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Abstract1

A series of partial least squares (PLS) models were employed to correlate spectral data from2

FTIR analysis with beef fillet spoilage during aerobic storage at different temperatures (0, 5,3

10, 15, and 20°C) using the dataset presented by Argyri et al. (2009). The performance of the4

PLS models was compared with a three-layer feed-forward artificial neural network (ANN)5

developed using the same dataset. FTIR spectra were collected from the surface of meat6

samples in parallel with microbiological analyses to enumerate total viable counts. Sensory7

evaluation was based on a three point hedonic scale classifying meat samples as fresh, semi-8

fresh, and spoiled. The purpose of the modelling approach employed in this work was to9

classify beef samples in the respective quality class as well as to predict their total viable10

counts directly from FTIR spectra. The results obtained demonstrated that both approaches11

showed good performance in discriminating meat samples in one of the three predefined12

sensory classes. The PLS classification models showed performances ranging from 72.0 to13

98.2% using the training dataset, and from 63.1 to 94.7% using independent testing dataset.14

The ANN classification model performed equally well in discriminating meat samples, with15

correct classification rates from 98.2 to 100% and 63.1 to 73.7% in the train and test sessions,16

respectively. PLS and ANN approaches were also applied to create models for the prediction17

of microbial counts. The performance of these was based on graphical plots and statistical18

indices (bias factor, accuracy factor, root mean square error). Furthermore, results19

demonstrated reasonably good correlation of total viable counts on meat surface with FTIR20

spectral data with PLS models presenting better performance indices compared to ANN.21

22

Keywords: artificial neural networks, aerobic storage, beef fillets, FTIR, machine learning, meat23

spoilage, partial least squares regression, pattern recognition24

25
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1. Introduction1

One of the most commonly consumed food commodities on a global basis is meat, due to2

its high nutritional value in the human diet. In the USA alone the retail market of beef3

industry amounted to $76 billion in 2008 with an overall consumption of approximately 27.34

billion pounds in that year (USDA, 2008). During meat production/processing quality5

assurance is difficult due to the heterogeneous nature of the raw material, since the chemical6

composition, technological and sensory attributes are highly influenced by pre-slaughter (e.g.,7

breed, age, environment) intrinsic (e.g. pH, available nutrients) and extrinsic (e.g., storage8

method, period and temperature of storage) factors (Damez and Clerjon, 2008; Nychas et al.,9

2008; Prieto et al., 2009). Consequently, in order to keep the quality standards as close as10

possible to the preference of the consumer, control procedures must be undertaken including11

sensory, microbiological and physico-chemical analysis. Today, more than 50 such methods12

have been employed for the characterization of microbiologically spoiled or contaminated13

meat (Ellis and Goodacre, 2001; Nychas et al., 2008). However, these methods suffer certain14

disadvantages as they are time-consuming, destructive, require highly trained personnel,15

provide retrospective information, and hence they are unsuitable for on-line monitoring16

(Dainty, 1996; Nychas et al., 1998, 2008; Ellis et al., 2002, 2004; Liu et al., 2004).17

Nowadays, various rapid, non-invasive methods based on analytical instrumental18

techniques, such as Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy,19

near infrared spectroscopy, and electronic nose technology are being researched for their20

potential as reliable meat quality sensors (Ellis et al., 2005; Rajamäki et al., 2006; Damez and21

Clerjon, 2008; Ammor et al., 2009; Argyri et al., 2009; Balasubramanian et al., 2009; Prieto et22

al., 2009). The principle underlying this approach is based on the assumption that the23

metabolic activity of microorganisms on meat results in biochemical changes with the24

concurrent formation of metabolic by-products which may indicate or may contribute to25
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spoilage. The quantification of these metabolites constitutes a characteristic fingerprint1

providing information about the type and rate of spoilage (Ellis and Goodacre, 2001; Nychas2

et al., 2008).3

The introduction of converging technologies in the food industry is among the priorities of4

the 7th Framework Programme and they are anticipated to predominate in the future and result5

in substantial changes in the manner in which researchers design their research (Hair et al.,6

1998; NBIC report USA 2002). This can be achieved thorough the integration of modern7

analytical and high throughput platforms with computational and chemometric techniques.8

