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ABSlRAcr 

A ring laser gyroscope is a device which employs a ring laser to 

measure rotation. A ring laser supports two beams propagating in 

opposite directions around the ring resonator. When the gyroscope is 

rotated, the frequencies of the two beams split by an amount 

proportional to the rate of rotation: the device works by measuring this 

frequency splitting. 

The main problem of ring laser gyroscope design is the frequency 

synchronisation - lock-in - of the two beams at low rates of rotation. 

Lock-in arises from weak mutual coupling caused by backscattering at 

the mirrors and results in a dead band around zero. 

One of the possible solutions to this problem is a two-mode ring laser in 

which two modes oscillate simultaneously and interact to reduce the 

dead band. The present work reviews the theory of lock-in and offers a 

theoretical basis for this approach, as well as providing experimental 

evidence to support it. 
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1. Introduction 

1. INTRODUCTION 

Sagnac interferometer was first proposed as a possible optical inertial rotation 

sensor in 1913. At that time Sagnac effect was on threshold of experimental 

resolution and the interferometer could in no way compete with mechanical 

gyroscopes. With invention of lasers, however, it became clear that in an active 

resonator the effect could be easily and accurately measured, and that therefore a 

ring laser could become a novel type of gyroscope. 

An early detailed study of the device was camed out by Aronowitz4; more 

recently, Chow et al.9 reviewed the general field of inertial rotation sensors, 

both active and passive; lately, the state-of-the-art devices together with current 

theoretical understanding were comprehensively discussed by Wilkinson31. 

A ring laser gyroscope employs a ring laser to measure rotation. The laser 

universally used in gyroscopes is the O.6328)Jm He-Ne laser; the most common 

resonator geometry is the three-mirror equilateral-triangle ring. A ring resonator 

supports two modes propagating in opposite directions. When the resonator is 

rotated the two modes acquire a relative frequency shift which is linearly 

proportional to the rate of rotation. The device works by heterodyning the two 

output beams and measuring their frequency difference. 

The main problem of ring laser gyroscope design is the frequency 

synchronisation - "lock-in" - of the two modes at low rates of rotation. Lock-in 

arises from weak mutual coupling caused by backscattering at the miITors, and 

results in a dead band around zero and a strongly nonlinear signal near 

threshold. 

To overcome this problem, a biasing technique ofback-and-fonh rotation -

"dithering" - has been adopted in many commercial systems, with great success: 
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1. Introduction 

rates of rotation down to lQ-3deg/hr have been mesured. Nonetheless, there are 

drawbacks: apart from the obvious one of necessitating mechanical oscillation 

of the gyroscope, the technique suffers from random noise induced by irregular 

bias and loss of information as the system passes through the dead band. 

Several other methods of biasing have been explored as well. The most 

popular among these has been the four-mirror non-planar resonator with a 

Faraday mirror which gives rise to four modes widely separate in frequency28. 

This technique suffers from complexity and nonlinearities due to the many 

optical components in the system. 

A completely different approach was adopted by Sanders et al.21 , Scully et 

al.'13 and Anderson et al.2.3 This is based on adjusting the laser so as to induce 

two modes to oscillate simultaneously (Le., two longitudinal modes or a 

longitudinal and a transverse one): the two modes, which must be 

approximately equal in intensity, then interact to reduce the lock-in threshold. 

The present work explores this technique in more detail. 

Chapter 2 of the work is devoted to theoretical considerations: Ch.2.1 

provides a brief description of the Sagnac interferometer; Ch.2.2 discusses 

Sagnac effect in ring lasers; Ch.2.3 reviews the relevant aspects of the 

O.6328J.Ull He-Ne laser; Ch.2.4, based on Lamb's theory, derives the lock-in 

equation for. a one-mode ring laser; Ch.2.S extends this to a two-mode case. Of 

the experimental chapters, Chapter 3 describes the system, and Chapter 4 

presents the results, including a brief discussion of their significance. 

It has been the aim of this work to investigate whether an optically biased 

no-moving-parts ring laser gyroscope was a practical possibility. The results 

seem to indicate that it is. 
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2.1 The Sagnac Interferometer 

2.1 THE SAGNAC INTERFEROMETER 

The Sagnac interferometer as an inertial rotation sensor is comprehensively 

discussed by Post20• Its geometry is such that an entering beam is split into two 

components which then travel around a closed-path loop in opposite directions. 

If the device is rotated, the two beams on being recombined acquire a relative 

phase shift proportional to the rate of rotation. Thus a Sagnac interferometer 

perfonns as a gyroscope. 

The effect can be simply explained as follows20. Consider an idealised 

circular interferometer shown in Fig.2.1-1 where the two beams enter and are 

recombined at the same point. 

beam in!out ___ ""'~ ... ~..;,;,;;::::::: 

Fig.2.l-1 An idealised Sagnac interferometer. 

For a stationary interferometer of radius R the round-trip pathlength and trip 

time of both beams are : 
L .21tR 

t.L.~ 
c c 

s 

(2.1.1-1) 



2.1 The Sagnac Interferometer 

If the interferometer is rotating at the rate a these become, for the clockwise 

beam, 
L(J{" 27tR + ata,R 

'toy = 't + a 'toy R == t + at R 
c c 

and for the counter-clockwise beam, 

Lcx.w = 27tR + at ~ 

'tocw='t+ata:.w R == t-at
R 

c c 

The two round-trip times differ by 

This translates into a relative phase shift 

1 

A~ = 21t At £. = 2 (21tR) £. a = 81tAa 
I.. c A. cI.. 

(2.1.1-2) 

(2.1.1-3) 

(2.1.1-4) 

(2.1.1-5) 

which is proportional to the rate of rotation. The proportionality coefficient is 

very small: for an interferometer of reasonable size (A-1m2) using visible light, 

4A1cA.-O.03. For a very fast rotation rate of lrpm (as gyroscopes go), the fringe 

shift is only 0.003. This limitation places low rotation rates below detection 

threshold. 

However, the magnitude of Sagnac effect is dramatically improved by using 

a ring laser, rather than an interferometer. 

6 
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2.2 Sagnac Effect in Ring Lasers 

2.2 SAGNAC EFFECT IN RING LASERS 

2.2.1 Elementary derivation of Sagnac effect in 

ring lasers 

In a ring laser, Sagnac effect can be simply demonstrated qualitatively by 

"viewing" the electromagnetic wave inside the ring resonator. The two 

counter-propagating beams form a standing wave pattern: 

Fig.2.2-1 An idealised representation of a standing wave in a ring resonator. 

When the resonator is rotating, a stationary observer sees successive peaks and 

troughs passing by in the form of fringes. Since the fringe spacing is uniform, 

the rate at which they do so is clearly proportional to the rate of rotation. 

For a more quantitative result, we express Eq.2.2.1-5 in terms of 

frequency: 
4AQ --u. (2.2.1-1) 

7 



2.2 Sagnac Effect in Ring Lasers 

As with the phase shift. the frequency difference between the two counter­

propagating beams. t:.v, is proportional to the rate of rotation. The pro­

portionality factor 4A/U. - called the scale factor. or S-factor. of a ring laser 

gyroscope - is now much larger. of the order of lOScountslrad, and gives rise to 

an easily measurable frequency. In an ideal gyroscope the scale factor remains 

constant at all times and in all circumstances. 

2.2.2 Sagnac effect in an ring laser of arbitrary 

shape and rotation axis 

A slightly more sophisticated approach allows to calculate Sagnac effect for a 

ring laser of arbitrary shape and rotation axis16 (Fig.2.2-2). 

Fig.2.2-2 A ring resonator of arbitrary shape and rotation axis. 

For additional accuracy. we will use the effective perimeter of a resonator. 

that is its round-trip optical pathlength. which can be found from: 

P • f n(8) ds (2.2.2-1) 

8 

' .. 



2.2 Sagnac Effect in Ring Lasers 

where 0(5) is the varying index of refraction. 

Rotation causes the perimeter, as seen by the beam, to change by all: 

1 f' 1 .t. ap .. - vpdP .. -r v·dP 
c • c 

(2.2.2-2) 

where v(dP ,t) is the velocity of the path element dP and vp is its 

component along dP. By Stokes' theorem. 

r v·dP = r (Vxv)·dA (2.2.2-3) 

where dA is an element of the area enclosed by the ring resonator. For a purely 

rotational field, 

Vxv = 2n 

which upon substitution into Eq.2.2.2-2 gives 

SP = 2 A·a 
c 

(2.2.2-4) 

(2.2.2-5) 

The pathlength difference between the two counter-propagating beams is double 

this amount, that is 
4P .. 2ap .. 4 A ·a 

c 
(2.2.2-6) 

Since the resonance condition requires that a resonator be spanned by an 

integral number of wavelengths, the pathlength difference translates into 

frequency difference through the relation 

4P 4V 
- = P v 

The frequency difference is therefore 

l!.v .. 4A·n 
AI' 

9 

(2.2.2-7) 

(2.2.2-8) 



2.2 Sagnac Effect in Ring Lasers 

For a planar resonator lying in the plane perpendicular to its axis of rotation, 

this reduces to 
Av = 4AO 

AP 
(2.2.2-9) 

This last expression differs from the previous Eq.2.2.1-1 only in that the 

perimeter P is in this case the effective optical length of the resonator rather than 

a simple geometric quantity. 

2.2.3 Influence of moving medium on Sagnac effect 

In the preceding section we assumed that any refractive medium in the beam 

path was static. The derivation below analyses the influence on the laser 

gyroscope of moving medium within its resonator20• 

We begin by writing out the rigorous expression for the phase of a beam on 

completion of a single round trip in a rotating resonator of arbitrary shape 

containing co-moving medium in the beam path (see Fig.2.2-2 for coordinates): 

~ = - k·ds - - CI) dt 1 ~ 1 J' 
21t 21t 0 

(2.2.3-1) 

The f11'st integral counts the number of wavelengths in the loop; the second 

measures the angle that the beam must traverse to complete the circuit. The 

phase shift induced by rotation is the variation of C\I in Eq.2.2.3-1: 

a~ = 2~ [f ak·ds + (k·&h - (k'&h] - 2~ [(aw dt + W at] (2.2.3-2) 

where (k-&h and (k-&h. are the values of (k.&) at the beginning and the end 

of one round trip. We can evaluate the difference: 

10 



2.2 Sagnac Effect in Ring Lasers 

(1<·150), - (k·I5o), = f: k·. ct = f k·. ~ (2.2.3-3) 

where ds2-ds-ds and u-c/n. Since k and ds are co-directional, k-k(dslds) and 

Eq.2.2.3-3 can be rewritten as 

(1<·150), - (k·l5olt = f ~ .·cIa (2.2.3-4) 

Now we turn our attention to the flI'St term in Eq.2.2.3-2. Although lasing 

medium is nonlinear, for the sake of simplicity we use a linear medium 

approximation ro=ku to obtain 

(2.2.3-5) 

Here So is the change in propagation velocity of light in the moving medium as 

seen by the stationary observer. This change must be proponional to the 

component of medium velocity along the direction of light propagation (v·ds). 

