrors every night prior to the 

observations with a high quality wetting agent. This prevents droplet formation for up 

to 12 hours and gives mirror performance equal to that on dew free nights. Ice 

formation is a more difficult problem but may be solved in the future by positioning 

fans around the flux collectors to circulate the air. The nearest town is over 20 km 

distant and so light pollution is not a problem. The total duty cycle of the telescopes 

is estimated to be ~ 10%. 

3.4.2 The Mark 3 Telescope 

The Mark 3 was constructed in Durham and moved to Narrabri in 1986. It 

has undergone various upgrades to the mirrors and detector packages during its 
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operation. The following sections describe the principle characteristics of the 

telescope. 

3.4.2.1 The Mirrors 

In the telescope's original form, all three of the flux collectors were 

tessellated structures, the left and right collectors being composed of 43 mirrors and 

the centre collector of 44. Each individual mirror was 60 cm in diameter and each 

flux collector had a diameter of 4 m and a focal length of 2.45 m. The effective 

mirror area was 1 1 m 2 for each collector. The mirrors were constructed out of 

aluminium using the technique outlined in section 3.2.1. There has been no noticeable 

change in reflectivity due to mirror degradation over the ten year lifetime of the 

experiment. 

For the three-fold coincidence technique to be effective, it is important that 

the optic axes of the three flux collectors are parallel. This was accomplished by 

directing the telescope at a second magnitude star and examining the anode currents 

of the on-axis PMT's. The position at which the anode currents were maximum was 

noted relative to the image of the star viewed by an analogue video camera mounted 

on the telescope superstructure. Adjustments were made by manipulating the 

structure supporting the detector packages. 

In April 1993 the central flux collector was replaced by a new collector of 

the type developed for the Mark 5 telescope. The consists of 12 mirror segments, 

each of which represents a 30° sector of a composite parabolic flux collector. The 

mirrors were aligned using a system of parallel laser beams to simulate a point source 

at infinity (Dickinson, 1995). The width of the point spread function at fu l l width half 

maximum (FWHM) is ~ 2.5 cm. This flux collector has a focal ratio of approximately 

1.0, with a mirror diameter of 3.5 m and focal length of 3.32 m. It is surrounded by 

baffles in order to reduce background light which increases the noise in the PMT's. 
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3.4.2.2 The Telescope Mount and Steering 

The telescope is mounted on an alt-azimuth platform which was developed 

from a Royal Navy surplus gun mount. It is driven by a D.C. servo motor with an 

output torque of 20 Nm and integral gear box, giving a maximum slew rate of ~ 1° s 4 

which can be reached from rest within ~ 10 s. The position of the telescope is 

measured to within 5 arc minutes using 12 bit shaft encoders. The encoders were 

calibrated by noting the measured positions of a number of widely separated stars and 

solving for the angular offsets in altitude and azimuth. The offset of the telescope's 

axis from local vertical is allowed for in the tracking software as an offset in 

geographical location. The tracking software is the same for all three telescopes and 

runs on a BBC microcomputer. The target position and measured shaft encoder 

position is recorded for each event in the data stream. In 1994 a CCD camera was 

mounted on the telescope superstructure to provide a continuous steering monitor. 

The operation of this is described in section 3.5.3 

3.4.2.3 The Detector Packages 

Each of the three detector packages initially consisted of four PM tubes. A 

central channel was surrounded by three guard ring tubes set 2° off-axis and spaced at 

120° intervals. A further three tubes were added later to give coverage at 60° 

intervals. The tubes chosen were 2" diameter RCA 8575's after tests in the laboratory 

and in earlier experiments showed their stability and noise rate were acceptable 

(Chadwick, 1987). In March 1991 the off-axis tubes were moved in to a distance of 

1.5° from the central channel after simulations suggested that this would increase the 

efficiency of the guard ring background rejection. The 46 mm photocathode size 

suggests a field of view for each tube of 1.1° FWHM at a focal length of 2.45 m; 

however, this has been directly measured as 0.9° FWHM by noting the anode current 

variation in a tube as a star is allowed to transit across its field of view. Each tube was 

operated in three-fold coincidence with the corresponding tubes in the other detector 
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packages, giving seven coincidence channels. The tubes were held in watertight 

containers, shielded magnetically and electrostatically using u,-metal shields and 

mounted in cylindrical plastic holders on the focal plane. In order to maintain gain 

stability in the face of changing sky brightness a green LED was installed at the face 

of each tube and the brightness of this was varied in response to the PMT's measured 

anode current. This "hardware padding" technique provides gain stability at the 

expense of a lower energy threshold. 

At the same time that the central flux collector was upgraded, all three 

detector packages were replaced to take advantage of the improvement in the optical 

system and to form a compatible telescope to be used as one of a stereo pair with the 

newly constructed Mark 5. The new detectors consisted of 7 hexagonally close-

packed triggering tubes for the left and right collectors and a 31 tube medium 

resolution imaging camera in the centre. The left and right tubes were 1.5" Burle 

C7151Q's which are smaller than the RCA 8575's and are somewhat noisier for the 

same gain. These were chosen as the focal ratio of the left and right collectors is such 

that the field of view of the triggering packages would have been larger than that for 

the Mark 5 and larger than the Mark 3 central imaging camera i f the 2" RCA 8575's 

had been retained. This field of view compatibility has recently been sacrificed with 

the replacement of the 1.5" Burle tubes by hexagonal Philips XP3422 PMTs which 

have a photocathode minimum size of 56 mm across the flats. The noise/gain 

characteristics of these tubes has been shown to be very good (Dickinson, 1995) and 

their hexagonal shape removes much of the dead area between tubes. 

The medium resolution imaging camera contains tubes of two different sizes. 

The inner 19 are 1" diameter Burle S83062E tubes, hexagonally close-packed, with a 

tube pitch of 3 cm. These cover a field of view of 2.5°, sufficient to contain the 

majority of the Cerenkov image of an EAS, with a resolution of 0.5°. Surrounding 

these in a circular ring are twelve 1.5" Burle C7151Q tubes, designed to provide 

intensity information on the extremities of images whose centroids are close to the 
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edge of the camera. The coincidence requirement is for corresponding tubes in the 

left and right detectors, and any one of the 19 one inch camera tubes to have 

exceeded the discriminator threshold within the coincidence gate time. The camera is 

shielded with light baffles which reduce the background light seen by the PMTs. 

Since the installation of the central camera, hardware padding LED's have 

not been used in an effort to minimize the energy threshold of the telescope. The 

smaller pixels of the imaging camera accept less sky noise and with more accurate 

calibration techniques and increased image information their application has been 

unnecessary. 

Each of the three detector packages has recently been upgraded by the 

addition of light gathering cones. These are reflective funnels which have a circular 

aperture at the face of the tube and a hexagonal aperture to the dish with a width 

equal to the pitch of the tubes. In the case of the circular 1" camera tubes, the circular 

aperture is designed to be the same size as the photocathode. For the hexagonal tubes, 

this aperture is somewhat smaller than the photocathode in order to focus the light 

onto the central area of the photocathode where the bandwidth of the tubes has been 

measured to be the fastest ( I . Roberts, private communication). The addition of these 

cones has increased the counting rate of the telescope by ~ 20%. 

The three detector packages in their current configuration are shown in 

Figure 3.10, along with a photograph of the Mark 3 telescope, complete with baffles 

around the central collector. 
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Figure 3.10 The Mark 3 telescope and its detector packages. 



3.4.2.4 Data Acquisition and Electronics 

The high voltage required for the operation of the PMT's is provided by a 

multi-channel LeCroy HV4032A E.H.T. unit. Each tube signal is passed to an 

electronics unit which isolates the D.C. component of the analogue output of the 

PMT's. The anode current of each PMT is compared with a reference current. The 

measured difference is used to provide the feedback which was used to drive the 

hardware padding LED's. The anode current is now passed to an analogue to digital 

converter (ADC) and fed to the telescope monitoring system. 

At the input to the AGC the PMT signal is A.C. coupled to an amplifier. The 

A.C. component of the signal is magnified by a factor of 10 by a LeCroy 612A 

amplifier unit. This signal is then passed to a voltage discriminator and to a charge to 

time converter (QT unit). I f the signal exceeds a preset peak discriminator voltage 

(usually 50mV), a logical output is generated and passed to the three-fold coincidence 

trigger logic unit. I f the three signals within a coincidence channel each generate a 

logical output from the discriminator within a coincidence gate time ~ 10 ns then the 

coincidence channel has triggered and a gate is opened to the QT units. The QT units 

are LeCroy model 2249 ADC's which digitise the integrated charge of the PMT 

signals within a 30 ns gate time. The outputs of the QT units are then scaled and fed 

to the data logger. A coincidence register records which of the coincidence channels 

have fired for each event. 

The data logging is performed by a Motorola 68000 based microcomputer 

developed by the Durham University Microprocessor Centre coupled to a CAMAC 

based electronics system. The most important consideration for a data logger in this 

application is system dead time. Consequently, the software is interrupt driven with a 

rank of priorities headed by control signals, followed by data collection. With one 

megabyte of R A M buffer, the dead time of the system is 350 (is. Within this dead 

time, the arrival times alone of a further 16 events can be stored for recording with a 

dead time of 6 |xs. 
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Each fully recorded event consists of the arrival time to u.s accuracy, the 

integrated charge from each of the PMTs, the output of the coincidence register, the 

target and measured position of the telescope in zenith and azimuth, the output from 

the tracker CCD camera (section 3.5.3) and the instantaneous anode current for 

selected PMTs. The events are stored on magnetic tape for transport back to Durham. 

3.4.3 The Mark 5 Telescope 

The Mark 5 telescope was constructed in 1992. It was designed primarily as 

a prototype for the Mark 6 telescope and as one element of a Mark 3/Mark 5 stereo 

pair. 

3.4.3.1 The Mirrors 

The three principal flux collectors of the Mark 5 telescope are composite 

mirrors constructed of twelve 30° segments, parabolic in shape with a diameter of 

3.50 m and a focal length of 3.32 m, identical to the current Mark 3 central dish. As 

with the Mark 3, a system of parallel laser beams were used to align the segments. An 

image of a star as seen by the Mark 5 central mirror is shown in Figure 3.11. The 

detector package supports were constructed such that the centre of the package is 

vertically above the centre of the collector, making the optic axes parallel. This 

alignment was checked by examining the anode current response of PMTs to a bright 

star. A l l three mirrors are surrounded by light baffles. 
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Figure 3.11 (a) A CCD exposure of a star image focussed on to a plain white target at 
the focal plane of the central dish . (b) A CCD image of the centre of the PMT 
assembly at the focal plane on the same scale. 

The Mark 5 also has a fourth flux collector, of area 6 m 2 , mounted above the 

other three. At the prime focus of this is a large (12.5 cm diameter) PMT viewing an 

aperture ~ 2°. This system is designed as a Cerenkov pulse time profile experiment of 

the type discussed in section 2.4.2. 

3.4.3.2 The Telescope Mount and Steering 

Unlike the Mark 3 telescope, the mount for the Mark 5 was designed and 

purpose built for this application. The telescope is driven azimuthally through ~ 350° 

by a D.C. servo motor on a gear ring of 27" diameter and between 0° and 90° zenith 

angle by a similar motor on a gear quadrant of 18" radius. Absolute position 

information, sensed by 12 bit shaft encoders to within 5 arc minutes, and data from a 

CCD camera mounted on the frame of the telescope are recorded in each event as 

with the Mark 3. The steering is controlled by a BBC microcomputer. Figure 3.12 

shows the various elements of the motor control system and the feedback between 

them. 
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Figure 3.12 A schematic diagram of the motor control system. 
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3.4.3.3 The Detector Packages 

In their present state, the three detector packages are identical in every way 

to the current detectors of the Mark 3. The tubes are magnetically shielded by a 

cylinder of n-metal and electrically insulated by a plastic heat-shrink material. The 

left and right detector packages were initially constructed of seven 2" Burle 8575's 

but these tubes have since been replaced by the hexagonal Philips XP3422. Light 

collecting cones have recently been installed on the left and right hexagonal tubes and 

on the 1" tubes of the camera, increasing the count rate by ~ 20% and lowering the 

telescope energy threshold. The field of view of the left and right packages is smaller 

for the Mark 5 than the Mark 3 as the focal ratio of the left and right collectors is 

larger. For the Mark 5, the left and right tubes overlap the 1" triggering tubes of the 

camera, as shown in Figure 3.13. 
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Figure 3.13 Superposition of the left/right detectors and the camera triggering 
channels of the Mark 5 telescope. 

As with the Mark 3, the event trigger is provided by a coincidence between 

corresponding left and right tubes and any one of the 19 one inch camera tubes. A l l 

three detector packages are shielded from background light by baffles. Figure 3.14 

shows a picture of the Mark 5 telescope and its detectors in their current form. The 

flux collector for the pulse timing experiment can be clearly seen mounted above the 

main mirrors. 
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Figure 3.14 The Mark 5 telescope and its detector packages. 



3.4.3.4 Data Acquisition and Electronics 

The high voltage for the PMTs is provided by a CAEN E.H.T. unit. The 

signal path is identical to that of the current Mark 3 system (section 3.4.2.4). 

Increases in processing speed, decrease in price and ease of use made 

commercial microcomputers an attractive alternative to a 68000 based Mark 3 type 

logger. The logging is performed by an Archimedes microcomputer which runs an 

interrupt driven logging program and communicates with the CAMAC electronics via 

CAMAC interfaces. The system has a dead time of 1 - 2 ms which could be 

decreased by upgrading the processor should the need arise. The event structure is 

identical to the Mark 3 and the events are recorded directly on to the hard disk of the 

logger computer. Once the observation is complete, the data are transferred over 

ethernet to a large (4 Gb) hard disk in the annex control room and then copied to 

DAT tape for transport back to Durham. 

3.4.4 The Mark 3 / Mark 5 Stereo Pair 

When both the Mark 3 and Mark 5 telescopes are operating and observing 

the same source, a subset of the Cerenkov flashes will be recorded by both telescopes. 

This subset can be identified by the times of arrival of the flashes at each ACT. 

Approximately 45% of the events recorded by each telescope at the zenith are stereo 

events. Correlations between the lower moments of the images recorded by each 

medium resolution camera have been exploited in three ways (Chadwick, et al. 1996). 

The height of Cerenkov light maximum, Hc, is derived from the intersection 

of lines (or the distance of closest approach of skew lines) drawn through the 

centroids of the images. Longitudinal and transverse fluctuations in nucleon initiated 

EAS result in the height of maximum of the light for these showers being less well 

defined than for gamma ray EAS. 

Dmiss is a parameter which describes the separation between the centroid of 
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the image measured in one telescope and a predicted centroid position derived from 

the image in the second telescope, assuming the primary was a gamma ray. This 

separation should be small for events which are initiated by gamma rays. 

For a gamma ray initiated cascade, simulations predict small fluctuations in 

the azimuthal development of the shower, correlation between the impact parameter 

(the distance of the telescope from the shower core) and the position of the image 

centroid and a continuous and predictable lateral intensity distribution of light across 

the shower front. Given these characteristics, a value of the energy of the primary 

photon can be estimated reasonably accurately. More importantly, the value of this 

estimate derived by different telescopes should agree closely i f the cascade primary 

was a gamma ray. This gives rise to the third parameter, Rep, which is the ratio of the 

two estimates of primary energy. 

These parameters have been successfully applied to enhance the gamma ray 

signal in a 4200 s burst of emission from the cataclysmic variable AE Aquarii 

(Chadwick, et al. 1995a). 

3.4.5 The Mark 6 Telescope 

The Mark 6 Telescope was constructed at the Bohena site in June 1994. 

Alignment of the flux collectors and commissioning of the electronics took a further 

two - three months. The Mark 6 is the most ambitious project attempted by the 

Durham group, having twice the linear dimension of the Mark 5. Its properties are 

described in the following sections. 

3.4.5.1 The Mirrors 

The technique for the construction of the mirrors for the Mark 6 was 

essentially the same as that for the Mark 5; however, each mirror covers only a 15° 

sector of the paraboloid. The composite flux collectors each have a focal length of 

~7.2 m and a diameter of ~7 m giving a total mirror area of -120 m 2 which is four 
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times that of the Mark 5 and represents an approximate halving of the energy 

threshold. This large collecting area enables the image of a bright star to be observed 

visually when a target board is placed at the focal point. The optic axes could 

therefore be aligned initially by eye. This alignment was then checked by examining 

PMT anode currents. 

The flux collectors were focussed using the same laser alignment system as 

used for the Mark 5 (Dickinson, 1995). The laser system was at the limit of its utility 

for this application and it is possible that re-alignment using a different technique 

may improve the image quality. A recent measurement of the point spread function of 

the central collector is shown in Figure 3.15. An upgrade to the telescope was made 

between July and November 1995, when the telescope superstructure was covered 

with an opaque light shielding material. This performs the same function as the Mark 

5 light baffles by reducing the background light. 

> 213 bits 

203-212 bits 

193-202 bits 
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153-162 bits 
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Figure 3.15 A CCD exposure of a star image at the focal plane of the Mark 6 
telescope central flux collector. 
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3.4.5.2 The Telescope Mount and Steering 

The Mark 6 mount and drive system is essentially the same as that for the 

Mark 5 but with some compensations for its much larger moment of inertia. The 5' 

diameter steel plate on which the telescope rotates in azimuth is 25% larger than the 

Mark 5 turntable, although the gear ring remains the same with a diameter of 27". 

The zenith gear quadrant is also larger than for the Mark 5, having a radius of 24". 

Both the zenith and the azimuth D.C. motors are more powerful for the Mark 6 and 

can deliver a maximum torque of 75Nm. Initial problems with the azimuth drive have 

been solved with the addition of a torque limiter which allows slippage under 

potentially damaging loading, thus protecting the azimuth drive shaft. The telescope 

can be safely operated in ~ 5 knots of wind and can be moved to a safely anchored 

parking position under much worse conditions. Wind has not proved to be a serious 

limitation to observations as nights with high wind tend to produce unstable sky 

conditions. 

The steering software runs on the same type of BBC microcomputer as for 

the other two telescopes and the target position is updated with the same 12 bit, 5 

arcminute accuracy. The actual position of the Mark 6 is sensed to within about 1 

arcminute by 14 bit shaft encoders and this information is stored in each event, along 

with information from a frame-mounted CCD camera. 

3.4.5.3 The Detector Packages 

The Mark 6 was designed to have a low energy threshold and efficient 

background rejection capabilities, requiring a greater photon flux and more detailed 

image information. The use of larger flux collectors increases the photon flux, 

whereas an imaging camera with finer resolution provides better image information. 

The central detector package is a high resolution, 109 element camera consisting of 

91 hexagonally close-packed one inch PMT's surrounded by a guard ring of 18 two 

inch diameter Burle 8575 PMT's. The 1" tubes have a pitch of 3cm giving a pixel 
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resolution of 0.24° and a total aperture for high resolution imaging of 2.64° across 

opposite vertices. The 2" guard ring tubes are not involved in the coincidence trigger 

and exist to provide extra information on images which fall close to the edge of the 

camera. 

The left and right triggering packages each contain 19 hexagonal Philips 

XP3422 tubes. These are close-packed and overlap the same field of view as the 1" 

camera tubes. The triggering requirement for the Mark 6 is somewhat more 

sophisticated than for the other two telescopes. To trigger efficiently on gamma ray 

initiated EAS it is desirable for the triggering element to match the characteristic size 

of a gamma ray image which is ~ 0.5°. The aperture of the 1" camera tubes is less 

than half of this and so the following four-fold trigger scheme has been devised. For 

an event to register, two adjacent tubes from a cluster of seven 1" camera tubes must 

trigger along with the corresponding tubes in the left and right detectors within the 

coincidence gate time ~ 10 ns. This is illustrated in Figure 3.16. 

O 

Left Right 
Centre 

Figure 3.16 The Mark 6 telescope trigger condition: three-fold spatial coincidence 
between two adjacent central detector PMTs and the corresponding left and right 
tubes. 

Light collecting cones have been fitted to the left and right collectors to focus 

light on to the centre of the PMT face in order to improve the bandwidth of their 

response and to the 1" camera tubes to minimize the dead area. The detectors are 

partially shielded by small light baffles (Fig 3.17). 
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Figure 3.17 The Mark 6 telescope and its detector packages. 



3.4.5.4 Data Acquisition and Electronics 

The PMT high voltage in the Mark 6 is provided by a number of commercial 

E.H.T. units. The signal path is essentially the same as for the other two telescopes 

but with 19 coincidence channels as opposed to 7. The control and logging 

electronics are shown schematically in Figure 3.18. 
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Figure 3.18 Schematic diagram of the Mark 6 control and logging electronics 
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The data logging and storage for the Mark 6 telescope is performed in the 

same way as for the Mark 5, using an Archimedes microcomputer with a dead time of 

~ 2 ms. The event records have the same format as those for the Mark 3 and are ~ 0.5 

Kbytes long. 

3.4.6 Energy Thresholds of the Three Telescopes 

Estimating the energy threshold for the detection of gamma rays of an ACT 

is a notoriously difficult problem. The approach of the Durham group has been to 

scale the threshold based upon the measured counting rate for cosmic rays, with 

reference to an original measurement using a small telescope array (e.g. Chadwick, 

1987). This technique has been used in this thesis to derive the energy threshold for 

cosmic rays quoted for the Mark 3 telescope in Chapter four. 