Multivariate statistical analyses (e.g., partial least square regression, discriminant function9

analysis, cluster analysis) and intelligent methodologies (e.g., artificial neural networks), can10

result in the development of a decision support system for timely determination of11

safety/quality of meat products, and also prevent unnecessary economic losses (Mataragas et12

al., 2007; Nychas et al., 2008; Guillén et al., 2010). Furthermore, the development of13

computational research platforms and online experimental databases such as Combase14

(Baranyi and Tamplin, 2004) and Sym’Previus (Leporq et al., 2005), provide research15

scientists with fast and efficient means of storing and exchanging knowledge despite their16

geographic distribution.17

Partial least squares discriminant analysis (PLS-DA) and artificial neural networks18

(ANNs) are widely employed modelling approaches due to their ability to relate the input and19

output variables without having any prior knowledge on the system under study, provided that20

an accurate and adequate amount of data on the system variables is available (Singh et al.,21

2009). Compared to other areas, the application of ANNs in the field of food science is still in22

the early development stage. Nevertheless, interest in using ANNs as secondary models in23

food microbiology is increasing as they have shown promising results in several applications24

such as growth parameter estimation of microorganisms (Geeraerd et al., 1998; Hervás et al.,25
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2001; García-Gimeno et al., 2005), bacterial heat resistance (Lou and Nakai, 2001; Esnoz et1

al., 2006), production of metabolites (Poirazi et al., 2007), and simulation of survival curves2

(Palanichamy et al., 2008; Panagou, 2008). The multi-layer perceptron (MLP) is the most3

frequently used type of neural network in practical applications (Siripatrawan et al., 2006).4

The basic structure is comprised of three distinctive layers, the input layer where the data are5

introduced to the model and computation of the weighted sum of the input is performed, the6

hidden layer or layers where data processing takes place, and the output layer where the7

results of the neural network are produced (Bishop, 2004; Huang et al., 2007).8

The purpose of the present study was to compare the performance of a multilayer9

perceptron (MLP) neural network and partial least squares (PLS) regression models in order10

to (i) classify beef fillets stored aerobically at different temperatures (0, 5, 10, 15, and 20°C)11

in terms of quality classes (i.e., fresh, semi-fresh, spoiled), and (ii) predict the total viable12

counts on the surface of meat samples directly from FTIR data.13

14

2. Materials and methods15

2.1 Experimental design16

A detailed description of the methodology employed in this work is presented elsewhere17

(Argyri et al., 2009). In brief, fresh deboned pieces of beef were purchased from a local18

butcher shop and transported under refrigeration to the laboratory within 30 min. The samples19

were prepared by cutting meat pieces into portions (40 mm wide x 50 mm long x 10 mm20

thick) that were subsequently placed into 90 mm Petri dishes and stored at 0, 5, 10, 15, and21

20˚C in high-precision (±0.5°C) incubation chambers until spoilage was evident. 22 

For the FTIR measurements, a thin slice (0.5 cm thickness) of the aerobic upper surface of23

the fillet was excised and used for further analysis. Spectra were collected using a ZnSe 45°24

ATR (Attenuated Total Reflectance) crystal on a Nicolet 6700 FT-IR Spectrometer, collecting25



6

spectra over the wavenumber range of 4,000 to 400 cm-1, by accumulating 100 scans with a1

resolution of 4 cm-1. The collection time for each sample spectrum was 2 min. Spectra2

collected between 1800 and 1000 cm-1 were initially subjected to smoothing according to the3

Savitzky-Golay algorithm prior to further analysis.4

For microbiological analysis a portion (40 mm wide x 50 mm long x 10 mm thick) was5

added to 150 ml sterile quarter strength Ringer’s solution, and homogenized in a stomacher6

for 60 s at room temperature. Further decimal dilutions were prepared with the same diluent,7

and duplicate 0.1 ml samples of three appropriate dilutions were spread in triplicate on plate8

count agar for counts of total viable bacteria, incubated at 30ºC for 48 h.9

Sensory evaluation of meat samples was performed during storage, based on the10

perception of colour and smell before and after cooking (20 min at 180˚C in preheated oven) 11 

(Gill and Jeremiah, 1991). Each sensory attribute was scored on a three-point hedonic scale12

corresponding to: 1=Fresh; 2=Marginal; and 3=Spoiled. Score of 1.5 was characterized as13

