
1

Buckling and Vibration Analysis of Functionally Graded Composite Structures using the Finite

Element Method

O.O. Oyekoya2, D.U. Mba1 & A.M. El-Zafrany

1 & 2Department of Structures Impact and Machine Dynamics, School of Engineering, Cranfield University, Cranfield,

Bedfordshire, MK43 0AL, England

1Email: d.u.mba@cranfield.ac.uk

ABSTRACT

The authors [1] have previously written a paper on structural integrity of functionally graded composite (FGC) structure

using Mindlin-type finite elements. In this paper, the Mindlin-type element and Reissner-type element have been further

developed for the modelling of FGC plate subjected to buckling and free vibration. The Mindlin-type element formulation is

based on averaging of transverse shear distribution over plate thickness using Lagrangian interpolation. The Reissner-type

element formulation is based on parabolic transverse shear distribution over plate thickness using Lagrangian and Hermitian

interpolation. The composite plate considered in this paper is functionally graded in the longitudinal direction only, but the

FE code developed is capable of analysing composite plates with functional gradation in transverse and radial direction as

well. This study was able to show that the structural integrity enhancement and strength maximisation of composite

structures are achievable through functional gradation of material properties over the structure.
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List of Symbols

B Matrix of shape function derivatives

F Nodal load vector

K Element stiffness matrix

q Interpolated displacement component

R Residual vector

 Displacement component

 Transverse shear strain vector

 x-y stress vector

 Transverse shear stress vector

 x-y strain vector

a


Acceleration vector

Fi, Gi Hermitian shape functions

Hi, Pi Hermitian shape functions

Ni Lagrangian shape functions

U Strain energy

u, v, w
Displacement components along the x, y

and z directions respectively

V Volume fraction

W Work done by actual load

X Longitudinal strength

Y Transverse strength

 Non-dimensional x and y location

 Density

 Shear modulus

 Transverse shear deformation

 Poisson ratio

 Longitudinal direction of the material axis

 Transverse direction of the material axis

c Compressive strength

f Fibre

m Matrix

t Tensile strength

x Longitudinal direction of the local axis

y Transverse direction of the local axis

comp Traditional composite

fgm Functionally graded material

b Out of plane displacement component

uv u and v displacement components

w w displacement component

o Midplane displacement component

 Transverse shear component

 Bending component

L Lth layer of composite

 Midplane displacement component

 Non-linear terms

1. Introduction

Functionally Graded Materials (FGMs) are made such

that the volume fractions of two or more materials are

varied continuously along a certain dimension. The FGM

concept originated in Japan in 1984 during the space-

plane project, in the form of a proposed thermal barrier

material capable of withstanding a surface temperature of
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2000 K and a temperature gradient of 1000 K across a

cross section <10 mm [2]. In 2000, Reddy [3] presented a

theoretical formulation and finite element models based

on third order shear deformation theory for the analysis of

through-thickness functionally graded plates. The Navier

solution for simply supported plates based on the linear

third-order theory and the non-linear static and dynamic

finite element results based on the first-order theory were

presented by Reddy in [3]. The results show the effects of

volume fractions and modulus ratio of the constituents on

deflections and transverse shear stresses. In 2002,

Javaheri et al. [4] derived equilibrium and stability

equations for rectangular simply supported functionally

graded plates. Javaheri’s derivation was based on the

classical plate theory with the assumption of power law

composition for the material and he studied the buckling

analysis of functionally graded plates under in-plane

compression. In 2004, Chen et al. [2] investigated the

buckling behaviour of FGM rectangular plates subjected

to non-linearly distributed in-plane edge loads. Chen et

al. [2] stated that a mesh-free method which approximates

displacements based on scattered nodes (i.e. radial basis

function and polynomial basis) was employed, in-order to

avoid complicated numerical procedures that arises in the

FEM from the use of elements. This FEM complication

was dealt with in this paper. Other useful studies on

functionally graded materials can be found in these

references [5 - 11].