A more sophisticated method has been adopted for the Mark 6 telescope. The 

cosmic ray trigger rate for an ACT is given by: 

^max 

E . 
nun 

where r| is the triggering efficiency, CI is the field of view and A c o l l is the collection 

area of the telescope, defined by the size of the Cerenkov light pool. The differential 

cosmic ray flux, f(E)dE = 1.7 x E"2-7 s"1 cm'2 sr 1 GeV 1 (Gaisser, 1990). Monte Carlo 

simulations of the photon yield from cosmic ray EAS have been generated using the 

MOCCA program (Hillas, 1982). 40000 cosmic rays were generated from a circular 

field of view 2° in radius and out to a maximum impact parameter of 250 m 2. The 

simulations were performed for a telescope inclined at 20° to the zenith. These have 

then been presented to a model of the Mark 6 telescope. By altering the discriminator 

thresholds of the telescope model, it is possible to match the trigger rate for the 

simulations to the measured counting rate. 

This model can now be applied to Monte Carlo simulations of gamma ray 
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EAS in order to give some idea of the expected threshold energy for detection of 

photons. 50000 gamma ray showers were generated with energies ranging from 100 

to 105 GeV for a source with a power law spectrum with a differential index of -2.4. 

This is the same as the measured value of the differential index for the spectrum of 

the Crab nebula in the VHE range (Vacanti, et al. 1991). The effective area for an 

ACT depends upon the gamma ray energy, the Cerenkov light pool size and the 

triggering probability. Figure 3.19 shows the effective area for the Mark 6 telescope 

as a function of energy for gamma rays from a point source. One way of defining the 

energy threshold of an ACT for gamma ray detection is the energy at which the 

differential gamma ray flux is maximum (e.g. Aharonian, et al. 1995). This is 

illustrated in Figure 3.20, which predicts a threshold energy for gamma rays of 

~ 300 GeV. 

effective area (m2) 
1(T6 

10*5 
energy (GeV) 

Figure 3.19 Effective area for gamma ray detection of the Mark 6 telescope as a 
function of primary energy. 
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Figure 3.20 Definition of the energy threshold for gamma rays. The source 
differential spectrum is assumed to be -2.4. The threshold energy is defined to be the 
the energy of the maximum differential flux and is approximately 300 GeV. 

There are many potential sources of error in this estimate of the energy 

threshold. The accuracy of the simulations can only be confirmed by comparison 

between real and simulated hadron shower images. This comparison is made in 

Chapter five and some important differences are seen between the two. The spectral 

index, trigger conditions, and mirror reflectivity also introduce uncertainties. The 

systematic error in the energy threshold is conservatively estimated as ± 100 GeV. 

The average effective collection area which is used for the calculation of fluxes and 

flux limits is given by the mean effective area above the threshold energy. This is 

~ 1.5X105 m 2. 

It is important to note that the values derived here are the threshold energy 

and mean effective area assuming 100% gamma ray retention. Any background 

discrimination will also reject a fraction of the gamma ray signal, altering the energy 

threshold and effective area for gamma ray detection. This is discussed further in 

section 6.4.4. 
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3.5 Data Preparation 

Prior to any form of analysis the data recorded by the Durham telescopes 

must undergo various formatting and calibration procedures. The calibration 

techniques have become more rigorous in recent years as the need for accurate 

Cerenkov image measurements has increased. This section describes the methods 

currently in use. 

3.5.1 Formatting 

The logging microcomputers of each of the telescopes record the time, QT 

values and steering information for each event as the data are received from the 

CAMAC electronics. The format of the records is designed to minimize the logging 

time such that the system dead time is small. The first step in the data preparation, 

once all of the data have been transferred from magnetic tape to a hard disc drive in 

Durham, is to translate each event into a FORTRAN record format. The formatted 

events have a more logical structure (Table 3.4) which is compatible with the analysis 

software. 

76 



Table 3.4: Formatted event structure for the three telescopes. 
Item Length in Mk3 Length in Mk5 Length in Mk6 
Seconds 4 4 4 
Microseconds 4 4 4 
Spare bytes 3 3 3 
Fire pattern 1 1 1 
Telescope flag 1 1 1 
Chop mode flag 1 1 1 
Azimuth position 2 2 2 
Zenith position 2 2 2 
Azimuth drive volts 1 1 1 
Zenith drive volts 1 1 1 
Drive error signal 1 1 1 
Azimuth target 2 2 2 
Zenith target 2 2 2 
PMT QT bytes 90 90 294 
Anode currents 2 X X 

Timing dish info X 34 X 

Raw CCD bytes 6 6 6 
CCD Azimuth 4 4 4 
CCD Zenith 4 4 4 
Dead time 4 4 4 
Event number 4 4 4 
CCD source X-offset 4 4 4 
CCD source Y-offset 4 4 4 

3.5.2 PMT Calibration 

In order to produce an accurate picture of the distribution of Cerenkov light 

across the field of view, the relative response characteristics of each PMT in the 

detector packages must be measured. The three elements involved in this calibration 

procedure are addressed in this section. 

3.5.2.1 PMT Pedestal Offsets 

For a PMT which views little or no Cerenkov light in a given event, it is 

possible that statistical sky noise fluctuations may produce a negative output signal. 

In order for these negative responses to be measured, the QT units which record the 

integrated PMT signals are provided with an artificial positive DC offset. These 

offsets, known as the pedestals, must be measured and deducted from the recorded 

QT values of each PMT when the camera images are analysed. 
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The pedestal values can be measured by artificially triggering the telescopes 

to record an event using a random pulse generator. These random events, devoid of 

any Cerenkov light, can then be used to produce the distribution of measured signals 

for each PMT. The pedestal value is then the mean value of this distribution 

(Fig 3.21). Random events are recorded throughout each observation at a rate of 50 

muv1 and their event records are flagged by the coincidence register for easy 

identification and removal during calibration. 

counts 
50 

Tube 1C2 
Pedestal 30.6 bits 
Noise 6.8 bits 

31 41 51 61 
measured signal 

(digital bits) 

Figure 3.21 The pulse height distribution of 15 minutes of random triggers for a 
typical tube. The pedestal is the mean of the distribution and the noise is the standard 
deviation. 

If random events are unavailable for any reason, a backup system has been 

developed. This uses the information recorded by the coincidence register in each 

event about which coincidence channels were triggered (the "fire pattern"). If a tube 

within the camera is located far enough away from the triggered channels, it may be 

considered to contain no Cerenkov light. Tube responses under this condition can 

then be used to build up the distribution of PMT signals and the pedestal calculated in 

a similar way to the random triggers. This technique is less effective for tubes near to 

the centre of the camera, where some fraction of the Cerenkov image almost 
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inevitably falls. A correction factor for these tubes has been derived empirically by 

comparison with the results from randomly triggered signal distributions. 

3.5.2.2 PMT Sky Noise Response 

Standard methods of image parameterisation involve calculating the first and 

second moments of the PMT signals in the camera and using these to fit an ellipse to 

the image (section 3.3.2 and section 5.2). For this method to be robust, it is necessary 

to ignore noise dominated tubes far removed from the image centre. Some measure of 

the sky noise response of each PMT is therefore required in order to define a 

threshold, below which tube signals are not used. The random events can be used for 

this part of the calibration also, with the tube noise response being given by the 

standard deviation of the distribution of PMT signals (Fig 3.21). As with the 

pedestals, if random events are not present a slightly less accurate measure of sky 

noise can be obtained by using tubes not involved in the triggered channels of 

Cerenkov events. 

3.5.2.3 PMT Relative Gains 

The gain of a PMT is dependent upon the high voltage used to accelerate 

eleclrons through its dynode chain. The voltages on the tubes in the camera of an 

ACT are set such that the gains are similar for each and give a "flat-field" response to 

Cerenkov flashes. More accurate flat-fielding is achieved by measuring the relative 

tube gains during an observation and normalising the recorded QT signals to account 

for any differences. 

The relative gain measurements can be made in several different ways. 

Initially, a plastic scintillator impregnated with the radioactive isotope Americium 

241 was used to generate a light pulse with a known, constant average intensity. This 

light source was then presented to each PMT in the detector in turn and the 

distribution of recorded signals used to estimate the relative tube gains. This system 
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suffered from the fact that only a fraction of the photocathode area was illuminated 

and the tube responses were critically dependent upon the exact location of the light 

source. This method of calibration was also very time consuming and could only be 

performed once for each telescope during each three week dark period. 

A great improvement in the relative gain calibrations has been the provision 

of a light source which illuminates all of the PMTs in the detector packages 

uniformly at the same time. A pulsed nitrogen laser is used to produce a 3 ns flash of 

UV light which excites a block of plastic scintillator, causing it to emit blue light. 

This blue flash is then piped by optic fibre to the centre of each of the three flux 

collectors where an opal diffuser is used to spread the light and ensure uniform 

illumination of the detectors. The flashes are large enough to trigger the telescope and 

the relative tube responses for these triggers can be used to determine the gain 

normalization factors required to flat-field the detector. There is only one laser 

available at the observatory and this is used twice per month to calibrate the Mark 3 

and Mark 5 telescopes prior to an observing run. For the Mark 6, the laser is mounted 

on the telescope during each run and provides an average of 50 flashes per minute 

throughout the observation. These flashes are identified during calibration by 

examining the response of a PMT mounted on the side of the camera and shielded 

such that it views the laser flash but not the flux collector. Any event containing a 

signal in this tube greater than five times its sky noise response is picked out as a 

laser induced event. 

The laser calibration technique has also allowed the development of a back

up system based upon the response of the detectors to the cosmic ray images. Over 

the course of an observation, if we assume that there are no biases due to an uneven 

triggering response over the detector package, the PMTs should be subject to a 

uniform average illumination from the Cerenkov images of the isotropic cosmic rays. 

Using a technique based upon that suggested by Punch (1993), the integral 

distribution of signals for each PMT is collected for all events. The number of QT 
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bits over which the integral distribution falls from the 30% to the 5% level is then 

used as the value to be equalised by the gain factors (Fig 3.22). 

integral counts 
10000 t , 

30% 

1000 

5% 

100 

10 
10 00 1000 

measured signal 
(digital bits) 

Figure 3.22 Gain calibration using the cosmic ray beam. Gain factors are calculated 
such that the value "x" indicated in the integral pulse height distribution is normalized 
between each PMT. 

This region of the spectrum is chosen so as to avoid the smaller flashes 

where triggering biases become important. In addition to this, results from the laser 

calibration system are used to provide an extra normalization factor between each 

ring of PMTs in the detector package. This method is used to provide gain calibration 

for the Mark 3 and Mark 5 telescopes throughout their observations. An improvement 

to this method which is less effected by variations in the number of small triggers 

may be to use fixed rate levels other than the percentage criteria. A comparison of the 

results from the three different gain measurement techniques is given in Figure 3.23, 

which shows good correlation between the laser and cosmic ray methods. 
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Figure 3.23 A comparison of PMT gains calculated using the cosmic ray beam with 
those calculated using the radioactive light pulser and the laser. 

3.5.3 The CCD Star Tracking System 

The Mark 3 and Mark 5 telescopes have imaging cameras with 0.5° PMT 

pixels and shaft encoder resolution ~ 0.09° while the Mark 6 has 0.24° PMT pixels 

and shaft encoder resolution of ~ 0.02°. The shaft encoders therefore measure the 

telescope positions with enough resolution to specify the source position in the field 

of view accurately. What is not known, however, are the absolute offsets in the 

encoder positions relative to the celestial sphere. These offsets vary with time and 

with telescope attitude and can be as large as 0.2° for some pointing directions. In the 

past, the offsets have been kept to a minimum by monitoring the positions of 12 

widely spaced stars with an analogue camera aligned with the optic axis of the 

telescope. If the steering appeared inaccurate, constants in the steering software were 

altered to compensate. 

The development of inexpensive astronomical CCD cameras has led to a 

much improved system. All of the Durham telescopes are now equipped with an 

astronomical CCD camera for the purpose of tracking stars in the field of view. The 

CCD chip and control package are model SBIG ST4 and view an f/1.4, 50mm lens. 

The chip itself has an area of 2.54 mm2 divided into 165x192 rectangular pixels, 

giving a field of view ~ 2° and 1 arcminute resolution. In order to provide useful 
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tracking information, the camera must be aligned with the optic axis of the telescope. 

This is achieved by maximizing the anode current of the central camera PMT on a 

bright star and noting the position of the star in the CCD camera frame. 

At the beginning of every observation, a CCD camera full frame picture is 

recorded. The exposure time for this picture is - 5 s and stars of 8th magnitude can be 

resolved. This is then compared to a database of stars in order to check the orientation 

of the chip with respect to the celestial sphere. Throughout the observation, the CCD 

camera outputs the position of the current brightest pixel in its field of view. The x, y 

coordinates of this position, the brightness of the pixel, the exposure time (~ls), and 

the time the exposure was taken are added to each event record. The exposure time is 

kept to a minimum to allow rapid update of the position and stars of ~ 7th magnitude 

can be tracked with reasonable consistency. During the pre-processing of the data, the 

position of the brightest pixel is compared with the expected position of stars within 

the CCD camera field of view. As the prediction of the star's position relies on the 

time of the event, it is important that the CCD corrections are applied prior to the 

barycentring of the data. The deviation of the brightest pixel from the expected 

position is then used to calculate the shaft encoder offsets. The shaft encoder 

measurements with these offsets removed can then be used to reliably locate the 

actual candidate source position within the field of view. Each formatted event 

contains the x,y coordinates of the true source location in the field of view and 

Cerenkov images are then parameterised relative to this position. Figure 3.24 shows a 

typical CCD camera frame with the brightest pixel records for an observation added. 
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Figure 3.24 The CCD camera frame for an observation of Vela X - l . The circles 
represent stars in the initial, full frame exposure. Crosses indicate the predicted star 
positions at the start of the observation. The shaded arc shows the movement of the 
brightest pixel throughout the run. 
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CHAPTER 4 - A SEARCH FOR PERIODIC 
EMISSION OF TeV GAMMA RAYS 

4.1 Introduction 

The techniques of time series analysis have often been used to search for 

periodic sources of VHE gamma rays (for reviews see e.g. Chadwick, et al. 1990; 

Moskalenko, 1995; Weekes, 1988). This chapter deals with the mechanisms by which 

TeV emission with a characteristic time profile may be produced and the types of 

source in which this emission may occur. Some of the methods used in searching data 

for evidence of periodicity are reviewed. These methods are then applied to 

observations of the high mass X-ray binary system SMC X - l . 

Two forms of background discrimination are used in an attempt to enhance 

the ratio of gamma ray to nucleon initiated events in the data. The guard ring 

rejection technique is applied to the 1986 - 1991 Mark 3 telescope data and medium 

resolution image discrimination is used on observations made after the Mark 3 

telescope upgrade in 1993. 

4.2 Sources of Periodic Emission: Pulsars and X-Ray Binary Systems 

Some of the most interesting astrophysical phenomena are associated with 

objects whose emission is in some way periodic. In addition to this, the existence of a 

pulsed source with a known frequency for emission at other wavelengths allows the 

possibility of gamma ray flux measurements significantly below those attainable for 

steady sources. Radio pulsars have been strong candidates for VHE investigations 

since their discovery in 1967 (Hewish, et al. 1968) as their non-thermal continuum 

emission is indicative of relativistic charged particles which may produce TeV 

photons. X-ray satellites, such as UHURU, provided the first evidence for a new class 

of objects consisting of a close binary pair of stars where one of the stars is a compact 
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object (a neutron star, black hole, or white dwarf). These X-ray binary systems have 

become some of the most intensively studied candidates for VHE gamma ray 

emission. 

4.2.1 Formation of Compact Object Systems 

When a star has exhausted its supply of nuclear fuel it may collapse rapidly 

under gravity, causing a supernova explosion which sheds the stellar envelope. The 

state of the stellar remnant is determined by its initial mass. Stars with a mass less 

than ~7M 0 form a white dwarf star with a mass less than ~1.4MQ and a radius 

~107 m. Stars of mass greater than ~9M 0 are likely to form a neutron star in which 

the majority of protons and electrons have combined to form neutrons via: 

p + e' —» n + v 

and further gravitational collapse is prevented by the neutron degeneracy pressure. 

Neutron stars have a mass ~ 1.4 to 3M 0 and a radius of ~ 104 m. Those with a mass 

much greater than this will form black holes. Both neutron stars and white dwarves 

initially have a strong magnetic field associated with them as the magnetic flux lines 

of the progenitor star are "frozen in" to the almost perfectly conducting remnant when 

it forms. The field strength is determined by the original magnetic field and the size 

of the compact object. Typical values are ~ 1012 Gauss for neutron stars and ~ 106 

Gauss for white dwarf stars (e.g. Meszaros, 1992). 

Gamma ray production from these objects, by any of the mechanisms 

discussed in Chapter one, requires the presence of relativistic particles. Young 

neutron stars rotate very rapidly, with a period of tens of milliseconds, due to the 

angular momentum which is conserved after the collapse of the progenitor star. 

Energy may be transferred to the acceleration of particles by a decrease in the 

rotational energy of the pulsar. Alternatively, if the compact object exists in a close 

binary system, its emission may be powered by the energy released during the 
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accretion of matter from the companion star on to the compact object The 

mechanisms by which particles may be accelerated up to energies great enough to 

produce TeV gamma rays are discussed in section 4.2.4. 

4.2.2 Isolated Pulsars 

Pulsars were discovered as radio sources in 1967 (Hewish, et al. 1968). They 

are characterised by their emission of extremely regular pulsed radiation, with periods 

varying between 0.001 s and 5 s. They are believed to be neutron stars whose beamed 

emission crosses the line of sight as the neutron star spins. This is supported by the 

fact that the pulse period for most pulsars is decreasing, implying that some of their 

rotational energy is being radiated away. Only seven pulsars have been detected by 

the CGRO satellite in the gamma ray region. They are the Crab pulsar (Nolan, et al. 

1993), the Vela pulsar (Kanbach, et al. 1994), Geminga (Bertsch, et al. 1992), 

PSR1706-44 (Thompson, et al. 1992), PSR1055-52 (Fierro, et al. 1993), 

PSR1951+32 (Ramanamurthy, et al. 1995), and PSR 0656+14 (Ramanamurthy, et al. 

1996). Of these, all exhibit pulsed emission and only Geminga has no radio emission. 

In the TeV region, there have been reports of pulsed emission from the Crab 

(e.g. Gibson, et al. 1982, Bhat, et al. 1986, Dowthwaite, et al. 1984), Vela (Grindlay, 

et al. 1975, Bhat, et al. 1985) and Geminga (Bowden, C.C.G, et al. 1993) pulsars. 

With the advent of high resolution imaging techniques for ground based gamma ray 

astronomy highly significant detections of a steady flux of TeV photons from the 

direction of the Crab pulsar (Weekes, et al. 1989) and PSR1706-44 (Kifune, et al. 

1995) have been made. The Crab pulsar data show no evidence for pulsed emission 

(Gillanders, et al. 1995) and although full results of the time series analysis of the 

PSR1706-44 observations are yet to be reported, it is unlikely that a major portion of 

the detected flux is pulsed. 
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4.2.3 X-Ray Binary Systems 

The accretion driven systems can be further subdivided in to three main 

classes: high mass X-ray binaries, low mass X-ray binaries and cataclysmic variables. 

High mass X-ray binary systems are associated with young, population I stars. They 

consist of a massive OB supergiant star and a compact object, usually a neutron star, 

and have a high X-ray luminosity ~ 1037 erg s_1 (e.g. Rappaport & Joss, 1983). Matter 

is transferred from the supergiant to the compact object through a strong stellar wind 

which ejects - lCr4 M 0 per year (Bondi & Hoyle, 1944; Davidson & Ostriker, 1973). 

The X-ray luminosity is given by the rate at which the accreting material is losing 

gravitational potential energy, with the maximum luminosity from accretion being 

given by the Eddington luminosity, L E D . This occurs when the gravitational forces on 

the accreting material are balanced by the outward radiation pressure. For spherically 

symmetric accretion: 

Thompson cross-section. If the accretion flow is not symmetric and falls only on to a 

small region of the star surface then the Eddington limit will be correspondingly 

smaller. A small accretion disc may form due to the small angular momentum of the 

stellar wind, but the optical emission from these systems is dominated by the 

supergiant itself. X-ray emission from the neutron star shows eclipses as it is 

obscured by the supergiant. The X-rays are often pulsed as the compact object's 

strong magnetic field directs the accreting matter on to the magnetic poles which are 

displaced from the spin axis. The X-ray emission is then only seen when a pole is 

orientated towards the observer, giving a 'lighthouse' effect (Pringle & Rees, 1972). A 

sub-class of high mass X-ray binaries have rapidly rotating Be type stars as the 

companion to the compact object. The X-ray emission from these objects is often 

produced in periodic outbursts as the compact object passes through an equatorial 

4jiGMmpC 38 
1.26 x 10 

where M is the mass of the compact object, nip is the proton mass and a T is the 
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ring of matter ejected from the larger star (e.g. Charles & Seward, 1995). Figure 4.1 

illustrates the standard model of a high mass X-ray binary system. 

Neutron Star 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 
/ 
/ 
/ 

S >• 

/ "y 

^ ^ ^ ^ ^ \ 

\ 
\ 

^ - Companion evolved to fill 
\ critical Roche potential lobe 

\ -Orbital Period 2-10 days 
1 
1 

1 
1 

I 
I 

M = I 0 2 0 M 9 1 
R= 15 30 R© 1 ! - Near circular orbit 

i 

i - Eclipses probable 
\ 
\ 
\ 
\ 
\ 

\ 
S 

V 
\ 

X 

High Mass X-ray Binary 

' - Mass transfer by stellar wind, 
/ Roche lobe overflow, or both 

/ 
/ 

/ 

Figure 4.1 The standard model of a high mass X-ray binary system (after van den 
Heuvel, 1983) 

Low mass X-ray binary systems are generally associated with older, 

population I I stars and are characterized by faint optical emission and unpulsed 

steady X-ray emission of a slightly lower luminosity than that of high mass systems, 

but with occasional bursts. They are believed to consist of a cool, late-type star less 

massive than the sun which has filled its Roche lobe and is transferring matter on to a 

neutron star through the inner Lagrangian point (e.g. van den Heuvel, 1983). This 

matter carries a large angular momentum which causes the formation of a large 

accretion disc around the compact object which may sometimes be observed 

optically. The X-ray emission from the neutron star is basically unpulsed as the 

magnetic fields associated with these older objects have significantly decayed, 

although quasi-periodic oscillations (QPO's) are sometimes seen due to interactions 

between the accretion disc and the remnant magnetic field (van der Klis, 1988). 
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Bursts of X-rays are produced by unstable thermonuclear burning of He on the 

surface of the neutron star. The configuration of a typical low mass X-ray binary 

system is shown in Figure 4.2. 

