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SUISTARY  

A numerical method is described for the solution of 

certain differential equations which result from the application 

of Crocco's transformation to the laminar boundary layer equations 

appropriate to high supersonic Each numbers. 	(i.e. at hypersonic 

speeds). 

Solution is obtained by continuous application of a 

rapidly convergent relaxation process to a pair of simultaneous 

differential equations, for which one of boundary conditions is 

a first derivative. The Prandtl number occurs as a parameter. 
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1. INTRODUCTION 

When considering the boundary layer equations for 

laminar flow over a flat plate in a hypersonic stream, it is 

convenient to apply Crocco's transformation in order to separate 

the variables so that the velocity in the boundary layer is the 

new, and only, independent variable. 	The details of such a 

method are described by Nonweiler1 who shows that the boundary 

layer equations may be expressed as a pair of simultaneous non-

linear ordinary differential equations of the second order: one 

of first degree and the other of second degree. The corresponding 

boundary conditions, which are of jury type, involve a first 

derivative. 

For numerical analysis, it is convenient to express the 

differential equations as difference equations and obtain a 

solution by relaxation. 	The process is in fact rapidly convergent. 

Although the equations considered apply strictly to 

hypersonic boundary layers, and for that reason have certain 

inherent simplicity, the method of numerical solution is applicable 

eqmlly to the corresponding equations for flow at other speeds. 

2. The Equations 

From reference 1 we have to solve the pair of simultaneous 

total differential equations: 

ZZ," f/iT = 0 

Y" 	(1-o-)Y'Z'/Z t 2 = 0 

subject to the boundary conditions 

	 (2.1) 

	  (2.2) 

0 at f = 0 

  

(2. 3) 

  

Y= Z 	= 0 at f= 1   (2.4) 

where a dash denotes differentiation with respect to f. 

In the above equations, tLe independent variable f is 

a non-dimensional form of the total gas velocity, Y is a non-

dimensional form of the total heat (or enthalpy), Z is a non-

dimensional form of the shear stress, and rr is the Prandtl 

number. 

/The differential ... 
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The differential equations can be expressed approx-

imately as finite difference equations in the form 

Z.8
2
Z + h2f/jY +

1 
 = 0   (2.5) 

8Y + (1-(7)418Y.OZ/Z + 2h2  + 2  = 0 .... (2.6) 

where
1 

and 62 are difference corrections which include all 

but the dominant differences when derivatives are expressed in 

terms of cent-2a1 differences, and where h is the constant 

interval between successive pivotal points. 

7e denote functional values of Y and Z corresponding 

to fo' fo + h,...,fo + nh, by suffices 0,1,...,n and express 

differences in terms of functional values according to the 

relations 

pLY = EY1 -Y-1) 

u8Z
o 
=- Z

-1 1 	-1 

82Yo = (Y1  - o  + Y-1 

82Z 	= (Z
1 
- 2Z

o 
+ Z

-1 

Thus equations (2.5) and (2.6) may be written 

(2.7) 

Zo(Z1-2Z0+Z_I) + h2f0/1/70+ZoA1  = Ri    (2.8) 

(Y.1 -21
o-1 	' 

)+(1-o-) (C1 -Y-1 ) (Z1 -Z-1  )/4Z o+2h2+4,.
/)i2  = R

2 

	 (2.9) 

where R
1 

and R2 are residuals. 

In the ensuing solution we obtain a first approximation 

to the dependent variables by neglecting the difference corrections 

Li, /32  and applying the method of relaxation to obtain zero 
residuals R1, R2. More accurate numerical representation of 

the dependent variables is obtained by differencing the above 

values and including approximate difference corrections before 

continuing the relaxation. 

Leading terms in the difference corrections are 

= -8420/12 + 86Z0/90-...   (2.10) 

62  = -84Y0/12 + 86Y0/90-... 	 (2.11) 

+(1 -0-) f(u8Y 03Y0/6+... )(8Z 83Z /6 	) SY 8Z 	7 / 
o
- 	 0  - !_t 	+... 	04t 	Jo  

/3. 	... 
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3. The Boundary Conditions 

In view of the boundary conditions (2.3) and (2.4), the 

relaxation procedure is straightforward at f = 1 and for Y = 0 

at f = 0. 	It is necessary, however, to pay special attention 

to the condition Z' = 0 at f = 0. 

in general we should use a numerical differentiation 

formula for the first derivative at f = 0. Such a formula is 

Z'(0) = (1/3) [4Z (h)  - Z(2h4 - Z(0), 	 (3.1) 

and to satisfy the boundary condition Zy(0) = 0 we should then 

require 

7(0) = (1/3) .(42(h) 	Z(2h),I .   (3.2) 

Hence we should relax Z only over the range 11;,Tf,!:1 

and then evaluate Z (0) from equation (3. 2). 

