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SUMMARY

A numerical solution is found for the equations
governing the motion of a two-dimensional laminar boundary
layer, in the absence of a pressure gradient,which would
be valid if the flight Mach Number is very high (i.e. M%)1).
The effects of surface slip, and the finite thickness of
the boundary layer are shown to be negligible if the
Reynolds Number (R) exceeds about 105, and are neglected.

Account is taken of the variation of specific heat,
Prandtl Number and viscosity, with temperature, although
(for air) only the latter effect is important. Sutherland's
formula is used for viscosity variation; and the results
imply that for M < 10, there is little variation of skin
friction coefficient (Cf) with Mach Number. For high
Mach Number, however, cflﬁ}1/fﬁﬁ‘and the heat transfer
coefficient kH = O.51cf for 8ir. The surface
temperature has a negligible effect on these quantities
if it is emall compared with the stagnation temperaturs.
Numerical results are given, and show that skin friction
and heat transfer vary as the square root of the surface
pressure. The velocity and temperature profiles across
the boundary layer are also deduced: the boundary layer
displacement thickﬁess is shown to increase as.fﬁ37§\at
high Maéh Number, and there is an important interaction
between the boundary layer and the external flow.

Some remarks on the stability of a laminar layer are
included, and a comparison is made of the above results
with those relating to lower Mach Numbers of flight.
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C Sutherland's Constant (i.e. uﬂ:%é%)

Cp viscous form drag + %paug

Cp friction drag & %péug

F shearing stress at surface (=u0(g§)0)

H Total heat, or enthalpy (:j!cpdT)

L length of body surface

M Mach Number of stream outside boundary layer (=u5/a6)
M, Mach Number of free stream (=ua/aa)

- ok efd
Q heat flux into surface (_ko(ayﬁo)
R Reynolds' Number (=p6u6L/ué)
 ; 3 3 =
Ry  Reynolds' Number of transition (-péuéxTﬁxb)
B,
<

= paug’-)/:d.a
; i static temperature of gas
Tth thermometer temperature (i.e. that value of TD for
which kH =,0x)
ot free stream velocity (in ft/sec.)
4 = h/q“"i“‘
Z = BTJ E;%
’ Tlhz
a speed of sound (=Yp/p)
b constant used in equation (3.10)
c = C/Té
2
= 1
Cp = F/anué
cp gas specific heat at constant pressure
cy gas specific heat at constant volume
f E f(n) = u/u6
- 4 B
g =2gh) == 7?
o= i 1
h 2 hin) = (H-Hé)/gu6
k Thermal conductivity of gas
o Bifka a2
kH Lo Q»/Epéu@
b= LIS
m molecular weicht of gas

« BE {2
n =
L.|2M3s



Notation - continued.
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max
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root mean square of atmospheric pressure fluctuations

gas pressure

_ndh
“lo an

air density relative to sea-level conditions (=pa/pSL)
= x/L
time

components of gas velocity parallel to the x- and
y-axes respectively.

velocity of slip at surface

- _ BV [2Bs
u,

3

system of orthogonal co-ordinates parallel and

perpendicular to surface of plate; with origin

at leading-edge of plate.

= w(n)

value of x in feet

value of x at transition point.

proportional increase in cp at elevated temperatures
momentum thickness of boundary layer.

ineclination of airflow at outside of boundary layer
to free-stream direction

inclination of surface to free-stream direction
arbitrary finite constant in definition of n and w
:(Cn/cv)é (except in equation (5,7).)

bouﬁdary layer thickness

roughness height

maximum tolerable roughness height to prevent
separation of the flow

= % kk
=qn) = T

deflection of stream at outside of boundary layer
-1V
(: tan 1 EQ)
b
mean free path of molecules at surface
coefficient of wiscosity of gas
gas density
Prandtl Number (= cpu/k)

mean value of ¢ within boundary layer
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Notation - continued.

a

T = e
T
w —(p.fiT)

Suffix. 'SL' denotes conditions in the ambient air
at sea level.

t&! denotes conditions in the free stream

'nt denotes differentiation with respect to n
to! denotes conditions at the surface

'd5' denotes conditions at the outside of the

boundary layer (where y = o)

e denotes conditions at tip of small
projection (where y = g)

Primed symbols (e.g. T') denote differentiation with

respect to £ (i.e. <' = %%)
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Intfoduction

In this report we shall attempt to examine the
properties of the laminar two-dimensional houndary layer
existing in a compressible boundary layer at very high
Mach Numbers of flight. To be »nrecise, we shall assume
that this Mach Number M is sufficiently large that 1/i°
can be neglected compared with unity. The resulting flow
conditions we describe as 'hypersonic' in a similar way
as we can classify as 'incompressible! those flows in
which we can neglect M2 compared with unity. Like the
results for incompressible flow, those relevant to the
hypersonic boundary layer display a certain simplicity
of form; which greatly facilitates their interpretation
and application. This simplicity also enables us to
relax many assumptions which are normaelly made to obtain
a numerical solution of the equations involved.

For instance; we do not find it necessary to restrict
the discussion to a gas with a Prandtl Number of unity, or
to stipulate that the surface temperature is a constant.
We shall use Sutherland's formula for the variation of
viscosity with temperature; and we shall find it possible
to make some allowance for the variation of molecular
specific heats with temperature. Such factors greatly
enhance the value of the results we can obtain and throw
light upon the accuracy of the assumptions more usually
made.

Of the assumptions which we do make, the most
restrictive is that the pressure over the surface is a
constant - although this allows us to consider not only
the heat transfer to a flat plate moving parallel to
itself;, but also to plane inclined surfaces which in
supersonic flow are acted upon by a uniform pressure, and
to bodies (such as, for instance, the double-wedge wing)
composed of several such surfaces. We shall also make
the usual assumptions associated with that of a high
Reynolds Number -~ for example, that the boundary layer
is thin, and that the velocity of slip is zero - although
we shall examine these in the light of the resudts to
which they lead. In regard to the variation of the
molecular specific heats with temperature; we shall be
guided by the results of statistical thermodynamics in
assuming that they increase to a certain asymptotic wvalue
at very high temperatures.
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As an extension of the assumption that we may treat
(1/M2) as small, we shall also neglect the surface
temperature comvared with the thermometer temperature of
the boundary layer air. In other words, we shall be
dealing only with the boundary layer in the presence of
high rates of heat transfer. This is easily justifiable
if it is recalled that the thermometer temperature is
commensurate with the stagnation temperature, which latter
is given by

(i + % Mz) x ambient air temperaturs.

2
Flight at a Mach Nurber of 10 or more thus involves
thermometer temperatures of at least uOOOOC., and plainly
unless the surface temperature is considerably smaller
than this the problems have no great practical significance!
From the mathematical point of view, if the surface
temperature is comensurate with that of the ambient air,
(say, 2 or 3 times its value), then since the thermometer
temperature is of the order of M2 times its value; the

above assumption is justified if we allow Mz—aae.

For such reasons as this, the form of the asymptotic
solution we obtain has rather strange properties, and
having written down the correct boundary conditions for
the condition 1/M° = O, we shall examine the compatability
of the results for finite, but large, Mach Number. We
find that in the same way as the assumption of
incompressibility (M2 = 0) leads to guantitative deductions
which are qualitatively sound (if slightly exaggerated)
when compared with conditions at finite Mach Numbers, so
also does the hynersonic solution we find here. It
remains, of course, to be shown whether the results have
the same power and significance,as an asymptotic solution,
as those for incompressible flow.