Low mass companion fills 
critical Roche potential lobe 
Orbital period of several hours 

Near circular orbit 

Eclipses unlikely 

Mass transferred by 
Roche lobe overflow 
Optical light dominated by 
accretion disc 

Population II Low Mass X-ray Binary 

Figure 4.2 The standard model of a low mass X-ray binary system (after van den 
Heuvel, 1983) 

Cataclysmic variable systems are intrinsically less luminous in X-rays than 

the other X-ray binaries, producing ~ 1031 erg s_1 at soft X-ray energies. They have 

been known for some time to produce optical outbursts (e.g. Liebert, 1980) and, in 

some cases, pulsed optical emission. These systems are believed to be similar in 

configuration to the low mass X-ray binaries, but with the compact object being a 

white dwarf and not a neutron star. The optical outbursts are explained by an increase 

in the rate of mass transfer from the companion star, or by a change in the structure of 

the accretion disc. The pulsed optical emission is likely to be from accretion hot spots 

on the surface of a magnetised white dwarf at the magnetic poles. 

X-ray binary systems were popular TeV pulsed source candidates in the 

1980's and many detections of varying significance have been reported. Reviews of 

these have been presented by Chadwick, et al. (1990) and Weekes, (1988). The most 

convincing detections are associated with the X-ray binaries Cyg X-3, Her X - l , 

4U0115+63, Cen X-3 and Vela X - l (Chadwick, et al. 1990 and references therein) 
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and the cataclysmic variable AE Aquarii (Chadwick, et al. 1995a, Bowden, et al. 

1992, Meintjies, et al. 1992 and 1994). 

4.2.4 Particle Acceleration Mechanisms 

Many different source models have been proposed for the compact object 

systems described; however, each model must employ some form of particle 

accelerator. The various mechanisms by which charged particles may be accelerated 

up to energies high enough to generate TeV photons are reviewed in this section. 

4.2.4.1 Dynamo Mechanism 

An ordered magnetic field B, such as that associated with a neutron star 

spinning with a velocity v, will induce an electric field Ej = v x B. In the presence of 

a conducting plasma, the net field is reduced to zero, that is, E + (v x B) = 0. 

However, if there is a region of vacuum, a potential drop may develop through which 

particles can be accelerated. 

4.2.4.2 Plasma Turbulence (Second Order Fermi Acceleration) 

This method was proposed as a means of cosmic ray acceleration in 

interstellar space by Fermi in 1949. He supposed a situation in which charged 

particles are reflected from "magnetic mirrors" associated with irregularities in the 

galactic magnetic fields. The probability of a head on collision, by which the particle 

gains energy, is marginally greater than that of a tail end collision, where energy is 

lost. Over a series of collisions, the particle gains energy with the average gain per 

collision, AE, being given by (Longair, 1994): 

where V is the velocity of the magnetic irregularity. Particles accelerated by this 

mechanism will naturally be produced with a power law distribution. 

K ? ) AE 
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Collisions with interstellar clouds, which Fermi initially proposed may be 

responsible for this type of acceleration, are too infrequent to increase the energy of 

charged particles at a reasonable rate to account for the observed cosmic ray 

spectrum. In addition, the effect of ionisation losses on the particles as they are 

accelerated means that particles must be injected into the acceleration region with an 

energy greater than the maximum energy loss rate (see Fig 4.3). The process may be 

important, however, in small-scale regions of turbulent plasma such as occur in 

accreting systems. 

E 

Figure 4.3 The effect of ionisation losses on particle acceleration by the second order 
Fermi mechanism, (after Longair, 1994) 

4.2.4.3 First Order Fermi Acceleration 

In the second order Fermi mechanism, energy gain by the particle « (V/c)2 

as the particle loses energy to tail end collisions. If a system whereby only head on 

collisions occur could exist, then A E oc (V/c), and the process becomes much more 

efficient (Fermi, 1954). Such a situation occurs in the region of a collisionless shock 

in a plasma, when the shock front is moving with a velocity greater than the Alfv6n 

speed in the medium (e.g. Bell, 1978). If a flux of high energy particles is present 

dE 
dt 

Sufficient 
acceleration 

Insufficient 
acceleration 

Ionisation losses 
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either side of the shock front, they will be scattered through the shock in both 

directions as they reflect from magnetic irregularities and turbulent plasma. These 

particles will gain energy upon each crossing of the shock front, in either direction. 

This process has been reviewed by Drury (1983). 

4.2.4.4 Magnetic Reconnection 

In a highly conducting ionized plasma environment, any magnetic flux is 

"frozen" such that bulk motions in the plasma can cause shearing and twisting of the 

magnetic field lines. If oppositely directed field lines are brought close together, a 

neutral current sheet will form between them and reconnection of the field lines 

occurs (see Fig 4.4).The resulting induced electric fields along the neutral sheet can 

then cause particle acceleration. 

B 

B 

Figure 4.4 Magnetic reconnection occurs in the region C when two magnetic fields 
(B) of opposite polarity are forced together with a velocity v. An outflow of particles 
with velocities v x occurs along the x-axis. 

93 



4.2.5 Source models 

Any complete model of a compact object system must explain all of the 

observed features of the radiation across all wavelengths. There are currently no self 

consistent models which do this; however, models do exist which describe the basic 

features and allow for TeV gamma ray production. 

4.2.5.1 Isolated Pulsar Models 

Goldreich and Julian (1969) were the first to point out that a spinning 

magnetic neutron star will produce a large electric field with a component parallel to 

the magnetic field. The strength of this electric field is such that charged particles are 

removed from the surface of the neutron star, creating a plasma filled magnetosphere 

up to the velocity of light cylinder. This is the surface which, if rotating with the 

neutron star, would move with a velocity = c. Beyond this point, the magnetic field 

lines must be open (see Fig 4.5). Sturrock (1971) proposed that currents of highly 

accelerated charged particles would flow from the magnetic poles along these open 

field lines and emit curvature radiation. The gamma rays produced in this fashion 

would pair produce with virtual photons in the strong magnetic field and initiate an 

electromagnetic cascade, leading to a gamma ray beam. The rotating neutron star will 

also emit very powerful, low frequency magnetic dipole radiation. Gunn and Ostriker 

(1969) showed that particles may be accelerated in this radiation field and predicted 

that protons with energies ~ 1016 eV could be produced. However, Rees and Gunn 

(1974) suggested that the dipole radiation will be unable to propagate through the 

pulsar magnetosphere and the pulsar's rotational energy is used to power a wind of 

relativistic electrons and positrons instead. 
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Figure 4.5 A schematic diagram of a pulsar as a rotating magnetised neutron star. 
(after Longair, 1994) 

A further class of pulsar models postulate the existence of vacuum gaps 

within the magnetosphere of the neutron star, leading to the formation of large 

electric field potentials in which particle acceleration may occur. Polar cap models 

(Sturrock, 1970, Ruderman and Sutherland, 1975) postulate the existence of 

accelerator gaps close to the magnetic poles of the neutron star and have been used to 

explain the observed radio emission of pulsars (Lyne and Manchester, 1988). Gamma 

ray emission by this mechanism is harder to explain as high energy photons in the 

strong magnetic field near the polar cap would interact via pair production (Arons, 
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1984). The outer gap model of Cheng, et al. (1986, 1986a) predicts the creation of 

regions of charge depletion near the light cylinder at the last closed field line (Fig. 

4.6). Pair production and particle acceleration are sustained by the powerful electric 

field in the gaps leading to twin gamma ray beams which are observed as they cross 

the line of sight. Gamma ray production results from two mechanisms. In very young, 

Crab-type pulsars, accelerated charged particles lose energy primarily by curvature 

radiation. In older, Vela-type pulsars, the curvature radii of the magnetic field lines is 

larger and synchrotron losses become more important. 

• Rotation 
Axis Velocity of 

Light Cylinder 

G 

Figure 4.6 A model pulsar magnetosphere. The null surfaces which separate like 
charges (dashed lines) and the positions of the outer magnetospheric gaps (G) are 
indicated (after Cheng, et al. 1986). 

96 



4.2.5.2 X-Ray Binary System Models 

In a situation analogous to the outer gap model, Cheng and Ruderman (1989) 

have suggested that vacuum gaps may also form in accreting binary systems if an 

accretion disc is present, the inner region of which rotates faster than the pulsar 

magnetosphere. The location of the proposed accelerator gap is illustrated in Figure 

4.7. 
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Figure 4.7 The accreting neutron star model of Cheng and Ruderman (1989). The 
inner (dotted) region corotates with the neutron star while the outer (hatched) region 
has the same velocity as the accretion disc. The unshaded region illustrates the 
vacuum gap where a potential drop develops parallel to the magnetic field lines. 

Chanmugam & Brecher (1985) have proposed a model, based on a unipolar 

inductor mechanism, wherein the magnetic field of the neutron star penetrates the 

accretion disc. Differential rotation within the disc "winds up" and amplifies the field, 
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setting up a potential across the accretion disc through which particles may be 

accelerated. VHE gamma rays can then be produced when the particle beam interacts 

with some target material such as the atmosphere of the primary star. If the magnetic 

and spin axes of the system are not aligned, pulsed emission can result. A 

development of this model was suggested by Ruderman, et al. (1989) in which the 

potential drop is due to a difference in the rotational period of particles in the neutron 

star magnetosphere and the inner edge of the accretion disc. The maximum energy of 

particles accelerated by this model is (Gaisser, 1990): 

E - 3.5 x 1014 B^ 7 L]S eV 

where B 1 2 is the surface field of the neutron star in units of 101 2 Gauss and L 3 8 is the 

accretion luminosity in units of 103 8 erg s-1. The stresses built up in the magnetic 

fields in the disc due to differential rotation and uneven rates of accretion may also be 

sufficient to cause particle acceleration by magnetic reconnection (e.g. Wang, 1986). 

Shock acceleration by the first order Fermi mechanism could occur in the 

region where matter accretes on to the surface of the compact object. If the shock 

velocity may be approximated by the freefall velocity at a given distance from the 

star, then protons may be accelerated up to energies ~ 101 6 eV. The very strong 

magnetic fields which exist near the impact point will prevent the escape of charged 

particles or photons from their production site. To avoid this problem, Kazanas and 

Ellison (1986a) suggest that neutrons may be stripped from accelerated nuclei by 

nuclear collisions or photodisintegration and escape the pulsar magnetosphere. The 

rigidity of the magnetic field in the proposed shock region may also pose a problem 

for this model (Hillas and Johnson, 1989) as it prevents formation of the magnetic 

irregularities required to scatter particles across the shock front. Kiraly and Mdszaros 

(1988) have suggested that a relativistic beam of particles may be generated along the 

magnetic axis of the pulsar as a result of radiation pressure acting on the material 
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impacting on the surface. Particle acceleration may then occur in a shock formed 

where the jet interacts with matter accreting in a weaker magnetic field region near 

the magnetospheric boundary. 

Shocks may also form if the Alfv6n radius (that distance at which the 

magnetic pressure about the compact object is great enough to balance the pressure of 

the accreting matter) is outside of the light cylinder. In this case, the rotational energy 

of the pulsar can drive a relativistic wind of electrons and positrons (Arons, 1981). A 

shock forms when this wind interacts with the wind of the companion star, or with the 

atmosphere of the companion itself (Harding and Gaisser, 1989). This has also been 

proposed as a method for accelerating particles in pulsars embedded in a supernova 

remnant (section 6.2.1). 

4.3 Pulsed Source Analysis Techniques 

Pulsed sources of emission have been among the prime candidates for VHE 

emission since the birth of gamma ray astronomy. Low gamma ray flux levels and a 

high rate of background events have led to the development and application of 

sensitive time series analysis techniques to data from atmospheric Cerenkov 

experiments. Some of the methods employed are discussed in this section, along with 

the particular problems involved with searching for pulsed emission from an object in 

a binary system. 

4.3.1 Correcting for Motion Within the Solar System 

The calibrated and formatted data files contain an arrival time of the event 

measured with respect to the reference frame of the telescope. This reference frame is 

not stationary with respect to the source and so a set of corrections must be applied to 

allow for the Doppler shifting effects introduced by the relative velocity between 

source and detector. 
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The transformation of the event times to the barycentre of the solar system is 

carried out using the JPL DE200 Earth ephemeris (Standish, 1982). There are three 

stages involved in the correction. Firstly, the motion of the telescope around the 

centre of the Earth with respect to the direction of the source is allowed for (<0.021s). 

The exact geographical locations of the telescopes, necessary for this correction, are 

given by the GPS system. Next, the detector position is transformed to the barycentre 

of the solar system to remove the effects of the Earth's orbital motion (<500s). 

Finally, corrections are made for the relativistic effects introduced by the high 

velocity of the Earth's motion around the sun, and by the difference in gravitational 

potential between the true position of the detector and the solar system barycentre 

(<0.003s) (Mannings, 1990). 

4.3.2 Correcting for Motion Within a Binary System 

When searching for pulsed emission from a binary system it is incorrect to 

assume that the emitting region is stationary within the system. The high masses of 

the compact object and its companion can result in orbital velocities much greater 

than those found within the solar system, making the corrections for these velocities 

important. The inherent assumption in these corrections is that the production site for 

TeV gamma rays is the same as the emission region at other wavelengths. 

The accuracy of the correction to the binary system barycentre depends upon 

the measurement of the parameters of the system's orbital ephemeris by experiments 

at other wavelengths. These parameters are: 

(i) the orbital period of the X-ray source in the binary system, Pb. If available, the first 

derivative of this period is also used. 

(ii) the eccentricity, e, of the orbit. 

(iii) a reference epoch T 0 corresponding to the time of passage through a particular 

point in the orbit (e.g. mid-eclipse of the X-ray source). 

(iv) The semi-major axis of the orbit as viewed by the observer: a.sin(i) where a is the 
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true semi-major axis of the orbit and i , the angle between the pole of the orbit and the 

line of sight. 

A full description of this correction is given by Carraminana (1991). 

4.3.3 Phase Sensitive Analysis 

The phase sensitive analysis techniques used to investigate VHE gamma ray 

observations can be divided in to two types, based upon the accuracy to which the 

period and light curve of emission is known. For objects such as radio pulsars, almost 

continuous monitoring of the very steady periodic emission is available at other 

wavelengths and epoch folding methods can be used. Information on the emission 

from X-ray binary systems is only occasionally available and the emission can be 

variable in intensity, periodicity and light curve shape (e.g. Charles and Seward, 

1995), making more broadly sensitive tests necessary. 

4.3.3.1 Epoch Folding 

In cases where the period of the emission from the source is well defined by 

observations at other wavelengths, a simple test for periodicity is given by allocating 

each event to a relative phase interval based on its measured arrival time. The total 

number of events in each phase bin is then used to produce an overall light curve 

which can be tested for evidence of periodicity by comparing it with the expected 

uniform phase distribution. This comparison can be made by using Pearson's x 2 test 

to evaluate the deviation of the number of events in each bin from the expected 

number (Leahy, et al. 1983). If the shape and precise phase position of the expected 

light curve is known then the size and position of the phase bins can be determined a 

priori to give the most significant signal. If the light curve is less well measured, then 

a narrow phase peak may be split between bins and any re-binning will increase the 

degrees of freedom and incur a statistical penalty. 

Gregory and Loredo (1992) have proposed a method for Bayesian analysis of 
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time series. In this, the expected uniform phase distribution is compared against a 

series of modelled binned distributions with periodic structure. The model which best 

fits the phase distribution of the data can then be found and the odds of obtaining 

such a distribution calculated using Bayesian methods. This method is particularly 

useful in handling data with gaps in it and in finding the optimum number of phase 

bins to use. It is also possible to quantify the statistical penalties incurred by invoking 

a more complex model distribution. 

A complementary test for periodicity is to examine the sign of the deviation 

of the number of events in each bin from the expected number. The run test (Eadie, et 

al. 1971) can be used for this purpose and will produce a result significantly different 

from expectation if the deviations are consistently negative or positive. One 

advantage of this test is that it is independent of Pearson's x 2 test and can thus be 

combined with it to produce a more powerful statistic. 

4.3.3.2 The Rayleigh Test 

Arbitrary binning decisions, which are an unavoidable consequence of epoch 

folding when the light curve is poorly measured, can be circumvented by the use of 

circular statistics. Instead of binning the data, the time of arrival of each event is 

represented by a radial vector on a circle with a phase angle, <|>, relative to some 

arbitrary phase (Fig 4.8). These vectors are then tested to see whether they differ 

significantly from randomness. The criterion for significance used in VHE gamma 

ray astronomy is normally three standard deviations (3o). If a significant difference is 

found then the null hypothesis, Hq: the parent population is uniformly distributed in 

phase, can be rejected. The Rayleigh test (Rayleigh, 1894) was introduced to VHE 

gamma ray astronomy by Gibson et al. (1982a) and provides the most commonly 

used test statistic in this field. 
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Figure 4.8 Illustration of the Rayleigh test, a) Each time is treated as a unit vector 
with a phase angle <j>. b) These are then summed to produce a resultant Rayleigh 
vector R 

The Rayleigh test has been described in some detail by Mardia (1972) and 

more recently by Batschelet (1981). Briefly, the test is performed by adding the radial 

vectors for each event in a dataset. The modulus of the resultant vector is divided by 

the number of events, N , to give a normalised value , R, between 0 and 1 which can 

then be tested for significance. R is given by: 

I f the number of events is large (N>100), then 2NR 2 is distributed approximately as a 

X 2 distribution with two degrees of freedom, and the probability of obtaining a 

particular value of 2NR 2, is: 

where NR 2 is known as the Rayleigh power. More accurate estimates of the 

probability for the case where N is small are possible (Greenwood and Durrand, 

1955), however, this situation does not arise with the typical datasets necessary to 

R 

2 

[(J,""*') + (I/"*')] 1 
N 

(mod 2n) 

Pr(^2NR2) = e " n r 2 
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measure a significant flux of TeV gamma rays with an ACT. 

The Rayleigh test is most sensitive to broad sinusoidal light curves. In the 

case of a source with a double peaked light curve, with the peaks separated by 180° in 

phase, the phase vectors wil l cancel each other and give a small resultant R. This 

problem is often avoided by searching at both the fundamental and the first harmonic 

of the expected period. Alternatively, the Z 2

m test may be used. The Z 2

m statistic is a 

modification of the Rayleigh statistic and is equal to twice the sum of the Rayleigh 

powers for the first m harmonics. I f R 2 is the Rayleigh statistic evaluated at the j * 

harmonic then: 

4 = X 2NR 2 

j = 1 

The Z? m statistic for large values of N is then distributed approximately as %2 with 

2m degrees of freedom (Lewis, 1993). 

Short exposures and a varying count rate due to zenith angle effects can 

introduce an artificial enhancement in %2 for longer test periods. The first problem 

can be avoided by truncating the dataset to an integral number of test periods 

(Poincar6's correction); however, this is difficult i f a range of periods are to be tested. 

Orford (1996) has suggested corrected formulations of %2 for datasets of finite length 

and varying count rate. 

4.3.3.3 Period Searching 

When searching for periodic emission from a potential gamma ray source 

using the Rayleigh test it is rarely sufficient to test at a single period. Uncertainties in 

the period of emission can be caused by unpredictable source behaviour and errors in 

the orbital parameters. Searching a range of periods, however, leads to an increased 

chance of finding an apparently significant result and so the search range should be 

kept as small as possible and all degrees of freedom due to the extra trials fully 

104 



accounted for. To determine the number of trials, it is necessary to know the extent of 

the correlation of the Rayleigh statistic between adjacent test periods. For an 

estimated period P l f tested on a dataset of duration T, the phase difference between 

the first and last events, A<J» = T/P^ If a small increment is added to P l t the phase 

difference is decreased slightly. Eventually, such increments lead to a value of the 

period where the phase difference between the first and last events has slipped by a 

fu l l cycle. This is the next independent trial period. The number of independent 

periods, N P , in the period range Pj to P 2 is then given by: 

N = I - 1 
P P i P 2 

T(P 2 - P,) 
PP 
r l r 2 

and the distance between independent periods, (P 2-Pi)/N P, known as the Fourier 

interval: 

RP 2 

F.I. = - l i 

I f the period range searched is small compared with T, then Pj ~ P 2 ~ P and the 

Fourier interval is simply P2/T. Standard procedure is to test three times within each 

Fourier interval (oversampling) to allow for a signal peak falling approximately 

between two independent test periods. The effect of these extra trials on the true 

significance of the Rayleigh statistic must be accounted for in the analysis. Monte 

Carlo studies by De Jager, et al. (1989) and an analytical treatment by Orford (1991) 

imply that as the Rayleigh power increases, the significance of the effect is 

overestimated by a factor of ~ 3. 