In comparison to existing publications, this paper has

been able to give unique contributions to the subject

matter. These contributions include Mindlin-type element

formulation, Reissner-type element formulation, finite

strain modelling and smooth fibre distribution technique.

The Mindlin-type element formulation is based on an

assumption of average transverse shear distribution over

plate thickness using Lagrangian interpolation. The

Reissner-type element formulation is based on an

assumption of parabolic transverse shear distribution over

plate thickness using Lagrangian and Hermitian

interpolation. Green’s strain-displacement equation was

employed in the finite strain modelling. The smooth fibre

distribution technique is based on the numerical

computation of macro-mechanical properties at Gaussian

quadrature points.

The authors [1] have previously written a paper on

structural integrity of functionally graded composite

structure using Mindlin-type finite elements. In the paper

[1], two new Mindlin-type plate bending elements were

derived for the modelling of functionally graded plate

subjected to various loading conditions such as tensile

loading, in-plane bending and out-of-plane bending.

There were two types of non-linearity considered in the

modelling of the plate, which include finite strain and

material degradation. In the Mindlin-type element

formulation, the transverse shear strain is averaged over
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plate thickness. Its finite element derivation is based on

Lagrangian interpolation.

In order to model the transverse shear strain more

accurately, the Reissner-type element is derived in this

paper, which is based on parabolic distribution of

transverse shear strain over plate thickness. Its finite

element derivation is complex because it is based on

Lagrangian and Hermitian interpolations.

In this paper, the Mindlin-type element and Reissner-

type element have been further developed for the

modelling of functionally graded composite plate

subjected to buckling and free vibration. Vibration and

buckling analysis were then undertaken for different fibre

distribution cases and the effects of fibre distribution were

studied. Fibre distribution cases with maximum vibration

frequency and maximum buckling loads were chosen as

the optimum design.

1.1 Optimisation Technique

The optimisation technique used in this paper can be

described as a fail-safe design technique which involves

the imposition of constraints to ensure that the physical

limitations of materials or structural properties required

for satisfactory performance are not exceeded. This

optimisation technique involves changing the fibre

distribution parameters and running the FE code for the

given fibre distribution, checking to see if all constraints

have been satisfied. The constraints that have been

considered include buckling load constraints and natural

frequency constraints. The flow chart below is a good

description of this optimisation technique concept.

Figure 1: Optimisation technique

2. Micro-mechanics of Fibrous Composites

This section defines the elastic and strength properties

of FGMs [12]. It also describes the micromechanics

algorithm and the fibre distribution techniques such as

average and smooth fibre distribution technique.

2.1 Elastic Properties of FGMs

The longitudinal stiffness of a composite can be

obtained from the rule or law of mixture which is

represented by the relationship given below.

mmff11 VEVEE  (1)

The transverse stiffness of a composite is given below.

Read data from
input file

Change the value of the fibre
distribution parameters

Buckling
analysis

Dynamic
analysis

Check for buckling
constraints

Check for dynamic
constraints

If all constraints are
satisfied continue

Optimum design

else
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The in-plane shear modulus can be obtained from a

similar model to that used for obtaining transverse

stiffness which results in the in-plane shear modulus

expression as given below.

m

m
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f

12

VV1







 (3)

The Poisson’s ratio of a composite is given below.

mmff12 VV  (4)

2.2 Strength Properties of FGMs

The longitudinal tensile strength of FGMs is given

below.
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The longitudinal compressive strength of FGMs for Vf <

0.5 is given below.
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The transverse tensile strength of FGMs is given below

c
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k

X
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
 (8)

The transverse compressive strength of FGMs is given

below.

c

rmmc
c

k

X
Y


 (9)

The shear strength of FGMs is given below.

s

ms

k

X
S (10)

2.3 Fibre Distribution Techniques

This section explains the implementation of fibre

distribution in the FE code. The equation used for fibre

distribution is given below.

p
f ξ)V(VV(ξV 121)  (11)

where
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Manual Fibre Distribution

This fibre distribution technique enables the code user to

manually specify the fibre ratio for each element along the

direction of fibre ratio variation.