We assume therefore that So has the form 

au= av." (2.2.3-6) 

where the proponionality factor a is a coefficient of drag similar to the 

Fresnel-Fizeau drag coefficient for translational motion: a - I-D-2. The fU'St 

term in Eq.2.2.3-2 then becomes 

where again we have used ds/u-dt and the fact that k and ds are 

co-directional. Substituting Eq.2.2.3-4 and Eq.2.2.3-7 into Eq.2.2.3-2 gives 

the phase shift: 

11 
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2.2 Sagnac Effect in Ring Lasers 

8. = 1.. f ~ (I-a) v·cis - _1 eo 8't 
221: U 221: 

(2.2.3-8) 

To evaluate the integral we use Stokes' theorem (as previously in Sec.2.2.2): 

ft eol2 eol 2 
;- (1-<1) v·ds = "2 r n (I-a) v·ds :II "2 r [Vxn (1-a) v] • dA 

c c 

.. 2~ f n 
2 

(1-<1) n·dA + f {[Vn 
2 
(I-a)] x v} . dA 

c 

(2.2.3-9) 

where we also have made use of k/u:IIeon2/c2 and Vxv-2a. The second 

integrand is a triple vector product [Vn2 (l-a)]xv·dA in which the three 

vectors are co-planar. The product is therefore zero: the integral vanishes. The 

fIrSt integral can be approximated by replacing n2(l-a) by its average. The 

resulting expression for the phase shift is then 

1 2eo 2 1 
8«11 = - -- n (1-a) A·a - - eo 8t 

221: 2 221: 
C 

(2.2.3-10) 

The resonance condition requires that the round-trip phase shift be zero, &IP=O; 

in consequence, 

8't .. 22 n 
2 

(1-a) A·a 
c 

(2.2.3-11) 

Also, cat = 2mn or V't = m (where m is the number of wavelengths spanning 

the resonator), and so 

8v - =-
v 

where the round-trip time t is found from 

12 

8t 
t 

(2.2.3-12) 

(2.2.3-13) 
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2.2 Sagnac Effect in Ring Lasers 

The frequency difference - the "beat" - between the two beams is double the 

frequency shift, !:.v :II 28v, and is thus given by 

!:. v =- 4 A·a n 
1 (1-a.) 

AP 
(2.2.3-14) 

The first factor in the expression Eq.2.2.3-14 is the familiar Sagnac formula 

(compare Eq.2.2.2-8); the second represents the contribution of refractive 

medium in the beam path. In the case being considered, that of rotating ring 

laser with co-moving medium, one would not expect to see motion-dependent 

refractive effects: and indeed, substituting the assumed form of a. into 

Eq.2.2.3-14 does in fact reduce it to Eq.2.2.2-8. 

Let us now consider two other cases: that of rotating ring laser with 

stationary medium; and that of stationary ring laser with moving medium. 

For stationary medium a.-O; hence for a rotating laser with stationary 

medium Eq.2.2.3.8 becomes 

84> :II 1.. f !. v·ds - _1 CJ) 8't 
2x U 2x 

Following the previous argument this leads to 

!:.v =- 4 A·a n1 

AP 

(2.2.3-15) 

(2.2.3-16) 

Note that the effect of the medium in this case is to multiply the S-factor by a 

constant. Since the refractive index is a function of frequency, the S-factor will 

also be a function of frequency. However, gyroscopes are made with their 

beam path totally enclosed; therefore in practice this does not constitute a 

problem. 

In the case of stationary ring laser and moving medium, (k.asn-(k.Ssh-<>. 

As a result, Eq.2.2.3.8 is replaced by 

13 
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2.2 Sagnac Effect in Ring Lasers 

leading to 

SC\» = - .!.. 1 !. a y.ds __ 1 co S't 
2x 1 u 2x 

A v • 2 A·(Vxv) 
A.P 

-1-
na 

(2.2.3-17) 

(2.2.3-18) 

where v is the velocity of the medium. Here the effect of the medium is to add 

a constant component to the S-factor - a null-shift - which can be significant. 

Indeed, the effect can be utilised to bias the gyroscope. For this purpose a 

rapidly vibrating Brewster window is inserted into the resonator. Assuming the 

window thickness to be -1 % of the resonator length. the refractive index of 

glass -1.5. the gyroscope scale factor -1()5counts/rad and the vibration 

velocity -1m/s: the resulting alternating bias frequency will be -10kHz. 

2.2.4 Sagnac effect in general relativity 

Since a rotating gyroscope is a non-inertial system. a rigorous derivation of 

Sagnac effect ought to be carried out within the framework of general 

relativity9. 

The wave equation for the electric field in a ring laser in the presence of 

gravitation is given by 

1. a\ _ v\: =- -.1 (h.V) aE 
c 2 at2 c at (2.2.4-1) 

This is derived in the usual way from the Maxwell equations together with the 

material equations 

D • E - c(Bxb) 

and B • H + (Exb)/c 

14 
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2.2 Sagnac Effect in Ring Lasers 

where h is the gravitational field. In the derivation terms of order h2 and all 

derivatives of h have been neglected. We use Eq.2.2.4-1 to calculate Sagnac 

effect. We will assume a planar gyroscope of arbitrary shape and effective 

perimeter P (see Fig.2.2-2 on p.8). The electric field is of the form 

(2.2.4-2) 

where the frequency shift SCI) is due to rotation. To keep the electric field 

constant along the path of the light beam (for the sake of simplicity) we assume 

that the beam is polarised perpendicularly to the plane of the gyroscope (the 

s-mode of Sec.2.3.2 below). Substituting the field (Eq.2.2.4-2) into the wave 

equation (Eq.2.2.4-1) while remembering that Eo is constant gives 

1 2 2 CI) 
- (CI) + SCI) - (k + Vc\l) = -2 - h·k 

2 c c 
(2.2.4-3) 

where higher order terms have been neglected. We can simplify the right-hand 

side by neglecting second-order terms in &0 and Vc\l and remembering that 

k=ro/c: 

LHS 
ro ...... 

- 22 (SCI) - c k.Vc\l) 
c' 

Eq.2.2.4.-3 then becomes 

(2.2.4-4) 

leading to a solution in terms of round-trip phase shift: 

c\l = 8ro f dr.k(r) + ~ 1. dr·b(r) = 8ro P + ~ J. dr.h(r) 
c ere c r (2.2.4-5) 

It follows from the resonance condition (the round-trip phase shift must be 

zero) that 

(2.2.4-6) 

15 



2.2 Sagnac Effect in Ring Lasers 

This is the angular frequency shift of the electromagnetic wave travelling around 

a ring resonator in a gravitational field. After doubling and applying Stokes' 

theorem (while neglecting derivatives of h) it translates into the more convenient 

form: 
I1v ... - 2v fdA~VXb} == -..!£. (Vxb}.A 

p A AP (2.2.4-7) 

The metric vector b in a rotating frame is found by assuming gOi=hoi and 

transforming ds2 to a rotating frame: 

2 (,,2 0 i i j 
ck ... gm <k J + gel dlt dlt + gij <k <k (2.2.4-8) 

= 1 - 0 x +y J edt' - <lx' +dy' +dz' } + 20 Lcdt'dx'+ 20!..cdt'dy' 
[ 

2(1 ,2 '~] 2 2 (2 2 2\, , 
2 c c 

C 

This implies 

hoi ... (O/c)y' h02 ... (O/c)x' ho3 :I 0 (2.2.4-9) 

and therefore 
'" 20 (Vxb}·z = --

c 
(2.2.4-10) 

Substituting this into Eq.2.2.4-7 finally gives the Sagnac frequency shift: 

(2.2.4-11) 

which is the familiar expression anived at in Sec.2.2.2. 

Since the metric used in deriving the components of the field in Eq.2.2.4-8 

is that of flat space, the final expression (Eq.2.2.4-10) describes Sagnac effect 

in a. uniform gravitational field: a gyroscope operating on Earth will deviate 

slightly from the formula due to the gravitational field of the rotating Eanh. The 

actual output frequency - assuming rotation parallel to the Eanh axis - will be9 

(2.2.4-12) 

16 



2.2 Sagnac Effect in Ring Lasers 

where S and n are the scale factor and rotation rate of the gyroscope and OE 

is the Earth rotation rate. The terms uTa. ~T~ and tr"( arise respectively 

from the "preferred frame effect" (the presence or absence of a preferred rest 

frame in the Universe - zero in the Einstein theory but fmite in some other 

cosmologies), space curvature effect (space curvature caused by the mass of the 

Earth) and Lense-Thirring effect (the "dragging" of the gyroscope by the 

rotation of the Earth). The coefficients a., ~ and "( possess different values in 

various theories of metric gravity. Although at present the discrepancy is below 

detection threshold (the largest is dvEin = 1O-7a., where laI<O.02), in principle 

an accurate measurement of dV can discriminate between those theories. 

2.2.5 Scale factor errors 

As we have seen in Sec.2.2.2, the frequency of the output signal of an ideal 

ring laser gyroscope is proportional to the rate of rotation, the proportionality 

coefficient, the scale factor, being a constant of the system. In reality, however, 

this is not the case: the observed scale factor is subject to various distortions and 

deviations from linearity; these fall broadly into four categories. 

The dominant one - both in terms of magnitude and the practical problem it 

represents - is the frequency locking (synchronisation) of the counter­

propagating beams which occurs at low rates of rotation and creates a low 

cut-off threshold at around l()3deglhr. This effect, commonly known as 'mode 

lock-in', will be discussed in full in Gh.2.4. 

Another type of error is the null-shift which, as its name suggests, amounts 
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2.2 Sagnac Effect in Ring Lasers 

to adding a rotation-independent component to the output frequency: 

fOUl = sa + fnull 

The main source of this effect is the Langmuir flow of gas in the discharge. 

This occurs in DC-excited plasmas and stems from the fact that the dielectric 

walls of the discharge tube collect negative charge4. As a resul~ positive ions 

moving towards the cathode are attracted to the walls, while electrons moving 

towards the anode are repelled to the centre. To maintain the overall momentum 

balance, neutral atoms which are responsible for gain are compelled to move 

towards the anode along the walls and towards the cathode along the centre 

(Fig.2.2-3): 

Fig.2.2-3 Langmuir flow of charges and neuttai atoms in a DC dischagc. 

In consequence, the radiation in a resonator, travelling mainly along the centre 

of the discharge, interacts with a moving gain medium. The motion Doppler­

shifts the transition frequency t so that dispersion effects become dependent on 

the beam direction. This results in differential mode pulling and hence a 

null-shift (see below) which is approximately linear with the discharge current. 

The Langmuir-induced null-shift has been variously measured to be between 

6.6(deglhr)/mA6 and 480(deglhr)/mA19. Since Langmuir flow is in some respects a 

convection-like effect, it depends to a great extent on the tube geometry and 

aspect ratio. 
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2.2 Sagnac Effect in Ring Lasers 

The usual method of circumventing the problem is to use a double-arm 

discharge31 , powered by equal currents flowing in opposite senses; the two 

components of the null-shift then cancel each other. 

For different reasons, null-shift also arises whenever the resonator is 

anisotropic with respect to radiation travelling in the two directions; it is then 

due to differential mode pulling and/or pushing31 (see Sec.2.3.1 below). Both 

effects depend on the effective gain, so any phenomenon resulting in non­

reciprocal losses or gain will automatically lead to differential mode 

pulling/pushing and hence to null-shift. 

Mode pulling is also responsible for the third type of scale-factor error, the 

rotation-dependent variation. Linear mode pulling (see Sec.2.3.1) reduces mode 

separation, and thus signal frequency, by a constant factor; the nonlinear 

component adds to this a rotation-dependent variation (since mode separation is 

proportional to rotation). However, nonlinear mode pulling effects in a He-Ne 

laser operating at O.6328J.1.m are of the order 10-7 (that is, mode spacing 

changes by a factor of (1. 10-7) ). 