4.3.3.4 Combining Observations 

A typical source dataset for an atmospheric Cerenkov experiment wil l consist 

of several (~ 10) observations of a few (~ 5) hours for each month in which the 
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source was visible. It is necessary to be able to combine these observations in some 

fashion to test for periodic emission in the entire dataset. The simplest method 

available, and that which is most appropriate where the behaviour of the pulse period 

is poorly known over a timescale of several days, is to combine each of the 

probabilities of uniformity of phase to produce a new statistic. This does not rely on 

the phase information being retained between each observation ie. the observations 

are combined incoherently. I f at a test period P, the Rayleigh probability Pr, is 

obtained for n observations, then the formula for the combination of these is given by 

Eadie et al. (1971) as: 

C = -2 £ ln(P r j) 
j = i 

which is exactly distributed as %2 with 2n degrees of freedom. The Fourier interval 

for period searches in combined datasets is calculated using the average duration of 

each independent observation. 

In the case of sources where the period and period derivative are extremely 

well measured, such as with radio pulsars, it is possibly to combine the observations 

coherently. The datasets are simply treated as one long observation with gaps in it. 

The period search range must be restricted as far as possible in this case as the 

Fourier interval is given by P2/T where T is the time from the start of the first 

observation to the end of the last. 

4.3.3.5 A Software Test 

The periodic analyses presented in this chapter have relied upon the use of 

existing software packages. It is therefore important to test the performance of these 

packages on a time series with a known periodicity prior to the analysis. This has 

been done using an EGRET observation of the Vela pulsar. The EGRET data, 

consisting of 1715 photons, was recorded over three days from the 10 t h to the 13 t h of 
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May, 1991. Figure 4.9 displays the results of the Rayleigh test and the epoch folded 

light curve at the peak Rayleigh power. The periodicity due to the 89 ms pulsar can 

be clearly seen. 

- Log (Prob) 
30 

89.2933 89.2934 89.2935 89.2936 89.2937 89.2938 89.2939 89.2940 

Test Period (ms) 

Number of Photons 
160n 

120 

40 

0.2 0.4 0.6 0.8 1 
Pulsar Phase 

Figure 4.9 The results of the Rayleigh test applied to an EGRET observation of the 
Vela pulsar. The lower figure shows the light curve at the period of the peak Rayleigh 
power. 
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4.4 A Search for Periodic Emission Using the Guard Ring Rejection 

Technique. 

The technique of guard ring rejection has been described in section 3.3.2 and 

was the method of signal enhancement employed by the University of Durham Mark 

3 ACT between its construction in 1986 and the installation of an imaging camera in 

April 1993. An analysis of all the data recorded by the Mark 3 telescope whilst 

tracking the X-ray binary source SMC X - l was presented by Bowden (1993). He 

concluded that there was no significant evidence for emission at TeV energies, but 

that a reanalysis of the data using a more accurate orbital ephemeris could prove 

worthwhile. The results of that analysis are presented here. 

4.4.1 SMC X - l 

SMC X - l , the first X-ray source discovered in the small Magellanic cloud, 

was first detected by rocket flight experiments (Price, et al. 1971). Subsequent 

observations using the UHURU satellite revealed the existence of X-ray eclipses 

lasting 0.6 days with a period of 3.89 days, establishing the binary nature of the 

source (Schreier, et al. 1972). A BOI supergiant star, Sk 160, was suggested as the 

optical counterpart to the X-ray source (Webster, et al. 1972) and this was confirmed 

by the detection of optical brightness variations in phase with the X-ray eclipse 

period (Liller, 1973). Optical photometry indicated the presence of an accretion disk 

which influences the optical light curve (van Paradijs and Zuiderwijk, 1977). 

The discovery of X-ray pulsations in SMC X - l , indicating the presence of a 

pulsar, was reported by Lucke et al. (1976). Between 25% and 35% of the X-ray flux 

was found to be pulsed at a period of 0.72s with the light curve showing two broad 

peaks, the interpulse strengthening at higher energies. More recent observations by 

Kunz et al. (1993) revealed an increase in the pulsed fraction up to >80%, declining 

to 20% over the course of ~ 200 days. The period, P p u i s e i of the pulsed emission has 
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been decreasing since its discovery (Henry and Schreier, 1977) with little variation 

and no observed spin-down episodes. 

SMC X - l is one of the brightest stellar X-ray sources known, with a 

maximum inferred X-ray luminosity of ~ 8 x 10 3 8 ergs s 1 in the range 1-37 keV for 

an assumed distance of 65 kpc (Levine, et al. 1993). The high accretion rate 

necessary to generate this X-ray flux is inconsistent with a model powered by stellar 

wind accretion and can only be explained by Roche lobe overflow from the 

supergiant. This model also helps to explain the steady pulsar period spin-up. The 

masses of the two objects in the system have been calculated by van Kerkwijk, et al. 

(1995) as: 

15.2 2 j M Q for the supergiant 

1.17^f Mg for the pulsar. 

Variations in luminosity between ~ 10 3 7 and 10 3 9 ergs s_1 have been detected 

on various timescales. Flaring behaviour is observed over hours and days and the 

source enters extended low and high states, differing by over an order of magnitude 

in luminosity and exhibiting a spectral hardening with increased emission (e.g. Tuohy 

and Rapley, 1975; Bonnet-Bidaud and van der Klis, 1981; Kahabka and Pietsch, 

1996). 

4.4.2 TeV Gamma Ray Observations of SMC X - l 

The first report of TeV observations of SMC X - l , using the University of 

Durham Mark 3 telescope, was presented by Brazier, et al (1990). 264 hours of data, 

collected between October 1986 and October 1988 were processed and only those 

events which triggered the on-source channel alone were accepted for phase sensitive 

analysis. A contemporaneous X-ray pulse period measurement was used to search for 

emission in data from July 1987 and provided evidence for a weak signal at the 
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expected period. The possibility that the VHE gamma ray and the X-ray production 

sites were not coincident was investigated by correcting event times for orbital 

motion within the binary system using a small range of values for the semi-major axis 

and orbital phase. After correction for the number of trials involved in this search, a 

chance Rayleigh probability of 3 x 10 - 5 was found for the detection of emission at 

the pulsar period. This signal was largely confined to the three of the nine 

observations in the July dataset at orbital phases around 0.25 and 0.75. Some models 

of X-ray binaries predict that VHE gamma rays may be observed from the decay of 

neutral pions, produced when an accelerated beam of protons interacts with some 

target material in the line of sight (e.g. Hillas and Johnson, 1991). This situation 

could well occur at the nodes of the orbit, with the atmosphere and stellar wind of the 

primary forming a target for the proton beam. The application of these optimised 

orbital parameters to the search for pulsed emission in the eight other datasets 

available gave a chance probability of 10"4 for emission at the expected period. 

A thorough analysis of all observations of SMC X - l with the Mark 3 

telescope between October 1986 and November 1989 was performed by Mannings 

(1990). In addition to rejecting events which triggered off-source channels, those 

events with a response greater than 60% of the on-source channel in any of the guard 

ring tubes were also removed. A search for emission pulsed at the X-ray period was 

performed on each of 11 sequences of observations, maintaining phase coherence 

within each - 1 0 day sequence. Orbital searching techniques were employed and raw 

chance probabilities of 5 x 10"6 and 5 x 10*5 were noted for the months of July 1987 

and September/October 1989 for an assumed emission site co-located with the 

neutron star position. A series of simulations designed to test the true significance of 

the Rayleigh statistic after orbital searches of this type indicated that these 

probabilities were consistent with a random time series. The 20 separate observations 

within these two sequences were examined individually and the majority of the 

evidence for emission was found to originate with three datasets, situated about 
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orbital phases of 0.72, 0.25 and 0.70 and coincident with the neutron star position. 

Again, the trials involved in this analysis reduced the evidence for emission over this 

shorter timescale to the level of chance. 

A similar analysis method was applied by Bowden (1993) to the Durham 

SMC X - l database, including observations up to October 1992. Using a refined 

relative guard ring response threshold of 45% (Brazier, 1991) and improved pedestal 

calibration, each observation was tested for pulsed emission over a range of assumed 

values of semi-major axis and orbital phase. The data were divided into two groups. 

Observations prior to 1990 were tested for periodicity within one Fourier interval of 

the expected period, while those after 1990 had the test range broadened to two 

Fourier intervals, to allow for errors in the expected period caused by the lack of a 

contemporaneous X-ray measurement. Five single observations were discovered to 

give a Rayleigh chance probability less than expectation after the large number of 

trials in this analysis were accounted for. The orbital phases at the time of these 

observations were 0.25, 0.58, 0.79, 0.81, and 0.86. The most significant of these 

observations gave a 10% probability of chance occurrence and so conclusive 

evidence for emission was not obtained. 

At higher energies, the South Pole Air Shower Experiment reported the 

detection of a burst of unpulsed emission from the direction of SMC X - l lasting one 

day (18 t h October 1991) (Vanstekelenborg et al, 1993). The probability of the burst 

rate occurring by chance was quoted as 0.4% and corresponds to a flux of 1.3 ± 0.2 x 

10"11 cm - 1 s"1 above 50 TeV. None of the Durham telescopes were operational during 

this period. 

In 1993 an updated set of orbital parameters for the SMC X - l binary system 

were published which included a rate of orbital decay (Levine, et al. 1993). The 

potential effects of this new information upon any periodic component in the data can 

be estimated as follows. The maximum Doppler variation in the observed frequency 

of pulsed emission occurs at the nodes of the orbit. I f P' is the pulse period measured 
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in the rest frame of the observer when the pulsar is moving with velocity, v, at a node, 

then: 

v - p ,o±a 

and 

v _ 2nasin(i) 
c ~ P . 

orb 

where P o r b is the orbital period and asin(i) is the semi-major axis of the orbit in light 

seconds. The pulsar frequency shift is then given by: 

P n 2nasin(i) 
TV r> _ " 

For the Levine ephemeris, asin(i) = 53.4876 ± 0.0004 Is whereas previous analyses 

had used a value of 53.46 ± 0.05 Is. The effect of using these different values of 

asin(i) wi l l change the correction for pulsar frequency shift by a maximum of 

~ 4 x 10"7 s. When retaining phase coherence over 15 days, the Fourier interval can 

be as short as 3.9 x 10-7 and so inaccuracies in the old orbital parameters may well 

have been sufficient to destroy any periodicity in the dataset. A re-analysis of the 

Durham database is presented in the following sections. 

4.4.3 Data Selection 

There are two reasons for not using all of the recorded events in a phase 

sensitive analysis. The first is the need to have a "clean" dataset, free from any 

systematic effects which may introduce biases into the calculated Rayleigh 

probabilities. Secondly, background discrimination techniques are used to improve 

the signal to noise ratio within the dataset. 

The count rate profiles and observer's comments for all observations of SMC 
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X - l with the Mark 3 telescope between 1986 and October 1992 were examined and 

any effected by frost or condensation on the mirrors, poor weather or by equipment 

failures were excluded or truncated to eliminate the effect. This selection resulted in 

121 observations, taken from 18 different observing periods, with an average duration 

of 3.3 hours. The ful l catalogue of these observations is given in Table 4.1. 

The first stage of the guard ring background rejection involved rejecting 

those events which triggered in any coincidence channel except for the central, on-

source channel alone. The pedestal offsets for each PMT were then calculated for 

each night using the cosmic ray response distribution (Bowden, 1993). Following 

Brazier (1991), events with a signal greater than 45% of the on-source response in 

any of the guard ring tubes were then removed. The final number of selected events 

for each observation is also shown in Table 4.1. 

Table 4.1: Catalogue of Mark 3 telescope observations of SMC X - l 
Observation 
Date 

Duration 
(hours) 

Events 
Selected 

Orbital Phase 
at Midpoint 

24/10/86 2.0 2969 0.79 
25/10/86 2.8 3407 0.04 
26/10/86 3.4 4073 0.29 
27/10/86 3.9 3281 0.55 
28/10/86 1.6 2300 0.81 
30/10/86 2.1 2685 0.33 
01/11/86 3.5 8544 0.83 
02/11/86 1.7 6205 0.08 
03/11/86 3.3 7573 0.34 
04/11/86 2.4 4636 0.61 

21/07/87 2.9 1664 0.21 
22/07/87 3.5 1485 0.46 
23/07/87 4.3 4490 0.72 
24/07/87 4.1 4022 0.97 
25/07/87 3.3 1004 0.22 
26/07/87 1.5 1340 0.49 
28/07/87 2.8 2386 0.00 
29/07/87 4.3 1503 0.25 
31/07/87 4.9 4405 0.77 
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20/08787 19 2252 0.89 
21/08/87 2.8 2805 0.15 
22/08/87 2.9 2881 0.41 
23/08/87 2.7 3138 0.66 
24/08/87 3.2 2629 0.92 
25/08/87 3.2 3329 0.18 
26/08/87 3.3 3648 0.43 
28/08/87 3.3 2721 0.95 

14/09/87 2.3 1750 0.30 
15/09/87 3.3 3657 0.55 
16/09/87 3.3 3072 0.81 
17/09/87 2.2 1183 0.07 
18/09/87 3.7 3639 0.32 
19/09/87 3.8 2652 0.58 
20/09/87 3.7 1147 0.84 
21/09/87 3.8 2747 0.09 
22/09/87 3.8 2883 0.35 
23/09/87 2.8 2073 0.61 
24/09/87 3.3 1386 0.87 
25/09/87 3.2 2131 0.12 
26/09/87 2.0 1346 0.40 
27/09/87 4.3 2545 0.63 

10/10/87 1.7 1303 0.94 
11/10/87 2.9 1607 0.21 
12/10/87 4.0 1884 0.47 
14/10/87 4.3 3017 0.98 
16/10/87 5.2 3749 0.53 
17/10/87 4.0 3602 0.76 
18/10/87 4.0 3460 0.01 
19/10/87 4.3 2329 0.29 
20/10/87 5.7 6865 0.54 
22/10/87 2.9 3516 0.03 
23/10/87 3.9 3381 0.30 
24/10/87 3.8 2009 0.56 
25/10/87 2.1 2874 0.81 

13/11/87 1.9 1626 0.69 
17/11/87 3.1 1354 0.72 
18/11/87 3.1 3079 0.98 
19/11/87 3.1 3375 0.23 
20/11/87 2.2 1770 0.50 

14/07/88 3.3 4809 0.44 
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16/07/88 3.4 4413 0.96 
17/07/88 3.4 5083 0.21 
18/07/88 3.4 5379 0.46 
20/07/88 3.3 1119 0.98 

04/09/88 3.8 1140 0.78 
07/09/88 4.0 4062 0.53 
09/09/88 4.5 4756 0.04 
10/09/88 6.4 7797 0.31 
12/09/88 6.0 5616 0.83 
13/09/88 5.2 11918 0.07 
14/09/88 4.8 8044 0.33 
16/09/88 5.2 5748 0.86 

01/10/88 2.6 2928 0.68 
02/10/88 2.7 4170 0.96 

22/09/89 5.3 6811 0.15 
23/09/89 3.8 4018 0.41 
24/09/89 2.4 3114 0.66 
26/09/89 2.6 2705 0.17 
28/09/89 4.2 6339 0.69 
29/09/89 4.0 6423 0.95 
30/09/89 5.1 2117 0.20 
01/10/89 4.7 6943 0.46 
02/10/89 5.6 7907 0.71 
03/10/89 4.3 5320 0.97 
04/10/89 2.3 2783 0.24 

20/10/89 1.0 1404 0.35 
22/10/89 5.8 2870 0.85 
23/10/89 2.3 1754 0.09 
25/10/89 3.8 3939 0.61 
29/10/89 2.8 2923 0.66 
30/10/89 2.8 2273 0.92 
02/11/89 1.7 1163 0.68 

18/11/89 3.3 3963 0.78 
19/11/89 4.1 5476 0.04 
23/11/89 3.3 3772 0.06 
25/11/89 3.4 2771 0.58 
29/11/89 3.0 3003 0.61 
01/12/89 1.8 2267 0.12 

17/09/90 3.4 5693 0.68 
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18/09/90 17 4122 0.93 
19/09/90 2.5 3071 0.19 
20/09/90 2.5 3031 0.44 

11/10/90 2.7 4627 0.82 
12/10/90 3.3 5970 0.08 
13/10/90 3.9 6294 0.34 
16/10/90 2.8 3981 0.10 
17/10/90 1.4 1221 0.35 
18/10/90 3.6 4402 0.61 
20/10/90 1.3 2988 0.13 
22/10/90 2.5 5777 0.64 
23/10/90 2.5 5311 0.90 

10/11/90 2.5 2240 0.50 
17/11/90 2.0 2991 0.30 
18/11/90 2.0 2828 0.55 

10/01/91 2.0 1194 0.17 
18/01/91 1.9 1865 0.23 

25/08/92 5.2 1952 0.59 

20/09/92 2.7 2286 0.25 
21/09/92 2.0 1452 0.50 
25/09/92 1.5 1563 0.53 
26/09/92 3.1 3527 0.79 

TOTALS 395.7 421812 

4.4.4 Analysis Procedure 

Al l of the previously mentioned analyses of the Mark 3 SMC X - l database 

have involved some degree of searching in orbital parameters. No conclusive 

evidence for a production site significantly displaced from the X-ray emission region 

has been obtained. The quoted errors on the values of the semi-major axis and the 

epoch of eclipse mid-point for the binary system are small for the orbital ephemeris 

used in this analysis (Table 4.2) and the inclusion of an orbital decay term further 

increases the accuracy of the ephemeris. These factors, together with the problem of 

the large number of statistical trials which occur in orbital searching, suggested that a 
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more powerful test for pulsed emission in the TeV region was to correct event arrival 

times using the measured ephemeris alone. 

Table 4.2: Parameters for the SMC X - l binary system (Levine, et al. 1993). 

Parameter Value Uncertainty ( l a ) 

a.sin(i) 53.4876 lt-sec 0.0004 

Eccentricity <0.00004 (2o) 0.00001 

Pulse period change -5.30 x 10^ y r 1 2 x 10-6 

Mid-eclipse epoch MJED 42836.18277 0.00020 

Orbital period 3.89229118 days 4.8 x 10-7 

Orbital period change -3.36 x 10-6 y r i 0.02 x 10-6 

The light curve of SMC X - l at X-ray energies is double peaked, with the 

interpulse displaced almost exactly 180° in phase from the main pulse. As mentioned 

in section 4.4.3.2, this type of light curve may produce a deceptively low Rayleigh 

statistic. To allow for the possibility of a similar shape of light curve in the TeV 

emission, the data were tested for pulsed emission at both the fundamental and the 

first harmonic of the pulsar period. 

The length of time over which phase coherence can be maintained for time 

series analyses is dependent upon the accuracy to which the period derivatives are 

known. I f the dataset is of such a length that the period shift between its start and end 

points is uncertain by a value greater than one Fourier interval, the data must be 

divided into smaller sections and the chance probabilities combined incoherently. The 

maximum length of dataset, T m a x , for a period P is then given by: 

T = - L _ 
'max 

where AP is the error on the period derivative. 

For a period of 355 ms, the half period of SMC X - l , T m a x ~ 20 days. It is 

therefore reasonable to maintain phase coherence within each 3 week long observing 

period, but not between them. 

The recent published measurements of the X-ray pulse period for SMC X - l 
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are given in Table 4.3. While the measurement error on each is reasonably small, the 

RMS deviation of these points from a straight line f i t is ~ ±0.03 ms, which may be 

due to a change in the spin behaviour of the neutron star. To account for this, a search 

range of ±0.05 ms about the expected period (±0.025 ms in the case of the half 

period) is used in this analysis. 

Table 4.3: X-ray pulse period measurements for SMC X - l . 

Epoch (MJED) Period (ms) Reference 

42836.6823 714.88585±0.0004 Primini, et al. (1977) 

43000.1562 714.7337±0.0012 Davison (1977) 

43986.407 713.684±0.032 Darbro, et al. (1977) 

46941.72954 710.592116±0.00036 Levine, et al. (1993) 

47402.52220 710.140672±0.00002 Levine, et al. (1993) 

47452 710.0972±0.0022 Gilfanov, et al. (1989) 

47591 709.9830±0.0030 Gilfanov, et al. (1989) 

47740.35673 709.809901±0.00003 Levine, et al. (1993) 

4.4.5 Results 

The Rayleigh statistic, R, has been calculated for the data from each 

observing period, maintaining phase coherence between each observation. The raw 

probability of the resulting R value occurring by chance at the X-ray period and half-

period is shown in Table 4.4, along with the chance probability corrected for the 

number of trials involved in searching a period range. These trials are conservatively 

estimated by calculating the number of Fourier intervals involved in searching around 

the test period, multiplying by three to account for oversampling and by eighteen to 

allow for the number of different datasets tested. 
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Table 4.4: Rayleigh test results for all SMC X - l data by observing period. 

