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SUMMARY 

A numerical solution is found for the equations 

governing the motion of a two-dimensional laminar boundary 

layer, in the absence of a pressure gradient,which would 

be valid if the flight Mach Number is very high (i.e. M:..)1). 

The effects of surface slip, and the finite thickness of 

the boundary layer are shown to be negligible if the 

Reynolds Number (R) exceeds about 105, and are neglected. 

Account is taken of the variation of specific heat, 

Prandtl Number and viscosity, with temperature, although 

(for air) only the latter effect is important. Sutherland's 

formula is used for viscosity variation, and the results 

imply that for M (10, there is little variation of skin 

fricLion coefficient (cf) with Mach Number. 	For high 

Mach Number, however, cfcc, 1/in'and the heat transfer 

coefficient k_ = 0.51cf 
for air. 	The surface 

te,nnerature has a negligible effect on these quantities 

if it is small comcared with the stagnation temperature. 

Numerical results are given, and show that skin friction 

and heat transfer vary as the square root of the surface 

Pressure. The velocity and temperature nrofiles across 

the boundary layer are also deduced: the boundary layer 

displacement thickness is shown to increase asjM3%R\ at 

high Mach Number, and there is an important interaction 

between the boundary layer and the external flow. 

Some remarks on the stability of a laminar layer are 

included, and a comparison is made of the above results 

with those relating to lower Mach Numbers of flight. 
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NO  

3/,  
C 	

. Sutherland's Constant 	(i. e. cr ; TI-7o) 

CD viscous form drag fr bou 

Cf 	friction drag 	jp3U5
2  

F 	shearing stress at surface (.3. (12) ) o ay o 

H Total heats  or enthalpy 	c
P
dT) 

L length of body surface 

M 	Mach Number of stream outside boundary layer (=u(5/as) 

Ma Mach Number of free stream (=ua/aa) 

• heat flux into surface (=k0(iI)0) 

R 	Reynolds' Number (=p3u3L/40 

R 	Reynolds' Number of transition (=p6u0T/116) 

Rs 	= pe ucc,'/Is  

T 	static temperature of gas 
Tth thermometer temperature (i. e. that value of TD  for 

which kH  = O.) 

11' 	free stream velocity (in ft/sec. ) 

Y 	= h/G 

Z 	= 13T 

a 	speed of sound (=Yp/p) 
b 	constant used in equation (3.10) 

c 	= C/To  

Cf =  
0 5 

c 	gas specific heat at constant pressure 

v 	gas specific heat at constant volume 

f 	= f(n) = u/uo  
g(n) = i  P6  m2 p 

h 2 h(n) = (H-Hc5)/N 

k 	Thermal conductivity of gas 

kH = ViP5ug 

= 
m 	molecular weiz7ht of gas 

L 	3 2M s 



Notation - continued. 

root mean square of atmospheric pressure fluctuations 

p 	gas pressure 

q 	
- a  dh 

c do 

✓ air density relative to sea-level conditions (=Pa/PSL) 

s 	= x/L 

t 	time 

u2v components of gas velocity parallel to the x- and 
y-axes respectively. 

U velocity of slip at surface 

1 w(n) = 	2Rs  3 

x9 y system of orthogonal co-ordinates parallel and 
perpendicular to surface of plates  with origin 
at leading-edge of plate. 

x' 	value of x in feet 

xl 	value of x at transition point. 

L7 	proportional increase in c at elevated temperatures 

8 	momentum thickness of boundary layer. 
• inclination of airflow at outside of boundary layer 

to free-stream direction 

inclination of surface to free-stream direction 

P 	arbitrary finite constant in definition of n and w 

Y 	=(c o  /cv  )6  (except in equation (5,7).) 

boundary layer thickness 

e roughness height 

max maximum tolerable roughness height to prevent separation of the flow 

 
11(n) 	

t 
= 7- 

r 

9 	deflection of stream at outside of boundary layer 

(
tan 	

/75 = Iran 
'3 

A 	mean free oath of molecules at surface 

coefficient o yt3cosity of gas 

gas density 

a 	Prandtl Number (= ciDe./k) 

7 	mean value of c within boundary layer 
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Notation - continued. 

df 
ti = 	3/7 

(

T duN  
-d7) 

Suffix: 'SL' denotes conditions in the ambient air 
at sea level. 

	

a 	denotes conditions in the free stream 

denotes differentiation with resnect to n 

1 denotes conditions at the surface 

denotes conditions at the outside of the 
boundary layer (where y = 5) 

1 

	

8 	denotes conditions at tip of small 
projection (where y = s) 

Primed symbols (e.g. T') denote differentiation with 

d7, respect to f (i.e. T I  = 77) 
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1. 	Introduction 

In this report we shall attempt to examine the 

properties of the laminar two-dimensional boundary layer 

existing in a compressible boundary layer at very high 

Mach Numbers of flight. 	To be 'Drecise, we shall assume 

that this Mach Number M is sufficiently large that W- 

can be neglected compared with unity. 	The resulting flow 

conditions we describe as 'hypersonic' in a similar way 

as we can classify as 'incompressible' those flows in 
a 

which we can neglect Mc-  compared with unity. Like the 

results for incompressible flow, those relevant to the 

hypersonic boundary layer display a certain simplicity 

of form, which greatly facilitates their interpretation 

and application. 	This simplicity also enables us to 

relax many assumptions which are normally made to obtain 

a numerical solution of the equations involved. 

For instance, we do not find it necessary to restrict 

the discussion to a gas with a Prandtl Number of unity, or 

to stipulate that the surface temperature is a constant. 

We shall use Sutherland's formula for the variation of 

viscosity with temperature, and we shall find it possible 

to make some allowance for the variation of molecular 

specific heats with temperature. 	Such factors greatly 

enhance the value of the results we can obtain and throw 

light upon the accuracy of the assumptions more usually 

made. 

Of the assumptions which we do make, the most 

restrictive is that the pressure over the surface is a 

constant - although this allows us to consider not only 

the heat transfer to a flat plate moving parallel to 

itself, but also to plane inclined surfaces which in 

supersonic flow are acted upon by a uniform pressure, and 

to bodies (such as, for instance, the double--wedge wing) 

composed of several such surfaces. 	':;e shall also make 

the usual assumptions associated with that of a high 

Reynolds Number - for example, that the boundary layer 

is thin, and that the velocity of slip is zero - although 

we shall examine these in the light of the results to 

which they lead. 	In regard to the variation of the 

molecular specific heats with temperature, we shall be 

guided by the results of statistical thermodynamics in 

assuming that they increase to a certain asymptotic value 

at very high temperatures. 



As an extension of the assumption that we may treat 

(1/M2) as small, we shall also neglect the surface 

temperature compared with the thermometer temperature of 

the boundary layer air. 	In other words, we shall be 

dealing only with the boundary layer in the presence of 

high rates of heat transfer. 	This is easily justifiable 

if it is recalled that the thermometer temperature is 

commensurate with the stagnation temperature, which latter 

is given by 

2 
7 M ) x ambient air temperature. 
a 

Flight at a Mach Number of 10 or more thus involves 

thermometer temperatures of at least 4000°C., and plainly 

unless the surface temperature is considerably smaller 

than this the problems have no great practical significance: 

From the mathematical point of view, if the surface 

temperature is comensurate with that of the ambient air, 

(say, 2 or 3 times its value), then since the thermometer 

temperature is of the order of M2 times its value, the 

above assumption is justified if we allow M2-400. 

For such reasons as this, the form of the asymptotic 

solution we obtain has rather strange properties, and 

having written down the correct boundary conditions for 

the condition j1/N12  = 0, we shall examine the compatability 
of the results for finite, but large, Mach Nuaiber. 	7!e,  

find that in the same way as the assumption of 

incompressibility (M2 	0) leads to quantitative deductions 

which are qualitatively sound (if slightly exaggerated) 
when compared with conditions at finite Mach Numbers, so 

also does the hypersonic solution we find here. 	It 
remains, of course, to be shown whether the results have 

the same power and significance,as an asymptotic solution, 

as those for incompressible flow. 