Semi-fresh and it was considered as the early detection of meat spoilage. Overall, 76 meat14

samples were evaluated by the sensory panel and classified into the selected groups as fresh15

(n = 26), semi-fresh (n = 16), and spoiled (n = 34).16

17

2.2 Partial least squares (PLS) modelling18

The partial least squares regression (PLS-R) derives its usefulness from its ability to19

analyze data with strongly collinear, noisy and numerous variables in the predictor matrix X20

(i.e., independent variables) and responses Y (i.e., dependent variables) (Eriksson et al., 2001).21

The PLS-R method projects the initial input-output data down into a latent space, extracting a22

number of principal factors (also known as latent variables) with an orthogonal structure,23

while capturing most of the variance in the original data. In brief, it can be expressed as a24

bilinear decomposition of both X and Y as:25
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T
XX E TW (1)1

and2

T
YY E UQ (2)3

Therefore, the scores in the X-matrix and the scores of the yet unexplained part of Y have4

maximum covariance. In equations (1) and (2), T and W, U and Q are the vectors of X and Y5

PLS scores and loadings, respectively, and EX, EY are the X and Y residuals (Singh et al.,6

2009). The aim of PLS method is to find a linear (or polynomial) relationship between X and7

Y matrices, so that:8

Y bX E  (3)9

where b is the regression coefficient. The PLS models are developed in two stages; the initial10

dataset is divided into training and testing subsets. The former dataset is used to build the11

models and compute a set of regression coefficients (bPLS), which are subsequently used to12

make a prediction of the dependent variable in the test subset. The initial dataset consisted of13

74 beef fillet spectral patterns corresponding to different storage temperatures (0, 5, 10, 15,14

and 20°C) and storage times (up to 350 hours depending on storage temperature). The15

database was randomly partitioned into a training and testing subset representing 75% (n =16

57) and 25% (n = 19) of the data, respectively. Test data were not employed in any step of17

training the PLS model but they were used exclusively to determine its performance. A series18

of PLS models were created using a number of latent variables ranging from 1 to 25, hence 2519

models were developed in total. The performance of each generated model was calculated20

using leave-one-out cross validation. The optimum numbers of components were used to21

build the final model. The resulting model was then tested with the independent data set.22

This procedure was repeated two times for predicting the predefined sensory class: i) based on23

storage time and temperature as two input variables in addition to the FTIR dataset, and ii)24

based entirely on the FTIR data where no storage condition data was included to build the25
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models. Similarly, two sets of models were developed to predict the total viable counts1

(TVC), firstly based on including the storage conditions as additional input variables, and2

secondly based entirely on the FTIR data. Therefore four sets of models were developed in3

total.4

5

2.3 Artificial neural networks modelling6

Mean-centered and standardized spectral data were initially subjected to principal7

components analysis (PCA) for dimensionality reduction, and the variables (wavenumbers)8

for which communality values were less than 0.6 were excluded from further analysis, as they9

were considered to contain not enough information to explain the variance of spectral data.10

The remaining wavenumbers (from 1718 to 1203 cm-1 and 1020 to 1001 cm-1) were subjected11

to a second PCA, where the total variance (100%) of the dataset was cumulatively explained12

by 37 principal components (PCs). The scores of the first five PCs were extracted and used in13

further analysis as they explained a cumulative variance of 98.08% of the dataset.14

The selected network was a multilayer perceptron (MLP) based on backpropagation. The15

basic element in an MLP is the “neuron” that receives a set of input signals (xi) with weight16

(wi), calculates their impact using the summation function ( i iI x w  ), and finally17

produces an output using some activation function (  y f I ). The determination of the18

weights is achieved through training of the system. Normally, supervised training is19

performed in such a way as to minimize the difference between the network output and the20

measured value:21

 
2

1

1
, ,

n

predicted i observed i
i

MSE y y
n 

  (4)22

where, ypredicted,i and yobserved,i represent the predicted and observed values of the variable,23

respectively, and n is the number of observations. Back propagation (BP) is the most24
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commonly used training algorithm in neural networks, also employed in this work. It works1

on the principle that after the information has gone through the network in a forward direction2

and an output has been produced, the error associated with this output is redistributed3

backwards through the model and weights are adjusted accordingly. Minimization of the error4