Observing Period Chance probability 
at fu l l period 
Raw (corrected) 

Chance probability 
at half period. 
Raw (corrected) 

24/10/86-04/11/86 1.8 x 10"2 (1.0) 4.2 x 10-3 (9.9 x 10-1) 

21/07/87 - 31/07/87 2.1x10-3 (6.6X10-1) 4.4 x 10-3 (9.9 x 10-1) 

20/08/87 - 28/08/87 5.4 x 10-2 ( 1 ( 0 ) 1.0 x 10-2 (i.o) 

14/09/87 - 27/09/87 2.1 x 10-3 (7.6X10- 1) 6.5 x 10-5 (8.3 x lO-2) 

10/10/87 - 25/10/87 7.9 x 10-4 (4.6 x 10-1) 1.6 x 10"4 (2.2 x 10-i) 

13/11/87-20/11/87 1.1 x 10-2 (9.8 x 10-1) 5.1 x lO- 3 (9.8 x 10-1) 

14/07/88 - 20/07/88 5.3 x 10-4 (1.5 x 10-1) 3.5 x lO- 3 (8.9 x 10"1) 

04/09/88 -16/09/88 6.4 x 10-3 (9.8 x 10-1) 3.7 x lO- 2 (1.0) 

01/10/88 - 02/10/88 2.5 x 10-2 (7.3 x 10-1) 4.2 x lO- 2 (9.9 x lO-i) 

22/09/89 - 04/10/89 2.9 x 10-4 (1.6 x 10-1) 3.1 x lO- 3 (9.8 x 10-i) 

20/10/89 - 02/0/89 1.2 x 10-3 ( 5 ; 5 x lo-i) 5.1 x 10^ (4.9 x 10-1) 

18/11/89-01/12/89 2.6 x 10-3 (8.3 x 10-i) 7.1 x 10-4 (6.1 x 10-i) 

17/09/90 - 20/09/90 1.0 x 10-i ( 1 0 ) 9.6 x lO-2 (1.0) 

11/10/90 - 23/10/90 3.4 x 10-2 (1.0) 6.3 x lO- 3

 ( 1 .o) 

10/11/90-18/11/90 8.0 x 10-2 ( i o) 5.8 x lO-2 (1.0) 

10/01/91 -18/01/91 3.6 x 10-2 (1.0) 7.9 x lO- 3 (1.0) 

25/08/92 4.2 x 10-2 (3.6 x 10-i) 1.2 x lO- 2 (2.2 x 10-i) 

20/09/92 - 26/09/92 1.5 x 10-1 (1.0) 4.1 x lO- 2 (1.0) 

These results provide no evidence for VHE gamma ray emission pulsed at 

the X-ray period or at its first harmonic in any single observing period. Combining 

the corrected probabilities using the equation given in section 4.4.3.4 indicates a 

96.8% probability that the data are uniformly distributed in phase at both the ful l and 

the half period over the six year dataset. 

Assuming an effective collecting area of 108 cm 2 for the Mark 3 telescope 

based on early experiments with small ACT arrays by the Durham group at the 

Dugway proving grounds in Utah (e.g. Chadwick, 1987) leads to an average 
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background count rate of ~ 3.0 x 10"9 cm - 2 s-1. The Rayleigh statistic is a measure of 

the fractional pulsed signal strength and by calculating that R which would have 

produced a 3o detection (chance probability of 1.348 x 10 3 ) using: 

_2 _ In (1.348 x 10"3) 
R N 

we can infer a 3a upper flux limit of ~ 1.2 x 10"11 cm - 2 s"1 above the energy threshold 

for cosmic rays of ~ 1 TeV. 

4.5 A Search for Periodic Emission Using Medium Resolution Image 

Discrimination. 

In April 1993 the Mark 3 telescope was upgraded and the central detector 

package replaced with a medium resolution imaging camera containing 31 PMTs 

(see section 3.4.2.3). Background discrimination techniques using the images 

recorded by this camera have been successfully employed to enhance the gamma ray 

signal from the X-ray binary Vela X - l (Chadwick, et al. 1995) and the cataclysmic 

variable source AE Aquarii (Chadwick, et al. 1995a). The results of a similar analysis 

of observations of SMC X - l are presented here. 

4.5.1 Data Selection 

The 1993 Mark 3 telescope SMC X - l dataset consists of 12 observations, all 

taken in the tracking mode, of average duration 3.3 hours. The count rate profiles and 

observers comments were examined for these and four were discarded due to poor 

weather conditions and/or equipment problems. The remaining observations are 

catalogued in Table 4.5, six from July and one from each of September and October. 

The Mark 5 telescope was also operational for some of these observations but was 

still under development and subject to various equipment problems. Consequently, 

these data are not used in this analysis. 
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The background discrimination techniques which were employed were 

developed empirically during the analysis of observations of AE Aquarii (Chadwick, 

et al. 1995a), in which a significant burst of pulsed gamma ray emission was 

observed. The analysis philosophy was to develop simple parameters which could be 

used to reject a reasonable fraction of obvious nucleon shower image candidates 

whilst retaining all of the gamma ray signal. 

After formatting and PMT calibration (section 3.5), the data selection 

proceeds in 5 stages: 

(i) The PMT responses are examined and those with a value greater than 5 times the 

standard deviation of the tube response under sky noise conditions (oN) are selected 

as "image" tubes. Any tubes adjacent to an image PMT and with a response greater 

than 2.25 oN are also selected as "border" tubes. Al l other PMT responses are deemed 

to be noise dominated and are set to zero. 

(ii) The parameters of the resulting image are calculated. In addition to the standard 

Hillas parameters described in section 3.3.2, the parameter "span" is defined as the 

angular extent of the image (in radians) subtended at the source position in the 

camera (Fig. 4.10). 

/ 
Large span 

Small span 

\ 
Figure 4.10 An illustration of the definition of the span parameter 
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(iii) The data are then divided into two sets: confined and unconfined events. An 

event is defined as unconfined i f the largest PMT response is in the outer ring of the 

camera. The image reconstruction for these events is poorer than for the confined 

events as more of the Cerenkov light was outside the field of view of the camera. 

(iv) Selection criteria are applied to both datasets in order to reduce the number of 

background events. The confined events are cut so that only events with a span less 

than the median value (1.08 radians for this data), an orientation parameter 'alpha' 

less than 45° and a mean distance greater than 0.4° are selected. The distance cut is to 

ensure that alpha is well measured. The unconfined events are selected using only the 

median span cut. 

(v) The datasets are recombined prior to time series analysis. 

The number of events retained by these selection procedures are also shown 

in Table 4.5. 

Table 4.5: Number of events at each stage of selection 
Observation 
date 

Total 
events 

Confined 
events 

Unconfined 
events 

Cut events 
(total) 

16/07/93 10425 8629 1796 1557 
18/07/93 10910 8887 2023 1098 
20/07/93 12359 10209 2150 1279 
21/07/93 12991 10808 2183 1507 
22/07/93 11490 9431 2059 1361 
23/07/93 11926 9782 2144 1317 
11/09/93 17140 13837 3303 4074 
12/10/93 15952 12843 3109 3570 

4.5.2 Analysis procedure 

As mentioned in section 4.3.2, previous analyses and some source models of 

SMC X - l predict that VHE gamma ray emission may be more likely to occur around 

the nodes of the orbit. Three of the eight observations in this dataset have a mid-point 

within 10% orbital phase of the ascending node. Each observation has therefore been 

tested for periodicity individually at both the ful l and half periods. This dataset was 

recorded more than four years after the most recent X-ray pulse period measurement. 

To allow for any unpredictable changes in the pulsar spin rate during this time, the 
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period search range has been widened to ±0.10 ms (~ 5 Fourier intervals) for the fu l l 

period and ±0.05 ms (~ 10 Fourier intervals) for the half period. 

In addition to testing for pulsed emission within each observation, the 

Rayleigh vector has been calculated for the six July observations, maintaining phase 

coherence across the month. Again the data have been examined at both the 

fundamental and the first harmonic of the X-ray pulse period. 

4.5.3 Results 

The raw chance probabilities for emission on a single night are given in 

Table 4.6, along with the corrected probabilities after allowing for the degrees of 

freedom used in the analysis. These consisted of the number of Fourier intervals in 

the period search range, oversampled by a factor of three and multiplied by the 

number of nights which were tested (eight). The Rayleigh probabilities for the data 

prior to the application of the background discrimination are also listed. 

Table 4.6: Rayleigh test results for each observation of SMC X - l in 1993. 
Observation 
date 

Chance probability at ful l period 
Raw(corrected) 

Chance probability at half period 
Raw(corrected) 

All data Cut data All data Cut data 
16/07/93 1.5x10-1(1.0) 9.9xl0-2(1.0) 1.4x10-1(1.0) 6.8x10-3(9.1x10-1) 
18/07/93 2.2x10-2 (9.9X10-1) 1.3x10-1 (1.0) 4.0x10-2(1.0) 8.0x10-3 (9.6x10-1) 
20/07/93 1.8x10-1 (1.0) 3.1x10-2(1.0) 3.1x10-2(1.0) 1.7x10-1 (1.0) 
21/07/93 2.3x10-2(9.9x10-') 4.7x10-2 (1.0) 1.4x10-1 (1.0) 4.7x10-2(1.0) 
22/07/93 3.7x10-2 (1.0) 9.3x10-2(1.0) 7.3x10-2 (1.0) 1.7x10-1 (1.0) 
23/07/93 1.8xl0-2 (9.8x10-1) 8.2x10-2(1.0) 2.5x10-2 (1.0) 3.0x10-3 (7.1x10-1) 
11/09/93 3.8xlO-3 (6.6x10-1) 1.6xl(H (4.5x10-2) 3.5x10-2(1.0) 1.2x10-1 (1.0) 
12/10/93 9.5x10-2 (1.0) 3.2x10-2(1.0) 5.6x10-2(1.0) 1.3x10-3 (6.1x10-1) 

The most significant of these results, that of 11/09/93 at the ful l period, 

constitutes a 1.7 o fluctuation and so does not exceed the 3 o detection criterion. 

However, it is interesting to note that the midpoint orbital phase of this observation is 

0.72, closer to an orbital node than any of the other nights examined. The 3 o flux 

limit for a single observation is ~ 5.0 x 10"10 cm - 2 s 1 above an energy threshold for 

cosmic rays (prior to background discrimination) of ~ 500 GeV. 
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The Rayleigh test result for the six nights in July, retaining phase coherence 

between observations, gave raw(corrected) chance probabilities of 9.3 x 10"3 (1.0) at 

the fu l l period and 2.3 x 10"4 (1.0) at the half period. The 3 o flux limit for this 

dataset is ~ 2.0 x 10' 1 0 cnv2 s_1 above an energy threshold for cosmic rays 

o f - 5 0 0 GeV. 

4.6 Conclusions 

The results of an analysis of SMC X - l observations recorded using the Mark 

3 telescope have been presented. The guard ring rejection technique was applied to 

data taken prior to the April 1993 telescope upgrade. No evidence for emission pulsed 

at the X-ray period was found in any of the 18 datasets analysed after correcting for 

motion within the binary system using the most recent orbital ephemeris (Levine, et 

al. 1993). A 3a upper flux limit has been set at ~ 1.2 x 10"11 cm - 2 s 1 above an energy 

threshold of ~ 1 TeV for the entire dataset. Eight observations recorded after the 

installation of a medium resolution imaging camera have also been examined after 

rejecting some nucleon image candidates. These observations show no evidence for 

emission. The night by night upper flux limit is ~ 5.0 x 1 0 1 0 cm*2 s 1 and the flux 

limit for the six July 1993 observations combined is ~ 2.0 x 10"10 cm - 2 s"1 above an 

energy threshold for cosmic rays, prior to background discrimination, of ~ 500 GeV. 

Kunz, et al. (1993) have fitted a power law to the differential spectrum of 

SMC X - l at hard X-ray energies (20 - 80 keV) with a spectral index of 3.59±0.17. 

Extrapolating this spectrum to TeV energies results in a predicted flux many orders of 

magnitude below the upper limits produced here; however, the mechanisms which 

have been proposed to account for TeV emission from X-ray binary systems are very 

different from those producing the X-ray flux, making such comparisons difficult. 

These results can only reduce the status of SMC X - l as a candidate for 

targeted observations. However, as an extremely luminous, i f distant, X-ray binary 
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object, it remains interesting and should be a part of any X-ray binary observing 

program of the more sensitive Mark 6 telescope. 
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CHAPTER F I V E - A NEW TECHNIQUE FOR 
IMAGE ANALYSIS 

5.1 Introduction 

The use of an array of photomultiplier tubes to form an imaging camera at 

the focus of an ACT has led to some highly significant detections of steady emission 

from VHE gamma ray sources such as the Crab nebula (Weekes, et al. 1989). The 

measurement of the Cerenkov images by such a camera is limited primarily by the 

mirror quality, camera size and pixel resolution. Ideally, a large, extremely high 

resolution camera would be employed; however, this is prohibitively expensive. 

Because of this, it is important to exploit the information provided by existing 

cameras as efficiently as possible. 

This chapter begins with a description of the standard moment procedure for 

image parameterisation as suggested by Hillas (1985). Some of the limitations of this 

procedure are discussed and an alternative technique based upon the fitting of a 

bivariate Gaussian shape to the Cerenkov photon distribution is proposed. The results 

of employing the two methods to simulated bivariate gaussian images, simulated 

hadron and gamma ray EAS images and to real data are then compared. 

5.2 The Moment Method of Image Parameterisation 

The derivation of the Hillas parameters for Cerenkov images in the camera of 

an ACT proceeds in three stages. The methods of tube calibration were discussed in 

section 3.5.2 and the selection of which tubes are included in the parameterisation 

(the image/border criteria) was described in section 4.4.1. The following sections 

describe the calculation of the moments of the image as well as some of the problems 

with this technique. 
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5.2.1 Calculation of Moments 

Suppose that the i * PMT is given coordinates x i 5 y ; (in degrees) and registers 

a signal s{. The origin of the coordinate system is the centre of the camera. The six 

moments can then be defined as follows: 

sum = 
y sx y s y 

( > I s < y > X°, < y > S s i 

From these we can calculate the variances: 

V(x) = (x 2) - (xf V(y) = (y2> - (y)2 V(xy) = (xy) - (x){y) 

These identities can then be used to derive the Hillas parameters of the image. For 

example, i f d = V(x) - V(y) and z = (d 2 + 4V(xy)) 1 ' 2 then: 

n .UK2 V W + V W + Z / U / V M A 2 V ( x ) + V(y) - z (Length) = = (Wi<fr/i) = = 

The image can then be represented by an ellipse, with its semi-major and 

semi-minor axes equal to these length and width parameters, respectively. The major 

axis of this ellipse can be expressed by the equation y = ax + b, where: 

Some of these features are illustrated in Figure 5.1. 

127 



4 

y = ax + b 

length 

y 
V(x) 

v(yy 

9 = tan (a) 

0 

Figure 5.1 Parameterisation of the elliptical image 

5.2.2 Problems With Moment Parameterisation 

The moment based analysis which has been described makes certain 

approximations when calculating the image parameters. The arguments of a moment 

calculation must be strictly zero or positive, to ensure positive values for width2, etc. 

We must therefore define in some way which tubes are to be included in the 

calculation. This requires some arbitrary decision to be made about the extent of the 

image. The noise-dependent thresholds used in the standard image/border tube 

selection process result in the loss of any image information which may be present in 

the noise-dominated pixels not included in the selected tubes. 

The other approximation implicit in the moment parameterisation is the 
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assumption that all of the image falls within the confines of the detector package. 

This is not the case for images with centroids close to the edge of the camera and so 

most cut selections include a low upper limit on the distance parameter to ensure that 

the images are not truncated. The possibility exists, however, that the distribution of 

light within the measured section of the image may allow some reconstruction of the 

section which is lost. 

5.3 The Bivariate Gaussian Fitting Method of Image Parameterisation 

Some of the problems inherent in the moment analysis of images may be 

solved by using optimization methods to f i t a smooth function to the signals recorded 

by all of the tubes in the detector package. A bivariate Gaussian function provides an 

ideal fitting function as it has no variable moments higher than second order. This 

allows a simple comparison with the standard second order moment analysis, with 

the width and length from the moment calculation being equal to the standard 

deviation of the bivariate Gaussian function in the width and length directions. 

This section describes how to accomplish such a f i t and examines some of 

the factors involved. 

5.3.1 Multivariate Minimization Techniques 

The minimization of functions of many variables is problematic due to the 

large volume of parameter space which needs to be searched. Two classes of 

optimization techniques exist. Search methods use only function evaluations to 

determine the direction in which the minimum is expected to lie, whereas gradient 

methods also require information about the derivatives of the function. The 

specification for this application was for a method suited to a function with a 

moderate number of parameters (six), where a reasonably good first estimate of the 

function shape was available from the moment parameterisation. The downhill 

simplex method (Nelder and Mead, 1965) was chosen as it is a robust and reasonably 

129 



efficient method which is simple to implement and does not require gradient 

information. 

The algorithm used was taken from Press, et al. (1992) which includes a ful l 

description of the downhill simplex method. A simplex is the simplest geometrical 

shape in N dimensions, consisting of N + 1 vertices. For example, in two dimensions, 

the simplex is a triangle. The minimization method starts by defining an initial 

simplex with N + 1 vertices, where N is the number of parameters in the function to 

be fitted. The simplex is then moved by a series of steps (reflections, contractions and 

expansions) in the direction which produces the best function fi t . The process is 

terminated when the movement of the simplex for a step is smaller than some preset 

tolerance level. 

5.3.2 The Fitting Procedure 

The purpose of the procedure is to f i t a smooth function to all of the signals 

recorded by the detector. The moment parameterisation fits a best ellipse, defined as 

the contour at the constant, la level, to only those signals above a certain threshold 

using analytical methods. The natural extension of this, which includes all of the 

signals, is to optimize the f i t of a bivariate Gaussian shape to the image, weighting 

each signal according to the measured noise response of the PMT. The Gaussian f i t 

can then be used instead of the moment f i t to calculate the Hillas parameters. The 

bivariate Gaussian function can be fully described by six parameters, corresponding 

to the six moments. For speed and ease of computation, the following parameters 

were used: A, the amplitude, (x), (y), which define the centroid of the function, 

(length)2, (width)2, which define its spread and 0, which defines its orientation. I f the 

origin of the coordinate system is now defined as the centroid of the bivariate 

Gaussian and the axes chosen such that 0 = 0, the function can be expressed as: 

Z = Ae I 2(lengthfS e I 2{widthf\ 
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In order to f i t this function to the image, we need a "goodness-of-fit" 

function which reaches its minimum when the f i t is best. Using the same 

nomenclature as in section 5.2.1, the i , h PMT registers a signal Sj and the predicted 

signal pj at this position is calculated assuming the bivariate Gaussian shape (after 

allowance for the telescope point spread function: see section 5.4.2). Some account 

must be taken of the measured noise on each PMT, oj. The minimization function can 

then be the %2 statistic: 

o* - P J 

The fitting process is best illustrated by a flow diagram (Fig. 5.2). 
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Calculate standard moment 
fit to image. 

Define initial simplex. 
7 vertices given by gaussian 

with parameters from moment 
fit and then recalculated with 

a slight change to each 
parameter in turn. 

Calculate tube positions 
relative to image centroid 

using (x>,<y>,0. 

Calculate X for each vertex 
of the simplex. 

Move the simplex by 
reflection, contraction or 

expansion in the direction of 
the minimum. 

I f movement is less 
than tolerance. 

Translate Gaussian parameters 
back to moments and use these 

to find Hillas parameters. 

If movement is greater 
than tolerance. 

Figure 5.2 Flow diagram showing the bivariate Gaussian fitting procedure. 

132 



5.3.3 Other Considerations 

When designing the fitting algorithm there are various factors to consider, 

some which are relevant to all optimization procedures and others which arise from 

this particular application. 

For all optimization methods it is possible that the f i t that is reached does not 

represent the global minimum. There is no sure way to avoid these local minima, but 

one technique which may help in some cases is to restart the minimization, once the 

f i t has been terminated. The simplex is returned to its initial size, but this time centred 

on the end point of the first f i t I f a local minimum has been found it is possible that 

the restart may enable the simplex to escape the valley and find its way to the global 

minimum. Figure 5.3 shows the effect of a restart on the final x 2 value. 

log a 2 ) with 
one restart 5-| , 

4 - . . ' 

3 - -

2 - -

0 

1 -I 1 1 1 1 
1 2 3 4 5 

log (X2) with 
no restart 

Figure 5.3 Best %2 value for the f i t with and without a restart at the initial minimum. 

The initial function shape should be as good an estimate of the final f i t as 

possible to reduce the number of cycles in the optimization. This is easily achieved in 

this application by using the <x), <y>, (length)2, (width)2 and 0 parameters derived 
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from the standard analytical moment f i t . The exact values of the image/border 

thresholds used in the moment f i t are not critical. The initial value of the amplitude of 

the bivariate Gaussian is given by the maximum PMT signal. 

The x 2 statistic described in section 5.3.2 uses the measured PMT response 

to sky noise to weight the accuracy of the fit prediction at each PMT position. In fact, 

the noise on each signal is made up of two components: the sky noise response and 

the uncertainty in the Cerenkov signal measurement. The measurement of the 

Cerenkov signal is affected by intrinsic fluctuations in the photon density across the 

image (granularity) and a statistical uncertainty oc ( N v ) 1 / 2 , where N v is the number of 

photons. For gamma ray showers, the granularity is expected to be smaller than for 

hadronic EAS which will cause the %2 statistic to be smaller for gamma rays for the 

same N v (section 5.5). The true uncertainty on the Cerenkov measurement is difficult 

to measure, but an approximate value can be derived using the calibration laser 

flashes described in section 3.5.2.3. 

Each PMT will measure a distribution of responses to a series of laser 

flashes. The width of this distribution wil l be the result of two components: variations 

in the intensity of the laser flashes and variations in the tube response to a given 

intensity of flash. Assuming that, for each laser flash, the photon density is the same 

at all points over the imaging camera, the value of the sum of the signals recorded by 

the camera over a series of flashes wil l produce a similar distribution; however, with 

109 independent samples of the same light flash, the width of this distribution wil l be 

dominated by variations in the intensity of the laser flashes. Assuming that the width 

of the distribution of sums is caused almost entirely by flash variations, it is possible 

to remove this component from the distribution of an individual tube's responses and 

calculate the variance due to errors in the measurement of the light flash alone. This 

variance and the variance in the the tube response to sky noise, calculated using the 

randomly triggered events (section 3.5.2.2), give two points on a calibration curve of 

the variance in the measurement of a given number of photons by each tube. 
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Assuming that there is a simple linear relationship between the variance and the light 

intensity, it is possible to redefine the noise, a i 5 as Oj 2 = o g

2 + (C.Sj)2 where css is the 

sky noise response measured using random events and C is a constant. 