2. 	The Equations  of the Boundary Layer in High Speed Flow  

Using the notation defined at the beginning of this 

note, we may write down the equation of continuity in 

steady motion as 

a(011) 	a(v) , 0  
ax 	ay 

.0.4 (2.1) 

and if the surface oressure is uniform, the Eulerian 

equations of motion as modified by Prandtl for a thin 



boundary layer become 

Du _ a 	au \ 
PDt - ay (! -gay} .... (2.2) 

dp = 0 	 .... (2.3) 

In addition we need the energy equation for the thin 

boundary layer: 

DH 	a f ic 2a) 	, .... (2.4) PDt - ay ‘(77 ayl 	1k77) 

Finally, from (2.3), the Gas Law may be written as 

d(211) = 0 	 • • • • (2.5) 

We now introduce the non-dimensional variables 
s=7.4„f=1,01,and h 	(H-11,)/,111 

0 	 0 	o 

where s, f and h are bounded quantities and in general, 

finite; 	and where the subscript '5' refers to conditions 

outside the boundary layer (which are invariant with x). 

To relate p to the enthalpy H, we assume that within the 

boundary layer 

1-1 , a constant (mc ), 	 • • • • (2.6) 
I? 0 

which is, at least, a more elastic assumption than that 

the specific heats of the air are constant. 	In fact, 

there is some evience to show that at elevated temperatures 

the molecule's specific heats reach an asymptotic value 

higher than that at normal temperatures and pressures. 

Fowler and Guggenheim (in their 'Statistical Thermodynamics') 

deduce that, for large T, (mc) is increased by a factor 

9/7  in a diatomic gas. 	Since the air is composed mainly 
of diatomic molecules, we might therefore expect that, 

in the high-speed boundary layer, where as we shall show 

later,T.0(0T,), we could put in (2.6), the value I. 2 
7 

and that this would apply in general over the boundary 

layer if k/I)1. 	Existing data for air (up to T = 3000°C) 

suggests that this ratio is exceeded without any evident 

falling off in the increase of specific heats with 

temperature. 	This increase in caused by the higher 

vibrational energy of the gas at these temperatures, and 

is still further increased at even higher temperatures 

(say, about 20,000°C) by electronic excitation - though 

this effect may legitimately be ignored here since, as we 

shall see later such high temperatures are not likely in 

the boundary layer at any high speeds in which we might be 

interested. 	However, it is evident that except near the 

edges of the boundary layer, where the temperature is low 

(i.e. for s 	y 	5-s, where s is some distance small 

pile 



-7- 
compared with 6, the boundary laver thickness), equation 

(2.6) can ',provide a reasonable indication of the change 

in specific heats. 

Then, if we define g so that 

_2 = g 1,1  

p 
it follows from (2.5) that 

1 p6 	1 mo  T 
g  = 	72_ - 

M p 	in T5  
or using equation (2.6) 

c T 
g - 2 (c T) rm 	P 	5 	 .... (2.7) 

By the definition of the function h, we find that 
2 	 2 	r7 

h = r T cdT/iu3  = 	 = 47 -7 (4 -1)(tx- 
0 	0 	1-1 	 P - T 	 M 	6  

	

Since h is finite, it follows that if we treat M2 	1, then 
, = 0002  ) 	 .... (2.9) 

-3 
Assuo_ing (as before) that at high tempertures, the snecific 

heat attains a Ponstant value, we deduce that the mean 

specific heat 717 is equal in general to the asymptotic 

value within the boundary layer. 

Hence, in equation (2.8) 

2 1 	T 	co 	2 	1 CDT 
h  = Y-1 —2 (7 -1)76= 	M Y-1 	-7-7-7' (1  6 	 PI  6 

[1  +° (-1-2-1 	• • (2. 
10) 

or substituting in the equation (2.7) 
T CD 	Y/N I, 	f 1 N1 ,. 

g  = ...2 (c T) - h (---7 	1 +0 — 2 I ) t. 	‘ 2i,  i ,l 	P 6 	 M J 

For the asymptotic solution, where M2-1. 0Q, evidently 
y_i 

g  .---- (77r-i)h  

In the same way as we assume that the molecular 

specific heats are constant over the boundary layer, we 

also assume that the Prandtl Number, o = J,cp/k, is a 

constant (and equal to 7, say) since this number is 

known to be related to the specific heats, but again 
o 	a, since the Prandtl Number differs at high temperatures 

from its value at normal temperatures. 

loomo(Lr'o 11) 
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In suggesting a non-dimensional form for the viscosity, 

we use Sutherlands Formula: 

T54-C iT 	/T  N2( C 
	C 116\ 

,̀1(5 	C 
T6 	

1.7 	1+, ),/c117, 7r;  
Z. 

Suppose we define n so that 

T.1 
Lt5  

then 1-1  is a finite parameter for M2.).\ 1, since using 

(2.11) and (2.9), 

=j) 	
1 ( + ;_ 	+ o (-- 

M 	6 	 5 I - 	M
7) 
 

or in the limiting condition, M 	from (2.10) and (2.6) 

2 	1 -pTc  
+ )(Y=-1- 1=A 	o (12) 

P 5 	
5 	 1 Yi 	

LY-1  m2  (cT)1 	T 	2 	9)  M 
A 	 I 

C )(Y-1 in 	1.,T- 	 .... (2.13) i.e. n 	
6 	

2r. mo 	- 

This relation also expresses the fact that n varies, 

at large temperatures, as the square root of the temperature 

(or as the square root of the enthalpy, if the specific 

heats are constant). 

If we now suppose that all the non-dimensional 

variables so far defined (i.e. f, g, h and 9) are fonctions 

of a single independent variable n, involving the space 

co-ordinates x and y, then it may easily be shown that this 

variable must depend on y/.ix. 	Thus we write in non- 

dimensional form: 

R 

L  2M33 

where 0 is some arbitrary finite constant whose value 

may later be chosen as a matter of convenience. 	We also 

define a non-dimensional variable involving v, 

= By ( 2Rs 
u5 	,,3 

where w may be shown to be also dependent only on n. 

From the definitions of f, g, h, 	and w which 

are each functions of n, the equations 2.1), (2.2) and 

(2.4) may be simplified to the forins: 

d if 	d w 
n 	

, 
— 	 .7,--  0 
di g

N 	, 
do g 

4. FOOTNOTE: For air, the value of C is 117'K. 

....(2.12) 

. . . . (2.1L1) 
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Infw\df- _ 2 d 
I 
 df 

g rin 	 dn 	doj 

0  t df‘2] 
(nfl-w\dh = - B2i d fa dh‘ "1-  . Lan ko dn] 	q.dni rg Idn 

.... (2.1 5 ) 

.... (2.16) 

We may eliminate (w/g) from eauations (2.15) and (2.16) 

using equation (2.14). If, in the resulting equations, 

we change the independent variable from n to f = (u/u), 

and we write 

df _ -42 F3( au) / (16113 
''dn 	ri 4 R 	 L 

which is a non-dimensional form of the shear stress, then 

we find that (treating c as a constant) 

f = -02 g — TT 

I  T h" +(1-7) 77 h1  + 27 = 0 

....(2.17) 

. . . . (2. 1 	) 

where the primes denote differentiations with respect to f. 

These two equations are equivalent to the equations 

of Crocco1 for momentum and energy, after the Crocco 

transformation has been applied. 	It should be noted that 

their derivation is dependent only on the definition of 

the new variables, and is not influenced by any of the 

assumptions we have made concerning the relation of density, 

specific heats, and viscosity with temperature (i.e. the 

relation of g and ,; with h). 	However we note 	if 

M--Ifx) then h, and of course also f, are finite parameters, 

as also are g and n  which are related to h in the simple 

manner described by equations (2.11) and (2.13). 	Apart 

from this particular choice of the form of the variables, 

equations (2.17) and (2.18) are equivalent to the 

expressions of Crocco. 

In particular, the boundary conditions are also 
greatly simplified in the condition 	 At the outside 
of the boundary layer, u = u or f = 1. 	Here H = F and 

-(5 
the shear stress is zero: i.e. 

h = 0, 	= 0 at f = 1 	 • • • . (2• 	) 

At the surface, where pu = 0 (i.e. f = 0) we also have 
that pv = 0, and y = 0 (i.e. i = 0 and n = 0). 	From 
(2.15),it then follows that 

dn d (rdf)  

df dn 	
= 77  = 0, at f = 0. 

i.e. the rate of change of the shear stress normal to the 
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surface is zero. 	At the surface we also have that 

T = To, say. 	If the skin temperature is of comparable 

magnitude to the ambient air temperature, then To/T5.0(1) 
if M2 (;,, so that from (2.8) in this condition 

h = 0(12) at f = 0 

or in the limiting condition, we have 

dT 0, h = 0, n = 0, at f = 0 	 .... (2.20) 

The condition h = 0 merely expresses the fact that the 

temperature of the air at the surface is negligible 

compared with that of the air within the boundary layer 

if M2.>> 1, and of course if applied to flows with finite 

values of M, is only an aporoximation (unless To  = To). 