occurs through several iterations (training cycles) (Ham and Kostanic, 2001).5

Two separate networks were developed in this work comprising of an input layer with6

seven nodes, one for temperature and storage time, respectively, and the remaining five for7

each one of the five PCs. The output layer contained one node for the prediction of either8

meat quality class (i.e., F, SF, S) or total viable counts on the surface of meat samples (log109

cfu cm-2). In addition two other similar neural networks were developed in which storage time10

and temperature were excluded from the input layer as dependent variables, in an attempt to11

investigate the performance of the network to discriminate meat samples based only on FTIR12

data. Therefore four neural networks were developed in total. Based on previous work (Argyri13

et al., 2009) the best performance of the network was obtained with 10 neurons in the hidden14

layer. To facilitate comparison between the two models, the database was also randomly15

divided into a training subset with 75% of the data, and a test subset with the remaining 25%.16

These data were not employed at all in the training session of the network but they were used17

to assess its capability to foresee for unknown cases. The MLP network was developed using18

NeuralTools version 1.0 (Palisade Corp., Ithaca, NY, USA).19

20

2.5 Evaluation of model performance21

The classification accuracy of the neural network and PLS model was determined by the22

number of correctly classified meat samples in each sensory class divided by the total number23

of samples in the class. The overall correct classification (accuracy, %) of the model was24

determined as the number of correct classifications in all classes divided by the total number25
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of samples analyzed (Panigrahi et al., 2006). For the prediction of total viable counts (TVC)1

in each meat sample three performance indices were calculated, namely the bias (Bf) and2

accuracy (Af) factors (Ross, 1996) and the root mean squared error (RMSE).3

The bias factor (Bf) indicates whether, on average, the observed TVC counts are above or4

below the line of equity (y = x), and if so, by how much. The index is defined as:5

10

log ( )
log

log ( )

predicted

observed

N t

N t

n

fB

  
     
 
 
 
 



 (5)6

where n is the number of observations. A bias factor = 1 indicates a perfect model where the7

predictions are in full agreement with observations. Values < 1 indicate that the observed total8

viable counts are larger than predicted ones.9

The accuracy factor is a measure of the average deviation between predictions and10

observations, i.e. how close predictions are to observations.11

10

log ( )
log

log ( )

predicted

observed

N t

N t

n

fA

  
  

   
 
 
 
 



 (6)12

The values of this index are ≥ 1. The larger the value the less accurate is the average estimate.  13 

The goodness of fit of the modelling approach was also evaluated by the root mean square14

error (RMSE), which measures the average deviation between observed and predicted values15

(Ratkowsky, 2004). The smaller the value of this index the better the fit of the model to the16

experimental data:17

 
2

log ( ) log ( )predicted observedN t N t
RMSE

n





(7)18

where n is the number of observations.19

20

21
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3. Results1

Typical FTIR spectral data from 1000 to 1800 cm-1 collected from beef fillets stored at2

0°C for different storage times are presented in Figure 1. The selected spectra correspond to3

each one of the three quality classes (i.e., fresh, semi-fresh, spoiled) employed in this work.4

Based on Figure 1, a major peak at 1640 cm-1 was apparent in the meat sample due to the5

presence of moisture (O-H stretch) with an underlying contribution from amide I, whereas a6

second peak at 1550 cm-1 appeared due to the absorbance of amide II (N-H bend, C–N7

stretch). A second amide vibration was observed at 1400 cm−1 (C–N stretch), followed by8

amide III peaks at 1315 and at 1240 (C-N stretch, N-H bend, C-O stretch, O=C-N bend). The9

peaks at 1460, 1240 and 1175 cm-1 can be attributed also to fat. Finally, the peaks arising10

from 1025 to 1140 could be absorbance due to amines (C-N stretch) (Chen et al., 1998; Ellis11

et al., 2002, 2004; Ammor et al., 2009; Argyri et al., 2009).12

A PLS model performance evaluation was performed using leave-one-out cross validation13

for the prediction of sensory class of beef samples. The number of latent variables (LVs) was14

selected on the basis of the highest number of correctly classified samples of the testing15

subset. For this reason, different models were developed with the LVs ranging from 1 to 25.16