The fourth type of error arises from pathlength variation, due mainly to 

thermal expansion, and leads to scale factor variation in direct proportion. In a 

solid-block Zerodur gyroscope the pathlength can change by approximately one 

wavelength per 4()OC. Nevertheless, pathlength variation can be easily offset by 

installing a patblength control circuit 

19 
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2.3 The He-Ne Ring Laser 

2.3 THE HE·NE RING LASER 

2.3.1 Transition characteristics and lineshape 

A ring laser used as a gyroscope must oscillate on two frequencies 

simultaneously; as a consequence. it is necessary that the gain profile be 

predominantly inhomogeneously broadened. Solid state lasers. having 

homogeneously broadened lines. are therefore unsuitable for the purpose. 

Furthermore. since the gyroscope scale factor is inversely proportional to the 

wavelength, it is desirable that the wavelength be as shon as possible. These 

two considerations, together with the simplicity of design and small 

dimensions, combined to establish the 0.633J.Lm He-Ne laser as the one 

universally used in ring laser gyroscopes. 

Fig.2.3-1 shows the transition diagram of the He-Ne laser32. Ne atoms are 

excited by collisions with He atoms to the 3s2 I evel. from where they decay 

radiatively to the 2p4 level giving rise to the 0.6328J.Lm laser transition; the 

lower 1S level is depopUlated through diffusion to walls. The exponential gain 

achieved is of ,the order of 0.1 m-l. The infrared transitions must be suppressed, 

as their gain is proportionally higher*. 

• Gain, for an atom which can undergo several possible transitions, is linear in 

wavelength7. Thus gain of the 3.39~ transition is -5.4 times higher than that 
of the O.6328~ transition. 
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Fig.2.3-1 Transition diagram of the He-Ne laser. 

The naturallinewidth can be estimated from the lifetime of the 3S level: 

AVN=1t"1107 -3MHz {FWHM}. However, homogeneous width is greatly increased 

by collision broadening which is linear in pressure (this is because, 

qualitatively, pressure is a measure of collision rate). The full Lorentz linewidth 

(homogeneous) for the total gas pressure of ITorr has been measured to be2S 

AVL-l60MHz (FWHM). (In high-gain lasers there is the added effect of power 

broadening, but in the He-Ne this is negligible.) 

The Doppler linewidth (inhomogeneous) can be calculated from32 

(2.3.1-1) 

21 



2.3 The He-Ne Ring Laser 

which gives the width of -l400MHz (FWHM). 

Consequently, in a He-Ne laser AVJ)AvO -0.1 at ITorr and -0.5 at 4.STorr -

the inhomogeneos component predominates as required. 

The full width of the gain cmve is given by the convolution of the Gaussian 

and Lorenztian functions, which turns out to be the real part of the complex 

error function w(z) = exp(-z2)erfc(-iz) : 

Re w(x+iy) = 1. J- y e ~2 <l 
7t 2:2 

(x-t) + y 

v -Vo 
X=-­

AVD 

(2.3.1-1) 

The integral has no analytic solution, but has been extensively tabulated (e.g. 

Ref.1). The tables show that for y=O.l (-lTorr) the gain curve is widened by 

-10%: the total width is Av-r-1500MHz; for y-o.5 (-4.STorr) the correction is 

=30%: Avr-1800MHz. 

Inhomogeneously broadened lasers are subject to the phenomenon of "hole 

burning". The Gaussian profIle of the gain curve derives from the Maxwellian 

distribution of atom velocities in gas. As the laser oscillates on one of the 

resonator frequencies, the upper level atoms with energies corresponding to that 

frequency become depleted, with the consequence that gain at that point is 

reduced (see Fig.2.3-2a) and a "hole" appears. The gain profile seen by a 

"probe" beam of frequency v' in the presence of an already oscillating 

frequency v is then32 

Y(V') • Yo 

2 

(A;L) + (v -V') 
2 

(2.3.1-3) 

(AVL)2 2 (AVL) T + (v-v1 + C T 
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2.3 The He-Ne Ring Laser 

a b 

-~ 

v v 

Fig.2.3-2 Gain profile of an inhomogeneously broadened line: 

a) oscillating away from line centre; b) oscillating at line centre. 

where 'YO is the Gaussian profile and C a constant which depends on the 

parameters of the medium. ~VL is the homogeneous width of the hole, 

approximately equal to the Lorentz width; the depth of the hole is (1+2C/~vU-l. 

The second hole is due to the fact that radiation travelling in the reverse direction 

interacts with a different set of atoms, those with velocities of negative sign. 

and therefore situated symmetrically on the opposite slope of the gain curve. 

When the laser is operated at the line centre. the two holes merge and become a 

"Lamb dip" (Fig.2.3-2b). 

In a ring laser, hole burning leads to mode competition at the centre of the 

gain curve4. that is in the region vo-~vIJ2 < v < vo+~vtJ2. with one of the 

counter-propagating modes losing intensity or even disappearing altogether. 

This occurs because the frequency difference between the two modes - the 

gyroscope frequency - is typically less than 50kHz and therefore much smaller 

than the hole width; as a result, at the line centre both modes interact essentially 

with the same group of atoms, and so must compete for gain in a 'winner takes 

all' situation similar to that prevailing in homogeneously broadened gain media. 
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2.3 The He-Ne Ring Laser 

Here the crucial difference between a linear and a ring laser lies in the fact 

that in the linear laser the selfsame mode travels in both directions and so cannot 

compete against itself, while in the ring laser the two couter-propagating modes 

are independent and thus can compete with each other to the extent that one 

becomes extinguished altogether. 

Mode competition clearly interferes with the operation of the device; for this 

reason ringlaser gyroscopes are filled with an equal mixture of two isotopes31 

of Ne: Ne20 and Nell (the natural abundance is respectively 91 % and 9%). The 

line centres of the two isotopes are separated by 87SMHz, the combined 

linewidth is therefore -2400MHz at ITorr and -2700MHz at 4.5 Torr. 

In a two-isotope medium, the maximum of the combined gain curve lies 

(approximately equidistant) between the maxima of the two individual isotope 

lines. (see Fig.2.3-3a). Thus, if one mode is burning a hole at the centre of the 

combined curve, the other will bum two holes down at the sides, separated by 

the frequency spacing of the isotopes31 (see Fig.2.3-3b). This can be simply 

understood by regarding the two gain curves individually and then adding the 

effects arithmetically. Quantitatively, this is equivalent to inserting two tenns on 

the right side of Eq.2.3.1-2, one for each isotope. 

Although the two-isotope gain curve possesses two "Lamb dips" centred on 

the peaks of the two lines (Fig.2.3-3b), competition is eliminated. 
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2.3 The He-Ne Ring Laser 

Mode pulling 

Mode pulling arises from the anomalous dispersion obtaining in gain medium. 

and. true to its name, causes the frequency of the oscUlating mode to shift 

towards the line centreS: 

D 1 + -(n-1) 
L 

(2.3.1-4) v = 

where Vm is the . frequency of the resonator mode and D the length of the 

active medium (discharge). The refractive index n is given byll (Fig.2.3-4) 

(2.3.1-5) 

where G is gain. In the limit of inhomogeneous broadening (~VL <<&vo) the 

function F(x) is the Gaussian dispersion function*: 

(2.3.1-6) 

For lines near the centre of the gain curve (XSO.5) , F(x) can be approximated 

by F(x) - x. The oscillating frequency is then given by 

(2.3.1-7) 
8 _ D c:G 

L 2/J 
1t ~VD 

* Otherwise the imaginary part of the complex error function (essentially the 
complex conjugate of the "plasma dispersion function") w(z). exp(-z2)erfc(-iz) 

must be used1•11 : 

1m w(x+iy) - ! f- (x-t) e ,,2<k 
71: 2 2 

(x-t) + y 
-
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2.3 The He-Ne Ring Laser 

This is the linear mode pulling effect which shifts frequencies in direct 

proportion to their distance from the line centre. The result is a uniform 

reduction of mode spacings: 

ilv/ilvO = 1 - a (2.3.1-8) 

For a low-pressure He-Ne laser (G-o.lm-1, ilVO" 1.5.109) the reduction factor 

is 8-0.003. 

Homogeneous broadening (Le. significant y=ilvrJilvD), on the other hand, 

stretches the curve in Fig.2.3-4 horizontally and so reduces mode pulling, 

decreasing the overall effect For y=O.5 (-4.5Torr), the reduction factor is halved, 

&.0.0015. 

The scale factor, measuring as it does mode spacing, is similarily reduced 

by (1- a). Nevertheless, as long as the reduction is constant and unifonn, it 

does not affect the accuracy of the measurement. However, the accuracy is 

compromised if the two counter-rotating beams experience different gain. The 

reduction factor, which is linear in gain, is then different for the two beams: the 

scale factor correction acquires a bias. 
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Fig.2.34 The anomalous dispersion P(x) oc n-l in a gain meduim . 

• 

27 



2.3 The He-Ne Ring Laser 

2.3.2 Mode structure in a ring laser 

Ring resonator modes differ from those of a linear resonator in two respects12• 

Fig.2.3·S A three·mirror ring resonator with one curved mirror.· 

In the flISt place. a round trip is completed over one resonator length: 

therefore L=mlm, and the longitudinal mode spacing is 

c 
dVIq::l -

L 
(2.3.2-1) 

In the second place, the angle of incidence at mirrors is far from zero (see 

Fig.2.3-4). For a three-mirror resonator it is 1t/6; in the general case of an 

N-mirror polygonal resonator it becomes 7t(N.2)/2N. As a result, the two 

orthogonal transverse modes encounter different effective radii: 

R -R case . 2 

1 R+-R-
2cos9 

horizontal 
(2.3.2-1) 

vertical 

where 9 is the angle of incidence, and + and • stand for vertical and horizontal 

respectively. 

* I am indebted for this drawing to Mr. Kevin Wells. 
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2.3 The He-Ne Ring Laser 

For a plane polygonal ring resonator with N mirrors, one of them curved, 

the resonant frequencies are given by 

£=0, Neven; { 
0 1 even 

£= 11001' NOOI 

The £ term arises from a coordinate reversal in the plane of the ring due to an 

odd number of mirrors. Apart from this and the factor of 2 multiplying the 

longitudinal mode number q. Eq.2.3.3-2 differs from that for a linear 

symmetrical resonator only in the use of different effective radii in the vertical 

and horizontal planes. 

The beam cross-section is affected in similar fashion. The TEMoo mode 

profile becomes elliptic32: 

at waist, 

(2.3.2-3) 

at the curved mirror (the widest point), 

(2.3.2-4) 

In a three-mirror resonator the difference between the axes can be as great as 

50%. 
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2.3 The He-Ne Ring Laser 

The transverse mooes likewise have different dimensions·: 

(2.3.2-5) 

w (TEMI0) • 1.5 w. 

In consequence, the losses they experience are also unequal and may cause one 

of them to be suppressed. 

Effect of Brewster windows 

A ring laser resonator may incorporate Brewster windows. These are usually 

aligned to achieve polarisation either parallel to the axis of rotation (s-mooe) or 

in the plane of the resonator (p-mode )28.31, 

The s-mode is not affected by the non-zero angle of incidence at the mirrors, 

and is therefore more efficient. For the same reason, calculations are commonly 

performed assuming s-mooe polarisation. 

The p-mode is used in gyroscope systems containing magnetic mirrors, as it 

is necessary for their operation. 

• The relation between different spot sizes derives from the expression for 

Gaussian beam modes32: 

E(x,y) • E,:: 11,,( n ~) Ha( n ;)e.+ "i) 
The Hn,m's are Hermite polynomials, the first two of which arel 

Ho(p} • 1 

Ht(p) • 2p 

The field falls to lie of its maximum value at p.1 for Ho and at p.1.S for HI. 
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2.3 The He-Ne Ring Laser 

2.3.3 Discharge parameters 

In a He-Ne laser the primary excitation of He atoms is effected by a DC glow 

discharge. The low-pressure discharge presents a negative resistance to the 

driving voltage source29: balance resistance is therefore required to stabilise the 

circuit 

Gain occurs in the positive column region29 (Fig.2.3-6): laser gyroscopes 

are designed so that only the positive column lies in the beam path. 

tolhode dotll spoc. 