We may immediately infer that the asymptotic solution of 

the hypersonic flow equations (with M2).> 1) will be 

uninfluenced by variations in the surface temperature. 

Equations (2.17) and (2.18), with the approximate 

relations (2.11) and (2.13), and the boundary conditions 

(2.19) and (2.20) describe the state of the boundary 

layer in a hypersonic flow, which we interpret mathematically 

as the flow of infinitely large Mach Number. 	In a later 

paragraph we shall attempt to solve these equations 

numerically: equation (2.18) yields the formal solution, 

using (2.19), that 
rf 1:75  

h = 	I  
r 	

T 	
o
iT 	df df 	 .... (2.21) 

f 	0 

where 0  is the value of f where the total heat is a 

maximum and must be chosen to satisfy the condition that 

h = 0 when f . 0 in equation (2.20). 	This however is 

a solution of little computational value, but it does 

indicate' that if we define q as a non-dimensional form 

of the heat flux:i.e. 

q  = rldn 	(
,1  
Y-1) 	Rm3 	ay, 	L 

an 	27.  	s N(kIIV(k5T(5\ 

then, we find that 
dh 	7Sf  1-3 

q = T- . -2o T 	T 	df df 
 

0 
.... (2.22) 

Hence at f . 1 (i.e. at the outside of the boundary layer) 

where T = 0 (i.e. the shear stress vanishes) then also 

q = 0, - in other words, there is no heat flux from the 

boundary layer to the ambient air. 



The a-c-oroximations introduced in the solution for 

hypersonic flow are, as we have seen, valid in general 

within the boundary layer: that is, except near the 

surface and the outer edge. 	In view of this fact, it 

is necessary before proceeding with the solution, to 

examine its validity in these bounding regions. 	It will 

be shown in the next .2aragra-2h that although the assumptions 

are in error, the solution is still an adequate approximation 

if M2W. 

3. 	Interpretaton of the Behaviour of the Flow near the Surface  

Let us first consider the behaviour of the hypersonic 

flo• solution, already obtained, near the surface (i.e. in 

the condition f-..)0). 

We first notice, from equation (2.22), that h' 	0 at 

f = 0, since the value of T (the non-dimensional form of the 

shear stress) is finite at the surface. 	Thus 

h•,•• h` 0f 	as f-40 	 • . • . (3.1) 

where h'= 11,
o 
at f = 0. 	Again, in (2.17), from (2.11) 

and (2.13) 	have that gAmh2  and so 

const. (f/h') as f 	0 

i. e from eauation (3.1) 

const. f2  as f 	0 

From (2.20), 	= 0 at f = 0, so that 

/const. f3/2 as f -4 0 	 ....(3.2) 

To relate this limiting behaviour to the independent 

variable n, we note that 

n =
f a df 	 . • • (3. 3) 

so that from (2.13) and (3.1), since 	# C) at f = 0, and 

1001`vicf, 

n 	const. f3/2 as f 	0 	 • • • • (3. 4) 
Thus, in (3.1) and (3. 2) from (3. Li.) 

f 	cimst. n2/3, h 	const. n2/3, T1 	const. n, for n 4  0 

• • • . (3.5) 
The limiting behaviour is thus singular: the velocity and 

temperature gradients fn  and hn  are infinite at n = 0, 

although the same does not apiply to the values of the shear 
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stress and heat flux, since the value of 19 tends to zero 

at the surface. 

It will be evident that 

Mach NuMber would be invalid 

zero at the surface, and the 

gradients are finite. However, we shall attempt to 

show how the true solution departs from the asymptotic 

one, and to deduce that the value of ' and q at f = 0 

in the asymptotic solutions for M-40oare the correct 

values of the non-dimensional form of the shear stress 

and heat flux if M is large, but not infinite. 

Let us then consider the conditions existing for flows 

	

in which M is finite. 	At the surface, where u = v = 0 we 

have from equations (2.2) and (2.4), that 

a( au 
7 	

di ay ay  4 ) = 	( 	
+ 	au 

ay 	 ay}  

= 0  

or, performing the differentiations of the products: 

2ud4 3T au 

ay2 = 4 dT ay ay 

.... (3.6) 

3
2TI dk aT 2 	au 2  

ay 

	

= T at47) 	k(77)  

fnn  (0 ) = 	Pehn  (0 ) f n  (0 ) 	o 
(c 

 .9 	
T)  
 6  

(cpT)0  

hnn(0)  = 	Y71 Il~i 
 (hn (0  2,1[cif d (Igc 	(cpT )3k _2013.  (0 

) 
 2 

o (cpT)0  

.... (3.7) 

where subscript 'n' denotes a differentiation with respect 

to n, and subscript To' refers to values at n = 0. 

Now in our asymptotic solution for M-*00, we have 

established that both T. and q are finite at n = 0: hence, 

by definition 

fn  (0) = 
00 = (5), 

—7--  m 	
.... (3.8) 

0 	.0  

If M ac-, evidently fn(0) '4 00, 
which is in accordance with 

the asymptotic behaviour of the hypersonic flow solution 

given in (3.5). 	Similarly 
n4  

hn(0) = := = cl 
	

M 	 •••• (3.9) 

such a solution for finite 

because (a.:0 = n is non-

velocity 	and temperature 

Reriting these expressions in terms of the non-dimensional 

variables f and h which are functions only of n (i.e. f=f(n), 

h=h(n)) we find that 



- 13 - 

and both fn  (0) and hn (0) are, for large M, magnitudes 

commenurate with M. 	It follows from (3.7) that the 

second derivatives fnn
(0) and hnn (0) are magnitudes of 

order M 	For large values of My however, both f and 

h are finite ,..rithin the boundary layer. 	Thus any definitive 

relation between the derivatives of f or h must involve 

only finite constants. 	Hence, for large Iiy it follows 

that as n 0 

• const. 

both sides of the expression being of order M14- , and the 

constant being finite. 	emay, in fact, deduce its value 

from (3.7) and find that 

h - nn 	2 

y_ 

g,2 U. 

irltcpT dck/cp)

k 	dT 	 o 1{1+° ( d 11)T1 
 • 

or hnn -b h4 , say 

It follows, by integration, that as n 

1 

2b {hn  (0 12  
. . . . (3. 1 -1 ) 

If we now allow M2 -5 oic), ,2rovided that n M3.).,) 1, it 

follows from (3.9) that 

h (n) ,,, --7---
/3 
 n /3 	1 + 0 t ,. 

3/3 	2/ 1 1 
.... (3.12) 

2b /  

1 
2 since h(0) = 0 (—). 	This expression (3.12) is identical 

with that in 	(3.5) found previrus17-  for the 

asymptotic solution: 	equation (3.11) implies a more 

exact descri-otion of the conditions near n = 0 if M is 

large, but not infinite. It will be seen that the as7-m-Dtotic 

(hypersonic flow) solution can give the correct description 

of conditions (with error of order 1  ) if 

n = 0 (;) 	 .... (3.13 ) 

and fails if n = 0 /1  

In a similar manner we may show that, for n - s" 0 ,  

for large M 

fn 	 ih(n) - h(0], 	°[h(n) 	h(0)} 	. • • • (3.14) • .17 	I. 

which is like7iise com-oatible with (3.5) extent here 

n = 0 
, 

 

We have thus accounted for the difference between 

C 

2 
h(n) - 	 b 	5b 	h (0) 	1 

1 	 r 	 3 
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the variations of h and f as obtained either by the 

hypersonic flow equations, or by the exact equations for 

large (but non-infinite) M. 

loreover, from equations (3.E) it follows that the 

gradient of the shear stress, i. e. (d  ) tends to zero 'dn' 
as n --Jr0 for all values of M (which is again compatible 

with (3.5)); so that from (3.13), provided M is sufficiently 

large, the value offound from the solution in hypersonic 
° 	 , flow (which is valid where n)N 1 7) surface.  

will not differ greatly 

from the true value at the 	 Similar 

arguments lead to the deduction that the rate of heat 

flux at the surface is also correctly )I.iven by the 

hypersonic solution. 

