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SUMMARY  

The root constraint problem associated with uniform 

rectangular swept boxes, having ribs normal to the spars is 

considered. 	A strain energy method using self-equilibrating 

internal end load systems is used. 

Solutions are presented for the cases of a single cell 

box having either all ribs rigid, or the root rib flexible. 

In addition, a consideration is made of second order effects 

combined with a flexible root rib. 	The case of a box having 

two equal cells, with all ribs rigid and a built in root is 

investigated, and the method of dealing with special root 

connections in this case is indicated. 	The effect of the 

flexibility of the root rib in the two cell box is also 

considered. 

In all cases, the boxes are analysed for loading by 

a torsion couple, and a normal force applied on the centre-

line at the tin. 

The basic theory apertaining to this method of 

solution, together with the equivalent unswept solutions, 

are given in appendices. 

BHF 

Work carried out under the auspices of a 1951 Clayton 
Research Fellowship, awarded by the Institute of Mechanical 
Engineers. 
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NOTATION  

The following notation is used throughout this report:- 

Oxyz 	System of orthogonal axes, based on rib and spar directions, 

Ai  (1=1,2,3 s R) 	Boom area. 

2:A = A2  + 2A1 	Sum of boom areas on one side of plane of 
symmetry. 

Typical length of shear panel s  in particular rib pitch. 

Rib pitch in first bay of swept boxes. 

Strain Energy Coefficients, defined in Appendix 1 Eqs.(1), 
(2) and (3). 

akk akE9 	Particular Values of 	defined in Appendix 1. 

B
b 

Coefficient used to define shear flow s  given by Appendix 2 
Eq. ( 1 9). 

b 	Total depth of spar web. 

C19 C29 C Constants used in solution of strain energy equations, 
and defined in Appendix 1 Eqs. (6), (8) and (9). 

c 	Width of skin panel in direction of y axis. 

d Typical length of shear panel. 

E Young's "odulus of Elasticity. 

G Shear Modulus 

k 	Particular rib station, used in derivation of formulae. 

Li 	Torsion Couple (ap -plied at rib i). 

Length of bc.x along the front spare 

n 	Number of ribs in box, root defined as 0. 

P i  (i=1-6 9 R) 

S i  (i=1-6 9 14, , R) 

T 1/. 
li 

End Load in booms. 

Shear flow. 

El_'? Load systems used as unknowns in strain 
energy calculations. 

t OOOOO 0 b 

Bb 	2c /(3b 	2C1 

/ \Tr + 



t 	Skin thickness 

t' 	Spar web thickness 

tR 	Rib web thickness 

U 	Strain Energy 

Loading in Z direction s  applied on x axis at tip 

x 	 Specifically used to denote section between ribs 
k 9  k 	1 9  (x = 0 at rib k) 

Z 	Normal load on box 

a 	 Coefficient used in calculating C. Appendix 1, Eq.(5) 9  
a = cosh 0 

Complement of angle of sweepback 

0 	Function used in definition of a s Appendix 1, Eq. (5) 

/ 1 • • 0 • • 0 0 • 



1. INTRODUCTION 

The solution of the root problem of a swept wing having 

ribs normal to the spars, using the fundamental method involves 

much algebra, and it would seem that a strain energy method is 

preferable. 	It is known that one of the more satisfactory ways 

of applying a strain energy method to the solution of a structure, 

is to use the methrd of self equilibrating end load systems, 

suggested by Ebner and KLler (1)  and developed by Hemp (2)  

This method has been applied to a single cell swept box with 

rigid ribs, by Hemp in some unpublished work. 

Amongst the advantages of this method are that it 

provides a solution which is relatively simple to apply, and 

that it can be readily modified to take into consideration the 

effects of flexible ribs and second order quantities, such as 

shear lag. 	Different root conditions can be solved without 

the necessity of evolving a completely new theory. 	It must be 

mentioned that one disadvantage of the method is that it can 

only consider discrete panels carrying pure shear, and hence 

only average shears can be calculated. When attempts are made 

to overcome this, the calculations become lengthy and most of 

the advantages are lost. 

In adda.tion to the solution given by Hemp, which is 

included for completeness, this work gives solutions when 

shear lag and a flexible root rib are considered. 	The case of 

a two cell box with a fixed root is also dealt with, and the 

method of solving the problem when special root conditions 
apertain is indicated. 	There is evidence that the flexibility 

of the first rib joining the mainspar root to the front spar 

is of importance, and the modifications to the solution for the 

two cell box with fixed root to cover this case are given. 

All the solutions are given for loading by a torsion 

couple, and a normal force applied on the centreline of the 

box, at the tip. 

Appendices contain the basic theory, procedure for 

solving the strain energy equations, and the solutions for the 

equivalent unswept boxes. 

/ 2 41 0000000 
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2. SINGE CELL SWEPT BOX 

2.1 	All Ribs Pigid  

This solution has been given by W.S. Hemp, but is 

included here for completeness, and because the results are 

needed for the other cases to be considered. 

The geometry of the box structure is shown in Fig. 7. 

It is basically similar to the unswept case, Appendix 2, @1„ 

except for the root configuration. 	The first bay is triangular 

in planform, and the hypotenuse of the triangle, which forms the 

root, is built in. 	The first rib pitch is a o . 

The assumptions made are the same as those for the unswept 

case, the triangular skin being treated by the method of Appendix 3 

Internal Load Systems  

As for the unswept case, the basic internal load system 

is the doubly antisymmetrical form. 

Consideration of the spar and rib boom equilibrium in 

Bay 0 gives:- 

S2 = S 1 	a 	 SR = - S 1 	S2 = SR o 

• . S 1 	S2  = 0 

- 0 • S =
2 = 	64 = 2a o 

The distribution in bay k (k / 0) will be as for the 

unswept case App.2 Eqs. (1) and (2). 

Calculation of Strain Energy Coefficients 

a oo = 2 a oo 	for unswept case as there is only half 

ao1 = 	201 the structure contributing to the 
2   

coefficients. 

• 
/ 9 • 
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. 6 . Using App. 2 9  Eqs (7) 9 (8) and (9):- 

oo 3EA 4Gao 	T) 

a 	ao _ 1 	(b 	c) 
o1 	3EA 4Gao 	TJ 

There will be half the unswept contribution to a ii  from bay 0, 

and a full contribution from bay 1. 

2ao 	1 	lb 	c\ a 

• 
• • 

is 

	

all 	-9- + a 

	

11 	3EA 2 
1 (1 4.  21( . .tb 	i)  

2G !2a 0 	a/ • . (3) 

All the other coefficients will be as for the unswept case. 

External Load Systems  

(1) Bending by Z wise force applied on x axis at tip Z = W 

Statically Correct Solution:- S i  = 	5 3 = 2b 

P = it(? - ak) 

where P is the end load in the upper spar booms at rib k. 

Strain Energy Coefficients  

End Load System T o . 

There will be a contribution from Bay 0 only 
(a -x) 

End Load at section x in Bay 0 = 7v 	+ T — 
x 

ao 	
loao 

tr 	 o 	
T1 

0  Shear in Web = — + 2b 	2a 	2a0  

Wa 	ao . 6 . 	- 2bEA I  - 7) 4' 77 

the contributions being from two booms and one web. 

• (5) 

End Load System T i  

In this case there will be contributions from both 

bay 0 and bay 1. 	The bay 1 contribution will be zero s  due to 

the internal loads being doubly antisymmetricp and the external 

loads singly antisymmetric about the Oxy plane 

	

Waok ( 
From Bay 0;- a = 7--- 	- 

2a\ 

	

lE 2bEA 	) 	Gt 

End Load System T k  (k 02 1) 

All contributions will cancel 
• 

0 • akE = 0 (k 	0, 1) 0. (7) 

/ (2) 



End Load System T l  
Li !c 	b 

From Bay 0:- Contribution = - 

	

4Gbc Ft 	t

• 

'i 

	

Li /c 	b 
From Bay 1:- Contribution =  

	

2Gbc kt 	t

• l

i 

- 8 - 

(2) 	Loading b 	
ith 

y Torsion Couple L i  applied at 	rib 

L. 
Statically Correct Solution:- - 2bc = S 1 = S2= S = 34 

	
(8) 

Strain Energy Coefficients  

End Load System T o  

aoE 
aoE for the unswept case, as there is only half 

=  
the structure 

• Li  (o  
. .From App.2 Eq.(10):- a 	= 	 (9) E 4Gbc It TY 

Li 	(c b 
Sa0 alE = 4Gb c 

End Load System Tk  (k 	0, 1) 

This will be similar to the unswept case 

	

.

