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SUMIARY

A numerical method is described for the solution of
certain differential equaticns which result from the application
of Crocco's transformation to the laminar boundary layer equations
appropriate to high supersonic Mach numbers. (i.e. at hypersonic
speeds).

L

Solution is obtained by continuous application of a
rapidly convergent relaxation process to a pair of simultaneous
differcntial equations, for which one of boundary conditions is

a first derivative, The Prandtl number occurs as a parameter.

MEP



=1

1. INTRODUCTION

When considering the boundary layer equations for
laminar flow over a flat plate in a hypersonic stream, it is
convenient to apply Crocco's transformation in order to separate
the variables so that the velocity in the boundary layer is the
new, and only, independent variable. The details of such a
method are described by Nonweiler1 who shows that the boundary
layer equations may be expressed as a pair of simultaneous non-
linear ordinary differential equations of the second order: one
of first degree and the other of second degree. The corresponding

boundary conditions, which are of jury type, involve a first
derivative,

For numerical analysis, it is convenient to express the
differential equations as difference equations and obtain a

solution by relaxation. The process is in fact rapidly convergent.

Although the equations considered apply strictly to
hypersonic boundary layers, and for that reason have certain
inherent simplicity, the method of numerical solution is applicable

equally to the corresponding equations for flow at other speeds.

2, The Equations

From reference 1 we have to solve the pair of simultaneous
total differential equations:

22 « PAJY = O s b B4

Y'l + (1_0‘)Y'Z'/Z+2 = O EE R R ) (2.2)
subject to the boundary conditions
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where a dash denotes differentiation with respect to f.

In the above equations, tte independent variable f is
a non-dimensional form of the total gas velocity, Y is a non-
dimensional form of the total heat (or enthalpy), Z is a non-
dimensional form of the shear stress, and o is the Prandtl

nunber.
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The differential equations can be expressed approx-

imately as finite difference equations in the form
2.6% + Wt/ T - zf, = 0 Py - 1
62Y + (‘]—G‘).}J&X. p.aZ/Z + 2h2 + fj? = 0 e (2- 6)

where ZH and 232 are difference corrections which include all
but the dominant differences when derivatives are expressed in
terms of central differences, and where h is the constant

interval between successive pivotal points,

e denote functional values of Y and Z corresponding
to fo, fo + h,...,f0 + nh, by suffices 0,1,...,n and express
differences in terms of functional values according to the

relations

WY = 3@, ~Y_) i

Wz, = (2, -2 )

623{0 . & +T) e N8 PEA
azzo = Ay - 28 ' 2 y)

Thus equations (2.5) and (2.6) may be written
2 v
ZO(Z'1-2ZO+Z“'1) + h f(/ YO+ZOA1 =R1 er et aanw (2'8)

2
(-2 Y )+ (1-0) @, ) (2,-2_,)/u2 420+ D) = R,

B daws Sasavid i)

where R1 and R2 are residuals,

In the ensuing solution we cbtain a first approximation
to the dependent variables by neglecting the difference corrections
531, 512 and applying the method of relaxation to obtain zero
residuals R1’ R2. liore accurate numerical representation of
the dependent variables is obtained by differencing the above
values and including approximate difference corrections before

continuing the relaxation.

Leading terms in the difference corrections are

A
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3. The Boundary Conditions

In view of the boundary conditions (2.3) and (2.4), the
relaxation procedure is straightforward at £ =1 and for ¥ =0
at T = 0, It is necessary, however, to pay special attention
to the condition 2' =0 at f =0,

In general we should use a numerical differentiation

formula for the first derivative at f = 0. Such a formula is
z'(0) = (1/3) {_az(h) -Z(2h)} w RI0Y. scacsaie 151)

and to satisfy the boundary condition 2'(0) = 0 we should then

require
z.(0) = (1/3) {LZ(h) - z(zh)} ; AR T

Hence we should relax Z only over the range hgfe1
and then evaluate Z(0) from equation (3.2).