The Equations of the Boundary Layer in High Speed Flow

Using the notation defined at the beginning of this
note, we may write down the equation of continuity in
steady motion as

a(ow) , 2(ov) _ 4
0x oy

.. (2. 4)

and if the surface pressure is uniform, the Eulerian
equations of motion as modified by Prandtl for a thin



boundary layer become

Du 9 .2u
PDT = 3y (“ay) it b )
dp:—‘o l‘a‘(2.5)

In addition we need the energy equation for the thin
boundary layer.

DH _ 3 (k 9H L duy2
°5t = 37 ©Cpay) * *GF) A

Finally, from (2.3), the Gas Law may be written as
B
d(%):O ooto(2n5)

We now introduce the non-dimensional variables
s =x/L, £ =w/u, and h= (H-Hg)/{u®

where s, f and h are bounded gquantities and in general,
finite} and where the subscript '6' refers to conditions
outside the boundary layer (which are invariant with x).
To relate p to the enthalpy H, we assume that within the
boundary layer

me
= Iq, e constant vess (2.6)

mc -
DO

which is, at least; a more elastic assumption than that
the swecific heats of the air are constant. In fact,
there is some evidence to show that at elevated temperatures
the molecule's specific heats reach an ssymptotic value
higher than that at normal temperatures and pressures.
Fowler and Guggenheim (in their 'Statistical Thermodynamics')
deduce that, for large T, (mcn) is increased by a factor
7/, in a aiatomic gas. Since the airis composed mainly
of diatomic molecules, we might therefore expect that,

in the high-speed boundary layer, where as we shall show
later, T = O(MgTé), we could put in (2.6), the value I*= %
and that this would apply in general over the boundary
layer if M°s»1. Existing data for air (up to T = 3000°C)
suggests that this ratio is exceeded without any evident
falling off in the increase of specific heats with
temperature. This increase in cauvused by the higher
vibrational energy of the gas at these temmeratures, and
is s8till further increased at even higher temperatures
(say, about 20,60000) by electronic excitation - though
this effect may legitimately be ignored here since, as we
shall see later such high temperatures are not likely in
the boundary layer at any high sveeds in which we might be
interested. However, it is evident that except near the
edges of the boundary layer, where the temperature is low
(i.e. for e ¢ y £ 6-¢, Where ¢ is some distance small
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compared with &, the boundary layer thickness), equation
(2.6) can provide a reasonable indication of the change
in '‘specific heats.

Then, if we define g so that

P
p
it follows from (2.5) that
b Tem,
o) o]
g:—-—--::-—--g—---——

or using equation (2.6)

1 ch
g = —5
pu2 CpTly L eaallBi 7
By the definition of the function h9 we find that
T e 9 4 ., Tp
h = { cpdT/3ug = Tp (T-T,)/iuf = o5 — (F 1) .. (2.8)
-‘To 2 () 6 Wz M2 Té Ps

Since h is finite, it follows that if we treat M2>> 1, then
e 2
",f@ =O(M ) ....(2.9)

Assumning (as before) that at high temperatures, the specific
heat attains a constant value, we deduce that the mean
specific heat EE is equal in general to the asymptotic

value within the boundary layer.

Hence, in equation (2.8)
T

2 4" o Cp 2 1 Cpr 5
b= wor o3 g Ve = 507 2 ey, (0 - )
Y=T 2 T, Py T=T 2 T(epT), .
L0028 1°T 1‘
....-——-:1-F ,.I_1+O-“2-J .-(2-10)

or substituting in the equation (24 7)

5.5 140 (=) |
XX~ Tm P 1o ep)]
For the asymptotic solution, where Mz—e o, evidently

g = (==2)h ....(2.11)
In the same way as we assume that the molecular

specific heats are constant over the boundary layer, we

also assume that the Prandtl Number, o = ue, /k, is a

constant (and equal to 3, say) since this nuMber is

known to be related to the specific heats, but again

o £ Oy Since the Prandtl Number differs at high temperatures

from its value at normal temperatures.
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In suggesting a non—digensional form for the viscosity,
we use Sutherlands Formula:

e

o . T6+G iy ;/2 O A% C C Tﬁ

——“' = ee— T = -T- 1+';I'; / 1+§T— ....(2.12)
8 T+C \'5 5 5 o

Suppose we define n so that

I’a—

=

o}
then v, is a finite parameter for M2>5 1, since using
(2.11) and (2.9),

Bl ey L

or in the llmltlng condition, M o (e 9 om (2.10) and (2.6)

LY- - (Zpi)b‘é )(Y__. ' 1 + o(—g)}
1o8. m 2 (1 +—6)(2T1 -—6—)5 h% ' ssaciar(2s 13)

This relation also expresses the fact that n wvaries,

at large temperatures; as the square root of the temperature
(or as the square root of the enthalpy, if the specific
heats are constant).

If we now suppose that all the non-dimensional
variables so far defined (i.e. £, g, h and n) are functions
of a single indevendent variable n, involving the space
co-ordinates x and y, then it may easily be shown that this
variable must depend on y/ -/X. Thus we write in non-
dimensional form:

J 2u’s

where B 1is some arbitrary finite constant whose value
may later be chosen as a matter of conveniencs. We also
define a non-dimensional variagble involving v,

i ﬁ__\JaRS-\

where w may be shown to be also dependent only on n.

From the definitions of f;, g, hy  and w which
are each functions of n, the equations (2.1), (2.2) and
(2.1) may be simplified to the forms:

(_g.) +%(g) - B eoe (20 40)

+ POOTNOTE:  For air, the value of C is 117°K.



(Egiﬂ)%% - - & ( %%} v (2. 95)
oW [ & (3 8) - =(E)] e (2.16)

We may eliminate (w/g) from equations (2.15) and (2.16)
using equation (2.1L4). If; in the resulting equations,
we change the independent variable from n to f = (u/ué),
and we write

y songe o :*Efﬂ.% Y —-’J'f’uﬁ)
YT Han T B4R oy L

which is & non-dimensional form of the shear stress, then
we find that (treating o as a constant)

2 4]
= =B % TT vore s Y7
h" +(1-3) = h' + 25 = 0 ere (2.18)

where the primes denote differentiations with respect to f.

These two equations are equivalent to the equations
of CroccoJl for momentum and energy, after the Crocco
transformation has been applied. It should be noted that
their derivation is dependent only on the definition of
the new variables, and is not influenced by any of the
assumptions we have made concerning the relation of density,
specific heats; and viscosity with temperature (i.e. the
relation of g and w with h). However we note that, if
BfL$0% then h, and of course also f, are finite parameters,
as also are g and m which are related to h in the simple
manner described by equations (2.11) and (Z.13)% Apart
from this particular choice of the form of the variables,
equations (2.17) and (2.18) are equivalent to the
expressions of Crocco.

In particular, the boundary conditions are also
greatly simplified in the condition Mzﬂ o0, At the outside
of the boundary layer, u = u, or £ =, Here H = H6 and
the shear stress is zero!: 1i.e.

h:Oy't:Oatf:‘] oac-(2019)

At the surface, vhere pu = 0 (i.e. £ = 0) we also have
that pv = 0, and y = 0 (i.e. g O and n = 0). From
(2.15),1it then follows that

dn g
df dn (‘ ) df w0 RE T =

i.e. the rate of change of the shear stress normal to the
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surface is zero. At the surface we also have that
T . To’ say. If the skin temperature is of comparable
magnitude to the ambient air temperature; then TO/T6=O(1)
if Mg-e &3 s 80 that from (2.8) in this condition

B = o&i§) at ‘=20

M

or in the limiting condition; we have

dt

af
The condition h = O merely expresses the fact that the

=0, h=0, 0 =0, at £ =0 s okdy (2.008)

temperature of the air at the surface is negligible
compared with that of the air within the boundary layer
if M2>} 1, and of course if applied to flows with finite
5 = TO).
We may immediately infer that the asymptotic solution of

values of M, is only an approximation (unless T

the hypersonic flow equations (with M2>> 1) will be
uninfluenced by variations in the surface temperature.