4. 	Behaviour of the Flow near  the  Outer Edge of the Boundary Layer  

At the outer edge of the boundary layer where f --> 1, 

we have seen from equation (2.21) that 

h' 	const. T
o--1 

(4- 1 ) 

and since T -4 0 as f 	1, if o c 1, it follows that 

h' Do as f' -# 1. 	In particular, since from (2.19) 

h = 0 at f = 1, it follows that upon integration, as f 	1 

( ri 	f5) h 	const. 	c- 	 • • • • (4.2) 
f 

"L

In our solution for infinitely large M, using (2.11) 

and (2.13) in (2.17), we have then that as f 

df ) "';: 
f  T 	 const. xil1 	I -O.  

which since T 	0 as3f -51, implies that if c.-7> 0, 

T ti const. (1-f)3+0  as f 	 3) 

and so in (4.2) 

h 	const. (1-034-°  as f 	1 	 • • • • (4.4) 

Near the outside of the boundary layer, from (3.3) and 

using (2. 3), 
2,5-3 

711 	 const. (1-f)34-°  dn a  
• • • • (4.5) 

and it follows that if 0 > 0, n tends to a finite limit 

as f 	1. 	In other words, the extent of the boundary 

layer is finite. 	SuPpose (by suitable choice of the constant 

c3 in the definition of n) that n = 1 then corresponds with 

the outside of the boundary layer. 	We have from (4.5) 

upon integration, that 	
30 

(1-n) •4 const. (1-f) 77  as f 	1 	 • • • • (4.6 ) 
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Thus in (4.3) and (4.4)2iym 

(1 -f) 	const. (1-n) 3G, h rso const. (1-n)
/3  

04.4 const. (1-n)1/-7 	as n ^sk —(4.7) 

Here again the behaviour of the variables is singular, as 

it was near the surface. 

This behaviour results from the fact that the boundary 

layer is finite in extent (as measured by the independent 

variable n), and is of course only strictly valid in the 

limiting condition of infinite Mach Number. 	For finite 

Mach Number we know that the boundary layer extends to 

infinity: but this Is quite compatible with the 

hypersonic flow solution for as we shall now show, at 

large distances from the surface (for given n) the air 

velocity decays very rapidly with increase of Ylach Number. 

In equations (2.17) and (2.18), which involve no 

approximations concerning the value of M, we have used 

the boundary conditions h = T = 0 at f = 1, which are 

also correct for all M. 	However in relating f to n in 

(4.5) we used the approximation that 11 a h2, whereas at 

the outside of the boundary layer we have simply by definition 

r _ 1 at f = 1 - m • • • • (4. 8 ) 

Similarly we have used in obtaining (4.3) the approximation 

g cc h, although strictly 

g = 1 
- at f = 1 
M2 

• • ( 4. 9 ) 

Strict17, for any value of M, we have from (2.14) that 

and so in (2.15), 

(of w)df 	h  f 	
an 	

2 

( 0 

	d df 
g + g-  do -7-. 	 - 

g  an 7.17-1  . -p 37  ,a.,-, 	 .... (4.10) 

dr' _, dp, LT Now an gir., dT 3Y approaches zero at the outside of the 

boundary layer: and so from (4.8) and (4.9), since f -4 1 
as n -4 an, we have that 

, 
2 df 	'-' ef M n FIT  = -rM

dn 
 

vie may put p = 1 without loss in generality, and after 
integration we find that 

const. 	/ 2 exp--fMn ) is n -300. Mn 

do 
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Thus, for a given value of n, the disturbanceto the 

flow decreases exponentially with increase in M. 	In 

the limiting condition of infinite Mach Number, it vanishes 

for all but a finite range of n as we have seen. 

It should be noted that n is itself dependent on M, 

and although it is true that the changes within the boundary 

layer become more concentrated, the actual thickness of the 

boundary layer increases as the Mach Number is increased, 

as we shall see in the next paragraph, and for M =c,0 is in 

fact infinite. 

5. 	Solution of the Equations 

If in equations (2.17) and (2.18), we put 

Y = ht5, Z = 
2 

then they become, with the use of equations (2.11) and (2.13) 

ZZ" 	= 0 r" 
• • • • ( 5 • 1) 

Y" + (1-7) ZizY!  + 2 = 0 

7ith the boundary conditions 

Y = Z' = 0 at f = 0 

Y = Z = 0 at f = 1. 

The equations (5.1) have been solved numerically to 

satisfy these conditions, using a relaxation method, for 

7 = 1.0, 0.8 and 0.6. The results are summarised in the 

Table I below. 
Table I: Summary of Numerical Solutions.  

f 
Y Z 

o=1 0=0.8 0=0.6 o= 1 o=0.8 o=0.6 

0.0 0.00 0.n000 0.0000 0.7200 0.71 	4 0.6966 

.1 .09 .0922 .09L.9 .7188 .7100 .6954 

.2 .16 .1646 .1700 .7131 .7037 .6898 

.3 .21 .2172 .2255 .7004 .6904 .6772 

.4 .24 .2500 .2615 .6783 .6679 .6552 

.5 .25 .2630 .2779 .6439 .6335 .6211 

.6 .24 .2560 .2744 .5940  .5837 .5717 

.7 .21 .2286 .2502 .5232 .5133 .5019 

.8 .16 .1799 .2034 .4223 .4136 .4031 

.9 .09 .1073 .1284 .2703 .2643 .2563 

1.0 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
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/Ve are particularly interested in the values of the 

shear stress and heat flux at the wall:',Iaese are usually 

quoted as the coefficients of  and kH , where we define 

 rt 
ef = n-o0 	ay )] 2P6u5 	Rivls (ildn ) o 

 lim{ (au)  AI 	2 1273-!  df 
Rivis 	o 
232 

so that 

c
f 

jf ilis  44).  Z (0) 
o-g 

and where 

k,H 	
k () 	P

3  
0 ay 0 	3L/ c5 

so that 

kH 	lim k  (21.  ) 	Lt (La)} 	i 1 1 clhi 
cf 	n-t0 	6 'ay' 	= f40 	df 

i. e. H 
= 2 Y (0)  

In (5. 2 ) we find from (2. 11 ) and (2.13) that 

-qh 	(i+C)(2 r 
fg 	 To 

\ Y -1 in
s 

• • • • (5.2) 

.... (5.3) 

• • • • C.,■• 

Vre propose to ignore the change in the molecular weight 

of the air within the layer, as a-opreciable dissociation 

is unlikely to occur within the range of temperatures 

we are concerned with, and as Sutherland' s formula (used 

in forming the connecting of viscosity with temperature) 

is unlikely to be valid if appreciable dissociation takes 

place. 	Hence, if we put C/To  = c in (5.4) 

ah. 	1+c( 214  
-**7-; 

C'g 

Thus in (5. 2) 

c   	14, 11 	z (0) 
(Y-1 ) 

For air, we may take 

	

7 	9 

	

Y = 5 	14  = 7  

....(5.5) 

• • • • (5. 6) r   

and taking a mean value of Z (0) for between O. 7 and 

0.8 from Table I, since Z (0) does not change greatly 

with 7, we find that 

+c c, 	6 
o'RMs 

At normal temperatures o, the Prandtl Number is about 0.74 
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and it is related to the value of the ratio of specific 

heats: for this reason it will change at high temceratures, 

and to account for this change we may use Eucken's Formula: 

o = 4Y  where Y = c /c 95 	 v 	 .... (5.8 ) 

At normal temperatures Y 2  = , but at elevated tem 
- 5 

from the results of Fowler and Guggenheim we find that 

Y 	7_ — - 	so that from (5.8) 

14. 
 - 	

8 o = 	0.737 , 	= 	= 0.782 
0 • 	6 	19 	 e3 ....(5.9) 

since o, the value of 3 assumed within the boundary layer, 

refers to the condition of elevated temperature. 	Then 
from (5.9) in (5.7), we have that for air: 

I+c 
cf = 1 ' 7  ) RMs 	 .... (5.10) 

If we omitted to account for the variation of specific 
heats with temperature, so that we put 11  = 1, and o = 0.737 

in (5.5), then in place of the coefficient 1.7 we should 

have 1.62, so that it will be seen that there is only a 

small effect on the skin friction of these variations. 

The inclusion of dissociation effects ,,ould have a more 

important effect, since we see from (=J.4) and (5.2) that 

cf will vary as Wm 1
1/  4. if the molecular weight of the 

gas within the boundary layer were only half that at normal 

temperatures, then cf  would be reduced by 10o/0. Evidently, 

however, the neglect of dissociation will not greatly affect 

the numerical answer, which will err, (if anything) on the 

pessimistic side in the evaluation of both skin friction 

and heat transfer. 

