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Photoinduced Alignment in Polymer Films 

Helen Varley 

Ph.D. Thesis September 1997 

Abstract 

Currently, alignment films for use in liquid crystal displays are produced via a 

mechanical rubbing process. The dust produced by mechanical rubbing along with 

problems due to friction and uneven roller pressure lead to defects in the display. 

Therefore a novel method for aligning polymers films by irradiation with polarised 

light has been attempted. Anisotropy introduced into the films by selective irradiation 

affects liquid crystal alignment. 

The polymers used in this study are poly (vinyl cinnamate), poly (9-

anthraceneoate ethyl methacrylate) and poly (p-azidobenzoate ethyl methacrylate). 

Poly (vinyl cinnamate) is a classical photoresist polymer which undergoes a [2+2] 

photocycloaddition in the presence of UV light. Poly (9-anthraceneoate ethyl 

methacrylate) and poly (p-azidobenzoate ethyl methacrylate) are both novel polymers 

which have the potential to undergo photo-crosslinking reactions. Poly (9-

anthraceneoate ethyl methacrylate) contains an anthracene-terminated side chain 

which dimerises under the influence of UV light introducing anisotropy into the 

system. Poly (p-azidobenzoate ethyl methacrylate) contains an azido group which 

when irradiated with polarised light loses nitrogen to yield nitrenes which can 

combine to form azobenzene species. 

UV spectroscopy, infrared dichroism studies, birefringence measurements and 

fabrication of a simple liquid crystal cell show that poly (vinyl cinnamate) and poly 

(9-anthraceneoate ethyl methacrylate) undergo selective photoreaction. Poly (p

azidobenzoate ethyl methacrylate) is shown to undergo reaction but not to give the 

desired products. 
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PVCi 

Polyanth 

Polyazide 

ZnSe 

He-Ne 

He-Cd 

HOMO 

LUMO 

Abbreviations used in this Thesis 

Poly (vinyl cinnamate) 

Poly (9-anthracenoate ethyl methacrylate) 

Poly (p-azidobenzoate ethyl methacrylate) 

Zinc Selenide 

Helium-Neon 

Helium-Cadmium 

Highest Occupied Molecular Orbital 

Lowest Unoccupied Molecular Orbital 

Vertical/Parallel Orientation with Respect to Incoming Beam Polarisation 

Horizontal/Perpendicular Orientation with Respect to Incoming Beam Polarisation 

or 
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Introduction 



1. Introduction 

1.1. Introduction to Liquid Crystal Displays (LCD) 

There are two major types of display commercially available today, these 

are mechanical and electro-optical displays. Electro-optical displays are 

advantageous when compared to mechanical displays in that they allow the 

reading of letters, numbers and can display large quantities of information in a 

small space. 

Liquid crystal displays are passive electro-optical displays and form a 

large percentage of the displays market. This is due to their extremely low power 

consumption. low voltage operation, readability in glaring sunlight as well as 

their compactness and flexibility of size. These properties make LCD's useful 

for consumer, industrial and military applications. 

All types of LCD consist of glass plates holding the desired indium 

titanium oxide, ITO, electrode pattern, an alignment layer, liquid crystal, sealant, 

and reflectors if required, Figure 1.1.1. 

Polarizer 

Glass Plate 

Liquid _)Transparent Conducting Electrode 
Crystal Pattern and Po!ymer Lay_er 

Glass Plate 

Polarizer 

Reflector 

Figure LLl: Schematic of a Liquid Crystal Display! 
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Of these components, it is the liquid crystal alignment layer which is of 

interest in this project. 

1.1.1. Liquid Crystals 

What is a liquid crystal? When a crystalline solid is heated, it transforms 

at the melting point into an isotropic liquid. Similarly on cooling, the isotropic 

liquid converts to a crystalline solid. However, there are certain substances that 

do not pass directly from crystalline solid to isotropic liquid and vice-versa, but 

adopt an intermediate structure which flows as if a liquid but still possesses the 

anisotropic physical properties of a solid, Figure 1.1.1.1. These materials are 

called liquid crystals and the liquid crystal phase is known as a mesophase. 

Solid Liquid Crystal Isotropic 

Melting Temperature Clearing Temperature 

Figure 1.1.1.1: Changes of State. 

An example of such a material is p-n-pentyl-p'-cyanobiphenyl (PCB), 

Figure 1.1.1.2: PCB. 

3 



Liquid crystal molecules are organic in nature and have a high axial ratio, 

giving rise to an elongated molecule. In the mesophase, these cigar shaped 

species lie essentially parallel to each other and their long range orientational 

ordering is the cause of their anisotropic physical properties. Depending on the 

molecular arrangement and ordering, liquid crystals can be classified as one of 

three types: smectic, nematic and cholesteric, Figure 1.1.1.3. 

I I I I I I I I 
I I I I I I I I 
I I I I I I I I 

SMECTIC C NEMATIC 

/--=- = -- 7 

CHOLESTERIC 

Figure 1.1.1.3: Classification of Liquid Crystals. 

In the nematic state, the only restriction is that the molecules should be 

more or less parallel to each other. The cholesteric state can be visualised as the 

nematic state superimposed with a natural twist. In the smectic state, the centre 

of gravity of the molecules is also ordered and the molecules are arranged in 

layers. These layers can slide over each other and give rise to flow 

characteristics. Smectic liquid crystals can be further divided into subclasses 

depending on the molecular arrangement inside the layers. Of the three liquid 

crystal states, it is the nematic state that is the most technologically important 

class of liquid crystal and is the only type of liquid crystal used in this project. 
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The material properties of a liquid crystal are a result of the properties of 

the liquid crystal molecules and therefore, the design of liquid crystals for 

specific electro-optical effects is important. Figure 1.1.1.4 shows the general 

structure of a liquid crystal molecule. 

I I 

I I ~/o 

R1 -: I ~~ R e.g. {);-c'\,-©-• 
I_ - - - - - - - - - - - - - - _j 

Figure 1.1.1.4: Liquid Crystal-Type Molecule. 

R1 is generally a hydrocarbon chain but R varies. If R=CN, then the 

liquid crystal has a strong dipole along the long molecular axis causing the liquid 

crystals to align parallel to an applied field, this is known as positive dielectric 

anisotropy. However, ifR is also a hydrocarbon chain then the dipole lies across 

the ester group thus aligning the liquid crystal molecules perpendicular to an 

applied field. The liquid crystals are then said to have negative dielectric 

anisotropy. 

The first positive dielectric anisotropic nematic liquid crystals were Schiff 

bases, developed for the commercialisation of LCD' s in 1971 2
• 

~CH=N-Q-CN 

Figure 1.1.1.5: Schifrs Base. 

However, the CH=N linkage in this molecule hydrolyses very easily 

therefore, from 1974, cyanobiphenyls, Figure 1.1.1.6, were used in most LCD's. 
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CN 

Figure 1.1.1.6: A Cyanobiphenyl. 

Without the use of external forces, liquid crystal alignment is limited to 

microscopic domains (-1 mm3
)

3
• This is of little use in a liquid crystal cell where 

control of the liquid crystal is important in giving the desired images therefore, to 

increase control over liquid crystal alignment, an alignment layer is used. 

1.1.2. Alignment Layers 

In a liquid crystal cell, the initial alignment of the liquid crystal is very 

important. It is the alignment layer situated on the underside of the glass 

substrate which induces liquid crystal alignment and choice of alignment layer is 

crucial. Depending upon the nature of the alignment layer, the liquid crystals can 

lie either parallel (homogenous alignment) or perpendicular (homeotropic 

alignment) to the substrate surface, Figure 1.1.2.1. 

I I I I I 
Homeotropic Alignment 

, (perpendicular) 
Homogenous Alignment 

(parallel) 

Figure 1.1.2.1: Surface Alignment of Liquid Crystals. 

Surface alignment of liquid crystals was first reported m 1911 by 

Mauguin4 when a glass substrate was rubbed with paper. A rubbing technique 
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remains the favoured industrial process for the fabrication of alignment layers for 

liquid crystal devices. Rubbing is carried out using a 'cloth' which can be one of 

a number of materials such as nylon, cellulose or polyester. It is thought5 that 

localised heating arising from the rubbing process gives the alignment layer 

greater mobility, allowing the polymer chains to align themselves in the rubbing 

direction. When rubbing ceases, this re-orientation is 'frozen in'. 

The material most commonly used as an alignment layer 1s rubbed 

polyimide, Figure 1.1.2.2. 

n 

Figure 1.1.2.2: A Polyimide. 

Polyimides are used in displays because of their high chemical and 

thermal stability. Matsunobe6 et a/ studied the effects of rubbing pressure on 

polyimide films. Polarised FTIR shows that the chains orient parallel to the 

rubbing direction. Birefringence measurements indicate that alignment occurs 

very quickly, as illustrated by a sharp rise in birefringence, and then continues to 

rise at a much slower rate, reaching a maximum birefringence value of -0.02. 

This agrees with the results of van Aerle7 et a/ who show that orientation of the 

top layer occurs almost instantaneously and further rubbing leads to penetration 
' 

of orientation into deeper layers of the film. 

The rubbing process, although used extensively, does have its problems. 

Rubbing generates dust, which is undesirable when manufacturing high quality 

displays in a very clean environment. The rubbing cloth is attached to a large 
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roller, beneath which the film is passed. If the rubbing pressure is not uniform 

across the whole of the roller, the film will suffer surface defects due to uneven 

rubbing. Even a slight variation of pressure across the roller will give rise to 

noticeable differences in liquid crystal alignment. Finally, rubbing involves 

contact with the film, producing friction. Electrostatic charges may remain on 

the surface of the rubbed film and these will affect the workings of the display 

when an electric field is applied. 

Due to the problems associated with the rubbing process, many 

researchers are attempting to devise new methods, as well as synthesise new 

polymers, which will produce better liquid crystal alignment layers. 

In 1981, Aoyama et a/8 investigated the alignment of liquid crystals using 

stretched polymer films. Stretching films of cellulose, poly (vinyl alcohol) and 

polyethylene induces liquid crystal alignment in the direction of stretching. In 

the case of polyethylene, alignment lasts for only two days. For poly (vinyl 

alcohol) and cellulose, alignment is reported to last for 'a long time'. This 

increase in alignment lifetime indicates that polar groups present in the poly 

(vinyl alcohol) and cellulose alignment layers interact in some way with the 

cyano-species of the liquid crystal, thus stabilising the order. This polar effect, in 

conjunction with van der Waals interactions are proposed as being responsible 

for the liquid crystal alignment. 
' 

More recently, Komer et a/ 9 have devised a system in which the liquid 

crystal alignment is induced by an electric field. The order created by the electric 

field is locked into the system by annealing, giving rise to an ordered network. 

This cross-linked network does not interfere with the electric field alignment of 
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the liquid crystals, nor the formation of the mesophase. Indeed, this produces 

'orientation-on-demand' films, however, this technique will be of little use in 

liquid crystal display technology. Orientation of liquid crystals using an electric 

field is the procedure used to produce the on/off contrast in a liquid crystal 

display. Komer's method of orienting the liquid crystals produces macroscopic 

alignment due to the fact that the liquid crystal molecules are now joined by 

cross-links. This will prevent the formation of the individually aligned domains 

necessary for image production in a liquid crystal display. 

Current research indicates that one of the most effective ways of inducing 

alignment in a system is to irradiate photoactive species with UV light. This 

technique was first attempted by Sun10
•
11 et al. They fabricated a simple liquid 

crystal cell where rubbed polyimide films, with their rubbing directions parallel, 

were used as alignment layers. Instead of filling the cell with an ordinary 

nematic liquid crystal, dye chromophores were dissolved in the liquid crystal 

material, creating a guest-host mixture. The molecules of this mixture aligned 

parallel to the rubbing direction of the polyimide films. Irradiation of the cell was 

then carried out using an argon ion laser polarised along the direction of rubbing. 

The liquid crystal molecules in the illuminated region were found to orient 

perpendicular to the polarisation direction of the laser and remained aligned 

when the radiation was switched off. Sun found that the aligning polyimide layer 

situated on the glass substrate upon which the laser radiation fell was 

permanently altered as a result of the laser-dye interaction. The change in the 

aligning film had subsequently induced a new aligning direction for the guest-
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host liquid crystals. This work established a new technique for the formation of 

alignment layers for use in liquid crystal displays. 

This photoalignment concept has been exploited by many other workers 12
· 

13
• 

14
· 

15
· 

16
· 

17
·: Under the influence of UVNis light, azobenzene species undergo 

cis-trans isomerisation, Figure 1.1.2.3. 

~ 
N=N 

'©\ 
R 

R~ ~R 
N=N 

Trans Cis 

Figure 1.1.2.3: Cis-Trans Isomerisation in Azobenzenes. 

This cis form of the azobenzene exists when the species is exposed to UV 

radiation and the trans form arises from exposure to visible radiation. In 1989, 

Ichimura18 et a/ exploited this feature of azobenzene molecules and designed a 

'command surface' usmg films of azobenzene substituted polymers. 

Photoresponsive nematic liquid crystal cells were formed using these command 

surfaces. The cell was viewed through a microscope fitted with crossed 

polarisers and the intensity of transmitted light was measured as the radiation 

was alternated between UV and visible. When the azobenzene moieties were in 

the trans configuration, light could not pass through the cell. When the radiation 

source was switched to UV, the cis configuration formed and the cell became 

bright. The occurrence of photoisomerisation in these azobenzene species was 
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effecting the way light was travelling through the display, giving rise to an on/off 

contrast. 

Kawanishi 13 et al also studied the alignment of liquid crystal molecules 

by the photochromic isomerisation of azobenzenes. They found that the liquid 

crystal molecules were oriented in a homeotropic state by exposure to 

unpolarised visible radiation (trans isomer) whereas unpolarised UV radiation 

induced inhomogenous multidomain texture. However, the use of linearly 

polarised UV light results in the formation of uniaxial in-plane homogenous 

alignment of liquid crystals in a direction perpendicular to the UV polarisation 

direction. Consider the situation of polarised UV exposure, both cis and trans 

species have their 7t-7t· transition vector parallel to N=N. Excitation using 

vertically polarised UV light leads to a surface, in the direction of polarisation, 

rich in the cis conformation. Perpendicular to this cis rich region, is a mixture of 

cis and trans isomers. 

/ 
N=N 

/ 
/ 

N=N 
/ 

N""'N 

/ ' 
/ 

N=N 
/ 

Figure 1.1.2.4: Azobenzene Induced Alignment (blue-trans, black-cis). 

Earlier work has shown19
'
20 that in liquid crystals containing azobenzene-

moieties, the trans to cis isomerisation brings about a nematic to isotropic 

transition in the liquid crystal. This phase transition may be interpreted as a 

reduction of order in the system. However, the molecular interaction causing the 
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liquid crystal alignment in Kawanishi's system is clearly more complex than a 

simple isomerisation mechanism. 

Following on from this, Ichimura12 showed that the photoinduced 

orientation in azobenzene species is greatly enhanced by heating the cell above 

the nematic-isotropic phase transition temperature. When the liquid crystals are 

at room temperature, reorientation of the azobenzenes is forcing them away from 

their initial alignment direction. When heated, the nematic phase can form with 

the orientation due to the azobenzenes inherent in the liquid crystal structure. 

Cinnamate species have also been studied with respect to their ability to 

act as alignment layers in liquid crystal displays: Schade' et al cross-linked 

films of poly vinyl4-methoxy cinnamates (PVMC), Figure 1.1.2.5, using linearly 

polarised UV light (A.=320nm) and then analysed the anisotropic properties 

introduced into the polymers. 

Figure 1.1.2.5: Poly (vinyl4-methoxy cinnamate). 

Before reaction commenced, the UV spectra of the films were recorded. 

The spectrum shows a dominant absorption peak at A.0=300nm which disappears 

upon progressive irradiation of the film. Simultaneously, a second, short 

wavelength absorption peak appears at A. 1=195nm which rapidly becomes 
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dominant. This spectral shift arises from the photogenerated [2+2] cycloaddition 

of cinnamic acid side chains belonging to different main chains, reducing the 7t

electron conjugation of the system. Cis-trans isomerisation is negligible in 

PVMC films and the photocycloaddition reaction is assumed to be the dominant 

photo process. 

Birefringence measurements were also carried out and can be summarised 

as follows: No optical anisotropy was detected in the film prior to irradiation, 

however, as reaction commences a weak optical anisotropy rapidly develops. 

The birefringence peaks with a maximum value of -0.05 and then gradually 

decays. This curve can be explained by assuming a single mechanism; the 

preferred depletion of cinnamic acid side chains parallel to the polarisation 

direction of the incoming UV radiation. Prior to exposure, the cinnamic acid side 

chains are isotropically distributed. When irradiated, the side chains oriented 

parallel to the polarisation direction will cross-link. The chromophores with off

axis transition moments will barely be affected. This leads to the initial increase 

in birefringence. With progressive irradiation time, the chromophore depletion 

parallel to the polarisation direction saturates and the probability that 

chromophore pairs with off-axis orientation will react increases. During 

irradiation, the mobility of the PVMC matrix decreases and as a consequence, 

birefringence peaks and then begins to decrease. Reversion to zero birefringence 

does not occur as the decreased mobility prevents chromophores at some distance 

from each other from reacting. 

Liquid crystal cells were formed using PVMC and the films were found 

to induce homogenous alignment perpendicular to the polarisation direction. 

13 



Residual 'monomeric' side chains, as well as the cyclobutane derivatives are 

distributed perpendicular to the polarisation direction. Due to the elongated 

shape of the cyclobutane species, it is thought that they may be exhibiting an 

orienting effect on the hydrocarbon side chains to which they are attached as 

shown in Figure 1.1.2.6. The residual cinnamate side chains, cyclobutane 

derivatives and the hydrocarbon chains all show the same uniaxiality and are 

assumed to be responsible for the alignment direction of the liquid crystal 

molecules. 

hv 

t 

Figure 1.1.2.6: Species presented in Irradiated PVMC. 

Poly (vinyl cinnamate), PVCi, reacts in a very similar fashion17
•
22

•
23

•
24

• If a 

cell is made up using PVCi as an alignment layer, the liquid crystals are also 

oriented perpendicular to the UV polarisation direction22
• If the polarisation 

' 

direction is then rotated by 90°, the liquid crystal alignment can be erased. This 

write-erase cycle can occur approximately 1 0 times, with the anisotropy created 

becoming weaker with each successive alignment. Erasure of alignment is 
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thought to be due to reorientation of molecular ensembles perpendicular to the 

polarisation direction of the incoming UV radiation. 

More recently, Schade7 et a/ discovered that photoreactive films of 

cinnamate derivatives can align liquid crystal polymer films on single substrates 

i.e. no need to form a twisted cell. The photoreactive films used were based on 

cinnamic acid derivatives containing cyano-biphenyl derivatives. The 

photoreactive polymer was masked before irradiation to allow varying alignment 

orientations to be formed. The cell was fabricated using a liquid crystalline 

polymer layer which was photopolymerised using unpolarised UV light, thus 

transferring the liquid crystal polymer photogenerated alignment pattern into the 

solid state. The masking and photopolymerisation of the liquid crystal polymer 

allow the generation of high information content photogenerated alignment 

patterns on single substrates. 

The most promising liquid crystal alignment system to date, devised by 

Schade5 et a/, is based on coumarin and is shown in Figure 1.1.2.7. 
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~"R o I 
~-Q 1/R 0 

0 

0 

t-o"R 1 
hv ~-Q 1/R 0 o I 

0 

0 0 

Figure 1.1.2.7: The Coumarin System for Liquid Crystal Alignment. 

A photoinduced [2+ 2] cycloaddition reaction occurs using polarised UV 

light. This not only produces cross-linking giving an anisotropic film but by 

changing the angle of incidence of the radiation, pretilt angles ranging from 0-

90° can be achieved. 

The alignment and tilt of liquid crystal molecules on a treated surface is 

fundamental to the efficient operating of the display. However, the exact nature 

of the interaction between surface and liquid crystal is still unclear. A complex 

combination of anisotropic interactions, topological, steric, polar and V an der 

Waals interactions are all thought to contribute to the final liquid crystal 

alignment state. 

A significant factor to consider when designing a liquid crystal alignment 

system is does the system induce 'pretilt' of the liquid crystals? This 

phenomenon is illustrated in Figure 1.1.2.8. 
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I E - - - -- - tJIIII' ..... - - I ' - - tJIIII' ..... - - No Pretilt - -
tJIIII' tJIIII' I 

E tJIIII' tJIIII' 
tJIIII' tJIIII' 

, , 
tJIIII' ""' I I 
tJIIII' ""' 

, , 
""' ""' tJIIII' ""' Pretilt 

Figure 1.1.2.8: The Influence of Pretilf5
• 

The uppermost diagram in Figure 1.1.2.8, shows liquid crystal alignment 

with no pretilt. The liquid crystals are free to move from their initial orientation 

in either a clockwise or anticlockwise direction when an electric field is applied. 

This gives rise to a patchy display with a visible transition line between the two 

domains. 

If the polymer film tilts the liquid crystals slightly from their parallel 

orientation then on the application of an electric field, the liquid crystals all turn 

in the same direction, giving a sharp contrast between the 'on' and 'off 

positipns. Therefore, it is important that an alignment layer not only aligns the 

liquid crystals but also tilts the liquid crystals from the parallel orientation. In 

the rubbed polyimide systems currently used, the surface tilt angle is -3° 15 and 

this slight deviation from parallel alignment prevents problems arising from 

reverse tilt and reverse twist. 
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As mentioned previously, homeotropic alignment may also be desired. 

This can be achieved by oblique evaporation of SiO onto the substrate 

surface26
'
27

. However, most liquid crystal displays require homogenous 

alignment and it is this regime that most researchers aim to achieve. 

1.1.3. Twisted Nematic Liquid Crystal Displays (TN-LCD's) 

The alignment layers studied in this project are specifically for use in 

twisted nematic liquid crystal displays, TN-LCD. The TN-LCD, Figure 1.1.3.1, 

is the most common type of display and comprises >99% of the LCD market. 

OFF ON 

Figure 1.1.3.1: Twisted Nematic Liquid Crystal Display (TN-LCD).2 

A thin layer of liquid crystal ( -5-l5J!m) with a positive dielectric 

anisotropy is sandwiched between two glass plates containing transparent 

conducting electrode patterns, usually via the etching of an ITO film. These two 

glass plates are treated such that unidirectional homogeneous alignment of the 
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liquid crystal is achieved. The cell is constructed with the alignment directions 

of the treated plates orthogonally oriented, the cell is then sealed and filled with 

the appropriate liquid crystal. The liquid crystal sandwich can be thought of as 

consisting of liquid crystal layers. The top and bottom layers align according to 

the treated surfaces with which they are in contact whereas the central layers take 

an intermediate structure according to the distance from the treated surfaces. 

This produces a situation where each successive layer is skewed unidirectionally, 

either clockwise or anticlockwise, such that the final, bottom layer is skewed by 

90° with respect to the uppermost layer. The liquid crystals are themselves 

birefringent, therefore each layer will act as a birefringence sheet. This twisted 

arrangement of birefringent piles of liquid crystals can rotate the plane of 

polarisation of incoming polarised light. 

Consider Figure 1.1.3 .1, the unpolarised beam of light, after passing 

through the first polariser becomes polarised along the direction of the polariser. 

The plane of polarisation of this light rotates as it traverses through the twisted 

nematic cell, giving a total rotation of 90°. If the plane of polarisation of the 

second polariser is 90° to that of the first, light leaving the cell passes through the 

second polariser and the cell appears clear. In a reflective type cell, a reflector 

positioned on the back of the second polariser reflects this light in a forward 

direction. 

On application of a voltage, the liquid crystals, due to their positive 

dielectric anisotropy, align themselves in the direction of the electric field and 

hence lose the property of rotating the polarisation vector of the light. As the 

plane of polarisation of the light is now orthogonal to the second polariser, the 
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passage of light is blocked and the cell appears to be black. Thus, voltage from 

the circuitry is applied to the segments required to form the desired character 

which then appears as a black character on a colourless or neutral grey 

background. 

1.2. Project Aims 

The aim ofthis project was to obtain physical characterisation of potential 

alignment layers for liquid crystal devices using a variety of techniques. Poly 

(vinyl cinnamate) (PVCi), a polymer with well characterised and documented 

reactions was used as a model polymer for these studies. 

From an initially isotropic film, irradiation with polarised UV light 

induces a photoreaction in the polymer system. In PVCi, this is a [2+2] 

photocycloaddition across the carbon-carbon double bond, giving rise to 

anisotropy in the film which in turn induces liquid crystal alignment. The novel 

polymers synthesised for this work28 are based upon anthracene and azide 

molecules. For the anthracene-based polymer, the photoreaction was expected29 

to involve dimerisation across the 9,10-position of two favourably situated 

anthracene moieties. The azide-based polymer was thought to be a suitable 

candidate for a photo-elimination reaction with the azide moiety losing molecular 

nitrogen, forming a nitrene. Combination of two nitrenes then gives rise to an 

azobenzene species. As polarised light was used as the radiation source, the 

reactions have an orientational dependence and thus create the desired anisotropy 

in the polymer film. 
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Four techniques were used to characterise the photoinduced changes in 

the polymer films: UV spectroscopy, polarised FTIR spectroscopy, birefringence 

studies and fabrication of a simple liquid crystal cell. 

UV spectroscopy was used to ensure that chromophore reaction was 

occurring. This technique does not give any indication as to the selectivity of the 

photoreaction but will show whether depletion of the chromophores initially 

present in the sample was taking place. The suitability of this technique for the 

assessment of chromophore depletion was shown by Schadt21 et al on work with 

PVMC as well as work by Zekkae0 et al on the isomerisation of azosilane 

molecules. Both workers followed the change in the UV absorption spectrum of 

the individual systems upon exposure to polarised light. The work by Schadt is 

especially relevant as PVMC is a derivative of the model compound used in this 

project, PVCi, and has an almost identical UV absorption spectrum. The only 

difference being that Amax for PVMC is at longer wavelengths than A.max for PVCi. 

This is due to the increased conjugation in PVMC arising from the methoxy 

substituted benzene ring. 

Once reaction was known to take place, polarised FTIR studies are used 

to calculate the dichroic ratio. This is a widely employed technique and has 

previously been used to study orientation in stretched polymer films of poly 

(ethylene terephthalate)31
'
32

'
33

, poly (ether ether ketone)34 and poly (vinyl 

' 
phenol)35

, polyethylene36
.3

7 and polystyrene38
• Dichroic ratios for side chain 

liquid crystalline polymers as a function oftemperature39
•
40

, stretching41 and depth 

into sample42 have also been determined using polarised FTIR. 
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Cunningham~3 et al used polarised FTIR to study the changes in 

molecular orientation and conformation incurred by uniaxially drawing poly 

(ethylene terephthalate), PET. 

Figure 1.2.1: PET. 

PET may exist in amorphous and crystalline forms, the major difference 

between the two being due to rotational isomerisation of the -OCH2CH20- group, 

giving rise to trans and gauche forms. In crystalline regions, the trans form is 

present whereas in amorphous regions both trans and gauche forms are present. 

Analysis of bands due to the trans and gauche conformations allow determination 

of the amorphous/crystalline content in the sample, as well as the orientation of 

each conformation. Study of the vibrations of the benzene ring allow assessment 

of molecular orientation of the whole polymer system to be carried out. Using 

polarised FTIR, Cunningham showed that at low overall molecular orientation 

the segments containing trans conformations, are more oriented than the gauche 

segments, which are almost isotropically distributed. At higher overall molecular 

orientation, the gauche segments become more aligned. The results infer that 

overall molecular orientation arises largely from molecular chains possessing 

trans tonformation. 

Polarised FTIR has also been used to study poly (ether ether ketonet4
, 

PEEK, drawn from an initially amorphous material. The observed IR spectrum 

is the sum of two overlapping spectra due to the amorphous and crystalline 

conformations. Polarised FTIR was used to assess the changes in molecular 

22 



conformation in the draw direction. It was found that as the film is drawn, the 

amorphous chains uncoil and therefore, the amorphous orientation increases. At 

this stage, the sample contains few crystalline regions. When the film is drawn 

to approximately twice its initial length, crystallinity increases greatly as many 

regions exist in which the molecules are very well aligned, allowing crystal 

formation. Further drawing increases both crystalline and amorphous 

orientation. If this drawn film is then annealed to 573K, the crystalline content 

increases to a maximum of 45%. 