I 

"- onOCl4 dotk spoee 
o ForOlJC1y dOtk spote I 
I I 

I 
I 
I 
I 
f 

~-----"'ileIeCtric 
lIelel 

potenllol 

Fig.2.3-6 Spatial distribution of low-pressure DC glow discharge. 

As can be seen.in Fig.2.3-1(transition diagram), the discharge excites He 

atoms which then transfer their energy on to Ne atoms through collisions. The 

density of excited atoms increases with current, enhancing the gain 7. At higher 

currents, however, gain starts to decline due to parasitic excitation of lower 

laser levels. He-Ne lasers typically operate at -lmA. 

Since the lower laser level is depopulated by diffusion to walls, gain 
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2.3 The He-Ne Ring Laser 

increases with reduced bore diameter7. Ideed, the lower bound to the bore 

diameter is set by the point at which diffraction losses overcome any funher 

growth in gain (gain grows in inverse proportion to diameter, while losses 

grow as its inverse square). 

High pressure accelerates the rate of exciting collisions. On the other hand, 

it also promotes de-excitation through collisions with walls. The two factors 

together explain the experimental observation that gain is a function of 

pressurexdiameter31. Decreased diameter therefore requires elevated pressW'C to 

maintain gain. This consideration places another lower bound on the bore 

diameter. 

The outcome31 is a typical bore size of 1-5mm. The typical pressure is 

l-lOTorr, and the gas mixture He:Ne=lO:1. The exponential gain has been 

empirically found to be26 

G • 3·10-4/ dbore • O.lm-l 

Fortunately, the operation of a ring laser gyroscope does not require high 

output power, but only stable non-competing modes. 
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2.4 Mode Lock-In 

2.4 MODE LOCK-IN IN RING LASER 

GYROSCOPES 

2.4.1 Mode lock-in and backscattering 

Mode lock-in - that is, frequency locking of the two counter-propagating beams 

- is the most important sow-ce of error in the ring laser gyroscope scale factor. 

Mode lock-in is caused by weak mutual coupling of the two beams; indeed, the 

effect is similar to the synchronisation of weakly coupled oscillators and is in 

many respects analogous to the phenomenon observed in coupled- lasers 

systems 10.27 • In ring lasers, coupling arises through backscattering of the 

beams into each other's paths: this occurs at the surface of every optical 

component within the resonator. The direct consequence is a complete loss of 

sensitivity at low rates of rotation - a "dead" band around zero - as well as large 

scale factor nonlinearity in the lower part of the sensitive region, as shown in 

Fig.2.4-4 on p.42 below. 

The coupling effect can be explained qualitatively by referring to Fig.2.2-1 

on p.7 - a standing wave rotating in an idealised ring resonator. Consider a 

scatterer within the resonator whose dimensions are small compared with the 

wavelength31 : the scattered energy is then a function of the wave position, 

minimum at a node and maximum at an anti-node. The energy subtracted from 

each beam will depend therefore on the relative phase of the other beam. It is 
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2.4 Mode Lock-In 

this mutual phase-dependence which constitutes the physical basis of mode 

coupling. 

The relationship can be demonstrated graphically by using a "phase-vector" 

diag:ram4·31 (Fig.2.4-1 on next page). This shows the electric fields of the two 

beams as vectors with the relative phase '1'. The "+" vector is taken as a 

reference; the "-" vector rotates about it at a rate w=sn which is the 

gyroscope signal frequency. 

Adding the backscattered components in anti-phase (Fig.2.4-la) changes 

the phase difference 'I' (and thus the output frequency): locking occurs when 

the opposing effects of scatter and rotation cancel out and the two vectors 

remain stationary (implying w=O and zero frequency). By contrast, in-phase 

scattering (Fig.2.4-1b) clearly does not affect the phase difference 'If and so 

does not lead to lock-in. 

Assuming that the intensities of the counter-propagating beams are equal 

(IE+I=IE-I) and that the backscattering is low (r«l), the relative phase 'If in 

Fig.2.4-1a is given by 

(2.4.1-1) 

where the factor elL was inserted to preserve the rate-of-change dimensions. It 

is immediately obvious that for sn < 2(clL)r - i.e. below "threshold" -

Eq.2.4.1-1 has two stationary solutions 'I'-nfl and 31t/2 indicating locking. 

Thus the approximate Eq.2.4.1-1 is qualitatively similar to the more rigorous 

expression to on p.40 below. 
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a 
rlE+1 

rc.ultant 

resultant 

IE+I 

b 

r IE+I 

resultant 

IE+I 

Fig.2.4-1 A phase-vecUlr diagram demonstrating effects of backscattering: 

a) anti-phuc; b) in-phase. 
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2.4 Mode Lock-In 

To derive the lock-in equation, we start with the wave equation for a 

rotating ring laser (in MKS units)4,lO,18.22.31: 

(2.4.1-2) 

where, as in Sec.2.3, v is the velocity of a path element (see Fig.2.2-2 on 

p.8). The current density J is a convenient way of representing energy losses. 

For the sake of simplicity we will assume that the resonator lies in the plane 

perpendicular to the axis of rotation and that the field E is polarised parallel to 

that axis (the s-mode of Sec.2.3.2). We therefore substitute V=s(%s) and 

E=E(s,t)z into Eq.2.4.1-2 to obtain 

A oE A 

Vx(vxE) .. - s·v - z os 
,.. oE A 

vx(VxE) = - s·v - z as 

As a funher simplification, s·v is averaged over the entire path: 

;.v = 1 J.. v.ds .. .!. J.. (Vxv) . dA = 2AO 
L r L r L 

(2.4.1-3) 

(2.4.1-4) 

where, as in Ch.2.3, we used Stoke's theorem. In addition, we introduce 

J-aE. These changes lead to Eq.2.4.1-2 being transformed into 

2 
4An aE ---L as at 

We are looking for a solution of the form 
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2.4 Mode Lock-In 

( 
-it .~) E(s,t) = ~ E+e + + E.e . + C.C. 

( 
-it .~) P(s,t) • ~ P + e + + P. e . + C.C. 

(2.4.1-6) 

where 1t+1t and It_It refer to the clockwise and counter-clockwise beams. and 

COo 
+:t = 9:t ± - s c 
9:t = co t t + CPt 

1 {' . \ 1 c 
COo = - 9+ + 9-1 = -(co. + CO~ = 27t m-

2 2 L 

(2.4.1-7) 

Here CO± and 'P± are the frequency and the initial phase of the two beams. 

Eqs.2.4.1-6 and 2.4.1-7 can now be used to calculate the various terms of 

Eq.2.4.1-5: we discard derivatives of P± and terms containing E±. E±. 9± as 

negligible by comparison with those containing ~ or e;. -to arrive at 

2 2 
aE=_!!!....E 

2 2 
as c 
aE 1[' .~ .. ~] at = 2' - i 9+ E+ e + - i 9. E. e . + c.c. 

a2E Ifl(.2 . \.~ (.2 .) .~] 
-2 = 2'~-9+E+ -2i9+E.} e + + -9. E. -2i9.E e . + c.c. 
at 

(2.4.1-8) 

1 ~ :.. ] a E 1 coo' .... + coo' .~. -- = - - 9+E.e + - 9.E.e + c.c. at as 2 c c 

a2
p 1 [ . 2 .~+ • 2 .~] 

- = - - 9+ P + e - 9. P. e + c.c. 
atl 2 

This, substituted back into Eq.2.4.1-S, produces - after equating the relevant 

terms - the two equations for the two beams: 

2 .2 • • _ 4An COo' a . 1 .2 
- co oE:t + 9:t Et + 2i9:t Et + -L -c 9t Et + i - 9:t: E:t: • - 9:t: P:t (2.4.1-9) 

to to 

And hence, with the aid of the following approximations, 
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co 0" 9:t 

the two sets of self-consistent equations: 

Ez ± 
(J co 0 

- Ez = - ImP:t 
2£0 2£0 

(2.4.1-10) 

2AO COo COo Re Pz --- = ---L c 2£0 Ez 
9z ± (2.4.1-11) 

The second of these yields the frequency difference between the two beams: 

Av = - 9+ • 9~ = -- + - --.--1 (. . \ 4An v 0 (Re P + Re P. ) 
2x AL 220 E+ E. 

(2.4.1-12) 

The first term on the right, 4AO/A.L.SO, is the ideal gyroscope signal 

frequency encountered repeatedly in Ch.2.2; the second term is the nonlinear 

perturbation caused by polarisation of the medium. Inde~ the mutual beam 

coupling referred to at the beginning of this section arises through cross­

polarisation. To see this explicitly - and to calculate its value - we must insert 

into Eq.2.4.1-12 the expression for polarisation (where mode pulling terms 

have been neglected): 

(2.4.1-13) 

In the absence of backscattering, the two components of the perturbation tenn 

cancel out, AV-SO: there is no mode lock-in and the scale factor is a constant. 

In the presence of backscattering, 

(2.4.1-14) 

... ~- 9. 

where r± and E± are respectively the backscattering coefficient and angle. In 

other words, the field which gives rise to the polarisation contains two 
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2.4 Mode Lock-In 

components: the original wave and the backscattered wave combined in 

anti-phase. Combining the waves in-phase would give rise to a term in 

exp[ -i(9+'Ht)] which averages to zero due to its rapid fluctuation: thus once again 

we see that in-phase scattering does not lead to lock-in. 

Inserting Eq.2.4.1-14 into Eq.2.4.1-13 gives the real part of polarisation. 

ReP±, as 

ReP± = EOX[E± + r; E; e±i("U1 

= EoX' [E± + r; E; cos (,,+£~] :; EoX" r; E; sin ("U~ 
(2.4.1-15) 

The perturbation term in Eq.2.4.1-12 is then 

ReP. 
E. 

(2.4.1-16) 

For equal scattering angles, '4=£., this reduces to 

Re P + Re P. • [E. E+ 1 () [E E 1 - -E- =- £oX f. E -f+ -E cos V+E - foX" f. -' + f+..! sin (V+E) 
E+. +. E+ E. 

(2.4.1-17a) 

If the intensities and backscattering coefficients are also equal, it is further 

simplified to 

ReP+ ReP. 
- - - • - 2EoX" f sin (V+E) 

E+ E. (2.4.1-17b) 

Inserted into the frequency equation Eq.2.4.1 .. 12, this yields 

(2.4.1-18) 
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2.4 Mode Lock-In 

which can be written more conveniently as 

(2.4.1-19) 

with 

and 

Eq.2.4.1-19 is the lock-in equation, with the lock-in threshold at 0L-vox"r. 

Fig.2.4-2 shows time evolution of the function V for various values of the 

parameter K. 

For rates of rotation above threshold (K<l), the solution of Eq.2.4.1-19 is . 

tan (v;e) = K + C tan (~l) 

'I' = 2 tan-I [K + C tan (;t )] -e 
(2.4.1-20) 

C-(l-K2)lf2 , 

For high rates of rotation (K«l. c.-1), Eq.2.4.1-20 reverts to the linear 

relationship 

'I' + e = 500*t and (2.4.1-21) 

For lower rates of rotation, 'I' is periodic with period 1/X. The combined 

beam intensity (the "heterodyne" signal, or fringe patem) fluctuates as sin'l' 

(Fig.2.4-3) which has the same period as V. The observed frequency is 

therefore 
1 

1 - r---1. [2 212 
f = -x = 5 00'VI-K • SoO - Oy 

271: 
(2.4.1-22) 

Fig.2.4-3 shows the combined beam. intensity versus time for several values of 

the lock-in parameter K: note both the slowing-down and the distortion of the 

sinusoidal shape at low rates of rotation. Fig.2.4-4 plots the observed 

frequency as a function of rotation rate. 
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Fig.2.4-3 The combined beam intensity versus time for various values of K. 
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2.4 Mode Lock-In 

-4 

-4 -2 o 
Will. 