Equations (2.17) and (2.18), with the approximate
relations (2.11) and (2.13), and the boundary conditions
(2.19) and (2.20) describe the state of the boundary
layer in a hypersonic flow, which we interpret mathematically
as the flow of infinitely large Mach Number. In a later
paragraph we shall attempt to solve t hese equations
numerically. equation (2.18) yields the formal solution,
using (2.19);, that

5 le g2l ¢3‘1(jfm1'3 di’)df e (2.21)

Jr Z
where @ is the value of f where the total heat is a
maximum and must be chosen to satisfy the condition that
h =0 when f = 0 in equation (2.20). This however is
a solution of little computational value, but it does
indicate that if we define g as a non-dimensional form
of the heat flux:i.e.

2 i [EhEME

L= = r-1J8 Jpuo V I\ L
then, we find that
-pF -
g = ol = g ted ge Sl e, 22)
ar 4

Hence at £ = 1 (i.e. at the outside of the boundary layer)
where © = 0 (i.e. the shear stress vanishes) then also

g = 0; - in other words, there is no heat flux from the
boundary layer to the ambient air.



The aporoximations introduced in the solution for
hypersonic flow are, as we have seen, valid in general
within the boundary layer. that is, except near the
surface and the outer edge. In view of this fact;, it
is necessary before proceeding with the solution, to
examine its validity in these bounding regions. It will
be shown in the next paragraph that although the essumptions
are in error, the solution is still an adequate approximation
: fo o Mz}) Te

Interpretation of the Behaviour of the Flow near the Surface

Let us first consider the behaviour of the hypersonic
flow solution, already obtained; near the surface (i.e. in
the condition f-0).

We first notice, from equation (2.22), that h' £ 0 at
f = 0, since the value of Tt (the non-dimensional form of the
shear stress) is finite at the surface. Thus

h'Vhrof as f')o .--|(3-1)

where h'i= h'o at £ =0 Again, in (2.17), from (2.11)
and (2.13) we have that g/meh? and so

! 3. const, (f/h%) as £ 20
i.e from equation (3.1)
7' - const, f% as £ - 0
From (2.20), ©' = 0 at £ = 0, so that
' ierconet; f5/2 as £ -0 S 68

To relate this limiting behavioﬁr to the independent
variable n, we note that

2 :
n :5 %df 5 li"(303)
Yo _
80 that from (2.13) and (3.1), since T # 0 at £ = 0, and
N wh®wl*,
n .. const. £/2 as £ - 0 w3« i)
Thus, in (3.1) and (3.2), from [3.4)

f-w-cnnst.ng/B; h ~» const. nﬁ/B, 7' .o const. n, for n-0
B3, 5)
The limiting behaviour is thus singular: the velocity and
temperature gradients fn and hn are infinite at n = 0,
although the same does not apnly to the values of the shear
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stress and heat flux, since the value of n tends to zero
at the surface.

It will be evident that such a solution for finite
Mach Number would be invalid because %-%} =1 1is non-
zero at the surface, and the velocity lisand temperature
gradients are finite. However, we shall attempt to
show how the true solution departs from the asymptotic
one, and to deduce that the value of v and q at £ = 0
in the asymptotic solutions for M-e> are the correct
values of the non-dimensional form of the shear stress
and heat flux if M is large, but not infinite.

Let us then consider the conditions existing for flows
in which M is finite. At the surface; where u = v = 0 we

have from equations (2.2) and (2.4); that

8, f du 2 3T , 88\ -
3y "3y ay(kay”may)“o
or, performing the differentiations of the products:
2% _ 1du aT pu
ay2 u dT 3y ay
s {5:6)
2
9T _ _ 1 dk 37\ u 3u,?
ayﬁ A dT(ay) E k(ay)

Rewriting these expressions in terms of the non-dimensional
variables f and h which are functions only of n (i.e. f£=f(n);
h=h(n)) we find that

e
on©) =5 P, )2, {2 &), <20

(cpT)o
b (0) = - T5h%(n, )] ﬂ- = MD)—] °p T)sk —205.{{1,1(0)]2

ces (3.7)
where subscript 'n' denotes a differentiation with respect
to n, and subscript 'o' refers to values at n = 0.

Now in our asymptotic solution for M < o0, we have
established that both © and q are finite at n = 0. hence,
by definition

£,(0) :T—O: (ﬁ)m srion AonD )

L
n o

o

If M=o, evidently fnﬁj)-;uo, which is in accordance with
the asymptotic bshaviour of the hypersonic flow solution
given in (3.5). Similarly

WP [M)\
hn(O) EQ'-:(T;—') h]‘. -010(309)



and both £ (0) and hr(o) are, for large Mymagnitudes

commensurate with M. It follows from (3.7) that the
second derivatives £ (0) and h (0) are magnitudes of
order M” For 1arge values of My however; both f and

h are finite within the boundary layer. Thusg any definitive
relation between the derivatives of f or h must involve
only finite constants. Hence, for large M, it follows

that as n -» 0

L
hnnnaconst.hn

both sides of the expression being of order M”, and the
constant being finite. Vie may, in fact, deduce its wvalue
from (3.7) and find that

e _qi(%) {[_p_. Alefop) ] %&T_}E]S[m ) vt

4 L (3010)
or hnn"" -b hn’ say

It follows, by integration, that as n -0,

h(n) - h(0) ~ 721'-5 {3b B *[Hni(ﬁ)']z} % " op [111 (0512

v (Bt
If we now allow Mz-s s provided that n M3>; 1, 4%
follows from (3.9) that
32/
3 2/
h(n) n“/3 1 + O( =) stainBed?)
™ s {

since h(0) = O(=5). This expression (3.12) is identical
with that in ¥  (3.5) found previcusly for the

asymptotic solution. equation (3.11) implies a more

exact description of the conditions near n = 0 if M is

large, but not infinite. It will be seen that the asymptotic
(hypersonic flow) solution can give tae correct description
of conditions (with error of order ~§ } 30

.'

=o(ﬁ) §oaa(3713)

and fails if n = O(——)
ﬂ

In a similar manner we may show that, for n-= 0,
for large M

£ A ﬁ—i%}[h(n) - h(o)],... ;—Z[h(n) . h(O)] carbers 0B 4000

which is likewise compatible with (3.5) excent where
(p‘)

We have thus accountsd for the difference between
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the variations of h and f as obtained either by the
hypersonic flow equations;,; or by the exact equations for
large (but non-infinite) M.

Moreover, from equations (3.6) it follows that the
gradient of the shear stress, i.e. (%ﬁ), tends to zero
as n -»0 for all values of M (which is again compatible
with (3.5))5 so that from (3.13), provided M is sufficiently
large, the value of T found from the solution in hypersonic
flow (which is valid where n))-lg) will not differ greatly
from the true value at the ¥ surface. Similar
arguments lead to the deduction that the rate of heat
flux at the surface is also correctly given by the
hynersonic solution.