The above examples have shown how polarised FTIR has been used to 

study changes in orientation of particular groups or regions within a sample as a 

function of some external force. The sensitivity of this technique is further 

highlighted by Li & Brisson45 in a study of stretched films of poly (vinyl phenol), 

PVPh. 

PVPh is known to undergo self association through hydrogen bonding or 

to form intermolecular hydrogen bonds with guest systems containing hydrogen 

acceptors. Thus, PVPh can be used as a model to investigate the effects of 

hydrogen bonding on blend miscibility. Infrared dichroism studies can be used 

to determine the transition moment angle of various vibrations and compare this 

orientation behaviour to that of polystyrene, where hydrogen bonding does not 

occur. It was shown that the orientation behaviour of PVPh compared to that of 

polystyrene was not influenced by self association through hydrogen bonding. 

This is likely to be due to the dissociation of the hydrogen bonds as the draw 

temperature was greater then the T g of the polymer system. The transition 

moment of the hydroxyl (-OH) vibration did not behave linearly with respect to 
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overall molecular orientation. However, when the bands were separated into free 

and hydrogen bonded -OH species, both behaved linearly with respect to overall 

orientation but behaved differently when compared to each other. This was 

attributed to changes in conformation of the hydroxyl group upon hydrogen bond 

formation. 

Zhao and Lei46 used infrared dichroism to study the effects of stretching 

on nematic polyacrylates. 

m=2,6 

Figure 1.2.2: Nematic Polyacrylates. 

Films were cast onto poly (vinyl alcohol) support films upon which they 

were stretched. The orientation of the mesogenic groups increased on stretching. 

Contrary to many polymer systems, the effect was not temperature dependent. 

Orientation is governed by macroscopic alignment of the nematic domains along 

the local director. Alignment can only occur when the molecules are in the liquid 

crystal state, therefore, stretching at temperatures above the clearing temperature 

does not align the mesogenic units, thus explaining the lack of temperature 

dependence. 

Consider Figure 1.2.2, when m=2, alignment is increased relative to when 

m=6. The shorter spacer group allows strong coupling between the mesogenic 

group and the chain backbone. As film thickness increases, orientation of the 
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mesogenic group decreases. This occurs as transfer of stress from the supporting 

film to the polymer can only occur at the interface. Alignment of the nematic 

domains begins at the interface an propagates via cooperative forces throughout 

the film. As infrared dichroism measures average orientation, the weakening of 

alignment in domains far from the interface, due to the thickness of the sample, 

accounts for the decrease in orientation. This effect is less pronounced for m=2 

relative to m=6 as the strong coupling when m=2 increases the propagation of 

alignment. 

The results from the polarised FTIR experiments described above 

demonstrate the ability of the technique to describe changes occumng at a 

molecular level. Irradiation of the photoactive polymers used in this project will 

induce orientation via molecular changes and it is therefore feasible that given 

the effectiveness of the technique in the systems described, evidence for 

photogenerated molecular orientation should be achieved using infrared 

dichroism studies. 

Birefringence measurements were also used to determine the extent of 

anisotropy within the sample. Cinnamate systems and their photoinduced 

anisotropy have been studied previously using this technique47
•
48

·
49 as has the 

photoinduced isomerisation in azobenzene species50
• 

If a glassy photochromic liquid crystalline polymer containing both 

azobenzene and mesogenic side chains is irradiated with linearly polarised UV 

light, repeated E~Z isomerisation cycles of the azobenzene chains will result in 

rotational diffusion of the photochromic moieties to a position perpendicular to 

the polarisation direction of the incoming radiation50
• In this liquid crystalline 
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polymer system, the optical anisotropy is influenced by two factors: the 

tendency of the polymer to form a liquid crystalline phase stabilises the light 

induced order whereas a high concentration of photochromic moieties is needed 

to achieve efficient photo-orientation. The higher the azobenzene content the 

smaller the mesogenic content which results in a loss of liquid crystallinity. The 

photoinduced birefringence as a function of azobenzene concentration thus shows 

a maximum value at the border between the liquid crystalline and amorphous 

states, illustrating that there is a complex relationship between polymer structure 

and the extent of photoinduced anisotropy. 

Birefringence studies have also been used successfully to study the effects 

of stretching5u 2 and spinning53 upon orientation. As all of the samples prepared 

for use in this project are spin cast, the effects of spinning on optical anisotropy 

are especially interesting. Lin and Bidstrup53 examined the effects of spinning 

speed on the optical anisotropy of spin cast polyimide films. A polyimide film 

based on pyromellitic dianhydride (PDMA) and 4-4'-oxydianiline (ODA) was 

prepared by the combination of PMDA and ODA to give a polyamic acid. 

Imidization was carried out thermally such that water was lost from the system to 

yield the PDMA/ODA film. 

PMDA ODA 

Figure 1.2.3: Monomers Used to Form Polyimide Film. 
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The film formed showed that as the spinning speed was increased, the 

birefringence of the film also increased. The film displayed uniform in-plane 

orientation therefore, the observed increase in birefringence was not thought to 

be due to orientation of the polymer molecules by mechanical stress induced by 

spinning. Spinning speed directly controls the film thickness: increased speed 

leads to a decrease in thickness. It was hypothesised that film thickness 

variations were causing this birefringence change. Lin and Bidstrup showed that 

the concentration of polyamic acid does not influence the thickness dependence 

of the birefringence, nor are the dynamics of solvent evaporation or thermal 

imidization controlling factors. The authors report that the lowering of 

birefringence may be a consequence of skin layer formation due to a stress 

gradient and the presence of air-polymer-substrate interfaces. 

UV spectroscopy, polarised FTIR spectroscopy and birefringence studies 

probe the changes in the alignment layer upon irradiation. However, although 

orientation of the alignment layer is important, its occurrence does not mean that 

one can automatically infer that liquid crystal alignment will transpire because of 

this. The mechanism for liquid crystal alignment is complex and is not fully 

understood21
• Therefore, only the fabrication of an actual cell51

'
52 will show 

whether the photoinduced orientation in the alignment layer induces liquid 

crystal alignment. 
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Chapter Two 

Experimental Techniques 



2. Experimental Techniques 

2.1. Polymers 

Poly (vinyl cinnamate) used as a model polymer was purchased from Aldrich. 

Two polymers were synthesised by Miss K.F oster 1 which incorporated moieties 

which were susceptible to modification by photochemical means and may afford 

subsequent alignment. These two polymers are poly (9-anthracenoate ethyl 

methacrylate) and poly (p-azidobenzoate ethyl methacrylate), Figure 2.1.1. The 

synthesis and molecular weights of each of these polymers are reported in chapters 3, 

4 & 5 where the experimental investigations are discussed in detail. 

Poly (Vinyl Cinnamate) Poly (9-Anthraceooate Ethyl Methacrylate) Poly (p-Azidobenzoate Ethyl Methacrylate) 

Figure 2.1.1: Polymers Used in this Work. 

' 
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2.2. Characterisation 

NMR: Unless stated otherwise, NMR spectra were recorded usmg a 400 MHz 

spectrometer CH equivalence) at room temperature using deuterated chloroform as a 

solvent. 

SEC: Molecular weight measurements were carried out usmg a Viscotek 200 

differential refractometer/viscometer detector. The column set used was: Guard 

Column, PL Gel 5~m 100A, PL Gel 5~m 1000A, PL Gel 5~m 100 OOOA. All 

samples were run at ambient temperature using filtered and degassed chloroform as 

the solvent. 

DSC: Differential Scanning Calorimetry was carried out using a Perkin-Elmer DSC7 

Differential Scanning Calorimeter. 

2.3. Sample Preparation 

It has been found necessary to use a range of substrates because of the variety 

of techniques applied. Thus for UV and birefringence studies, quartz plates (50mm x 

20mm x 2mm) were used and for infrared studies, zinc selenide windows (30mm x 

14mm x 4mm). Before use, the quartz slides were cleaned with acetone, dried, then 

immersed in chloroform in the ultrasonic bath for 30 minutes before a final drying. 

The ZnSe was thoroughly cleaned with hexane and dried before use. Solutions of the 

desir~d polymer (1% by weight) were prepared by dissolution in a 50:50 mixture of 

dichloromethane/chlorobenzene. This solution was then placed in a syringe fitted 

with a 2~m filter and 10 drops of the solution (7 drops when a ZnSe substrate was 

used) were filtered directly onto the centre of a clean substrate slide. The slide was 

then spun at circa 2000 rpm for 30 seconds to form a thin film with complete removal 
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of the solvent. Excess polymer solution on the underside of the slide was removed by 

wiping with methanol. Initially, slides prepared in this manner were then annealed 

under vacuum, above their T g' for one hour to remove any stress or inherent 

orientation brought on by the spinning procedure. However, comparison of annealed 

and unannealed samples by both UV Nis and birefringence studies revealed no 

differences. Therefore, unannealed samples were used in further studies. All samples 

were stored in darkness, at room temperature, until required. 

After use, quartz slides were cleaned by immersion in chloroform followed by 

30 minutes in the ultrasonic bath. They were then removed from the chloroform and 

wiped with a chloroform soaked optical tissue. When dry, the slides were wiped with 

an acetone soaked tissue. Before use the slides were placed under a stream of nitrogen 

to remove any dust particles present on the surface. If any marks were evident on the 

slide, spectroscopic grade methanol was used to remove them. In the case of the ZnSe 

substrate, the polymer film was removed using a hexane soaked cotton bud and then 

wiped with an optical tissue before drying with a nitrogen stream. 

As the surface of the film is being analysed in all experiments and is important 

in bringing about liquid crystal alignment, all samples were handled by the edges 

whilst wearing gloves so as not to mark the polymer film. For the toxic ZnSe 

substrates, tweezers were used to pick up the slide. 

, 2.4. Thickness Determination 

2.4.1. X-Ray Reflectivity 

Sample thickness' were determined usmg a Siemens 05000 X-ray 

Reflectometer in 8/28 mode. 
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Focus Scattered-Radiation 
Diaphragm 

Figure 2.4.1.1: X-Ray Diffraction Stage. 

For each specimen, the reflectivity profile was obtained by scanning a 29 

range from 0.2 - 4°, using a step size of 0.002°. Figure 2.4.1.2 shows a typical 

reflectivity profile. 
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Figure 2.4.1.2: Example Reflectivity Profile of Polyanth on Quartz. 

WIN-REFSIM Version 1.0 was used to perform the analysis. The sample 

thickness was determined in the following way 2
: 

1) The fringes on the profile are observed due to the fact that at all angles of incidence 

greater than the critical edge, the X-ray beam is reflected and refracted. These two 

beams then have different path lengths, giving rise to the fringes. This can be 

exploited in that the difference between consecutive minima (indicated by the lines 

in Figure 2.4.1.2) can be used to calculate the film thickness. 

2) The following equations are used to calculate film thickness: 

d= 1t I Ak 

where Ak = (2 1t I A.) sin 9 

For X-rays, A. = 1.54A and 9 is the angle between two adjacent minima. In 

practice, the difference between many minima are recorded and an average value 
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calculated. It was found that for the polymer systems studied, the film thickness 

remained constant, regardless of exposure time. 

2.4.2. Surface Profiling. 

Film thickness' were also measured using a surface profiling technique known 

as 'a-step'. For this technique, the surface of the polymer sample was scratched and a 

stylus draw across at a given pressure. Where the stylus crosses the scratch, a 

reduction in the line corresponding to the surface profile is observed. The depth is 

thus equivalent to the distance between the sample surface and the substrate below. 

~.-------Surface 

Scratch 

Figure 2.4.2.1: Side-on View of Sample Surface. 

This technique, unlike X-ray reflectivity, is potentially destructive as a series 

of scratches across the sample is needed to achieve a representative sample thickness 

and thus can only be carried out when samples are no longer needed. Often, the 

sample thickness is needed before experiments are carried out as samples which are 

too thin (< 30 nm) are not used. Therefore, X-ray reflectivity is the preferred 

technique for establishing film thickness. 

The sample thickness values achieved by X-ray and 'a-step' are in good 

agreement. To verify these results, neutron reflectivity measurements were carried 

out on three samples during a short visit to the Rutherford Appleton Laboratories in 
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Oxfordshire. This was a third method of determining sample thickness. It was found 

that the thickness' determined by all three methods showed good agreement(± 50 A). 

X-Ray Surface Profiling Neutron 

PVCi 560A 560A 610 A 

PVCi 520A 520A 560A 

Polyanth - 1400A 1450 A 

From these results, it is shown that sample thickness determined by X-ray 

reflectivity has an error in the region of 1 0%. 

2.5. Sample Irradiation. 

The radiation source used throughout the experiments carried out in Durham 

was an Ealing Deuterium Lamp (30W, 185-370 nm wavelength range). The spectral 

output ofthe lamp is shown in Figure 2.5.1. 

Relative Spectral 
Energy Distribution/ 
energy/area/nm 
bandwidth 

100 

80 
60 
40 

20 

150 200 250 300 350 400 
Wavelength (nm) 

Figure 2.5.1: Spectral Range of the Deuterium Lamp. 

Ideally, the light should have been monochromated by a filter to select light of 

wavelength A.-325 nm. This wavelength of radiation was chosen because it is 

removed from the absorption maximum of all polymers used. J.. = 325 nm radiation is 
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still absorbed by the sample but at a much reduced intensity compared with A = 

280nm. Therefore, the absorbed radiation promotes reaction but does not cause 

considerable heating of the exposed area. A quartz lens was used to intensify the 

radiation incident on the sample. Comparison experiments show that the photon flux 

of the radiation was insufficient to promote reaction when such a filter was used. A 

sample of PVCi on a quartz substrate was exposed for 24 hours to unpolarised 

radiation, A = 320 nm. There was no change in the UV absorption spectrum after this 

irradiation time. As experiments were to be carried out using polarised radiation, 

which further reduces the intensity of light incident on the sample, exposure times for 

a single measurement would have been on the scale of weeks. Consequently, all 

exposures were performed without using a band pass filter. 

For polarised irradiation, a UV polariser was placed between the lamp and the 

sample, Figure 2.5.2. 

------------------------..., 

Deuterium 
Lamp Quartz 

Lens Polariser Sample 

Small Optical 
Table 

Figure 2.5.2: Exposure using the Deuterium Lamp. 

Ventilated 
with Black 
Interior 

The photon flux of the deuterium lamp was frequently measured using a 

known chemical actinometer, Aberchrome 540 3
• As Aberchrome 540 is active only 

in the range 310-3 70nm, it is evident that the photon flux calculated from this 

actinometer will be lower than the actual photon flux. This is not ideal. However, a 
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monochromatic source is unavailable for these experiments and an actinometer 

covering the spectral range of the lamp could not be found. Therefore, an estimate of 

the photon flux must suffice and its deficiencies are duly noted. 

0 

White Light 

lN absorbance at 3 50 nm lN absorbance at 494 nm 

Figure 2.5.3: Aberchrome 540. 

A known volume of Aberchrome 540 dissolved in toluene (- 5 X 10'3 molar) 

was irradiated whilst being stirred for a given length of time. This promotes the 

formation of a molecule which absorbs at 494nm. Therefore, the reaction can be 

followed by monitoring the increase in absorption at this wavelength. The following 

equation was then used to calculate the photon flux. 

where 

AxVxN 
1=---

tPc X & X ( 
photons·' 

A = the increase in absorbance at 494 nm. 

V = the volume of solution irradiated ( dm-3
) 

N = 6.023 x 1023 mol·' 

cl>c = 0.20 (31 0-3 70 nm) 

E = 8,200 dm3 mol·' cm·' at 494 nm 

t =time (s) 
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For irradiation experiments carried out at DRA (Malvern) a He-Cd laser 

(325nm, l.OlmW intensity through a lmm aperture) was used as the source. The 

optical alignment varied slightly depending upon the experiment being performed. 

Figure 2.5.4 shows one of these alignments schematically. The optical alignment for 

birefringence measurements is described in section 2.8.3. 

I 325nm 

Sample 

Figure 2.5.4: Irradiation using the He-Cd Laser. 

2.6. UV-VIS Spectrometry 4•
5
•

6
• 

7 

2.6.1. Theory 

Photons from the UV and visible regions of the electromagnetic spectrum have 

sufficient energy to promote an electron of an organic molecule from the ground state 

to the excited state. The energy difference between these two states is quantised such 

that only a photon of precisely the right energy may be absorbed. 

he 
E=

A 
(2.6.1.1) 
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Figure 2.6.1.1 Schematic Diagram of Electronic, Vibrational and Rotational Transitions. 

The Beer-Lambert Law for absorption of light states that the fraction of 

incident light absorbed is proportional to the number of molecules in its path i.e. 

absorbance 
10 

= log10 I = eel 
I 

(2.6.1.2) 

where E is the molar decadic extinction coefficient and c is the concentration of 

absorbing species (mol dm-3
). 

Although an electronic transition may be energetically favourable, the 

associated band may not be observed or else be very weak. This is due to certain 

transitions being forbidden due to poor orbital overlap. However, forbidden 

transitions are observed as molecular vibrations distort the structure of the molecule 

and hence change the relative positions of the molecular orbitals. 

UV absorption spectra are not observed as sharp peaks but as much broader 

bands. This arises from the inability to separate the bands due to rotational and 

vibrational transitions. 

43 



2.6.2. UV Nis Spectroscopy Experiment 

All UV spectra were recorded using either a Unicam UV2 Spectrometer or a 

Perkin Elmer Lambda 9 Spectrometer. 

The absorption spectrum of a sample of known thickness was recorded prior to 

exposure. The desired wavelength range was selected and a background spectrum 

was run for each sample. To produce the sample spectrum, a bare substrate was 

placed in the reference beam and coated substrate in the sample beam. Foil owing 

exposure for a given time interval, the spectrum was re-recorded. The decay of the 

absorption peak due to the UV active chromophore was monitored. 

2.6.3. Calculation of the Quantum Yield of Cross-Linking 

The definition of quantum yield is the number of molecules of reactant 

consumed for each photon of light absorbed 6
• In this form, the quantum yield 

represents the efficiency of the primary photochemical process in bringing about 

chemical change and also the extent of a secondary reaction. A quantum yield greater 

than unity suggests the occurrence of secondary reactions since the Stark-Einstein 

law indicates that not more than one molecule can be decomposed in the primary 

step. Chemical change is not the only consequence of absorption of radiation; a chain 

reaction may be taking place in a photochemical reaction even though the quantum 

yield is less than one. 

• ' If a species absorbs radiation, then one particle is excited for each quantum of radiation absorbed.' 
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The determination of overall quantum yield for a chemical change requires 

measurement of the numbers of molecules of reactant consumed, or of product 

formed, and of the number of quanta of radiation absorbed. In systems where the 

reacting species is UV active, consumption of the starting material can be monitored 

using UV spectroscopy. 

Since 10 can be measured usmg chemical actinometry, section 2.5, the 

intensity (31 0-3 70nm) absorbed by the sample, la, can be calculated 

(2.6.3.1) 

where A
0 

is the absorbance before irradiation. 

Using the UV absorption spectrum, the concentration of chromophores can be 

calculated from the Beer-Lambert law (c = AlE x 1) and hence the number of 

chromophores remaining can be determined. Having both the intensity of the 

absorbed radiation and the number of molecules reacted, the quantum yield can be 

calculated. 

It must be stated at this point that the quantum yields calculated this way in 

this project cannot be described as true quantum yields. This is due to the 

unavoidable inaccuracies incurred in the measurement of 10 as described in section 

2.5. Due to this fact, la will be calculated to be much lower than its actual value, 

leading to higher values of quantum yields. It would be inappropriate to comment on 

differing values of quantum yield between the polymer systems as these values are 
' 

known to be inaccurate. However, the trends occurring within and between samples 

of the same polymer remain valid and can be discussed. 
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where 

2.6.4. Calculation of the Extinction Coefficient (E) 

The Beer-Lambert Law states 

Absorbance= & c I 

E is the molar decadic extinction coefficient 

c is the concentration (mol dm'3) 

1 is the pathlength 

For many polymer samples, E is already known. For new polymers, or those 

with E not yet published, E must be calculated using the Beer-Lambert equation. 

For Poly (Vinyl Cinnamate), the extinction coefficient, at 278nm, for an 

unknown mixture of cis and trans isomers, was calculated to be 1.53 x 104 cm·• mol"1 

L, Figure 2.6.4.1. The literature values for the individual isomers are as follows 8
: 

1.2 x 104 cm·• mol'1 L (cis isomer) and 2.12 x 104 cm·• mol"1 L (trans isomer)1
• 

Therefore, for a 50:50 mixture of the two isomers, a value of 1.6 x 104 cm·• mol"1 L 

would be expected. This value compares well with the experimentally determined 

value for the PVCi used in these experiments. 

46 



2.00 r-------------------., 

~ 
c: 
(U 

1.75 

1.50 

1.25 

€ 1.00 
0 

~ 
0.75 

0.50 

0.25 

0 

0 

0 

0. 00 "'--'----'---'---'--'---'---'---'---'---'-.....__.J..._'--J.__j_--L...-'--'---'---..J 

0.00000 0.00003 0.00006 0.00009 0.00012 

Concentration /mol dm·3 

Figure 2.6.4.1: Plot to Calculate e for PVCi. 

This procedure was repeated for the Poly(9-anthracenoate ethyl methacrylate) 

leading to an extinction coefficient of 1.2 x 104 cm·• mol"1 L and for Poly (p-

azidobenzoate ethyl methacrylate), 1.1 x 104 cm·• mot·• L, both at A.max = 278nm. As 

these polymers have not been previously synthesised, extinction coefficients are not 

available for comparison. 
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2. 7. Infrared Spectroscopy 9
"
14 

2.7.1. General Infrared Theory 

At ambient temperatures, the bonds of a molecule are permanently vibrating. 

Energy is absorbed according to quantum rules i.e. energy is not absorbed 

continuously but only at discrete frequencies, hence the occurrence of peaks in the 

absorption spectrum. When absorption occurs, the ground state rotational and 

vibrational energy levels are changed. The change in rotational energy is very small 

and therefore, the observed spectra can be considered as a measure of the vibrational 

modes of energy absorption of the molecule. 

In a simple diatomic molecule, the only vibration that can occur is stretching 

along the bond. 

1 2 

The force required to stretch the bond is given by Hooke's Law 

F=kd (2.7.1.1) 

where F is the applied force, k is the force constant and d is the distance. The 

vibrational frequency for this stretching is given by 

mtm2 
where ll is the reduced mass of the system, -...!..-~ 

mt +m2 

(2.7.1.2) 

The frequency of the absorbed infrared can thus be related to the force needed 

to stretch the bond between atoms I and 2. This frequency remains constant, 

48 



irrespective of the type of molecule atoms 1 and 2 are in, allowing the production of 

group frequency tables which assist in the assignment of peaks in an IR spectrum. 

For large molecules, there are many bonds and thus many potential IR 

absorbance frequencies. However, not all bond vibrations are observed in an IR 

spectrum as a change in dipole moment of the molecule must occur during the 

vibration if the mode is to be IR active. Consider C02 

,._ ____.. 
o=c=o 

..... .._. ~ 
o=c=o 

Symmetric Stretch 

Asymmetric Stretch 

Figure 2.7.1.1: IR Vibrations in C02• 

IR Inactive 

IR Active 

IR absorption will only occur for unsymmetrical vibrations such as the 

asymmetric stretch shown for C02 or when a symmetric group is asymmetrically 

substituted e.g. Ph-N=N=N. 

Stretching is not the only vibrational motion available to a bond, bending, 

wagging, twisting and rocking all contribute to the vibrational spectra. The transition 

moment (direction of change in the dipole moment) associated with a particular 

vibration lies at some angle with respect to a given direction in the molecule. This 

characteristic of directionality can be utilised in structure determination. 

The transition moment is a vector and thus has magnitude and direction. The 

intensity of the IR absorption depends upon the angle the electric vector of the 

incident radiation makes with the transition moment. The intensity is proportional to 

the square of the scalar product of the transition moment and electric field vectors. 
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The absorption coefficient k for a particular direction of the incident electric field 

vector Eo may be written as Equ (2.7.1.3) 

(2.7.1.3) 

where \j/1 is the angle between the transition moment direction of the ith absorbing 

centre and the direction of the electric vector; P is the magnitude of a vector and the 

summation extends throughout the unit volume of the specimen. Equation 2.7.1.3 

forms the basis for the use of polarised IR spectroscopy in the study of oriented 

polymers. 

2. 7.2. Infrared Dichroism 

When a polymer is stretched in one direction, it becomes uniaxially oriented, 

the principal axes of the refractive index are directed parallel and perpendicular to the 

stretch (orientation) direction. When the incident radiation has its electric vector 

parallel to the principal axis, there will be no observable change in the resulting 

spectrum when compared to the unpolarised spectrum. Therefore, measurements 

must be made with the electric vector of the incoming infrared parallel and 

perpendicular to the orientation axis. To interpret the optical anisotropy of the sample 

in terms of molecular orientation, the dichroic ratio is used. The dichroic ratio, D, of 

an absorption band is defined as the ratio of integrated intensities measured with light 

' 
polarised parallel and perpendicular to a given direction e.g. the orientation axis. 

(2.7.2.1) 
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where k, and k" are the principle absorption coefficients for radiation vibrating 

parallel and perpendicular to the orientation axis respectively. 

What is experimentally measured is D' 

' &:r 
D- (2.7.2.2) 

where E" and E" are absorbances parallel and perpendicular to the orientation axis. D' 

is equal to D if there are no scattering or reflection losses. 

The relationship between the infrared dichroic ratio and molecular orientation 

was obtained by Fraser 14
• He considered a fibre where all the polymer chains were 

oriented parallel to the fibre axis. 

I 

:+Fibre Axis r--n 

Transition Moment 

Figure 2.7.2.1: Schematic Representation of Perfect Orientation Parameters1 

For this ideal system, E" is parallel to the polymer chain as well as to the fibre 

axis and therefore \jl will be equal to av. 

From Equ (2.7.1.3) 

(2.7.2.3) 
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where N is the number of absorbing centres per unit volume and av is the transition 

moment angle for centres absorbing radiation of frequency v. 

For the perpendicular vector 

(2.7.2.4) 

Therefore, for perfect alignment of molecules parallel to the fibre axis, the 

dichroic ratio is 

ktr 2 D =-=2cot a 
0 k • 

a 

If all of the molecules are randomly oriented in a film or fibre 

and thus 

1 2 k =k =-NP tr a 3 

(2.7.2.5) 

(2.7.2.6) 

(2.7.2.7) 

In a real polymer film or fibre, the molecules are only partially oriented, 

therefore it is necessary to have some measure of the degree of orientation of the 

molecules relative to the orientation axis. Fraser proposed two solutions to this 

problem: 

The first is to imagine the oriented sample as consisting off perfectly oriented 

molecules and (1-f) randomly oriented molecules. Therefore, 

(2.7.2.8) 
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and 

Thus 

This gives rise to a dichroic ratio, D 

(D-1)(Do +2) 
f = (D+2)(Do -1) 

(2.7.2.9) 

(2.7.2.10) 

(2.7.2.11) 

However, although the fraction of oriented chains is constant, that constant is 

unknown. Therefore there is a problem in that there is one equation with two 

unknowns. To use this equation, assumptions have to be made by using molecular 

models or comparing transition moments in structurally similar compounds or giving/ 

an approximate value. Using this assumed value ofav and the measured value ofD,f 

can be calculated. This value off is then used in the same equation to calculate av 

from measured D values at other observed absorption frequencies. This will 

obviously give rise to many questionable assumptions and the value off, and therefore 

av , obtained is an estimate. 

In the second instance, the molecules can be considered to be oriented at an 

average angle 9 relative to the orientation direction. 
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Orientation 

Chain 

Transition 

Figure 2.7.2.2: Schematic Representation of Uniaxial Orientation Parameters• 

The dichroic ratio for this model is then given by 

(2.7.2.12) 

The relationship between/of the first model and 8 of this model leads to 

3cos2 B-1 (D-l)(D0 +2) 
2 = (D+2)(Do -1) = f 

(2.7.2.13) 

Thus Fraser's fraction,/, is the same as Hermans orientation function 

( fx = %cos2 x-1) when evaluated in terms of the average orientation of polymer 

molecules. 