Formulae of greater accuracy than the three point 

formula quoted in equation (3.1) may, of course, be used and are 

listed by Bickley2. 

For the present problem a slightly more accurate 

representation of the condition Z'(0) = 0 than is given by 

equation (3.1) was obtained by noticing that equation (3.1) is 

equivalent to assuming 

= Z(0) + const. f2 

in the neighbourhood of f = 0. 

 

(3. 3) 

 

However, examination of equation (2.1) suggests, for 

the present problem, that we may express 

Z = z (0) + a  (a.) 5/2 

 

(3.4) 

 

for all (7., where a is a function of c only. 	'Then the value 

of a in equation (3.4) is expressed in terms of the values of 

Z at f = 0, h and 2h we have, instead of equation (3.2), 

and in view of the boundary conditions (2.3), 

z(0)  = 2NZ(h) 	Z(2h) 

21'  - 1 

where N = 5/2. 

This modification has been incorporated in the present 

work since second and higher derivatives of Z with respect to 

f are singular at f = 0. These further conditions were riot 

represented byequations (3.1) - (3.3). 

(3.5) 

*.* 
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4. Starting  Values for the Solution 

It will be seen that equation (2.2) has a closed 

analytical solution. when cr = 1. 	For in this special case 

yfl + 2 = 0 

 

(4. 1 ) 

 

and so, in view of the boundary conditions (2.3) and (2.4), we 

obtain 

Y = f (1-f) .   (4.2) 

Approximate values of Z at f = 0 and 0.5 may now 

be obtained from equations (2.4), (2.8), (3.5), and (4.2), for 

neglecting 61  and Ri  in equation (2.8), we have approximately 

Z
o
(Z 1 - 2Zo  + Z-  ),FT + h2f

o 
= 0

' 1 Y 	0 
(4.3) 

Let f_l  = 0, fo  = 0.5, fl  = 1 so that h = 0.5,t/ Yo  = 0.5 by 

equation (4.2), the boundary condition ZI  = 0 by, (2.4) and 

Z = 4 j 2 Z/ (4 Y 2 - 1) by equation (3.5), so that equation 

(4.3) may be written 

/r4 v  Z 
2Z 

0 
cA 4 qi-2.  

from which we obtain 

Z
o 
 = 0.564 

and hence Z-1 = 0.685. 

The corresponding variation of Z with f, as given 
. 

in equation (3.4) , is 

Z = 0.685 	- f5/2) 

 

(4. 4 ) 

 

which may be used 	an interpolation formula to estimate Z in 

the range 0“,7S1 for the special case a = 1. 

This special solution, for a = 1, has limited physical 

significance since for real fluids the Prandtl number o is less 

than unity, say about 0.7. 

However,s to obtain numeriLal solutions for real fluids, 

it is convenient to use values given by the special solution, 

equations (4.2) and (4.4), as initial values for the relaxation 

method described below. 

/ 5 0 	 *00 

On the assumption that Z varies parabolically with f, one 

Obtains Z = 0.685 + 0.202f - 0.888f2. 
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5. Solution by Relaxation 

To calculate values of the dependent variables Y and 

Z for values of 7 less than unity the following procedure is 

suggested. 

First calculate YI
7=1 

= f(1-f), from equation (24_.2) and 

ZI cr=1, from equation (4.14.), for a range of equally spaced values 

of f in the range (0,1). 	Then, neglecting the difference 

corrections in equations (2.8) and (2.9), follow the regular 

sequence of operations:- 

(i) relax equation (2.8) with Y = Ylc_=1  to obtain Z = Z X6_1 

(ii) substitute Z = Zt 	in equation (2.9) with the given 17=1  
value of r and relax to obtain a first approximation 

Y = 	(1) 

(iii) substitute Y = Y 11(1) in equation (2.8) and relax to 

obtain a first apyroximation Z = Z 1(1) IT  

(iv) substitute Z - 71(1)  in equation (2.9) and obtain a 

second approximation yj(2)  as in (ii) and a second 

approximation Z1(2) 
as in (iii). 

try 

Continue the above relaxation procedure until satisfactory 

values of 	 an Yi p- and Z1 	are obtained for the dependent variables. 
h  

Next difference the values obtained for YI 	and ZI„, 7 
and estimate the difference corrections L.}  and 	given by 

equations (2.10) and (2.11) respectively. 	Insert these corrections 

in equation (2.8) and (2.9) respectively and obtain more accurate 

values of the dependent variables as follows:- 

(v) relax equation (2.8) to improve Zia. 