Behaviour of the Flow near the Quter Edge of the Boundary Layer

At the outer edge of the boundary layer where £ =31,
we have seen from equation (2.21) that

B! wa-const. 2 yed. 018 1)

and since 1t -2 0 as f =1, if 0 ¢ 1, it follows that
htgan as ' 1. In particular, since from (2.19)
h=0at £f=1, it follows that upon integration, as f - 1

h~const.( : df) Sene (b 2)

1=0
£ T

In our solution for infinitely large M, using (2.11)
and (2.13) in (2.17)» we have then that as £ =1,

1
T ' const. 5 ?Ilf ) .

£ T
which since T =0 aséf - 1; implies that if o> O,
Trvconst.(1-f)3+o as £ -1 s (Ua3)
and so in (L4.2) Lo
h ~ const. (1-f)3+0 as £= 1 oo o (ke ls)

Near the outside of the boundary layer, from (3.3) and

using (2.13),
20-3

%% = %rnaconst. (‘I--f)}"Cj oaes Kita D)

and it follows that if ¢ > O, n tends to a finite limit

as £ = 1. In other words, the extent of the boundary

layer is finite. Sunpose (by suitable choice of the constant
B in the definition of n) that n = 1 then corresponds with
the outside of the boundary layer. We have from (4.5)

upon integration, that 30
(1-n) ~ const. (1--f')3+O as £ =1 soss (leB)
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Thus in (4.3) and (4.4) ,ﬁom (14e5) 5 W,
3

(1-f) as const. (1-n) 7%, h ~ const. (1-n)  ~,
T a4 const, (1---13.)41/o as n =-» 1 sute s KBe T)

Here again the behaviour of the variables is singular, as
it was near the surface.

This behaviour results from the fact that the boundary
layer is finite in extent (as measured by the independent
variable n); and is of course only strictly valid in the
limiting condition of infinite Mach Number. For finite
Mach Number we know that the boundary layer extends to
infinity: but this is quite compatible with the
hypersonic flow solution for, as we shall now show, at
large distances from the surface (for given n) the air
velocity decays very rapidly with increase of Mach Number.

In equations (2.17) and (2.18), which involve no
approximations concerning the value of M, we have used
the boundary conditions h = v = 0 at £ = 1, which are
8lso correct for all M. However in relat%ng £f ton in
(4. 5) we used the approximation that m o h%, whereas at
the outside of the boundary layer we have simply by definition

1
m- &t T = 1 ....(L{..B)

N =

Similarly we have used@ in obtaining (4.3) the approximation
g ot h, although strictly

g=1_2 at £ = 1 wo b Kb D)
M

Strictly, for any value of M, we have from (2.14) that

n

(0]

and so in (2.15),
h
o w\ae 0% e 2 af ar
Now %?1 o< %‘% %ST; approaches zero at the outside of the
boundary layer: and so from (4.8) and (4.9), since £ = 1

as n - e0y; we have that

> ar a°r
Mn-a-I—l:: —
dn

—52M
Wie may put B = 1 without loss in generality, and after

integration we find that

(1-£) o 22088 r(2in®) @5 n - eo.
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Thus, for a given value of n, the disturbance to the

flow decreases exponentially with increase in M. In

the limiting condition of infinite Mach Number, it vanishes
for all but a finite range of n as we have seen.

It should be noted that n is itself dependent on M,
and although it is true that the changes within the boundary
layer become more concentrated, the actual thickness of the

boundary layer increases as the Mach Number is increased,

as we shall see in the next paragraph, and for M =00 is in
fact infinite.

Solution of the Equations

If in equations

Y=h/3; Z=B

then they becomé, with the use of equations (2.11) and (2.13)

27" + L =0
J5
' l ..'.(5.1)
Tt 4 (1e0) i WE 4B

Z
with the boundary conditions

Yz 2tisiQutt £ =:0
Y.=.0s #0888 wei,

The equations (5.1) have been solved numerically to
satisfy these conditions, using a relaxation method, for
6'='1/057°0.8 and 6.6.
Table I below.

The results are summarised in the

Table I. Summary of Numerical Solutions.
¥ - Z
i
o=1 0=0.8 0=0. 6 o= 1 0=0. 8 0=0.6

0.0 0.00 0. 0000 0.0000 | 0.7200 0.7114 0.6966

% .09 .0922 . 0949 . 7188 . 7100 . 6954
i « 16 . 1646 » 1700 S W E . 6898
.3 24 8572 . 2255 . 7004 . 6901 +6T772

A ek . 2500 . 2615 .6783 .6679 . 6552

5 .25 . 2630 2779 . 61139 . 6335 . 6211

.6 . 2l . 2560 . 274 . 5940 . 5837 ™
will s . 2286 . 2502 w282 « 5135 . 5019
.8 .16 . 1799 . 2034 4223 . 4136 . 4031

P « 09 : 105 . 1284 s 2703 . 2643 . 2563
10 0.00 0.0000 0.0000 { 0.0000 0.0000  0.0000
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We are particularly interested in the wvalues of the
shear stress and heat flux at the walll these are usually
quoted as the coefficients Ca and k.. where we define

clejiig )]/266=’RM5( ) }ﬁ%s"

so that ;
. 2 hZ®
c, _J{m (131-%—)} Z (0) s34 (5. 2)
g
and where
" oT 1 5
kH - ko(ay)o/2°6u6
so that
k
H _1lim{, T du 1im§ 1 an
%o n-;o{k("'s?)/“&““(ay)} f-;oizv di‘}
i, 8 k
> 1
==Ly eree (5.3)
a1
In (5.2), we find from (2. 11) and (2.13) that
1
h? 1 )(21“ m
L R PNAY/ T oo (5:4)
52g 52 ( T5 Y -1 mé)

We propose to ignore the change in the molecular weight
of the air within the layer, as appreciable dissociation
is unlikely to occur within the range of temperatures

we are concerned with, and as Sutherland's formula (used
in forming the connecting of viscosity with temperature)
is unlikely to be valid if appreciable dissociation takes
place. Hence, if we »ut C/‘I'6 = c; in (5.4)

i 1
nqh® _ 1+c 2.[7')2
e 1.7

Eﬁg 02 Y =1

Thus in (5.2)

.

RMs

N

1/
[:——-—} 4 7(0) rroei5.5)
a(y-1)

For air, we may take

. )
v=f, p=2 L €5.6)

and taking a mean value of Z(0) for G between 0.7 and
0.8 from Table I, since Z(0) does not change greatly
with 0, we find that

2 14C
c = 1-6 v N |--t(5-?)
* ., G2Rls

At normal temperatures o, the Prandtl Number is about 0.7l
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and it is related to the value of the ratio of specific
heats. for this reason it will change at high temperatures,
and to account for this change we may use Eucken's Formulal

5
0 = §$:§ where Y = cp/cv _ §-93(5:8)
At normal temperatures Y = %9 but at elevated temperatures,

from the results of Fowler and Guggenheim we find that
Y = 29 so that from (5.8)

=
> = l& S o N 1§ =
00,06_19_0.737 5 0_23-0.782 saws 15:9)
since 0, the value of o assumed within the boundary layer,
refers to the condition of elevated témperature. Then
from (5.9) in (5.7)s; we have that for air:
. l+c
ce =17 Jous 01015, 18)

If we ommitted to account for the variation of specific
heats with temperature, so that we put [*= 1, and o = 0.737
in (5.5)s; then in place of the coefficient 1.7 we should
have 1.62, so that it will be seen that there is only a
small effect on the skin friction of these variations.

The inclusion of dissociation effects would have a more
important effect, since we see from (5.4) and (5.2) that

¢, Will vary as (m/mﬁ)yﬁ: if the molecular weight of the
gas within the boundary layer were only half that at normal
- Would be reduced by 10°/,. Evidently,
however, the neglect of dissociation will not greatly affect

temperatures, then ¢

the numerical answer, which will err, (if anything) on the
pessimistic side in the evaluation of both skin friction
and heat transfer.