Hermans orientation function can be determined quantitatively by 

birefringence measurements. When coupled with dichroic measurements of the 

appropriate absorption bands, quantitative values for the transition moment angle can 

be caiculated with no approximations or assumptions required. 
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2.7.3. Infrared Spectroscopy Experiment 

Values of the dichroic ratio were obtained by transmission infrared 

spectroscopy. Samples were spin coated onto a ZnSe substrate, as described in 

Section 2.3 and the spectra recorded using a Perkin-Elmer 1720X Fourier Transform 

Infrared Spectrometer with a nitrogen cooled MCT detector. The beam was 

attenuated such that 6% of the total energy of the beam was incident on the sample. 

The experimental set-up can be seen in Figure 2.7.3.1. 

6% Attenuator Polariser Sample 

Figure 2.7.3.1: FTIR Experiment. 

To obtain the sample spectra using polarised radiation, the polariser remained 

stationary whilst the sample was rotated. This minimised any errors incurred due to 

mispositioning of the polariser. 

A background spectrum, using a bare ZnSe crystal, was recorded using the 

para.rveters of weak apodisation and 100 scans. The bare crystal was then replaced by 

the polymer coated ZnSe crystal and the spectrum recorded using the same parameters 

as for the background spectrum. 

An example of the spectrum of an unexposed sample of PVCi on a ZnSe 

substrate can be seen in Figure 2.7.3.2. 
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Figure 2. 7.3.2: FTIR Spectrum of Unexposed PVCi on ZnSe. 

Unexposed sample spectra were recorded using unpolarised, horizontally 

polarised and vertically polarised IR radiation. 
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Although great care was taken regarding the positioning of the sample, it was 

unlikely that the sample was placed in exactly the same position each time. 

Therefore. spectra were recorded with the ZnSe substrate in slightly varying position 

with respect to the incoming IR beam. This allowed the effect of sample position 

upon resulting spectra to be obtained. It was shown that varying the sample position 

gave rise to no detectable change in the absorption spectra of the film. This is 

reassuring from an experimental viewpoint and also shows that the film is uniform 

over the area analysed. 

The sample was then exposed to radiation from a deuterium lamp (30W, 185-

370 nm wavelength range) for a given length of time. Spectra were then re-recorded 

and the procedure repeated until no further change in the spectra occurred or the peaks 

were no longer detectable. 
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Figure 2. 7.3.3: FTIR Spectrum of PVCi Exposed for 21 hours to Horizontally Polarised 

Radiation from the Deuterium Lamp. 

The spectra were then analysed using a curve fitting routine within GRAMS 

32c (Galactic Industries). The region containing the olefin and carbonyl peaks was 

selected. Suitable starting parameters were input into the program which were 

automatically adjusted until the simulated spectrum is consistent with the 

experimental spectrum. To ensure that the results were comparable, a protocol was 

set up such that the analysed region spanned the same wavenumber range each time 

including a definite zero offset for each spectrum. 

' 
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Figure 2.7.3.4: Curve-Fitted Region ofPVCi Spectrum. 

The areas under the peaks can then be used to calculate the dichroic ratio via 

Abs (parallel) 
Dichroic Ratio=---~---'--

Abs (perpendicular) 

For the spectra shown in Figure 2.7.3.2 & Figure 2.7.3.3, the dichroic ratio 

before exposure, analysing the C=C area, is 0.85 and after 21 hours exposure to 

vertically polarised radiation from the deuterium lamp, 1.22. 
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2.8. Birefringence Measurements Is..Is 

2.8.1. General Theory 

Birefringence is a measure of the total molecular orientation of a system. For 

uniaxial orientation, it is the difference between the principal refractive indices 

parallel and perpendicular to a given direction. 

~n =npara -nperp 

where ~ is the birefringence and ~ara is the principal refractive index parallel to the 

orientation direction and ~erp is the principal refractive index perpendicular to the 

orientation direction. 

The refractive index is defined as a measure of the velocity of light in a 

medium and is related to chain polarizability. Generally, the polarizability of 

chemical bonds is anisotropic i.e. greater along the bond than it is 90° to it. If all of 

the bonds are distributed randomly, this leads to an isotropic refractive index and there 

is no birefringence. If a film is uniaxially oriented, the chain axis of the molecules 

orients along a given direction e.g. the deformation axis, and the molecules have 

cylindrical symmetry around this axis. Since the optically anisotropic molecules now 

have a preferred direction, the film now manifests anisotropic optical properties. The 

principal refractive index for the light vibrating in the orientation direction is different 

from that for light having its electrical vibration in the plane perpendicular to the 

orientation direction. Birefringence arises from this difference in refractive indices. 

The magnitude of the birefringence is related to the magnitude of the difference 

between the two principal refractive indices and is therefore a measure of the degree 

of orientation in a sample. As the extent of orientation increases, the difference 
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between the principal refractive indices increases thus giving rise to an increase in 

birefringence. 

2.8.2. Theory Behind the Crossed-Polarisers Experiment 

This experiment consists of a polarised He-Ne laser, two crossed polarisers 

between which the sample is placed and a detector. 

Consider a sample which is isotropic and thus is not birefringent. The laser 

intensity monitored at the detector is zero as the polarisers are extinct and the sample 

has no effect on the light travelling through it. If a birefringent sample is placed 

between the polarisers, the intensity of the detected light is dependent upon the angle 

the optical axis makes with the two polarisers. This is illustrated in figure 2.8.2.1. 

A t [IJ,;, ~ ... 1=0 

PI P2 

B t EJ .. ... 1=0 

PI P2 

c t [Z] ... ... 1>0 

pI P2 

Figure 2.8.2.1: Alignment ofPolarisers and Sample Optical Axis. 

In A, the optical axis of the sample is parallel to the polarisation vector of the 

incoming radiation. This causes motion of the electrons along the optical axis and the 
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radiation is re-emitted as vertically polarised. This polarisation orientation cannot 

pass through the second polariser and therefore no light falls onto the detector. 

In B, the polarisation vector of the incoming radiation and the optical axis of 

the sample are perpendicular. The electrons want to move along the optical axis, 

however, there is no component of the incident light which allows this to occur. 

Motion occurs perpendicular to the optical axis and once again, the light is re-emitted 

as vertically polarised and 1=0. 

In C, the optical axis lies at some angle with respect to the incoming vertically 

polarised light. The vector describing the polarisation of the light can be resolved into 

two orthogonal components. 

ar·····l··/b . . . . . . · ..... ·· 

Component b gives rise to electronic motion along the optical axis of the 

sample. This too can be resolved into its constituent components. 

c 

L.d 
Component d is oriented such that it can pass through the output polariser and 

thus 1>0. 

When the light falls onto the sample it is linearly polarised. However, when it 

propagates through the sample, the polarizability of the oriented molecules effects 

components c and d. These waves become out of phase, one travelling faster than the 

62 



other. As the light emerges from the sample, it is no longer linearly polarised but it is 

elliptically polarised. The exact state of the ellipse depends upon the phase difference 

between the two waves as illustrated in Figure 2.8.2.2. 

Phase Diffurence 0 1Y 
4 

1[ 

Figure 2.8.2.2: State of Polarisation Achieved with Varying Phase Differences Between Waves. 

The ellipse can be resolved into two orthogonal components with varying 

magnitudes, one of which can pass through the second polariser. This is the basis of 

the crossed polarisers experiment described in section 2.8.3. 

2.8.3. Birefringence Experiment 15 

All birefringence measurements were carried out at DRA Malvern. The 

experimental design is shown schematically in Figure 2.8.3 .1. 

Detector 

Polariser 
-45 

Sample 

Polariser 
+45 

Figure 2.8.3.1: Optical Design for Birefringence Measurements. 

633 nm 

325 nm 
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The technique is described as ·pump-probe': He-Cd provides the exposing 

radiation whilst the He-Ne simultaneously probes the reaction. The polarised He-Ne 

radiation passes through the polariser and falls upon the sample. The He-Cd beam is 

aligned to fall upon the sample in exactly the same place but is set at an angle with 

respect to the sample, ensuring the laser radiation does not fall upon the detector. The 

He-Ne beam diameter is slightly greater than that of the He-Cd to ensure that the 

whole of the sample area has been exposed. When the He-Ne beam leaves the 

sample, it passes through the analyser to the detector which monitors the change in 

intensity. Measurement of I allows illl to be calculated from the following equation. 

(2.8.3.1) 

where A is the probing wavelength 

illl is the birefringence 

d is the sample thickness 

10 is the intensity measured with parallel polarisers and an unexposed 

sample 

The films were sampled at various positions on the slide, Figure 2.8.3.2, 

giving birefringence results across the whole of the sample. This will be a good 

indication of the uniformity of the film . 

• 
Centre Upright Edge Top Edge 

Figure 2.8.3.2: Sample Positions for Birefringence Measurements. 
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As the population of reactive species in a given orientation decreases, the 

birefringence increases. This is due to increased differences between the two 

principal refractive indices in the sample leading to differing polarizabilities in these 

two directions. 

2.8.4. Compensator Method to Measure Birefringence 

An experimental procedure for determining birefringence was set up m 

Durham, Figure 2.8.4.1. Retardation (phase difference between two orthogonal 

waves) induced in the sample due to photocross-linking was measured using a Soleil 

Babinet Compensator. 

~ ~ 0 Detector 
633nm 

Babinet Sample Polariser 
Compensator 

Figure 2.8.4.1: Experimental Set-up for Measuring Retardation. 

Equation 2.8.4.1 is then used to determine the birefringence from the measured 

retardation. 

where lln is the birefringence 
' 

lln=A.R 
t 

A. is the laser wavelength (633 nm) 

R is the measured retardation 

Equ (2.8.4.1) 

t is the sample thickness (thickness of sample and substrate in this instance) 
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The initial retardation of a film of PVCi on a quartz substrate was measured. 

This sample was then exposed to vertically polarised radiation from the deuterium 

lamp and the retardation was once again measured. Exposure was continued until no 

further change in retardation was observed. 

The retardation of several bare quartz slides was measured to assess any 

contribution to R from the slide. A average value of R=l7.51 was measured giving 

rise to a birefringence value of 2.2 x 10-4 due to the substrate. Consequently, this 

value was subtracted from all calculated birefringence values. 

2.9. Laboratory Fabrication of a LCD Cell 

A sample of polymer on a quartz substrate was exposed to the UV laser. Due 

to the small spot size of the laser, several spots on one sample can be exposed for 

varying times. Figure 2.9.1 shows an example of a such a slide. 

000 
lOs 60s 200s 

000 
20s lOOs 300s 

Figure 2.9.1: Sample Slide for LCD Fabrication. 

The direction in which the polymer will orient the liquid crystals must be 

determined. For PVCi and polyanth, the cinnamate side chains and anthracene 

moieties parallel to the polarisation vector of the incoming UV radiation cross-link. 
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The residual cinnamates are thought to be responsible for the liquid crystal alignment 

as are the residual anthracene species. In the case of the azide system the azo

containing side chains lying parallel to the incoming polarisation vector react. 

However, it is the azobenzene species which is hoped to give alignment and not the 

residual azides. Using vertically polarised radiation and presuming all reactions occur 

as desired, the aligning species in PVCi and polyanth are perpendicular to the 

polarisation direction, whereas in polyazide, the aligning species is parallel to the 

polarisation direction of the incoming radiation. 

A glass slide with mechanically rubbed polyimide (PI) is used in conjunction 

with the quartz slide to fabricate the cell. The polyimide rubbing direction is 

positioned perpendicular to the polymer alignment direction. This allows the 

formation of a twisted display, shown schematically in Figure 2.9.2. Glue containing 

10 J.tm spacer beads is placed on the polymer sample slide such that its position 

coincides with the corners of the rubbed PI slide. The two slides are joined and any 

observed fringes are removed by pressing gently on the corners of the PI slide. 

Curing of the glue is achieved by placing the slide on a black surface under a Hg-lamp 

for 30 minutes. During this time, the irradiated portion of the sample is masked to 

prevent additional reaction due to radiation from the Hg-lamp. Once the glue has set, 

the liquid crystal can be introduced into the cell. The cell is placed on a hot plate at 

- 70°C and allowed to reach that temperature. When hot, the liquid crystal (E7 or 

5CB) is introduced into the cell by letting a small amount flow from a pipette into the 

cell via one of the edges. This is possible as the liquid crystal is above its clearing 

temperature of 58°C. When the liquid crystal has filled the cell, the hot plate is 
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switched off and the cell allowed to cool to room temperature. The cell can be 

observed using a polarising microscope with crossed polarisers. 

/-7 
/7 

/07 

/7 
Liquid Crystals NOT Aligned by Polymer Liquid Crystals Aligned by Polymer 

Figure 2.9.2: Twisted Liquid Crystal Display. 

Polaris er 

Polymer Alignment Layer 

Liquid Crystals 

Rubbed PI 

Polaris er 

With the polarisers crossed and no sample cell in between, a black image is 

observed as no light is allowed through. The liquid crystal display cell is now placed 

on the stage, between the crossed polarisers. If the image is black, the passage of light 

passing through the first polariser and then through the sample has been blocked by 

the second, crossed polariser. However, if the liquid crystals are aligned by the 

polymer layer and the PI layer, then they form a twisted configuration. This 

configuration acts as a wave-guide and consequently, the polarisation vector of the 

light twists as it passes through the cell and a bright white spot is observed. 
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Chapter Three 

Poly (Vinyl Cinnamate) 



3. Poly (Vinyl Cinnamate) 

3.1. Introduction 

Dimerisation of cinnamic acid under the influence of ultraviolet light was first 

reported in 1895 by Berthram & Kursten 1• Two carbon double bonds add to one 

another and, due to the unsymmetrical structure of cinnamic acid, two products are 

obtained, Figure 3.1.1. 
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Figure 3.1.1: Cross-Link Formation in Cinnamic Acid. 

The Kodak Photoresist (KPR) is based on this principle2
• Cinnamic acid is a 

pendant group on a polymer chain, poly vinyl cinnamate or some derivative, and when 

this was coated onto a plate and dried, the coating became insoluble in the areas 

exposed to UV radiation. During the development procedure, the non-exposed 

regions of the sample were removed with solvent, leaving behind a resist pattern 

which was tightly adhered to the substrate below. 
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Poly (vinyl cinnamate), PVCi. is prepared from vinyl acetate which is first 

converted to poly vinyl acetate and subsequently hydrolysed to poly vinyl alcohoe, as 

the vinyl alcohol monomer does not exist in the free state. This then undergoes 

reaction with cinnamoyl chloride to give the desired product. PVCi and its reactions 

under the influence ofUV light have been studied extensively. 

In 1979, Reiser & Egerton3 investigated the mechanism of cross-link 

formation in solid PVCi. 

.. 

Figure 3.1.2: Cross-Link Formation in PVCi. 

Formation of cross-links occurs via a [2+2] cycloaddition reaction across the 

carbon-carbon double bonds in two favourably oriented cinnamate side-chains. [2+ 2] 

cycloaddition reactions are stereospecific and may proceed via one of two possible 

1) Concerted addition of the excited S1 (7t, 1t*) state to a molecule in the 

ground state. 

2) Formation of a singlet exciplex by interaction of S1 (7t, 1t•) and the ground 

state species followed by direct collapse to the cycloadduct or by collapse to a 

singlet 1, 4-diradical which collapses to the cycloadduct faster than it loses the 

memory of its initial stereochemistry. 
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In the case of PVCi, cycloaddition has been shown to originate from the 

singlet excited state chromophore3
, although which of the mechanisms overleaf is 

responsible is unknown. In the presence of a triplet sensitiser, cycloaddition from the 

triplet excited state is observed. Cycloaddition from the singlet state is virtually 

activation-free while the triplet pathway has an activation energy of 1.1 kJ mol' 1
• 

The ability of PVCi to align liquid crystals has only recently been 

investigated5
•
6

• In 1993, Marusii & Reznikov6 studied liquid crystal alignment on 

films of PVCi irradiated with UV light using polarising microscopy. They found that 

PVCi aligns liquid crystals in a direction perpendicular to the polarisation vector of 

the incoming UV radiation. When irradiated for a time such that maximum 

conversion had occurred, the degree of twist introduced into the cell was measured to 

be 90°. 

More recently, lchimura et a/5 studied derivatives of PVCi and concluded that 

photoalignment is induced not by photodimerisation as suggested by Egerton et at 

but by polarised isomerisation. The extent of competing reaction between 

dimerisation and isomerisation has been investigated in this project using the method 

described by Egerton et at to establish whether dimer formation or isomerisation 

induces photoalignment of liquid crystals. 

, 3.2. Characterisation 

PVCi used in this work was purchased from Aldrich and had a molecular 

weight of 46,000 mass units and a polydispersity of 1.8 was recorded using SEC 

methods. Calibration of the instrument is carried out using linear polystyrene of 

known molecular weight. DSC measurements were recorded and it was found that the 
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PVCi has a glass transition temperature, Tg, of 90°C (363K). The transition is not 

sharp but ranges from 358-366K. This is indicative of the polydispersity of the 

polymer and also the presence of impurities such as residual monomer, oligomers, or 

unreacted functional groups. TGA was used to assess the thermal stability of PVCi. 

Figure 3.2.1 shows that the polymer is stable to a temperature of 300°C (573K) above 

which, rapid decomposition of the sample occurs. PVCi is reported to be amorphous3
, 

the DSC trace, see appendix for chapter three, showed no evidence for a 

crystallisation or a melting transition and thus inferring that if the material contains 

any crystalline regions, they constitute such a small percentage of the sample that they 

are undetectable by this method. 
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Figure 3.2.1: Percentage Mass Loss as a Function of Temperature for PVCi. 

1H and 13C NMR spectra are shown in Figures 3.2.2 & 3.2.3, and the peaks 

have been assigned as follows: 

74 



pp m Assigrunent 

1.5-4 1, 2 

-2 3 

5.2, 6.3 4,5 

-7.2 6, 7 

7.6 8 

SHIFT (ppm) ASSIGNMENT 

39 a 

67 b 

118, 145 d,e 

128, 129 h,g 

130 1 

134 f 

166 c 
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Figure 3.2.2: 'H NMR Spectrum of PVCi in CDCIJ. 
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Figure 3.2.3: 13C NMR Spectrum of PVCi in CDCI3• 
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In the 13C spectrum, Cd and Ce are the carbons present in the double bond of 

the cinnamate side chain. Isomerisation can occur about the double bond and if a 

mixture of isomers was present in the sample, it would be reflected in the spectrum; 

splitting of the peaks would be observed. The peak corresponding to Cd has a 

shoulder on the left hand side, however, the peak corresponding to Ce is not split. The 

proton spectrum shows no splitting of H4 and H5, the double bond protons, indicating 

that only one isomeric form is present in the sample. This result contradicts those of 

the calculation of the extinction coefficient E in chapter two which indicate that a 

50:50 mixture of cis/trans isomer is present in the sample. However, NMR is likely to 

have the smaller error when compared to the technique for calculating E. Samples of 

both pure cis and trans polymer would be needed to confirm which form is present, 

however, these are not available. The trans form is thought to be the most likely of 

the two isomers as it is the least sterically hindered and therefore the trans structure 

was assessed using molecular modelling. A molecular mechanics calculation was 

carried out in which equations of motion are solved for a given molecular 

conformation in order to optimise the initial geometry of the PVCi molecule which 

has been constructed from a series of molecular fragments. The forcefield used in this 

minimisation calculation is the Consistent Valence Forcefield (CVFF) and the 

algorithm used is the Steepest Descent algorithm of the Biosym molecular modelling 

package with ten thousand iterations being carried out. For a given conformation, the 

algorithm is evaluated and the conformation is subsequently adjusted in order to 

reduce the value of the potential energy surface expression of the molecule as a 

function of it atoms coordinates i.e. bond lengths and angles. Caution must be 

adopted when using this type of minimisation as the energy minimum achieved may 
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only be a local minimum. Minima found are related to the starting conformation and 

do not explore higher energy conformations, hence the 'minimised' structure is not 

necessarily the global minimum. However, if a suitable building package is used, the 

final conformation should provide a reasonable description of the conformation of the 

system under investigation. The minimised structure of PVCi containing six 

monomer units is shown in Figure 3.2.4. 

The synthetic route to PVCi has been described in Section 3.1. NMR spectra 

show trace impurities but accurate assessment regarding peak intensity is difficult due 

to the poor signal to noise ratio in the 13C spectrum and broad peaks in the 1 H 

spectrum giving rise to uncertainties in the number of peaks located beneath them. 
~--~--~-----

The sharp peaks at- 3.lppm in the proton spectrum are thought to be non-polymeric 

material. Samples of such material would be needed to confirm this. 
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Figure 3.2.4: Minimised Structure ofPVCi (6 Monomer Units). 
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3.3. Results and Discussion 

3.3.1. UV Spectroscopy 

Thin films of PVCi on quartz plates were exposed to unpolarised radiation 

from the deuterium lamp. The UV absorption spectrum was monitored to ensure that 

irradiation of the film was promoting reaction, Figure 3.3.1.1. 

I 
.4~ 
I 

Absorbanoe I 
! 

·~ 

I 

-------·--------· ----1 

Increasing 
Exposure Time I 

l 
I 
! 

~ I 
·-~.---------,---~---·--,----------.-·------.., 

200 250 300 350 400 

Wavelength/ nm 

Figure 3.3.:1..1: UV Absorption Spectra of PVCi Exposed to Unpolarised Radiation. 

The shape of the spectral curve arises from 1t-1t • transitions occurring 

throughout the conjugated side chain. Upon irradiation, the intensity of the dominant 

absorption peak at A.=280nm was reduced and a second short wavelength absorbance 

peak appears at A=195nm. This spectral shift is due to the reduction in 1t-electron 

conjugation of the system9
• From Figure 3.3.1.1., the change in chromophore 

concentration with increasing exposure time can be calculated, Figure 3.3.1.2, and 

following this, the quantum yield for chromophore depletion, Figure 3.3.1.3. 
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Figure 3.3.1.2: Fraction of Chromophores Converted Using Unpolarised Radiation. 
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Figure 3.3.1.3: Quantum Yield for Chromophore Decay Using Unpolarised Radiation. 

The general shape ofthe quantum yield decay shown in Figure 3.3.1.3 is 

analogous to that reported by Egerton et aF. The absolute values of quantum yield 

differ due to the uncertainties in the measured 1
0

, as described in chapter 2.6.3. 

Using the absorption spectra, it is possible to monitor the isomerisation and 

cyclisation reactions simultaneously. This allows assessment of the extent that 

isomerisation is interfering with the bimolecular process. The method used is that of 
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In a dilute solution of ethyl cinnamate, isomerisation is the only reaction 

pathway and the spectral curves obtained on progressive irradiation intersect at an 

isobestic point at 250nm. When a different reaction competes with isomerisation, this 

isobestic point is lost and the changing absorbance at 250nm can be used to measure 

the extent of competing reaction. Spectroscopy at two wavelengths, the isobestic 

point and absorption maximum, make it possible to monitor dimerisation and 

isomerisation concurrently via the following equations. 

Equation 3.3.1.1 

Equation 3.3.1.2 

Equation 3.3.1.3 

where subscript a denotes the trans isomer, b the cis isomer and c the cyclic species; n 

is the number of moles of component at time t with no being the total number of moles 

of chromophore; 0 1 is the absorbance at 250nm, D2 is the absorbance at 275nm; E. & 

Eb are the molar extinction coefficients of the cis and transforms at 275nm8
. 

From the spectra obtained on exposure of PVCi to the complete spectrum of 

light emitted by the deuterium lamp, the absorption parameters required for equations 

3.3.1.1, 3.3.1.2 and 3.3.1.3 were obtained. The values of Ea and Eb used were those 

reported by Rennert et a/8
• 
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Figure 3.3.1.4: Extent of Competing Reaction in PVCi Exposed to Unpolarised Radiation. 

Figure 3.3.1.4 indicates that the start of the reaction, the PVCi has the 

majority of its double bonds in the trans conformation, with little cis isomer and no 

cyclic species present in the sample. As the reaction proceeds, the mole fraction of 

the trans isomer decreases while the mole fraction of both the cis isomer and the dimer 

increase. This indicates that when using unpolarised radiation, isomerisation 

competes effectively with cyclisation. Although contradictory to the results of 

Egerton, this data supports the theory that the reaction sites are set when the sample is 

spun. If there is no ground state cinnamate species nearby for the excited state 

cinnamate to react with, isomerisation may occur. 

When PVCi was irradiated using vertically polarised UV radiation, the 

following UV absorption decay was observed, Figure 3.3.1.5. 
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Figure 3.3.1.5: UV Absorption Decay of PVCI Exposed to Vertically Polarised Radiation. 

There is an initial. sharp decrease in the major peak centred at A=275nm. 

However, during the remaining eight hours exposure, the peak height changes only 

slightly. Converting this to the fraction of chromophores reacted, Figure 3.3.1.6. 
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Figure 3.3.1.6: Fraction of Chromophores Converted Upon Exposure to Vertically Polarised 

uv. 
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Figure 3.3.1.6. shows that after eight hours exposure, only 20% of the 

chromophores initially present in the sample have reacted. Figure 3.3.1.7 shows the 

corresponding quantum yield change. 
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Figure 3.3.1.7: Quantum Yield Change for Exposure ofPVCi to Vertically Polarised Radiation. 

3.3.1.8. 

The experiment was repeated and the combined results are shown in Figure 
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Figure 3.3.1.8: Overlay of Quantum Yield Results for Vertically Polarised Radiation. 
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These results show significant inaccuracies in the quantum yield value at a 

gtven chromophore conversion due to the uncertainty in 1
0 

associated with these 

calculations. Once again, the extent of competition between isomerisation and 

dimerisation can be determined, Figure 3.3.1.9. 
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Figure 3.3.1.9: Extent of Competing Reactions in PVCi Exposed to Vertically Polarised 
Radiation. 

Although the total extent of reaction is small, it can be seen that dimerisation 

is favoured and isomerisation plays only a minor role. 

The polarisation vector of the incident light was rotated by 90° and the 

experiments were repeated using horizontally polarised incident radiation. 
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Figure 3.3.1.10: UV Absorption decay for PVCi Exposed to Horizontally Polarised Radiation. 
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Figure 3.3.1.11: Fraction of Chromophores Converted Upon Exposure to Horizontally Polarised 

Radiation. 
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Figure 3.3.1.12: Quantum Yield for PVCi Exposed to Horizontally Polarised Radiation. 
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Figure 3.3.1.13: Combined Quantum Yield for PVCi Exposed to Horizontally Polarised 
Radiation 
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Figure 3.3.1.14: Extent of Competing Reaction Upon Irradiation ofPVCi with Horizontally 
Polarised UV. 

The results in Figure 3.3.1.11, Figure 3.3.1.12, Figure 3.3.1.13 and Figure 

3.3.1.14 compare well with those obtained for vertically polarised radiation. In both 

cases, approximately 20% of the initial chromophores react and dimerisation is the 

favoured reaction pathway. The numbers of double bonds reacting fall short of the 

value of approximately 50% achieved by Egerton7
• This is thought to be caused by 

the broad wavelength of the radiation emitted by the 30W deuterium lamp. 

Insufficient radiation of the correct wavelength for promotion of an electron into a 1t • 

orbital results in few chromophores reacting. In contrast, Egerton used a 500W 

medium pressure mercury lamp and irradiated through pyrex, eliminating radiation 

below 320nm. 

To determine whether a lack of photons of the correct wavelength is the 

underlying experimental problem, irradiation of PVCi was also carried out using a 
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vertically polarised laser (~=325nm). The spectral curves obtained upon successive 

irradiation are shown in Figure 3.3.1.15. 

Osec 

2000sec 

. ------ -----,-------~----- --,----- ------ ------'" ... ..., 3150 -
Figure 3.3.1.15: Spectral Curves for Progressive Irradiation of PVCi with 32Snm Laser. 

The spectra were recorded with up to 30 minutes polarised laser exposure and 

approximately 80% of the chromophores were dep1eted in this time, Figure 3.3.1.16. 

Figure 3.3.1.16 shows a clear isobestic point at A.-225nm. This arises from the loss of 

conjugation in the cinnamate side chain and is due to the 1t-1t • transitions of the isolated 

benzene ring. 

Figure 3.3.1.16: Chromophore Conversion in PVCI Using Polarised Laser Radiation. 
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The quantum yield was measured more accurately as monochromatic radiation 

of know intensity was used as the radiation source, Figure 3.3.1.17. 