To calculate the heat transfer coefficient, we need 
in (5.3) the value of Y'(0). 	From Table I we may calculate 

the following data: 

0 
	

1 . 0 
	

0.8 	 0.6 

Y 7 (0) 	1 	1.021 	1.048 

and 	
1/11 the available accuracy we find that Y'(0) 	0 - 

thus in (.3) 

kH 1 — -V11 
7; = 

so that, using (5.9), for air 

(5. 1 1 ) 

kH = 0.510 
cf  

. . . . (5. 1 2 ) 
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and from (5.10) 

l+c 
kH = 0.86 i 
	 • • • • (5.13) 
RMs 

The mean skin friction and heat transfer coefficients 

may be found from the relations: 

1 	kH 	
f=  

1 	
f 

PL  
KH L 	- = 	dx 	C = 	c dx  Jo 

and performing the integrations, we have that 

KH  = 1.72 ---t-tm  

x•Li. 	R ,, pc 
Cf  = ._) 	m  

(1.14) 

The local heat flux to the surface in dimensional terms 

is, using (5.13), 

3 	I 1  
T,+0 oi5p,5a1 

Q = iklio5u5  = 0.430 u5   
3 

If we refer conditions outside the boundary layer (denoted 

by subscriot '3') to those at sea-level (denoted by subscript 

'Sri), we then find, using Sutherlands Formula and the 

Perfect Gas Law, that 

Q
= 0.436/P3 )-.,1 u2  [

TSL+C 	LSLaSL  

kIDSL 	6 	TSL 

Using I.C.A.N. conditions for the nroperties at sea-level 

(and putting C = 117°K), in metric units, if x is in metres, 

u6 in metres/sec., and p, in atmospheres, then 

= 4.40 x 10-5  u x  Kw./sq.m 	 ..... (5.15) 

In Tritish aeronautical units, if x = x'ft, u
6 

= U lft/sec., 

and p5  is in atmospheres, then 

Q = 5.07 x 10-4 	2 	3 u' 	— ft.lb/sq.ft/sec 	• • • • (5.16) 

In a similar we may calculate the local frictional force 

to be 

-3 PO F = 1.01 x 10 	TJ' -T lb./so.ft. • 	• (5.17) 

Also of interest is an ex-,pression for the thickness of 

the boundary layer, since we have already inferred that 

the boundary layer is finite in thickness in the ,?resent 
. asymptotic solution for M 2 -4 0416r. 	By definition, from 

(3.3) and (2.13) if m = mo, the value of n for f = 1(i.e. 
at the outside of the boundary layer) is 

n3 = (l+c)(-74 fl(-2)df = (l+c)(1=-'1V7  	df 
rho 	o ~ 

) 2r 
-1 	h 

o 
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Using (5.4), 
5/ 

14— 4100 
7  no  --Y Y- 
	

o [(1+c  df 

From the definition of n it also follows that 

1 ri 	Lf 	3 

so that eliminating no frail the two expressions 

2 	 2 M3s Y-1 — 	Y2I  —,-6, = 2(1+c)(7; 0) 	7r  df) -,- 
L‘ 	 0 

.... (5. 13) 

-sing the data of Table I to evaluate the integral, and 

using the values of Y and LA from (5.6), we calculate that 

17 = 0.030 -f'71(14-3)M3 
 

s 
	 ....(5.19) 

since, within a reasonable approximation the integral 
tri
o 
 ("E/Z)df = 0.494 7 -0.4. 

Thus, from (5.9), for air: 

P2  = 0.025 ri+cR)°1  s 	 —(5.20) 
L 	 J 

In dimensional terms, if u5 
 = 17' ft/sec., x = x' ft. and 

-0
(5 

is in atmospheres 

6 = 0.64 x 10-7  
it f=— ft. 	 .....(5.21) 

PO 

It will be noticed that the boundary layer thickness increases 

with increase of speed - a trend which has been noticed 

before in solutions relating to the boundary layer flow at 

high Mach Number. 

From equation (2.14) we have 

g 	
n d (f = 	-)an do g • 

i.e. w = nf 	--dn 
 

10 g 

or from (2.11), 
t fn  

nf - hj Trdn 

At the outside of the boundary layer, where f = 1, n 	no  

and h= 0, it follos that 

w..=n 
6 
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or using the definitions of v and n: 

6 	6 	d6 
- 2x - dx 

0 
.... (5.22) 

since, from (5.20), 6 oc x2. 

It follos that 5, which is in the present asymptotic 

solution the finite thickness of the boundry layer s  is 

what is normally termed the 'displacement thickness' of 

	

an infinitely thick boundary layer. 	Thus the flow is 

tangential to the outer edge of the boundary layer. 

The momentum thickness is a where 
d.S.) Cf  277 

and we find from (5.5) that, after integration 
T is 

14  7,(0) 14) . 	c ds = 1.1  2(X)  s12 	2f4  
o f 	 75(v-1 

By coffparison with (5.18) it folly-s that 

21 
7M 

1 	 ) 

_ 	11.7, (0)/
o - )3.  

For airs  we have that 

m2 

.... (5.23) 

• • • • (5• 24) 

and for large Mach Numbers the momentum thickness becomes 

small compared with the displacement thickness. 

The velocity and temperature distributions within 

the boundary layer may be calculated quite simply from 

the data of Table I. For, by definition 

h = 7 Y(f) 

i.e. HH 	- /23_, H. = 	u  , I u,5 

whilst from (3.3). (2.13) and (5.4) we find as before in 

deriving equation (5.18! that 
f 

1 	 )/ 7  n = ( +0 ) 	
) 	2M  s 

Hence, from (5.18) 

. 

z 	 df)/(i 	1c1.1 df) 6 	 f 	) Z(f) 
(•.• o 	 , 

a relation which connects u/u with y/5• 

.... (5.26) 

.... (5.25) 
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In figures 1 and 2y the variation of total heat and 

velocity across the boundary layer is shown as a function 

of (y/6) for various values of a. 	The variation of the 

shear stress is also given in figure 3. 	It will be seen 

from figure 2 that the maximum temperature within the 

boundary layer ( for air, with 	.-- 0.73 ) corresponds to 

a value of total heat of about one fifth of the stagnation 

(or reservoir) enthalpy. 

6. 	Limitations  of Theory at High Altitudes and Speeds.  

There are four assumntions made in the analysis of 

the boundary layer flow which become invalid if the 

flight Mach Number is too high in comparison with the 

Reynolds Number (both of these being assumed of large, 

but not necessarily comparable, magnitude in the analysis): 

(1) 
	

the neglect of the non-linear terms in 

viscosity and heat conductivity in the statement 

of the equations of energy and momentum, which 

derive from the third order terms in the Boltzmann 

equation. 	These so-called 'Burnett terms' have 

been shown to be equal to ouantities of the order of 

u. 
6 o 	YM

2 

o  L = R 

times those preserved in the equations and their 

exclusion is equivalent to the neglect of M2/R 

compared with unity. 

(ii) the assumption that the boundary layer is 

thin. 	In the equations of the boundary layer, terms 

of order (62/L2) are neglected compared with those 

of order unity. 	From (5.16), such an assumption 

is seen for M
2 >1 to be e7•aivalent to the neglect 

of M3/R compared with unity. 

(iii) the neglect of the velocity of slip and a 

temperature jump at the wall. 	For instance, if 

there is a slip-velocity ux  at the wall, and if Xis 

the mean free oath, we have neglected 

ux . 	aul 	) = 0(of P(51/1
uj 	n3 8Y 1 y=0 - 	4. 

But 	const. X  pa 	
so that 

uo  = C (Mcf  ) 	0  , Rx 
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and a similar result follows for the temperature 

jump. 	Using (5.6) it follows that for IVI)> 1, 

the assumption of zero slip and temperature jump 

is equivalent to the neglect of i/M/R compared with 

unity. 

(iv) 
	

the neglect of the disturbance of the external 

inviscid flow by the presence of the boundary layer. 

The deflection of the external stream by the boundary 

layer causes a modification to the pressure distribution 

along the plate as calculted for inviscid flow. Thus 

for a Plane surface over which we would expect the 

pressure to be uniform (as assumed) there is in fact 

a small change in pressure producing a pressure 

gradient 

dx -\17. Ls — 
dp 	ri a Po 	 p5 

 u
(5  

u2 	(0 u25 

\ML2s 

where 0 is the inclination of the external stream 

to the surface ( i.e. J = v.
0
/u

6 
 = d5/dx).). 