The final consideration when applying the f i t is logistical. Is it practical to 

use such a processor-intensive procedure given the amount of data recorded by an 

ACT? Running the program on a Hewlett-Packard model 712/80 work station it is 

possible to produce a f i t for ~ 5 events s~l. A reasonably good observing month would 

produce -2000000 events from the Mark 6 telescope which could be processed in ~ 

4.5 days. Given that the process can be automated and left running overnight and 

weekends, this is perfectly adequate. Should the data rate increase with future 

upgrades to the telescope, it may prove necessary to obtain a faster processor. 

5.4 A Comparison of the Two Techniques 

5.4.1 Results on Artificially Produced Bivariate Gaussian Images 

The first test of the Gaussian fitting procedure is to confirm that it reaches 

the correct f i t for images which are Gaussian in form. This also provides a means of 

testing the effects of measuring a continuous image with a finite, limited resolution 

camera. 

A bivariate Gaussian shape was produced with a randomly generated size, 

shape, position and orientation. The signal at each PMT position was then calculated 

assuming a camera geometry identical to that of the Mark 6 telescope. To this signal 

was added a sample from a noise distribution which mimics the night sky noise 

distribution. The parameters used to generate the bivariate Gaussian function were 

noted and then both fitting techniques applied. This was repeated 300 times and the 

parameter values arrived at by both fitting methods were compared to the true values. 

Figure 5.4 shows the comparison for the (x) parameter. Both methods determine the 

centroid of the image to a high accuracy, although the moment f i t becomes less 
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accurate near the edge of the camera where images are truncated. Figure 5.5 shows 

the comparison for the (length)2 parameter. The optimization method reproduces this 

parameter accurately with the exception of a few events where it is likely that the f i t 

has been unable to escape an incorrect local minimum. The moment fi t , however, 

tends to consistently underestimate (length)2, particularly at larger values, again due 

to truncation. 
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Figure 5.4 Measurement of the <x> parameter for artificial bivariate gaussian shaped 
images using the gaussian fitting and standard moment parameterisation. 
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Figure 5.5 Measurement of the (length)2 parameter for artificial bivariate gaussian 
shaped images using the gaussian fitting and standard moment parameterisation. 

5.4.2 Results on Simulated Images of EAS 

The next stage in the development of the technique is to investigate whether 

it can provide an improvement in the rejection of hadron initiated EAS from the data. 
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In the absence of a strong celestial gamma ray source, the only way to test this is by 

modelling the response of the telescopes to Cerenkov flashes using Monte Carlo 

simulations. For the Mark 6 telescope, simulated gamma ray and hadron initiated 

images were produced using the MOCCA Monte Carlo program (Hillas, 1982). The 

telescope response was modelled for a range of pointing directions from 20° to 35° in 

zenith and from 180° to 230° in azimuth (where 180° is south), which is the range 

covered by a typical observation. The composition and spectrum of the primary 

nucleons were taken from Wiebel-Sooth, et al. (1995). The differential spectral index 

for the simulated gamma rays was chosen to be -2.2. 

Using the simulated hadron and gamma ray initiated events it is possible to 

derive an estimate of the expected quality factor, Q, for each technique (Fegan, 

1992). The parameter distributions for the simulated hadron and gamma ray events 

calculated using the moment procedure and the gaussian fitting are shown in Figures 

5.6 and 5.7 respectively. Also marked on these figures are the event selection criteria 

which give the best Q factor for each parameter. The distance cut is a lower bound 

which ensures that the alpha parameter is well measured. Combining these cuts gives 

61% gamma ray retention and 97.5% hadron rejection (Q = 3.8) for the moment 

procedure and 46% gamma ray retention and 99.1% hadron rejection (Q = 4.7) for the 

gaussian fitting technique. 
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Figure 5.6 Parameter distributions for simulated hadron and gamma ray images 
calculated using the standard moment procedure. 

counts counts 
(00 1.100 
530 1000 
500 n o 
450 800 
400 

700 
330 

600 Haotais Hufcmi 300 
Gammas 500 Gammas 230 

400 200 
300 150 
200 100 
100 

t 00 01 02 03 04 OS 06 07 08 09 10 0.0 0.1 0.2 03 04 0.5 06 0.7 08 09 10 
dapaas 

WIDTH LENGTH 

counts counts 
300 ISO 

450 160 

400 40 
350 

120 
300 

too Hadons Hadrons 230 
Gammas Gammas 80 

200 
60 ISO 
40 100 

20 so •At /V 

50 60 TO 80 90 10 20 30 40 04 06 08 0 2 14 6 00 
dagnw dsgjas* 

DISTANCE ALPHA 

Figure 5.7 Parameter distributions for simulated hadron and gamma ray images 
calculated using the bivariate gaussian fitting procedure. 
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The images produced using simulated hadron events compare reasonably 

well with measured background images when parameterised using the standard 

moment procedure (Fig. 5.8), although the spread on the width and length 

distributions is larger in the real data. The differences between the real and simulated 

distributions is much more pronounced when the images are parameterised using the 

bivariate Gaussian f i t (Fig. 5.9). The reason for this large discrepancy is not yet 

entirely clear. The blurring function assumed in the simulations is a gaussian shape 

with a ful l width at half maximum taken from measurements of the telescope's point 

spread function (PSF). One possibility for the difference between real and simulated 

image parameters is that the true PSF of the telescope mirrors is not composed of a 

single Gaussian shape but contains a broad, low light-level component which widens 

the images when all tubes are considered. Recent measurements of the PSF provide 

some evidence to support this idea. 
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Figure 5.8 Parameter distributions for real and simulated nucleon events calculated 
using the standard moment procedure. Total event numbers are normalised. 
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using the bivariate Gaussian fitting procedure. Total event numbers are normalised. 
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Figure 5.10 is a cross section of an image of Jupiter as it would appear in the 

centre of the field of view. This measurement was made by forming an image of 

Jupiter on an aiming board which was placed where the detector package is normally 

positioned. A CCD camera mounted on the telescope frame was then used to record 

the image. It is clear from this figure that the PSF is not well described by a single 

gaussian function. 
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Figure 5.10 Intensity profile of a horizontal cross-section of an image of Jupiter. 

In the analysis of data from the Mark 6 telescope, both of the image 

parameterisation methods have been altered slightly to compensate for this effect. For 

the moment method, a change has been made to the image/border threshold criteria. 

Instead of selecting tubes to include in the parameterisation on the basis of their noise 

response, they are now chosen by examining their recorded signal as a fraction of the 

peak response in the camera. For example, i f the peak tube response in the camera 

were 50 digital bits, tubes with a response greater than 40% of this (20 bits) are 

classed as image tubes and those with a signal of 20% (10 bits) are classed as border 

tubes i f adjacent to an image tube. To prevent images with a low peak tube response 

including many noise dominated tubes, the lowest signal level which a tube can 

141 



record and still be included in the parameterisation remains set as a function of its 

noise response. The effect of this image/border selection method is strongest with 

large events, whose secondary light component was bright enough to colour those 

tubes outside of the main image when noise dependent thresholds were used. A 

comparison of real data parameterised using the fractional peak response criteria and 

simulated data parameterised using the noise dependent thresholds is shown in Figure 

5.11. 
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Figure 5.11 Parameter distributions for real and simulated nucleon events calculated 
using the standard moment procedure. Real events have fractional peak response 
image/border criteria. Total event numbers are normalised. 

A more rigorous modification can be made to the gaussian fitting procedure. 

First, we parameterise the telescope PSF using a function containing two gaussian 

components, such that: 

z = Ae 2 o i + Be 
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A an B are the amplitudes of the two gaussian components and o 2

A and o 2

B are their 

corresponding variances. We can then use this function to calculate what fraction of 

the Cerenkov light observed by each tube would be spread to the other tubes in the 

camera. This calculation is performed for every tube to construct a PSF matrix. In the 

minimization routine the predicted signals from the bivariate gaussian test function 

are then multiplied by the PSF matrix. The modified predicted signals are then 

compared to the measured signals and the differences used to calculate x 2 as usual. 

The final parameters of the best f i t bivariate gaussian wil l then have had the major 

distortions which resulted from the PSF removed. 

The bivariate Gaussian parameters of real data, calculated using the PSF 

matrix correction, are compared with those of uncorrected simulated events in Figure 

5.12. The comparison, while an improvement on that seen when no account was 

taken of the PSF, is still rather poor. This could indicate that the PSF has been poorly 

parameterised and that the assumptions of a circularly symmetric function which 

remains the same over the ful l field of view of the detector may be inaccurate. 

Alternatively, the reconstruction of the original image parameters may not be possible 

to greater accuracy using this technique. 
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Figure 5.12 Parameter distributions for real and simulated nucleon events calculated 
using the bivariate Gaussian fitting procedure. Real events have the the PSF matrix 
correction applied. Total event numbers are normalised. 

5.4.3 Camera Boundary Effects 

As discussed in chapter three, the major axis of a Cerenkov image indicates 

the direction from which the shower originated. For an infinite ACT imaging camera 

observing gamma ray initiated events from the source direction, the distribution of 

the orientation angles of the major axes relative to the source position in the camera 

(alpha) should be close to 0°. For background, nucleon initiated events, alpha should 

be uniform between 0° and 90°. In a real imaging camera, recorded images are 

truncated by the camera boundary. As the major axis of the image is shortened, light 

recorded along the minor axis gains added weight in the moment calculation, causing 

the alpha distribution to be biased towards 90°. The degree of bias wi l l increase as 

the centre of gravity of the image moves closer to the camera boundary. The 

Gaussian fitting method should be able to reconstruct the missed part of the image by 

calculating the best fi t for the section which is observed. The alpha distributions for 
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various distance bands are shown in Figure 5.13. As expected, the gaussian fitting 

method results in a more uniform alpha distribution at large distance, implying that 

the image orientation is being more accurately reconstructed. 
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Figure 5.13 Variation of the alpha distribution with distance for each 
parameterisation method. The number of events per distance band are normalised. 

5.5 The Goodness-of-fit Parameter 

Degrange and Le Bohec (1995) have fitted an analytical model of the photon 

distribution produced by a gamma ray EAS to simulations of Cerenkov images as 

they would appear in a 534 pixel imaging camera. They suggest that the final value of 

the goodness-of-fit function will be significantly smaller for gamma ray initiated 

showers than for hadron EAS. By selecting events on the basis of a small value of the 

goodness-of-fit parameter, it should be possible to discriminate the gamma ray 

showers from the background events. 
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The Mark 6 telescope camera contains 109 pixels and so does not have the 

resolution necessary for this type of discrimination; however, it is likely that the more 

compact photon distribution produced by gamma ray EAS wil l result a lower final %2 

value after the gaussian fitting technique has been applied. Figure 5.14 shows the 

distribution of final x 2 for simulated hadron and gamma ray showers. While the two 

distributions are certainly different, effective discrimination between the two is 

difficult. The maximum quality factor resulting from a final x 2 selection is only 1.2. 
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Figure 5.14 The distribution of the goodness-of-fit parameter, x2» for simulated 
gamma ray and hadron images, along with the quality factor possible as a function of 
the cut value. 

Figure 5.15 illustrates the final x 2 of those events which survive selections 

using the usual parameters: length, width, distance and alpha at the values derived in 

section 5.4.2. The x 2 distribution of the remaining hadron images falls entirely within 

the x 2 distribution of the gamma ray images. From this it would appear that the 

goodness-of-fit parameter wil l not be useful either on its own or as an addition to the 

standard parameter selection values. 
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Figure 5.15 The distribution of the goodness-of-fit parameter, x 2 . for simulated 
gamma ray and hadron images after selecting images on the basis of the length, 
width, alpha and distance parameters. 

5.6 Conclusions 

This chapter has presented a new method for the parameterisation of 

Cerenkov images of EAS recorded by an ACT imaging camera. This method, based 

upon the optimisation of a bivariate gaussian f i t to the Cerenkov photon distribution, 

has been compared with the standard moment based method. Results from the 

application of the two techniques to real data and to artificially created images of 

bivariate gaussian form suggest that the gaussian fitting method reconstructs the true 

image shape more accurately than the moment method. Using Monte Carlo 

simulations to produce Cerenkov images of hadron and gamma ray initiated showers, 

quality factors have been calculated which suggest that the gaussian fitting technique 

wil l provide better background discrimination that the moment method, hence 

increasing the sensitivity of an ACT to gamma rays. Methods have been proposed to 

correct for distortions to the parameters of real images, possibly caused by a broad, 

low-light level component of the telescope's point spread function. 
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CHAPTER SIX - A SEARCH FOR STEADY 
EMISSION OF TeV GAMMA RAYS 

6.1 Introduction 

The highly significant detection of unpulsed TeV gamma rays from the 

position of the Crab pulsar and nebula by the Whipple collaboration (Weekes, et al. 

1989) has highlighted the importance of steady sources of emission in the VHE 

region. The most probable candidates for steady emission are discussed in this 

chapter, together with the gamma ray production mechanisms which may be 

involved. 

Observations of the radio pulsar (and possible nebula) PSR 1706-44 were 

recorded using the University of Durham Mark 6 telescope in May and July of 1996. 

These observations are examined for evidence of steady emission. The two different 

image parameterisation techniques outlined in Chapter five are employed in this 

analysis. 

6.2 Sources of Steady Emission: Supernova Remnants and Active 

Galactic Nuclei 

Through the history of ground based gamma ray astronomy there have been 

many candidates for the steady emission of TeV gamma rays. Nearby galaxies, 

globular clusters, radio galaxies and diffuse emission from the galactic plane have all 

featured in observing plans and there have been various claims for emission of low 

significance (e.g. Weekes, 1988). With the development of the imaging atmospheric 

Cerenkov technique and in the light of the results from the EGRET experiment 

aboard the CGRO, attention has been focussed on two classes of object: supernova 

remnants (SNR) and active galactic nuclei (AGN). 
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6.2.1 Supernova Remnants 

In a supernova explosion, the stellar collapse releases enough energy to eject 

the outer layers of the star with a velocity ~ 104 kms - 1. The resulting shell of material 

is known as a supernova remnant. Two types of SNR exist. The shell-like remnants 

emit in radio, optical and X-ray wavelengths from an expanding nebula. Filled-centre 

remnants, or plerions, contain a pulsar which is believed to be the relic of the original 

star. The fact that these SNR are brightest towards their centre implies that the 

pulsar's rotational energy is being used to power the emission from the nebula. 

Supernova explosions have been used to explain the acceleration of galactic 

cosmic rays up to energies of ~ 10 1 5 eV (Blandford and Ostriker, 1980). Although 

there is still no direct evidence for this theory, it is widely accepted for two reasons. 

Firstly, a convincing particle acceleration mechanism exists in the form of the first 

order Fermi process (section 4.2.4.3; Fermi, 1954) occurring where the supernova 

blast wave forms a diffusive shock front as it interacts with the interstellar medium. 

Secondly, the galactic supernovae are almost the only known sources with sufficient 

energy to generate the observed cosmic ray spectrum up to 10 1 5 eV. I f such particle 

acceleration does take place in shell-type supernovae, then the resulting cosmic rays 

may interact to form neutral pions which decay to VHE gamma rays (section 1.2.1). 

Drury, et al. (1994) have modelled the production of gamma rays by SNR 

and suggest that the most favourable energy range for detection is probably from 1 to 

10 TeV (Fig 6.1). No shell-type remnants have been detected in this range using 

imaging ACTs. Buckley (1994) reports upper flux limits for emission above 

250 GeV for a number of SNR using the Whipple telescope. There have been various 

claims of an association between SNR and some of the 40 unidentified EGRET 

sources at low galactic latitudes (Stumer and Dermer, 1995, Esposito, et al. 1994). 

More recently, Dermer, et al. (1996) have suggested an association between these 

EGRET sources and young pulsars. The pulsars are not, however, positionally 
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coincident with the gamma ray sources but are believed to be the neutron stars 

formed after a supernova explosion which have moved away from the remnant at a 

speed ~ 100 kms - 1. This remnant, invisible at other wavelengths, is the proposed 

gamma ray source. 
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Figure 6.1 The predicted gamma ray flux from a SNR at lkpc with the canonical 
energy of 10 5 1 ergs expanding into a medium of number density 1 cm - 3 with a 
spectral exponent of 2.1. Also indicated is the approximate level of the general 
galactic disc emission within an acceptance angle of 1°, the sensitivity level of 
imaging atmospheric Cerenkov telescopes (IAC), of the UMC air shower array, of the 
l k m 2 AIROBICC detector array and the EGRET instrument on the CGRO (from 
Drury, 1996). 
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There are now about 15 clearly identified plerions (Arons, 1996). By far the 

most well studied of these objects is the Crab pulsar and nebula. The significant 

detection of unpulsed TeV gamma ray emission from this source by a number of 

groups (eg. Weekes, et al. 1989; Baillon, et al. 1991; Krennrich, 1994) has 

established it as the "standard candle" for ground based gamma ray astronomy in the 

northern hemisphere. At EGRET energies (~ 20 MeV to 30 GeV), the emission from 

the direction of the Crab pulsar is primarily pulsed, but still contains a significant 

unpulsed component which possibly exhibits a spectral hardening above ~ 1 GeV 

(Nolan, et al. 1993). Yoshikoshi (1996) has reported the detection of unpulsed 

gamma rays at energies above ~ 2.5 TeV from the region of the Vela nebula, possibly 

removed from the position of the Vela pulsar by ~ 0.14°. This is an initial report of 

fairly low significance (3.5 o prior to optimizing the proposed source location) and 

awaits further confirmation. Steady VHE emission has also been detected from the 

position of the EGRET pulsar PSR1706-44 (Kifune, et al. 1995) which may also be 

associated with a surrounding nebula (McAdam, et al. 1993). 

Source models for gamma ray emission from plerions tend to be based upon 

the Crab nebula. The synchrotron-self Compton (SSC) model of De Jager and 

Harding (1992) provides a particularly good fi t to the measured gamma ray spectrum 

of the Crab (Fig 6.2). In this model, relativistic electrons moving through a magnetic 

field scatter their own X-ray synchrotron emission up to gamma ray energies. 
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Figure 6.2 The synchrotron-self Compton spectrum of the Crab Nebula as calculated 
by De Jager and Harding. Crosses indicate COS-B measurements and the hatched 
area is the Whipple ACT spectrum (from De Jager and Harding, 1992). 

The pulsar's rotational energy must be used in some manner in order to 

accelerate particles up to energies high enough for the SSC mechanism to produce 

TeV gamma rays. As mentioned in section 4.2.5.1, Rees and Gunn (1974) showed 

that magnetic dipole radiation wil l be unable to propagate through a pulsar 

magnetosphere and suggested that the pulsar's rotational energy must be transported 

in the form of a relativistic wind of electron-positron pairs. In the case of a plerion, 

this pulsar wind is confined by the slower moving surrounding nebula and a shock 

front occurs where the two interact (Fig. 6.3). The radial location of the shock, r s, can 

be roughly estimated by balancing the wind ram pressure with the total particle and 

magnetic field pressure accumulated by the nebula in its lifetime. This gives: 

1 exp 
exp 3c 

where v e x p is the expansion velocity and x the age of the nebula. Synchrotron 
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emission from the position of the shock in towards the pulsar, where the particles 

have small pitch angles, is expected to be less than elsewhere in the nebula. For the 

Crab nebula, r s ~ 2 x 10 1 5 m, which matches the size of an underluminous region in 

radio (Wilson, 1972), optical (Woltjer, 1987) and X-rays (Aschenbach and Brinkman, 

1975). Particles accelerated in this shock by the first order Fermi mechanism wil l 

have their pitch angles randomized, causing synchrotron emission and gamma rays by 

SSC scattering. 
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Figure 6.3 Schematic illustration of the pulsar wind model of a plerion (after 
Harding, 1996) 

In order to calculate the inverse Compton gamma ray spectrum of a plerion 

the energy spectrum of the relativistic particles must be known. This can be derived 

by inverting the observed synchrotron spectrum, assuming a magnetic field 

distribution as a function of radius, r, and a nebula geometry. Gould (1965) assumed 

a spherical nebula and Rieke and Weekes (1969) repeated these calculations for a 

prolate spheroid. Both used a constant magnetic field strength and a nebula size 
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independent of frequency. Grindlay and Hoffman (1971) developed the model by 

assuming a radial dependence for the magnetic field and a frequency dependent 

nebula size. Kennel and Coroniti (1984) proposed a magnetohydrodynamic (MHD) 

wind model for the Crab nebula. Their best f i t solution for this model suggests that 

the pulsar wind upstream of the shock is extremely particle dominated, with the ratio 

of the magnetic field to particle energy density, o ~ 0.003. The magnetic field 

distribution elsewhere in the nebula is heavily dependent upon this ratio. Assuming a 

value of 0.003, the magnetic field is expected to be a minimum at the shock and to 

increase roughly as B(r) oc r until equipartition. This is the point at which the 

magnetic field and the particle energy density are equal. Beyond this, the field 

strength decreases as B(r) oc 1/r. De Jager and Harding (1992) have used this model 

for the magnetic field distribution in their calculation of the electron spectrum which 

predicts inverse Compton emission from the Crab nebula at TeV energies. 

An alternative model for high energy unpulsed emission from plerions was 

proposed by Kwok, et al. (1991). This is based upon the outer gap model of pulsar 

emission described in section 4.2.5.1 (Cheng, et al. 1986 and 1986a). They suggest 

that electrons accelerated in one outer gap may survive in a region beyond the pulsar 

light cylinder. These electrons may then scatter infra-red photons produced in a 

second outer gap up to energies of ~ 10 TeV. Pair production between these gamma 

rays and the same infra-red photons results in relativistic electrons and positrons with 

large pitch angles. The subsequent VHE synchrotron radiation from these particles 

wil l be isotropic and unpulsed. 