0.30 r----------------------, 

0.25 

" 0.20 
a; 
~ 

§ 0.15 
c: 
nl 
:::1 
0 

0.10 

0.05 

0 

0 

0 0 
0 

0 
0 

0 0 
0 

0 
0 0 

0 0 0 
0 0 0 

0 0.00 t_ _ _.... __ _.__ _ __._ __ ...._ _ __. __ _._ __ ...._ _ _J 

0.0 0.1 0.2 0.3 0.4 

1-C/Co 

0.5 0.6 0.7 0.8 

Figure 3.3.1.17: Quantum Yield Using Polarised Laser Radiation. 

Quantum yield values for the first 30% of chromophores reacted are very 

similar to those obtained by Egerton et at, beginning at a quantum yield value of 

-0.25 and st~adily falling to -0.07. 
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After this point, deviations of the results from those obtained by Egerton 

occur. The mercury lamp used by Egerton induces reaction in -50% of the 

chromophores. In contrast, -80% of the chromophores react using the laser. The 

relatively high energy of the monochromatic laser is inducing larger numbers of 

molecules to react than the broad wavelength range, lower power lamp . 
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Figure 3.3.1.19: Extent of Competing Reactions in PVCi Upon Laser Irradiation. 

Figure 3.3.1.19 shows dimerisation to be the major reaction pathway, 

isomerisation accounts for only -10% of the reacted chromophores. These results 

confirm the observations of Egerton7 and contradict those of lchimura et af. 

How1.wer, the polymers used by Ichimura are polymethacrylates bearing regioisomeric 

cinnamate side chains, an example ofwhich is shown in Figure 3.3.1.20. 
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Figure 3.3.1.20: Meta-Derivative used by lchimura5
• 

These derivatives, because of their stereochemistry, may not react m an 

identical manner to PVCi and the validity of the results obtained by Ichimura cannot 

be challenged as experiments on derivatives of PVCi with this stereochemistry have 

not been carried out in the project. 

3.3.2. Infrared Spectroscopy. 

PVCi was spin-coated onto ZnSe as described in chapter 2.3. The films were 

then analysed using polarised FTIR incorporating the Grams 32c software, chapter 

2.7. A typical example of the IR spectra obtained using this technique is shown in 

Figure 3.3.2.1 & Figure 3.3.2.2. The two absorbances obtained will be defined as 

'absorbance parallel' and 'absorbance perpendicular' referring to the IR radiation 

remaining vertically polarised and the sample slide positioned upright and 

horizontally respectively. 
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Figure 3.3.2.1: IR Spectrum Obtained using Vertically Polarised Incident IR (parallel). 

1000 1500 
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Figure 3.3.2.2: IR Spectrum Obtained using Horizontally Polarised Incident IR (perpendicular). 

As Figure 3.3.2.1 and Figure 3.3.2.2 show, the spectra of the unexposed 

sample recorded in both parallel and perpendicular orientations are very similar. The 

carbon double bond peak for horizontally polarised incident IR is slightly larger in 

height, 0.011 compared to 0.009 for vertically polarised light. However, the 

integrated absorption area is smaller for the horizontally polarised light, 0.21, than for 

the vertically polarised light, 0.24. This shows that before irradiation, the sample 

displays little preferential orientation of the double bonds. 
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The film is progressively irradiated using vertically polarised radiation from 

the deuterium lamp (1
0
= 2.42 x 1012 photon s·'). From the change in double bond 

absorbance at 1640cm·', the dichroic ratio can be calculated. 

As irradiation increased, side chains oriented parallel to the polarisation 

direction of the incoming light should be depleted. This would lead to a reduction in 

absorbance parallel and retain a constant value for absorbance perpendicular. It was 

found that both absorptions fluctuate randomly, thus giving rise to a random change in 

dichroic ratio, Figure 3.3.2.3. 
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Figure 3.3.2.3: Dichroic Ratio for PVCi Exposed to Vertically Polarised Radiation. 

Consider the PVCi film on a ZnSe substrate. Those side chains parallel to the 

incoming polarisation vector are able to react. 
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IR uv 

Figure 3.3.2.4: PVCi on ZnSe. 

The film is then analysed using polarised IR. Figure 3.3.2.4, shows that the 

transition moment vector of the carbon double bond vibration and the polarisation 

vector of the incoming infrared are not in the correct orientation to interact. Using the 

minimised structure for PVCi shown in Figure 3.2.2, the angle that the double bond 

makes with the side chain axis and therefore the incoming IR polarisation direction 

was found to be 120°. Thus, in the experimental design, the polarisation vector must 

be rotated clockwise by 120°. However, the double bonds ofthe side chains parallel 

to the IR polarisation vector will not all be oriented at + 120° from the side chain axis. 

Double bonds can also lie at -120°, Figure 3.3.2.5. 
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Figure 3.3.2.5: Side Chain Orientation. 

The overall picture of the film is much more complex than this simplistic 

view. In theory, the double bonds can lie at any angle around the 360° about which 

the side chain can rotate. However, as Figure 3.3.2.6 shows, although the cinnamate 

side chain can potentially be situated at any point in the x-z plane, the incoming 

polarisation can only be selected in the x-y plane. Therefore, the dichroic ratios were 

calculated only for cinnamate groups lying at ±120° from the side chain axis. 

y 

X 

z 

Figure 3.3.2.6: Orientation of Side Chains in PVCi With Respect to IR Polarisation. 
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Recording of the polarised IR spectra was not as facile as for species with 

transition moments and polarisation vectors parallel. It was important that the 

polariser remained stationary as movement leads to large uncertainties in polariser 

position for each sample and thus significant errors. Therefore, following technique 

schematically represented by Figure 3.3 .2. 7 was employed. 

Oives +I "lf1l Parallel Absabame 

! llolate Sampe by 180" 

2 
\D1 
~- Oives -l"lf1l Parallel Abs<ri>ame 

3 

4 

Figure 3.3.2. 7: Sample Orientation for PVCi Dichroism Measurements. 

The dichroic ratio equations are now represented as follows. 

Orientation 1 
D+I'l!J = Orientation4 

Orientation 2 
D =----

-Iw Orientation] 

The experiment was carried out by recording spectra at before exposure to the 

vertically polarised radiation from the deuterium lamp and then again at 10 minutes 

exposure. In this period of time, the peaks due to the double bond vibration had been 

reduced to such an extent that they were not distinguishable from the baseline noise, 

Figure 3.3.2.8. 
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Figure 3.3.2.8: PVCi Spectrum After 10 Minutes Vertically Polarised Exposure. 

The experiment was repeated using exposure intervals of 2 minutes and the 

results are collated in the appendix for chapter three. Figure 3.3.2.9 shows the change 

in dichroic ratio with increasing exposure time. 
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Figure 3.3.2.9: Dichroic Ratios for PVCi. 
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The experiment was repeated and the results are summarised in Figure 

3.3.2.10. 
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Figure 3.3.2.10: Repeated PVCi Dichroism Experiment. 

The experiments described in this section have been unsuccessful in 

establishing a trend for the change in dichroic ratio achieved when PVCi is irradiated 

with vertically polarised light from the deuterium lamp. As shown by polarised UV 

spectroscopy, section 3.3.1, a maximum of 20% of the double bonds present in the 

sample react. Although the same procedure for selecting and analysing the peaks was 

adopted each time, repetition of the analysis showed an error of±IO% in the value for 

the absorption area, giving an error of the same order of magnitude in the dichroic 

ratio. Ichimura et a/5 obtained dichroic ratios of :50.05 for the prolonged polarised UV 

exposure of polymethacrylates with regioisomeric cinnamate side chains. Such a 

small change in dichroic ratio could not be detected by the polarised IR experiments 

described here for PVCi. 
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The films used for the IR studies are -1 OOOA thick and give double bond 

absorption maxima of -0.1. At long exposure times, 20% of the double bonds react, 

giving a new absorption maximum of -0.08. The error in the analysis, -10%, would 

place this new absorption in the region 0.072-0.088, a change which is barely 

detectable. 

The results obtained by the IR dichroism studies of PVCi are inconclusive. 

Such small changes are occurring that it is not possible to distinguish them from the 

experimental error. 

3.3.3. Birefringence Studies 

Birefringence measurements were first attempted in Durham using the Babinet 

compensator method as described in chapter 2.8.4. The retardation measured by the 

compensator is converted to birefringence using the equation below. 

A.R 
l:!.n=

t 

where/... is the laser wavelength (633nm) and t is the sample thickness. 

To begin, the retardation inherent in the bare quartz plate was measured. This 

gave a birefringence value of 2.2 x 104
. Samples of PVCi on quartz were irradiated 

and the retardation measured. The corrected birefringence values were determined 

from the actual sample birefringence minus the birefringence value for quartz. Figure 

3.3.3.1 shows the corrected birefringence values for PVCi exposed to vertically 

polarised radiation from the deuterium lamp. 
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Figure 3.3.3.1: Corrected Birefringence for PVCi (Compensator Method). 

The birefringence change in Figure 3.3.3.1 does initially appear to follow a 

decreasing trend. However, the actual value of the birefringence is so small (-10-6 

with changes of -1.5 x I 0-6) that these results are most likely to be due to 

experimental variations. The experimental design, calibration and calculation were all 

thoroughly checked and no errors became evident. The apparent lack of birefringence 

in PVCi cannot be accounted for and it was therefore decided to employ the crossed-

polariser method to establish birefringence. 

PVCi was again exposed to vertically polarised radiation from the deuterium 

lamp. In this instance, birefringence changes were monitored using the crossed-

polariser method described in chapter 2.8.3 and Figure 3.3.3.2 shows the results. 
' 
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Figure 3.3.3.2: Birefringence Changes in PVCi using the Crossed-Polariser Technique. 

The birefringence of a bare quartz slide was measured using this technique and 

was found to be 9.3 x 10-7
• However, due to the magnitude ofthis value relative to the 

measured birefringence value, the absolute value of the sample birefringence remained 

unchanged when the bare quartz value was subtracted. As Figure 3.3.3.2 shows, the 

experiment was initially carried out with birefringence measured at three hourly 

intervals with the birefringence slowly increasing then appearing to fall off. 

Therefore, the experiment was repeated using a 0-3 hour timescale and the results are 

summarised in Figure 3.3.3.3. 
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Figure 3.3.3.3: Birefringence Changes in PVCi using the Crossed-Polariser Technique. 

This data set is quite erratic with no trend evident. In both Figure 3.3.3.2 & 

Figure 3.3.3.3, birefringence is measured at three hours exposure and similar values 

would be expected for both measurements. The values differ by -12% which is 

within experimental error. A more accurate comparison is to look at the overall 

change in birefringence between 0-3 hours exposure. In the case of the sample where 

birefringence was measured every three hours, the value for the birefringence has 

increased. For values recorded every 30 minutes, the birefringence decreases. This 

implies that taking readings at varying time intervals is having differing effects on the 

sample. 

Exposure to vertically polarised radiation from the deuterium lamp does not 

give rise to any obvious trend in birefringence. One possible explanation for this is 

that the lamp does not produce enough energy of the correct wavelength to affect 

cross-linking. However, this explanation is contrary to the evidence provided by 
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polarised UV studies. section 3.3 .1. These results show a clear decrease m 

chromophore concentration upon exposure to the deuterium lamp. 

An alternative explanation is that the polariser through which the lamp 

radiation passes is 'leaky' and although material is being depleted, it is not specific to 

any one direction. This would explain why a change is observed in the UV spectrum: 

the results obtained are not orientationally dependant due to unpolarised UV being 

used to obtain the absorption spectrum. Nevertheless, if the polariser was 'leaky' it 

would not be reasonable to assume that it was 'leaky' to such an extent that it caused 

the polarised radiation to have the same effect as unpolarised radiation. Hence, some 

birefringence should be detectable. 

It should be noted that the birefringence values for bare quartz are 

considerably different depending on the method used to measure it. This shows that 

one or both techniques are inaccurate. It is most likely that the compensator method is 

for some reason invalid as birefringence values measured using crossed-polarisers are 

of similar orders of magnitude to those obtained using an identical analytical 

technique at DERA Malvern. 

Due to obvious inadequacies somewhere in the experimental design, all future 

birefringence measurements were carried out during visits to DERA Malvern using 

the simultaneous irradiate/monitor technique described in chapter 2.8.3. An example 

for a typical birefringence curve produced by this method is shown in Figure 3.3.3.4. 
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Figure 3.3.3.4: Birefringence Curve for PVCi Obtained using Laser Irradiation. 

As can be seen in Figure 3.3.3.4, the birefringence remains at a constant value 

for the first few seconds of the experiment. This is due to intensity measurements 

being recorded before the He-Cd laser is switched on. The birefringence then rises 

quite sharply as the cinnamate side chains located parallel to the polarisation vector of 

the incoming radiation react quickly5
• Once all of the double bonds in this orientation 

have been consumed, effects due to the reaction of side chains not parallel to the 

polarisation vector become more important. Once these bonds begin to react, the 

refractive index difference between parallel and perpendicular directions lessens and 

the birefringence falls9
• 

The birefringence curve shown in Figure 3 .3 .3 .4, although representative of 

many'ofthe curves obtained for PVCi, is not exclusive. Figure 3.3.3.5 shows another 

typical plot. 
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Figure 3.3.3.5: Alternative Birefringence Curve for PVCi. 

In Figure 3.3.3.5, there is a sudden drop in birefringence before a steady rise 

commences. Decreasing birefringence is indicative of destruction of order. This 

therefore implies that there is some inherent order in the sample perpendicular to the 

direction in which order was to be created. 

Remember that .1n = 1\>ara - 1\>erp and it has been assumed that the sample is 

initially isotropic, Figure 3.3.3.6. 
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Figure 3.3.3.6: Random Orientation in PVCi. 
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If this is true, then the sample will display no inherent birefringence, i.e. 1\ara = 

f\erp· Once irradiation with vertically polarised light from the He-Cd laser begins, the 

birefringence will increase as the difference between 1\ara & f\erp increases, Figure 

3.3.3.7. 

Figure 3.3.3. 7: npora > nP<'P 

Consider the situation where there is some inherent order within the sample, 

the initial birefringence will be non-zero. 

Order Parallel Order Perpendicular 

Figure 3.3.3.8: Inherent Order in PVCi. 

' In Figure 3.3.3.8, the situation where order is parallel resembles that of Figure 

3.3 .3. 7 and birefringence will increase with increasing exposure time until a 

maximum is reached where it will begin to fall. For the situation where order is 

perpendicular, the initial birefringence will be negative, giving rise to Figure 3.3.3.9. 
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Figure 3.3.3.9: Birefringence Curve Showing Negative Values. 

However, as IL1nl is being considered, Figure 3.3.3.9 becomes Figure 3.3.3.10. 

Birefringence 

0 

Exposure 

Figure 3.3.3.10: IAnl. 

Zero birefringence is achieved when ~ara = ~etp· 

As birefringence had been observed before laser irradiation had occurred, 

samples were annealed in an attempt to remove any inherent orientation brought about 

by the spin casting process. PVCi has a Tg of 362K, therefore one sample was heated 

to 365K and a second to 430K. Results for these samples are shown in Figure 

3.3.1.11. 
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Figure 3.3.3.11: Hi refringence of PVCi After Annealing at 365K & 403K. 

Figure 3.3.3.11 shows that annealing of the sample does not remove any 

inherent birefringence. Chain orientation was set when the sample was spin cast and 

was not altered by the annealing process. 
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As stated previously, irradiation of PVCi with vertically polarised UV light 

induces a cross-linking reaction of the cinnamate side chains lying parallel to the UV 

polarisation vector. Any side chains lying at some angle from this orientation will 

also react, but as they are not in such a favourable position, i.e. their dipoles are not 

aligned with the polarisation vector in the incoming radiation, reaction is much 

slower. If the birefringence were influenced solely by the reaction of the parallel side 

chains, then a curve such as that shown in Figure 3. 3 .1.12 would be expected. 

0 
0 

0 

0 

Time/ s 

Figure 3.3.3.12: Fast Decay of Side Chains Parallel to Polarisation Vector. 

An initial fast rise in birefringence is observed as all of the favourably aligned 

double bonds react. This is followed by a plateau caused by the lack of further bonds 

in this orientation and therefore no further reaction is possible and hence the 

birefringence remains constant. 

If the reaction of side chains at an angle to the polarisation vector of the 

incoming radiation controlled the shape of the observed birefringence curve, a plot as 

shown in Figure 3.3.3.13 would result. 
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Figure 3.3.3.13: Slow Decay of Side Chains At An Angle to Polarisation Vector. 

A much slower, gradual decrease in birefringence is observed as bonds in 

much less favourable orientations react as irradiation time increases. 

In PVCi, both reactions occur, giving rise to birefringence curves as shown in 

Figure 3.3 .3 .14. The birefringence increases rapidly as the side chains lying parallel 

to the polarisation vector of the incoming light react. This increases the anisotropy in 

the sample and hence increases the birefringence. The birefringence then begins to 

decrease as the side chains at an angle to the UV polarisation vector react. This 

reaction begins to remove the anisotropy in the sample and therefore leads to a 

decrease in birefringence. 
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Figure 3.3.3.14: Birefringence Curve for PVCi. 

This composite curve can be described mathematically by the following 

equation 

which is a combination of an exponential rise and an exponential decay. The 

experimental birefringence curves can be fitted using this equation to obtain values for 

A, k1 and k2• Some example fits to the data are shown in Figure 3.3.3.15 and the 

values obtained for all fits are summarised in Table 3.3.3.1. 

' 
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Laser Position A k, k, 

Centre 6.56 x 1o-3 9.17 x w-3 0.19 

Centre 4.92 x w-3 5.66 x w-3 0.22 

Centre 7.60 X 10'3 3.65 x w-3 0.19 

Top Edge 8.07 x 1o-3 4.42 x 1o-3 0.25 

Horizontal Edge 1.10 x w-3 6.09 x w-3 0.13 

Horizontal Edge 0.01 1.12 x w-3 0.25 

Upright Edge 6.23 x 1o-3 3.52 x w-3 0.24 

Upright Edge 7.46 x w-3 3.47 x w-3 0.28 

Upright Edge 8.10 x w-3 3.98 x w-3 0.23 

Upright Edge 7.66 x w-3 3.54 x w-3 0.21 

Upright Edge 1.53 x 10·2 2.21 x to-3 0.31 

Upright Edge 1.13 x w-2 3.05 x to-3 0.24 

Upright Edge 1.29 x w-2 2.12 x w-3 0.27 

Table 3.3.3.1: Fats Values for PVCt. 
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Figure 3.3.3.15: Fits to PVCi Birefringence Data. 
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Figure 3.3.3.15 shows a small drop in the birefringence at - 120s exposure. 

This is the point at which the irradiating He-Cd laser was switched off and the small 

drop is due to relaxation of the side chains. The birefringence data was fitted both 

with and without the data after the drop present and the values of all parameters 

showed insignificant variations (O>variation<IO%). From the magnitude of the 

reaction rates, it is postulated that the value of k1 is the rate constant for the reaction of 

side chains at an angle to the polarisation vector while k2 is the rate constant for 

reaction parallel to the polarisation vector of the incoming radiation. In all cases, the 

value of k2 is much larger than that of k1, indicating as expected, that the reaction of 

chains parallel to the polarisation direction is much faster than the reaction of chains 

at some angle to it. 

As noted in chapter 2.8.3, measurements were recorded at various positions 

within the sample. For data recorded at the upright edge of the sample, the values of 

k1 and k2 are reasonably constant: 

k1= 3.21 X 10"3 ± 1 X 10"3 s·l 

k2= 0.25 ± 0.06 s·1 

At the centre of the sample, the values for k2 are similar 0.2 ± 0.02 but there is 

much variation in k1• Although there may be slight trends within data measured in the 

same region of the sample, there is no correlation between position and orientation. 

The side chains do not react faster or slower at any one position in the sample. 

The values obtained for the rate of reaction, k1 and k2, of the cinnamate side 

chains are of the order of 1 o·3 and 0.1 s·1 respectively. This indicates very slow 

reaction, even with the high power density obtained from the irradiating source. Rate 

constants for other photoreactions in the solid state are not available for comparison. 
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However, rate constants for solution and gaseous reactions are available: the gas 

phase photolysis of 2,4-dimethylpenta-1 ,3-diene with 254nm radiation forms a 

cyclobutene species with a rate constant of 2 x 109 s·' 10
. In solution, decay of the 

exciplex formed between anthracene and N,N-dimethylaniline occurs at a rate of -106 

s·' 11 and the formation of an anthracene dimer from a singlet state exciplex occurs at 

Reactions occurring in solution generally occur much faster than those in the 

solid state due to the greater mobility of the reacting species. Despite this fact, the 

photodimerisation occurring when a film of PVCi is irradiated with monochromatic 

light is a very slow process. It is therefore unsurprising that only a small extent of 

reaction was achieved when using the deuterium lamp as the irradiating source. 

Similar birefringence curves for PVCi were fitted using equations proposed by 

Bryan-Brown & Sage12
• 

Equation 3.3.3.1 

where 

1r 21r {"~ Erf(t~)J 
P= J Jsin8exp-cos

2

1:1 d8drjJ=2 1 
I:I=Ofi=O (~ 

Equation 3.3.3.2 

Equation 3.3.3.3 

and K is an arbitrary value. 

What is obtained from these equations IS a 'universal' birefringence curve 

which is manipulated 'manually' by varying K. Figure 3.3.1.16 shows the non-linear 
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least squares fit to the PVCi birefringence data obtained using the equations of Bryan-

Brown & Sage12 within Jandel Sigmaplot 3.0. 
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Figure 3.3.3.16: Fit to PVCi Data Using Equations ofBryan-Brown & Sage12• 

Figure 3.3.3.16 shows that the birefringence data for PVCi cannot be fitted 

using standard non-linear least squares fitting procedures. A fit can be obtained if the 

universal curve is scaled 'by eye' with respect to time and birefringence. The 

universal birefringence curve was obtained using equation 3 .3 .3 .1 with K = 1. The 

universal curve obtained is identical in shape to the curve for the fit in Figure 3.3.3.16. 

The maximum birefringence point is multiplied by a factor which is given by equation 

3.3.3.4. 

( ) ( 
actual measured .1. n ) 

Factor 1 .1. n =universal .1. n maximum . 
1 

. Equation 3.3 .3 .4 
umversa .1. n max zmum 

This scales the birefringence maxima so that they coincide. The universal 

curve is then scaled along the time axis using equation 3.3.3.5. 
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( 
actual time ) 

Factor 2 (time) =universal time . 
1 

. 
umversa tlme 

Equation 3.3.3.5 

This then gives the 'manual' fit to the birefringence data, Figure 3.3.3.17. 
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Figure 3.3.3.17: Fit 'By Eye' to PVCi Birefringence Data. 

However, equations fitted 'manually' have no physical scientific meaning. 

Indeed, an infinite number of equations could be used in such a manner to produce a 

'fit' to the data and as such, do not produce valid scientific parameters. 

3.3.4. Fabrication of a Simple Liquid Crystal Cell. 

A film of PVCi on quartz was exposed to a vertically polarised laser 

(A.=325nm). This will induce the depletion ofthe chromophores with their side chains 

parallel to the laser polarisation direction. Construction of a cell as shown in Figure 

3.3.4.1 was expected to give rise to a twisted display. The sample was irradiated for 

0.1, 2, 5, 10, 20, 80, 200, & 600 seconds with a beam intensity of 1.6m W through a 

400flm aperture. Irradiation for one tenth of a second does not induce any change in 
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the film. The irradiated area corresponding to two seconds exposure, although visible. 

does not show enough contrast to produce a good quality photograph. 

Polyimide Rubbing i 
Oirectton I 

I Increasing Exposure 
Time 

Figure 3.3.4.1: Formation of a Liquid Crystal Cell Using PVCi. 

The cell was filled with the liquid crystal E7 which is mixture of liquid 

crystals, the main component being 5CB, and then viewed through a microscope with 

crossed polarisers. 

' 

80 sec 

Figure 3.3.4.2: Images from PVCi Cell (. ------ -2mm) 
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A small white spot was observed where the laser had been positioned on the 

sample. Figure 3.3.4.2 shows the images obtained for 5, 10, 20 & 80 seconds 

exposure. The size of the spot increases with increasing irradiation time. The lines 

that appear across the spot are caused by back reflection through the sample and 

cannot be avoided. This sample was also irradiated for 200 & 600 seconds. After this 

time, the spots sizes increase dramatically and the spot appears brighter. The 

photographic capabilities of the camera were insufficient to capture the whole of the 

spot and therefore these images are not shown. Spot diameter increases with 

increasing exposure as the laser beam intensity can be represented by a gaussian 

distribution. Thus, the longer the laser resides on a given region, the greater the effect 

the edges of the beam have on that region and hence the spot diameter increases. 

In an ideal situation, a cell would be formed with a 90° twist. The twist angle 

of the cell can be measured by setting the rubbing direction of the polyimide layer 

parallel to the input polariser. This was achieved by obtaining extinction of the 

unexposed regions. The analyser was then rotated until white light extinction is 

achieved within the exposed region for each individual spot. The results of twist 

angle measurements on irradiated PVCi are summarised in Table 3.3.4.1. 

' 
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~ 20 

0 

0 8 

0 

Exposure Is Twist Angle (0
) 

0.1 -

2 2 

5 10 

10 31 

20 45 

80 63 

200 67 

600 69 

Table 3.3.4.1: Twist Angles for PVCi. 
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Figure 3.3.4.3: Variation of Twist Angle with Irradiation Time in PVCi. 

As Figure 3.3.4.3 shows, the twist angle increases rapidly for short exposure 

times. As irradiation increases, the twist angle begins to level off, indicating that 

prolonged exposure would not produce further improvement to the twist angle value 

121 



of 69°. Approximately 100 seconds exposure gives rise to a maximum twist angle 

and it is interesting to note that this does not correspond to the irradiation time of -20 

seconds at which maximum birefringence is induced. The birefringence is measured 

using the bulk of the sample whereas the twist angle is a feature of the sample surface. 

These data indicate that either reaction and hence alignment at the surface takes much 

longer to induce or that alignment of layers deeper into the sample has an effect on 

liquid crystal orientation. These results highlight the complexity of the alignment 

mechanism and imply that liquid crystal alignment does not rely solely upon the 

anisotropy created in the alignment layer. 

3.4. Conclusions 

PVCi is an ideal model compound for studies using polarised UV exposure. 

Its reactions under the influence of UV radiation are well documented. This allowed 

exposure experiments similar to those cited in the literature to be undertaken using a 

deuterium lamp as the radiation source. 

When attempting quantum yield calculations, the main problem was found to 

be accurate determination of the photon density absorbed by the sample. The 

deuterium lamp produces a broad wavelength radiation range for which no suitable 

chemical actinometer could be found. However, quantum yield calculations were still 

carried out but caution has to be adopted when assessing the absolute value of the 

quantum yield. The UV spectroscopy does not give results with any orientational 

dependence as the spectrometer uses an unpolarised beam. Nevertheless, any reaction 
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induced by the exposing radiation which gives rise to chromophore depletion can be 

monitored. 

Upon exposure to unpolarised radiation, the quantum yield decay curve was 

shown to be similar to those obtained by Egerton et a[ for exposure to a medium 

pressure mercury lamp. However, results disagree with respect to the extent 

isomerisation competes with dimerisation. In this work, isomerisation and 

dimerisation were shown to compete effectively in some instances. 

When irradiating with polarised light, fewer chromophores react due to the 

considerable decrease in photon density falling on the sample when the polariser was 

used. PVCi reacted similarly with both vertically and horizontally polarised radiation. 

Using a laser (A.=325nm) as the radiation source, -80% of the chromophores 

present in the sample react and dimerisation was the preferred reaction pathway. 

These results indicate that the deuterium lamp may not be the most efficient source to 

induce the cross-linking reaction due to a low photon flux at the desired wavelength. 

Infrared dichroism indicated that there was no preferred reaction of cinnamate 

groups on exposure to polarised radiation from the deuterium lamp. However, due to 

the complexity of the experimental design, absolute dichroism of the magnitude 

reported by Ichimura5
, -0.05, would not be detected by this method. 