Average Fibre Distribution

This fibre distribution technique enables the code user

to either specify fibre ratios V1 and V2 or the mean fibre

ratio V and fibre ratio V1. These fibre ratios are then

used in computing the fibre ratios at the midpoint of each

element using equations which will be derived later in this

section.

Smooth Fibre Distribution

This fibre distribution technique enables the code user

to either specify fibre ratios V1 and V2 or the mean fibre

ratio V and fibre ratio V1. These fibre ratios are then

used in computing the fibre ratios at each Gaussian

quadrature point using equations which will be derived

later in this section.

Derivation of mean fibre ratio V for specified fibre ratios

V1 and V2

Using the fibre distribution equation, the mean fibre

ratio can be written as shown below.

minmax

max

min
f

d)(V

)(V


 






(12)

Hence
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(13)

Derivation of fibre ratio at both ends of plate (V1 & V2)

and mean fibre ratio

Rearranging the equation below,
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the following equations can be obtained.
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The plots of the fibre ratio distribution for all ten

optimisation cases considered in this paper were obtained

using Eq. (11). It should be noted that each of the ten

optimisation cases has a mean fibre ratio value of 0.4.

The case with power index of zero (i.e. P = 0) represents

the traditional composite plate. This case has been

included in all plots to show the differences between the
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fibre distribution in the FGC plate and the traditional

composite plate. The case P = 1 and case P = 2 can be

described as the linear fibre distribution case and the

quadratic fibre distribution case respectively. The

parameter V1 is use to offset the fibre ratio at edge x = 0

of the FGC plate.

The smooth fibre distribution plots for the ten

optimisation cases are as shown in Figures 2 to 4. These

figures show the plot of fibre ratio at the Gaussian

quadrature points along the x-direction of the FGC plate.

Figure 2: Smooth fibre ratio distribution plot for cases
with P=0 and P=0.5

Figure 3: Smooth fibre ratio distribution plot for cases
with P=0 and P=1

Figure 4: Smooth fibre ratio distribution plot for cases
with P=0 and P=2

The average fibre distribution plots for the ten

optimisation cases are as shown in Figures 5 to 7. These

figures show the plot of fibre ratios at the Gaussian

quadrature points along the x-direction of the FGC plate.
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Figure 5: Average fibre ratio distribution plot for
cases with P=0 and P=0.5

Figure 6: Average fibre ratio distribution plot for
cases with P=0 and P=1

Figure 7: Average fibre ratio distribution plot for
cases with P=0 and P=2

3. Finite Element Equations for Mindlin-type

Element

This section explains the stiffness matrix and mass

matrix formulation for the Mindlin-type plate bending

element theory.

3.1 Finite Element Theory

The authors [1] have previously written a paper on

structural integrity of functionally graded composite

structure using Mindlin-type finite elements. Further

details of the Mindlin-type element theory can be found in

the paper [1]. The theory includes the formulation of the

displacement equation, strain equation, stress equation,

strain energy variation and generalised equation of

equilibrium. The generalised equation of equilibrium is

then linearised, in-order to obtain the Mindin-type

element equation.
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3.2 Element Mass Matrix Derivation

It is assumed that different layers are made of the same

composite material but with different fibre orientations,

i.e. the density of every layer is the same i.e.

 )( L (16)

Using D’Alembert’s principle, the inertial force vector

acting at an infinitesimal volume due to an acceleration

vector is:

dxdydzaFd


 (17)

Hence, the work done by the inertia force due to an

infinitesimal virtual displacement field is:










volume

t

volume

a

dxdydzd

dxdydzaqddW

qq




.