To calculate the heat transfer coefficient; we need
in (5.3) the wvalue of Y'(0). From Table I we may calculate
the following datal

G 1.0 0.8 0.6
Y' (0) 1 1.021 1.048

and within the available accuracy we find that Y'(0) ¢ © _1/112
thus in (5.3)

.

C_Hz.%-g-'/** vass Butt)

so that, using (5.9), for air
kH

= = 0.510 Fana 15:92)

|_b
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and from (5.10)
1+C 9
k, = 0.86 Jm vee (5.13)

The mean skin friction and heat transfer coefficients
may be found from the relations.

1‘[L 1 L a
K,, = = . dx o C c X
B ol §LelE L‘]O

and performing the integrations, we have that
1. d+c

K, = 1.72 [4%2

il %\ : -.-0(511}_[.)
+C

Cp = 34 |7y

The local heat flux to the surface in dimensional terms
is, using (5.13),

.40 p. K. .8
3 p) s%s%s

If we refer conditions outside the boundary layer (denoted
by subscript '6') to those at sea-level (denoted by subscript
'SL'), we then find, using Sutherlands Formula and the
Perfect Gas Law, that

= (2 \3 2§ Tar*C Parlarfer
N s T ey -
SL SL

Using I.C.A.N. conditions for the pnroperties at sezs-level
(and putting C = 1170K), in metric units, if x is in metres,
u. in metres/sec., and p. in atmospheres, then

o} Q=

Q = 44O x 10~2 uéﬁ/@% . /80, 2= === eees (5415)

In British aeronautical units, if x = x'ft, u, = U'ft/sec. ,
and Py is in atmospheres, then

= P
= 5,07 x 10 b U'2 EQ £t.1b/s8q. ft/sec vl 4B, 16)

In a similar we may calculate the local frictional force
to be

» ’ Py
F=1.01 x 1072 U E% 1b. /sq. £t. svse (Badll)

Also of interest is an expression for the thickness of
the boundary layer, since we have already inferred that
the boundary layer is flnlte in thickness in the oresent
asymototic solution for M -3 o, By definition, from
(3.3) and (2.13) if n = My the value of n for £ = 1(i.e.
at the outside of the boundary layer) is:

(1+c)( zf) go(h2)df = B(1+c)( ‘
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Using (5.L4),

bn - [0t ([ )

From the definition of n it also follows that

e
2“3

~f 4 S

1
E‘ Ilé=

oyl (04

so that eliminating Dy from the two expressions

82 2(1+e) (5% 3)% (jqf ar)? s o 15 48)

L2 0Z R

Using the data of Table I to evaluate the integral, and
using the values of Y and [' from (5.6); we calculate that

2 3
%E = 0,030 5 70[—(3’%@—] : (5. 19)

since, within a reasonable approximation the integral

j’; (Y2/z)af = 0.1494 5 ~O+ 4

Thus, from (5.9), for air:

2 3
8 = 0.025 [M]S sl §)
J

EE R
In dimensional terms, if u, = U' ft/sec., x = x' £t. and
P, is in atmospheres
3] P
5 = 0.64 x 10~7 [U’j%—}ft. - L
N P

It will be noticed that the boundary layer thickness increases
with increase of speed - a trend which has been noticed
before in solutions relating to the boundary layer flow at
high Mach Number.

From equation (2.14) we have

or, from (2.11),

e
W= nf - $ Edn
(8]

At the outside of the boundary layer; where f = 1, n =n
and h = 0y it follows that

S

W. =1
S o}
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or using the definitions of w and n:

¥ as
dx carnn (DR )

-\ B
2x

_Gl
o jo

since, from (5.20); & o x2,

It follows that &, which is in the present asymptotic
solution the finite thickness of the boundsry layer, is
what is normally termed the 'displacement thickness' of
an infinitely thick boundary layer. Thus the flow is
tangential to the outer edge of the boundary layer.

The momentum thickness is 9 where

g

—_ e

Cp = <Fx

and we find from (5.5) that;, after integration

_f2(+e) & % ?ﬂ
J[oc e oM ‘ ‘_c(v_ﬂl R

<

By comparlson with (5.18) it follows that

g = M .{7(0)/3 %? dfg 5 SV (B5.23)
)o
For air, we have that
9 = (ll%él)é e wati B 21)

and for large Mach Numbers the momentum thickness becomes
small compared with the displacement thickness.

The velocity and temperature distributions within
the boundary layer may be calculated quite simply from
the data of Tahble I. For, by definition

h =0 Y(f)

" RO u
ice. H-Hy = to ug Y(ﬁg) cwwn (5e25)

whilst from (3.3), (2.13) and (5.4) we find as before in
deriving equation (5.18) that

—n—[(1+c) ‘Y‘I)Z 3)/] (g%;df)—z

L

QMB
Hence, from (5.18)

u/u J”"—“ f ;
%z j‘ 5%5_) j Z(f) ) 3+ 35, 26)
o

o

a relation which connects u/ua with y/5.
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In figures 1 and 2, the variation of total heat and
velocity across the boundary layer is shown as a function
of (y/8) for various values of o. The variation of the
shear stress is also given in figure 3. It will be ssen
from figure 2 that the maximum temperature within the
boundary layer ( for air, with o = 0.78 ) corresponds to

a value of total heat of about one fifth of the stagnation
(or reservoir) enthalpy.

Limitations of Theory at High Altitudes and Speeds.

There are four assumptions made in the analysis of
the boundary layer flow which become invalid if the
flight Mach Number is too high in comparison with the
Reynolds Number (both of these being assumed of large,
but not necessarily comparable, magnitude in the analysis):

(1) the neglect of the non-linear terms in
viscosity and heat conductivity in the statement
of the equations of energy and momentum, which
derive from the third order terms in the Boltzmann
equation. These so-called 'Burnett terms' have
been shown to be equal to quantities of the order of
Lals  yu°

Py L \E

times those preserved in the equations and their
exclusion is equivalent to the neglect of Mz/R

compared with unity.

(ii) the assumption that the boundary layer is
thin. In the equations of the boundary layer, terms
of order (62/L2) are neglected compared with those
of order unity. From (5.16), such an assumption
is seen for M2:>>1 to be equivalent to the neglect

of MB/R compared with unity.

(1ii) the neglect of the velocity of slip and a
temperature jump at the wall. For instance, if
there is a slip-velocity u, at the wall, and if A is
the mean free path, we have neglected

‘ =o( g—-l‘ -2 ) —O(cf S:f)\)

But u. = const. X paasﬂ, so that

ia M
= O(hlcf) = O(. ﬁ—) )

X

oflyf
,Gl}r

#Fp? S
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and a similar result follows for the temperature
Jump. Using (5.6) it follows that for M2)>-1,
the assumption of zero slip and temperature jump
is equivalent to the neglect afﬁfﬁ;a‘compared with
unity.

(iv) the neglect of the disturbance of the external
inviscid flow by the presence of the boundary layer.
The deflection of the external stream by the boundary

layer causes a modification to the pressure distribution
along the plate as calculated for inviscid flow. Thus

for a plane surface over which we would expect the
pressure to be uniform (as assumed) there is in fact
a small change in pressure producing a pressure

gradient
2 .‘-n
O(e P 5 Ppl3g0 )
dx = ———
MLQS% /

where 6 is the inclination of the external stream

to the surface ( i.e. 0 = vé/ué = 45/4x).

This has been neglected in writing down the equation
of motion which includes terms of like order of
magnitude to

2

Cpp,

2 _ £PsY%s
ay(“ay) O(g) O( 58 )

Hence the neglect of this induced disturbance is
equivalent to the neglect of a term of order

At Ll %
L 8 * ) M
(B - {5 {2

compared with unity.