Birefringence studies show that large variations in side chain orientation exist 

both within and between samples. This reinforces the fact that control of initial chain 

orientation has not been possible, even with annealing. One explanation for this is 

that the side chains are entangled and very long annealing times are required to 

remove the entanglements. This obviously causes problems as each sample may give 

very different results with no distinct links between them, such as area of the sample 
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analysed. Birefringence was not detected when the deuterium lamp was used as the 

radiation source. This is to be expected when the rates of reaction achieved with laser 

irradiation are considered. With the laser as the UV source, the rate of the cross

linking reaction is extremely slow, even when the double bonds are most favourably 

aligned for reaction. 

PVCi has been shown to align liquid crystals in a simple cell with increased 

cell twist achieved by increased UV exposure. Once again, the deuterium lamp fails 

to induce sufficient reaction to effect alignment. 

The most important results to be carried forward from the work on PVCi is 

that the sample variations appear to be uncontrollable and therefore lead to variations 

in some results, additionally, although the deuterium lamp promotes reaction, the rate 

is very slow. 
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Chapter Four 

Poly (9-Anthracenoate Ethyl Methacrylate) 



4. Poly(9-Anthracenoate Ethyl Methacrylate) 

4.1. Introduction 

Dimerisation of anthracene was among one of the first examples of 

photodimerisation of an aromatic compound1
• The reaction proceeds under the 

influence of light with a wavelength A.0> 290nm and gives rise to the 9, 10-9,1 0-dimer 

of anthracene, Figure 4.1.1. 

Ao>290nm 

A o<254nm and/or~ 

Figure 4.1.1: Dimerisation of Anthracene. 

The central rings of the anthracene molecule lose their aromaticity while the 

outer rings are bent outward from their original molecular planes by electrostatic 

repulsions. This reaction may be reversed thermally and/or by irradiation with 

radiation of a shorter wavelength (A.o<254nm). The photodimerisation reaction may 

be quenched by oxygen or by conjugated dienes. 

Photodimerisation of anthracene has been studied for crystal and solution 

states as well as for substituted anthracenes1
•
2
•
3

• For the crystalline form, the structure 

of the product is governed by the relative orientation of the monomeric species in the 

lattice and this is known as topochemical control. The ideal topochemical orientation 

is a 'sandwich', Figure 4.1.2. 
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R------R R---
a 

R--R---R---

Figure 4.1.2: Monomer Orientations in Crystalline Anthracene. 

Dimerisation of crystal structure a will produce centric dimer whereas 

dimerisation of~ will give mirror-image dimers. In practice, centric dimers are most 

commonly observedl.2. This can be explained by considering the orientation of the~ 

structure. Both electrostatic repulsions and steric hindrance will impede the formation 

of mirror-image dimers. 

In anthracene photodimerisation, the reactive state is the S1 arene. An excimer 

is formed by the reaction of this S1 arene with a ground state anthracene molecule and 

subsequent reactions are summarised in Figure 4.1.3. 

A 

A+A 

~ •'~::·< A, 

A+ A+ hv 

Figure 4.1.3: Photoreactions of Anthracene. 

Substitution in the 9 and/or 10 positions modifies the dimerisation due to steric 

hindrance. This is summarised in Table 4.1.1 which indicates the extent of hindrance 

ofvarious groups4
• 
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Hindrance Substituent Group 

I Negligible Hindrance 1-methyl & 2-methyl derivatives 

11 Photodimerisation 9-methyl, 9-ethyl, 9-n-propyl, 

occurs, but less efficient 9-methoxy, 9-acetoxy, 9-

than I due to increased anthracene carboxylic acid & 9-

hindrance. methyl 1 0-methoxyanthracene 

Ill Hindrance such that 9,10-dimethyl, 9-methyllO-

photodimerisation does ethyl, 9,10-n-propyl, 9-phenyl & 

not occur. 9-benzyloneanthracene. 

Table 4.1.1: To show the effect of Substituents on Photodimerisation4
• 

When irradiating anthracene, it is important to be aware of the possibility of 

energy migration or energy 'hopping' 1
•
5
•
6

•
7

•
8

•
9

• Complete localisation of excitation on 

one particle in a sample of identical particles is improbable. Identical particles with 

electronic states of equal energy perturb each other and this causes the excitation to 

'hop' from one particle to another. The energy can hop until it is quenched by some 

uni- or bimolecular process. 

Molecular diffusion is one process by which energy can be transferred from an 

excited state molecule (A') to a ground state molecule (B). In the solid state this 

process unlikely due to the separation between the molecules. 

' Long range interactions between A· and B can occur via radiative and non

radiative processes. For the radiative pathway, energy emitted by A' can be 

reabsorbed by B. This process requires the emission spectrum of A' to overlap with 

the absorption spectrum of B. 
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In the case of non-radiative energy transfer, there are two distinct pathways. 

In Coulombic energy transfer, the A• dipole, i.e. the excited electron, interacts with 

the B dipole, the unexcited electron in the HOMO of B. This dipole-dipole 

interaction causes the electron in the HOMO of B to oscillate more violently and the 

electron becomes more energetic. This may lead to the excitation of this electron into 

the LUMO ofB, providing the LUMO ofB is equal or lower in energy to the HOMO 

of A, with a corresponding de-excitation of the excited electron on A•. 

.. 
B A 

-+ 
+-

B* 

Energy has been transferred from A• to B despite the fact that the two species 

have not come into close contact and no electrons have been passed between them. 

In contrast, electron exchange energy transfer requires much closer contact 

between A and B. The excited electron on A• transfers to the LUMO of B with 

simultaneous transfer of a electron from the HOMO of B into the corresponding A 

orbital. This transfer requires the overlap of A and B electronic orbitals. 

.. 

B 

+ 
+ 

A B* 

Non-radiative energy transfer may occur over large (20-100A) or small (6-

20A) separations depending on the mechanism involved. Excitons in anthracene 

crystals have been shown to permeate up to -460A (singlet state) and -1 O!J.m (triplet 

state) 9
• 
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4.2. Synthesis and Characterisation 

Poly (9-anthracenoate ethyl methacrylate) was synthesised by free radical 

polymerisation of the corresponding monomer in 2-butanone using AIBN as an 

initiator. This synthesis was performed by Kate F oster10 as part of a PhD synthesising 

potential alignment layers for liquid crystal displays and a polymer of molecular 

weight (Mn) 14,000 and a polydispersity of2.0 was obtained. 

AIBN 

2-butanone, sooc 

Figure 4.2.1: Synthesis of Poly (9-anthracenoate ethyl methacrylate). 

The thermal stability of the polymer was assessed using TGA. Figure 4.2.2 

shows a plot of percentage mass loss of polyanth as a function of temperature. 

Polyanth was found to be stable to a temperature of -593K, after which mass is lost at 

a steady rate. 

DSC was used to determine the crystallinity of polyanth. The trace obtained 

showed no evidence of melting or crystallisation transitions but did show a glass 

transition temperature, Tg, of374K (range 363-381K), see appendix for chapter four. 
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Figure 4.2.2: Mass Lost on Heating For Poly (9-anthracenoate ethyl methacrylate). 

From the 13C nmr spectrum, the tacticity of the polymer can be calculated. 

The peaks due to the carbonyl species attached to the backbone are located at 155-

177ppm. The relative orientation of the carbonyl groups and hence the side chains 

themselves can be determined solely in terms of orientation with respect to the 

neighbouring groups, Figure 4.2.5. 
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Figure 4.2.5: Polyanth Tacticities. 

Figure 4.2.5 shows that if the polymer was completely randomly oriented, then 

a ratio of 1 :2:1 would be expected for the carbonyl peaks. As the 13C nmr shows, little 

of the mm dyad, 9%, found at -17 5ppm exists. The polymer consists of -40% of the 

mr/rm dyad at 175.7ppm and 51% ofthe rr dyad at 176.4ppm. This indicates that the 

stereochemistry of the polymer is tending towards syndiotactic and the dyads can be 

represented as in Figure 4.2.6. 

rrrrrrmrrrrrmrrrrrrrmrrrrrrrrmrrrrrrm 

Figure 4.2.6: Dyads in Syndiotactic Polyanth. 
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NMR 

1H and 13C NMR spectra are shown in Figures 4.2.3 & 4.2.4. 

The following tables summarise the NMR peak assignments. 

pp m Assignment 

0.70 b 

1.59 impurities 

(sharp peak) 

1.59 a 

4.02 c 

4.30 d 

7.20 e, h,j, m 

h 
7.80 f, g, k, I 

8.16 I 

pp m Assignment 

18 b 

44 a, c 

62 e, f 

77 chloroform 

125-130 Ring Carbons 

168 g 

175-177 d 
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Figure 4.2.3: 1H NMR Spectrum of Polyanth in CDCIJ. 
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Molecular mechanics calculations were performed on a section of polyanth six 

monomer units long (syndiotactic orientation of monomer units). The minimised 

structure for the polyanth was calculated using the Steepest Descent algorithm in the 

Biosym molecular modelling package. The forcefield used was CVFF and 10,000 

iterations were performed. Figures 4.2.7 and 4.2.8 show the minimised structures 

obtained using this method. These structures clearly show that the schematic 

representation of polyanth, such as that shown in Figure 4.2.1 is rather misleading. 

Figure 4.2.1 indicates that the anthracene moiety lies perpendicular to the side chain 

to which it is attached. Polyanth structures achieved by molecular modelling 

techniques show this to be the case for some units, however, a considerable number of 

anthracene molecules are oriented parallel to the side chains to which they are 

attached. This has obvious consequences when irradiating the sample with polarised 

light. The strongest dipole in the anthracene molecule lies along the direction of the 

long axis. 

Therefore, when the polarisation vector of the exposing radiation and the 

anthracene dipole are coincident, excitation can occur. Consequently, it is very 

impot:tant to know in which direction the anthracene species are lying. The 

anthracene molecules lying parallel to the polarisation vector of the incoming 

radiation react preferentially. 
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Figure 4.2. 7: Minimised Structure of Polyanth (6 Monomer Units). 
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Figure 4.2.8: Minimised Structure of Polyanth (6 Monomer Units). 
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Desired Reactions 

It is well known1
•
4
•
8 that anthracene molecules cross-link via the 9,10-position 

to give anthracene dimers when irradiated with radiation of wavelength A
0
>290nm. If 

the anthracene moiety is incorporated into a polymer, it is expected that the cross

linking reaction will also occur. When irradiating with polarised light, this reaction is 

anticipated to have orientational dependence, with vertically polarised light reacting 

anthracene molecules lying parallel to the polarisation direction. 

When the reaction is followed by UV spectroscopy, a decrease in the 

absorbance due to the anthracene chromophore is expected as the dimerisation 

reaction removes the conjugation across the molecule. For infrared dichroism studies, 

the C-H in-plane bend of the central benzene ring will change due to the loss of 

aromaticity. The magnitude of this change will be small, however, with an anthracene 

moiety situated on every second side chain, the overall change should be significant 

and can be monitored to yield the dichroic ratio. Irradiation with vertically polarised 

light, will induce reaction in anthracenes parallel to the polarisation direction. The C

H in-plane bend is parallel to the long axis of the anthracene and as these species 

react, the absorbance measured using vertically polarised radiation (~arJ will 

decrease. As D = ~ar/ ~lP' the dichroic ratio is expected to decrease. As bonds are 

selectively depleted in a given orientation, anisotropy is created within the film. This 

chemical modification leads to refractive index differences within the film and hence 

birefringence should be observed. Finally, if reaction of the anthracenes parallel to 

the polarisation direction of the radiation occurs, liquid crystals are expected be 

aligned along the direction of the residual groups. Therefore twist will arise in a 

simple cell constructed as described in chapter 2.9. 
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4.3. Results and Discussion 

4.3.1. UV Spectroscopy 

Quartz plates coated with thin films of polyanth were exposed to unpolarised 

radiation from the deuterium lamp and the UV absorption spectrum was monitored to 

follow the extent of reaction, Figure 4.3.1.1 

Absorbance 

200 300 

Increasing Irradiation 
Time 

Wavelengthl nm 

400 

Figure 4.3.1.1: UV Absorption Spectrum for Polyanth Exposed to Unpolarlsed Radiation from 

the Deuterium Lamp. 

This compares well with the spectrum of anthracene in cyclohexane, Figure 

4.3.1.2, indicating that the anthracene present in the polymer is in a chemical 

environment similar to that of pure anthracene. It would appear as if the ester moiety 

attached to the anthracene species and the anthracene itself are not conjugated. 
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Figure 4.3.1.2: Anthracene in Cyclohexane11
• 

Figure 4.3.1.1 shows the spectrum of polyanth which contains two distinct 

features. In the region 300-400nm are the characteristic fingers of the S0-S1 transitions 

in anthracene8
, shown in Figure 4.3.1.3. This is the weakest intensity band and is 

transversely polarised. Figure 4.3.1.4 show excited state resonance structures which 

represent this state of polarisation. 

V=4 
V=3 
V=2 
V=I 
V=O -+--+---+--+---:---

V=O 

Figure 4.3.1.3: S0-S1 Transitions in Anthracene. 
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Figure 4.3.1.4: Transverse Polarisation in Anthracene. 

There is a second major band at A.-280nm, which is the band in the spectrum 

of greatest intensity. This arises from the 1 Bb~ 1A transition (S0-S") and the 

polarisation in this state is longitudinal, Figure 4.3.1.5. 

-
+ 

Figure 4.3.1.5: Longitudinal Polarisation in Anthracene. 

This transition is the most probable in this system due to its large extinction 

coefficient. When an electron is promoted into the higher excited states, it will lose 

energy by vibrational motions until it reaches the S1 state from which reaction occurs1 

It must be noted that the weaker S0-S 1 transition may also occur when irradiating with 

the broad wavelength range deuterium lamp. This will induce reaction in those 

anthracene species lying with their long axis perpendicular to the polarisation vector 

of the incoming radiation. However, the probability of this transition occurring, as 

shown in Figure 4.3 .1.1, is significantly lower than the probability of longitudinal 

absorption. The anisotropy created by the reaction of anthracenes with their long axis 

parallel to the polarisation vector will therefore be reduced slightly due to the reaction 

of anthracenes lying perpendicular to the polarisation direction. There is a second 

chromophore present in the polyanth system, the carbonyl group. The n-7t· transition 

of this species occurs at 280nm, however, this is a forbidden transition and the 
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absorption intensity will therefore be weak. This will create a low intensity band 

which is likely to be hidden beneath the lower wavelength transition of the anthracene 

moiety. 

The n-system was initially thought to be delocalised across the anthracene and 

carbonyl species. However, work by R.S-L Shon et a/ 12 on the photodimerisation of 

9-anthroate esters in solution, Figure 4.3.1.6, suggests that steric interactions of the 

ring hydrogens and the carbonyl group keep the 9-substituent almost 90° out of the 

plane of the anthracene group, thus impeding delocalisation. 

0'\. /R 
c 

Figure 4.3.1.6: 9-Anthroate Ester. 

The extent of delocalisation in polyanth can be determined by considering the 

UV absorption spectrum, Figure 4.3 .1.1. It is possible that the loss of planarity in 

solutions of 9-antroate esters also occurs in the polyanth film. Yet it is also possible 

that the spinning down of the polymer film is achieved so quickly that the molecules 

are set in the configuration in which they fall onto the substrate and this may give rise 

to a more planar conformation. The most likely of these two suggestions is that little 

conjugation is occurring in the polyanth system. Jones 13 carried out a survey on the 

factors influencing the UV absorption spectra of polynuclear aromatic compounds. 

His work showed that the appearance of fine structure within the UV spectrum was 

indicative of poor conjugation, as conjugation gives rise to much broader bands. As 

142 



Figure 4.3.1.1 shows, fine structure is observed in the UV spectrum of polyanth, 

indicating that ineffectual conjugation occurs through this system. 

On successive irradiation of polyanth, the intensity of the bands in the UV 

spectrum decrease. This arises as irradiation of the polymer with UV light causes 

excitation of an electron into the 1t • orbitals of anthracene, giving an excited state 

species. Reaction of an anthracene moiety in the ground state with an excited state 

species gives rise to a dimer, providing the two molecules are favourably aligned. 

The aromaticity of the central ring is lost, as is the delocalisation across the 

anthracene moiety and thus the intensity of the peaks in the absorption spectrum 

decreases. This intensity decrease acts as a probe into the changing chromophore 

concentration, Figure 4.3 .I. 7. From this, an estimation of the quantum yield for 

chromophore depletion can be determined, Figure 4.3.1.8. 
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Figure 4.3.1.7: Change in Chromophore Concentration for Polyanth Exposed to Unpolarised 
Radiation from the Deuterium Lamp. 
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Figure 4.3.1.8: Quantum Yield Decay for Polyanth Exposed to Unpolarised Radiation from the 
Deuterium Lamp. 

The change in concentration of the anthracene species occurs quite steadily 

until -75% of the species initially present have reacted. After this, reaction takes 

place much more slowly and the plot begins to level off, indicating no further 

reaction. 

As Figure 4.3.1.8 shows, the quantum yield decay for polyanth is somewhat 

different to those achieved for PVCi, chapter three, and shall be discussed later. 

However, it is important to note that -80% of the chromophores have reacted. 

Upon irradiation with vertically polarised light from the deuterium lamp, the 

UV absorption decay in Figure 4.3.1.9 was observed. In contrast to the extent of 

reaction using unpolarised radiation, Figure 4.3.1.1, the absorption intensities change 

' only slightly, indicating only a small number of anthracene moieties have undergone 

chemical change. Only -8% of the chromophores present in the sample react as is 

shown by Figure 4.3.1.10. 
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Figure 4.3.1.9: UV Absorption Spectrum for Polyanth Exposed to Vertically Polarised Radiation 
from the Deuterium Lamp. 

0.08 

0 0 

0.06 
0 0 

0.04 
0 0 

8 
<? 0 ,.... 

0.02 
<D 

0.00 0 

0 20000 40000 60000 60000 

Exposure Is 

Figure 4.3.1.10: Change in Chromophore Concentration for Polyanth Exposed to Vertically 
Polarised Radiation from the Deuterium Lamp. 
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Figure 4.3.1.11: : Quantum Yield Decay for Polyanth Exposed to Vertically Polarised Radiation 
from the Deuterium Lamp. 

This decay does not follow the same trend as for exposure to unpolarised 

radiation and to ensure that this was a representative decay, the reaction was repeated. 

The combined plots are shown in Figure 4.3.1.12 and proves that the decay shown in 

Figure 4.3.1.11 is a true reflection of the quantum yield decay when polyanth ts 

exposed to vertically polarised radiation from the deuterium lamp. 
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Figure 4.3.1.12: Combined Quantum Yield Decay for Polyanth Exposed to Vertically Polarised 
Radiation from the Deuterium Lamp. 
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The experiment was repeated using horizontally polarised radiation and the 

results collated in Figure 4.3 .1.13, Figure 4.3 .1.14 and Figure 4.3 .1.15. From Figure 

4.3.1.13, it can be seen that horizontally polarised radiation induces a much greater 

extent of reaction than when using vertically polarised radiation. 
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Wavelength! nm 

Figure 4.3.1.13: UV Absorption Spectrum for Polyanth Exposed to Horizontally Polarised 
Radiation from. the Deuterium Lamp. 
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Figure 4.3.1.14: Change in Chromophore Concentration for Polyanth Exposed to HorizontaUy 
Polarised Radiation from the Deuterium Lamp. 
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Figure 4.3.1.15: Combined Quantum Yield Decay for Polyanth Exposed to Horizontally 
Polarised Radiation from the Deuterium Lamp. 

When using horizontally polarised radiation, -24% of the chromophores react, 

three times as many as when using vertically polarised radiation. This suggests that a 

large number of anthracene molecules are lying in the orientation shown in Figure 

4.3.1.16. 

00© 

§©00 
©00 

00© 

Figure 4.3.1.16: Suggested Orientation of Anthracene Molecules. 

When irradiated with vertically polarised radiation from the deuterium lamp 

Figure 4.3.1.16 shows that there are very few anthracene moieties lying in the correct 
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orientation to interact with the radiation and thus the change in the UV absorption 

spectrum is small 

The experiments were once again carried out, however, in this instance a 

vertically polarised UV laser (A=325nm) was used as the radiation source. This yields 

a change in UV absorption as shown in Figure 4.3.1.17. Using a monochromatic laser 

as the radiation source induces a similar extent of reaction to that achieved using 

unpolarised radiation from the deuterium lamp. 

200 300 400 500 

Wavelength! nm 

Figure 4.3.1.17: UV Absorption Spectrum for Polyanth Exposed to Vertically Polarised UV 

Laser (A=32Snm). 

This gives rise to the chromophore conversion and quantum yield changes in 

Figure 4.1.3.18 and Figure 4.1.3.19. 
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Figure 4.3.1.18: Change in Chromophore Concentration for Polyanth Exposed to Vertically 
Polarised UV Laser (A=325nm). 
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Figure 4.3.1.19: Quantum Yield Decay for Polyanth Exposed to Vertically Polarised UV Laser 
(A=325nm). 

It is interesting to note that the effects of unpolarised radiation from the 

deuterium lamp and vertically polarised laser radiation are very similar: -80% of the 

chromophores react and the quantum yield decays follow the pattern of decreasing 

quantum yield followed by a plateau, then a slight increase in quantum yield before 
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the quantum yield decreases once more. It is unfortunate that the accuracy of the 

quantum yield values for exposure to the deuterium lamp radiation is questionable as 

it would be interesting to compare the quantum yield values for both experiments. 

Anthracene is known to cleave upon exposure to radiation of lower 

wavelengths. A. <260nrn 1• It was initially thought that as the deuterium lamp provided 

radiation capable of both dimerising and cleaving the anthracene molecule, it was 

probable that both reactions were occurring in the system, giving rise to the unusual 

quantum yield decay curve. However, if this were true, then such plots would only be 

evident in samples irradiated using the broad wavelength range deuterium lamp and 

not in those irradiated with the monochromatic laser. The unusual decay/rise/decay in 

the quantum yield plot is visible in samples exposed to both the unpolarised radiation 

from the deuterium lamp and polarised laser radiation. Therefore, an alternative 

explanation must be sought. 

Energy migration between anthracene moieties will be occurring continuously. 

The mechanism by which it occurs is unknown, however, from chapter 4.1, it is 

known that energy transfer may be radiative or non-radiative and can occur over a 

range of distances. The radiative process is the least likely due to the relatively poor 

overlap between the emission and absorption spectrum of the anthracene molecule. 

At the start of the experiment, energy migration will be able to proceed via both long

range and short-range transfer processes. As the anthracenes begin to dimerise, 

'holes' will appear in the polymer chains making short-range transfer less likely and 

long-range processes will dominate. The extent of energy migration can be described 

pictorially by Figure 4.3.1.20. 
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Figure 4.3.1.20: Extent of Energy Migration in Polyanth. 

In the early stages of the exposure, energy migration will be occurring at its 

maximum efficiency, as indicated by the plateau in Figure 4.3.1.20. As the 

anthracene species dimerise, energy migration becomes more difficult and its 

efficiency gradually begins to fall. 

Decay of the quantum yield commences upon exposure to UV light. The 

quantum yield is defined as the number of molecules of reactant consumed for each 

photon of light absorbed. As the population of anthracene species is depleted, fewer 

anthracene moieties are available for reaction to give dimers, although those 

remaining can still absorb photons. Therefore, the quantum yield decreases, Figure 

4.3.1.21. 
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Figure 4.3.1.21: Expected Quantum Yield Decay. 

In the polyanth system studied, both energy migration and dimerisation can 

occur. Combination ofboth ofthese plots gives rise to Figure 4.3.1.22. 

Quantum Yield & Energy 
Migration Combined 

Figure 4.3.1.22: Quantum Yield and Energy Migration Combined. 

Time Is 

' It must be stated at this point that Figure 4.3.1.20, Figure 4.3.1.21 and Figure 

4.3.1.22 have no physical, scientific basis. They are merely employed as an aid to 

assist in describing the shape of the experimentally determined quantum yield decays. 

The first part of the curve shown in Figure 4.3.1.22 appears to be controlled by the 

quantum yield decay. This will be true if the rate of dimerisation is faster than the rate 
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of energy migration and therefore those anthracene units favourably aligned with 

respect to dimer formation react before an energy transfer event can occur. Once 

these species are reduced in number. a photon can be absorbed by an anthracene 

which does not have a neighbour in a configuration which affects the dimerisation 

reaction in the appropriate timescale and therefore the energy can 'hop' onto a nearby 

anthracene molecule1
•
8

• This can occur by the processes described earlier in this 

chapter until the energy hopping is quenched e.g. by formation of a dimer8 or by 

fluorescence. The side chains of the polymer are quite rigidly held in the solid state 

although slight motion of the side chains will occur due to the elevated temperature of 

the exposed region. Thermal relaxation of a polymer film occurs -1013 times slower 

than vibrational relaxation of the photochemically excited state14
, therefore, 

anthracene pair orientations do not change appreciably before a transfer event occurs. 

The rise in quantum yield is much more prominent in the samples exposed to 

the unpolarised deuterium lamp, Figure 4.3.1.8. This is thought to be due to 

experimental error. When the sample was exposed to the UV laser, Figure 4.3.1.19, 

the plot greatly resembles the shape of the curve in Figure 4.3.1.22. At the point 

where no further change in the absorption spectra was achieved upon exposure, it is 

reasonable to assume that the residual anthracene units are randomly scattered 

throughout the area sampled and are too far away from their neighbours to take part in 

energy transfer. This hypothesis is supported by the work of Mclnally et a/15 who 

looked at poly (vinyl toluene) capped with terminal anthracene species. They found 

that no intramolecular energy transfer occurred between the anthracene groups on the 

chain ends as their low concentration placed them too far apart. 
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Extensive studies have been carried out on anthracene-containing systems. In 

1966. Chandross et al 3 studied on the photodimerisation of anthracene, in its 

crystalline form. dispersed in a KBr matrix. The dimerisation reaction was followed 

by monitoring the decrease in the long wavelength absorption band. The dimers were 

found to form in a columnar-type structure and could be cleaved by light of lower 

wavelength. 

When the anthracene moiety reaches its excited state, a number of pathways 

are available to the radiation: vibrational relaxation to the first singlet excited state, 

dimerisation of this state via reaction with a ground state anthracene, fluorescence, 

energy migration, internal conversion of S1 to S0 and intersystem crossing to the triplet 

excited state. 

Triplet migration in molecular anthracene held in a polystyrene matrix has also 

been studied by Burkhart et a/16
• Here, the separation between molecules is larger 

than in the crystal, yet energy migration occurs more quickly, i.e. energy transfer is 

more 'liquid-like'. This suggests that the relative spatial orientations or the donor and 

acceptor pairs is critical in the rate of energy transfer and if such orientations are not 

realisable in the crystal structure, less efficient transfer will occur. In polymer 

matrices, there is thought to be a high probability that of those neighbouring 

molecules close enough for transfer to occur, one of those molecules will have to 

proper orientation for efficient energy transfer. This system is comparable to polyanth 

where the anthracene moieties lie on every second backbone carbon, giving rise to a 

high concentration of anthracene molecules in a small area and will thus allow 

efficient energy transfer to occur. 
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4.3.2. Infrared Spectroscopy 

Figure 4.3.2.2 and Figure 4.3.2.3 show the infrared absorption spectrum of 

polyanth on a ZnSe substrate before exposure to vertically polarised radiation from 

the deuterium lamp. The orientation definitions are shown schematically in Figure 

4.3.2.1. 

I D 
IR Polarisation Vector Parallel Orientation Perpendicular Orientation 

Figure 4.3.2.1: Orientation Definitions for IR Measurements on Polyanth. 
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Figure 4.3.2.2: IR Spectrum of Polyanth (Perpendicular Orientation). 
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Figure 4.3.2.3: IR Spectrum of Polyanth (Parallel Orientation). 