(18)

Using the expression below
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 
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It can be shown that
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





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 tttt dzzddd 

(20)

Expanding the equation above and integrating with

respect to z gives:
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Defining the following displacement components:

)(),(),,( tyxtyx ooo δNq  (22)

)(),(),,( tyxtyx bδNq   (23)

)(),(),,( tyxtyx bww δNq  (24)
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Equation (18) can be rewritten as:
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Defining the following mass matrices:





yx

o
t
ooo dxdyh η)(ξ,η)(ξ, NNM  (29)


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Equation (28) can be rewritten as:

 
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Hence it can be shown that the element mass matrix is as

given below:
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4. Finite Element Equations for Reissner-type

Element

This section explains the Reissner-type plate bending

element theory and summarises the equations used in the

finite element programming. This theory defines the

displacement equation, strain equation, stress equation,

strain energy variation and generalised equation of

equilibrium. The generalised equation of equilibrium is

then linearised in-order to obtain the Reissner-type

element equation. Finally, the stiffness matrix and mass

matrix were derived for the Reissner-type plate bending

element.

4.1. Finite Element Theory

Displacement Equations

The displacement components at the midplane of an n-

node element can be subdivided into the following

categories:

(i) In-plane components

o
i

n

i
i

o uyxNyxu ),(),(
1



 (34)

o
i

n

i
i

o vyxNyxv ),(),(
1



 (35)

where Ni represents Lagrangian shape functions.

(ii) Transverse shear components

 
ix

n

i
ix yxNyx  ),(),(

1



 (36)

 
iy

n

i
iy yxNyx  ),(),(

1




 (37)

where x and y represents the average transverse shear

deformation in the x-z and y-z plane respectively.

(iii) Out-of-plane component

There are two types of interpolation for the lateral

deflection w:

(a) Non-conforming elements

 



n

i
yiixiiii wyxHwyxGwyxFyxw

1
,, ),(),(),(),( (38)

(b) Conforming elements
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 
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




n

i yxiiyii

xiiii
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1 ,,

,

),(),(

),(),(
),( (39)

where iiii PHGF ,,, represent Hermitian shape

functions. The explicit expressions for the Lagrangian

and Hermitian shape functions can be found in [13-14]

Transverse shear strain components

These strain components are assumed infinitesimal and

are represented by the equation shown below.




δBγ ),(),(ˆ yxyx

x

y 







 (40)

where



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
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 





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i

B (41)

            
nynxyxyx  

2211
δ (42)

x-y strain components
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These strain components can be obtained from Green’s

strain-displacement equations i.e. Equations (43 – 45).

They can be divided into two parts which include the

infinitesimal component derived from the Cauchy’s

strain-displacement equation, and the additional non-

linear terms in Green’s equation.


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
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
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
































222

2

1

x

w

x

v

x

u

x

u
x (43)
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
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


















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



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x

u

x
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u
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The total strain vector can be obtained in terms of the

nodal parameters and shape function by substituting the

above displacement and slope components into the

Green’s strain-displacement equations. The total strain

vector equation above can then be manipulated to obtain

the variation of strain vector in terms of the nodal

parameters and shape functions.

Strain Energy Variation

The variation of strain energy density at a point inside

the Lth layer is given below.

)()()(U LtLtL ddd σετγ  (46)

Generalised Equation of Equilibrium

The work done by actual loads can be expressed in

terms of equivalent nodal loads as given below.

b
t
bo

t
o dddW Fδδ  F (47)

Using the principle of virtual work, the generalised

equation of equilibrium can be derived.

0 WdUd (48)

An approximate solution of this equation of equilibrium

gives the expression for the residual vector.

Linearisation of Equations of Equilibrium and Derivation

of Element Equations

In order to restore equilibrium, the residual vector

must approach a value of zero. This equilibrium is

achieved by employing the expressions below.

AAA 





oldnew

old
L

new

oldnew

σσσ

δδδ
)(

(49)

The combination of the above expressions and the

residual vector expressions results in a final matrix

equation, which is given below.

  































 b

o
N

e b

o
e

R

R

δ

δ
KK

1


(50)

4.2. Element Mass Matrix Derivation

This derivation follows the same procedure as in

section 3.2. Hence Eqs.16-18 also applies to this section.