6.2.2 Active Galactic Nuclei 

"Active galaxy" is the term applied to those galaxies with a higher than 

normal luminosity. More precisely, a galaxy whose observed total luminosity cannot 

be entirely attributed to starlight. It is generally believed that the power source 

responsible for the emission from active galaxies is a central, supermassive 
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(~ 108 M Q ) black hole surrounded by an accretion disk (Robson, 1996). These are 

referred to as active galactic nuclei, or AGNs. Recent observations at X-ray (Tanaka, 

et al. 1995), optical (Ferrarese, et al. 1996) and radio (Miyoshi, et al. 1995) 

wavelengths of the motion of material near the nucleus of active galaxies support mis 

theory. Some active galaxies display relativistic jets of material extending out from 

the galactic nucleus for distances of up to a few megaparsecs. These jets are observed 

through their synchrotron emission at radio and sometimes optical and X-ray 

wavelengths. Classifying active galaxies in terms of their observational properties has 

led to the definition of a variety of different species. Unification schemes suggest that 

many of the different observational features can be reconciled by assuming they 

result from the effects of the orientation of the galaxy relative to the observer's line of 

sight (e.g. Dermer and Schlikeiser, 1992; Antonucci, 1993) (Fig 6.4). 
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Figure 6.4 A schematic picture of a radio-loud AGN. The observed features depend 
critically upon the viewing angle. For example, i f observed close to the axis of the jet, 
beamed emission wil l outshine the host galaxy. 
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Prior to the launch of the CGRO satellite only one AGN, the radio loud 

quasar 3C273, had been observed at energies >100 MeV (Swanenburg, et al. 1978). 

There are now ~ 50 reliably identified AGNs in the EGRET catalogue (Fichtel, 

1996; von Montigny, et al. 1995). Al l of these galaxies belong to the class of AGN 

known as blazars, which includes optically violent variable quasars and BL Lacertae 

objects. 

In the VHE range, the Whipple collaboration have tracked 36 AGNs, roughly 

based upon the criteria that they must be at a suitable declination, EGRET detected, a 

blazar at low redshift or interesting for some other reason (Kerrick, et al. 1995). Two 

of these candidate sources have now been detected: Markarian 421 (Punch, et al. 

1992) and Markarian 501 (Catanese, et al. 1995a; Quinn, et al. 1996). The detection 

of Markarian 421 has since been confirmed by the HEGRA collaboration (Schubnell, 

et al. 1996). 

Markarian 421 is the closest of the EGRET detected blazars (z = 0.031) but 

is also one of the faintest, with a reported flux of 0.14xl0"2 photons n r 2 s_1 above 

100 MeV (Michelson, et al. 1992). For this source, the sensitivity of the Whipple 

ACT is comparable to, i f not better than, the EGRET experiment. The non-detection 

of the 34 other AGNs sampled, 14 of which were EGRET detected blazars, implies 

that their TeV flux may be being attenuated in some manner. This could be due to an 

inherent steepening of the particle acceleration spectrum, absorption of TeV gamma 

rays in the region of the source or absorption by pair production with photons of the 

intergalactic infra-red (IR) background field (Gould and Schroder, 1967). This last 

option has been restated more recently by Stecker, et al. (1992), who suggest that 

measurements of the attenuation of TeV gamma rays from blazars could provide a 

means of determining the strength of the IR background. 

Extragalactic IR radiation could have many sources, but it is believed to be 

strongly linked to the era of galaxy formation. Measurements of its flux would 

therefore place useful constraints upon some cosmological models (e.g. Bond, et al. 
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1986). The IR background flux is difficult to measure directly due to background 

sources of IR flux such as zodiacal light, instrumental background and the galactic IR 

field. Using the Whipple and EGRET measurements of Markarian 421, there have 

been various attempts to obtain values or upper limits for the extragalactic 

background field (Stecker and De Jager, 1993; De Jager, et al. 1994; Dwek and 

Slavin, 1994). Biller, et al. (1995) have pointed out some of the problems with these 

initial attempts and have calculated a conservative upper limit for the infra red photon 

energy density of 0.04 eV cm - 3 at the 95% confidence level for IR photons of energy 

0.1 to 0.3 eV (Fig 6.5). Salamon, et al. (1994) have noted that, given an independent 

measure of the intergalactic IR field, it would be possible to use ACT measurements 

of the absorption of TeV gamma rays from blazars to provide an estimate of their 

distance. Knowing this, and their velocity from redshift measurements, the Hubble 

constant can be calculated. 
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Figure 6.5 Experimental upper limits on the background IR energy density. The 
energy density is expressed both in units of eV/cm3 and in terms of the critical 
density, CI, times h 2 where the Hubble constant is given by lOOh km/s/Mpc. Dotted 
lines show limits derived for assumed spectral indices of 1.2 (positive slope), 2 (flat) 
and 3 (negative slope). The bold, dashed line shows the limit derived assuming that 
this slope is unknown (from Biller, et al. 1995). 
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The identifying features of blazars are high luminosity (~ 10 4 5 ergs s"1), 

extreme flux variability, high optical polarization, flat-spectrum radio emission from 

a compact core and often apparent superluminal motion components. These features 

are indicative of synchrotron emission from a relativistic jet of particles. In the 

unified model, blazars are believed to be AGNs observed almost directly along the 

jet. Relativistic effects due to radiation from a a jet moving at velocity V j e t then boost 

the apparent luminosity, L a p p , by: 

L a p p = fi"L, 3 < n ^ 4 

1 ^jet 
5 = 7 1 — 5 — m . P = - p — - y = Lorentz factor y(l - pcos0) c 

where L is the intrinsic luminosity and n is dependent upon the radiation model used 

(Schlickeiser, 1996). The same relativistic effects can cause apparent bulk motion of 

material in excess of the speed of light. 

Various radiation production mechanisms have been proposed to account for 

gamma ray emission from blazars. The leptonic production processes can be 

summarised as follows: 

(i) synchrotron self-Compton: the relativistic electrons and positrons in the jet scatter 

their own synchrotron radiation up to gamma ray energies (e.g. Bloom and Marscher 

1993). 

(ii) inverse Compton scattering of radiation external to the jet: the relativistic 

electrons and positrons in the jet scatter external photon fields up to gamma ray 

energies. The target field could be the result of accretion disc photons (Dermer, et al. 

1992), accretion disc photons reflected from emission line clouds (Sikora, et al. 1994) 

or microwave background and starlight photons. 

(iii) pair annihilation radiation: relativistic electrons and positrons in the jet annihilate 
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to produce gamma ray photons. Considering the spectral broadening caused by the 

energy distribution of the annihilating particles and the bulk motion in the jet, broad 

continuum emission might be expected around the MeV range (Henri, et al. 1993). 

Figure 6.6 shows some of the gamma ray production mechanisms possible from a 

leptonic jet. 
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Figure 6.6 Schematic of gamma ray production in a leptonic jet. a) shows the 
synchrotron self-Compton mechanism . b) and c) show inverse Compton scattering of 
radiation originating outside of the jet (from Dickinson, M.R.: in preparation) 

Hadronic models postulate that efficient proton acceleration is occurring in 

the cores of AGNs through first order Fermi acceleration at stationary shock fronts in 

the accretion flow (Kazanas and Ellison, 1986). Subsequent hadron-hadron or 
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hadron-photon reactions can produce high energy photons or particles. While VHE 

photons are unable to escape from the optically thick medium close to the core of an 

AGN, they may initiate an electromagnetic cascade which could be responsible for 

the relativistic electrons and positrons of the jet (Mannheim, 1995). Alternatively, 

neutrons produced in hadron collisions may be able to escape the central region of the 

AGN and produce TeV gamma rays via proton-proton collisions after the neutron has 

decayed, or directly by hadron-hadron collisions as the neutrons interact with the 

infalling plasma (Mastichiadis, 1995). 

One of the most exciting aspects of the detection of AGNs at TeV energies 

has been the observation of rapid variability on extremely short timescales. Buckley, 

et al. (1996) have examined the Whipple telescope observations of Markarian 421 in 

1995 and find variability on the scale of ~ 1 day. The emission can be characterized 

as a succession of rapid flares, consistent with little steady emission. Flares of much 

greater magnitude have also been observed. In these flare states, the VHE photon 

flux increases by an order of magnitude over a timescale of 1 - 2 days (Schubnell, et 

al. 1996; Kerrick, et al. 1995a). An observation of one of the TeV flares has been 

made with simultaneous observations at other wavelengths (MaComb, et al. 1995). A 

contemporaneous high state was seen by the X-ray satellite ASCA, but no excess 

emission was detected by EGRET. This observation lends weight to the SSC model 

of relativistic electrons compton scattering their own X-ray synchrotron emission up 

to TeV energies. 

The rate of variability of an object can provide some idea of the size of the 

radiating region by relativistic causality arguments. This in turn can be used to place 

constraints upon the emission mechanisms at work. In May 1996 the Whipple 

observatory observed two flares from Markarian 421 separated by eight days (Gaidos, 

et al. 1996). In the first flare, the flux increased from its quiescent value by more than 

a factor of 50, with a doubling time of ~ 1 hour. In the second outburst, the emission 

increased to ~ 25 times the quiescent flux over a period of only ~ 30 minutes 
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(Fig 6.7). This second flare implies that the emission region may be as small as a few 

light hours. Existing models for TeV gamma ray emission from blazars are unlikely 

to provide an explanation for this extraordinary event. 
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Figure 6.7 Temporal histories of the two flare events. For the first flare (a), each 
point is a 9 min integration; for the second flare (b), the integration time is 4.5 min. 
The error bars are statistical standard deviations (from Gaidos, et al. 1996). 

Finally, it is worth noting that both Markarian 421 and Markarian 501 are 

162 



classed as X-ray selected BL Lacertae objects. That is, their synchrotron emission 

spectrum peaks in the X-ray region, unlike radio selected BL Lacs whose synchrotron 

emission peaks in the optical/UV. This indicates that there is a population of 

extremely high energy electrons and positrons in the jet which may produce TeV 

photons by Compton mechanisms. Stecker, et al. (1996) have predicted the VHE flux 

from 23 nearby BL Lacs. Table 6.1 lists those objects which are observable 

(culminate within 30° of the zenith) with the Durham telescopes from Narrabri. 

Table 6.1: Predicted fluxes for southern hemisphere, nearby, X-ray selected B L Lacs. 
1ES1101 + 384 (Markarian 421) is given for comparison (from Stecker, et al. 1996). 

1ES Name z Flux (>0.1GeV) 

10-7 cm-2 s-1 

Flux (>0.3TeV) 

l O - U c n r 2 ^ 1 

Flux (>1 TeV) 

10- 1 2 cm-2 s-1 

1ES0347 - 121 0.188 0.05 0.38 0.08 

1ES0548 - 322 0.069 0.56 1.30 1.20 

1ES1312-423 0.105 0.19 0.24 0.15 

1ES2005 - 489 0.071 0.70 0.91 0.84 

1ES2155 - 304 0.116 3.90 1.70 0.88 

1ES1101 + 384 0.031 1.43 2.30 3.60 

6.3 Steady Source Analysis Techniques 

6.3.1 Comparison of On Source and Off Source Regions 

For observations of a candidate steady source of gamma ray emission, the 

telescope is operated in the chopping mode which has been described in section 3.2.1. 

This provides two datasets. The data collected with the telescope directed at the 

source are known as on source data and those with the telescope pointing at a 

background region displaced from the source position in right ascension are known as 

off source data. The same data calibration, preparation and gamma ray event selection 
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procedures are applied to both datasets. I f all systematic effects have been accounted 

for, any excess of on source counts compared with off source counts wil l be the result 

of gamma ray emission from the source region. The significance of the excess is 

calculated using: 

where N O N and N O F F are the number of on source and off source counts respectively, 

N T O T = N O N + N O F F , and one standard deviation, a = ( N X O T ) 1 / 2 . 

Possible systematic differences between the on and off source counts due to 

long term changes in sky conditions or zenith angle effects are removed by the 

chopping method of operation. A problem may remain, however, due to a difference 

in sky brightness between the on source and off source fields. 

6.3.2 Software Padding 

In the standard moment procedure, for a PMT to be designated an image 

tube, its signal must be larger than ~5o, where o is the measured tube response to sky 

noise. In most cases, the signal will be even larger than this and so the image tubes 

are dominated by real Cerenkov light signals. Boundary tube thresholds, however, are 

generally ~ 2o and the signal always less than ~ 5a and so these tubes contain an 

approximately Gaussian sky noise component comparable to the low level power law 

Cerenkov signal. For a tube with a large sky noise response, and hence a large 

threshold criterion, the probability increases that a negative noise fluctuation will 

cancel the Cerenkov component of the signal and result in the tube being removed 

from the moment calculation (Fig 6.8). The result of this is that for a bright field, 

fewer boundary tubes wil l be included in the parameterisation and the images wil l 

therefore have smaller widths and lengths. The inevitable differences in parameter 

distributions between on source and off source fields of different sky brightness wil l 

significance(o) = 
N N ON 'OFF 

TOT 
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cause systematic differences in the number of events selected by any set of cuts, 

making the identification of a true gamma ray component from the candidate source 

field more difficult. 

Number Number 

a b 

Signal Size Signal Size 

Figure 6.8 Pulse height spectra for boundary tubes (mixture of noise and low-level 
Cerenkov signal); a) tube with low noise level, b) tube with high noise level. Using a 
noise dependent boundary threshold, the number of occasions when the tube exceeds 
this threshold will be less in b) than in a) (shaded area). The distribution shapes have 
been exaggerated for clarity (after Cawley, 1993). 

The starting points for the bivariate Gaussian fitting procedure are calculated 

using the standard moment procedure. The tube noise responses are also used in the 

calculation of the %2 goodness-of-fit value. The fractional peak response criteria for 

image/border selection relax to noise dependent thresholds for low values of peak 

response. In summary, all of the image analysis techniques described in Chapter five 

depend, to differing extents, upon the measured sky noise response of the PMT's and 

wil l therefore be prone to systematic effects caused by differences in sky brightness. 

A solution to this problem is to add a randomly generated noise signal to the 
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signal recorded by the tubes on the darker field in order to equalize the effective noise 

levels (Cawley, 1993). This technique of "software padding" is analogous to the 

hardware padding lamps which were used to keep the illumination of PMT's constant 

in earlier experiments. Al l of the data analysed for presentation in this chapter were 

software padded as part of the routine data preparation. 

6.4 A Search for Steady Emission From PSR 1706-44 

The high resolution camera of the Mark 6 telescope has been used to observe 

the radio pulsar PSR1706-44 in May and July of 1996. The recorded images have 

been parameterised using the standard moment procedure and the bivariate Gaussian 

fitting technique. The results of these analyses are presented here. 

6.4.1 PSR 1706-44 

PSR 1706-44 was the fourth radio pulsar to be detected by instruments on 

board the CGRO. It was first identified as a COS-B gamma ray source, 2CG 342-02 

(Swanenburg, et al. 1981) but the nature of the source was then unknown. A survey 

of the southern galactic plane by the Parkes radio telescope at a frequency of 

1500 MHz detected 100 pulsars, 46 of which were previously unknown (Johnston, et 

al. 1992). One of these, PSR 1706-44 was found to have a spin period of 102 ms. 

EGRET observations of 2CG 342-02 showed that the gamma ray source was 

positionally coincident with PSR 1706-44. A periodic analysis of the EGRET events 

with energies greater than 100 MeV revealed highly significant pulsed emission at the 

same period as the radio pulsar, confirming that the gamma ray and radio sources 

were the same object (Thompson, et al. 1992). 

The radio and gamma ray light curves of PSR 1706-44 are significantly 

different. The radio emission displays a single narrow pulse with a width of ~ 6% of 

the period. At gamma ray energies, the pulsar duty cycle is larger, with emission 
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present over ~ 35% of the pulse period (Fig 6.9). Thompson, et al. (1996) suggest that 

the light curve consists of two peaks separated by 0.2 in phase, with the possibility of 

a third peak situated between these two. The spin-down rate of the pulsar implies a 

characteristic age of only 17,400 years (Johnston, et al. 1995). There is no evidence 

for unpulsed emission over the EGRET energy range. The spectrum of the pulsed 

emission is well fitted by a broken power law with a differential spectral index of -

1.27 ± 0.09 below 1 GeV and -2.25 ± 0.13 above 1 GeV (Thompson, et al. 1996). 
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Figure 6.9 High energy (>400 MeV) gamma ray light curve for PSR 1706-44. The 
102 ms period is divided into 50 phase bins with the single radio pulse defining the 
zero phase (from Thompson, et al. 1996). 

McAdam, et al. (1993) have suggested that the pulsar may be associated with 

a shell-like supernova remnant, SNR G343.1-2.3 discovered by its arc-shaped radio 

emission using the Molongo Observatory Synthesis Telescope. Using three different 

surface-brightness - diameter relationships to estimate the physical diameter of the 

SNR they calculate distances to the SNR of 3.5, 4.0 and 3.2 kpc. Using the size - age 

relationship of Caswell and Lerche (1979) suggests an age of 5600 yrs for the SNR. 

This is younger than the characteristic pulsar age, but the deduced age is dependent 

upon the assumed density of the medium into which the SNR is expanding. The 

distance to the pulsar has been estimated by Johnston, et al. (1995) on the basis of its 

dispersion measure to be ~ 1.8 kpc. This value is highly dependent upon the model of 
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the galactic electron energy distribution and hence has a large uncertainty associated 

with it. Koribalski, et al. (1995) have measured the neutral hydrogen emission and 

absorption spectra in the direction of PSR 1706-44 and use these to infer a distance to 

the pulsar of between 2.4 and 3.2 kpc. I f the pulsar were associated with the SNR, in 

order to have travelled from the geometrical centre of the arc to its current position 

within the pulsar lifetime of 17,400 yrs, it would need to have a transverse velocity 

~ 1000 kms 1 . 

Nicastro, et al. (1996) argue that the high transverse velocity required and the 

lack of observed interaction of the pulsar with the SNR make the association 

statistically unlikely. In addition, they have measured the interstellar scintillations 

caused by electron density fluctuations along the line of sight to the pulsar. As the 

pulsar moves, the radiation diffraction pattern observed by a radio telescope changes. 

Measurement of these changes enables an estimate of the pulsar velocity to be 

derived. Using this method gives a transverse velocity of only 27 kms - 1 with an error 

~ 50%. 

PSR 1706-44 has also been detected by the X-ray satellite ROSAT (Becker, 

et al. 1995). At these energies the emission is unpulsed (Becker and Truemper, 1996). 

Frail, et al. (1994) report the detection, at a wavelength of 20 cm, of a compact radio 

nebula surrounding the pulsar. These measurements are indicative of a synchrotron 

bubble around the pulsar, placing it in the class of filled-centre SNR (plerions). 

6.4.2 TeV Gamma Ray Observations of PSR 1706-44 

The first reported observations of PSR 1706-44 at TeV energies were 

performed by Nel, et al (1993). This was a search for pulsed emission only and 

provided an upper limit of 5.8xl0" 1 2 photons cm - 2 s"1 for gamma rays of energy 

>2.6 TeV. Kifune, et al. (1995) report the detection of gamma rays of energy > 1 TeV 

from the direction of PSR 1706-44. The dataset consists of 84 hours of on source data 

from observations in 1992 and 1993. The significance of the detection is ~ 12 o and 
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the gamma ray flux is quoted as 7 x l 0 - 1 2 photons cnr 2 s _ 1 with a systematic error of 

~ 30%. This corresponds to a flux of ~ l x l O - 1 1 ergs cm - 2 s-1 at 1 TeV. Assuming a 

distance to the pulsar of 1.5 kpc implies a TeV luminosity of ~ 3 x l 0 3 3 ergs s"1 i f the 

emission is isotropic. This is equivalent to 10' 3 of the total spin-down energy of the 

pulsar. Full results of a search for evidence of periodic emission at the 102 ms radio 

period in this dataset have not been presented, but initial reports suggest that it is 

unlikely that there is a major pulsed component. 

At higher energies, the JANZOS collaboration have observed PSR 1706-44 

using a scintillator array and report an upper limit of 1 .5xl0 1 3 photons cm - 2 s"1 above 

an energy of ~ 100 TeV (Allen, et al. 1993). 

6.4.3 An Analysis Using Moment Parameterisation of Images 

The moment method of image parameterisation is the standard technique for 

the analysis of images from ACTs. It has been described in Chapter five and is 

applied here to Mark 6 telescope observations of PSR1706 -44. 

6.4.3.1 Data Selection 

Prior to the application of any background discrimination based on image 

information, the quality of the dataset must be verified. The count rate profiles for 

each night of observation are checked for evidence of frost or condensation on the 

mirrors and removed or truncated if necessary. Any observations involving poor 

weather or equipment problems are also discarded. The data are then divided into 

"scans", each consisting of 14 minutes of on source exposure and its corresponding 

14 minutes of off source data. One minute of each 15 minute exposure must be 

discarded as the telescope was steering in to position. The software padding 

technique described in section 6.3.2 is applied at this stage to equalize the effective 

sky noise levels of the on and off source regions. Significant differences in the 

number of events from the on and off source regions are still apparent at this stage. 

169 



This is due to different numbers of spurious noise generated triggers. The rate of 

these is higher for the brighter, on source field as the tube noise fluctuations are 

larger. Noise triggers are easily recognisable as they contain no Cerenkov light. The 

first stage of the image selection procedure removes these events. 