The sample of polyanth was irradiated using vertically polarised radiation 

from the deuterium lamp and the spectra were recorded. As Figure 43.2.2 and Figure 

432.3 show, theIR spectrum ofpolyanth contains relatively few distinct peaks. The 

dimer is formed by cross-linking across the 9,10-position in the molecule. This 

reaction will change the chemical environment of the hydrogens located at the 1 0-

position in the anthracene moiety. This will give rise to a change in the peaks in the 

IR spectrum arising from the aromatic C-H vibrations. In arenes, the Ar-H in-plane 

bend lie in the region 950-1250cm-• 17
• As the spectra for polyanth show, there are 

peaks lying in this region and therefore, it is these peaks that were analysed and their 

dichroic ratios calculated. The spectra show three peaks in this region, however, the 

central peak situated at 1170cm-• is not always present to the same extent. When this 

peak is strong in a given sample, its intensity does not change significantly upon 

exposure. Tentative suggestions for the origins of this peak may be due to the C-0 

stretch of the ester group or alternatively, C-H in-plane bends which have not been 

affected by the loss of aromaticity. One further consideration when irradiating the 
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polyanth is that the reaction was carried out in the presence of oxygen. H.Bouas-

Laurent et a/18 reported quantities of endoperoxide. Figure 4.3.2.4, as well as dimer 

when irradiating an aerated solution of anthracene with UV light. When the 

experiment was repeated with degassed solution, only the dimer was formed. It is 

therefore feasible that when the anthracene solution was prepared and stored, some 

endoperoxide formation may have occurred. 

hv 

Figure 4.3.2.4: Endoperoxide Formation. 

The C-C-0 absorption in aryl peroxides occurs in the region 19 1176-1198cm·' and the 

central peak could possibly originate from this absorption. Therefore, only the peaks 

centred at 1142cm·' and 1197cm·' were analysed. 

The dichroic ratio is defined as 

absorbance(parallel) 
D=--------~~----~7 

absorbance(perpendicu/ar) 

and the results obtained for polyanth during three separate experiments are shown in 

Figure 4.3.2.5. 
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Figure 4.3.2.5: Dichroic Ratio for Polyanth Obtained by Analysis of the Peaks Centred at 
1142cm·1 and 1197 cm·1

• 

Considering the peaks centred at 1142cm·I, the results obtained during run 1 

and run 2 compare well, giving an increase in dichroic ratio from initial to final value 

of 40% and 46% respectively. The third run gives a dichroic ratio increase from 

initial to final value of -75%. 
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The dichroic ratio data for 1197cm·1 show good agreement in all three runs, 

giving rise to a dichroic ratio increase in the region of 45-65%. The data for both 

peaks shows that the dichroic ratio of polyanth increases on exposure to vertically 

polarised radiation from the deuterium lamp. 

As stated in the previously, the dichroic ratio was expected to decrease when 

polyanth was irradiated with vertically polarised light from the deuterium lamp. As 

D = Ay,.,/~, it is essential to consider the orientation of the anthracene moieties 

with respect to the incoming IR polarisation vector, Figure 4.3.2.6. 

Parallel Orientation IR Perpendicular Orientation 

Figure 4.3.2.6: Orientation of Anthracene Moieties. 

It was found that the absorbances measured in the parallel orientation remain 

constant whereas the absorbances measured in the perpendicular orientation decrease. 

This is a somewhat surprising result. Only those anthracenes oriented with their 

dipole parallel to the UV polarisation direction can absorb radiation and become 

excited. Therefore, it is reasonable to assume that it is these molecules which will 

react. However, if the dichroic ratios are examined, it can be seen that the initial 

value for the dichroic ratio is -0.5. This indicates that there is some inherent 
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orientation in the sample and the anthracene molecules are arranged as previously 

shown in Figure 4.3.1.16. 

From the peak absorbances20
, it is estimated that almost three times as many 

anthracene molecules are lying horizontally as vertically. Upon irradiation, it is the 

absorbance due to the horizontally aligned anthracenes which decreased, while the 

absorbance due to the vertically aligned anthracenes remained constant. The 

anthracene molecules lying vertically are the only molecules able to absorb the 

vertically polarised radiation. However, there are relatively few anthracene molecules 

lying in the vertical orientation relative to those lying in the horizontal orientation and 

even if -10% of these dimerise, a change of this magnitude on a reading of 0.22 will 

not be significant enough to separate it from experimental error and the absorbance 

value will appear to remain constant. When the vertically aligned anthracenes able to 

dimerise have reacted, those remaining are unlikely to be clustered together such that 

they too dimerise. The most conceivable explanation for why the horizontally aligned 

anthracenes react is that energy hops between the vertically aligned anthracene units 

which have absorbed the radiation and those aligned horizontally. Presumably, with 

such a large concentration of anthracene molecules in the horizontal orientation, the 

probability of finding two aligned favourably for dimerisation is quite high. Once the 

vertically aligned anthracene has 'passed on' its excitation, it can absorb another 

photon and hence the hopping and dimerisation process can continue. Depletion of 

the horizontally aligned anthracene molecules whilst the vertically aligned remain 

monomeric accounts for the increase in dichroic ratio. 

When the dichroic ratio is unity, the concentrations of the anthracene moieties 

in both orientations are equal. However, although identical in number, the preferred 
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alignment in the horizontal direction is not lost and thus the dichroic ratio may climb 

above one. 

4.3.3. Birefringence Studies 

Thin films of polyanth on a quartz substrate were simultaneously irradiated 

with a vertically polarised He-Cd laser (A.=325nm) whilst monitoring the intensity of 

the He-Ne laser (A.=633nm) passing through the sample. This technique is described 

in chapter 2.8.3. 

The sample holder allows the substrate to be moved up/down and left/right 

with respect to the incoming laser radiation. On carrying this out, it was noticed that 

there were large variations in the initial intensity for any one sample, 0-136n W. 

Figure 4.3.3.1 shows representative birefringence curves obtained from 

regions in the sample exhibiting low and high initial birefringence. 
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Figure 4.3.3.1: Birefringence Curves for Polyanth. 

The first plot in Figure 4.3.3.1 shows the results obtained from a region in the 

sample where the initial value of the birefringence was low. The general shape of the 

curve appears to be a decay. However, if the actual values of the measured 

birefringence are considered, they show a change in initial to final values of 0.00025 

i.e. 2%. A variation of this magnitude cannot be accurately measured by the 

experimental design employed in recording these data and therefore the apparent 

change is merely experimental error. Further birefringence has not been introduced 

into the sample by irradiation with vertically polarised laser radiation. This indicates 

that the sample is absorbing the light isotropically. If dimerisation is occurring, it is 

doing so uniformly thus giving rise to no preferential orientation and no birefringence. 

If a region has no initial birefringence then the region can be deemed isotropic. 

Anthracene requires a very definite initial alignment for excimer formation and thus 

dimerisation to occur. If this alignment is not available to an excited species, then the 

energy can hop until it finds a site where a dimer can form. Indeed, energy migration 

occurs constantly. However, it has been presumed that when an anthracene in its 
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excited state is aligned with a ground state species such that dimerisation occurs. 

energy migration is not favoured i.e. the rate of dimerisation is faster than the rate of 

energy migration. As there is no initial birefringence, there is little preferred 

orientation and favourably aligned anthracenes will be situated throughout the sample. 

Energy migration will occur until it reaches such a pair and induces dimerisation. 

This would lead to a random distribution of dimer and hence no birefringence is 

observed. 

The second plot in Figure 4.3.3.1 shows the results obtained when the initial 

birefringence of the sampled region was high. The birefringence decreases rapidly in 

the first 200 seconds exposure after which, the decrease becomes more gradual. At 

the point where the exposing laser was switched off, there is a sharp change in 

birefringence which then begins to rise. This increase is small and can be attributed to 

a combination of relaxation of the sample to its equilibrium state and the changing 

temperature ofthe analysed area when the laser is switched off. The overall change in 

birefringence is a decrease of -40%. If a region has initial birefringence then there 

exists some inherent order within the area sampled. As birefringence is shown to 

decrease, order is being created in the direction perpendicular to that in which in 

initially exists. As birefringence is a measure of the difference in refractive index in 

two mutually perpendicular directions, definition of the direction in which order exists 

is not possible using this technique. 

The plots shown in Figure 4.3.3.1 were recorded with the sample slide in a 

vertical orientation. The experiment was repeated with the slide rotated by 90° such 

that it lay in a horizontal orientation, Figure 4.3.3.2. 
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Figure 4.3.3.2: Birefringence results for Slide in a Horizontal Orientation. 

Figure 4.3.3.2 shows that when the slide was placed in a horizontal orientation 

and birefringence measurements recorded, the birefringence increases. This is 

indicative of creation of order in the direction in which it already exists. 

It is apparent that there is orientation inherent in films of polyanth prepared by 

spin casting. Annealing of the samples (403K, 30 minutes) was carried out in an 

attempt to remove the inherent order. However, birefringence measurements 

indicated that the annealing process had no observable effect on the film. It is likely 

that the bulky disposition of the anthracene moiety makes significant motion difficult. 

The side chains themselves are rather long which may give rise to entanglements 

between the chains. Annealing for a much greater time at elevated temperature may 

remoye the inherent order, however, time constraints did not allow this hypothesis to 

be tested. 

Polymers similar in structure to polyanth have been analysed in terms of their 

photophysics. Hargreaves & Webber5 looked at systems of poly (9-anthrylmethyl 

methacrylate) and poly (9-anthrylmethyl ethyenyl ether), Figure 4.3.3.3. 
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Figure 4.3.3.3: Polymer Systems Studied by Hargreaves and Webber. 

For the methacrylate system, fluorescence studies at room temperature and 

77K were found to be almost identical and provided evidence of a high density of 

preformed excimer sites due to partially eclipsed chromophores. The change in 

temperature was not found to significantly change the molecular orientation of the 

system. This is consistent with the results obtained for polyanth where annealing the 

sample did not give rise to increased side chain mobility. In contrast, in the ether 

system there is sufficient local mobility to allow the configuration whereby the 

chromophores are fully eclipsed to be achieved. This increased mobility with respect 

to the methacrylate systems may be due to a combination of side chain length and 

structure effects. By retarding the formation of partially eclipsed dimers via the 

introduction of a phenyl group in the I 0-position, singlet energy migration was 

enhanced. Good overlap between chromophores is needed if dimerisation is to occur. 

If this overlap is not achieved, the extent of energy migration increases. 

Films used in these birefringence measurements were viewed through a 

microscope equipped with crossed polarisers. If no initial order were present in the 
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sample, a black image would be observed for any sample orientation. In practice, it 

was found that when the sample is oriented at 45° with respect to the first polariser, a 

brighter image is observed. This confirms that there is inherent orientation over the 

whole sample area and the birefringence measurements carried out simply highlight 

greater and weaker sources of this order. 

From the results of the UV spectroscopy and IR dichroism, it would appear as 

if the anthracene units are lying in a horizontal orientation, giving rise to ordering. 

When the birefringence decreases, this order is being destroyed as the anthracences 

parallel to the UV polarisation vector absorb radiation. Reaction of only a small 

number of these species is sufficient to create a birefringence change parallel to the 

UV polarisation vector and order is decreased. The timescale of the birefringence 

experiment is -60 seconds in most cases, one tenth of that for UV spectroscopy using 

the laser and therefore, energy hopping is much less prominent. 

An increase in birefringence occurs when those molecules already aligned 

react to form dimers. These species are chemically changed as well as being much 

more restricted in their motions. The loss of aromaticity of the central ring in the 

anthracene unit changes the way the light travels through the sample in comparison to 

how it travels through ordered monomeric units and thus birefringence increases. 

Polyanth is a homopolymer. Copolymers of the polyanth monomer with 

methyl methacrylate were prepared. However, UV and birefringence studies did not 

indicate the occurrence of dimer formation, even for the copolymer containing one 

anthracene side chain for every methacrylate side chain. Ng And Guillef' have 

studied the effects of increasing the proportion of anthracene in a copolymer of (9-

phenanthryl) methyl methacrylate and (9-anthryl) methyl methacrylate, Figure 4.3.3.4. 
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(9-anthryl) methyl methacrylate (9-phenanthryQ methyl methacrylate 

Figure 4.3.3.4: Copolymer Constituents. 

They measured efficiency of intrachain singlet electronic energy transfer in 

fluid solution from phenanthrene to anthracene. As the mole fraction of anthracene in 

the copolymer increased, the efficiency of the intrachain energy transfer as determined 

by fluorescence studies also increased. Although the mole fraction of anthracene was 

high, the average number of anthracene units on the chain was relatively low. Thus, 

the high efficiency of the transfer is attributed to the extended sequence of 9-

phenanthrene donors in the copolymer, highlighting the importance of the relative 

spatial locations of the donor and acceptor species. 

In polyanth, the dimerisation process can, in theory, occur both inter- and 

intramolecularly. De Schryver et aP2 carried out work into the photochemistry of 

bichromorphic compounds i.e. molecules with more than one chromophore, such as a 

polymer chain. They studied the photopolymerisation of alkylene bis-9-anthroates, 

Figure 4.3.3.5. 
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I 

n 

Figure 4.3.3.5: Photopolymerisation of Alkylene Bis-9-Anthroates. 

The process was found to occur intermolecularly via a singlet excited state 

having a lifetime of 1 Ons. At high conversion, i.e. low chromophore concentration, 

the intramolecular process was found to compete more strongly. However, this 

reaction was carried out in solution, giving the chains greater mobility when 

compared to a solid film. The intra- vs. intermolecular addition may not be as 

important in polyanth as the process occurring will depend largely upon the nature of 

the neighbouring anthracene as dictated by the spinning process. It is likely that 

intermolecular reactions will be occurring as the polymer chains will be stretched out 

by the centrifugal forces used in preparing the films. Even at low anthracene 

concentrations, the chains in the film will not have sufficient flexibility to undergo 

intramolecular addition. 
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4.3.4. Fabrication of a Simple Liquid Crystal Cell. 

From the techniques discussed earlier in this chapter, it can be assumed that a 

large proportion of the anthracene molecules lie in a horizontal orientation. As the 

birefringence studies show, when the slide is in a vertical orientation and is irradiated 

with vertically polarised light, the anthracenes lying parallel to the polarisation 

direction of the light react. If a liquid crystal cell is constructed as shown in Figure 

4.3.4.1, after I 0 seconds exposure to vertically polarised (A.=325nm) laser radiation, 

Figure 4.3.4.2 results 

©00 

8©00 
©00 

©00 

Poly Imide Rubbing Direction 

Figure 4.3.4.1: Construction of a Polyanth Liquid Crystal Cell. 

170 



Figure 4.3.4.2: 10 Seconds Exposure. 

This image in Figure 4.3.4.2 arises due to the interactions of the horizontally 

aligned anthracene molecules with the liquid crystals, giving rise to a twisted display. 

Upon prolonged exposure, energy hopping becomes more prominent, cross

linking the horizontally aligned anthracene units and thus causing loss of liquid 

crystal alignment. This is indicated by the dark exposure region shown in Figure 

4.3.4.3. 

Figure 4.3.4.3: 300 Seconds Exposure. 
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The region surrounding the dark image is much paler as some light is being 

transmitted through the sample due to the inherent orientation in the unexposed 

regions of the polymer film. 

4.4. Conclusions 

Studies on poly (9-anthracenoate ethyl methacrylate) have indicated that this 

polymer has potential for use as an alignment layer in liquid crystal displays. 

Results from all experiments show that the anthracene moieties attached to the 

end of the side chains have an initial preferred alignment direction which is not 

removed by annealing. The side chains are relatively short and are terminated by the 

bulky anthracene substituents. If these chains are entangled when spin-cast onto the 

slide, then it will be very difficult for the side chains to achieve sufficient mobility to 

remove any inherent orientation. An elevated temperature and/or increased annealing 

time further to that documented in this report may allow a more isotropic film to form. 

The existence of initial orientation is somewhat more difficult to account for. 

Numerous samples prepared for four different techniques show this to be a real 

phenomenon and not an anomaly. Quartz and ZnSe are the two substrates used and 

both show preferential horizontal orientation of the anthracene groups. The only 

suggestion as to where to begin to look for the cause of this alignment would be to 

look -at the only constant factor in all experiments, the spinning process. Literature 

investigation of anthracene provided no further insight as to why the molecules spin 

down in a preferred orientation. Unfortunately, time does not allow further analysis 

into the spinning procedures to be carried out. 
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From literature surveys, it would appear that energy migration is a viable 

process in the polyanth system. To fully assess the extent and the mechanism of this 

migration, extensive studies into the photophysics of the system need to be carried 

out. 
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Chapter Five 

Poly (p-Azidobenzoate Ethyl Methacrylate) 



5. Poly (p-Azidobenzoate Ethyl Methacrylate) 

5.1. Introduction to Azides 1
' 

2
• 

3 

5.1.1. Molecular Structure and Bonding 

Azides are molecules of the general formula RN3 where R = H, alkyl, vinyl or 

aromatic. The general shape of the azide molecule, along with its two canonical 

forms is schematically shown below. 

X 

• 
/~---Nb---Nc-----• z 

R 

•• + •• •• + 

~ 
N=N=N: N-N=N: 

~·· 

There are sixteen valence shell electrons, five donated from each nitrogen and 

one from the R group. Six of the electrons are located in three cr-bonds, four electrons 

are found as two lone pairs, two electrons are in localised n-bonds and the remaining 

four electrons are located in two delocalised n-bonds. 
' 

The molecular shape of the azide is determined by the spatial distribution of 

the cr-bonds which in turn depend on the states of hybridisation of the atoms. Table 

5.1.1.1 shows the valence states of the nitrogen atoms in the general azide structure 
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Nitrogen Lone Pair er-electrons n-electrons 

N. (s&pi p&s' p&s" Py 

Nb sp sp (pyt Px 

Ne (si Pz Py Px 

Table 5.1.1.1: Valence States of Nitrogen Atoms in RN3• 

er-Bonds 

The sp hybridisation of Nb is responsible for the linear shape of the azido 

group. The er-orbitals of N. consist of three non-equivalent hybrids made up from s, 

Pz and Px· One of the hybrids has more pronounced s character, termed s&p, and is 

occupied by one pair of electrons. The remaining two hybrids, p&s' and p&s" are 

involved in bonding N. toR and Nb respectively. Ne uses its Pz orbital for er-bonding 

and its s-orbital contains a lone pair of electrons. The bond formed between R-Na 

consists of a er-bond from Rand a p&s' from N3 , the bond between Na and Nb consists 

of a p&s" and an sp-orbital and the bond between Nb and Ne is made up of an sp- and a 

p-orbital. 

X 

~ y 

R 

Figure 5.1.1.1: cr-Bonding in RN3 
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n-Bonding 

Then-bonding in RN3 is shown schematically in Figure 5.1.1.2 

Lone Pair 

Tty 

below plane of paper n 

above plane of paper 

Figure 5.1.1.2: 1t-Orbitals in RN3 

The Px orbitals of Nb and Ne form a localised orbital nx which accommodates 

two electrons and a corresponding, vacant anti bonding orbital. The Py orbitals of the 

three nitrogens form three delocalised n-orbitals, two accommodating four electrons 

(ny) and a third vacant antibonding orbital (ny*). 

Lone Pairs of Electrons 

There are two lone pairs of electrons in the valence shell of the azido group: 

one pair in the 2s orbital ofNc and one pair in the s8p orbital ofNa. 

<ZJ ~ocalised n-Bond 

N-N=N: 
/ 

The central nitrogen is bonded to its neighbours by two cr-bonds, one localised 

n-bond (nL) and one delocalised n-bond (n0 ). 
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5.1.2. Photochemistry of the Azide Group: 

When organic azides are irradiated, molecular nitrogen is readily lost. 

RN3 + hu 

The pnmary product of the reaction, RN, is termed a nitrene. Although 

nitrenes have been postulated as intermediates for some time2
, the final products of 

azide reactions could easily be accounted for by other mechanisms such as a general 

reaction where the elimination of nitrogen is concerted with formation of a new bond. 

Physical proof for the existence of organic nitrenes came in 1962 when an 

e.s.r. experiment carried out by Wasserman et al 4 identified two strongly interacting 

unpaired spins localised on a single atom. This was assigned to the triplet ground 

state of an aromatic azide. 

Spectra of organic azides identify the excited states which arise in the act of 

light absorption. The spectrum of the simplest azide HN 3 has two UV absorption 

bands: a weak band at 260nm (E- 40) and a stronger band at- 200nm (E- 500). 

Py 
I 

X z 
X 

' Nitrogen bonded to hydrogen is sp2 hybridised whilst the two remammg 

nitrogens are sp hybridised. The five p-orbitals of nitrogen give rise to five 

delocalised molecular orbitals, 7ty, 7ty", 1tY •, 1tx and 1tx • which in the ground state of HN 3 
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The absorption band at 260nm is attributed to the promotion of an electron 

from the highest occupied ny" orbital to the lowest unoccupied nx· orbital, giving rise 

to an electronic configuration ( cr 23)
2 (2s )2 

( cr 12)
2 

( nY ( ni ( sp2)
2 

( ny") 1 
( 1tx *) 1• An 

absorption band at 200nm is assigned to the transition sp2-ny· and brings about a new 

electronic configuration (cr23)
2 (2sl (cr 12)

2 (ny)2 (nx)2 {sp2)
1 (ny")2 (nx*)1

• Both of these 

transitions are symmetry forbidden, hence the low extinction coefficients. Occupation 

of an antibonding nx· orbital forces the HN2-N bond out of its trigonal planar 

configuration in order to reduce repulsive overlap of the orbitals. This change in 

equilibrium geometry between ground state and excited state plays an important role 

in dissociation of the molecule. 

While the absorption spectrum of alkyl azides resembles that of the isolated 

azide, the spectrum of aromatic azides is essentially that of the parent hydrocarbon 

with a weak additional band due to the azido group, appearing as a shoulder on the 

long wavelength side of the hydrocarbon spectrum. Coupling the azido group with 

the aromatic system corresponds to a charge flow from nitrogen to the ring. This 

lowers the energy of the non-bonding 1tY n orbital below the level of sp2
• The azido 

band is assigned to the transition sp2-ny· where ny· now extends over the whole 

aromatic system. 

The mechanism for the elimination of nitrogen has been studied for hydrazoic 

acid 2
• Photodecomposition of HN3(g) has a quantum yield equal to unity for the 

primary photolytic step. Therefore, it is assumed that the excited states of HN 3 are 

spontaneously dissociative. Elimination of nitrogen occurs as follows: 

Absorption of a photon promotes the molecule to the singlet excited state HN 3 • 

CA"), which in the first instance appears in the linear configuration of the ground 
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state. Since the equilibrium configuration of HN3* ('A") is angular, light absorption 

also leads to some vibrational excitation. The vibrational energy released is not 

sufficient to break the HN-N~ band but promotes interaction (mixing) of 1A" state 

with other energetically accessible states. At least one of these is repulsive in the 

critical bond co-ordinate and brings about dissociation of the molecule. 

In aromatic azides, the mechanism of the primary step is slightly different 

from that of the isolated azide group. The upper excited states are those of the parent 

hydrocarbon and upon irradiation, energy is absorbed by the aromatic system as a 

whole. Decomposition is therefore preceded by transfer of excitation energy from the 

hydrocarbon to the azido group. 

On absorption of a photon in aromatic azides, promotion to an upper excited 

state occurs. Excess vibrational energy is transmitted until the lowest vibrational level 

of the lowest lying excited state is reached. Here, the molecule enters the excited nrt • 

azide state (excitation transfer) and will either decompose by the HN3 mechanism or 

cross over to the triplet state and dissociate in a similar manner. In aromatic azides, 

both alternatives apply5 and it can therefore be said that the rate of intersystem 

crossing from singlet to triplet state is comparable to the rate of dissociation of the 

singlet excited state. 

As transfer of excitation energy from hydrocarbon to azido group occurs at 

some stage in the reaction, the structure of the aromatic moiety has some effect on the 

quantum yield for photolysis. It has been found that polynuclear aromatic azides have 

higher quantum yields of photolysis than their phenyl counterparts2
• 
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5.2. Nitrenes (RN) 

5.2.1. Structure and Bonding 

On loss of molecular nitrogen from an azide group, a nitrene is formed. The 

nitrogen in the nitrene species is bonded to a single carbon centre and is, therefore, sp-

hybridised. Of the five valence electrons, one takes part in a cr-bond to carbon, one 

pair occupy a non-bonding sp-orbital and the two remaining electrons are located in 

unhybridised Px and Py orbitals. 

Py 
I 
I 

The two p-orbitals have equivalent energies and each carry one electron. As 

both electrons have the same spin, ground state nitrenes are expected to be triplet 

species. In aromatic nitrenes, one of the unpaired electrons is delocalised into the 

aromatic system. 

Phenyl nitrenes have seven 1t electrons in their aromatic shell. Lower triplet 

excited states originate from the transition of an electron from the highest occupied 

molecular orbital to the lowest unoccupied molecular orbital. 

--- ---------------·--- '¥3 

==========~~~~-~ :
_____________________ _l_j___ ~+ 

0 

Huckel Configuration 
Interaction 
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In the Huckel approximation, the two excited states \jf 1 and \j/2 are nearly 

degenerate and will be split by configuration interaction into upper \jJ_ and lower \jJ+ 

states. The transition \jJ
0
-\j/_ is observed as a strong band at 314nm and the weaker 

band at 402nm is attributed to the \j/ 0-\jJ~ transition. Such a band pair is typical of an 

open aromatic shell (an odd number of electrons) and is observed generally in 

aromatic 1t radicals. 

5.2.2. General Reactions of Nitrenes 

Recombination 

2RN:~ R-N=N-R 

This reaction is allowed for nitrenes in both the singlet and triplet states. It is 

rarely seen in the continuous photolysis of azides due to the low concentrations of 

nitrene present at any one time. However, this is the preferred reaction if flash 

photolysis is used due to the high, localised concentration of nitrenes. It is also the 

only reaction to occur at low temperatures due to the low activation energies required. 

Insertion into C-H Bonds 

I I 
-R-N+ H-C- __ .,...,. R-N-C-

1 I I 
H 

This reaction occurs with singlet nitrenes only. 
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Hydrogen Abstraction 

This is the most general reaction of triplet nitrenes. Two separate abstractions 

are required to saturate the electron deficiency of the triplet species. 

The first hydrogen abstraction leaves behind a carbon radical. Both of the 

radicals formed in this first step have unpaired spins and they cannot couple unless 

spin is reversed. The time required for spin inversion is usually sufficient to allow the 

radicals to diffuse away. 

I t t 
-C-N· + 

I 

I 
H-C-

1 

I t 
-C-N-H 

I 

tl 
+ ·c-

l 

In the second step, the amino radical abstracts a second proton to form a 

primary amine. 

I 
-C-N-H 

I 

I 
+H-C-

1 

I 
-C-NH + I 2 

tl 
·c-
l 

Other reactions are also possible 

I . 
-C-N-H+ 

I 
I 
·c-
l 

I I 
-C-NHC-

1 I 

Secondary Amine 

2x 
I 

·c-
I I 

-e-e- Hydrocarbon Ditrer 

l l I 
I . 

2x -C-N-H 

I 

H 

I I I 
-C-N-N-C-

1 I I 

Hydrazme 

H 
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5.3. Synthesis and Characterisation of Poly (p-azidobenzoate ethyl 

methacrylate) 

Poly (p-azidobenzoate ethyl methacrylate), polyazide, was synthesised by free 

radical polymerisation of the corresponding monomer in 2-butanone at 50-65°C with 

AIBN (azobisisobutyronitrile) as an initiator. The synthesis was carried out by Kate 

Foster 6 and a polymer of molecular weight 27,000 with a polydispersity of 3.0 was 

obtained using this method of polymerisation. 

H Me 
"----..../ 

w--)-o 
0 

ry, 
0 0 

~ 
0 

AIBN ~ 
0 

Figure 5.3.1: Synthesis of Poly (p-azidobenzoate ethyl methacrylate). 

Generally speaking azides are known to be unstable, therefore a TGA was 

carried out to assess the polymer's thermal stability. Figure 5.3.2 shows a plot of the 

percentage mass loss of the polyazide as a function of temperature. 
' 
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Figure 5.3.2: Percentage Mass Loss as a Function of Temperature for Polyazide. 

At 1 00°C, there is a 5% change in the mass of the polymer. At this rate of 

decomposition, a DSC measurement is inappropriate due to the potential damage to 

the machine by the decomposition products. Powder X-ray diffraction is a second 

potential technique for the study of sample crystallinity. However, the polyazide 

cannot be left out at room temperature as it undergoes reaction and hence the 

reflectivity profile of the polymer will be changing over the duration of the reaction. 

Information regarding sample crystallinity is therefore unavailable. Due to this 

thermal instability, all solid samples of the polyazide are stored at 253K (freezer) and 

solutions at 277K (refrigerator). 
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NMR 

'Hand 13C NMR spectra are shown in Figure 5.3.3 & Figure 5.3.4. 