Formulae of greater accuracy than the three point
formula quoted in equation (3.1) may, of course, be used and are
listed by Bickleyz.

For the present problem a slightly more accurate
representation of the condition 2'(0) = O +than is given by
equation (3.1) was obtained by noticing that equation (3.1) is

equivalent to assuming

2

%2 =2(0) + const. f Mo nenerenss )

in the neighbourhood of f = Q.

However, cxamination of equation (2.1) suggests, for
the present problem, that we may express

2 = 2(0) + ale) £/2 SR

for all o, where o is a function of o only., 'hen the value
of o in equation (3.4) is expressed in terms of the values of
Z at £=0, h and 2h we have, instead of equation (3.2),
and in view of the boundary conditions (2.3),

265 2Nz2(§) -12(211)

e ool Sl i, 4 ¢

where N = 5/2.

This modification has been incorporated in the present
work since second and higher derivatives of 2 with respect to
T are singular at f = 0, These further conditions were not
represented by equations (3.1) -~ (3.3).
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L. Starting Values for the Solution

It will be seen that equation (2.2) has a closed

analytical solution when o = 1. For in this special case
Y’l + 2=O I R R R B N T (}-}—|1)

and so, in view of the boundary conditions (2.3) and (2.4), we
obtain

T = P£12). s lihoiragt | Wi

Approximate values of Z at £ =0 and 0,5 may now
be obtained from equations (2.4), (2.8), (3.5), and (4.2), for

neglecting [}1 and R, in equation (2.8), we have approximately

1

20(21 - 20 * z_1)J?E; # h2f6 & 0L L cersvieessney BT

Let f_, =0, f =0.5, £, =1 so that h =05,/ Y =0.5%by

equation (4.2), the boundary condition zZ, =0 by, (2.4) and

Z_, = b2 zd/u+JE?-1) by equation (3,5), so that equation
(4. 3) may be written
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from which we obtain
o 0.561

and hence Z__1 = 104685,

The corresponding variation of Z with £, as given

in equation (3.4)*, is
Z =0.685 (1 - £5/2) SPCCENCTE SR e

which may be used a: an interpolation formula to estimate Z in

the range OLfE1 for the special case o = 1,

This special solution, for o =1, has limited physical
significance since for real fluids the Prandtl number o is less
than unity, say about 0.7.

However, to obtain numerical solutions for real fluids,
it is convenient to use valucs given by the special solution,
equations (4.2) and (4.4), as initial values for the relaxation

method described below,

A8, (i

# On the assumption that Z wvaries parabolically with f, one
cbtains Z = 0.685 + 0.202f - 0,888£°,




5. Solution by Relaxation

To calculate values of the dependent varisbles Y and
Z for values of o less than unity the following procedure is
suggested.

First calculate YL31 = £(1-f), from equation (4.2) and
Zlo=1’ from equation (4.4), for a range of equally spaced values
of f in the range (0,1), Then, neglecting the difference
corrections in equations (2.8) and (2.9), follow the regular
sequence of operations;-

(1) relax equation (2.8) with Y = Y|o__1 to obtain Z = z;g_ﬂ1

(11) substitute Z = Zl g 0 equation (2.9) with the given
value of o and relax to obtain a first approximation
. Y'”

(iii) substitute Y = Yl( ) in equation (2 8) and relax to
obtain a first approximation Z = ZI 1)

(iv) substitute 2 = ?I( 1) in equatlon (2.9) and obtain a
second approx1mat10n Y' as in (11) and a second

approximation ZI as in (4ii).

Continue the above relaxation procedure wntil satisfactory
values of Y'o_ and Zjo_ are cbtained for the dependent variables.