2 

Fig.2.4-4 The observed frequency versus rotation rate. 

At threshold (K+l. C=O), 'If becomes a constant: 

'If = 2 tan-It - £ .. 1C/2 - £ or 31t/2 - £ and V-a 
The frequency difference is zero: the gyroscope is locked. 

4 

Below threshold (K>I), the solution of the lock-in equation is. 

tan(y;e) • K + 

'If • 2tan K+ -1 [ 

Xl 
C 1 + e 

Xl 
1 - e 

C 1 + e:] 
1 - e 

- £ 

(2.4.1-23) 

• This solution can be derived from Eq.2.4.1-20 by expressing (l-K2)lfl as a 
complex number. 
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2.4 Mode Lock-In 

This solution evolves to a constant on the time scale 1/X (see Fig.2.4-2b): 

4 4(1) 'I' (t > > 1/X) = 2 tan (K - C) - £ = sin K - £ * (2.4.1-24) 

The threshold value (K=1, C=O) is again 

'" .. 2 tan-11 - £ = rr/l- £ or 31C/2 - £ 

At threshold, the solution of Eq.2.4.1-19 is (see Fig.2.4-2b) 

(2.4.1-25) 
- £ 

which again evolves to a constant, although this time linearly rather than 

exponentially. The asymptotic value is once again 

'I' :s 2 tan-11 - £ .. 1C/2 - £ or 31C/2 - £ 

... The last equality is easily derived from the triangle: 

K - (1(2 - 1)1/2 
7C/2+8/2 

1 

8/2 

Btl 
(K2 - 1)1/2 

·1 
8. sin (11K) 

2 III 
K • (K • 1). 1 • 1 

sin (8/2) sin (7C/2 + BIl) cos (BIl) 
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2.4 Mode Lock-In 

A rough estimate of the lock-in threshold is easily arrived at Fll'St32, 

where G is the exponential gain. Therefore, 

and 

" 1 cO voX --2x 

(2.4.1-26) 

(2.4.1-27) 

(2.4.1-28) 

For a typical He-Ne ring laser operating at O.6328~ the gain26 is of the order 

of O.lm-l , the backscanering at the mirrors30 of the order of 1()4 and the scale 

factor of the order of 1OScountslrad: with the result that 

SOOL - 1kHz 

The threshold rotation rate is 

OL - lQ-2rad1s - l()3deg/hr 

2.4.2 Perturbation theory of mode coupling 

We have seen in Sec.2.4.l that anti-phase scattering gives rise to lock-in, 

while the in-phase type does not However, when second-order effects are 

taken into account, in-phase scattering is nevertheless seen to cause nonlinear 

errors in the scale factor. 

In order to derive this relationship, the self-consistent equations are written 

in termS of wave intensities, taking into account the small difference in the 

intensities of the two counter-propagating waves.31 This yields a system of four 

coupled differential equations, for 1-4+l, i-4-l, ~-e_ and ~-e.+8_: 
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2.4 Mode Lock-In 

(2.4.2-1) 

. 
i == - ~i - SOC"'L~im, - iSoC"'L-sim" 

. 
l; - - SoC"'L+Sin", + iSoC"'L-sin", 

with 

a == 2 x (1l11S8lU1'3Ied gain - cavity losses) == 2 x net 1l11S8lU1'3Ied gain 

~ == a x (self-sawration - cross-saturation) I (self-saturation + cross-satmation) 

and "+" and "-" denoting respectively in-phase and anti-phase 

To solve these equations two assumptions are necessary: Iu-st. that in-phase 

scattering is a small perturbation. i.e. C"'L-» jQ"'L+; and secondly. that the 

system is far from threshold, i.e. the signal is an undistorted sine. 'I' = SoO"'t . 

Given these assumptions. the second equation becomes 
. 
i • - Pi - iSon"'L-sin(SC"'t) 

the solution of which is 

i - - '" 5:00

; , sin[s.oo, -.... '(Sorl] 
SoC'" + ~ 

Inserted into the equation for V • this gives 

1 2 2 
- So C"'Lt-
2 
-2-2~-2 C 
SoC'" + p 

(2.4.2-2) 

(2.4.2-3) 

(2.4.2-4) 

. The resulting Qutput frequency is a function with a positive scale factor 

correction (Fig.2.4-5): 
112 

(2.4.2-5) 
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2.4 Mode Lock-In 

This correction was measured in one particular gyroscope by Aronowitz and 

Lim5 and its maximum, depending on the laser power, was found to be 

between 0.3% and 0.003% of the nominal scale factor. 

Nonetheless, in a different system, possessing a large coupling constant, 

the positive correction may be much larger. It must be stressed, however, that 

in these circumstances Eq.2.4.2-5 can no longer be expected to hold true, due 

to the limiting assumptions made in its derivation. 

One possible agent of such increased positive correction may be the burning 

of grating across the mirrors. This can occur whenever a gyroscope is allowed 

to operate in the locked condition for a prolonged period of time: the stationary 

standing wave in the resonator may then bum a grating within the nonlinear 

material of the dielectric mirrors. Depending on whether the grating is refractive 

of absorbing, it will give rise either to in-phase or anti-phase coupling, which in 

tum will lead to either increased lock-in threshold or enhanced positive 

correction - or possibly both . 

.... 

n 

Fig.2.4-5 The output signal frequency with and without the positive correction. 
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2.4 Mode Lock-In 

2.4.3 Lock-in reduction methods 

Traditionally, all lock-in reduction methods have been based, in one way or 

another, on biasing the gyroscope so as to shift the output away from the locked 

region. 

The simplest and most obvious way of doing so is to add a constant rotation 

rate much larger than the nonlinear region; the bias can then be subtracted from 

the output to obtain the correct reading. This can be achiev~ for example, by 

inserting a Faraday rotator into the resonator: a Faraday rotator causes a 

non-reciprocal phase shift equal and opposite for the two beams which is 

equivalent to a frequency shift. The main problem with this approach is the high 

accuracy and stability required of the bias. Since the rate of rotation to be 

measured may vary over six orders of magnitude, the bias must be constant and 

known to 10-7• Also, the bias must exceed the lock-in threshold OL by a factor 

of at least 1()2 to escape nonlinearity. Moreover, the method places an upper 

limit on the rate of rotation one may measure, since it shifts the locked region 

from zero to - Omu . 

Dither 

To avoid these problems, many existing systems use alternating biag4.9.31. 

Indeed, alternating mechanical bias - dithering - has proved to be the most 

successful scheme to date: accuracies of lo-3deg/hr have been achieved. The 

method employs.a gyroscope mounted on a spring which rotates it sinusoidally 

back and forth. The lock-in equation in this case is 

Av =- sa -OLsin(V + t} + OBsin(mBt} (2.4.3-1) 

where Os is the magnitude of the bias and COB the dither rate. Eq.2.4.3-1 cannot 
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n. 
IIIC)Ut rotatIOn 
ralI 

Fig.2.4-6 Numerical solution of the frequency equation for a dithered gyroscope. 

be solved analytically: Fig.2.4-6 quotes a numerical solution31 • In practical 

devices the sharp spikes are eliminated by introducing random noise into the 

system; there remains however a slight residual nonlinearity in the vicinity of 

0B. In addition, the method suffers from loss of information as the system 

passes through the locked band. Increasing bias reduces the dead-time and also 

shifts the nonlinearity away from the low rotation region where higher accuracy 

is usually required. Despite its difficulties, however, the scheme has been most 

successful and is widely applied commercially. 

The DILAG 

A. variation on the constant bias approach is the DILAO - differential laser 

gyroscope (see Statz et al.28 for a comprehensive review). This scheme uses 

both reciprocal and non-reciprocal frequency splitting to create four modes 

which escape locking due to large effective bias. First, both beams are split into 

left- and right-circularly polarised modes (reciprocal splitting): this is achieved 
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2.4 Mode Lock-In 

reciprocal 

Fanday Fanday 

Fig.2.4-7 Mode SUUCtUIe of differential laser gyroscope. 

either by a birefrigent crystal (e.g. quartz) in the cavity, or by a four-mirror 

non-planar resonator. Then the two pairs of modes are further separated by 

introducing non-reciprocal Faraday shift: this can be done either by a magnetic 

miITor (Faraday effect) or by a magnetic field applied to the laser medium 

(Zeeman effect - the ZLAG scheme). Fig.2.4-7 shows the resulting mode 

structure. 

The four modes in effect constitute two independent gyroscopes comprised 

of RCP and LCP modes. The frequency differences in this case are 

aa» Ia' 
Va:w - VON = sa + ~vp 

LCP LCP (2.4.3-2) 
Vcr:N - VON = sa - I1vp 

The measured beat frequency, observed by combining the two signals, is 

I1v • 2SQ (2.4.3-3) 

This is linear, bias-independent, and free of lock-in due to the wide frequency 

separation of the modes. The chief drawback of this method is that all four 

versions of it require elements in the cavity which interfere in various ways with 

thc gain medium and/or beam propagation and thus give rise to scalc factor 

errors. Nonethcless, much work on this system has been reported (c.g. Rcfs. 

17, 28), including a patent application24. 



2.4 Mode Lock-In 

The two-mode gyroscope 

A completely different approach was adopted in papers by Sanders et al.2l , 

Scully et al.23 and Anderson et al.2•3 In this scheme. the laser is pumped 

sufficiently hard for an additional mode to become excited. The two modes may 

be a longitudinal and a transverse one or two longitudinal ones. In these 

circumstances - that is. with two modes oscillating simultaneously - the lock-in 

threshold was observed to diminish considerably, or indeed to disappear 

altogether. Fig.2.4-8a,b quotes the results. 

In order to explain this effect the authors developed a theory of the 

two-mode ring laser. In this they assumed that the second mode had only a 

fraction of the intensity of the main one, and therefore could be treated as a 

perturbation. The resulting lock-in equation was similar in form to the dither 

equation Eq.2.4.3-1, with the dither frequency equal to the frequency difference 

of the two modes. The conclusion was that a weak additional mode is 

equivalent in its effect to a variable bias. 

However, in addition to possessing considerable nonlinearity, the calculated 

beat frequency differed significantly from the observed one (see Fig.2.4-8b). 

Moreover, the proposed explanation applied only to a second mode weak 

enough to be regarded as a perturbation, while there were no experimental 

grounds for assuming this to be the case. For these reasons the theoretical 

treatment of this phenomenon met with some criticism9, and the work seems to 

have been discontinued. 

Nevertheless, there can be no doubt that if this method can be substantiated 

and developed, it will have great advantages over other techniques of biasing, 

the most obvious of which are its simplicity and the absence of moving parts 

and additional optical elements. Accordingly, Sec.2.S will be devoted to a 

theoretical discussion of this proposal. 
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Fig.2.4.g Lock-in reduction in a two-mode gyroscope: a) Rcf.23; b)Rcf.3 

52 



2.5 The Two-Mode Gyroscope 

2.5 THE TWO-MODE RING LASER 

GYROSCOPE 

2.S.1 The lock-in equation for two modes 

In this section we wish to derive the lock-in equation for the two-mode ring 

laser gyroscope proposed in Sec.2.4.2, that is for a ring laser in which two 

pairs of modes oscillate simultaneously. Fig.2.S-1 shows the mode structure. 

liv liv 

Fig.2.5-1 Mode structure of a two-mode ring Iasez. 