The following tables show the NMR peak assignments 7
• 

b Proton Assignment (ppm) 

a 1-2 

b 1-2 

c 4.2 

d 4.4 

e&h 7.0 

f&g 7.9 

Chloroform 7.3 

Carbon Assignment (ppm) 

b 

a 44-46 

b 18.0 

c 165 

d 62-63 

e 62-63 

f 165 

g, h, i,j, k, L, 118-146 

Chloroform 77 
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OBSERVE Hi 
Frequency 399.958 HHz 
Spectral width 5000.0 Hz 
Acquisition time 3.002 sec 
Relaxation delay 0.000 sec 
Pulse wldth 2.0 usec 
Ambient temperature 
No. repetitions 64 

Double precision acquisition 
DATA PROCESSING 
Line broadening O.J Hz 
FT s lze 65536 

l'otal acquisition time 3 minutes 
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Figure 5.3.3: 1H NMR Spectrum of Polyazide in CDCI3• 

I 

' ·?qr' 
... ... 
0 



FILE /jst~/~uridt/L'!f~4f~hb 'i 1 
~Lk ~~ ;~~ ~4 J7 
31LVc~T ~0;:1 

~"lSEAVE : tl 
fr'! lu'!n :•· 1 ,, . ~ il HHz 
::;o,.,·tr··· ~ll:h ?:"J, Hz 
1...: !.J t 'i! : 1 ~'1 : ~ 'l'e J . I) I I 9P ~ 
H'!l1~1t!.t'l t'!lOlt '·'ill ~· • 
PL)J• ~!J"h 9.1 Ui~: 
~mll&'ln: t'lonp'!rlturq 
N.~ ""P.1,..-' ~ 1~".1 t-:i"~'J4 

llf' I t>LE Hl 
r.•.qe- n ,.., .• 4 J 
r,a.--'..JP'.ar :.J"•~nunu~:, ._-., 

~~~u·~ .~,.. .. ·: -: ~" 1': :aJ~ ;.:~~~, 

r.~-4 Pfl'-~,: ;."IN3 
t · 'l br .• . lll!n _; r. j ~ 1 ~l 

Id . : 1.'1 lP . ~. ~ lt .! .~'l . ,, 

r .l~ l 1 J.,7? 
1~·, ;).: ;~,.;:;: · · ,, · .:~~~~ ·i. ~ h'laJr;l 

... 
"' "' 
tt1 

-~ 

"' .. 

... 
"' -0 .. ... 
"'"' 

I 
... 
... 

"' "' a:J -

"' 

"' 0 

"' CD ... 

( 

; -1 . I ~ 
' Cl 1 . .... ~! H d: I 

" 
( 
r 

~ I . 
... 

Ill 

"' ... ... ,..., . 
... f'J !'\J 

. M ID 

f"l ~-) 
,., 
0 

"' 

"' , 
U1 "' ID 

.. 
"' n 

al 

I , ~~ u~~ :li 'l ,, J i I :11; 1\ I ~~~.JU ~~~-..... ~.._ 
I 

150 
I 

160 

--- I. I I I I I I I ••• • • I I I I I I ' • I I I . I 

100 
I 

80 60 tiO 20 pp m 

Figure 5.3.4: 13C NMR Spectrum of Polyazide in CDCI
3

• 



The broad nature of the peaks indicate that the sample is polymeric. The 

lack of C=C peaks (5-6 ppm) in the 'H spectrum show that there is no residual 

monomer contained in the sample. The poor quality of the 13C spectrum is due to the 

poor solubility of the polyazide in CDC13• 

5.4. Desired reactions 

Upon irradiation with UV light, it was hoped that the polyazide side chains 

would dimerise, via nitrene radicals, with the loss of nitrogen to form either inter- or 

intramolecular azobenzene moieties, Figure 5.4.1. 

?:!' ?:!' ?:!' I I I 
CH 2 CH 2 CH 2 
I I I 
CH2 CH2 CH 2 
I I I 

~ -2N2 ~ ~ hvt N: :N N N3 

~ ~ 
M 

~ I I 
c~ c~ I I I CH2 c~ CH2 6 0 

I 6 0 CH2 

~n ~n 
I 

ff1 Me 
n 

Figure 5.4.1: The Desired Reaction ofPolyazide Initiated by Exposure to Polarised UV 
Radiation. 
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Following the reaction by UV spectroscopy, would produce a decrease in the 

absorbance peak due to the azide (278nrn) and form a new absorbance peak due to the 

azobenzene (300-350nrn & 400-SOOnrn). 

Figure 5.4.2 shows that azobenzenes have large absorbances in the region 300-

350nrn and a smaller absorbance at 400-SOOnrn. In the polyazide system, the 

absorbance bands may move to longer wavelength due to the conjugation through the 

carbonyl group which is not present in the azobenzene molecule. 

Abs 

250 300 500 run 

Figure 5.4.2: Absorption Spectrum of Azobenzene8
• 

A decrease should also be observed in the azide peaks in the IR spectrum 

(-1279 cm·1 & -2127 cm-1
). By using polarised radiation, the loss should have an 

' 

orientation dependence and IR dichroism should be observed. As irradiation uses 

light with its polarisation vector parallel to the long edge of the sample, reaction of the 

azide groups should also occur parallel to this direction and the residual groups 
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remain in a perpendicular orientation. If the dichroic ratio is defined as D = ~ar/ Aperp' 

D is expected to decrease as Aperp remains at a constant value and ~ara decreases. 

As with PVCi and Polyanth, birefringence is expect to increase as selectively 

depleting one orientation of chromophores creates anisotropy in the refractive index. 

The azobenzene species created by the reaction have much greater conjugation 

than the azide starting material and it therefore has a larger polarizability associated 

with it. It is expected that the liquid crystals will align along the direction of the 

azobenzene and not along the direction of the residual azides. This is in contrast to 

the results expected for PVCi and Polyanth, therefore a cell formed with the UV 

polarisation direction perpendicular to the rubbing direction of the polyimide should 

give rise to a twisted liquid crystal cell. 
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5.5. Results and Discussion 

5.5.1. UV Spectroscopy 

Figure 5.5 .1.1 shows the UV absorbance spectrum of an unexposed 48nm 

thick film of Polyazide. 

, 

0 

200 300 400 500 600 

Wavelength/ nm 

Figure 5.5.1.1: UV Absorbance Spectrum of 'as-spun' Polyazide. 

The main peak is shown at 278nm. This spectrum is essentially the spectrum 

of the parent hydrocarbon molecule with a low-lying shoulder on the long wavelength 

side of the main peak. The shoulder is due to the n-n • transition in the azide. 

Irradiation with unpolarised radiation from the deuterium lamp was carried out 

to ensure that exposure induced reaction in the sample. The change in absorbance 

with increasing exposure time is shown in Figure 5.5.1.2. 

192 



.. .. . . . . ....... -. -. . .. --·· ....... -... -. -. ·- -·····-·. . .. -· . --~~:~: -- -l 

Absorbance · 
l 

.z-1 
! 

-~ 

~ 
Lr-----

200 300 400 

Wavelengthlnm 

500 

~~~:~: I 
30 mins 

1 
120 mins i 

300 mins l 

I 
I 
i 
i 
! 

j 
600 

Figure 5.5.1.2: Decreasing UV Absorbance as a Function of Exposure to Unpolarised Radiation 

from the Deuterium Lamp. 

Figure 5.5.1.2 shows no evidence of azobenzene formation upon UV 

irradiation, although almost 50% of the chromophores have reacted. The change in 

chromophore concentration as irradiation proceeds is shown in Figure 5.5.1.3. 
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Figure 5.5.1.3: Change In Concentration of Starting Material with Exposure Time. 
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From the absorbance spectra, the quantum yield for the reaction of the starting 

material can be calculated, Figure 5.5.1.14 and the resulting data are shown in Table 

5.5.1.1. 

Exposure Time (s) 1-C/Co Quantum Yield 

0 0 -

300 0.19 1.22 

600 0.31 1.18 

900 0.37 1.02 

1200 0.37 0.77 

1800 0.37 0.51 

3600 0.44 0.33 

7200 0.44 0.16 

10800 0.44 0.11 

18000 0.44 0.07 

Table 5.5.1.1: Data for Exposure to Unpolarised Radiation from the Deuterium Lamp. 
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Figure 5.5.1.4: Quantum Yield for Unpolarised Exposure ofPolyazide. 

Figure 5.5.1.4 shows the value of the quantwn yield to be greater than one. 

This is a result of the ambiguity in calculating I
0

, described in Chapter 2. If quantwn 

yield is plotted as a function of concentration, a different shaped curve is obtained, 

Figure 5.5.1.5. The reasoning behind this is discussed in the following pages. 
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Figure 5.5.1.5: Quantum Yield as a Function of Concentration for Polyazide. 
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Figure 5.5.1.2 shows that the chromophores present in the polymer are being 

depleted upon irradiation with the deuterium lamp. As reaction was shown to occur, 

polarised radiation was used to induce orientation within the sample. 

Upon irradiation with polarised radiation from the deuterium lamp, the peak at 

A.=278nm decreases, Figure 5.5.1.6. This is the only spectral change upon irradiation. 

The change in the peak intensity is small when the 25 hour irradiation time is 

considered. Only 9% of the chromophores present in the sample have reacted. 

OHr>: Solid Line 
25 HB : Dashed Une 

Wawtength/nm 

Figure 5.5.1.6: UV Spectrum of Polyazide Before & After 25 Hours Polarised Exposure. 

No new peaks are evident in the spectrum following irradiation. If azobenzene 

species had been formed, their presence in the sample would be indicated by an 

absorbance peak at A. = 300-350nm & 400-500nm. From this data, it can be 

concluded that although some of the starting azide species have been consumed, the 

desired azobenzene moiety has not been formed. 

, The quantum yield for the depletion of the azide species can be calculated, the 

resulting plot is shown in Figure 5.5.1.7 and data in Table 5.5.1.2. 
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Exposure Time ( s) 1-C/Co Quantum Yield 

0 0 0 

300 0 0 

600 0 0 

900 0 0 

1800 0 0 

2700 0 0 

3600 0.054 0.12 

4500 0.054 0.094 

5400 0.054 0.079 

7200 0.054 0.059 

10800 0.054 0.039 

14400 0.054 0.030 

21600 0.054 0.020 

32400 0.054 0.013 

37800 0.054 0.011 

91800 0.081 0.006 

Table 5.5.1.2: Data for Exposure to Polarised Radiation from the Deuterium Lamp. 
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Figure 5.5.1.7: Quantum Yield for the Decay ofPolyazide. 

Consider the quantum yield, it is the change in concentration of reacting 

species per photon absorbed. It is therefore necessary to look at how the 

concentration of the azide group changes with irradiation time, Figure 5.5.1.8. 
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Figure 5.5.1.8: Change in Concentration of Azide with Exposure Time. 
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Figure 5.5.1.8 shows that for the first 45 minutes of irradiation, no reaction 

occurs. After 60 minutes, some of the azide has reacted, approximately 5%. Further 

reaction does not occur until nine hours later. With a concentration change such as 

this, it does not seem possible to produce a decay curve such as that shown in Figure 

5.5.1.7. 

A plot of quantum yield vs fraction of chromophores reacted is shown in 

Figure 5.5.1.9. 
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Figure 5.5.1.9: Quantum Yield vs Chromophore Conversion for Polyazide. 

In Figure 5.5.1.9 it appears as if one concentration can yield a range of 

quantum yields. Quantum yield is calculated via 

[Azide] 
Quantum Yield=~-~ 

la xt 

If the chromophore concentration is constant, then la must also be constant, the 

only variable being exposure time. Therefore, the quantum yield curve shown in 
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Figure 5.5.1. 7. materialises due to varying the irradiation time. To illustrate this time 

effect, a plot of 'x vs 1/t' is simulated, Figure 5.5.1.1 0. 
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Figure 5.5.1.10: Simulation of 'x vs lit'. 

Figure 5.5 .1.1 0 follows the same decay curve as the quantum yield function. 

These results show that the decay curve obtained for Polyazide is a manifestation of 

lit in the quantum yield equation. All future quantum yields will therefore be 

concerned with quantum yield as a function of concentration. 

There appears to be very little reaction occurring in the polyazide film when it 

IS irradiated using the deuterium lamp. The lamp provides 30W of a broad 

wavelength range of radiation, 'A= 185-370nm. When compared to alternative 

radiation sources such as a mercury lamp fitted with a filter or a UV laser, this is a 

relatively lower power source. The wavelength range is very broad and a large 

proportion of the incoming radiation can be absorbed by other chromophores in the 

polymer, for example, the benzene ring (n-n· transition, 'A-260nm) and the carbonyl 
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group (n-1t· transition, A-280nrn). The largest proportion of the lamps output 

radiation is in the region 200-275nrn, ideal for electron promotion m these 

chromphores. As reported earlier, the azide n-7t· transition lies to the long wavelength 

side of the main peak i.e. -300nrn. Relatively small amounts of radiation of this 

wavelength are emitted by the lamp and hence only a small amount of reaction of the 

azide group is observed. 

The rigidity of the matrix formed by spm casting the film may also be 

preventing increased reaction. As the Tg of the polymer is unknown, the ability of the 

molecules to move at room temperature is uncertain. Therefore, to test the likelihood 

of azobenzene formation in this particular polymer system, a solution of the polymer 

(10-5M) in stabiliser-free chloroform was irradiated for two hours with unpolarised 

radiation from the deuterium lamp. Figure 5.5.1.11 shows the resulting spectra. 

--
wavelength/ nm 

Solid Line: 0 Hrs Exposure 

Dashed Line: 2 Hrs Exposure 

Figure 5.5.1.11: UV Spectra of Polyazide in Chloroform Before and After 2 Hours Unpolarised 
Exposure to the Deuterium Lamp. 

' After 2 hours exposure, the main peak at 278nrn has been greatly reduced, 

80% of the azide chromophores have reacted. However, the region 300-400nrn has 

not changed. From these results, it can be inferred that in solution, a large proportion 

of the azide groups have reacted but their reaction products are not azobenzene. 
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Irradiation usmg the deuterium lamp provides relatively low intensity, 

continuous exposure. As a consequence of this, only a very low concentration of 

nitrene radicals will be present in the sample at any one time. The probability of 

finding two nitrenes in the correct orientation and proximity to react to form an 

azobenzene is small. However, exposure to the laser is a short, sharp burst of high 

intensity radiation. This will produce a high concentration of nitrene radicals in a 

very small area. These reaction conditions are, therefore, the most likely to induce 

azobenzene formation. 

To test this hypothesis, a 39nm thick film of Polyazide was exposed to a 

depolarised laser with A
0
=325nm (intensity = 0.9mW through a 400J.l.m aperture). 

Depolarisation of the laser beam allows maximum probability for azobenzene 

formation. An unexposed sample was irradiated in two separate regions: one area 

exposed for 5s and the second for 120s. These spectra are shown in Figure 5.5.1.12. 

SOlid Line: 0 sec & 5 sec Exposure 

Dashed Line: 120S Exposure 

Instrument Spike due to 
Lamps Changing Over. 

Wavetengthl nm 

' Figure 5.5.1.12: UV Spectra ofPolyazide Exposed to Depolarised 325nm Laser. 

After 5s exposure, there is no change in the spectrum. When the sample is 

irradiated for 120s, 60% of the chromophores react and the main peak decreases. 

There is a slight increase in absorbance in the region 300-450nm. However, this 

cannot be attributed to azobenzene formation due to the uncertainty in intensity when 
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the lamps change over. Therefore, the experiment was repeated using a wider range of 

exposure times and the spectra were recorded using an HP 8453 UV-Vis 

spectrometer. The resulting spectra are shown in Figure 5.5.1.13 and data in Table 

5.5.1.3. 

Exposure Time (s) 1-aCo Quantum Yield 

0 0 -

5 0.18 0.083 

10 0.29 0.069 

20 0.41 0.043 

40 0.47 0.025 

70 0.50 0.015 

130 0.53 0.008 

250 0.56 0.005 

Table 5.5.1.3: Data for Exposure to Polarised 325nm Laser. 
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Figure 5.5.1.13: UV Spectra of Polyazlde Exposed to Polarised 325nm Laser. 
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The change in concentration of the chromophore can be monitored, Figure 

5.5.1.14 and from this data, the quantum yield for the reaction can be calculated, 

Figure 5.5.1.15. 
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Figure 5.5.1.14: Fraction ofChromophores Converted Upon Exposure to Polarised 325nm Laser. 
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Figure 5.5.1.15: Quantum Yield for the Photoreaction using the 325nm Laser. 
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As the laser radiation is monochromatic and its intensity was measured, the 

errors introduced into the deuterium lamp calculation were greatly reduced and 

therefore the quantum yield is a more realistic value. The quantum yield values are 

small, much less than one, indicating that although photon absorption is occurring, not 

every photon is giving rise to a reaction. Significant numbers of photons will be 

absorbed into the aromatic system and will not induce reaction. 
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Figure 5.5.1.16: Quantum Yield as a Function of Concentration of Reacted Chromphores. 

Ideally, a solution of Polyazide should have been irradiated with the laser as 

this is the most likely situation to give azobenzene formation. However, the 

Polyazide became insoluble before this reaction could be carried out. 
' 

As there is no evidence for azobenzene formation upon reaction of the azide 

groups, it is likely that insertion into C-H bonds or hydrogen abstraction is occurring. 

These reactions products will absorb in the UV region of the spectrum. The 
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broadening of the main peak is most likely due to the overlapping absorbances of the 

reaction products with the residual azide species. 

In 1968, Reiser et al 9 undertook a study of photolysis reactions in aromatic 

azides. Their findings substantiate the evidence gathered for the photolysis of 

polyazide. The studies were carried out using 1-azidonapthalene which was irradiated 

with UV light either in solution or whilst being held in a polymer matrix. 

For continuous irradiation using a low intensity UV source, such as a 

deuterium lamp, irradiation of a 104 M solution of 1-azidonapthalene in hexane 

produces a mixture of amines, but no azo-species nor polymer formed by proton 

abstraction. In a hydrocarbon matrix irradiated at 77K, the major product formed was 

1,1 '-azonapthalene, with a trace amount of polymer. Flash photolysis of 1-

azidonapthalene solution resulted in the formation of azonapthalene, and in a 

polystyrene matrix, amines were the sole reaction product. 

In summary, at high nitrene concentrations (flash photolysis), recombination is 

favoured and at low nitrene concentration (deuterium irradiation), proton abstraction 

is the preferred mechanism. When the azide concentration is high, proton abstraction 

and azo-compound formation is preferred. Azo-compounds are also favoured at low 

temperatures. Immobility of the nitrene species in the polymer matrix inhibits 

recombination and reaction with an azide. 

Therefore, for polyazide, irradiation with the deuterium lamp gives low nitrene 

concentrations and proton abstraction will be favoured, hence no azobenzene species 

observed. The extent of the reaction is much greater in solution than in the matrix due 

to increased mobility of the nitrene moiety. For laser irradiation, high nitrene 

concentrations are achieved which should favour the formation of azo-species. 
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However, this reaction is inhibited due to the immobility of the nitrene. Amines are 

the most likely reaction product. 

The rate of reaction in the solid form is much slower than the reaction rate in 

solution due to the steric restraints imposed by the rigid medium. The rate of nitrene 

depletion is dependant upon two factors: rate of diffusion of nitrogen from the 

reactive site and the rate at which favourable reaction configurations (transition state) 

is reached by the electron deficient nitrogen and an abstractable proton. Reiser9 et a/ 

showed that transition state formation was the rate determining step. Nitrenes near 

their critical configuration react first. The distribution of configurations determine the 

shape of the observable decay curve; the reaction timescale is set by the rate of 

configurational diffusion in the system. 

5.5.2. Infrared Studies 

Polyazide was spin-cast onto a ZnSe substrate, giving a film 40nm thick. 

Infrared spectra of the unexposed sample were recorded and the initial dichroic ratio 

was calculated to be 0.99 for the band centred at 2127 cm·1 and 0.98 for the band 

centred at 1275 cm·1
• Both dichroic ratios are close to one, indicating that there is no 

preferential orientation inherent within the sample before exposure begins. Figures 

5.5 .2.1 & 5.5 .2.2 show both the parallel and perpendicular IR spectrum of unexposed 

Polyazide, the stars indicate the azide peaks. 
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Figure 5.5.2.1: IR Spectrum of Polyazide (Perp) . 
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Figure 5.5.2.2: IR Spectrum of Polyazide (Para). 

The film was then exposed for one hour to radiation from the deuterium lamp 

with -a parallel polarisation vector. After this time, the IR spectra were once again 

recorded. It was noticed that after one hours irradiation, there was no observable 

change in the azide peaks. The dichroic ratios for the 2127 cm-1 and the 1275 cm-1 

bands were calculated to be 1.0 and 0.98 respectively. Irradiation continued for a 

further hour, but still no change was observed. This continued until the sample had 
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received 89 hours polarised exposure. Despite rece1vmg prolonged deuterium 

irradiation, the IR spectra remained unchanged. 

This is unsurprising if the results obtained from the UV studies are considered. 

These show that approximately 9% of the chromophores react. This is within 

experimental error and as such, it is unlikely that such a small change will be detected 

and hence the dichroic ratio appears to remain constant. 

Solid Une: 0 Hours Expoeure 

Dotted Line: 89 Hours Exposure 

1000 

Wavenumber 1 cm-1 

Figure 5.5.2.3: IR Spectrum of Polyazide (Perp) After 89hrs Polarised Exposure. 

Solid Une: 0 Hours Ex-ure 
Dotted Une: 11 Hours Expoaure 

Wavenumber 1 cm..1 

Figure 5.5.2.4: IR Spectrum of Polyazide (Para) After 89hrs Polarised Exposure. 
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It has been shown that exposure using polarised deuterium radiation did not 

promote sufficient reaction such that infrared spectral changes were evident. This 

evidence supports the results from UV spectroscopy; irradiation of the Polyazide film 

with the deuterium lamp promotes little azide reaction. 

5.5.3. NMR Studies 

Both UV and IR spectroscopy show that little reaction is occurring in the 

polyazide film upon irradiation with the deuterium lamp. In solution, UV 

spectroscopy shows that reaction does occur. Therefore, NMR experiments were 

carried out in an attempt to elucidate what was happening in solution and why the 

same process was not observed in the solid film. A solution of Polyazide in 

deuterated chloroform was irradiated with unpolarised radiation from the deuterium 

lamp and the subsequent reactions followed by NMR. Figures 5.5.3.1 & 5.5.3.2 show 

the NMR spectra of Polyazide before exposure, and after 3 hours exposure, Figures 

5.5.3.3-5.5.3.6. 

Assignment of the NMR peaks is shown in section 5.3. Figures 5.5.3.3-5.5.3.6 

show that after three hours exposure, there is no observable change in the NMR 

spectra; no peaks decrease and no new peaks arise. This result is unsurprising when 

the possible reaction mechanisms are considered. It has been shown that azobenzene 

formation is not occurring which leaves insertion into C-H bonds and proton 

abstraction as the possible reaction mechanisms. Control over how and where 

reaction is occurring is not achievable. Insertion can occur into the C-H bonds of the 

backbone, of the side chain and also ofthe methyl group. Proton abstraction can also 

occur in these places. The NMR spectra of the Polyazide shows very broad peaks and 

any change in peaks size would have to be quite significant to be observed. The lack 
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of control over the reaction could mean every possible insertion and proton 

abstraction can occur, giving rise to small changes in the corresponding peaks. A 

change in a particular carbon peak of -10% would be barely detectable, and could not 

be distinguished from experimental error. Although reaction is occurring in this 

system, it is impossible to identify the reacting species or be certain where in the 

system the reaction takes place. 

After being stored for two months at 253K, it was found that the Polyazide 

was no longer soluble in any of the solvents previously used to make its solutions, 

indicating some sort of reaction has occurred. In an attempt to elucidate what had 

occurred, solid state 13C and 15N NMR was carried out on the sample. 13C NMR 

spectra are shown in Figures 5.5.3.7 & 5.5.3.8. 

Two signals are expected from the carbons situated in the carbonyl groups in 

the polymer as they are located in two different chemical environments. Peaks should 

occur in the region of 160-180ppm7
• Figure 5.5.3.7 shows that two peaks are 

observed in this region, however, both peaks have small shoulders on the right hand 

side. These shoulders may indicate the presence of carbonyl groups in differing 

environments to those in the unreacted sample. Insertion or abstraction occurring at 

the carbons located near the carbonyl groups would slightly alter the groups chemical 

environment and thus alter its chemical shift. From this data, it is not possible to say 

what or where reaction is occurring, only that more than two types of carbonyl group 

are present in the insoluble sample. 

In the case of 15N NMR, three signals are expected from an unreacted sample. 

This is due to the three nitrogens present in the sample occupying slightly different 

chemical environments. If the azide group has reacted, then two of these signals 
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should decrease due to the loss of molecular nitrogen and new peaks form due to the 

formation of new, differing reaction products. Figure 5.5.3.9 shows the 15N NMR 

spectrum for Polyazide. 

The signal to noise ratio is poor, despite an acquisition time of 15 hours, due to 

the low natural abundance of 15N. 

~N=N=N 
~ab c 

The observed spectrum, Figure 5.5.3.9, is essentially that of the starting 

material, containing three nitrogen signals: Na gives rise to the signal at 278ppm 

whilst the doublet at 136ppm corresponds to Nb and Nc 10
• 

Due to the poor signal:noise ratio, greater than 20% of the azide groups 

present in the pure material would need to react via the same mechanism, giving rise 

to the same reaction product before the occurrence of a new peak could be detected. 

As it needs only a few molecules to react before an insoluble product is obtained, a 

change of -20% is highly unlikely. Once reaction begins, the polymer is held in a 

more rigid structure, making motion and hence further reaction more difficult. 

From the solid state NMR data, it is shown that there are more carbonyl peaks 

present than expected in the pure Polyazide, indicating reaction occurring in the 

region of these species. No new peaks are evident in the spectrum due to the small 

number of azide moieties actually reacting. 15N NMR shows only peaks due to the 

starting azide material due to the poor signal:noise ratio as well as the low extent of 

reaction. 
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5.5.4. Birefringence Studies 

Birefringence measurements are carried out using the methodology described 

in Chapter 2.8. The sample birefringence was measured in varying positions on the 

slide, as described in section 2.8.3. For the Polyazide there were no comparison 

experiments performed between annealed and unannealed samples due to the thermal 

instability of the polymer. 

For measurements taken at the centre of the sample, the plots shown in Figure 

5.5.4.1 are observed. 
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C) 
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E 
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Time/ s 

Figyre 5.5.4.1: Birefringence Curve for Polyazide: Measurements Made in the Centre of the 
Sample. 

It can be seen for Figure 5.5.4.1, that at the point in time where the He-Cd 

laser is switched on, the birefringence falls. This indicates an initial orientation in the 

film which is destroyed by the He-Cd radiation. At the lowest point on the curve, the 

sample has little or no birefringence. The absolute birefringence value of a particular 
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sample cannot be measured and therefore the lowest point on each curve is set to zero. 

The value of the birefringence then begins to climb and gradually levels out. After 

lOOs exposure the He-Cd laser is switched off, although the monitoring He-Ne laser 

remams on. A small drop in birefringence is observed before the values level off once 

more. 

The overall change in birefringence is 0.007. This value is a factor of ten 

smaller than the photoinduced birefringence of a high T g poly (ether ketone) doped 

with an azobenzene containing polymer (0.08) 11
• Only a very small anisotropy is 

introduced into the polyazide film. 

The curves obtained when monitoring the birefringence on the upright edge of 

the sample vary greatly in overall induced birefringence as well as the rate at which 

saturation occurs, Figure 5.5.4.2. 

0.008 .---------------------------, 

0.006 

~ 0.004 c: 
Q) 
C) 
c: 

~ 
iD 0.002 

0.000 

0 50 

o Upright Edge (7r4) 
• Upright Edge (7r10) 
" Upright Edge (8r4) 
o Upright Edge (7r15) 

100 150 200 250 300 

Time Is 

Figure 5.5.4.2: Birefringence Curve for Polyazide: Measurements Made on the Upright Edge of 
the sample. 
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When the laser is switched on, the birefringence shows either an initial fall or 

nse. This change is followed by an gradual increase to a plateau, where a drop is 

noticed when the He-Cd laser is switched off. The magnitude of the birefringence is 

generally much smaller than that achieved in the centre of the sample. The curves 

obtained at the top edges of the samples, Figure 5.5.4.3, follow the trends of those 

observed for the upright edges, although the changes in induced birefringence vary 

greatly. 
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Figure 5.5.4.3: Birefringence Curve for Polyazide: Measurements Made on the Top Edge of the 
sample. 