• a

kE = 0 	(k 	09 19 i) 
.. (11) L. 	(c 	b \ 

	

aiE = 2Gbc 	ta i 

2.2 	Flexible Root Rib  

Apart from the fact that the flexibility of Rib 1 

is considered, the details of this box are the same as there 
for 82.1 

Internal Load Systems  

The doubly antisymmetric system will still apply. 

From App. 2, Eqs. (1) 9  (2), and (3) we have:-T 
 Shear in rib webs due to T

kR = SR = 7-  2a k+1 	k-1  

Tk S
Rk 

= a 
 

T m 	T 	T 	T • 
• • Shear in web of rib 1 = S

n1  - 
	-- 1  + --o 	2 	1 

11 	
+ - - -- 2ao 	lac 	2a 	2a 

(12) 

/ Modification 0 0 • 



Modification of Strain Energy Coefficients  

be Contribution to a = 00 	2 
oGtR 

where t is rib web thickness 

Contribution to a ol - 
o
Gt 	a 	a

c  R , 

be  

1 . \ Contribution to a 	- bc   1  i  -- 1   + 2   + -1 11 - LGtR la  2 	aoa 	a2/ ..., 

12 - 	4aGt ,a + ar  p.  
be  (1 	1 

Contribution to a 	bc  

Contribution to a 	bc  
o2 	4ao.a0GtR 

Contribution to a 

22 - 4a 2GtR 

The values of the coefficients now become:- 

Using Eq.(2) & (3):- 

2a0 	1 	

(. 

b 	c 	be 
aoo = 	4G,7- o  t' 	ao tR 

ao 	1 (b 	c bc kLi  
, aol - 3EA 	4Ga ‘ 767  + T + .t ;7 + a 0 \ 	 o i  , 	• 

14 	i a 0  ( 1 	IA (12 	R \ _,_ be '1 .,2 4 1
N  
\ 

all = 3EA 
	I 

. 2 + al
) 
 + 2G 20. 0 + a) t' + tr - G. -7.2.  a2 • a oa a 2 i 

\ 	0 , 
2a 	1 	b 	c 	bc 11 	1 1) a = =--- --- --r  12 	JEA 	2J-a t' + 	+ m ' 2t 	Ti + a R !. 	oil 

A 
1 1b 8a 	 c 	bc N 

2 	...)L a 2  , 	= •- ,-;- + d.7 ( 7 + 7 + r_ t  1 
\ 	 R/ 

he 	 / 
a02 - ao ea*GtR 

_ 4_______ 

( 1 4) 

There is no external load in the ribs, hence the 

external coefficients are unchanged* All the other coefficients 

will be identical to those calculated in §2*1 

/ 3 0 0 0 000 0 0•• 
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3. TWO CELL SWEPT BOX 

3.1 	Fixed Root Condition  

Fig.8 shows the structure of this box. The general 

arrangement is similar to the two cell unswept box considered 

in App.2 §2, but there are two triangular skins at the root, 

which are assumed to be built in. The same assumptions are 

made as for the unswert case, and the triangular skins are 

dealt with by the method of Appendix 3. 

Internal Load Systems  

All the three load systems of Pig.2 are possible. 

Consideration of the spar and rib boom equilibrium conditions, 

shows that the load distributions are the same in the root 

bays, as for the unswept case, App.2, Eqs. (13),(16),(17) 9 (20), 

(22) and (25). 

Calculation of Strain Energy Coefficients  

End Load System a 

Only the front spar booms and skins will contribute to a2 ) . 

From App.2, Eq (26):- 

	

(a) 
	2a0 

.. (5) aoo 	3EA1 	Gta 

(a In the case of a ol
) 
 there will be contributions from 

the same components as above 

• (a) 	a o 	c 
Gtao 

Both bays 0, and 1 9  will contribute to a l(  l a )  

Front spar booms give:- 4a o/3EA1 

Pain spar booms give:- 8a 0/3E 2  

Bay 0 Skins:- c/Gta o 	Bay 1 skins:- 3c/Gtao  

.. (16) 

• (a) 	4a0(1 all 	3E v  4c 
Gtao 

.. (17) 

/ The front 	 



a 
. 0 a 	- ---- o1 - 3EAi  

1 lb (
0)

, 	i 1 
 Gao  It' 	t" 

• (b ) 

to a (a)  12 • 

The front and mainspar booms and skins will contribute 

/1  Booms contribute:- 7.7 	T- 1  
0 ( 	\ 

2/ 

and skins:- - 3c/Gtao  

• • a  
ao 	1+) 	3c  

12 	3E 	A2 	Gtao 
• (a) .. (18) 

Bay 2 will contribute fully to a (a) 9  but the bay 1 effects 22  
will not be complete. Bay 2 gives:- 1-7T, (74 + 79 	

4c + 7=7 
-)11J Al 	A2 	

,_,,t- 

2ao / 1 	Ji) ;Say 19 spar booms contribute: 7f- -Al 
	''-2 

Skins give:- 3c/Gta o  

• (a) 	2 i (a c + 2a) 	4(a  + ao ) ( 	c Li. 	
a 

 L.) + 	A2 	 + 	 .. ( 2 	3E 	J 
19) a2 	- 	! 	A -1 	 2 	j + Gt ac 

In all other cases, 	2, App.2 Eq (26) will apply. 

End Load System b. 

The front booms , web and skins will contribute to a
(b) 

Using APp.2 Eq.(2(), 

Booms give 2a o/31y. 1 

c Skins giv, 737-s-7 1 — , 

( 

-0 

2 	2 

9 and webao /B 	b(Bb)  
b b \ 

Gt ao 	C3t-l a o 

	

r, 	, 2 • (b) 	2a 
	

+ 1...4ET  (B u ) 	.9F( 1 	Bb ) ..  (20) • . a00 	3Eki 	Gao lt 

The shear contributions to a ( b) will be equal to that ol 
a (b) but opposite in sign. oo 

2 1 kb 	b 2 	 b\ ( Shears give:- - 7.(7-1 47-1- 	) + .c-E (1 - B ) 

and booms give ao/3EA1  

00 

/ :Mr • 	• 



2 
b(B L) ) 

/ 
5 \ b 

' 	G t  a0 ) ' 
c{1-Bb } (4,„1.) 

G-t 	ao 

(24) 

- 12 - 

b 	
! 	, 2 ) For all  ; Bay 0 gives:- -

2a2 
 + Ga 	B r) ) + 	(1 - 

1 

( 	 1 	' 
3-EA 	0 I '  

2a 	 1 r b 
3E 	

b 2 	c 	b \ 2)  Bay 1 gives:- —2(1  A-. + 	+ G-7a-- 1 57(B  ) 4. -1-(1-B  ) 1 -2

) 

	o 

2 1 
a. • • • _ CO _ 14-a o (1 	2 \i 	2 1 b ( b ) 2 	2c 	. - B  b ) I 	• • (22) 11 - 3E A + A2 1 + Ga i 'TTn  ) 1 	o I., 	

÷ t 	(1  

In the case of a (b

12

)
9 the skin effects are eaual to those from 

Bay 1 for a 1
(

1
b) 

' but opposite in sign. 

• • c.i./2  
.., (b ) = ao ( 1 	4 ) 	1 	r b . \ 

--,7 	-- + A— — 7.7-- )5TT tB
b

)
2 

+ "; ( 1  - 	
2 t 

3A 0/  2 	o u 	 j 

The contribution to a (b) from Bay 2 will be complete:- 22 

4a 2 1 	2 '\ 	! b 	b 2 	2c 
\TT 4' T2) 7t-7 P 	(B ) 	( 1  — BID ) 2 c 7  

Bay 1 gives: — 

	

2a0  /1 	 cT-La _ i 5 :t4 (13b ) 2 	 Bb ) 2 7  A 3E V1  + o 

• a (b) 	2 I (2a+ao  ) 

22 - 3E1 A l 
	 + 4 ( a_„ 
 A2 	o 

For coefficients where k, 	2, App.2 Eq. (27) will hold. 

End Load System c. 