This has been neglected in writing down the equation 
of motion which includes terms of like order of 

magnitude to 

1 
C 0 U2  

2
y'
l

a 	
) 

- a\ = 0
g 
 = 0(  f  

a 	 s 

Hence the neglect of this induced disturbance is 

equivalent to the neglect of a term of order 

-2, 2 idpi a (Laul 	- ) = 	s 	= 0 m5/ 
O 	

2) 
x'ay` ay'j 

Mc L -̀ 	12"x  f  
compared with unity. 

To sum up, in the mathematical analysis we have assumed 

that both -7 and Ty are infinitesimals. 	For the 

assumptions inherent in the structure of 

the equations to be valid and if the surface is assumed 

plane, the quantities M2/12, M3/7R,JM/1, and M2 1M/H‘  
must also be infinitesimals. 	The last mentioned is the 
most stringent requirement, that 

R 	 .... (6. ) 

If the neglect of this term - due to the disturbance of 

the external flow by the boundary layer - is to involve 

no errors of larger magnitude than the assumption that 
en. 

terms of order i/m` may be neglected compared with unity, 
we must have that 
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.... (6.2) 

Thus, if M is numerically about 10, the hypersonic 

solution here presented will involve errors of about 1 /0  

only, Provided that the Reynolds Number exceeds about 109. 

It will be seen therefore that a satisfactory treatment of 

the hypersonic laminar boundary layer should include a 

correction for this effect, since such a high Reynolds 

Number is unlikely to be achieved in flight even at high 

Mach Number. 

On the other hand, if we interpret our initial 

assumption that the pressure gradient over the surface 

is uniform as being strictly true, - so that the surface 

shape will not be plane, as we would expect if the flow 

could be treated as inviscid, - it then appears that the 

error in our calculations will be no greate-^ than that 

involved by assuming M2WI provided that the Reynolds 

Number satisfies the relation 

1 _ 
R ....(6.3) 

Thus, for example, if the Mach Number is about 10, then 

the Re7nolds Number should exceed 105; 	below this 

Reynolds Number both the assumptions regarding the absence 

of surface slip and the thinness of the boundary layer 

introduce significant errors of greater magnitude than 

the assumption that (1/M2) is small compared with unity. 

A value of R >105  for M = 10, implies a value of 

the relative air density not less than 10-4, if the 

length of the body is about 10 ft. , say. 	This is reached 

at altitudes below about 200,000 ft. , and flight at a 

higher altitude than this (at a Mach Number of ten) would 

involve an indicated air-speed of less than about 100 ft./sec. 

Provided then that we interpret our assumption of 

constant surface pressure literally, the results are valid 

In this event, the co-ordinates x and y are curvilinear, 

and the statement of the eauations of energy and motion 

also involve the neglect of terms of order (K5) compared 

with unity, where K is the wall-curvature. 	Since K is 

of order 5/IJ, (as may be deduced from an argument on the 

lines of that appearing in para. 6) their neglect is 

justified provided 52/L2  is small. 
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over a wide range of flight conditions. 	However, this 

assumption does not imply that the surface is plane without 

involving a significant error in most flight conditions. 

7. 	Effect of Surface Shape.  

We have based our analysis on the assumption that 

M)) 1, but it should be noticed that this is the Mach 

Number of the flow at the outside of the boundary layer. 

(i.e. more explicitly we should put M0  in place of M. ) 

If we put Ma  equal to the flight Mach Number, then 

for Ma >> 1, the static temperature behind a shock wave 

producing a finite deflection is large - of the order of 

M2Ta - and so it follows that the local speed of sound 

behind the shock is of the same order as the flight speed; 

in other words M3 	
0(1) and is not large. 	If also the 

Mach Number M)) 1, then the stream deflection must be 

small: viz. 

= 0(1/Ma) 

where a is the angle of the stream to the direction of 

motion at the outside of the boundary layer. 

There is not the same restriction in accelerated flow, 

since an expansion produces an increase in local Mach Number, 

though for Ma  >.> 1 it is ossible to expand the flow through 

only a small angle n, - again of order 1/Ma,- before the 

air pressure is theoretically zero. 	Also it should be 

noted that the analysis is not applicable to flows in 
which Ma  is finite although - due to expansion - M3  .).>1; 
for we have assumed in the analysis that T

6 is comparable 

with the skin temperature, and after such an expansion T3  
would be small. 

Hence, we may observe that our analysis is applicable 

only to surfaces (over which the pressure is a constant) 

moving at a high Mach Number, Ma, and inclined at a small 

angle to the direction of motion: i. e. 

(1  \ 
= °OFa) 

It may then be quite simply shown that, if U is the speed 
of flight, 

LT  = 1 + 	1 

.... (7. 2 ) 
and p, 

= 0(1) 
Pa 

a 



ao(x) = a 1 --kaM.) 
0 316 	(1+c)M5‘  

Rs 

or, from (5.20), 

•.. (7.5) 
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Thus in the expressions derived in the previous 

paragraph we may everywhere replace u5  by U, the speed 

of flight, without affecting the accuracy of the solution. 

It follows from (5.16) and (5.17) that the skin friction 

and heat transfer to the surface are influenced by 

surface shape only in that they are proportional to 

125/Pa y 	i.e. 

.... (7.3) 

   

_ .J 	pi 
Pa la=0 

The true surface slope (measured in relation to the free-

stream direction) is simply 0.0(x), say, if 

o
(x) + 0 ---- a 

where 0 is the inclination of the flow relative to the 

surface at the outside of the boundary layer. 	Thus, 

since 0 = voju8 = do/dx 

d3 co  (x) = a - 

As shown also in para. 6, since from (7.1), aM is finite, 

it follows that the displacement effect of the boundary 

layer is only negligible if R is of magnitude M9 or more. 

8. 	Viscous Form Drag.  

Combined with the thickening of the boundary layer 

at high Mach Number already noted, there will be an 

increasing displacement of the external flow from its form 

calculable for inviscid flow. 	This, as already observed, 

modifies the pressure distribution from its inviscid form, 

and gives rise in general to an additional form drag. We 

define this as a viscous form drag, and it is equal to the 

difference between the pressure drag calculated for an 

inviscid flow about the body and the pressure drag in a 

viscid flow, with the boundary layer. 

The latter is simply given, by 

1 
p5 sin aodx = D5 	0 

(X) . 	1+0 (.7) 
ivy  

0 

 

.... (8. 1 ) 

 

Q = 

since in the present conditions, 135  is a constant, and 



sin 	ao  + 77  +.... = go  1+0(a
2  )1 

ao 	 1 
3 
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where cf.o 
 is, in general, of order 1/M. From (7.4) it - 

follows that pressure drag in viscid flow = (aL-61x=L)726. 

'ire may only make an estimate of the pressure drag for an 

inviscid flow about the body in the general case if we 

assume that the condition (6.2) is satisfied: i.e. 

1/R = 0(1/M). 	In this event it follows from (7.5) that 

 
- = ( 

0-0. 	= 1 do - ..--- = o(--1  ) 	 .... (8. 2 ) 6 
a 	• a 	a dx 	m2 

in general; 	and then if Do  denotes the pressure at the 

surface as calculated for a purely inviscid flow (in the 

absence of the boundary layer), we have from the linearised 

theory of supersonic flow that, using (8.2), 

do P0 10,5  
	 = Y(ao-a)M [1+0 (OL ) J = -YM77 1+0(-1  ... (8. 3) 

- 6 	 M` 

The drag in inviscid flow is then 
L 

0 

p0  sin ao  dx 

so that from (8. 1) the difference between the drag in 

viscid and inviscid flow, which is the viscous form drag, 

is, using (8.2) and (8.3), 
L 	 cL 

.o ( 

0 0) sin a0  dx = 	(p 	) a dx 1+0 (-7) 

L.o 

= 	 +0 (-1  61 	Yp5aMS I 	[1+0 (-9 ) 
o 	 M 	 M - - • dx 

dx 	 6a Ix=L 

If we quote this as a drag coefficient, CD, based on 

the length L, 

D 	M L s=1 [1444)( 2)1 
2g. 6 C 

Evidently, then, for M -3 cl:) from (5.20) 

CD  =0.316 (am) L1-1-c  
MR 

so that from (5.14) 

viscous form drag  = CD - 0.094 (aM) 
total skin friction Cf  

• (8.3) 

This relation only applies if 1/R. = 0(1/M9  )..  for smaller 
Reynolds Numbers, the difference between ao  and a is 
larger, as well as the difference between pc)  and p5. The 
linearised theory used above overestimates this difference 
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between pc,  and po  if it is large. 	Also we have 

replaced ao  by a which is larger than ao. 	Thus, in 

general, the expression (8.3) will overestimate the 

viscous form drag, particularly at the lower Reynolds 

Numbers. 