We begin with the frequency difference equation Eq.2.4.1-12: 

Il.v :. SoQ + - - - ---.: Vo (ReP. ReP] 
2£0 E+ E_ 

As in Scc.2.4.1, we substitute into it the expression for polarisation P-toxE. 

However, because two pairs of modes are oscillating, Et is in this case 
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2.5 The Two-Mode Gyroscope 

(2.5.1-1) 

where the indices refer to the two pairs of modes, and 

(2.5.1.2) 

For e1±=e2±, El±=El , E2±=E2, rl±=rl ,r2±=r2 - not an unreasonable 

assumption, since in the absence of non-reciprocal losses the intensities of the 

two modes within each pair are expected to be equal, and scattering angles are 

in any case intensity-independent - ~± becomes 

which simplifies to 

Re P + Re P. 2 [, Ez . " "Ez ~ . ( ) -- --- =- eo Xrz- sIR'I'Z+Xrl +Xrz- oos'I'z SIR '1'&£ (2.5.1-4) 
E+ E. El El 

The lock-in equation (compare Eq. 2.4.1-19) is now * 

(2.5.1-5) 

This is the lock-in equation for a two-mode ring laser. 

• A similar equation can be written for the second pair of modes, with '1'3 

replacing '1'1 and a negative '1'2. 
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2.5.2 Discussion of terms 

The perturbation term in Eq.2.5.1-5 is a product of two factors: the flI'St, 

vox"rlsin('IIl+£), is similar to that appe8ring in the two-mode case (Eq.2.4.1-19); 

the second, 

is the contribution of the additional pair of modes (indeed, it reduces to 1 for 

r2E2«I'}El)' Let us now examine this term. To begin with, note that 

p • .x:. ;: 2(v - v J 
X" L1VD 

(2.5.2-1) 

This factor for a typical gyroscope can be O.lSpSO.S. 

Secondly, to maximise the effect - and for the sake of simplicity - we 

Finally, we may neglect £ as having no bearing on the character of the 

solution. 

The lock-in equation then becomes 

(2.5.2-2) 

K-OLIO 

It must. be remembered that while 'Vl is similar to 'I' of Ch.2.4, '1'2 represents 

the phase difference between modes belonging to different pairs; therefore the 

expression in round brackets has the period of -l()-8s. 

The result is a rapid fluctuation of the lock-in term: the effective threshold 

oscillates between a high and a low value. Since the system requires time of the 

order 10-35 to become locked (see S~c.2.4.1). which is much longer than the 
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2.5 The Two-Mode Gyroscope 

oscillation period, such threshold fluctuations may suppress locking. 

Conversely, it may be argued that on the time scale of 'VI the oscillating 

term averages to zero and therefore can have no influence on the overall 

solution. However, this interpretation disregards the fact that the fluctuation of 

the effective lock-in term swings the solution between two qualitatively different 

regimes (Fig.2.4-2) while necessarily preserving phase continuity at each 

transition. 

Perhaps the situation is best illustrated by a phase-vector diagram 

(Fig.2.5-2). Here the second pair of modes adds a rapidly whirling component 

to each of the main vectors. The resultant is now no longer a function of solely 

the phase difference "'1 but also of inter-mode separation 'V2. Thus the 

absolute mutual dependence of the two resultant vectors - the source of lock-in -

is diminished. 

Bl+ It1 

: ",1 . -" •• - £2 .. 
r2E2+ 

£2 

J2E2- " '1'1 '- --

Pig.2.'-2 A phuo-vector diagram of the two-mode ring laser. 
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2.S The Two-Mode Gyroscope 

2.5.3 The solution 

Eq.2.S.2-2 cannot be solved analytically due to its strong nonlinearity. 

However, it is possible to consider ~ gcnc:ral character of the solution without 

obtaining it explicitly. 

It must be borne in mind that the two-mode lock-in equation Eq.2.S.2-2 is 

exactly equivalent to the one-mode Eq.2.4.1-19 with the added complication of 

a rapidly fluctuating threshold; the threshold oscillation is at least five orders of 

magnitude faster than the variation of the basic function "'1. Accordingly, we 

are interested in a time-averaged solution"'. 

If a solution exists such that \jIl is periodic then 

and 

for some constant A. The time-averaged solution over N periods is 

'I'(t) = _1_ JIIHf '!'iu) dI 
NT t 

It follows from Eqs.2.S.3-2 &3 that"'''' 

and 

. A 
'¥(t) = -

T 

'I'(t) • B + A t 
T 

(2.S.3-1) 

(2.S.3-2) 

(2.S.3-3) 

(2.S.3-4) 

(2.S.3-S) 

In other words, provided that A~, '¥(t) is linear in time. Conversely, if A=O, 

'" I am indebted for this solution to Dr. R.A. Bousfield and Dr. I.C. Newby 
of the Department of Mathematics . 

• '" For proofs of this and and other mathematical statements see Appendix. 
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then the solution describes a locked gyroscope; since we do not know A we 

cannot discount this possibility. 

Substituting Eq.2.S.3-2 into Eq.2.S.2.-2 gives the conditions that the 

constants A and T must satisfy: 

sin 'I'l(t+T) [I + (p sin'l'2(t+T) + cos 'I'2(t+T»] = sin 'I'1(t) [1 + (p sin 'l'2(t) + COS'l'2(t»] 

The equality holds if 

(2.5.3-6) 

and A = 2nx 

where m and n are integers (including zero) and AV2 is the frequency 

difference between the two pairs of modes. Solutions having different n's may 

intersect, therefore the solution is not unique. 

The above derivation does not provide an explicit time-averaged solution of 

the lock-in equation, nor does it specify how the proponionality coefficient NT 

may be related to the system parameters son and OL, nor guarantee that A~. 

In fact, it tells us only that if A~ and if one solution can be found which will 

satisfy Eq.2.5.3-1, then all time-averaged periodic solutions will be linear in 

time and therefore unlocked. 

We wish therefore to find one periodic solution. We can do so by solving 

Eq.2.5.2-2 numerically using the Runge-Kutta method. Fig.A-I of Appendix 

shows two examples above and below threshold: these are periodic. However, 

the time-averaged solution below threshold is locked. implying that in this case 

indeed A-O. On the other hand, since the fluctuating threshold causes the 

physical system to alternate between the two different forms shown in Figs. 

2.4-2a (K<l) and 2.4-2b (K>I), a numerical solution cannot really be expected 

to follow this behaviour. 
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Chapter 3 

EXPERIMENTAL SETUP 



3.1 System Description 

3.1 SYSTEM DESCRIPTION 

3.1.1 The scale factor 

The two ring lasers used in the present experiment both had three-mirror rings, 

with the mirrors placed at the vertices of an equilateral triangle (this is indeed the 

most popular configuration). The equilateral shape maximises the area/perimeter 

ratio and therefore the scale factor. 

For such ring lasers, the scale factor is given by 

So = 4A{ll. = (lfA.)Ll33n. = O.304·~()6·L counts/rad = 5.31·1()3·L counts/deg 

(3.1.1-1) 

where the resonator perimeter L is in metres and AaO.6328~m. In tenns of 

frequency, 

So = O.304·L MHzI(radls) = 5.31·L kH7J(deg/s) = 1.47·L Hz/(deg/hr) (3.1.1-2) 

It ought to be remembered, in panicular with respect to the modular 

gyroscope, that a triangular resonator which slightly departs from the equilateral 

shape, having sides 

A = (lJ3Xl+a) 

B = (lJ3)(1+b) 

c. (lJ3)(l+e) 

will have a reduced scale factor of 

(a+b+e).O 

S'o· So[1+ 2(ab+bc+ac») • So[1 + 2(ab-c2)] (3.1.1-3) 

The relative error S'~o is proportional to the square of displacement: e.g, for 

a shift of (lK, .1K, 0) the reduction is 2'11. 
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3.1.2 Mode structure 

For a three-mirror equilateral-triangle ring resonator, the mode structure 

equation Eq.2.3.3-2 resolves into 

v _= ~ [1q + ~ (n + i-)oos '(1- ~R)H + ! (m + Hall '(I -';;)) (3.1.2-1) 

The various frequency differences between longitudinal and transverse modes 

are then as follows: 

~q an Am ~v (3.1.2-2) 

1 0 0 c L 
0 1 0 2I[1 +1~-1(1_~)] 

2L 1£ Y3R 

0 0 1 2I[ ~ ~.1 (1 -~L )] 

The beam dimensions (for R and L in metres) are: 

at waist WO±:II ('AI2l£)l/2 RI/2 8±:II 0.317 Rl/2 8± mm 

at the curved mirror w± = ('AI2l£)l/2 LI/2 8± :II 0.317 LI/2 g± mm 

where It = ['Y± UR (1 - 'Y± UR))-1/4 and 'Y+:II ..J3(2; 'Y_:II 2/..J3 

(3.1.2-3) 

The dimensions of the TEMol and TBMI0 modes are greater by a factor of -1.5. 

Higher modes do not appear as their diffraction losses surpass gain. (The 

aperture of a He-Ne laser must exceed beam spot size by a factor of at least 3 

to support oscillation.) 
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3.1.3 The combining prism 

In order to obtain a detectable fringe pattern, the two output beams of the ring 

laser must be combined together. On leaving the partially transmitting mirror, 

the beams diverge by 60- and are - 3mm apart. They are brought together and 

closely aligned by a special double 90· comer prism, the combining prism of 

the gyroscope, which is shown below . 

• 

combined beams 

. , . , 
'.: mirror 

LlJiO·:J combined beams 

Fig.3.1-1 The gyroscope I!ombining prism. 

If alignment is correct the fringes are clearly visible. For equal beam intensities, 

the fringe pattern is given by9 

(3.l.3-1 ) 

where a is the angular divergence of the beams (zero for perfect alignment), d 

is measured along the sun ace of the detector, and cp is a constant phase shift. 

The fringe spacing is then d=iJa: for an output signal to be observed, this 

must be larger than the sensitive area of the photodetector. In the present 

experiment, this implies a divergence angle of OSl30". 
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3.1 System Description 

The 22t41v term is responsible for the movement of fringes arising from 

rotation; the direction of movement depends, through the sign of tlv, on the 

sense of rotation. A counter may be attached through a suitable circuit to the 

photodetector, which will count the fringes moving past it, giving a total count 

of 

Ntalal = fltlvl<k 
• 

(3.1.3-2) 

This, in fact, has been done in the present experiment. Two counters can be 

used in conjunction with a logic circuit to sense the direction of movement, 

adding up the counts in each direction. The system will then calculate the 

instantaneous cumulative angle of rotation 8 : 

(3.1.3-3) 

In order to be able to measure all three angles of rotation simultaneously, 

commercial gyroscopes incorporate three ring lasers lying in three mutually 

orthogonal planes. 

Although the alignment of the combining prism has to be very precise, in 

practice it is not at all difficult to achieve. 

Finally, some specifications of the photodiode used in the experiment are 

worth quoting: 

Type: 

Sensitive area: 

Responsivity at 850 run: 

Cut-off frequency (RL-SW): 
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3.1 System Description 

3.1.4 The Fabry.Perot spectrum analyser 

The mode structure of the ring lasers in the experiment was monitored by a 

spherical mirror Fabry-Perot optical spectrum analyser. In principle this is 

similar to the plane-parallel device. The advantages of a confocal configuration 

include ease of alignment, greatly reduced diffraction losses, and completely 

degenerate transverse modes. 