To sum up, 1n the mathematical analysis we have assumed
that both —5 and 5 are infinitesimals. For the

assumptions inherent in the structure of
the equations to be valid and if the surface is assumed
plane, the quantities Mz/R, MB/R,wJE7§; and M°, /R
must also be infinitesimals. The last mentioned is the
most stringent requirement, that

R3> M2 cees (6.1)

If the neglect of this term - due to the disturbance of
the external flow by the boundary layer - is to involve
no errors of 1arger magnitude than the assumption that
terms of order 1/m may be neglected compared with unity,
we must have that
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Thus, if M is numerically about 10, the hypersonic
solution here presented will involve errors of about 1(%
only, ©provided that the Reynolds Number exceeds about 109.
It will be seen therefore that a satisfactory treatment of
the hyversonic laminar boundary layer should include a
correction for this effect, since such a high Reynolds
Number is unlikely to be achieved in flight even at high
Mach Number.

On the other hand, if we interpret our initial
assumption that the pressure gradient over the surface
is uniform as being strictly true, - so that the surface
shape will not be plane,X as we would expect if the flow
could be treated as inviscid, - it then appears that the
error in our calculations will be no greater than that
involved by assuming M°»>1 provided that the Reynolds
Number satisfies the relation

% - O(E) T

Thus, for example, if the Mach Number is about 10, then
the Revnolds Number should exceed 105; below this
Reynolds Number both the assumptions regarding the absence
of surface slip and the thinness of the boundary layer
introduce significant errors of greater magnitude than

the assumption that (i/Mz) is small compared with unity.

A value of R > 10° for M = 10, implies a value of
the relative air density not less than 10"u, if the
length of the body is about 10 ft., say. This is reached
at altitudes below about 200,000 ft., and flight at a
higher altitude than this (at a Mach Nunber of ten) would
involve an indicated air-speed of less than about 100 ft./sec.

Provided then that we interpret our assumption of

constant surface pressure literally, the results are valid
“

In this event; the co-ordinates x and y are curvilinear,
and the statement of the equations of energy and motion
also involve the neglect of terms of order (K&) compared
with unity, where K is the wall-curvature. Since K is

of order 6/L2, (2s may be deduced from an argument on the
lines of that appearing in para. 6) their neglect is
justified provided 5°/1° is small.
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over a wide range of flight conditions. However, this
assumption does not imnly that the surface is plane without
involving a significant error in most flight conditions.

Effect of Surface Shane.

We have based our analysis on the assumption that
M3 1, but it should be noticed that this is the Mach
Number of the flow at the outside of the boundary layer.
(i.e. more explicitly we should put My in place of M.)

If we put Ma equal to the flight Mach Number, then
for Ma,>>1, the static temperature behind a shock wave
producing a finite deflection is large - of the order of
M2Ta - and so it follows that the local speed of sound
behind the shock is of the same order as the flight speed;
in other words M, = 0(1) and is not large. If also the

S
Mach Number M6>> 1, then the stream deflection must be
small: viz.
a = 0(1/Ma)

where o is the angle of the stream to the direction of
motion at the outside of the boundary layer.

There is not the same restriction in accelerated flow,
since an expansion produces an increase in local Mach Number,
though for M%J1>1 it is possible to expand the flow through
only a small angle a, - again of order 1/Ma,- before the
air prsessure is theoretically zero. Also it should be
noted that the analysis is not applicable to flows in
which M, is finite although - due to expansion - M6'>>1;
for we have assumed in the analysis that Tﬁ is comparable
with the skin temperature, and after such an expansion T

o)
would be small.

Hence,; we may observe that our analysis is applicable
only to surfaces (over which the pressure is a constant)
moving at a high Mach Number, M, > and inclined at a small
angle to the direction of motion: i.e.

1

la| = O(Ma) s 0 1)

It may then be quite simply shown that, if U is the speed

of flight,
Y5 1 )
Al 1 + 0(-—-2-)
. soad k7.2
and EQ g
D

jvs]
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Thus in the expressions derived in the previous

paragraph we may everywhere replace ug by U, the speed

of flight, without affecting the accuracy of the solution.
It follows from (5.16) and (5.17) that the skin friction
and heat transfer to the surface are influenced by

surface shape only in that they are proportional to
ey
Jpé/pa, i.e.

Q= gi QL=0

vine (1:3)
Pa
F = ’éi F‘a=o

The true surface slope (measured in relation to the free-
stream direction) is simply ao(x), say, if

ao(x) +6 =aq

where 6 is the inclination of the flow relative to the
surface at the outside of the boundary layer. Thus,
since 6 = vé/uﬁ = 48/dx
. as
GJG(X) - C(r— dX .n.o(?tL‘.)

or, from (5.20);

3
0, (%) = a [1 s 012&? ’(1+§2M ] e S

As shown also in para. 6, since from (7.1), aM is finite,
it follows that the displacement effect of the boundary
layer is only negligible if R is of magnitude Mg or mores.

Viscous Form Drag.

Combined with the thickening of the boundary layer
at high Mach Number already noted, there will be an
increasing displacement of the external flow from its form
calculable for inviscid flow. This, as already observed,
modifies the pressure distribution from its inviscid form,
and gives rise in general to an additional form drag. We
define this as a viscous form drag, and it is equal to the
difference between the pressure drag calculated for an
inviscid flow about the body and the pressure drag in a
viscid flow, with the boundary layer.

The latter is simply given, by

L rL 4 B 4
S P, sin a dx = péJ ao(x).dx[‘l-f-O(F)] s e o )
0] o]

since in the present conditions; Py is a constant;, and
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where o, is, in general, of order 1/M. From (7.4) it
follows that pressure drag in viscid flow = (aL-é]sz)pé.

We may only make an estimate of the pressure drag for an
inviscid flow about the body in the general case if we
assume that the condition (6.2) is satisfied: i.e.

1/R = 0(1/M9). In this event it follows from (7.5) that

6 0,0'—\"-[) y 1 d.(s \ 1
a=*< L o« 18 % ot veen (8.2)

in general’ and then if po”aenotes the pressure at the
surface as calculated for a purely inviscid flow (in the
absence of the boundary layer), we have from the linearised
theory of supersonic flow that; using (8.2),

o) dx

5’9;9 = ¥ (o -0 )H [1+o (am)] e [1+o(;;-2~%... (8. 3)

The drag in inviscid flow is then

i
IO Po sin aq ax

so that from (8.1) the difference between the drag in
viseid and inviscid flow, which is the viscous form drags,
is,using (8.2) and (8.3),

L L
S (pé-po) sin o, dx = j
0

(pg-0,) o ax [wo (;;-2—)]

o]
L
- ie| 32 ox [mﬁg)] ) R L)

If we quote this as a drag coefficient, CD’ based on
the lengtb. L,

. 248 5
Sp 2 T4 st [1+°(M2)1

Evidently, then, for M- oQ, from (5.20)
> (d+c)
Cp = 0.316 (&M), TR

so that from (5.14)

viscous form dra CD
. g =G'—= O-Ogl}, (QM) l-a|(8¢3)
total skin friction i

This relation only applies if 1/R = 0(1/M9): for smaller
Reynolds Numbers, the difference between L and g is
larger; as well as the difference between Py and Dy The
linearised theory used above overestimates this difference
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between Po and Py if it is large. Also we have
replaced ay by o which is larger than Qe Thus; in
general, the expression (8.3) will overestimate the
viscous form drag, particularly at the lower Reynolds
Numbers.

Effect of Atmospheric Turbulence and Surface Roughness
on Transition.

Our calculations have been restricted to the
consideration of a laminar boundary layer, and it is
therefore pertinent to enguire under what conditions
laminar flow might exist.