For each model, the number of correctly classified samples in both the training and test17

dataset was calculated. When the PLS models were built based entirely on the FTIR data (i.e18

no storage time and temperature was included), a number of 21 LVs was finally selected19

presenting the highest correct classification (%) in the training (98.2%) and test (68.4%)20

subsets (Fig. 2, Table 1). For the training subset, the PLS approach provided 100% correct21

classification for fresh and semi-fresh meat samples, whereas for spoiled samples the22

respective number was 96.1%, representing 1 misclassification out of 26 spoiled samples23

(Table 1). However, for the testing subset the relative percentages were lower, which is not24

unusual as these data were not involved at all in model development but provided as unknown25
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cases for prediction. Specifically, the highest correct classification was observed in spoiled1

(71.4%) and fresh (75%) samples, with 2 samples misclassified as semi-fresh out of 7 and 82

samples, respectively. The lowest performance was obtained in semi-fresh samples with 23

misclassifications out of 4 samples. However, the performance was slightly improved when4

storage time and temperature were associated with the training data prior to building the5

model. The best performance in this case was monitored when 20 LVs (Fig. 2), showing a6

performance of 94.7% on the training and 70.0% on the independent testing dataset. For the7

training dataset, the PLS approach provided 18 out of 20 correct classification for fresh meat8

samples (Table 2), whereas for semi-fresh and spoiled samples, the respective numbers were9

5 and 6 misclassifications out of 15 semi-fresh and 22 spoiled samples, respectively.10

Similar performance was obtained for the ANN model developed entirely on the FTIR11

dataset (i.e. storage time and temperature were excluded from model development as12

dependent variables). The obtained correct classifications were 98.2% and 63.1% for the13

training and test datasets, respectively (Table 1). Within each sensory class in the training14

dataset, the ANN model provided 100% correct discrimination for fresh and semi-fresh15

samples, whereas for spoiled samples there was 1 misclassification out of 27 meat samples16

(96.3%). However, for the test dataset the performance of the ANN was lower but still17

comparable with the PLS model. Specifically, the highest correct classification was obtained18

for the fresh and spoiled sensory class where 2 samples were misclassified as spoiled and19

fresh, respectively (Table 1). Less consistent results were obtained for the semi-fresh class20

with 3 misclassifications out of 5 samples which is quite reasonable taking into account that21

sensorial discrimination of this class is rather difficult and requires highly trained taste panels.22

The performance of the ANN model was slightly improved when storage time and23

temperature were included as additional inputs in model development (Table 2). The obtained24

results indicated that correct classification increased by approximately 2% and 10% for the25
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training and test datasets, respectively. In this case, the ANN provided 100% correct1

classification for all sensory classes in the training dataset. With regard to the test dataset,2

classification performance was improved by approximately 14% for the spoiled meat samples,3

compared with the ANN model developed on FTIR data only, with 1 misclassification out of4

7 samples. For fresh and semi-fresh meat samples, the calculated correct classifications were5

71.4% and 60.0%, representing 2 misclassifications out of 5 semi-fresh and 7 spoiled meat6

samples, respectively (Table 2).7

The PLS approach was also used to associate spectral data with total viable counts (TVC)8

on the surface of meat samples. The model was developed on the assumption that when the9

difference between individual predictions and observations was higher than a threshold value10

of 1 log unit, then the prediction was false. When PLS was applied using only the FTIR data11

(i.e. no storage time and temperature was included within the input matrix), the model12

correctly predicted 87.7% of the training data, and 60% of the independent testing data. In the13

case of including the storage time and temperature within the input dataset, the model showed14

an increase in performance, reaching 100% and 84.2% for the training and testing,15

respectively.16

For models developed on FTIR data only, the calculated value of the bias factor for the17

ANN training dataset was close to 1 indicating no systematic bias (under or overprediction)18

(Table 3), whereas for PLS model a slight underestimation was evident (Bf 0.967). The values19

of bias factor were improved when storage time and temperature were included as inputs in20

model development, especially for the PLS approach (Table 4). For the test datasets,21

underprediction (Bf < 1) was observed for the PLS models whereas overprediction (Bf > 1)22

was evident in ANN models, regardless of the approach employed in model development23

(i.e., inclusion or not of storage time and temperature as inputs). These calculations were also24
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graphically verified by the comparison of the observed vs. predicted total viable counts (TVC)1

plots (Figs. 3 and 4).2

Moreover, based on the calculated indices for the test datasets between ANN and PLS3

models that were developed on FTIR data only, it can be concluded that the PLS model4

presented a comparatively better performance as it yielded lower values for accuracy factor5