To begin with, all recorded images are parameterised by the moment method, 

using the fractional peak response criteria to determine which tubes are include in the 

parameterisation. This method of tube selection is described in section 5.4.2. The 

image/border thresholds used in this analysis were 37.5% and 17.5% of the peak 

response respectively. The dataset is then subjected to an initial, "tidy", selection 

process. In this, the very faint events (total signal < 300 digital bits) and those near to 

the camera boundary (distance > 1.1°) are rejected. Any single scan which displays a 

difference in the number of events between the on and off source segments greater 

than 2o is removed from the analysis at this stage. The final dataset consists of 9 

nights from May and July of 1996 with a total of 574 minutes of on source exposure 

and the same off source. These observations are catalogued in Table 6.2. 

170 



Table 6.2: Catalogue of Mark 6 Telescope observations of PSR 1706-44 

Observation 

Date 
On Source 
Exposure (mins) 

On Source 
Events (Tidy) 

Off source 
Events (Tidy) 

11/05/96 42 6917 6819 

12/05/96 56 7833 7562 

21/05/96 84 15334 15422 

22/05/96 28 4244 4116 

24/05/96 84 14292 14331 

09/07/96 98 15455 15461 

11/07/96 56 8923 8867 

15/07/96 56 9561 9547 

18/07/96 70 12990 12740 

TOTALS 574 95549 94865 

The next stage of the selection procedure is to start using the shape of the 

images as a discriminant between the gamma ray and hadron initiated showers. A 

feature of the parameters of events recorded by the Mark 6 telescope becomes 

important at this point. Figure 6.10 shows the dependence of the mean width 

parameter as a function of QTsum, where QTsum is the sum of the signals of all 

image/border tubes. It is clear that width varies quite strongly with the total image 

brightness. As a result of this, the width selection used in this analysis has been 

applied as a function of QTsum. The events are divided into 20 QTsum bins and a 

constant fraction of the smaller width events is selected from each bin. In this 

analysis, events in the lower 17.5% of the width distribution for each QTsum bin have 

been selected. 
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Figure 6.10 Mean width as a function of increasing QTsum for Mark 6 telescope 
events. The QTsum distribution has been divided into 10 bands, each of which 
contain the same number of events. The mean width is then calculated for each band. 

After this width selection has been applied, the following additional selection criteria 

are used: eccentricity (=widthllength) < 0.7,0.60° < distance < 0.85°, ddist < 0.15°. 

The eccentricity and distance cuts ensure that the images are elliptical and 

well confined within the camera, whilst being far enough removed from the source 

position to have their orientation well measured. The other parameter, ddist, uses 

information from the left and right detectors and is a measure of the distance between 

the image centroids as measured in each. Gamma ray initiated showers are expected 

to produce a similar image in each three dishes, while the hadron showers wi l l start to 

show differences over the 14 m baseline. Analysis of the left/right images is in a 

preliminary stage at present but may well prove to be a powerful discriminatory tool 

in future (S.E.Shaw, private communication). For this analysis, only the simplest 

parameter, ddist, is used to remove a fraction of the obvious hadron initiated events. 

6.4.3.2 Results 

Figure 6.11 shows the distribution of the orientation parameter, alpha, for the 
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events remaining after the parameter selections described above. The majority of the 

on source excess has an alpha close to zero as would be expected for a gamma ray 

signal from the source position. Outside of this region, an overall deficit of low 

statistical significance may be apparent, especially in the 20° < alpha < 70° region. 

This could indicate some small systematic difference between the on source and off 

source files, possibly caused by a residual sky noise difference after software 

padding. 
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Figure 6.11 Alpha distributions for the on source and off source events and the 
difference between them. 

Table 6.3 lists the total on and off source event numbers at each stage of the 

selection process. The final selection, alpha < 20°, produces an excess of 131 events 

on source, significant at the 3.5 a level. 
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Table 6.3: Events remaining after each parameter selection. 

Selection 

Parameters 
On Source 
Total 

Off Source 
Total 

Difference 

distance<\. 10° 

QTsum>300 95549 94865 684 (1.6 o) 

width fraction<17.5% 21528 21122 406 (2.0 o) 

eccentricity<0.1 
0.60°<distance<0.85° 
ddist<0.15° 3623 3553 70 (0.8 o) 

alpha<\%° 787 656 131 (3.5 a) 

6.4.4 An Analysis Using a Bivariate Gaussian Fit to Parameterise Images 

The bivariate Gaussian fitting technique has been suggested as an alternative 

method for parameterising Cerenkov images of EAS. It has been described in Chapter 

five and is applied here to the Mark 6 telescope observations of PSR 1706-44. 

6.4.4.1 Data Selection 

The same scans which were selected as free from any weather, condensation 

or equipment problems in the previous analysis are software padded and then 

subjected to the bivariate Gaussian fitting procedure. The fi t is corrected using the 

PSF matrix described in section 5.4.2 in an attempt to correct for the point spread 

function of the telescope mirrors. 

The initial "tidy" selection for the fitted events is as follows: QTsum > 600, 

distance < 1.5°. For fitted events, the QTsum value is in arbitrary units which provide 

a measure of the volume under the fi t prediction. A value of 600 corresponds to an 

event with a QTsum of ~ 250 digital bits when parameterised using the moment 

method. The purpose of this selection is to remove any noise generated triggers and 

to remove those events which lie too far out in the camera to be well parameterised. 

Any scans which show a difference in counts of > 2 a after this stage are discarded, 
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resulting in a slightly smaller dataset than in the moment based analysis. 

Table 6.4: Catalogue of Mark 6 Telescope observations of PSR 1706-44 

Observation 

Date 
On Source 
Exposure(mins) 

On Source 
Events (Tidy) 

Off source 

Events (Tidy) 

11/05/96 28 5453 5318 

12/05/96 56 8442 8162 

21/05/96 84 16181 16354 

22/05/96 14 2092 1974 

24/05/96 70 12428 12661 

09/07/96 84 12844 12574 

11/07/96 56 6844 6857 

15/07/96 56 7312 7260 

18/07/96 70 10110 10016 

TOTALS 518 81706 81176 

A distance selection of 0.65° < distance < 1.10° is then applied and the 

QTsum threshold is also raised to 850 (equivalent to ~ 400 digital bits). This ensures 

that the events are bright enough to be well parameterised and have centroids far 

enough from the source position for their orientation to be well defined but are not 

overly truncated by edge effects. The shape selection used is a fixed width cut with an 

eccentricity cut to retain events with reasonable ellipticity. The cut values are 

width < 0.36 and eccentricity < 0.8. 

6.4.4.2 Results 

The alpha distributions of the on source, off source, and on source excess 

events are shown in Figure 6.12. The peak near alpha = 0 is even more marked in the 

excess distribution than was apparent with the moment based analysis, although its 
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true significance is less due to the larger number of background events remaining. 
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Figure 6.12 Alpha distributions for the on source and off source events and the 
difference between them. 

The number of events remaining after each stage of the event selection 

process are presented in Table 6.5. The final selection, alpha < 20°, results in an on 

source excess of 329 events over a background of 11409 which is significant at the 

3.1 c level. 
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Table 6.5: Events remaining after each parameter selection. 

Selection 

Parameters 
On Source 
Total 

Off Source 
Total 

Difference 

distance<\.5° 
QTsum>600 81706 81176 530 (1.3 o) 

0.65°<distance<L\0° 
QTsum>850 31949 31877 72 (0.3 o) 

width<0.36° 
eccentricity<O.S 22032 21641 391(1.9 o) 

alpha<20° 5869 5540 329 (3.1 o) 

6.4.5 Discussion 

The Mark 6 observations of PSR 1706-44 have been analysed using both the 

moment and bivariate Gaussian fitting methods for image parameterisation. In both 

cases, an excess of events from the on source region is apparent after cuts to select 

gamma ray candidate events have been applied. In particular, the excess events are 

orientated such that their major axes point towards the position of PSR 1706-44 in the 

camera. 

The moment analysis provides the more significant result (3.5 a). The raw 

off source dataset consisted of 259906 events. After all selections, this has been 

reduced to 656 events, giving 99.7% background rejection and retaining an excess of 

131 events on source. The result from the Gaussian f i t analysis is marginally less 

significant (3.1 a), mainly because the background rejection has not been as efficient. 

5540 events remain from a raw off source dataset of 234910, giving 97.6% rejection. 

However, the excess which is retained is 329 events, appreciably larger than in the 

moment analysis. 

The true significance of these results is difficult to assess, as the selections 

employed have been guided by the data to some extent. In the absence of more 
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accurate Monte Carlo simulations, this is the only method available for determining 

the best selection criteria to improve the signal to noise ratio. I f we assume that these 

results constitute a detection of gamma ray emission from PSR 1706-44, a value of 

the observed flux can be calculated. 

As discussed in section 3.4.6, the energy threshold and effective area for the 

detection of gamma rays by an ACT depend upon the image selection procedures 

which have been used to increase the signal/noise ratio. The gamma ray database 

used in section 3.4.6 has been subjected to the same moment and bivariate Gaussian 

based analyses as the data in this chapter. The resulting energy dependent effective 

area and differential flux plots are shown in Figures 6.13 and 6.14. 
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Figure 6.13 Effective area for gamma ray detection, after image selection, of the 
Mark 6 telescope as a function of primary energy. 
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Figure 6.14 Definition of the energy threshold for gamma rays after image selection. 
The source differential spectrum is assumed to be -2.4. The threshold energy is 
defined to be the the energy of the maximum differential flux and is approximately 
420 GeV for the bivariate Gaussian selection and 500 GeV for the moment selection. 

The bivariate Gaussian analysis suggests an energy threshold for gamma rays 

of -420 GeV. Assuming a conservative systematic error of ±100 GeV on this 

threshold, the effective collection area is ~(4.1 ± 0 . 5 ) x l 0 4 m 2 . Given 329 excess 

events in 518 minutes implies a gamma ray flux ~ (2.6 ± 0.3 ± 0 .1)xl0 - 1 1 cn r 2 s _ 1 

above 420 GeV, where the first and second errors are systematic and statistical 

respectively. For the moment based analysis, the gamma ray energy threshold is 

estimated at ~ 500 ±100 GeV and the effective collection area above this is 

~ (2.2 ± 0.5)xl0 4 m 2 . The on source excess in this case is 131 events and the dataset 

is 574 minutes long, leading to a gamma ray flux of ~ (1.7 ± 0.4 ± 0 .2)xl0 - 1 1 cm - 2 s_1 

above 500 GeV. 

Figure 6.15 shows the measured integral energy spectrum of PSR 1706-44, 

including these points. The pulsed HE gamma ray spectrum from PSR 1706-44 has a 

spectral break above 1 GeV (Thompson, et al. 1996) and the dashed line in Figure 

6.15 is the extrapolation of this (integral spectral index of -1.25). Both the 
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CANGAROO result and the flux measurements reported here lie below that 

extrapolation. The EGRET upper limit to unpulsed emission for E > 100 MeV is also 

shown. 

EGRET pulsed (Thompson, et al. 1996) 
Extrapolation of pulsed EGRET flux 

A CANGAROO unpulsed (Kifune, et al. 1995) 
O Durham unpulsed (This work) 
V EGRET unpulsed (Thompson, et al. 1996) 

Potchefstroom pulsed (Nel, et al. 1993) 

105 IO6 

energy (MeV) 

Figure 6.15 Integral spectrum of the gamma ray flux from PSR 1706-44. 

If we assume that the VHE gamma ray emission is isotropic, the source 

luminosity is given by: 

L = 4jtD2«|)(>Er).<E> 

where D is the pulsar distance, <K>Ej) is the measured integral flux above the energy 

threshold, E j , and <E) is the average photon energy. Setting D equal to 2.8 ± 0.4 kpc 

(Nicastro, et al. 1995, Koribalski, et al. 1995), the flux derived from the moment 

based analysis implies a source luminosity, L ~ (6.4 ± 2.4 ± O ^ x l O 3 4 erg s*1. In the 
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case of the Gaussian analysis, L ~ (8.2 ± 2.7 ± 03)x\0M erg s_1. These values are 

equivalent to ~ 2% of the pulsar's spin-down luminosity of 3 .4xl0 3 6 erg s*1. Table 6.6 

shows the luminosity at other wavelengths for the same value of the pulsar distance. 

The X-ray measurement assumes that the emission is isotropic and characterised by a 

synchrotron power law spectrum, differential spectral index = 2.4 (Becker, et al. 

1995). The EGRET luminosity is calculated assuming that the emission is beamed, 

with a beaming fraction of l/4rc (Thompson, et al. 1994). 

Table 6.6: The luminosity of PSR 1706-44 X-ray energies and above. 

Experiment Energy Range Luminosity Estimate 
(D=2.8kpc) 

ROSAT 0.1 -2.4keV 3.1 x lO^ergs- 1 

EGRET 100 MeV - 10 GeV 6.8 x 1034 erg s-1 

Durham Mark6 >500 GeV 6.4 x 10 3 4 erg s'1 

CANGAROO > l T e V 1 x 10 3 4 erg s-1 

6.5 Conclusions 

The results of an analysis of observations of PSR 1706-44 by the Mark 6 

telescope have been presented. The data were analysed using two different methods 

to parameterise the Cerenkov images. Background discrimination selections applied 

to images parameterised using a standard moment based method resulted in a 3.5 a 

detection of excess events from the on source field. A bivariate Gaussian f i t method 

for parameterising the same images resulted in a 3.1 a excess from the on source field 

after background discrimination was applied. 

Assuming these excesses are due to gamma ray emission from the pulsar, a 

flux estimate of ~ (2.6 ± 0.3 ± 0.1)xl0- n cnr 2 s"1 above 420 GeV has been calculated 

for the bivariate Gaussian analysis. The moment based method results in a gamma ray 
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flux of ~ ( 1 . 7 ± 0 . 4 ± 0 . 2 ) x l 0 - n cm^s"1 above 500 GeV. These correspond to a 

source luminosity of ~ 7x10 s 4 erg sA. The detection of TeV gamma ray emission 

from this object in only 10 hours of on source exposure illustrates the power of the 

high resolution imaging technique when combined with a telescope of low energy 

threshold. Various possible future improvements to the analysis techniques may be 

possible and are discussed in greater detail in chapter 7. The selection criteria which 

have been developed here wil l provide a powerful a priori analysis method for 

subsequent datasets, which are likely to be larger than the one used here. 
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CHAPTER SEVEN - SUMMARY AND FUTURE 
WORK 

7.1 Summary 

The status of VHE gamma ray astronomy has been greatly improved over the 

last decade due largely to the development of Cerenkov image discrimination 

techniques pioneered by the Whipple collaboration. These methods have led to highly 

significant and reproducible detections of TeV gamma ray sources. In addition, the 

success of the CGRO has revealed the rich nature of the gamma ray sky and provided 

a guide for TeV observations. The discovery of VHE emission from the active 

galactic nuclei Markarian 421 and Markarian 501 is particularly exciting, as is the 

observed rapid variability of these sources at TeV energies. Future multi-wavelength 

studies of these objects promise to provide valuable information about the particle 

acceleration mechanisms involved. The imaging atmospheric Cerenkov technique has 

opened up a new window of the electromagnetic spectrum which is beginning to 

provide insights into very high energy astrophysical environments and the origin of 

the cosmic rays. 

This thesis has presented results from two telescopes using the various 

imaging detectors which have been developed by the Durham gamma ray astronomy 

group. Background discrimination has been achieved using the guard ring technique 

for a seven PMT detector package, medium resolution imaging for a 31 element 

detector and high resolution imaging for a 109 tube camera. Observations of the high 

mass X-ray binary SMC X - l , made with the Mark 3 telescope, have been examined 

for evidence of periodic emission at the X-ray period. No such emission was 

detected. The processing and calibration routines developed for the Mark 6 telescope 

have been discussed and its first observations of the EGRET pulsar, PSR 1706-44, 

have been analysed. The analysis provides some evidence for VHE gamma ray 

emission from this object. 
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A new method for exploiting the information provided by a high resolution 

imaging camera has been developed. This method involves fitting a smooth surface 

of bivariate Gaussian form to the signals measured by each PMT. Tests using Monte 

Carlo simulations of the Cerenkov images produced by air showers indicate that this 

method may provide better background discrimination than the standard, moment 

based parameterisation. Differences between the simulated and observed images are 

still significant, making the determination of the best parameter discrimination values 

difficult. An analysis of the Mark 6 PSR 1706-44 observations using this technique 

appears to reject fewer background cosmic ray events than the moment method, but 

retain more of the on source excess. 

7.2 Future Work 

7.2.1 PSR 1706-44 

The analysis of the Mark 6 PSR 1706-44 observations presented in Chapter 

six is somewhat preliminary. There are various ways in which this small dataset can 

be exploited further. Firstly, it is unlikely that the parameter selection values used in 

this thesis represent the optimum background discrimination. Further searching in 

parameter space will incur more statistical penalties but may result in a more useful 

set of cuts for a priori application to future datasets. Secondly, a relatively high (300 

bits) minimum total signal cut has been applied in order to make the image parameter 

calculations robust. This is a fairly standard technique in VHE gamma ray astronomy 

and also has the effect of removing any events caused by the Cerenkov radiation from 

local muons (Catanese, et al. 1995). These events can mimic gamma ray images and 

comprise a large fraction of the remaining background after image analysis for single 

dish experiments at low energies. The three-fold spatial coincidence requirement of 

the Durham telescopes makes them less sensitive to these events. It should therefore 

be possible to lower the total signal threshold in future and fully exploit the low 

185 



energy threshold capabilities of the telescope. Finally, the left and right detectors are 

expected to provide information about the variability of Cerenkov images over a 

14 m baseline which may help to discriminate between hadron and gamma ray 

initiated EAS. 

Once the optimum set of parameter selections have been defined, the existing 

PSR 1706-44 database should be examined for evidence of periodicity at the EGRET 

gamma ray and radio period. The radio pulsar is regularly monitored by radio 

telescopes and so excellent timing information is available (Kaspi, et al. 1995). 

Optimized cuts and an absence of period searching should then lead to a sensitive 

measurement of, or stringent upper limit to, the pulsed emission at TeV energies. 

7.2.2 Simulations 

The Durham approach to celestial gamma ray detection has tended to be 

empirical and not led by Monte Carlo simulations of EAS. I f the telescopes are to 

become worthwhile astronomical tools, however, it is necessary to know their 

sensitivities and spectral responses more accurately. This can only be accomplished 

by the development of realistic simulations of the Cerenkov light from EAS and the 

response of the telescopes to this light. Various packages exist to simulate the air 

showers themselves, and cross-checking between these is increasing faith in their 

veracity. Modelling the telescope response depends upon accurate measurements of 

its various parameters. One area in which improvements could be made has been 

highlighted in Chapter five, which examined the point spread function of the Mark 6 

telescope central flux collector. Further measurements of this across the entire field of 

view and with a known background light level may make more accurate simulations 

possible. 

7.2.3 Source Candidates 

As one of only two atmospheric Cerenkov installations with high resolution 
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imaging capabilities in the southern hemisphere, the observations by the Durham 

group wil l be extremely important in the development of the field. In particular, the 

Mark 6 telescope is the only high resolution ACT in the southern hemisphere with a 

low enough threshold energy to make observations of AGN's. Table 7.1 shows the 

prime candidates in the observing schedule for the first half of 1997. 

Table 7.1: Early 1997 observing schedule for the Durham Gamma Ray Observatory 

Date Source Candidate Nature of Source Candidate 

January 1ES 0548-322 
Vela Pulsar 
VelaX-1 

AGN (X-ray BL Lac) 
Gamma ray pulsar/plerion 
High mass X-ray binary 

February Vela pulsar 
VelaX-1 
PSR1055^52 

Gamma ray pulsar/plerion 
High mass X-ray binary 
Gamma ray pulsar 

March Vela pulsar 
VelaX-1 
PSR 1055-52 

Gamma ray pulsar/plerion 
High mass X-ray binary 
Gamma ray pulsar 

April PSR 1055-52 

PSR 1706-44 

Gamma ray pulsar 
Gamma ray pulsar/plerion(?) 

May PSR 1055-52 
PSR 1706-44 
1ES 2005-489 

Gamma ray pulsar 
Gamma ray pulsar/plerion(?) 
AGN (X-ray BL Lac) 

June PSR 1706-44 
1ES 2005-489 

Gamma ray pulsar/plerion(?) 

AGN (X-ray BL Lac) 

July 1ES 2005-489 
AE Aquarii 
1ES 2155-304 

AGN (X-ray BL Lac) 
Cataclysmic Variable 
AGN (X-ray BL Lac) 

7.2.4 Future Observing Strategies and Hardware Developments 

The Durham observatory in Narrabri now consists of three imaging ACTs of 

differing capabilities. It is important to determine the best way to exploit these 
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capabilities in the future. There are various options available when considering how 

to operate the telescopes. The Mark 3 and Mark 5 telescopes form a stereo pair which 

are approximately matched in energy threshold and detector resolution. It may be 

useful to operate these together, independently of the Mark 6. Alternatively, the Mark 

5 may provide useful stereo information about the higher energy triggers of the Mark 

6, with the Mark 3 operating as an independent burst monitor. Again, this is an area 

where the results of Monte Carlo simulations could help determine the best course of 

action. 

There are no plans for any major hardware upgrades in the near future. 

Orford (1995) has proposed an improvement to the telescope trigger system which 

wil l provide a lower energy threshold for the same accidental trigger rate currently 

observed. At present, the telescope triggers and an event is recorded i f the analogue 

signal from all of the PMT's in a coincidence channel crosses a preset discrimination 

level. In the new system, the PMT signals wil l be first amplified, squared and then 

added together before being discriminated. This will allow a reduction in the 

discriminator level, resulting in more low energy event triggers for the same 

accidental rate. In the case of a three-fold coincidence system, it may be possible to 

reduce the energy threshold of the telescope by ~ 40%. 
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