A spherical mirror Fabry-Perot interferometer1S consists of two identical 

partially transmitting mirrors separated by a distance nearly equal to their 

common radius (see Fig.3.1-2): it is, in effect, a confocal resonator. 

. An entering beam undergoes multiple reflections within the resonator. If its 

frequency matches that of one of the resonant modes, then, due to constructive 

interference, the transmission of the resonator peaks sharply. To use the 

interferometer as a spectrum analyser, the mirror separation is varied (e.g, by a 

PZT crystal). The device then scans through a range of frequencies, while a 

photodetector measures the intensity of the transmitted beam. Suitable 

electronics allow to correlate the observed peaks with the mirror separation, and 

thus to calculate their frequency differences (the measurement is always 

relative). 

resonaror 

f~-- R -. 
entering bcanl - - - - a • - - - - -.---. -- .. 
---......... --- R -- ... 

\~--------------~ 

I transmitted beam 

... '~ttl 

Fig.3.1-2 A spherical mirror Fabry-P=t interferometer. 
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3.1 System Description 

Fabry-Perot spectrum analysers are characterised by several main 

parameters: (R and r are respectively mirror curvatuI'e and reflectivity) 

finesse 

free spectral range 

spectral resolving power 

minimwn resolvable frequency difference 

F = 1U/(1-r2) 

FSR =cl4R 

SPR,. 4RF/A. 

~Vmin = FSRJF 

(3.1.4-1) 

Of these, FSR detennines the range of resolvable frequencies, and ~vmin the 

resolution of the device. The relationship between the two derives from the fact 

that finesse is a measure of resonator linewidth. 

The spectrum analyser used in the present experiment was a TecOptics 

SA-2M model, having a finesse of 175 and a FSR of 20Hz. The resolution was 

therefore ll.4MHz. The accuracy was detennined by the accuracy of reading an 

oscilloscope screen, and was roughly 1%. 

The spectrum analyser was calibrated by measuring the longitudinal mode 

spacing of a known He-Ne laser (Melles Griot 05-LHR-321: 570MHz). 
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3.1 System Description 

3.1.5 The readout 

The gyroscope scale factor as a function of rotation rate was read by a logic 

circuit operating as follows (Fig.3.1-3). A two-channel shaft encoder 

(Hewlett-Packard BEDS 5000-A06) was attached to the rate table, each channel 

producing 500 pulses per revolution. The phase shift between the channels was 

set during the installation of the encoder, and thereafter remained constant. A 

counter counted pulses arriving from a crystal oscillator during the HIGH 

half-cycle of one of the two channel pulse trains (see Fig.3.1-3): the count was 

thus inversely proportional to the rate of rotation. Another counter registered the 

peaks of the photodiode output during the same interval. The system was 

therefore directly reading instantaneous fringes (photodiode peaks) per unit 

angle, in other words, scale factor versus rotation rate. 

The data were logged by a BBC microcomputer. The output of the counters 

was fed into the 8-bit input/output socket through two transparent latches which 

were read consecutively. One of the digital outputs was used to control the 

latches, the other seven being available for data inputs: maximum resolution 

was therefore 7 bits. The READ trigger was registered by the analogue input of 

the computer. A BASIC program read in the data and recorded it in ASCII format. 

The readout time was set by the counting interval, and could be as short as 

0.05s; the dead time equalled three reading periods. The crystal oscillator was 

set to run at 300Hz: the measurable rotation rate was thus between 0.015rad/s 

- 3·103deg!hr and 0.2rad/s - 4·1()4deg!hr. The accuracy was between -1% 

(low rate) and -5% (high rate). The photodiode frequency was reduced by a 

factor of 16 (by a series of 4 D-flip-flops) in order to accomodate the count 

within 7 bits. The S-factor accuracy was therefore 2·1Q-9counts/rad or -2%. 
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3.1 System Description 

The data were stored on floppy discs. Initially they were displayed on the 

BBC using ICHARTN software. Later they were transferred onto an Apple 

Macintosh for final editing, curve fitting and plotting. 

channel A 1 I 
channelB I I 

X+BJ n 
A+B+A 

counterS 

reset count hoJd 

a 

oscillator 

A -of­
B --+- >< -+--4 "'----

switch 

b 

1 I count when HIGH 

L 
n reset when HIGH 

read when mGH 

toBBC -. 

counter 

Fig.3.l-3 The readout circuit: a) a timing diagram; b) a block diagram. 

Note: Since the roles played by the two channels in the circuit were different. on reversing the 

sense of rotation the connections had to be in~ged - hence the switch in Fig.3.1.3b. 
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3.1 System Description 

3.1.6 The H. V. power supply 

A schematic drawing of the H. V. circuit is shown in Fig.3.1-4. In order to 

circumvent Langmuir flow (see Sec.2.2.5), both lasers used in the experiment 

had a double-arm discharge, with two anodes and a common cathode. Two 

identical H.V. power supplies were used to power the anodes independently. 

These were the Brandenburg ALPHA II series, model 2507R, featuring remote 

voltage control and current monitor. Maximum voltage and current were 

respectively 5kV and 5mA. 

The ballast resistance was IMn for both arms. In addition, a l00kn 

resistor was attached directly to each anode, placed there because in its absence 

the discharge went into rapid on-off oscillation. A possible explanation may be 

that the resistor acted to damp the inductive-capacitive resonance circuit created 

by the HT coaxial cable. 

lOOkO lOOkn 
H.V. H.V. 

Fig.3.1-4 A schematic drawing of the H.V. cimliL 
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3.1 System Description 

3.1.7 The rate table 

The rate table used in the experiment was designed by Dr. Hobson and made in 

the departmental workshop. From the point of view of construction, this was 

the most difficult part to carry out. Fig.3.1-5 shows a schematic view. 

The O.Sm diameter rate table turned on bearings with very little friction, 

causing no noise in the gyroscope. This aspect of it was entirely successful. 

Regrettably, however, it proved impossible to drive the table at a constant 

rate. Both a OC motor and a step motor were tried, together with several types 

of drive, with roughly similar results. The motors caused fluctuations in speed 

of -10% or more, and also superposed additional vibration-induced frequencies 

on the gyroscope output. 

Eventually, the problem was "solved" by turning the table by hand while 

using a fast electronic readout (see Sec.3.1.5 above). Unfonunately, very near 

threshold the rate of rotation could not be maintained steadily enough to capture 

the just-above-threshold values. 

turntable l 

++--+-- radial bearing 

shaft encoder 

Fig.3.1-S A schematic view of the rate table. 
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3.2 The Ring Lasers 

3.2 THE RING LASERS 

3.2.1 The modular ring laser 

anode 

.~~:::::;::::::~::z;::-zt::.~~~ Oat mm r 

, , , , , 
• I 

'. ' .. ' 

~ 

I 

I , ,. 
,-

I , 

, , , 

curved output mirror 

I ,. 

Fig.3.2-1 The modular ring laser gyro cope. 
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3.2 The Ring Lasers 

The ring laser used in the earlier experiments was a modular one, constructed 

from a discharge tube and three mirrors (see Fig.3.2-1 on the previous page) 

and aligned using a technique similar to that of Ref. 12. 

The discharge tube, donated by Paul Cook. had the following parameters: 

overall length 

discharge length 

bore diameter 

pressure 

gas mixture 

Brewster windows 

127mm along centreline 

2x4Smm 

1.1mm 

3Torr 

He:Ne=10:1 

He: 99.92% He3 

Ne20:Ne22:9: 1 

perpendicular to the plane of the blbe 

The voltage-current characteristic is plotted in Fig.3.2-2. The normal 

operating voltage was 3.5kV. A current balancing circuit, run off the H. V. 

current monitors, kept the two currents equal to within O.2J.1A. 

Fig.3.2-3 shows the output power as a function of supply voltage. The 

power meter consisted of a photodiode and an op-amp, and was uncalibrated: 

the measurement was thus relative rather than absolute. 

1.32 
...... 
~ 1.30 

~ 1.28 1 :a 
> 1.26 

1.24 

1 2 3 

I(mA) 

Fig.3.2-2 Discbargc voltage versus currenL 
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3.2 The Ring Lasers 

Fig.3.2-3 Powez output of the modular ring laser versus supply volrage. 

The mirrors, on loan from British Aerospace, were some of their special 

gyroscope low-backscatter mirrors30• The backscatter coefficient is estimated to 

be 1 ()-4. The resonator parameters were: 

resonator length 

curved mirror radius 

longitudinal mode separation 

S3±lcm 

70cm 

calculated: S65±lOMHz 

measured: SSS±SMHz 

The spot size of the TEMIO mode would have been O.6mm: the bore diameter 

was therefore too narrow to support transverse modes. 

The difficulty of mounting the discharge tube vertically meant that the 

gyroscope operated in the less efficient p-mode (see Sec.2.3.2). 

The ideal S-factor was (0. 161±O.OO3)·1()6 counts/r&d. 
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3.2 The Ring Lasers 

3.2.2 The solid-block ring laser 

cathode 

flat mirror flat mirror 

curved output mirror 

Fig.3.2-4 The solid·block ring laser gyroscope. 
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3.2 The Ring Lasers 

In later experiments, a solid-block ring laser was used. The ring laser was made 

of Zerodur, a crystalline material ~th the thermal expansion coefficient of 

-lo-7deg-1, so as to minimise pathlength variation due to changes in temperature. 

It was in fact a British Aerospace gyroscope, on loan. The laser parameters 

were as follows: 

resonator length 43cm 

discharge length 2xl/3 of the above 

bore diameter 3mm 

curved mirror radius 3m 

pressure 4.5Torr 

gas mixture He:Ne=lS:l 

Ne20:Ne22: 1: 1 

gain/loss I.S 
round-ttip loss 0.2% 

Since the gas within the laser fonned a closed loop, there were two possible 

paths for either of the currents to follow. As a result. when switched on the 

discharge almost invariably established itself along one of the anode-anode­

cathode paths, adopting one branch in clear preference to the other. To cope 

with this problem, remote voltage control was installed which turned on both 

H. V. voltages simultaneously. Even then, it always took several attempts to 

achieve the correct anode-cathode-anode discharge. The outputs of the power 

supplies being in effect connected together interfered with the working of the 

current monitors: in consequence, it was impossible either to obtain a current 

reading or to check whether the currents were balanced. 

Fig.3.2-5 shows the output power as a function of supply voltage (again 

uncalibrated). The normal operating voltage was 3kV. 
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3.2 The Ring Lasers 

2 3 4 s 
V(kV) 

Fig.3.2-5 Power output of the solid-block gyroscope versus supply voltage. 

The resonator mode spacings were: 

longitudinal 

transverse 10 

transverse 01 

698 MHz 

414MHz 

56MHz 

measmed 

69S±7MHz 

41S±4MHz 

SS±lMHz 

One of the mirrors was mounted on a PZT crystal: this was used for 

pathlength control and mode selection. The TEMcn mode was very weak. indeed 

under normal operating conditions it was below threshold. The other modes 

could be obtained in various combinations discussed in the following chapter. 

Mode stability was very good: with no feedback control circuit. mode intensity 

. ratios remained constant to within 10% for -112hr. 

The ideal S-factor was 0.131·106counts/rad. 
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EXPERIMENTAL RESULTS 



4.1 Results: Modular Gyroscope 

4.1 RESULTS: MODULAR GYROSCOPE 

4.1.1 Scale factor of the modular ring laser 

In. measuring the scale factor of the modular gyroscope two problems were 

encountered. 

First, the modular ring laser was by its very nature prone to vibration. This 

led to consJderable scattering of the points. since hand-driven motion made 

some vibration inevitable. At high rotation rates the vibration frequency was 

below that of the signal, and so less dettimental to accuracy. At low rates. 

however," the two frequencies were comparable leading to significant smearing 

of the data curve. 