One of the main causes of transition is the
existence of an adverse pressure gradient over the
surface, which is hardly likely to exist at high
supersonic speeds in flow over aerofoils: in the
present discussion we have considered the pressure to

be uniform, and this is probably the most adverse condition

likely to be met in practice.

We must also however take into account atmospheric
turbulence as a contributary factor, and as a result of
which there will be small variations in pressure on the
surface. A dimensional consideration shows that if p
is the root-mean-square of these pressure fluctuations,
then the Reynolds Number of Transition is RT, where

”f{dx/é(gyolz f(6 d-'D)

- as 1s suggested, for example, in 'Modern Developments
of Fluid Dynamics' p.328. Since (5/F) varies along the
surface as x, it follows that we may put

i - 5 8 ailanid) o
Fx Dy - I'x ) M alx/e

F

ﬁﬁﬁ

where € = p,b/o6 5 is & unit of length characteristic only
of the altitude of flight. Hence

5vs. ¢ d(p/py
RT=g (-I-ﬁ-i—)ﬁ _ﬁ.{;iﬁ) beee {941)
or substituting from (5.17) an; (5.21), for Me 221,
5 1 a(p Dﬁ
RT z +function of W W S (9. 2)

The correcponding result for the incompressible boundary
18782, . 1.9, M2<<I1, interpreting 5 as a displacement
thickness, is simply that
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Hence, since an increase in p at a certain altitude would
certainly be accompanied by a decrease in RT (i.e a forward
movement of transition), it follows that an increase in
Mach Nuxber (at constant height) would always increase

RT, most particularly at low M.

Of the other factors affecting transition, surface
roughness is an important contributary factor. At the
tip of a small projection of height ¢, u = u. s say where

- (91 - e
Ye “(ay)os =

(o]
Then,
Pols® T6 1+2w Ps ) 8
o] o] - “5
R S T5 7@“

If it is supposed that the flow behind a projection closes
up if R, does not edceed a certain critical value, then
it follows from (5.10) that the tolerable roughnesec height

A for M2>) 1 is given by a relation of the type
& < y 4
max o0 \w+0.5 ,Msy’L
S d:(-—Té) c3) ceee (9.1)

The corresponding expression for incompressible flow,
1-6‘- }r'12<<1, iS

®max S 1/&
i &(_3.) aio ww7(3e 5)
R
Hence an increase in speed at constant height alway
reduces the tolerable roughness limit, though less
rapidly for high M. On the other hand; an increase in
M for a constant R, increases the tolerable roughness
limit, particularly at high M. Heat transfer to the
surface also serves to increase the tolerable roughness.

It will be seen that no definite conclusions can be
drawn about the stability of the laminar boundary layer
at high sveeds. However, a comparison of (9.2) and
(9.3)5 and of (9.4) and (9.5), suggests that the high-
speed laminar boundary layer is characteristically less
sensitive to atmospheric turbulence and roughness effects
than at low speeds. In this sense it is more stable than
the incompressible layer.
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10. A Comparison with Other Results.

Crc:occo"l has suggested from his work on the compressible
boundary layer that
e T, . =T

2.1 th "o : » L=t 202
7 = (5/5 —uﬁgw— where Tth = T6 b+—§— M 02)

which may be interpreted as meaning that

m
H 1 Ttn~To
'1;

,/f_ i .."(10.1)
£ oo Tgn~Ts

For Ivi2 ¥ 1, it follows that

+O(-I§2~) s l(10.2)

ol =
'_b

1
ro
q —_— .
oy

which may be compared with the solution (5.11) given by
the present work. The variation of this ratio with o at
high speeds appears to be less rapid than that suggested
by Crocco.

Again, Young“ has suggested by an extension of Crocco's
work and guided by other numerical results that if u@cTw,

" T )
S%R%cf = 0.664]0. 1540, 552 +o.09(v-1)mzof]“(1“m)/2
5
caas (40.3)

Taking M2>a1, and putting w=0.5 as would be appropriate
if we have to include theeffects of variation of u at the
very high temperatures occurring inside the boundary
layer, evidently for air,

Cf =_‘1;£_[1 + O(lz)] --oo(10.]—l.)
} ) M
ohiRMs
which apart from a difference in the numerical constant
and in the variation with o is the same as (5.7).

In figure 4, the results of the present work in
relation to the variation of Ca with M are compared with
the values of c, obtained from (10.3) for various values
of w and TO/Té(and using a value of o equal to 0.74.) The
present solution gives consistently higher wvalues of the
skin friction ( and so also of the heat transfer ) coefficient
than indicated by (10.3) if we suppose that we must lower
the value of w to 0.5 when dealing with flow at high Mach
Numbers as in (10.4). At high Mach Number the difference
amounts to about 25°/ . About 5% of this difference
may be accounted for by the fact that in the present solution
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we have adjusted the values of the air specific heats and
Prandtl Number, but the bulk of the difference lies in

the fact that we have used Sutherland's Formula for the
variation of viscosity instead of a simple power law
variation. This has the effqgﬁwof increasing the values
of Co and kH by the factor 1+%% compared1with that
obtained were we to assume merely that pn«T2, and so brings
the recults (at least, for Mach Numbers between 10 and 20)
more into line with those of eguation (10.3) with w=0.8-0.7.
(This is a mean figure for w across the boundary layer, but
with an emphasis towards its value at normal temperatures)
There seems no doubt that the law of the variation of
viscosity with temperature is of the greatest importance

in influencing the quantitative evaluation of the boundary

layer characteristics.

The present analysis, using Sutherland's formula,
implies that there is relatively little change in the skin
friction coefficient with Mach Nuwiber below M=10, and so
endorses the applicability of much of the work on the
compressible boundary layer with w=1 (i.e. viscosity varying
linearly with the temperature) in relation to such swveeds.

Figure Y4 also shows from equation (10.3) that the
variation of surface temperature is not important in
influencing the skin friction at high M. and so confirms
the qualitative deduction of the present work concerning
this effect, The figure shows two sets of results for
(To/Ta) equal to 1 and to L, which would cover a range
of T from say about 250°K to 1000°K.

Conclusions.

(1) It appears that the high-speed boundary-layer equations
may be solved for the condition of laminar flow, in
the absence of a pressure gradient, by a numerical
process. The results of this report are relevant
if the assumptions are made that M2>}1 (where M is
the Mach Number of the flow outside the boundary layer)
but that the surface temperature is not high (i.e. that
it is not commensurate with the thermometer temperature),
and that the air molecular specific heats reach an
asymptotic value at high temperature (which may be
different from that at ordinary temperatures.) The
numerical results apply to a flow with Prandtl Numbers
between 1.0 and 0.6,
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(ii) From the solution it appears that the velocity and

te?perature vary near the surface in proportion to
2/3
:ST

This suggests that the velocity and temperature

s wWhere y is the distance away from the surface,

gradient are infinite at the surface. In the limiting
condition (as M-+00) this is shown to be compatible with
the existence of gradients whose actual magnitude
depends on and increases with M. The solution enables
these gradients to be calculated, and the corresponding
rate of heat transfer and skin friction assessed.

(1i1)The temperature and velocity distributions within the

(iv)

(v)

boundary layer are shown in figures 1 and 2. These
demonstrate the trends observed in previous analyses.
the velocity distribution is at high speeds more nearly
linear than at low speeds, and the enthalpy reaches

its maximum value (equal to about % of the stagnation
value for air) at about a third of the way out into

the boundary layer. The effect of a decrease in
Prandtl Number is to cause a reduction in temperature
within the boundary layer, but only a slight increase
in velocity.