The front booms, web and skins contribute to a (c) . 	Using oo 
App.2 Eq.(28):- 

	

a (c) - 
2a o 	1 	lb 	c\ 

00 - 3EA1 + 4Gao 7 + T) 

The shear contribution to a () will be equal and opposite to ol 
that for a (c)  oo 

. 	(c) 	ao 	1 

	

° ° "ol = 3EA1 	4Ga 
.. (26) 

/ The bay 

2 
) 

.. (23) 

(25 ) 
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(c) The bay 0 contribution to ail  is the same as that for a (c) 
oc 

2a o 	1 	;/ b 	c.) 
3EA1 + 77- -

E-T  + T o 

2a0 + 1 	b + .4C 
3EA1 - 	

\I Bay 1 contribution:- --- 	LI.Gao \ TT 	t ) / 

, ( c ) 	4a0 	1 	(13 	2C) 
• • "11 - 3EA1 + 2Gao Tr  + t i .. (27) 

(c The shear contribution to a )  will be eoual and opposite to 

that from Bay 1, for al(  / c ) 12  

• • 	- 
(c ) 	ao 	1 b 

a12 12 	3EI.1 	4Gao  (Tr 	t 

a (c) 	 )pa. 	1 /b 2 has a full contribution from bay 2:- -+ 	r+--  22 	 3E 1 2Ga 	
tc) 

 

(c ) 

2a 	

1 a o 	

) b Bay 1 contributes 	o 4G 	TT 2 tc / 

2(a +a) 

a22) 	3E11 	 + 	to a  + 	+ T 

	

(1 	2) 

e 	
(29) 

For 	29  ate )  and aW will be as App.2 Eq. (28). 

External Load Systems  

1) Bending by Z-wise force applied on x axis at tip Z = - W 

Statically Correct Solution:- 

This is assumed to be the same as for the unswept case. 

WA 	 WA2 S = - S4 I 	4 	b>71 S tirs -  b5"A 

where ZJA = 2A 1 + A2 

 End load in front and rear upper booms at rib k:- 
A4  

	

P = P = 	- a k) p 1 	3 ba7A 

End load in mainspar upper boom at rib k:- 

" 112 	- a k) 

/ Calculation 	 

.. (28) 

P2 = b2.7A 

( 3 0 ) 



2 
EL1 

aob 
Tffr 

0 

W.A.1 
b EA ' 

(a-x) 
_ X1.1 b 	AL/ a 

0 

Bb 	WA1 Bb 

ao 

o - - wa 
b E 23 A 

Bay 0 9  front booms give:- 

There will be contributions to a (b) 
from bays 0 and I lE a 

1,0 wl  

EA 1  b2DA (  I d- a o bEEL 
0 

Wao k ( 7.o.) 

Main booms give 

Webs:- 
WA1  Bb 

-TrT7 

1 4 

Calculation of Strain Energy 

End Load System a 

loll the contributions will cancel 

loefficients 

 

about the Oxy plane, due to the 
nature of the internal loading system. 

a (a) - 0 kE ( 31) 

End Load System b 

The front booms and webs will give the only contributions to 
(b) a
oE 

Booms Live:- 

Webs give - 

• 
• a ( b )  = - wao 4 

of 	bE 
ao) 	Bb 

- 	—r---  Gt h (32) 

Front Web:- 

a 
,o 

WA 
Bay I: - Front booms give --- 

E
2 
LI u b2DL 

0 

-a0-x) __-)-ix  a
o 

_ 	o 
W o  a 	(:. 4a ) 

	

bEl7A 	,,‘. 	3 

	

.„.) (ao-x) 	2 
2WA 	 Wa 
b27.L" o -' 

(4.; a  
ao 

dx = bEZYi ° / 
aob 	b TB d_TT -'7'- TETITT ( 21- - L I ) 

ao 
2 

EIL2 

2Bb  ••2 
ao  ° b EA 

• , (b) 	2Wao
2 2WBbA2  

• • -IE 	3bE2DA 

/ The boom 	 

( 33 ) 
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The boom contributions to a 2E
(b)  in bay 2 9  will cancel 

one another, and the front and main web shears will cancel 

from bay 1 to bay 2. 

WA1 Bb 

Bay 2:- Rear Web gives 	----- Gt l-rEA 

a 

2 
o 

x WA1 	
Wa e  

j Bay 1:- Front booms. . TA- - 	, 	a b 	
,A 

o
-x)dx = 	.;-,A, bE 	3 

	

1 	o  0 

a 

	

 2 	I 	WA 

	

2x 	
21Na 

 

	

EA 	,J a 	oa„.„, 	

- 

bEZA 	) 

	

Main booms:- -7-- 	,--4-77(4(-a o-x)dx 

	

2 	o 

• (b) 	Wa o  1, 5a01 	WA1  Bb 

• 
• a2E = bEZA 	3 ) 

For a ) k 	2 	App•2 Eq.(31) will apply. kE 

.. (34) 

End Load System c 

The front spar yields the only contribution to 0 

o 	ao\\
o
b 1 

WA1 
	WA 1  Front booms give: 	 and web =-1- • ut 2a o a bEA 2Gt'EA bE,'A 	3-0 

/_\ 

 

Wa 	a 	WA • ke) 
cE 	bEEA 	- -97 2Gt r  (35) 

(c) In the case of alE ' also, only the front spar will 

contribute, the webs cancelling from bay to bay 

Wa 
z 	

2a
0
) 

Bay 0, booms give bEA  
fl 

Ws. 	I 	4a Bay 1, booms give 	 o  

▪ (c ) 	2Wa 
	2a 

- 	

o, 
• • a 	 o 	 o  

1E = bE 	 ) 
.. (3 6) 

There will be no contribution to a )  from bay 2. 
2E 

Wa o  ( 0  5o. c; 	 — WA 
Bay 1 9  front spar booms give bEzA 	3 9  and web 1  

2Gt'EA 

• (c) 	Mao 	5a 	WA1 
 • • a

2E 	bE
2 	- 3 
 A) 

2Gt E A 

	

For ak9 	(c)  k 	2 	App. 2 Eq. (32) applies. 

.• (37) 

2) 	01,00000 
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2)Loadingbyrrorsion0oupleL. ; a-culied at the i th rib 

 

 

Statically Correct Solution:- 
Li  

- 17 - 5 1 = 5 2 = S 3 = s4 5 5 = 85 

End Load System a 

All contributions will cancel about the Oxy plane 

aW = 0 

.. (38) 

• . (39) 

End Load System b 

The web and skins contribute to a (b) 

a b 	- 	 L.B
b  

Front Web gives:- -21- 

Li  _Bb 

Gt' • 717E 	a 	= 4717 TT 
0 

 

ca o 
b, 

Li-(1
B ) Li 

(1 - Bb ) 
Skins give:- Gt • 4bc 	ao 	 4Gbc 	. t 

(b) 	Li b b _ (1 - Bb ) • 

▪  

• aoE 	4Gbc ) . TT (40) 

The web contributions to a (b) will cancel. lE 

Bay 0 skins give 

 

L. 
 - Bb ) 4Gbc (1  

	

2ca -Li  	 Li 	
/  c Bay 1 skins give 

	

. 4bc 	ao 	4bcGt ° 	a 	- 4Gbc 

. (b . . a)
1E .. (41) 

All the contributions from bay 2 to a, E(b) 
 will cancel about the 

x axis. 

L. 
Bay 1 skins give  4Gbc (1 - 
	

't9 and webs 
L.Bb  

b  4Gbc • t' 

of 

. (b) = Li 
. • a 2E 	4Gbc  

bc  B ) 	Bb  -Ti 
.. (42) 

/ End Load 	 



End Load System c 

The web and skins contribute to a (c) 
cE 

L. Li  
Webs - and skins 

	

4Gbc • a' 	and 	• 2t 

(c) 
• . 	- 	(\ - a oE 	8Gbe •t 	t 

Only the skins contribute to a (c
E

) as the webs cancel from 

bay to bay, 

L
(c) 	

i 
a  
lE = 4Gbt 

The only contribution to a (c) will be from the rear 2E 
web s  and a "triangular half" skin from bay 2 9  as the rest 

will cancel with bay 1. 

• A(c) 	
L. 

• 
-2E 	8Obc 

.. (43) 

.. (44) 

.. (45) 

3.2 	Effect  of a Flexible Root Rib  

There is some evidence that the degree of flexibility 

of the half rib joining the mainspar to frontspar at station 1 9 

 is of irclortance9  and the modifications to the strain energy 

coefficients are given in this section. 

End Load System b. 

