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1. Introduction

Groundwater is vital to human well being, providing two billion people with drinking water (Morris et al.
2003), supporting$210-5230 billion of annual global output of irrigated agricultural produce (Shah et al.
2000), and controlling the flows of water through the world's biomes (Alley et al. 2002). Given this
importance, it is all the more disappointing that the Fourth Report of the Intergovernmental Panel on

Climate Change (IPCC) still reports that there “has been very little research on the impact of climate
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change on groundwater” and that “the few studies of climate impacts on groundwater for various

aquifers show very site-specific results” (Kundzewicz et al. 2007).

To contribute to addressing these perceived shortcomings and to maximize future study value,
methodological recommendations are provided here for hydrogeologists to consider in groundwater-

related climate change impact and adaptation studies.

2. Using climate model projections

Due to their current limitations, whether climate models produce climate projections that are fit for
adapting to or managing the future is a matter of debate (Beven 2011). Although other approaches have
been suggested (analogue regions, empirical models, projections based on historical responses — e.g.
Dickinson et al. 2004), projections from global and regional climate models (CMs and RCMs) are the
default tool for generating future climate projections for input to recharge and hydrogeological models.

If this approach is taken, the following are recommended:

Use climate scenarios from multiple GCM or RCMs. Many groundwater impact studies still use outputs
from a single GCM or RCM, despite the recognized importance of climate model uncertainty in
hydrological studies. Recently, the need for the groundwater community to use outputs from a range of
GCMs or RCMs has been reemphasized (Toews and Allen 2009a; Goderniaux et al. 2009; Allen et al.
2010; Crosbie et al. 2011). For example, Jackson et al. (2011) found that the simulated changes in annual
potential recharge to a UK Chalk aquifer using 13 GCMs ranged from -26% to +31% by the 2080s, with

ten GCMs leading to predicted decreases and three to increases.

Use multiple emissions scenarios. A second major uncertainty in future climate is the emissions of
greenhouse gases, which are expressed through the use of emissions scenarios, such as the IPCC Special

Report on Emissions Scenarios (SRES) (Nakicenovic and Swart 2000). As these are considered to be



equally probable, groundwater impact studies should span the range of emissions scenarios (e.g.
Rosenberg et al. 1999; Crosbie et al. 2010) to avoid overly certain and unduly pessimistic/optimistic

results.

Consider the implications of the choice of downscaling method(s). GCM or RCM outputs of future climate
are generally downscaled (Fowler et al. 2007) because the scales of climate and hydrological models are
different and biases exist between simulated and observed climatic variables. The simplest downscaling
method is the ‘perturbation’ or ‘delta-change’ method (e.g. Jackson et al. 2011), which implicitly
assumes that the future climate is a perturbed version of the present, with weather that has the
variability characteristics of the baseline weather but is slightly wetter/drier and warmer/cooler in each
month. Many studies suggest however that the future variance within climate parameters will change,
such that more complex downscaling techniques which allow the statistical distribution of climatic
variables to be adjusted should be preferred (Goderniaux et al. 2009; Kilsby et al. 2007; Mitchell 2003;
Salathé 2005). The use of more complex methods however imposes significant additional
computational requirements and can contribute additional uncertainty (Stoll et al. 2011; Chen et al.
2011). Holman et al. (2009) suggest that they should be preferred in systems which may be sensitive to
changes in the temporal sequencing and persistence of recharge droughts. Given the different
assumptions underpinning downscaling techniques, the choice of technique(s) should be guided by the
compatibility between these assumptions and the objectives of the project and to the sensitivity of the

aquifer.

3. Improved hydrogeological coupling

In order to assess the impact of assumed future conditions (climate, landuse, demographics, adaptation

feedbacks, etc.) on groundwater distribution and its quantity and quality, some kind of coupling



between these forcings and the hydrogeology needs to be assumed. For example, this may be through
empirical models which relate climatic factors to groundwater conditions (Bloomfield et al. 2003) or
through the use of physically-based recharge models (e.g. Jyrkama and Sykes 2007; Scibek and Allen
2006; Toews and Allen 2009a) and groundwater flow models (e.g. Goderniaux et al. 2009; Nyenje and
Batelaan 2009; Rozell and Wong 2010; Scibek et al. 2007; Toews and Allen 2009b; van Roosmalen et al.

2007). In this respect the recommendations are:

Properly consider hydrogeological model structural error and model uncertainty. All groundwater impact
studies are influenced by the validity of their system representation and conceptualisation, so that
particular attention must be devoted to properly identifying and representing water entering and
leaving the groundwater system through recharge, river-aquifer interactions, pumping and boundaries.
When different domains, such as surface and subsurface, are strongly interconnected with important
feedbacks, using models integrating all systems should be considered. Model structural (conceptual)
error, despite often being the main source of uncertainty in model predictions, is rarely considered
(Refsgaard et al. 2006; Rojas et al. 2009). For example, it has been shown that different groundwater
recharge models (e.g. soil moisture balance models, 1-D variably saturated flow models, and empirical
rainfall-recharge relationships) may give similar long term historic recharge rates but may still respond
very differently to changes in intensity of precipitation (Cuthbert and Tindimugaya 2010). When viable
model structures cannot be invalidated, ensembles of climate projections should be coupled with

ensembles of retained hydrogeological models to produce credible results.