Using the displacement expression below








 











w

o

w

uv fz
tzyx

q

qqq

q

q
q ),,,( (51)

It can be shown that
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 

wwo

o

qqqqq

qqqqq

















t

tttt

dfz

dfzddd





(52)

Expanding the equation above and integrating with

respect to z gives:







































qqqq

qqqq

qqqqqq wwoo

tt

tt

tt
h

h

t

dd
h

d
h

d
h

ddhdzd

10

140

17

12
3

33

2/

2/

(53)

Defining the following displacement components:

)(),(),,( tyxtyx ooo δNq  (54)

)(),(),,( tyxtyx bδNq   (55)

)(),(),,( tyxtyx tδNq   (56)

)(),(),,( tyxtyx bww δNq  (57)











...),(0...

...0),(...
),(),(






i

i

oo yx
N

N
NN (58)











...0),(...

...),(0...
),(),(






i

iyx
N-

N
NN (59)

 ......),(),( iiiiww PGHFyx  NN (60)









































......

......
),(

,,,,

,,,,

yiyiyiyi

xixixixi

PGHF

PGHF

y

w
x

v

yxN (61)

Equation (18) can be rewritten as:



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


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



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

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


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




















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b
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tt
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b

t
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t

b
tt

b

bw
t
w

t
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t
o

t
o

a dxdy

dd
h

d
h

d
h

dhdh

dW

δNNδδNNδ

δNNδ

δNNδ

δNNδδNNδ















10

140

17

12

3

3

3

(62)

Defining the following mass matrices:





yx

o
t
ooo dxdyh η)(ξ,η)(ξ, NNM  (63)





yx

w
t
www dxdyh η)(ξ,η)(ξ, NNM  (64)





yx

t dxdy
h

η)(ξ,η)(ξ, 


NNM

12

3

(65)





yx

t dxdy
h

η)(ξ,η)(ξ, 


NNM

140

17 3

(66)





yx

t dxdy
h

η)(ξ,η)(ξ, 


NNM

10

3

(67)

t

yx

t dxdy
h




MNNM  



η)(ξ,η)(ξ,
10

3

(68)

Equation (62) can be rewritten as:

 






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





















δMδ

δMδδMδ

δMδ

δMMδδMδ

t

b
t
tt

t
b

t
t
t

bww
t
booo

t
o

a

d

dd

d

dd

dW







(69)

Hence it can be shown that the element mass matrix is as

given below:
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





















MM0

MMM0

00M

M ww

oo

(70)

5. Buckling Analysis: Procedure and

Numerical Example

5.1. Buckling Analysis Solution

Buckling occurs at infinitesimal strains.

bbboobmθ

b(3)obbθ

bobooom

L

L

εDεDσ

εDεDσ

εDεDσ

0F

0σ











(71)

A small deflection analysis can be carried out with a small

load representing the distribution of actual load, and has

equivalent nodal loading vector Fo which is defined

below.

oo KδF  (72)

Just before the onset of instability, the strains can be

considered infinitesimal, and if instability occurs at:

oFF  (73)

Hence

  
  0λ

λ

o

o













KK

0δKK
(74)

This gives a characteristic equation and its smallest real

roots define the critical buckling load.

ocritical FF min (75)

5.2 Numerical Example of Buckling Case

Study

Composite Material Data

The composite material data used for all the cases

studies are tabulated below.

Table 1: Composite material data

Parameters Values

Ef, Fibre young modulus 330GPa

Em, Matrix young modulus 5GPa

f, Fibre Poisson ratio 0.3625

m, Matrix Poisson ratio 0.3

f, Fibre density 1.0Kg/m3

m, Matrix density 1.0Kg/m3

Stacking sequence ((-45,0,45)2)S

Ply thickness 2.5mm

XMT, Matrix tensile strength 0.05 MPa

XMC, Matrix compressive strength 0.08 MPa

XMS, Matrix shear strength 0.04 MPa

XFT, Fibre tensile strength 7.5 MPa

XFS, Fibre shear strength 4 MPa

SEGRM, Maximum radial residual

stress

0.0

SKC, Longitudinal stress

concentration factor

1

SKS, Shear stress concentration

factor

1

V1, Fibre ratio at the clamped end 0.5, 0.55 or 0.6
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V , Average fibre ratio 0.4

P, Power term in the fibre

distribution equation

0, 0.5, 1 or 2

A rectangular plate made of a typical FGM with its

mid-plane as shown in Figure 8 was considered. The

width-to-thickness ratio of the plate is 33. A 72 element

mesh was employed for all the case studies. The elements

used in this exercise include Mindlin-type element and

Reissner-type element. The boundary condition applied

in the case studies is that edge x=0 is a clamped edge. A

load of 0.1kN was applied as an equivalent nodal loading

at edge x=2 for the buckling case study.