The load distribution is given in App.2 Eq. (21) 

2 7 	

2  Contribution to a (b) 	2(1-2B-) c-'  
00 3 	2 Gt 0 o  

	

EARao 	R- 

Contribution to a (b)  and a (b)  22 	r2 
2 	 2 

Contribution to a(b) 	-4(1-2Bb ) c 3 	2bc(Bb )  
ol Gt a  3E;ta cj 	

R 

= Contribution to a (b)  12 
1., 2 b 2  8(1-2B ) c -) 	LI-bcri u )  Contribution to a (b)  

11 

	

3EA a - 	Gt a2 

	

R o 	R o 

(46) 

/ End Load 	 
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End Load System c 

This load distribution is given in App.2 Eq. (25)- 

Contribution to a (c)  - 
be  

nn 
4Gt 2 

Ye'o 

= Contributions to a () and 
a22 )  22

) 
 

Contribution to a (c
l

) 	bc  
o 2GtR a 2 

= Contribution to a (c) 
12 

Contribution to a (c) 	be  
ll  

Gt a2 R o 

There will be no contribution to the coefficients due to the 

statically correct solution. 	The contributions of Eqs. (46) 

and (47) must be added tc their respective coefficients as given 

in §3.1. 

3.3 	Special Root Conditions  

The effect of special root conditions is to reduce the 

number of redundancies at the section corresponding to the special 

connection. For example, consider the case of a two cell box, 

similar to that discussed in §3.1, except that only the mainspar 

is built in at the root, the front and rear spars being arranged 

to transfer shear, but not end loads, to their supports. 

At station 0, the only internal end load system will be 

similar to that considered for T o in the single cell swept 

box §2.1, and it will be statically determinate in that it must 

be equal and opposite to the front spar boom loads given by 

the statically correct solution at rib O. 

/ The load 

(47) 
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The load system T 1 , will also give only one possible 

system, which will act in the front and mainspars, and be similar 

to the load system T ° . 	At rib 2, the load system must fulfil 

certain equilibrium conditions. 	There must be equilibrium of 

the system on the inboard side of rib 2, although there can be 

no end load corresponding to the rear spar booms. 	Also there 

must be no discontinuity of end load across rib 2. The only 

end load system which will meet these requirements is one similar 

to that of T 1 . 	This will give no internal loads in the rear 

spar booms, and an additional statically determinate system 

must be added to cancel the statically correct loads in the 

rear spar booms at station 2. 

The distribution of these loads into the individual 

structural components, and the calculation of the strain energy 

coefficients, are made as given in § 3.1. 
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4. SINGLE CELL SEPT BOX - SEC= ORDER EFFECTS  

The structure of this box is shown in Fig. ° . 	Except 

for the omission of the centre web and the half rib joining it 

to the front spar at the root, it is similar to the two cell box. 

The centre booms are retained and the root is built in. 	The 

flexibility of rib 1, which in this case is complete, is 

considered. All the other assumptions are identical to those 

of the previous cases ;  Appendix 3 indicating the method used 
for dealing with the triangular skin panels. 

Internal Load Distribution  

All the three load systems are possible, and the load 

distributions resulting from them will be similar to those for 

the unswept case. App. 2 §3, 

Calculation of Strain Enerw Coefficients  

The coefficients due to the internal load systems (a) and 

(b) will be the same for internal loads only. 

End Load Systems a and b. 

(a The contributions to a oo
)  will be from the front booms, with 

part contributions from the centre 

and rib booms. 

2 Centre booms 

a ,o 
2.E) ( 	

2 

 `ao a
o/2 

booms, front and rear skins 

ao ax  _ give EA2 3EA2 

i l  2c The front and rear skins will give
2cac  

Gt L2) 	Gtao 
C 

h 

The booms of rib I give -11- 1( . EA 	 )2 ay `"4c- 	2 

	

R d 	
a o 3EARac  

■ 

 a • (a) 	(b) 	o 	2 	1 ) 	2c 	4c3  . • oo = a 	
a

oo 	 T7 	Gtao 3EA a 2 	(48) 
R o 

(a In the case of aol
)  there will be similar contributions. 

Centre booms give 2a o/3EA2  and skins - 2c/Gtao 
c 	/ 	2 

4c3 	I 	I ) Rib booms give -II- j -/ e--.Lf f-9-1 '1-  
7  

	

c c 	lac  aj 	1/4.14  - 	 m

Rao 

a 	ao ' 
o 	 JEA  

:11 

	

. 	(a) 	(b) _ a ca  ( 	2 _ 2c 	4c'
7  

• • a01 = a01 - 3E `Al + A2 / 	Gtac 	3
EA

Rao
c a 4.  Lu ac/ 

(49) 



C 	, 2 
Rib boom contribution to a (a)  is -t"-' ( 2  . 4.) dy 	4c3  e2 	EARl aG 	EARa 3 	

2 
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) There will be the normal unswept contribution to E(a .1 11 
from bay 1, in addition to the boom and reduced skin 

contribution from bay O. 

LE ( 1 1.  2 	4c From bayl 3E 'Ai 	A2 ' 	Gta 
a 
;10 

2 	)2s.,2, 	7ao Bay O s  centre booms give 71— 	) ax 

	

2 '71 	r) 	 2 
o/2 

Skins give 2c/Gtao  and front spar booms 2a 0/3EA1  

„ ) 	 12) Rib booms give: -- 4—j -', ( -̀,-+ =) a,a 	a  + EAR 	a ao „ 2 
	Li-c 3 	2 

3EAR  
ci 

	

11 =a 1 	 -. 
3E  I
LS1 ( 1  

2 	o Gt a a 	A 	4-a -  7 R 2 0" 

	

a(a)=. l 	-
2 ( b ) 	2  

(50) 

There will be contributions from rib 1 to a (
2

) a22 
(a) and 1  

a (a
o2

) 
9  which will otherwise be as for the unswept solution. 

C 
r

/ 2 	1 	 i 3' 	-1 N (a) 	4 Lfc 7,7c c! A- = _ L..J.;_q_.(L.  Rib Boom contribution to a i2  z--. L---7
R  -

, 1  va. ov-a 	 ,,y  3EA 2 a a; 
i
Jo 	

\, C 	0-1 	 R a+ 
 ' 
o 

. 	(a) 	(b) 	2a /1 	2 	)4c 	4c3 1 1 . 1 .. (51) • a 	= a 	= 	 ) 

	

12 	12 	3E A 	A2 	Gta 3EARa 'a Tov 
1 

(a) • . . a 	= a-(b) 	8a ( 1 	-L) 	8c 	4c3  22 	22 - 3E A l 	A2 	Gta ' 3EARa  
.. (52) 

Rib boom contribution to a(a02 ) - 	1 (2  . 	. Z) dy EAR t a c an 

(a) 	(b) 	4c3  • . ao2 = a (b)  = 	 

3EARa0 a 

For the other bays, ks -> 2 9  the unswe-ct values, App.2 

Eqs. (46)9 (47) will apply. 

/ End 

.. ( 53) 



End Load System c 

The contribution to a (c
oo

) will be due to the front spar s  and 

rib 1 web s  together with part contributions from the skins. 

1 )
2 bc be  Rib web contribution = 	( 	- 

GtR  2a o 	2Gtpa0 
• (c) 	2ao 	1(b 	2c) 	bc  

	

-00 -- 4Gao `t ? 	t 1  ,2 
• • 

2GtRc,c  

	

The rib web contribution to a (07 )  is 2212(
2a 	

1 + 1 
GtR 	c 12a 	2a o . 

bc 	(1 	1 ) 

	

2GtR
a

o
`a 	a

o
/ 

.. (54) 

a 
• c, • ,(c) 	o 	1 	 bc 	• ( b 	2c) 	 (1 1.) .9 (55) 'ao `tr + t 	2GtRao a 	a o1 	

3EA1 

In addition to the effect due to the rib web, there will 

be a normal unswept contribution to 47 )  from bay 1, and a 
( b partial contribution from bay 0. Bay 1: 	4a + 	 2c 1 

3EA1 -  2Ga `1-/- 	
) 

t / 

Bay 0:- 
2ao 	1 	(b 	2c) 

3EA 	(7;57 -17," 	t / 
- 

2 
Rib Web:- 2bc 	1 	1 ) 	bc (1 	2 	1 ) 

(yr (2a + 2a o 	GtR `a2 	a c 	a a + 2/ 
C 

a(c)_ 	2 (2a+a ) 1 • ip ( 2 	2c(2 1 )

J  

► 	be /1 	2 	1 
11 - 3EA 	o +4G 	̀E+ao l + t 'a*a o / 	2GtRa2 + a oa a 2) 

(56) 

	

c(c 	(c There will be rib web contributions to a 1
( 
2)  a 22

) and  ao2
) 

 
which will otherwise be similar to the unswept case. 