(1.321) and root mean square error (1.993) (Table 3). However, when storage time and6

temperature were included as input parameters to the models, then the best performance was7

obtained for ANN based on the comparison of the same indices (Table 4).8

9

4. Discussion10

So far the assessment of meat quality and safety is based on sensory and retrospective11

microbiological analyses (Nychas et al., 2008). Sensory analysis is an important and common12

method to evaluate quality of food commodities since the consumer is the ultimate judge of13

quality of a product (Lee and O’Mahony, 2005). However, the method has certain14

disadvantages as it relies on highly trained taste panels, a procedure which makes it costly and15

unattractive for daily analysis. In addition, a limited number of samples can be analysed daily16

due to the fatigue of the senses of the panellists. Finally, sensory evaluation has a subjective17

connotation, although this effect could be reduced by applying scientific protocols under18

carefully controlled conditions. On the other hand, microbiological analyses are laborious,19

time-consuming, costly and highly technical (molecular tools), as well as destructive to20

products analysed, requiring in most cases a complex process of sample preparation, while21

not able to give the ‘immediate answer required’ (McMeekin et al., 2007).22

A major challenge of the meat industry in the 21st century is to obtain reliable information23

on meat quality and safety throughout the production, processing, and distribution chain, and24

finally turn this information into practical management support systems to ensure high quality25
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final products for the consumer (Damez and Clerjon, 2008; Sofos, 2008). These systems must1

be readily available to the industry, and easy-to-use without requiring special expertise form2

the end-users. Certain databases are available today, such as the Combase (www.combase.cc)3

and Sym’Previus (www.symprevius.net) providing information on growth/death kinetics of4

microorganisms in order to define the shelf-life of various foods incorporating mathematical5

models (Baranyi and Tamplin, 2004; Leporq et al., 2005). It must be stressed however, that6

the existing predictive microbiology spoilage models tend to underestimate important factors7

such as microbial interaction among the members of the microbial association as well as with8

the food matrix (Wilson et al., 2002; Koutsoumanis et al., 2004). In the latter case the changes9

in the concentration of microbial metabolites on meat surface due to microbial activity can be10

used to monitor quality deterioration. There is thus a need to replace, or at least limit, the11

number and extent of microbiological analyses, with (bio)chemical analyses in an attempt to12

define metabolic indices as potential indicators of spoilage. The concept is not new and it was13

proposed as a promising alternative to monitor meat spoilage in the late 80s and 90s14

(McMeekin, 1982; Gill, 1986; Nychas et al., 1988; Kakouri and Nychas, 1994; Dainty, 1996).15

However, the idea of a single biochemical substance as spoilage indicator put forward at that16

time, has been replaced today by the metabolomic concept which is based on a holistic17

approach of spoilage profile (Goodacre et al., 2004; Nychas et al., 2008).18

Recent developments in sensor technologies and data analysis procedures have stimulated19

interest in developing rapid and non-invasive techniques to monitor changes in meat quality.20

Among these, spectroscopic methods are widely used for muscle food quality assessment and21

control, in both laboratory and meat industry installations (Hildrum et al., 2006). In contrast to22

conventional methods for the determination of meat quality parameters, Fourier transform23

infrared spectroscopy (FTIR) is a sensitive, rapid and non-destructive analytical technique,24

with simplicity in sample preparation, allowing simultaneous assessment of numerous meat25
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properties. This technique has found numerous applications in foods such as olive oil (Maggio1

et al., 2010), honey (Kelly et al., 2006), wine (Versari et al., 2010), coffee (Briandet et al.,2

1996). Ellis et al. (2002, 2004) have been the pioneers to report that FTIR spectral data3

collected directly from the surface of meat could be used as biochemical interpretable4

“fingerprints” to provide information on early detection of microbial spoilage of chicken5

breast and rump steaks. However, the amount of information provided by spectral data require6

special data mining techniques based on multivariate statistical analysis (e.g. cluster analysis,7

principal components analysis, discriminant function analysis, partial least squares regression)8

and/or soft computing methodologies (e.g. artificial neural networks, genetic algorithms,9

support vector machines) to provide information related to (a) the responses of specific10

spoilage microorganisms in meat and (b) the discrimination of meat samples in quality classes11