9. 	Effect  of Atmospheric  Turbulence  and  Surface Roughness 

on Transition. 

Our calculations have been restricted to the 

consideration of a laminar boundary layer, and it is 

therefore pertinent to enquire under what conditions 

laminar flow might exist. 

One of the main causes of transition is the 

existence of an adverse pressure gradient over the 

surface, which is hardly likely to exist at high 

supersonic speeds in flow over aerofoils: in the 

present discussion we have considered the pressure to 

be uniform, and this is -orobably the moat adverse condition 

likely to be met in practice. 

We must also however take into account atmospheric 

turbulence as a contributary factor, and as a result of 

which there will be small variations in pressure on the 

surface. A dimensional consideration shows that if 7 

is the root-mean-square of these pressure fluctuations, 

then the Reynolds Number of Transition is RT, where 

(1  3 `ylo 	F dx 
R 	fIL12 lt,.111) , 6 dp ) 

- as is suggested, for example, in 'Modern Developments 

of Fluid Dynamics' p.328. 	Since (a/F) varies along the 

surface as x, it follows that we may put 
5p 	R 	d(17 p,) 6 (17 (51?\xt 	( 'L)  T 	 

F dx -7Fx/p 	dx 	\Vic' M 	(9.(x/0 

where E 45/p5a3  is a unit of length characteristic only 

of the altitude of flight. 	Hence 
I 6125 1  d(p/p3) 

RT = g L(Fx ) g 71727) 	 . • • • (9.1) 

or substituting from (r . 17 ) and (5.21) , for M2  >> 1 , 
[1 d (5/126  )] 

The corresponding result for the incompressible boundary 

layer, i.e. M2(‹: 1 , interpreting 3 as a displacement 

thickness, is simply that 

RT = function of .... (9.2) 



A
po  6 	T 1+2w p 

Rs 	 o 
° 	- T 	 F 2 

I if L 	.T(  
4

0 	 Lt..,, 

i.  T (1)+0.5 767,‘ - ( e.  e _ 1 	o 
' E - 17 T- 3 	cf 
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1 	cl (PIP6  RT = function ol ... (9.3) 
Te3 d(V t) 

Hence, since an increase in p at a certain altitude would 

certainly be accompanied by a decrease in RT  (he a forward 

movement of transition), it follows that an increase in 

Mach lii.r:ter (at constant height) would always increase 

RT' 
most particularly at low M. 

Of the other factors affecting transition, surface 

roughness is an important contributary factor. At the 

tip of a small projection of height e, u = us, say where 

tau,) 	_ Fe 

	

u 	e = 	e - 

	

e 	3y 
0 

Then, 

If it is supposed that the flow behind a projection closes 

up if RE,  does not exceed a certain critical value, then 

it follows from (f.10) that the tolerable roughxiesc height 

for M2)) 1 is given by a relation of the type max. 

max 	To w+0.5 Ms 
L 	T5 	

() . . . • ( 9 . 4 ) 

The corresponding expression for incompressible flow, 

i.e. 1.12<<1, is 

m 	 14 ax 
- • . ( 9 . 5 ) 

Hence an increase in speed at constant height always 

reduces the tolerable roughness limit, though less 

rapidly for high M. 	On the other hand, an increase in 

M for a constant R, increases the tolerable roughness 

limit, particularly at high M. 	Heat transfer to the 

surface also serves to increase the tolerable roughness. 

It will be seen that no definite conclusions can be 
drawn about the stability of the laminar boundary layer 

at high speeds. 	However, a com-earison of (9.2) and 

(9.3), and of (9.4) and (9.5), suggests that the high-

speed laminar boundary layer is characteristically less 

sensitive to atmospheric turbulence and roughness effects 

than at low speeds. 	In this sense it is more stable than 

the incompressible layer. 
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10. A Comparison with Other Results.  

Crocco1 has suggested from his work on the compressible 

boundary layer that 
T
th
-T

o / Y-1 2 1  where T 	T 	 o2) - (32/3 	Uo 	 th 	t 	2 

which may be interpreted as meaning that 

	

kH 1 	Tth-To 
7 W 

	

20 	Tth-T  /0  

For 142 ..),  1, it follows that 

....(10.1) 

k .... (10.2) 
Cf  2eb 	M 

which may be compared with the solution (5.11) given by 

the present work. 	The variation of this ratio with o at 

high speeds appears to be less rapid than that suggested 

by Crocco. 

Again, Young` has suggested by an extension of Crocco's 

work and guided by other numerical results that if Lik.:cT('), 

S2R2cf = 0.66419.45+0.55-2  +0.09(Y-1)M2A-(1-w)/2  To  

.... (10.3) 

Taking M2 ).:N1 g and putting w=0.5 as would be appropriate 

if we have to include theeffects of variation of at the 

very high te,laperatures occurring inside the boundary 

layer, evidently for air, 

ef
1 1 1.52N. 	+ 0 	" 

JARMs 

(10. 4) 

which apart from a difference in the numerical constant 

and in the variation with o is the same as (5.7). 

In figure L,  the results of the present work in 

relation to the variation of cf with 17, are compared with 

the values of cf  obtained from (10.3) for various values 

of w and To/T3  (and using a value of c5 equal to 0.74.) The 

present solution gives consistently higher values of the 

skin friction ( and so also of the heat transfer ) coefficient 

than indicated by (10.3) if we suppose that we must lower 

the value of w to 0.5 when dealing with flow at high Mach 

Numbers as in (10.4). 	At high Mach Number the difference 

amounts to about 25%. 	About 5% of this difference 

may he accounted for by the fact that in the present solution 
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we have adjusted the values of the air specific heats and 

Prandtl Number, but the bulk of the difference lies in 

the fact that we have used Sutherland's Formula for the 

variation of viscosity instead. of a simple power law 

variation. 	This has the effectlof increasing the values 

of cf and kH by the factor 117a— compared with that 
6 

obtained were we to assume merely that 4mT2, and so brings 

the results (at least, for Mach Numbers between 10 and 20) 

more into line with those of equation (10.3) with 0)=0.8-0.7. 

(This is a mean figure for w across the boundary layer, but 

with an emphasis towards its value at normal temperatures) 

There seems no doubt that the law of the variation of 

viscosity with temperature is of the greatest importance 

in influencing the quantitative evaluation of the boundary 

layer characteristics. 

The _present analysis, using Sutherland's formula, 

implies that there is relatively little change in the skin 

friction coefficient with Mach Number below M=10, and so 

endorses the applicability of much of the work on the 

compressible boundary layer with u=1 (i.e. viscosity varying 

linearly with the temperature) in relation to such speeds. 

Figure 4 also shows from equation (10.3) that the 

variation of surface temperature is riot important in 

influencing the skin friction at high M: and so confirms 

the qualitative deduction of the present work concerning 

this effect. 	The figure shows two sets of results for 

(To  /T,) equal to 1 and to Li., which would cover a range 

of To from say about 250
oK to 1000°K. 

11. Conclusions.  

(i) It eappears that the high-speed boundary-layer equations 

may be solved for the condition of laminar flow, in 

the absence of a pressure gradient, by a numerical 

process. 	The results of this report are relevant 

if the assumptions are made that M2 	1 (where M is 

the Mach Yumber of the flow outside the boundary layer) 

but that the surface temperature is not high (i. e. that 

it is not commensurate aith the thermometer temperature), 

and that the air molecular specific heats reach an 

asymptotic value at high temperature (which may be 

different from that at ordinary temperatures.) 	The 

numerical results apply to a flow with Prandtl Numbers 

between 1.0 and 0.6. 
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(ii) From the solution it appears that the velocity and 

temperature vary near the surface in proportion to 

y2/3, where y is the distance away from the surface. 

This suggests that the velocity and temperature 

gradient are infinite at the surface. 	In the limiting 
condition (as M-4-00) this is shown to be compatible with 

the existence of gradients whose actual magnitude 

depends on and increases with M. 	The solution enables 

these gradients to be calculated, and the corresponding 

rate of heat transfer and skin friction assessed. 

(iii)The temperature and velocity distributions within the 

boundary layer are shown in figures 1 and 2. 	These 

demonstrate the trends observed in previous analyses: 

the velocity distribution is at high speeds more nearly 

linear than at low speeds, and the enthalpy reaches 
1 its maximum value (equal to about 7  of the stagnation 

value for air) at about a third of the way out into 

the boundary layer. 	The effect of a decrease in 

Prandtl Number is to cause a reduction in temperature 

within the boundary layer, but only a slight increase 

in velocity. 