Rib 1 effect on (c) 	2cb 	1 ( 	1 	) 1 	— be  (1 	1 ) 
a 	- 12 	GtR  2a`-  2a - 2ao / .1; 	2GtRa`a 	ao  . 

• (c) 	2a 	 b 	2c) 	be 	(1 • • a 12 	3EA1 	2Ga `TT 	t ) 	2Gt Ra `a 	a
o 

0. (57) 

/ Contribution 
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Contribution from rib 1 to a2( 2
c) 

- G 
2bc (1 )2 
tR `28. 1 	,2 

- 

2G

be  

tR, 

(c) 	8a 	I ( b 	2c 	be  

	

. a22 = 3EA 	Ga 't‘ 	t 2Gta2 
R 

 
.. (58 ) 

. 	1 Contribution from rib 1 to a(c) 	2bc 02 	Gt `2a 	2ao

) 

 

• • a ( c) 	be  • . (59) o2 	2GtRaoa 

For the other bays, k,X 2, the unswept values given by App.2 

Eq. (48) will apply. 

External Load Systems  

1) Bending by Z wise force clpplied on x axis at tip Z 	W 

Statically Correct Solution 

This is assumed to be the same as for the unswept case App. 2 

Eq. (49): -  si  = - 54  = ;It 	ID 1  . 1D3 = 1-5. 
WA
* (4 - ak) 

WA0  
P 2  = b2.-7, A  ((- ak) 	 ;(60) 

v,i (1 	Al ) S 2  . S 6  . -S3  = -S 5  = i2-, \ 2 	23A , 

where 7J!)1 = 2A1  + A2 

Calculation of Strain Energy Coefficients  

End Load System a 

The doubly symmetric nature of the internal system, together 

with the fact that the statically correct solution is antisymmetric 

about the Oxy plane only, implies that all contributions will 

cancel about the plan of symmetry 	. . ate) = 0 

End Lcad System b 

There will be contributions to a ()  from the front and rear 

skins and front and centre booms. 

The skins contribute: Al W 1 	1 ) 1 	2ac c 	( _ A 	2\11ic (I 
ao e  Gt • .17`7 	3.A ) Gtb \2 	;;;;A l  

/ Main efoosom. 



Centre booms: 

_ 2Wc 11 
• • ".1E 	Gtb 7 - 

2 
EA2 

0/2 
Wa 	a 

(1 - _ c' 	u  7,771 + 2bEEA 	7)  

a 

.. (62) 

Main booms contribute: 

- 24 - 
a 

EA2 	ao 
	 Elt. (t-x)dx . 17i72,7 (7 7) 

Wa 	1  
2 I

°  2(ao- x) WA9  , 	 ao 

a o/2 

P o  (a
o- x) 	WA, 	

Wa ,t. 	a 
c 	(1 -- 4) 

a o 	I  lo-ZI A ( ' x)dx  - 	bE :DA 	31, 
0 

Front booms give: - 

 

 

	

. 	(b) 	2Wc 11 _ Al 
• • aeE = Gtb '2 	EA)  

Wao.t 

2bEE.k 
( 61 ) 

Both bays 0 and i will contribute to alE (b) . 	In bay 

the booms will cancel one another, leaving only a skin 

contribution. 

2x/d 

Bay 1: 4wc 11 	A l 
Gtb 1 2 - A 

Gtb 	EAJ 
2Wc 	.1 1 Skins: 

2 a WA, 	_Wa, 	2a 1a 
 o x 

 booms: 
EA1 

t(( -x)P 	dx  bE12!A (1  - 342)  b 

a 
1,0 

J 

ate) k 1 will be as for the unswept case, App.2 Eq. (51). 

End Load System c 

The front booms, web, and skins will contribute to a(oE
) 

 
a  

o 	- x) 
	WAS 	 Wa 	a 

2 	
1 	(4 x) 	bE7/1 (1  - 

0 

Front booms: EA1 	ao 	" bEEA 

WA2 	Wa 	7 7a 

a bELA 2 6-0 

The components contributing from Bay 09 will be the same as for 

a
(b) 
of 

aob 	Iry 	/ 	W Front Web: TITT  • 2b 2a0 	757 

Front Skins: - - - 
A 	-1 . ao c  2 

o 

w 
b 12 	2: A • 2a 	Gt 6 2 

We 
	 Al  

4Gtb 2 
	

A 

Rear Skins: W (1 	Al I -1 	aoc  1 	We 	1 	Ai 1  
- 	EA '2a0  • Gt'2 7g5 2 - ET1 

• 
• (c)  

a 
a 	Wa  a(c) 

10E 1A (1 	4c  Gtb 11 
Al 

 rat 4-  err  at .. (63) 
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(c In the case of a
lE

) 
 ' 

the contributions from bay 1 9  will 

be self cancelling due to the nature of the load systems. 

The bay 0 contribution will be from the front spar and skins. 

Wa o 	2a0) Front booms 	 (1 bEEA 	' 

Front Spar 4Gt y  

Front and Rear Skins = 2Gt we
T 
 fl 	

17,A 

) 	Wa 	2a We fl Al 	_2L 
- bE1A (I 	-7 	2Gtb 	 1.[Gt

7 	 (64) 

a (c) 	k 1 will be as for the unswept case App.2 Eqs.(52),(53). kE 

2) 	Loading by Torsion Couple L'  ap -olied  at i th rib  

Statically Correct Solution: 

Li  

4bc = 51 = S 2 = S3 = s4 = 55 = S 6 	" (65)  

Calculation of Strain Energy Coefficients  

End Load System a 

All coefficients due to this system will be zero. 

(a . . a )
kE 	0 

End Load System b 

The contributions will be due to the skins only. 

ca 	 L. 	3L.c 
Front Skins' 	--2 1- . - 7 1  17-j 	Bbc.Gt 

, 	i  Skins:  2 Gt ' a o 

 1 Li 	aoc 	 Li 	c 1 Rear Skins: - 2 	Libc 7 . - --- • --- . - 7
7 =Gt 	 8Gbc t 

(c) L 

aoE = 	174.-dET .. (66) 

/ In the 
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( In the case of alE
b) all the bay 1 contributions ,,fill be 

(b 
self cancelling. 	By 0 effects will be similar to a oE

)  but 

opposite in sign. 	. 	(b) 	L. 1  a i 	 .. (67) . • 
E = 4Gbt 

a (h) 
9 	

will be as the unswept solution App.2 Eq. (55). 
kE  

End Load System c 

Both webs and skins will contribute to a()  

Front Web; 

Skins: 

Front 	

oE 

L.1 	aob 	1 	Li 	b 
 4bc • 6Tr • 2a0 

` - -- 	8Gbc • t' 

L. 1 	2ao c - 1 	L. 1 	c 
4bc • 1-'Tr- a  2a0 - 4Gbc e  T 

. 	(c) 	Li  ( 2c 	_IL  ) 
. 

a❑E - 8Gbc ` t 	t y 1  
.. (68) 

The bay 0 contribution to a (c) will be equal to that lE 
for a (coE )  but opposite in sign, whilst the bay 1 effect will 

be twice as much but of the same sign 

0 6 . a(c) 	Li 	2c 	b lE 	8Gbc ` t 	TT)  .. (69) 

For a-(ckE )  k 1 	the unswept values apply, App.2 Eq. (56). 
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1:,.PPENDIX 1 

Basic Theory 

In this method, the unknown Quantity is the unit of a 

self equilibrating internal end load system. 	The end load 

system is assumed to act only in the bays adjacent to the rib 

at which it is applied, and to fall linearly to zero over the 

rib pitch. 	Fig.1 shows the typical form of an end load system. 

This latter assumption results in the minimum of overlap of the 

effects due to the unknowns, and a resulting simplification to 

the final equations. 

One or more of these systems are applied to the structure 

at each rib station. 	The number of separate systems at each 

rib station is determined by the number of spanwise booms, m, 

and is equal to (m - 3). 	The three systems used for the 

solutions considered here are shown in Fig. 2. 

The externally applied loads are distributed in the 

structure in a statically correct solution. 	the internal 

loads are in self equilibrium, the overall equilibrium 

conditions are fulfilled. 	The actual stress distribution is 

that due to the most general combination of the statically 

correct solution, and the internal systems. 