(Goodacre, 2000; Mataragas et al., 2007; Verouden et al., 2009).12

In the present work, FTIR spectral data from beef fillets stored under aerobic conditions at13

five different storage temperatures were analyzed by partial least squares regression in an14

effort to classify meat samples in three sensorial categories (fresh, semi-fresh, spoiled) as15

defined by a taste panel. The performance of the PLS approach was compared with a multi-16

layer perceptron (MLP) neural network. Two different approaches were followed in model17

development. Firstly, storage time and temperature were treated as input variables and18

associated with FTIR spectral data during model development. However, in practice, the19

history of a meat sample in terms of storage temperature and time is not always known, and20

hence meat quality must be assessed by spectral data only. To cope with this issue separate21

models were developed based on the FTIR data only and the two approaches were compared.22

Results showed relatively better performance when storage time and temperature were23

included as inputs in model development, as a more precise dataset was used for the training24

of models. Good classification accuracies were obtained for fresh and spoiled meat samples,25
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demonstrating the effectiveness of the method to discriminate samples between these two1

classes (Table 1 and 2). The high classification rate of both models (i.e., PLS and ANN) could2

be associated to the beginning of proteolysis in meat (Nychas and Tassou, 1997) resulting in3

changes in the concentration of amides and amines (Ellis and Goodacre, 2001), as well as to4

glucose consumption and the resulting changes in the levels of organic acids (Dainty, 1996;5

Nychas et al., 1998). It must be emphasized however that the number of examined samples6

within each class was not equal due to the different spoilage rate of beef samples at different7

storage temperatures resulting in variable number of samples in each class. This may have8

affected the training process which is basically a data driven approach (Basheer and Hajmeer,9

2000), and could thus account for the lower classification accuracies observed in certain10

classes (e.g. fresh and semi-fresh) (Table 1 and 2). Finally, the lower accuracies observed in11

the semi-fresh class could also be attributed to the performance of the taste panel, as the12

difference between “fresh/semi-fresh” and “semi-fresh/spoiled” is sometimes subjective and13

affects the overall classification, as the developed models are based on supervised training for14

parameter optimization.15

Another interesting perspective from a microbiological point of view would be the16

correlation of FTIR spectra to bacterial population counts on the surface of meat samples. In17

this way laborious and time consuming microbiological analyses could be replaced in the long18

term by spectral data in order to provide rapid, low cost and non-invasive microbiological19

analyses (Nychas et al., 2008). The graphical plots between observed and predicted total20

viable counts as well as the calculated performance indices showed that for models developed21

on FTIR spectral data alone better performance was obtained by the PLS model (Table 3; Fig.22

3) although the model had a tendency to underestimate total viable counts. However, when23

storage time and temperature were included in model development together with FTIR data24

the best performance was obtained by ANN (Table 4; Fig. 4). Generally, ANN models tended25
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to overestimate microbial counts (Bf > 1) in contrast to PLS models where underestimation of1

total viable counts was evident (Bf < 1). An interesting alternative approach to evaluate the2

effectiveness of FTIR spectral data in the determination of sensory rating and total viable3

counts prediction in meat samples, would be the implementation of experimental studies in4

which meat samples would have been artificially contaminated with spoilage bacteria at5

different initial populations. Further research is needed in this direction as results from such6

studies would be valuable in the evaluation of the robustness of the FTIR approach.7

In conclusion, the correlation between microbial growth and chemical changes during8

storage has been recognized as a way to identify indicators that could be employed to quantify9

quality as well as the degree of spoilage. Spectral data collected from FTIR analysis10

combined with an appropriate machine learning strategy (partial least squares regression,11

artificial neural networks) could become an interesting tool to monitor beef fillets spoilage12

through the measurement of biochemical changes occurring in meat substrate. Future work13

should also focus on the association of specific microbial groups (e.g. lactic acid bacteria,14

pseudomonads, enterobacteria) with FTIR spectral data in an attempt to increase the15

prediction performance of the models.16

17
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Fig. 1. Typical FTIR spectra in the range of 1800 to 1000 cm-1 collected from beef fillets1

stored at 0°C at the beginning of storage (A; Fresh), after 96 h (B; Semi-fresh), and 216 h (C;2