Figure 3 shows that the shear stress within the flow
decreases most rapidly near the outside of the layer,
since here both the temperature (and so the viscosity)
and the velocity gradient are decreasing.

The asymptotic solution yields a finite boundary
layer thickness, which corresponds with the quantity
which is usually termed the 'displacement thickness'.
The flow is, accordingly, tangential to the outside
of the boundary layer. The compatibility of this
result with that for finite lMach Number (where the
disturbance due to the boundary layer extends to
infinity) is discussed in para.l.

The boundary layer thickness varies as.fE} where X
is measured along the surface’, it varies asJM3/R
and so increases in proportion to the increase of
forward speed (as compared with its behaviour at
lower Mach Numbers where it decreases with increase
of speed). For air, the thickness is given by
equations (5.20) and (5.21): the latter states that

5 = 6.4 x 1077 yt [xt /ot et
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where U' is the free-stream velocity (in ft/sec.),

P is the surface pressure (in atmospheres), and
x' is measured (in ft.) along the surface.

(vi) Associated with the thickening of the boundary layer
at high speeds; there is also an important interaction
between the boundary layer and the external flow,
causing a significant modification to the stream
deflection and pressure distribution near the surface
as calculated on the assumption of »urely inviscid
flow. At a Mach Number of about 10, it is shown
that these effects are important at Reynolds Numbers
less than about 109, - which includes most likely
flight conditions. Thus the assumption of a constant
pressure over the surface in the present argument
cannot be interpreted as implying a plane surface;
since the displacement effect of the boundary layer
on the external flow must be taken into account.

(vii)It is shown that such assumptions as the neglect of
surface slip, and the finite thickness of the boundary
layer, which are implicit to the vresent solution of
the boundary layer equations, are justifiable within
the accuracy of the solution provided that the Reynolds
Number R is a large number of the magnitude of M5 or
more. Thus at a Mach Number of 10 or more, the results
will have an accuracy within a few per cent, provided
that R exceeds 105, say. this includes most flight
conditions unless the altitude is so high that the
indicated airspeed is much less than 100 ft/sec.

(viii) There is no necessity for assuming that the (constant)
surface pressure Py is the same as that of the free-
stream, Dge However, the assumption that the local
Mach Number of the flow outside the boundary layer,

M, is large, implies that the slope of the surface

to the free stream direction must be small. If a

is the inclination of the stream at the outside of

the boundary11ayer, then o must be small so that
o1 o[ )

where Ma is the Mach Number of flight.

(ix) As remarked above in para. (vi), the deflection of
the external flow by boundary layer is generally



(x)

(x1)

B =
important, and Ay (the slope of the surface to the
direction of motion) is in general different from a.
From (7.5) we have that

e R odi@‘fﬁ)

a

The displacement effect of the boundary layer, in
modifying the pressure distribution, will also

modify the pressure drag as calculated on the assumption
of inviscid flow. It is shown in para. 8 that for
large R, the additional drag involved by this effect
(which we call the viscous form drag) is commensurate
with the skin friction drag), we have from (8.3) that

if o is the stream deflection outside the boundary

layer

viscous form drag = 0.09 (aM)
total skin friction

although this relation probably overestimates the
additional drag at lower Reynolds Numbers. The
effect will be seen to be particularly important at
high Mach Numbers.

The heat transfer to the surface and the skin friction
are shown to be independent of the surface temperature,
at least to the first order of approximation if terms
of order (1/M2) are neglected in comparison with unity.
This fact is borne out by a comparison with existing
results relating to the compressible boundary layer
flow. It will be recalled that we have assumed that
To’ the surface temperature, is comparable with that
outside the boundary layer so that (Tc/Tth) is small,

(xii)To account for the variation of viscosity (u) with

temperature; Sutherland's Formula, ucg(Tj/Q/T+C), is
used, with no allowance for dissociation effects at

high temperatures. In this formula, the larger the
value of C, the more rapid will be the increase of
viscosity with temperature. From the present analysis,
it appears that the skin friction; heat transfer and
boundary layer thickness all increase as C increases.

(xiii) A comparison of the present results with others

existing for the laminar boundary layer in compressible
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flow, which have used a formula for viscosity of
the type u45Tw, shows that even at Mach Numbers
between 10 and 20 a value of w between 0.7 and 0.8
is appropriate to bring the results into line with
those using Sutherlands Formula. It seems that
it is the variation of viscosity with temperature
near the surface which is most imnortant in
choosing a representative value of wy at the high
temperatures existing within the boundary layer a
value of w = 0.5 would be more avpropriate. The
present results also imply that for M<10, there is
little change in skin friction coefficient with Mach
Number, which again indicates a high value of w, and
endorses the applicability of the methods using a
value of w equal to unity (i.e. assuming ueLT).

(xiv)It is assumed in the analysis that at high

(xv)

temperatures the specific heat of the gas at constant
pressure increasesby a factor [T. The skin frigtion
and heat transfer are then found to vary as I*1/H,
and the boundary layer thickness as,f'B/h. For air
a value of [' = 9/7 is chosen which makes little
difference to the numerical results for the value of
skin friction or heat transfer. '

Connected with the increase in the gas specific heats
there will also be an  increase in Prandtl Number (o)
of the gas at high temperatures and a mean value of

0 = 0.78 has been used in preference to the more usual
value of 6 = 0.74. Here again this makes little
difference to the numerical results. The skin friction
coefficient is found to vary as 0'1/h, and the ratio
of the heat transfer to the skin friction coefficient
(kH/cf), varies approximately as 0'1/11. These are
rather less rapid variations than are predicted for
conditions at lower Mach Number. The boundary layer
thickness varies in »proportion to 00'35.

(xvi)For air, it is shown (from equation (5.17)) that the

shear force at the surface is

F=1.01 x 102 U ’pa/x' 1b. /sq. T't.

where U' is the free-stream velocity (ft/sec.); Ds
the surface pressure (atmospheres) and x' the distance
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along the surface (in ft.) Such a variation
corresponds to a skin friction coefficient given
by equation (5.10), where it will be seen that
cp & 1/fRM, and decreases with increase of Mach

Number - an effect well established qualitatively
in previous solutions.

(xvii) The momentumn thickness (§ ) of the boundary layer

becomes appreciably less than the displacement
thickness at high Mach Number. From (5.24);
8 = (10.?/1‘-.-12)6

(xviii) The ratio of the heat transfer to skin friction

coefficients (kH/c ) is found to be equal to
(1/20 /11), if k; is based on (205 6L) For

air, k. = 0.510 c

H .

(xix)It follows that k, also varies as J1/RM , and from

(5.16) the local heat flux to the surface is given as

= 5,07 x 10““U'2f'p6/x' ft.1b. /sq.ft. /sec.

(xx) Some remarks are made in para. 9 concerning the

stability of a laminar layer; and it is concluded
that as far as the effects of atmospheric turbulence
and surface roughness may affect the transition to
turbulence, the laminar boundary layer at high Mach
Number is less sensitive to these effects than at
low Mach Number, if the Reynolds Number is the same.
It does not follow that an increase of speed alone
(at constant height) is stabilising.

(xx1)The results of this work have been derived elsewherel

(exci)

by the author, using the approximate method of

momentum and energy integrals. Whilst in qualitative
agreement, these results give values of the skin friction
and heat transfer coefficients half as large again as
those deduced here. Perhaps this serves to emphasise
the difficulty of attempting to simulate ab initio

the variations in temperature and density within a
compressible boundary layer, as is necessary if this
method is to succeed.

Particularly in view of the strong interaction between
the boundary layer and the external flow, the greatest
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need in developing a theory of the boundary layer

at high speeds; is for one which will take into

account variations in pressure over the surface.
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