Consider the indirect climate change-induced impacts on recharge. Climate change will affect recharge
through indirect changes to evapotranspiration. For example, increased CO, can lead to partial closure
of stomatal apertures on plant leaves suppressing transpiration (Field et al. 1995) but also to increased

leaf area (LAI) which may result in an increase in transpiration and evaporation. The effects of such



mechanisms have been detected in continental scale water balances (Gedney et al. 2006) and may
produce an effect on global mean runoff that is comparable to that of radiatively forced climate change
(Betts et al. 2007). Increased temperatures may also lead to changes in the timing of crop (e.g.
emergence, senescence) or vegetation (e.g. bud burst, leaf fall) development. This suggests that
recharge models should incorporate plant response to both elevated temperature and atmospheric CO,
to enable the recharge significance of such physiological changes to be assessed (e.g. Rosenberg et al.
1999; Eckhardt and Ulbrich 2003; Green et al. 2007). Since this effect may be minimal under historic
control periods in some parts of the world, this is an important illustration of where model structural

uncertainty described above should be accounted for.

Evaluate across as wide as possible a range of groundwater levels and/or climate conditions. Calibration
is very often neglected, but is crucial to provide credibility (Hill and Tiedeman, 2007). Simulated climate
conditions often predict extremes (such as multi-year droughts) that are outside of the historical
baseline climatology (Holman et al. 2009). It is important that impact models be calibrated across as
wide a range of historic groundwater levels and/or climate conditions as possible to increase the
possibility of model robustness for future conditions, even though it is acknowledged that this is an
insufficient test (Beven 1989). Using different kinds of observations (groundwater levels, river flow rates
etc.) allows a joint and better constrained calibration of groundwater levels, fluxes and water balance
components, and decreases correlation between parameters (Ebel and Loague, 2006; Hill and
Tiedeman, 2007). In climate impact studies, physically based models are often preferred to empirical
models because they rely on physical parameters which can, in some cases, be measured directly, and
may offer more reliability when future climate goes beyond the calibration range. Despite uncertainty
analysis receiving increased attention (e.g. Refsgaard et al. 2007) it is still not standard practice in water
resources modelling studies (Pappenberger and Beven 2006). The implications of uncertainty in input

data and parameters should be quantified (e.g Refsgaard et al. 2007; Hill and Tiedeman, 2007) and



compared to other sources, as Goderniaux et al. (2011) showed that it can be more important than that

linked to climate models and downscaling.

4. Take account of socio-economic considerations

Just as it is unacceptable to consider that future climate will be identical to today’s (Milly et al. 2007), it
is also inappropriate to assume that societal, political and economic conditions will remain unchanged
into the future. To focus on the direct (temperature and precipitation) impacts of climate change is to
neglect the potentially important role of future policy, societal values and economic processes in
shaping the landscape above aquifers (Holman 2006) and groundwater demand, including the feedback

due to adaptation. The following are recommended:

Consider socio-economic change, in particular its effect on landuse change and water demand. Rural
land use is a consequence of socio-economic elements which affect the relative profitability of crops,
livestock or trees either directly (e.g. subsidies, prices) or indirectly (labour, input prices, etc.) (Audsley
et al. 2008; Rounsevell et al. 2003). Whilst the direct impacts of climate on simulated recharge are
generally most important, socio-economic factors do produce regional changes in recharge, which can
locally be highly significant, especially where there are major land use changes (Holman 2006; van
Roosmalen et al. 2009), or changes to the spatiotemporal distribution of groundwater abstraction.
Future groundwater demand will also not solely be a function of climate. Irrigation demand will be
affected by future crop areas, water pricing and abstraction licensing (Henriques et al. 2008; Zhou et al.
2010; Holman and Trawick 2011). Environment Agency (2001) suggested that future domestic water
demand in the UK may change by between -28 and +33% between 1997 and 2025 depending on the

socio-economic assumptions.



Consider the efficacy of adaptation responses. The representation of adaptation within modelling is a
key uncertainty in understanding the likely impacts of climate change and other environmental changes
(Adger et al. 2007). This arises as adaptations involve people, at local to national governmental levels
(Holman and Trawick 2011), but it is commonly assumed that adaptation is immediate and effective.
Groundwater adaptation studies need to consider: (1) the triggers or critical impacts which necessitate
adaptation (i.e. the cause of adaptation); (2) the time-lags involved in a measure being implemented
through policy and taken-up by users; (3) the extent to which a measure might be taken up (which is
especially important for non-mandatory policy measures); and (4) the effectiveness of the measure in

reducing impacts.

Consider adaptation within robust decision making paradigms. Given the many and significant spatio-
temporal uncertainties in future impacts on groundwater discussed above, specifying adaptation
responses which rely on a strong ability to predict future risks or to foresee the eventual outcomes of
decisions is an inappropriate paradigm (Lempert and Collins 2007)- uncertain information is more useful
than a wrong certainty (Bloschl & Montanari, 2011). Instead, groundwater management responses
should be considered within alternative frameworks, such as robust decision-making and adaptive
planning (e.g. Gleeson et al. 2011; Holman and Trawick 2011) or precautionary cost-benefit (Beven,

2011).

5. Concluding remarks

Given the vital importance of groundwater to human wellbeing and ecosystems, improved
understanding of groundwater system behaviour in uncertain futures is required (Green et al. 2011).

Whilst it is recognised that many of the recommendations outlined in this essay have time and



computational costs, their appropriate implementation within the scope of a given study will afford a
fuller appreciation of assessment uncertainty and an improved representation of adaptation responses.
Such an holistic view will afford exciting opportunities for hydrogeologists to work more closely with a
range of other disciplines including climate modelers, socio-economists, agricultural modellers and soil

scientists.
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