(vi) substitute Z1 	in equation (2.9) and relax to improve YI 7 	 7 

(vii) substitute the improved values of Ylo. in equation (2.8) 

and relax to obtain Z = Zi; 

(viii) substitute Zix  in equation (2.9) and relax to obtain 

Y = Yix  

If necessary, continue the above sequence of operations 

until satisfactory values have been obtained for Y1m and Zix  . 
0" 

Difference the values of Y1
7  and Zlx7  and re-estimate  

the difference corrections. If necessary, repeat operations (v) 

to (viii) until satisfactory final values are obtained for the 

/dependent ... 



-7- 

dependent variables. 

6. The Relaxation Pattern 

Since the given differential equations (2. 1) and (2. 2) 

are non-linear, special attention has to be paid to the relaxation 

pattern which is as follows. 

When relaxing equation (2.8) to obtain values of Z 

corresponding to given values of Y we note that if we vary Zo  

by s then we must change the residual R1  at f_1, f
o
, and f

1 
by 

(R1  ) _1  = E 2_1  

0R00 = 6(Z1 	4Zo Z-1 - 26)  

and 
	

(R1 )1 = €Z1 

respectively. 

Similarly, when relaxing equation (2.9) to obtain values 

of Y, if we vary Yo by s the corresponding changes in the 

residual R2 
at f

-1,  fo' 
and f1  are 

(R.2)-1 
= e 1 + (1-o-)(Z

o 	
Z 2) / 4Z

-1_
k 

L 

(P-2)o 	= -2€ 

and (Pt,)1 	= 	( -Cr) 	-
o 	

42 '1  2 	 1? 

respectively. 

Relaxation could be effected simultaneously in both 

variables but the above procedure is preferred since, for real 

fluids, the value of Y only differs slightly from the values 

calculated for the special solution (4.2). 

7. Computational Procedure 

In practice it has proved satisfactory to use six or 

eleven equally spaced pivotal ooints in the range 

Values of Y = f (1-f) and Z = 0.685(1-f5/2) are 

calculated from equations (4.2) and (4.4) of the special solution 

for -1-  = 1. 

Residuals R1, R2 
are then calculated from equations 

(2.8) and (2.9), with difference corrections neglected, for each 

pivotal point except f = 0 and f = 1. 

/Relaxation ... 
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Relaxation proceeds as described in section 5 using 

the pattern given in section 6. 

Improved approximations are obtained by differencing 

calculated values of Y and Z to third and fourth differences 

respectively; substituting in equations (2.8) and (2.9) values 

for the difference corrections given by equations (2.10) and 

(2.11) respectively; and repeating the relaxation. 	One 

repetition has been found sufficient to guarantee four figure 

accuracy. 

Results are tabulated (i) to three decimals for six 

pivotal points and (ii) to four decimals for eleven points. 
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0.0 	0.00 

	

.2 	.16 

.4 	.24 

	

.6 	.24 

.8 	.16 

	

1.0 	0.00 

0,000 

.163 

.247 

.252 

.175 

0.000 

0.000 

.167 

.255 

.265 

.192 

0.000 

	

0.692 	0.686 

	

.684 	.679 

.649 	.645 

.563 	.559 

.386 	.381 

	

0.000 	0.000 0.000 

.695 

.660 

.573 

.394 

-q- 

TABLE 1  

TABLE 2  

Eleven -points. Four decimals 

0- -0.6 o-  = 1 

z 

= 0. 

0.7114 

.7100 

.7037 

.6904 

.6679 

.6335 

.5837 

.5133 

.4136 

.2643 

0.0000 

8 = 0. 6 

0.0000 

.0949 

.1700 

.2255 

.2615 

.2779 

.2744 

.25r2 

.2054 

.1284 

0.0000 

0.7200 

.7188 

.7131 

.7004 

.6783 

.6439 

.5940 

•5232 

.4223 

.2703 

0.0000 

0.6966 

.6954 

.6890 

.6772 

.6552 

.6211 

.5717 

.5019 

.4031 

.2563 

0.000o 

         

         

      

Y 

  

         

   

	4 
ry  s_ 1 	= 0.8 

  

     

     

         

0.0000 

.0922 

.1646 

.2172 

.2500 

.2630 

.2560 

.2286 

.1799 

.1073 

0.0000 

  

   