The numerical values of the units of the self 

equilibrating internal end load systems are determined by 

using the theorem of minimum strain energy. 

In general, strain energy, U =ij lT.T.+  5'a. EI  T.+ constant 

 (1) 

where T i , T j  are the unknown units of the internal load systems, 
aij  are coefficients dependent upon on the geometry and elastic 

properties of the structure, and a ir  are coefficients 

dependent upon the applied load as well as the structural 

properties. 

Using Castiliano's Theorem of Minimum Strain Energy, 

and differentiating the strain energy with respect to the 

end load system at rib k, for the case where the 'overlap' 

of the end load systems is restricted to one bay:- 

ak-10k Tk-1 + akk Tk + akpk+1 Tk+1 += 0 
akE  (2) 

/ Particular 
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ak s k-1 

1 
a = cosh 0 

a 	 1 kk 
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Particular Cases for calculating the coefficients  0—ij5.  are:- 

(1) Members subjected to end loads:- 
i T i T. 

(a..). T.T. = 	I -2---2  dx ij 	i j 	EA 
0 

(2) Members subjected to shear (panels):- 

ad (a. .) . T.T. = 	S.S. . -- ij 	j 	j 	Gt 

where s  S., S are the shear flows resulting from T. s  T j 

respectively. 

In practice s  the coefficient akE  may be zero for parts of the 

structure not adjacent to discontinuities 9  and Eq.(2) becomes:- 

ak-1 5 k - k-1 T 	akk Tk aksk+1 Tk+1 = 0 • • (4) 

Also ak-isk = aksk+1 if the structure is uniform. 

Use is made of these occurrences in simplifying the solution 

of the equations. 

The solution of the Homogeneous Equations (4) is:- 

= C1  cosh KO + C 2  sinh KQ 	 .. (6) 

A further assumption is that the internal load 

system falls to zero at the extremity of the structure. 

Hence Tn = 0 

and from Eq. (6):- 
C1  
5-  2 

- tanh n 0 

C 1  =C sinh n 0 ; 	02 = C cosh n 

and 
	

Tk C sinh (n k)0 

/ Substitution .... 
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Substitution From Eq. (9) into the equation for the 

internal load system at the discontinuity, which takes the 

form of Eq. (2), enable the value of C to be found, and hence 

the numerical values of T. 

Procedure for Solution 

1) Idealise the structure to conform with that dealt with in 

the solution given. 

2) Distribute the aplied loads in the manner of the statically 

correct solution used in the calculation of akE . 

3) Calculate the strain energy coefficients, a kk, ak , akE  

4) Form the elasticity equations of the type of Eqs. (2),(4). 

5) Solve the equations as shown above. 

6) Calculate the load distributions due to the internal load 

systems. 

7) Superimpose these results upon the statically correct 

solution in the most general way possible. 

This will give the corrected distribution. 

/ Appendix 2 
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APPENDIX 2 

Unswept Box Theory 

1. SINGLF CELL 

The geometry is shown in Fig.3. 	The box is of uniform 

rectangular section, referred to the axes Oxyz. 	The skins 

z = ± b/2 and the spar webs y = ± c/2, are assumed to carry only 

shear loads, any end load carrying capacity that they possess 

being integrated with that of the spar booms. The total 

effective area of each spar boom is A. 	The ribs are rigid and 

placed at a pitch a. 	The box is built in at the root which 

corresponds to rib O. 

Each of the shear panels is assumed to be subjected to 

a constant shear flow, this implying a linear variation in end 

load between the ribs. 

Internal Load Systems  

In this case, only the doubly antisymmetric load system T c  

of Fig.2 is possible. 	The shear notation is shown in Fig.5. 

Consideration of the equilibrium of internal loads at 

the spar and ribs booms, due to T k , in the bays adjacent to 

rib k, yields:- 
mk  

At rib (k+1):- 	S - S = - 	 SR 	+ S = 0 2k 	1 k 	a k+1 	2k 

At rib (k-1):- 	S2 	S 	= 0 	S1k-1
+ SR  k-1

= 0 
k-1 

s2k-1 
SR

k-1 
= 0 

Tk 	 1 
• • 

	

 0 0 	 (2) 
k-1 = 	2a 

At rib k:- 	S2 + S 	S = 0 
k-1 	2

k SR 
 Tk.  • • SR k= -  a 

There are no nil) boom end loads 

Tk  
s1 k-1 ~ 

s
3k-1 

- 62 
k-1

=  S4
k-1 = - 2a 

(3) 
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External Load Systems  

1) Bending by Z wise force on x axis at tip 	Z = - W 

	

_ 	W 
= b3 = 2b 

	

P = 2b 	- ak) 

where P is the end load in the upper spar booms at rib k. 

\ 2) Loading by Torsion Couple, Li p applied at (i) th  rib 

Statically correct solution:- 
.. (4) 

Statically correct solution:- 
L. 

2bc S 1  = S 2  = - _ S = S4 	(5) 

Calculation of Strain Energy Coefficients  

At a section in the kth bay defined by x from rib k, the 

end load the front spar top boom is:- 

IL 	- ak + x) + Tk a • 	+ Tk+1 	a 
(a x)  

2b 	 '21  

In the (k-1 )th bay:-  a (e_ a(k-1)+ x) + Tk( a:x)  4. T 	. k-1 a 

where in this case, x is from rib (k-1). 

Shear Flows in k th  bay:- 
T k  T 	 i L 	 Tk  T 	L 

	

k+1 	W 	 k+1 	i 
3 1 = 2a - 2a + 2b 	2bc 	32 = - 2

• 

a + 2a 	2bc > (6) 

	

Tk 	 L. 	 Tk 	Tk,1 	L. 

	

k 	k+1 	W 	i 	 i 
S3 
	
_ 2a 	2b 2bc 	S4 - 
____ 

	

3 - 2a 	 - 2

• 

a + 2a 	2bc 

In (k-1 )th bay: _ 

Tk Tk-1 	W 	Li 	 Tk Tk -1 	. 

	

S1 	 + - 	
Li 

S2 = 
	_ --  

	

1 	2a 	2a + 2b - 2bc 	2 2a 	2a 	2bc 
Tk Tk-1 	W 	i L 	 Tk 	Tk--1 	i L 

S3 - 	+ 	- -- 

	

3 	2a 	2a 	2b 2bc 	
s = 	-   
4 2a 	2a 	2bc 

The ribs are rigid. 
a 

T
2 

Then a 	T2  - T2 	x2 ax 	- k 	fba 	2218 1 kk* k EA 	k a 2 	
4a

2 G `TT 	t 
0 

(Contribution from 4 booms, 2 webs, and 2 skins in each 
of bays k, k-1) 

8a 	1 	b 	c l  . 

• 

. ba. 	= 	+ 	-T + kk 	Ga t 	t 

ak( 
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ak  Tk. - EA 
x (a-x)  •T • 	dx - kt a a 

T T - k 	2 f  b a 	ca) 
IIs 2 	G ■ 77- 1-  71  

for4 = k+1„ k-1 

(Contributions from 4 booms, 2 skins and 2 webs in bay k) 

, 	2a l b 	c . . 	= 3EA 	2Ga `tt 	T) 

ak  = 0 

k-1 	k÷1 	"i(r 	
.• ( 8 ) 

k-1, k+ .1 

At the root there is a contribution from bay 0 only 

• . • a 	= 
00 	akk 

The akE due to the Z wise force are zero, as the 

contributions from the front and rear spars cancel. This implies 

that for this case Tk = 0 i.e. the solution assumed is correct. 

Due to the torsion couple L i , in bay k:- 

a .T 

 
2T
k . 

L. (_ ba 	ca ) 
1  kE k 	G.2a 	2bc ` t 

L. 
a 	_ 	 ic 	b ) akE 2bc.Ga `t 	t" 

There will be an equal and opposite contribution from 

bay k-1, 

akE = 0 	(k / 0, i) 

.. (1 0) 

	

Li c 	b ao 
= - a. 	/ 

lE 2Gbc (t 
= 	- TT) 

This allows for warping constraint effects. 

/ 2 



j = 
F . 0 

S i = S 1 1 	a 

j=1-1 
P. 

a S i =SA  
1 	1 

= 2,6 

1 i = 3 94s, 5 

.. 	) 

+ SW  

Sw Ta 
S5  = 2 	a 	 S6 = 	7" 

.. (14) 
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2. TWO CELL 

The structure of the two cell box is shown in Fig.Li.. 

it is similar to the single cell box, apart from the additional 

centre spar. The same assumptions are made. 