Figure 8: Mesh

Table 2, shows the comparison of the buckling

eigenvalue results for all ten fibre ratio distribution cases.

Maximisation of the buckling eigenvalue for most

buckling modes is usually the desired effect required for

design purposes. On looking at the table below, it can be

seen that the first and second buckling mode results of the

Reissner and Mindlin programs are in good agreement.

But the third buckling mode results of the Reissner and

Mindlin programs are not in good agreement. This

discrepancy can be attributed to the difference transverse

modelling technique employed by both elements. Also

the discrepancy could be reduced by using a finer mesh of

the Mindlin-type element which results in the

convergence of the Mindlin-type element solution to

Reissner-type element solution. This is due to the fact

that the Reissner-type element (based on parabolic

transverse shear modelling through the plate thickness)

gives a more accurate result in comparison with the

Mindlin-type element (based on average transverse shear

modelling through the plate thickness). In the high

buckling mode cases (such as the 3rd buckling mode) or

the non-linear fibre distribution cases (i.e. P=0.5 and

P=2), FE solution is mesh-sensitive due to the

nonlinearity of the stiffness property distribution in the

plate longitudinal direction. Hence convergence study

must be carried out for non-linear fibre distribution cases

and high buckling mode cases when using any of the

elements. Finally, in this buckling analysis, an average

desirable effect of 20% increment in critical buckling load

(relative to the traditional composite case) for the first and

second buckling mode is achieved by using functionally

graded composite.
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Table 2: Buckling Eigenvalue

Buckling Eigenvalue, min = Fcritical / Fo

P V1 1st Mode

(Mindlin)

2nd Mode

(Mindlin)

3rd Mode

(Mindlin)

0 Vav=0.4 8.130 75.021 145.28

0.5 0.5 8.504 75.482 150.91

0.5 0.55 8.665 75.452 184.14

0.5 0.6 8.808 75.256 181.92

1 0.5 8.752 75.045 183.72

1 0.55 9.006 74.364 169.74

1 0.6 9.221 73.170 153.49

2 0.5 9.072 73.919 161.63

2 0.55 9.439 71.192 130.65

2 0.6 9.690 65.436 93.401

P V1 1st Mode

(Reissner)

2nd Mode

(Reissner)

3rd Mode

(Reissner)

0 Vav=0.4 8.135 73.154 204.33

0.5 0.5 8.513 73.643 196.38

0.5 0.55 8.675 73.622 189.50

0.5 0.6 8.820 73.433 181.90

1 0.5 8.766 73.231 184.33

1 0.55 9.024 72.586 169.26

1 0.6 9.244 71.441 152.93

2 0.5 9.094 72.246 161.14

2 0.55 9.477 69.808 129.62

2 0.6 9.767 65.177 94.007

6. Dynamic Analysis: Procedure and

Numerical Example

6.1. Dynamic Analysis Solution

Consider an ideal structure with no damping forces,

the dynamic finite element matrix equation can be

reduced to the expression below.

     ttt FδKδM 


(79)

In a natural mode, each point of a structure executes

harmonic motion about the position of static equilibrium

at the same frequency. Hence it can be assumed that, at a

natural mode of vibration:

  )δδ tωcost (
~

 (80)

where δ
~

represents the vector of nodal amplitudes.

The matrix equation represents a system of homogenous

simultaneous equations which can have a non-trivial

solution, if the value of  satisfies the condition below:

0λ  MK (81)

where 2ωλ

On comparing natural frequency problem and buckling

problem, it can be shown that both problems are

equivalent and they are related to each other through the

expression below.

 oσ
KM ' (82)

The matrix equation of the dynamic eigenvalue problem

was solved in this report. This report employed two
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techniques which include the simple iteration and

subspace iteration techniques [15 - 17].