Next difference the values obtained for Ylg and Z|_
and estimate the difference correctlonszﬂ andw£§2 given by
equations (2.10) and (2,11) respectively. Insert these corrections
in equation (2.8) and (2.9) respectively and obtain more accurate

values of the dependent variables as follows: -
(v) relax equation (2.8) +o improve ZIG
(vi) substitute zZ|, in equation (2.9) and relax to improve 1’]Cr

(vii) substitute the improved values of Yi in equation (2.8)
and relax to obtain Z = ZI‘

(viii) substitute Zl in equation (2.9) and relax to obtain
YY'

If necessary, continue the above sequence of operations

until satisfactory values have been obtained for Yl': and ZI: .

Difference the values of ¥|* and 2|~ and re-estimate
the difference corrections, If necessary, repeat operations (v)

to (viii) until satisfactory final values are cbtained for the

/dependent ...



dependent variables,

6. The Relaxation Pattern

Since the given differential equations (2.%) and (2.2)
are non-linear, special attention has to be paid to the relaxation

pattern which is as follows.

When relaxing equation (2.8) to obtain values of 2
corresponding to given values of Y we note that if we vary Z0

by & then we must change the residual RJ1 gty £ fo’ and f,} by

-1?
(R'1)-1 = 82-—-'1
(R‘l_)o e 8(21 -2 +Z_, - 2e)
and (R1)1 = ez,
respectively,

Similarly, when relaxing equation (2.9) to obtain values
of ¥, if we vary Yo by e the corresponding changes in the

residual 32 at £ :E‘O, and f,' are

-1

=
N
~
l

o w e {‘I + (1=0) (Zo .- 3_2) /42_1}

(Rz) = =2¢

and ®,), e {1 ~ G}y, « 23 / uz,l}
respectively.

Relaxation could be effected simultaneously in both
variables but the above procedure is preferred since, for real
{luids, the value of Y only differs slightly from the values
calculated flor the special solution (4.2).

7. Computational Procedure

In practice it has proved satisfactory to use six or
eleven equally spaced pivotal points in the range Ox? g1,

Values of ¥ = f(4-f) and 2 = O.685(1-f‘5/2) are.
calculated from equations (4.2) and (4. L) of the special solution

for o =1.

Residuals R1, R2 are then calculated from equations
(2.8) and (2.9), with difference corrections neglected, for each

pivotal point except £ =0 and f = 1.

/Relaxa‘tibn ale
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Relaxation proceeds as described in section 5 using

the pattern given in section 6.

Improved approximations are obtained by differencing
calculated values of ¥ and Z to third and fourth differences
respectively; substituting in equations (2.8) and (2.9) values
for the difference corrections given by equations (2.10) and
(2.11) respectively; and repeating the relaxation. One
repetition has been found sufficient to guarantee four figure
aceuracy.

Results are tabulated (i) to three decimals for six
pivotal points and (ii) to four decimals for eleven points,
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TABLE 4
Six points. Three decimals
4 7

P o =1 0.8 0.6 [| 1 0.8 0.6
0.0 0.00 0,000 0. 000 0.703 0.692 0.686

2 16 .163 167 . 695 . 681, .679

i 2l 247 . 255 . 660 . 649 .6L5

-6 024 0252 0265 l5?5 1563 '559

.8 .16 75 .192 . 394 . 386 . 381
1.0 i 0,00 0.000 0.000 0,000 0.000 0.000

1
TABLE 2
Eleven points. Four decimals
T Z

ki o =1 o=0.8 c=0.6 o =1 o= 0.8 o=0,6
0.0 0.00 0. 0000 0.0000 0.7220 0.7114 0. 6966

4 .09 .0922 . 0949 .7188 . 7100 « 6954
2 .16 1646 . 1700 713 .70%7 . 6898

i3 -2 +2472 . 2255 l . 7004 . 6904 67712
5 2L . 2500 . 2615 1 , 6783 .6679 . 6552
oD « 25 « 2630 N, . 6439 .6335 6211
7 2 . 2286 . 2502 .523%2 +5133 . 5019
.8 .16 1799 <2034 || 4223 <4136 <4031
+9 | .09 .1073 <1285 . 2703 . 2643 . 2563
1.0 i 0,00 0.0000 0. 0000 0. 0000 0. 0000 0.0000
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