Internal Load Systems  

There are three possible internal load systems, as shown 
in Fig.2. 	All three are considered, although in practice, 

for the external loads which give rise to stresses which are 

antisymmetric about the Oxy plane, the doubly symmetric system, 
. Ta , is zero. 

Using the notation of Fig.5 for the resultant shears 

across the section to be zero:- 

For zero resultant moment on section:- 

S 1 	54 	2  + 1 (S
2 
 + 

3
+ S5  + S6) 
	

.. (12) 

End Load System a 

P1 = P3 = F4 = F6 = 
P2  = P5  = 2Ta  

From Eqs. (11), (12), 

S 	- 1 

(13): - 

S 	= 
4 

S SW 
2 

	

S W  T
a. 	 SW Ta 

	

32 = - 2 - a 	 S 3  . 	77  

) 

/ The strain ... 
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The strain energy of the shear 

2 	2 
, 1174b 	Sw  Sw) c i/S w  

= 2G Tr sw 17 4' IF 
• au 	a 
• • Tc-v  - asw 

For minimum energy a aU  = 0 

i.e. Sw 	+ 2) = 0 

• , • • 0
w 

= 0 

From Eqs. ( 1 4),( 1 5): -  

S1 = S4 = Sw = 0 a 
S
2 = 5 = - S3 = s 6 = - I- a 

flows is:- 

a 2 

Ti 	a 
T)2 (Sw Ta 

__) + 2(1/4-- - 2 
FS 

sw (Rr 

.. (15) 

.. ( 16) 

(17) 

End Load System b 

P 1 	P3 	P4 	P6 = 	= 	= 	= - 

p2 = - P5  = 2Tb  

From Eqs. (11) 9 (12),(17):- 
Sw  

S 	b 	.. (18) 
S = - S4  - -- 1 	4 - 	2 

S2 = S 6 = - s3 = - s5 = - (2A - T-a ) J  • 

__ TT 2G 	(71-LY."4-) '" t 1"-  2 	a 
a b w a2 w , 2 I h (SL _ Ill 21 

Strain Energy: U = 	
11 S2 	S2 	

r, 

Tb  c 	ip) 1 
2 

• Q  • • L, = 	• - 
Tb 4c42 2c) 

w 	a 	t 	t 

2c pb 2c) or writing Bb = 7t  ktr + (1 9) 

Tb . 	bN From Eqs. (18) and (19):- S i  = - s4  = sw/2= - 	- B ) 	( 
,b 	i (20) 

S 2  = S 6  = - S3  = S5 = 17(1-Bli 

/ Consideration 	 

a 
a sw 

• • 	Sw 2t 1  + 1-) - ''' Sw 17 ' T - VT/ -V 	= ° 



.. (22) 

Sw Tc 
S - + — - 2 	2a 

Sw Tc 
33 = 35 = 2 - 2a 

(23) 

1  c S ) 2  abTw T c 
S N2 

t .  
wr.\ 

Strain Energy:- U = 	-T 2 2G 	2a - 	uw k,,2a  

c r (S 	C\
2 	 c\ 2"1 

+ 	2 2 	
T__) 
2a 	4. 2 Sw - T — (2 	2a1 /.

1 

I, 2, 	 c  21 
a e • •  	b Fl 2 	T''' 	c c i 

8S 	Fr -1 2 Sw + (-fa-)  + V 1 S2  w + 4(22i)  w 

• .• s 	r 	+ 2_93 = 0  
117 	t 	t 

• 0 	= 0 .. (24) 

= 

From Eqs. (23) and (24):-S i  = s4  = Tc/al 

S2 = S3 = 5 = S6 = - -- 
Tc ( 
2a 
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Consideration of the equilibrium of the rib booms iigives:- 

= SRk = Tk
b Bb 

SRk-1 
= SRk4.1 2 	a 

PR 	= pR 	= 
PRk = Tc K (1 - 2Bb ) 	I 

k-1 	k+1 	2 	a 

.. (21) 

End Load System c 

P 1 = P4 = - P3 = - P6 = Tc  I 
P - P - 0 2 - 5 - 

From Eqs. (11) ;  (12), (22):- 
S 

S = 	+ 1 	2 	2a 

	

S 	Tc 
S2  = S6 = - (7-

w 
 + -27) 

(25) 
Consideration of the rib boom equilibrium gives:- 

=- sRk = Tk $R 	SR= R k4.1 	2 	2a 

/ Calculation * 
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Calculation of c;train Energy Coefficients  

End Load System a 

akk 	3EA  -I- 2 	Gta 

where the contributions are from the front and rear spar booms, 

mainspar booms, and skins respectively. 

	

0._ akk _ 8a (1 	2) 	Sc 
° 	- 3E 'A1  + A2 /  

a (a) - - 1 a
(a) 

oo 	2 kk 

(a) 	8a 	16a 	8c 

a (a)  - 0 k k-1, k s  k+1) 
(26) 

a (
k
a) 	2a ( 1 	2 

	Gta  \4 	A 	- 	 = k-1, k+1 ! 

	

Ai 	A2 ) 
	

Gta  

where the contributions are as for a (a) 
kk 

End Load System b 

The boom contributions to 411°2 are as for all )  

( 

2 	 1., 2 
ab 

1 
Shear contribution = 2 - 	2ab (2 07l) • G--Er  +\\ a ) ° 57 

Bb 	 13'-' 

+ 	 1 	B (a  1 	j 

	

1 I 	b 	2acl.)2 

Gt 

_. 	41 
1- (? 

k 4 
 l'-' 

:\ 
l ' . 11 c 
' I) 

2 

. 
2ac  
Gt 

. 	(b) 	( ea 1 
s I 	= 3E 'AA2  ) 	

G
1 	2 

a (b) = 1 a (b) 
00 	2 kk 

4131  . 0  

b 	2c r b -t— 	- B 

/ k-1, k, k+1) ?(27) 

( 	 (a 
The boom contribution to a k

b)  (-A = k-1, k+1) is as for aakk  . 	 (b) 
The shear is (- f) the contribution to a kk 

	

(t) _ 2a( 1 	 2 d-a- 3 	j • t! 	t 
( 	1 	b 	2c 

	

- 3E Al 	A2  

k-1, k+1 

/ End Load .... 
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End Load System c 

There is no end load in the mainspar booms, and the 

contributions to a (c
kk

) from the front and rear spar booms will 

be as for the other end load cases. 

a (c) 	8 a 	I 	b 	2c) 
kk 	EA 1 	Ga 'TT 	t 

the contributions being from the front and rear spar booms, 
front and rearspar webs, and skins respectively. 

a (c) -  1 a (c) 
00 	2 kk 

( C ) a ic ( 7:: 0 	 k-1, k,  k+1 ) 

The end load contribution to 4,cd is the same as that for 
the front and rear spars to 	a 9 

9 
 () 	k+1, k-1). The skin k

A 
= 

contribution is (- fl that to 	a kk) - 
 

b 2c  
.akk = . 

3EA1 	
( 	

+ 2Ga `TT 	t ' k-1, k+1 

External Load Systems  

1) 	Bending by Z wise force ap;lied on x axis at tip 	Z =  
WA ,1  Statically correct solution:- S i  = - S3  - u 

WA2 
S - w b 

where 57A = A 2  + 2A1  

At rib k:- 	 WA4 
End Load in upper front and rear spar booms:- b2. :1 .1,,  (-f- ak 

WA2  
End Load in upper mainspar booms:- 	(4 - a.k) 

Strain Energl Coefficients 

End Load System a 

The internal loads are symmetric, and the external 

loads antisymmetric about the Oxy plane, hence the contributions 

from members on either side of the plane will cancel. 

• • u)kE 	
= 0 	 (30) 

i( 2 8 ) 

(2 9 ) 

(a 

/ End Load 
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End Load System b 

Due to the choice of the external load distribution, Eq.(29), 

and the nature of the internal loads, the end load contribution 

to a (b
kE

)  is zero. 	The mainspar boom effect is cancelled by 

that of the front and rear spar booms. There is no shear in 

skins from the external loads, and hence no contribution from 

the skins. 