, Decay of birefringence when the laser is switched off is governed by 

relaxation of the sample to its equilibrium state as well as by a temperature gradient. 

As the laser radiation is absorbed, it heats the polymer film. When the laser is turned 

off, heat dissipates through the film, changing the temperature of the analysed spot. 

The depth of the drop is related to the mobility of the sample; the more mobile, the 
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larger the drop. In polymers where there is a large difference between the operating 

temperature and the Tg ofthe sample, this decay is small 12 • 

These results show that what were thought to be initially isotropic films 

clearly are not. There is much variation in photoinduced birefringence for one 

sample, depending upon the region of the sample analysed, although the anisotropy 

induced in all samples is small. Fluctuations in sample thickness, roughness and local 

orientations greatly influence the results obtained in this experiment. 

5.5.5. Fabrication of a simple Liquid Crystal Cell 

A film of Polyazide on quartz was exposed for varying time scales to the 

vertically polarised UV laser. A schematic diagram of the film and exposure times is 

shown in Figure 5.5.5.1. 

0 0 0 
10s 60s 200s 

' Figure 5.5.5.1: Exposure Times for Polyazide. 

The exposed film as then used in the construction of a liquid crystal cell. 

Rubbed polyimide was oriented such that its alignment direction was perpendicular to 

the polarisation vector of the incoming UV radiation. When viewed using an optical 
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microscope with crossed-polarisers, the irradiated areas appear as dark spots on a dark 

background. 

Figure 5.5.5.2: Non-Twisted Alignment. 

The rubbed polyimide film is aligning the liquid crystal along the rubbing 

direction. As we continue up through the thickness of the cell, the influence of the 

polyimide layer on the liquid crystal decreases and they assume a more random 

orientation, giving rise to a grey colouration when viewed through crossed polarisers. 

In the region when the polyazide has been irradiated, a much darker spot is observed. 

This is due to the polyazide film aligning the liquid crystal in the same direction as the 

polyimide, thus less light passes through the sample relative to the random orientation 

and the irradiated area appears darker. This result is contrary to expectations and 

further supports the evidence that azobenzene moieties are not being formed. 

A second sample was irradiated as shown in Figure 5.5.5.1. When the liquid 

crystal cell was constructed, the polyimide rubbing direction was parallel to that ofthe 

incoming UV polarisation direction. The images presented in Figure 5.5.5.3 - Figure 

5.5.5.7 are observed when the cell is viewed through crossed-polarisers. 
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Figure 5.5.5.3: I Os Exposure. 

Figure 5.5.5.4: 20s Exposure 
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Figure 5.5.5.5: 60s Exposure 

Figure 5.5.5.6: lOOs Exposure. 
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Figure 5.5.5.7: 200s Exposure. 

The cell images shown in Figure 5.5.5.3 - Figure 5.5.5.7 show bright white 

spots at low exposure times. As the cell is viewed through crossed polarisers, this 

indicates that the light passing through the first polariser is being twisted by an angle 

in the region of 90°, allowing it to pass through the second polariser. This is 

attributed to the twisted alignment of the liquid crystals. The brightness of the white 

spot gives some indication of the degree of twist, the brighter the spot, the closer the 

angle is to 90°. 

The formation of a cell in which the liquid crystal twists indicates that the 

alignment directions of the two films are perpendicular. A schematic diagram of 

desired and measured liquid crystal alignment in polyazide is shown in Figure 5.5.5.8. 
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UV Polarisation Direction Unexposed Film 

Desired Alignment Direction Actual Alignment Direction 

Make LC Cell Rubbed Polyimide Make LC Cell 

Figure 5.5.5.8: Alignment in Polyazide cell. 
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It was hoped that the polyazide would align the liquid crystals in a direction 

parallel to the polarisation vector of the incoming radiation. As can be seen from 

Figure 5.5.5.8, if this were true, then constructing a cell with the rubbed polyimide 

alignment direction perpendicular to the polarisation direction of the UV would result 

in twisted alignment of the liquid crystals, this is not observed Figure 5.5.5.2. From 

Figure 5.5.5.3- Figure 5.5.5.7, it is clear that a twisted display has been formed by the 

fabrication of a cell in which the rubbing direction and the UV polarisation direction 

are parallel. The polyazide film is aligning the liquid crystals in a direction 

perpendicular to the UV polarisation direction. 

As the exposure time increases, the centre of the white spot darkens. This 

'burn out' is due to prolonged exposure of the sample. The increased irradiation time 

naturally leads to an increase in the intensity of UV radiation the sample is exposed to. 

Once the azide groups parallel to the polarisation vector are depleted, those slightly 

off normal to this direction begin to react. At long exposure times, the magnitude of 

this off-axis depletion increases. At this stage, the anisotropy in the sample which 

leads to liquid crystal alignment is removed, and hence the appearance of dark spots 

in the cell. 

A film of the polyazide was masked and exposed to the polarised radiation 

from the deuterium lamp. The constructed cell, with desired and rubbed polyimide 

alignment directions perpendicular, shows no liquid crystal alignment. This is 

' 
unsurprising as the previously constructed cell indicates that the desired parallel 

alignment direction is not achieved. Therefore, irradiation of polyazide was repeated 

and a cell constructed in an identical manner to that described for the sample 
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irradiated by the laser which shows twisted alignment. Liquid crystal alignment was 

not observed. 

5.6. Conclusions 

Poly(p-azidobenzoate ethyl methacrylate) has been shown to be a very 

unpredictable and unreliable material. A lifetime of only two months whilst being 

stored at 253K greatly limits it usefulness. The reactivity of this polymer varies 

greatly with irradiation source as well as with the physical state of the film. Using the 

deuterium lamp as the radiation source, reaction is observed in both solution and in 

the film, however, the extent of the reaction varies greatly. In solution, a large 

proportion of the azide species react. In the film, considerably fewer chromophores 

are depleted, despite prolonged exposure times. This indicates that mobility of the 

reacting species is important when attempting photo-cross-linking reactions. When 

the He-Cd (325nm) laser is the radiation source, the film reacts much more readily, 

almost 50% of the azide species are consumed. Laser radiation is monochromatic and 

of high intensity, this is shown to be much more effective at bringing about reaction 

than the deuterium lamp. 

Azobenzenes, the desired reaction product, are not observed in any reactions 

using either the laser or the deuterium lamp, in either solid or solution form. This 

may be attributed to the low concentrations of nitrenes formed upon irradiation with 

the deuterium lamp. Although the laser will yield a higher nitrene concentration, the 

mobility of the chains is hindered due to the relatively rigid orientation in which the 

chains are held in the film. 
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It was shown that twenty five hours polarised irradiation of the film with the 

lamp effects little change in azide concentration. This goes some way to explaining 

the lack of infrared dichroism shown by the polymer. Any change in the IR spectrum 

will be so small that it is outweighed by errors associated with the calculation of the 

absorbance area. 

Although the polyazide was shown to be birefringent, the anisotropy 

introduced into the film by photo-reaction is very small. The area irradiated by the 

laser has a diameter of 3-4mm2
• Therefore, measurements were made at numerous 

locations on the sample. The results obtained show both the magnitude of the 

birefringence and the rate at which maximum birefringence is achieved differ greatly, 

with no obvious trend regarding the area analysed. 

Polyazide aligns liquid crystals in a simple cell in the direction perpendicular 

to that of the polarisation direction of the exposing laser radiation. Over-exposure of 

the sample occurs at prolonged irradiation times and liquid crystal alignment is lost. 

Alignment is not achieved when the deuterium lamp is the radiation source. 

Initially, the polyazide system appeared to have potential as a liquid crystal 

alignment layer. However, photo-induced orientation of the polymer does not occur 

via the desired azobenzene formation mechanism. The reactions giving rise to the 

anisotropy in the films can only be postulated. No proof can be offered as to the 

identity of the photo-reaction products. Indeed, such is the instability of the material 

that random, thermal reactions cannot be ruled out. 

Cell formation indicates orientation in the film which brings about liquid 

crystal alignment. However, bulk measurements do not give rise to the same 

224 



conclusions. Effects of exposure at the surface of the film appear more pronounced 

than in the bulk. Surface orientation is achieved although bulk alignment is not. 

In conclusion, this polymer is unsuitable for use in liquid crystal display 

devices due to its instability and lack of understanding as to how and where reaction is 

occumng. 
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6. Conclusions and Future Work 

6.1. Conclusions 

The objective of this project was to assess the suitability of two novel 

polymers regarding their potential as liquid crystal alignment layers. A known 

polymer system, poly (vinyl cinnamate) was used as a model compound in this work. 

The well characterised [2+2] cycloaddition reactions allowed appraisal of the four 

chosen techniques; UV spectroscopy, polarised FTIR, birefringence and cell 

fabrication to be carried out. PVCi was also employed in determining the effect of 

radiation source upon observed reactivity. 

The two radiation sources used were a broad wavelength range deuterium 

lamp (A.=185-370nm) and a vertically polarised He-Cd UV laser (A.=325nm). The 

initial aim, in terms of the deuterium lamp, was to use a band pass filter to select the 

desired wavelength radiation (A.-325nm) and to polarise the radiation using an 

external polariser. However, when the band pass filter was in place, the intensity of 

light falling onto the sample was reduced to such an extent, when compared to the 

lamp with no filter present, that no reaction was observed over a reasonable timescale 

(many hours). It was therefore decided that the whole spectral range of the deuterium 

lamp would be employed. This then led to problems in assessing the photon density 

falling onto the sample. 
' 

The chemical actinometer Aberchrome 540 had been chosen to be used in 

conjunction with the band pass filter as its sensitivity range was in the region A.=31 0-

370nm. Without the filter in place, the lamp radiation falling onto the sample covers 

the spectral range A.= 185-3 70nm. A chemical actinometer covering this range could 
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not be found and hence the Aberchrome 540 was used. This brought uncertainty into 

the measured intensity which was passed on in subsequent quantum yield calculations. 

This uncertainty was duly noted and irradiation using the deuterium lamp was carried 

out. 

When unpolarised radiation was used, UV studies showed that ~50% of the 

cinnamate side chains react. However, when this radiation was polarised, this value 

was reduced to 20%. In comparison, when the vertically polarised UV laser was used 

as the irradiating source, ~80% of the chromophores present in the sample were 

shown to undergo reaction. From this work on PVCi, it was concluded that although 

the deuterium lamp promotes the cycloaddition reaction, the rate of reaction is very 

slow, especially when compared to exposure to the UV laser. 

The differences in polymer reactivity with radiation source were further 

evident in the other techniques studied. The deuterium lamp did not induce sufficient 

reaction for birefringence studies or cell fabrication to give rise to any noticeable 

change in the sample due to this exposure, despite the fact that UV studies show that 

~20% ofthe chromophores react. Reaction was evident in theIR spectrum however, 

as explained in chapter 3.3.2, due to the complexity of the experimental design, this 

change could not be separated from experimental error. 

Due to geographical restrictions, IR studies could not be carried out on 

samples exposed to the UV laser. However, UV studies, birefringence studies and 

cell fabrication studies were possible. The birefringence results showed some very 

interesting features: inherent orientation in the majority of PVCi samples studied. 

This initial orientation was not removed by annealing and is thought to arise from 

chain entanglements. PVCi does show anisotropy when irradiated with the UV laser 
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although the magnitude of this anisotropy is smalL indicating only a small degree of 

order. However, this small degree of order is sufficient to align liquid crystals in a 

simple liquid crystal cell. 

The studies on the model cinnamate compound highlight difficulties with 

certain aspects of the techniques chosen as well as providing the opportunity to perfect 

experimental techniques and analysis methods. Other techniques such as force 

microscopy and grazing incidence X-ray diffraction were considered, however, the 

contrast between exposed and unexposed regions in the film was shown to be slight. 

X-ray diffraction requires a significant extent of order before a profile can be obtained 

and order of this magnitude is not achieved by exposure of the polymer film to 

polarised radiation. 

The studies then moved on and the photochemical reactions of two new 

systems were studied. The first polymer system was based on anthracene and was 

expected to form a dim er across the 9, 1 0-position of the anthracene moiety upon 

irradiation with UV light. UV spectroscopy showed that chromophore depletion did 

occur upon irradiation however, horizontally polarised radiation induces almost three 

times as much reaction as vertically polarised radiation. This indicated that there is 

inherent orientation within the sample and that the anthracene species are lying 

preferentially with their long axes parallel to the polarisation direction of the 

horizontally polarised radiation. 

' 
Both unpolarised radiation from the deuterium lamp and vertically polarised 

laser radiation show very distinctive quantum yield decay curves. It is postulated that 

energy migration is occurring and although there is no direct evidence for this, energy 

migration is known to occur in anthracene systems. 
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Results of IR and birefringence studies confirm the existence of initial 

orientation m the polyanth system. The cause of this initial order is unknown, 

however, the constant factor in the preparation of all samples is the spinning process 

and this may be a good starting point for further investigations into the inherent order 

within this system. Polyanth was shown to align liquid crystals in a simple cell. This 

alignment proceeds up to a finite exposure time, after which, alignment is lost. This is 

thought to be due to loss of anisotropy in the sample due to energy migration. 

From the results on the studies of polyanth, it is concluded that this system 

does have the potential to become a polymer alignment layer for use in a liquid crystal 

display device. 

The final polymer system studied was based on an azide species. Upon 

exposure to UV radiation, azides lose molecular nitrogen and form nitrenes. Nitrenes 

can undergo may types of reaction and it was hoped that recombination of two 

nitrenes to form an azo compound would be favoured. 

The polyazide species is thermally unstable and undergoes little reaction upon 

exposure to the deuterium lamp. Almost four days exposure promoted no reaction as 

observed by IR spectroscopy. UV spectroscopy shows reaction does occur although 

only 9% of the chromophores present react after 25 hours exposure to vertically 

polarised radiation. Neither UV nor IR spectroscopy show any evidence for the 

desired azobenzene formation. 

Exposure to the UV laser does promote reaction in -60% of the chromophores, 

although absorption due to the formation of an azobenzene moiety is not evident. 

NMR studies were carried out in an attempt to elucidated the reactions occurring in 

this system. Solution state NMR showed no change in the spectrum upon exposure. 
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After 2 months of storage at 253K, the polymer became insoluble and therefore solid 

state NMR studies were performed on the insoluble system. The results for 13C NMR 

studies showed the presence of more carbonyl peaks than expected and no evidence of 

new peaks and 15N NMR showed only the peaks expected for the starting material. 

NMR studies did not provide any further insight into the reactions occurring in 

polyazide. 

Polyazide was found to exhibit birefringence upon exposure to UV light. 

However: fhe magnitude ofthe birefringence was small and varied greatly within and 

between samples as did the rate at which maximum birefringence was achieved. 

Some regions of a sample could be isotropic whilst others showed definite order 

before exposure. 

Although the polyazide did align liquid crystals in a simple cell, further studies 

concerning this polymer as a potential alignment layer would not be recommended as 

the system is too unstable to be stored in the solid state for any period of time and its 

reactivity upon exposure to UV light is unpredictable. 

In conclusion, of the two novel polymer systems studied, poly (9-

anthraceneoate ethyl methacrylate) is the only system upon which further research as 

to its applicability as an alignment layer is worthwhile, both in terms of time and 

money. 
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6.2. Future Work 

As has been shown by this project, poly (9-anthracenoate ethyl methacrylate) 

has the potential to become an alignment layer for use in liquid crystal displays. 

The possibility of energy migration occurring in this system needs to be 

substantiated. In order to do this, photophysical measurements must be carried out on 

the system. Not only will this provide evidence as to the extent of energy migration 

but will also give information regarding the state of the migrating energy, singlet or 

triplet? 

The orientation of the anthracene species is important for dimer formation, the 

sandwich topology being the ideal situation. Are there ways of making this topology 

more probable? It would be interesting to investigate the changes in reactivity of the 

polyanth system upon changing the length of the spacer group between the two 

carbonyl moieties. Will lengthening the spacer group provide increased side chain 

flexibility or simply cause greater entanglement of the side chains, possibly forcing 

two anthracene species together? A typical value for the molecular weight above 

which entanglements occurs (Me) could not be found for an anthracene-containing 

system. However, for a sample of poly (methyl methacrylate) (PMMA) which is 

-75% syndiotactic, values of Me in the region of 105 have been determined 1• 

The results of this work suggest that the anthracene moieties are m the 

polyanth system are initially ordered, however, the cause of this ordering is unknown. 

The production of a series of films spin cast at varying speeds using differing solution 

concentrations would be an ideal starting point for investigations into the cause of this 

inherent order. 
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The most significant underlying problem when devising a potential liquid 

crystal alignment layer is that the actual alignment mechanism is not fully understood. 

Topological, steric, polar and van der Waals forces may all play a part in aligning 

liquid crystals. Until the actual alignment mechanism is understood, the design of the 

'perfect' alignment layer will be a trial and error process. 
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1) L.J.Fetters, D.J.Lohse & R.H.Colby, Physical Properties of Polymers Handbook, 

Ed: J.E.Mark. AlP Press, New York, 1996. 

234 



Appendices 



Appendix for Chapter Three 



UCAL 4.06 UN!CAL SUMMARY REPORT 
=================2============================================================== 
PVCi ENDED: 05/19/95 10:36: Poly(vinyl cinnamate) 
===~============================================================================ 
PA~M-1E:TERS 

CUNCENTRAT!OtJ tong/rnl) 
[~JECTION VOLUME (ml) 
OPT SENS[f!VITY {mv/PdJ 
frJLd PRE:3:3URE (KPe~) 
;"IJ•:J ~:ATE (onl/min) 
•I f :_;o.l•r·ol:: rt::R •JfF'3~ T ( onl.) 
'· •:. •. • _, 1 A F: r r I ~1E ~ "' i ro .l 

.,c '-' . _; r •JP r lo1E ( '" ; ") 
·_,;. i .• ioJ I U'VA.L ( :;;.,,~) 
:; ((,f·oA (onL! 
j ,'ll.• ( .: ) 

[,\t) (V J 
I Hi·:t':SHOLD 

. 7 0<1 

. 101) 
1. OIJo) 
I . g ~) .3 
1 . IJ•j o) 

.I) 1·1 
10 . o) oJ 1) 

2 0. Oojl) 

I. 20•l 
177 

. o)')4 

. o)i4 

.020 

MOLECULAR WE [(;HT VALUES 
Mn (avg) m Z.SOSE 
Mw (avg) m 4.S72E 
~i 2: ( a v g ) ~ •i . 9 5 .: E 
Mp ~ 4.025E 
Hv ( .:n ... ~; j 

/'oln (.nu f~· I j-:: 
·I. 1 7 ·~E 

I . •.l:'i ~f 

F·UL Y(! I ::.~lo~::::.f T y ::·,\ f l <.~•::, 

~1'~:'1'-ln == 
Mz;Hoo ~ 

::>~EWNE S 
SKE~~ ... r., 
~'>K El~ (t• = 

I . 52') 
::.776 

OF 01 :~ TR l f.\ I) f l ON 
2. I 23 
I. 686 

M(rH0U: UCAL-NARROW INTEGR~TED DETECTOR SIGNALS 8A:3EL ti>lt: X 
<:AL F ILO:: C21 lj495 CUrJ(: (m·,-ml i ~ ,j . ·l :j L. 'I [ ::.c 100 

VISC ~mv-ml) = 4.57 R. v IS•: 2 ·~I 
~1.'K~.-i1(ot1Wfm: CONSTA.NTS 
.cL,'Iiol .605 IV (dl_/g) I . 3 04 L.. •:UNC 10) 
L.. ._n; 1\ -}. 275 V l SCOTEi< ~lOOEL£ 21)0 R. o;(JtJ( 3 I I 

GPC Trace for Poly (Vinyl Cinnamate) 

5 
s 
5 
s 
5 
·) 

y 

513.'12 
87.22 

2125. d 
2130.90 

:0 
fT1 
-l 

-< 
0 
r-

3 
r-

0 < 
0 ~· 
~ "' n n 

0 0 
~ ::r , , 
0 0 
511 3 

"' "' ..... ..... 
0 0 

<C •a ., ., 
"' "' 9 3 

0 
0 

,_.0 
0 

0 

..... 
ru 
0 

..... 

.b. 

0 

.... 
(D 

0 

ru 
0 

0 

1\J . 
0 
0 

..., < ,_. ,_..., 
'CJl mn 
~0 

b. Ol 

3:--l 
f':'SQ 

(D 

0 0 
0 0 

n 
0 0 
::IJ 0 
Ll , 

< n ...... 

::IJ c. 
c n 
z.J> 
~ r-
!=? 

.D. 

= 01 

, 
0 ,_. 
'< 

< -:::> 
'< ,_ 
n ..... 
~ 
~ 

"' 511 

"' ... 
.!!. 

0 
c.: 
)> 
r-
n m ....... z. 
:c CJ 

nt 
0 !=? 
~ 
-I 0 
0 U'1 = ..._ 
::r::; 

r.D > ..._ 
:?:: r.D 

U'1 

~ 
w 
m 



-X e -
3: 
0 
_I 
LL. 

r
~ 
UJ 
J: 

.75 

.5 

.25 

0 

= 

Tg from: 84.79 
to: 93.28 

Onset• 86.87 
J/gMdeg ..... 29 
Tg• 89.76 

0.00 
Date: Nov 06, 1994 3: 26pm 
Se ann ing Rate: 10. o C/min 

~0.00 

Sample Wt: 1. 586 mg Path: \NC\ 
File J:HNPVCINR 

(HMPVCIN2) 

9o.oo _____ idi[c)(f-- ------- do:oo- --- t2o.oo do.oo 
Temperature (C) 

PERK £N-E!_ /VIER OSC 7 DSC Trace for Poly (Vin)'l Cinnamatc) 



Appendix for Chapter Three 

Exposure ( s) 1-C/Co Quantum Yield 

0 0 -

300 0.11 1.28 

600 0.18 0.77 

900 0.21 0.60 

1200 0.25 0.49 

1500 0.25 0.44 

1800 0.28 0.40 

2100 0.28 0.32 

2400 0.29 0.28 

2700 0.29 0.26 

3000 0.31 0.21 

3300 0.34 0.24 

3600 0.36 0.20 

3900 0.36 0.18 

4200 0.36 0.18 

4500 0.36 0.15 

4800 0.37 0.17 

5100 0.38 0.14 

5400 0.38 0.15 

5700 0.41 0.14 

6000 0.43 0.15 

6300 0.43 0.12 

6600 0.43 0.12 

6900 0.43 0.13 

7200 0.43 0.13 

Table 1: Data for Unpolarised Radiation. 



Exposure (s) 1-C/Co Quantum Yield 

0 0 -

3600 0.13 0.19 

7200 0.15 0.10 

10800 0.16 0.075 

14400 0.18 0.063 

18000 0.19 0.056 

22080 0.21 0.050 

25200 0.21 0.044 

Table 2: Data for Vertically Polarised Radiation. 

Exposure ( s) 1-C/Co Quantum Yield 

0 0 -

3600 0.097 0.16 

7200 0.11 0.092 

10800 0.13 0.071 

14400 0.13 0.053 

18000 0.15 0.048 

21600 0.16 0.045 

25200 0.16 0.039 

28800 0.18 0.038 

32400 0.18 0.033 

36000 0.18 0.030 

39600 0.19 0.030 

Table 3: Data for Horizontally Polarised Radiation. 



Exposure (s) 1-C/Co Quantum Yield 

0 0 -

5 0.05 0.26 

15 0.09 0.17 

25 0.12 0.14 

35 0.16 0.13 

50 0.21 0.12 

65 0.24 0.10 

80 0.27 0.095 

100 0.31 0.089 

120 0.34 0.081 

150 0.39 0.073 

190 0.43 0.064 

240 0.46 0.054 

300 0.51 0.048 

370 0.55 0.042 

460 0.58 0.036 

570 0.63 0.031 

710 0.66 0.026 

890 0.69 0.022 

1130 0.72 0.018 

1730 0.76 0.012 

Table 4: Data for Laser Irradiation. 



Exposure Time Absorbance Absorbance Dichroic 

(Hours) Parallel Perpendicular Ratio 

0 0.24 0.21 1.10 

~ 0.13 0.36 0.38 .) 

6 0.19 0.42 0.46 

9 0.53 0.21 2.49 

12 0.30 0.45 0.67 

15 0.28 0.48 0.59 

18 0.25 0.19 1.27 

22 0.34 0.25 1.38 

25 0.44 0.20 2.24 

30 0.31 0.20 1.60 

Table 5: Dichroic Ratio for PVCi Irradiated with Vertically Polarised Light. 

Exposure (mins) 1 2 
.., 

4 0+120 D-12o .) 

0 0.54 0.53 0.63 0.72 0.75 0.84 

2 0.53 0.55 0.72 0.77 0.69 0.76 

4 0.53 0.81 0.63 0.74 0.71 1.29 

6 0.71 0.64 0.63 0.81 0.88 1.02 

8 0.72 0.62 0.71 0.81 0.89 0.87 

10 0.54 0.60 0.78 0.79 0.68 0.77 

' 12 0.53 0.59 0.70 0.74 0.72 0.84 

14 0.53 0.57 0.71 0.74 0.72 0.80 

Table 6: Data for PVCi Dichroism. 



Exposure (mins) I 2 
,.., 

4 D+t2o D.12o .) 

0 0.26 0.30 0.34 0.27 0.96 0.88 

2 0.26 0.31 0.32 0.28 0.92 0.97 

4 0.26 0.30 0.32 0.28 0.92 0.94 

6 0.26 0.29 0.32 0.29 0.90 0.90 

8 0.25 0.28 0.28 0.28 0.89 1.0 

Table 7: Data for Repeated PVCi Dichroism Experiment 
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Exposure I Orientation 1142cm·1 1196cm·1 D (1142) D (1196) 

hours 

0 para 0.22 0.24 0.63 0.36 

perp 0.75 0.67 

1 para 0.21 0.23 0.90 0.45 

perp 0.50 0.50 

2 para 0.22 0.23 1.08 0.54 

perp 0.44 0.42 

" para 0.22 0.48 1.27 0.54 .) 

perp 0.37 0.26 

4 para 0.28 0.35 2.40 0.97 

perp 0.25 0.35 

5 para 0.27 0.34 2.20 0.94 

perp 0.28 0.35 

6 para 0.28 0.38 1.92 0.96 

perp 0.32 0.4 

8 para 0.25 0.26 2.84 0.91 

perp 0.19 0.29 

10 para 0.23 0.28 2.51 1.02 

perp 0.20 0.28 

Table I: Absorbances and Dichroic Ratios for Polyanth. 



Exposure I Orientation 1142cm·1 1196cm·1 D (1142) D (1196) 

hours 

0 para 0.27 0_30 0.63 0.60 

perp 0.43 0.50 

1 para 0.19 0.25 0.86 0.71 

perp 0.22 0.35 

2 para 0.19 0.25 0.97 0.79 

perp 0.19 0.20 

3 para 0.24 0.19 0.97 0.87 

perp 0.24 0.21 

4 para 0.27 0.26 1.08 0.93 

perp 0.25 0.28 

5 para 0.28 0.27 1.24 0.98 

perp 0.23 0.27 

6 para 0.25 0.26 1.05 1.11 

perp 0.24 0.23 

Table 2: Absorbances and Dichroic Ratios for Polyanth. 



Exposure I Orientation 1142crn-1 1196crn-1 D (1142) D (1196) 

hours 

0 para 0.27 0.30 0.62 0.54 

perp 0.43 0.56 

1 para 0.26 0.28 0.67 0.55 

perp 0.39 0.51 

2 para 0.26 0.31 0.96 0.92 

perp 0.24 0.33 

.. para 0.26 0.34 0.99 1.07 , 
perp 0.27 0.32 

4 para 0.31 0.37 1.14 1.21 

perp 0.27 0.31 

5 para 0.32 0.38 1.18 1.28 

perp 0.27 0.30 

6 para 0.32 0.36 1.25 1.30 

perp 0.26 0.28 

8 para 0.30 0.36 1.16 1.22 

perp 0.26 0.29 

Table 3: Absorbances and Dichroic Ratios for Polyanth. 
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