Figure 3 shows that the shear stress within the flow 

decreases most rapidly near the outside of the layer, 

since here both the temperature (and so the viscosity) 

and the velocity gradient are decreasing. 

(iv) The asymptotic solution yields a finite boundary 

layer thickness, which corresponds with the quantity 

which is usually termed the 'displacement thickness'. 

The flow is, accordingly, tangential to the outside 

of the boundary layer. 	The compatibility of this 

result with that for finite Mach Number (where the 

disturbance due to the boundary layer extends to 

infinity) is discussed in Para. L.. 

(v) The boundary layer thickness varies as 479  where x 
is measured along the surface; 	it varies asTA37  
and so increases in proportion to the increase of 

forward speed (as compared with its behaviour at 

lower Mach Numbers where it decreases with increase 

of speed). 	For air, the thickness is given by 

eauations (5.20) and (5.21): the latter states that 

3 	6.4 x 10-7  TY1(x1p, ft. 
-) 
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where U' is the free-stream velocity (in ft/sec.), 

D. is the surface pressure (in atmospheres), and - o 
x' is measured (in ft.) along the surface. 

(vi) Associated with the thickening of the boundary layer 

at high speeds, there is also an important interaction 

between the boundary layer and the external flow, 

causing a significant modification to the stream 

deflection and pressure distribution near the surface 

as calculated on the assumption of mirely inviscid 

flow. 	At a Mach Number of about 10, it is shown 

that these effects are important at Reynolds Numbers 

less than about 10', - which includes most likely 

flight conditions. 	Thus the assumption of a constant 

Pressure over the surface in the present argument 

cannot be interpreted as implying a plane surface, 

since the displacement effect of the boundary layer 

on the external flow must be taken into account. 

(vii)It is shown that such assumptions as the neglect of 

surface slip, and the finite thickness of the boundary 

layer, which are implicit to the present solution of 

the boundary layer equations, are justifiable within 

the accuracy of the solution provided that the Reynolds 

Number R is a large number of the magnitude of M5 or 

more. 	Thus at a Mach Number of 10 or more, the results 

will have an accuracy within a few per cent, provided 

that R exceeds 105, say: 	this includes most flight 

conditions unless the altitude is so high that the 

indicated airspeed is much less than 100 ft/sec. 

(viii)There is no necessity for assuming that the (constant) 

surface pressure p6  is the same as that of the free-

stream, Da. 	However, the assumption that the local 

Mach Number of the flow outside the boundary layer, 

M, is large, implies that the slope of the surface 

to the free stream direction must be small. 	If a 
is the inclination of the streala at the outside of 

the boundary layer, then 0 must be small so that 
11 	1 

C)  (7a 
where Ma is the Mach Number of flight. 

(ix) As remarked above in para.(vi), the deflection of 

the external flow by boundary layer is generally 
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important, and ao  (the slope of the surface to the 

direction of motion) is in general different from a. 

From (7.5) we have that 

a ao\  /411vi5  ( 	= 	7  

(x) The displacement effect of the boundary layer, in 

modifying the pressure distribution, will also 

modify the pressure drag as calculated on the assumption 

of inviscid flow. 	It is shown in para. 8 that for 

large R, the additional drag involved by this effect 

(which we call the viscous form drag) is commensurate 

with the skin friction drag', we have from (8.3) that 

if a is the stream deflection outside the boundary 

layer 

viscous form drag 	= 0.094 (04) 
total skin friction 

although this relation probably overestimates the 

additional drag at lower Reynolds Numbers. 	The 

effect will be seen to be particularly important at 

high Mach Numbers. 

) The heat transfer to the surface and the skin friction 

are shown to be independent of the surface temperature, 

at least to the first order of approximation if terms 

of order (1/M2) are neglected in comparison with unity. 

This fact is borne out by a comparison with existing 

results relating to the compressible boundary layer 

flow. 	It will be recalled that we have assumed that 

To, the surface temperature, is comparable with that 

outside the boundary layer so that (To/Tth) is small. 

(xii)To account for the variation of viscosity (1) with 

temperature, Sutherland's Formula, adc(T
-3/2 
 /T+C), is 

used, with no allowance for dissociation effects at 

high temperatures. 	In this formula, the larger the 

value of C, the more rapid will be the increase of 

viscosity with temperature. 	From the present analysis, 

it appears that the skin friction, heat transfer and 

boundary layer thickness all increase as C increases. 

(xiii)A comparison of the present results with others 

existing for the laminar boundary layer in compressible 
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flow, which have used a formula for viscosity of 

the type utc.Tw, shows that even at Mach Numbers 

between 10 and 20 a value of w between 0.7 and 0.8 
is appropriate to bring the results into line with 

those using Sutherlands Formula, 	It seems that 

it is the variation of viscosity with temperature 

near the surface which is most im-.2ortant in 

choosing a representative value of ors at the high 

temperatures existing within the boundary layer a 

value of w = 0.5 would be more appropriate. 	The 

Present results also imply that for 14.<10, there is 

little change in skin friction coefficient with Mach 

Number, which again indicates a high value of w, and 

endorses the applicability of the methods using a 

value of w equal to unity (i.e. assuming .1t:T). 

(xiv)It is assumed in the analysis that at high 

temperatures the specific heat of the gas at constant 

pressure increasesby a factor r. The skin frition 

and heat transfer are then found to vary as 11/4, y 

and the boundary layer thickness as r-3/4 	For air 

a value of r = 9/7 is chosen which makes little 

diffeeence to the numerical results for the value of 

skin friction or heat transfer. 

(xv) Connected with the increase in the gas specific heats 

there will also be an increase in Prandtl Number (a) 

of the gas at high temperatures and a mean value of 

a = 0.78 has been used in preference to the more usual 

value of a = 0.74. 	Here again this makes little 

difference to the numerical results. 	The skin friction 

coefficient is found to vary as a-1/4,  and the ratio 

of the heat transfer to the skin friction coefficient 
- (kli/cf), varies approximately as a 
1/11 These are 

rather less rapid variations than are predicted for 

conditions at lower Mach Number. 	The boundary layer 

thickness varies in proportion to a0.35. 

(xvi)For air, it is shown (from equation (5.17)) that the 

shear force at the sarface is 

F = 1.01 x 10-3 ue,f7p5/x? 	lb./sq.ft. 

where U' is the free-stream velocity (ft/sec. ), po  
the surface pressure (atmospheres) and x' the distance 
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along the surface (in ft.) 	Such a variation 

corresponds to a skin friction coefficient given 

by equation (5.10), where it will be seen that 
r--,  cf.T. 1/:JRM, and decreases with increase of Mach 

Number - an effect well established qualitatively 

in previous solutions. 

(xvii) The momentum thickness 	) of the boundary layer 
becomes appreciably less than the displacement 

thickness at high Mach Number. 	From (5.24), 

(10.7/ILi2)5. 

(xviii) The ratio of the heat transfer to skin friction 

coefficients (kH/cf) is found to be equal to 

(1/201/11 ), if kH  is based on (2p5u5L). 	For 

air, kH 	0.510 cf. 

(xix)It follows that kH  also varies as j77ThIT 9  and from 
(5.16) the local heat flux to the surface is given as 

5.07 x 10-14U'2/p6/x''  ft.lb./sq.ft./sec. 

(xx) Some remarks are made in para. 9 concerning the 

stability of a laminar layer, and it is concluded 

that as far as the effects of atmospheric turbulence 

and surface roughness may affect the transition to 

turbulence, the laminar boundary layer at high Mach 

Number is less sensitive to these effects than at 

low Mach Number, if the Reynolds Number is the same. 

It does not follow that an increase of speed alone 

(at constant height) is stabilising. 

(xxi)The results of this work have been derived elsewhere 

by the author, using the approximate method of 

momentum and energy integrals. 	Whilst in qualitative 

agreement, these results give values of the skin friction 

and heat transfer coefficients half as large again as 

those deduced here. 	Perhaps this serves to emphasise 

the difficulty of attempting to simulate ab initio  

the variations in temperature and density within a 

compressible boundary layer, as is necessary if this 

method is to succeed. 

(at) Particularly in view of the strong interaction between 

the boundary layer and the external flow, the greatest 
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need in developing a theory of the boundary layer 

at high 

account 

sneeds, is for one which will take into 

variations in pressure over the surface. 
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