WA1 B 
In bay k:- Contribution from front web - --T--- Gt 23A 

= Contribution from rear web 

Contribution from centre web = Gt 
b 

a 
2wiz

(b)  

	

(A 	A2 ) kE 	G2--t 23 A 	1 

There will be an equal and opposite contribution from bay k-1. 

a (b
kE

) = 0 	(k / 0, n) 

a (b)  - 	a(b) = - 
of 	 nE 	Gt'Z'A (A1  - A2) .. (31) 

End Load System c 

In this case the contribution from the internal and external 

loads will be zero, as the former is doubly antisymmetric, and 

the latter singly symmetric. 	Cancellation will take place 

on either side of the x axis. 

a (ckE )  = 0 	 .. (32) 

2 th Loading by Torsion Couple L ip  applied at i rib 

Statically correct solution:- 

L. 

4bc r S1 = S2 = 63 = S4 = 55 = S6 
	.. (33 ) 

Strain Energy Coefficients  

End Load System a 

The statically correct solution gives a doubly antisymmetric 
load distribution, and as the internal load system is doubly 

symmetric, there is no resultant contribution. 

a (a)  - 0 kE .• (34) 

b 

2WA2B
b 

/ End Load 



P2  = P5  = - 2T 

a 

j 
P1 = P3 = P4 = P6 = T  

a .. (37 ) 
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End Load System b 

In this case the internal load system is singly antisymmetric 

about the Oxy plane, and contributions will cancel about 

the x axis. 
(b • . a )
kE = 0 (35) 

End Load System c 

There is no external load in the booms, and therefore no 

contribution from this source. 

In bay k:- the contribution from the webs is:- 

Li  

4bc 	CT-Er  

and the contribution from the skins:- Li 	2c 
+ 	Gt 

There will be an equal and opposite contribution from 

bay (k-1) 

(k 	0, i) 

a (c) _ _ a (c)_ L. 

	
2c _ b 

of 	iE 	4Gbc ` t 	Tr ) 

p (c) • . kE 	0 

.• (36) 

3. SINGLE CELL - SECOND ORDER EFFECTS  

The structure of this box is similar to that of 

the two cell box, Fig.4„ except that there is no centre 

web. 	The centre booms are retained, and the assumptions 

are the same as for the single cell case. 

Internal Load Distribution  

The three systems of Fig.2 are possible. 

End Load System a 

/ sW 



Tb  
S 2 = S6 = S 3 = 	-L Sr5 	a J 

S 1 	s4 = 	= 0 
.. (41) 

— 40 — 

Sw is zero, as there is no centre web, hence from 
Eq. (16): - 

s l  = s4  = o  
Ta k / " (38)  

As there is no spar web shear, there can be no rib web shear. 

Consideration of the equilibrium at the rib booms gives:- 

a 
pRk+1 =  Rk-1  = Tk 

c 	c 	a 

P
Rk 

 2Tk  
a 

for both upper and lower surfaces, where P R  is the end load 

in the rib boom at y = 0, falling to zero at y = ± c. 

End. Load System b 

P1 = P3 = - P4 = - P6 = T  
b 

P2  = - P5  = 2Tb  

Using Eqs. (20), (21), and writing Sw  = 0 

.. (40) 

(39) 

Again there is no rib web shear. 

Rib boom loads on top surface:- 

PR
k-1-1 	PRk-1 	Tk 
c - c 	a 

.. (42) 
P
Rk 2T  _ --- c 	a 

These will be opposite in sign on the lower surface. 

/ End Load 



Tk  
From Eq. ( 2 ): -  S1 = S4 = 2a 

k s
2 = s3 = S5 = S6 = 	2a 

▪ (44) 

a (a) _ 8a ( 1 
akk 	3E 'A 	A2)  2 	Gta 

a (a) 	1 .,(a) 
00 - 2 a(a)  

(a a) _
k,i( 	0 

(46) 

/ k-1, k, k+1) 
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End Load System c 

P1 = P4 = - P3 = - P6 = T 	 .. (43) 
P2 = P5 = 0 

In this case there is a rib web shear, but no rib boom load:- 

T 
_ Lli I SR

k-1 
= S Rk+1 - 2a 

	

Tk 	 i S 	- 
Rk 
= -- 

a 
▪ (45) 

Calculation of Strain Energy Coefficients  

The ribs are assumed to be rigid. 

End Load System a 

The load distribution is identical to the two cell case. 

Hence:- 

a (a)  - 2a  (I 	2 	40 - 5E `A1  "i" A / 	Gta 
= k- 1 9 k+1) 

End Load System b 

The distribution is similar to the two cell case with B b zero. 

The coefficients are then identical to those obtained for 

load system a. 

a (b) = 4;1) 
kk 

a (b) 	(0 
k4 	a(a) 

▪ (47) 

/ End Load 
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End Load System c 

This is again identical to the two cell case. 

	

a (c 	8a 	1 lb 	20) 

	

kk) = 3EA 	Ca ‘ 77 	t 

a (c) . 1 a (c) 

	

co 	2 kk 

a ( 3 )  - ❑ 	/ k-1, k, k+1) kA 

ak ) = 
,(c 2a 1 ( b 2c1 
a 3EA1  2Ga 'Fr 77' k-1,12c+1 

 

.. (48) 

 

 

LiEI=11-21g-JI:L1Lma 
1) 	Loading by Z wise force on x axis at tip Z = - W 

	

Statically Correct Solution:- S i 	- S 
—4 = 2b 

The end loads assumed to be distributed to give constant 

stress across the section 

i.e.:- Load in upper booms at rib k:- 
WA, 

p 	p 	Y-ak) 

	

1 	3 	b 7 A 
WA 	 ?(49) 

- --a- 
b EA (--ak) 

where EA = A2  + 2A1 

 There will also be skin shears:- 

W 1 	Al S 	 =-S =-(---) 2 	6 	5 	3 b 2 EA 

Strain Energy Coefficients  

End Load System a 

In this case the internal loads are doubly symmetric, and 

the external loads sntisymmetric about the Oxy plane. 

Therefore all contributions will cancel about the Oxy plane. 

n  (a) 
*eop 	

= 
❑ 

 

.• (5o) 

/ End Load 
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End Load System b 

There are no web shears from the internal loads, and the 

boom contributions will cancel due to the choice of the 

statically correct solution. 

In bay k:- Skin shears:- 

S = 	 Tb W 	Al 
-2 	-6 - 	-3 - 	-5 - a 	T

• 

 t2 	7'-1A1 

(b)4Wc 1 	Al 

	

ee. akE = Gtb 	

• 

rAt 

. (b . . a )kE  = 0 	(k / a, n) 

a (b) = - a(b)  - LWe 	- Al 	
.. ((51)

1 J of 	nE 	Gtb 12 	nA. 
This allows for shear lag effect. 

End Load System c 

As the internal loads are doubly antisymmetric„ whilst the 

external loads are antisymmetric about the Oxy plane only, 

the contributions will cancel, on either side of the x axis. 

There will be an equal and opposite contribution from 

bay (k-1). 

. ,(c) • • - kE . 0 

2) 	Loading by Torsion Couple Li , applied at ith  rib 

Statically Correct Solution:- 

- Li  

be -  S1 = S 2  = 83  = S4  = 8 5  = S 6  

Strain Energy Coefficients  

End Load System a 

The statically correct solution yields loads which are 

doubly antisy: -,metric„ the internal loads being doubly 

symmetric. 

. (a • • a)kE 
- 0 

.. (52) 

0. (53) 

•• (54) 



End Load System b. 

Here the internal loads are singly symmetric about the Oxy 

plane, and contributions will cancel about x axis. 

. 	(b a)
kE 

- 0 .. (55) 

End Load system c 

The load distributions are the same as for the two cell 

case. Hence:- 
a (c) =0 	(k / op i) kE 

a (c) = _ a (c)_ Li (2c 	b 
of 	iE 	4Gbc 't - TT/  .. (56) 
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APPENDIX 3  

Treatment of Triangular Skins  
wr• 

The forces on the triangular skin are shown in Fig. 6. 
A uniform shear flow, S, is assumed to act along the two 

perpendicular sides. 	This assumption corresponds to that 

made for the rectangular panels previously considered. 

Equilibrium is maintained by a shear flow, S', along the 

hypotenuse, and a system of uniformly distributed normal 

forces, p'. 

Resolution of forces normal to, and parallel to the 

hypotenuse gives:- 

2Sc cos e = ,71Dt = P t  

Where the root is built in, P' will be reacted along 

the built in edge. For the case where the hypotenuse is not 

built in, P' will be reacted at the spars. 

(57) 
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