Spoiled).3

4

Fig. 2. Optimization of the PLS-DA classification models using latent variables ranging from5

1 to 25 for the training (grey line) and test (black line) subsets after leave-one-out cross6

validation. (A) sensory class prediction based on FTIR data; (B) total viable counts prediction7

based on FTIR data; (C) sensory class prediction based on FTIR data plus storage time and8

temperature as additional inputs; (D) total viable counts prediction based on FTIR data plus9

storage time and temperature as additional inputs10

11

Fig. 3. Comparison between observed and predicted total viable counts (TVC) of beef fillets12

by the ANN (a) and the PLS-DA (b) model based on FTIR spectral data (open symbols:13

training data; solid symbols: test data; dotted lines are ± 1 log units area).14

15

Fig. 4. Comparison between observed and predicted total viable counts (TVC) of beef fillets16

by the ANN (a) and the PLS-DA (b) model based on FTIR spectral data with storage time and17

temperature as additional inputs to the models (open symbols: training data; solid symbols:18

test data; dotted lines are ± 1 log units area).19

20

21
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Table 1. Confusion matrix of the ANN classifier and the PLS model regarding sensory1

quality discrimination of beef fillets based on FTIR spectral data.2

3

From/to ANN training (n = 57)

Fresh Semi-fresh Spoiled Total Correct (%)

Fresh 19 0 0 19 100

Semi-fresh 0 11 0 11 100

Spoiled 1 0 26 27 96.3

ANN testing (n = 19)

Fresh 5 0 2 7 71.4

Semi-fresh 2 2 1 5 40.0

Spoiled 2 0 5 7 71.4

PLS training (n = 57)

Fresh 18 0 0 18 100

Semi-fresh 0 13 0 13 100

Spoiled 0 1 25 26 96.1

PLS testing (n = 19)

Fresh 6 2 0 8 75.0

Semi-fresh 2 2 0 4 50.0

Spoiled 0 2 5 7 71.4

4

Overall correct classification (accuracy) for ANN train and test datasets: 98.2% and 63.1%,5

respectively.6

Overall correct classification (accuracy) for PLS train and test datasets: 98.2% and 68.4%,7

respectively.8
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Table 2. Confusion matrix of the ANN classifier and the PLS model regarding sensory1

quality discrimination of beef fillets based on FTIR spectral data together with storage time2

and temperature as additional inputs to the models.3

4

From/to ANN training (n = 57)

Fresh Semi-fresh Spoiled Total Correct (%)

Fresh 19 0 0 19 100

Semi-fresh 0 11 0 11 100

Spoiled 0 0 27 27 100

ANN testing (n = 19)

Fresh 5 0 2 7 71.4

Semi-fresh 2 3 0 5 60.0

Spoiled 1 0 6 7 85.7

PLS training (n = 57)

Fresh 18 2 0 20 90.0

Semi-fresh 2 10 3 15 66.7

Spoiled 1 5 16 22 72.7

PLS testing (n = 19)

Fresh 5 1 0 6 83.4

Semi-fresh 0 1 1 2 50.0

Spoiled 2 1 8 11 72.7

5

Overall correct classification (accuracy) for ANN train and test datasets: 100.0% and 73.7%,6

respectively.7

Overall correct classification (accuracy) for PLS train and test datasets: 77.2% and 73.6%,8

respectively.9

10
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Table 3. Comparison of validation indices between the PLS and ANN models for total viable1

counts (TVC) predictions in meat samples based on FTIR spectral data.2

3

Parameter

ANN PLS model

Train Test Train Test

Bias factor (Bf) 1.002 1.034 0.967 0.854

Accuracy factor (Af) 1.291 1.390 1.090 1.321

RMSE 1.821 1.978 1.073 1.993

4

5
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Table 4. Comparison of validation indices between the PLS and ANN models for total viable1

counts (TVC) prediction in meat samples based on FTIR spectral data together with storage2

time and temperature as additional inputs to the model.3

4

Parameter

ANN PLS model

Train Test Train Test

Bias factor (Bf) 1.008 1.038 0.996 0.833

Accuracy factor (Af) 1.118 1.166 1.003 1.409

RMSE 0.852 0.921 0.092 2.501

5

6