6.2. Numerical Example of Vibration Case

Study

The FE model used in this section is as described in

Section 5.2. Table 3, shows the comparison of the natural

vibration frequency results for all ten fibre ratio

distribution cases. Maximisation of the natural frequency

for most free vibration modes is usually the desired effect

required for design purposes. On looking at the table

below, it can be seen that the results of the Reissner and

Mindlin programs are in good agreement for all vibration

modes. Also the natural frequency increases as the

exponent P values increases. This is expected because the

stiffness at the root region of the composite plate

increases with increase in exponent P value. Finally, in

this vibration analysis, an average desirable effect of 15%

increment in natural frequency (relative to the traditional

composite case) for all the vibration mode is achieved by

using this functionally graded composite.

Table 3: Natural vibration frequencies

Natural Vibration Frequencies (Hz)

P V1 1st Mode

(Mindlin)

2nd Mode

(Mindlin)

3rd Mode

(Mindlin)

0 Vav=0.4 299.90 1252.1 1862.8

0.5 0.5 312.37 1269.2 1884.8

0.5 0.55 318.12 1276.0 1893.4

0.5 0.6 323.60 1281.7 1900.4

1 0.5 319.13 1282.0 1894.7

1 0.55 327.94 1292.7 1905.2

1 0.6 336.31 1300.4 1912.0

2 0.5 325.83 1300.4 1913.3

2 0.55 337.79 1314.4 1927.2

2 0.6 349.19 1317.0 1930.6

P V1 1st Mode

(Reissner)

2nd Mode

(Reissner)

3rd Mode

(Reissner)

0 Vav=0.4 300.24 1257.3 1832.3

0.5 0.5 312.86 1275.2 1855.8

0.5 0.55 318.67 1282.2 1864.9

0.5 0.6 No

solution

No

solution

No

solution

1 0.5 319.64 1287.9 1865.7

1 0.55 328.53 1298.7 1876.9

1 0.6 336.96 1306.4 1884.6

2 0.5 326.34 1305.9 1884.8

2 0.55 338.40 1319.6 1900.2

2 0.6 No

solution

No

solution

No

solution

7. CONCLUSION

In this paper, the optimum design criterion employed,

is one that satisfies the follow design criteria.
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 Maximum critical buckling load (i.e. maximum

buckling eigenvalue)

 Maximum vibration frequency.

Hence, using the definition of design criterion above,

the results in the previous sections have been summarised

below and the optimum design was determined from the

table.

Table 4: Optimum Design

Elements P V1 1st Mode

Results

Buckling Mindlin 2 0.6 fgm/comp

= 1.19

Buckling Reissner 2 0.6 fgm/comp

= 1.2

Free

vibration

Mindlin 2 0.6 fgm/comp

= 1.17

Free

vibration

Reissner 2 0.55 fgm/comp

= 1.13

Table 4 shows the optimum fibre distribution for each

load case. Analysis of the results shows that fibre

distribution with P=2 and V1=0.6 is the optimum design.

This fibre distribution has resulted in 20% increase in

critical buckling load and 15% increase in the natural

frequency of the composite structure.

In this paper, a Reissner-type element and a Mindlin-

type element have been formulated and used in

performing a buckling and vibration analysis of a

functionally graded composite structure. Some of the

unique contributions achieved in this paper include

Mindlin-type element formulation, Reissner-type element

formulation, finite strain modelling and smooth fibre

distribution technique. A methodical approach was used

in demonstrating the design optimisation process. This

involves undertaken vibration and buckling analysis for

different fibre distribution cases and the effects of fibre

distribution were studied. Fibre distribution cases with

maximum vibration frequency and maximum buckling

loads were chosen as the optimum design. Also this paper

achieved its objective by presenting a detailed explanation

of the functional graded technology from theoretical

concept through to optimum design application. Future

work recommendation would be to extend this work to

cover non-linear dynamics and thermo-elasticity.
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