A much more serious problem waS presented by the back reflection from the 

Fabry-Perot spectrum analyser, which was fed into the resonator causing 

fluctuations in the output intensity. These occurred at the scanning frequency 

and had twice the amplitude of the gyroscope heterodyne signal. Blocking off 

the reflection reduced interference but did not eliminate it entirely. As a result, it 

was impossible to monitor the modes while simultaneously collecting the data. 

Indeed, . the problem extended even funher. The discharge tube of the 

modular gyroscope was filled with the natural abundance mixture of 

Ne20:Ne22::9: 1 instead of the proper equal-isotope recipe. The ring laser was 

therefore subject to mode competition. Enhancing one of the counter­

propagating beams by adding to it a small part of the spectrum analyser back 

reflection could well result in the other beam being extinguished. Indeed. this 
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4.1 Results: Modular Gyroscope 

would explain the abovementioned intensity fluctuations as well as the fact that 

they were not observed in the solid-block gyroscope. The flickering of the beam 

would not be visible, occuring as it must at the scanning frequency of -200Hz. 

Only a single mode was observed by the spectrum analyser. It was 

sufficiently stable, roughly maintaining its position over a period of -1Omin and 

responding as expected to pathlength variation by a PZT -mounted mirror: 

pathlength stabilisation was unnecessary. Nevertheless, two simultaneous 

modes were exceedingly difficult to obtain for more than -1s at a time. 

Figs.4.1-1 & 4.1-2 show the output frequency of the modular gyroscope as 

a function of rotation rate. Clockwise and counter-clockwise data - 500 points 

each - being similar in every respect, are plotted together on the same graph 

(compare the solid-block gyroscope in Ch.4.2 below). The error is the 

digitising error of ±1 column/row. Fig.4.1-1 was taken immediately after the 

laser was switched on, Fig.4.1-2 6 hours later: the laser was left running 

throughout and remained stationary for most of that time. 

The speed was varied randomly - although great efforts were made to keep 

the variation smooth - the points therefore were not acquired in any particular 

order. 

Varying the patblength made no difference to the shape of the data curves. 

The solid line is the best fit to the function {Eq.2.4.1-22) 

f = So (02 - OL2)1/2 

The fit was performed in the follOwing manner: (l was plotted against 02 to 

obtain the linear relationship f2. S0202 - Sa20 L 2; a least-squares fit to a 

first-degree polynomial then gave So2 (the slope) and So2OL2 (the intercept). 

Figure captions list the values of So and 0L, along with the value of X2. 
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4.1 Results: Modular Gyroscope 
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Fig.4.1-1 Scale factor versus IOIation rare: III hr after switch. on. 
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Fig.4.1-2 Scale factor versus rotation !'lie: 6 hi" after SWitch- on. 

So-(O.16092±O'(lOO03).106c0untslrad; QL-o.OI2SO:tO.OOOOSradls. x2.3.6'104. 
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4.1 Results: Modular Gyroscope 

4.1.2 Discussion 

It is evident that both Figs.4.1-1 & 4.1-2 demonstrate an excellent fit to the 

frequency equation Eq.2.4.1-22. 

The measured value of So - O.161·106counts/rad - agrees with that 

calculated in Sec.3.2.1 from purely geometrical considerations -

(O.161±O.003p()6counts/rad. The lock-in threshold, SoOL-2kHz, is roughly as 

estimated in Sec.2.4.1 (1kHz). 

In sum, these results provide a check on the instrumentation and 

demonstrate that the data acquired and analysed by this method are indeed 

reliable. 
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4.2 RESULTS: SOLID-BLOCK 

GYROSCOPE 

4.2.1 Scale factor of the solid-block ring laser 

The figures on the following pages ~how the solid-block gyroscope data for 

different combinations of oscillating modes. obtained by scanning the gain 

CUlVe with a PZT -mounted mirror. 

The figures are representative of a series of measurements. some of which 

were taken soon after switching on of the laser. and others several hours later, 

with the laser kept running throughout and left stationary for the great part of 

that time. 

The figures are laid out in a fashion similar to that of Ch.4.I. In this 

instance. however. the data for clockwise and counter-clockwise rotation. 

where substantially different. are plotted separately: figure headings give the 

sense of rotation. The error is once more the digitising error of ±1 column/row. 

Unlike Ch.4.1, the solid line here denotes the best fit to the null-shifted 

frequency function 

f = So [(O+ON)2 - OL2]1/2 

To achieve a fit, f2 was ploned against 0 giving the square relationship 

f2 = (S02)02 + (2S02QN)Q + [So2(QN2 - QL2)] 

which was then fitted by least-squares to a second-degree polynomial. (See 

Sec.4.2.3 for a brief discussion of alternative fitting schemes.) Figure captions 
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4.2 Results: Solid-Block Gyroscope 

give the values of So' 0L' ON and X2 *. 

The insets show the relative mode intensity (L and T stand for '1ongitudinaJ" 

and "transverse"). Unfortunately, due to the resonator geometry, it was not 

possible to obtain two longitudinal modes without a transverse one intervening 

between them; nor to have two equal intensity modes without a third one 

appearing as well. 

* The "X2" value is not the true statistical X2, but rather a measure of the 

quality of the fit estimated from the sum of the squares of the distances between 

each individual point and the fitted curve, i.e. 
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Fig.4.2-3 Scale facUlI' ~ rotatioa 18fe: 

two modes; III hr after switch~ CW+CCW; 
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Fig.4.2-4 Scale factor versus rocadon nue: 

two unequal modes. cw; 

0.15 

So=(O.l24±O.OOl)·l06cc)lmavrad. QL=-O.031±O.OOlradls. ON-Q.024:tO.OOlradls. x2.3.1()4. 
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Fig.4.2·S Scale factor versus rotation 18te: 

two unequal modes. CCW; 
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Fig.4.2-6 Scale fICa versus rotation rate: 

two (ocher) modes, CW+cCW; 

0.15 

So-(O.161±O.OOl)·106c0unts/rad. O!.-o.012±O.OOl~ DN-Q.OOO±O.OOlradls. 12.4.} 04. 
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Fig.4.2-8 Scale factor versus rotation race: 
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Fig.4.2-10 Scale factor versus l'OIIIion rate: 
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Fig.4.2.11 Scale factor versus rocation rate: 
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4.2 Results: Solid-Block Gyroscope 

4.2.2 Discussion 

The most striking feature of some of the data sets is the odd bulge towards the 

low end which clearly cannot be explained in terms of either the conventional 

theory or positive scale factor correction (both produce smooth curves). The 

worst affected are the single mode data sets, while those of two nearly equal 

modes suffer hardly any distortion at all. It seems clear that the presence of two 

modes inhibits the effect 

The second observation is that the nearly linear upper regions of the data 

exhibit a wide variety of slopes, the highest being those of the two-mode sets. 

In fact, the slope appears to correlate inversely with the size of the bulge, 

indicating that the two effects are connected. 

Appropriately enough, the most noteworthy feature of the numerical fits is 

the variation in the derived values of the scale factor, the null-shift and the 

lock-in threshold. These are summarised in the table on p.97, including 

additional data not shown in the figures. 

A brief look at the table above reveals two features: 

1. The scale factor is everywhere at variance with the calculated geometrical 

value of 0.131·1 06counts/rad; moreover, it is different for each configuration, 

and can lie either above or below the expected value. 

2. The null-shift is everywhere positive, implying a non-reciprocal mechanism. 

These, at fU'St sight, lead one to suspect the correctness of the curve titting 

procedure, especially when considered in conjunction with the deviant bulge in 

the majority of the graphs. In particular, one wonders whether the positive­

scale-factor-correction function 

f = soJ 02(1 + ~ )2 _ o~ 
Cl + B 
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4.2 Results: Solid-Block Gyroscope 

might not prove a better fit. However, upon trial, one finds that with this 

function no decent fit at all is possible (sec next Sec.4.2.3). 

Let us return therefore to the values as given in the table. They 

unquestionably possess a kind of regularity: 

1. The scale factor increases from the single mode case, through the two widely 

unequal modes, to the two comparable modes; 

2. The null-shift and lock-in threshold both decrease; 

3. Also the disparity between the CW and CCW data decreases and disappears; 

4. Moreover, the bulge in the data flattens out and disappears as well. 

Note also the following: 

1. The single mode data looks very different 6 hours after switch-on. while the 

two-mode set remains unchanged. This suggests that the presence of two 

modes somehow counteracts the time-dependent effects which force down the 

scale factor and generate the null-shift 

2. The variation within each set is least for the two-mode configuration. This 

indicates that the two-mode gyroscope is in some sense more stable. 

3. Interestingly, the values for the pair of modes in Set 9 are somewhat different 

from those in Sets 7 & 8. This may be the consequence of their greater 

frequency separation (-400MHz as opposed to -300MHz); perhaps indirectly, as 

their intensities tend to be more unequal and the configuration is less stable. 

4. By comparison, the three mode data set is the odd one out, inconsistent with 

the rest, and also showing the greatest disparity between the CW and the CCW 

directions and the greatest variation within the set. Furthermore, when 

observing the gyroscope output on an oscilloscope, it was seen that its 

amplitude was reduced by a factor of -2 and that the signal was severely and 

ilTcgularly distorted. 
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4.2 Results: Solid-Block Gyroscope 

Data Mode Representative Rowion So (xl06c:0UDlllnd) ON (ndIa) OJ.. (nd/I) 

set configuration figure aeue to.OOI iO.OOI :to.OOl 

1 single mode 4.2-1 CW 0.120 0.035 0.043 
111. hr after 0.121 0.032 0.041 
lwitch-on 0.120 0.036 0.042 

0.119 0.038 0.045 

2 4.2-2 CCW 0.113 0.056 0.065 
0.115 0.050 0.062 
0.112 0.060 0.067 
0.110 0.064 0.069 

3 single mode 4.2-10 CW 0.124 0.029 0.034 
6 hr after 0.124 0.031 0.033 
switch-on 0.122 0.033 0.035 

0.123 0.032 0.034 

4 4.2-11 CCW 0.101 0.104 0.116 
0.099 0.110 0.119 
0.096 0.114 0.128 
0.098 0.111 0.118 

5 two 4.2-4 CW 0.124 0.024 0.031 
lDlequal 0.123 0.026 0.032 
modes 0.122 0.027 0.034 

6 4.2-5 CCW 0.120 0.030 0.033 
0.119 0.033 0.036 
0.117 0.035 0.038 

7 two modes 4.2-3 CW+ 0.134 0.008 0.023 
In. hr after CcW 0.134 0.009 0.023 
switch-on 0.135 0.008 0.023 

0.135 0.008 0.022 
0.135 0.009 0.022 

8 two modes 4.2-9 CW+ 0.135 0.009 0.022 
6 hr after CCW 0.134 0.009 0.023 
switch-on 0.134 0.008 0.023 

0.134 0.008 0.022 
0.135 0.009 0.022 

9 two 4.2-6 CW+ 0.161 0.000 0.012 
(other) CCW 0.161 0.001 0.012 
modes 0.160 0.000 0.013 

10 three modes 4.2-7 CW 0.080 0.195 0.215 
0.096 0.162 0.187 

11 4.2-8 CCW 0.127 0.039 0.052 
0.148 0.014 0.031 
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4.2 Results: Solid-Block Gyroscope 

4.2.3 Alternative fitting schemes 

Fig.4.2-12 demonstrates two alternative curve fitting procedures. The data are 

taken from Fig.4.2-2. The two solid lines are the ideal gyroscope signal r-soo 
and the fit appearing in Fig.4.2-2. 

The dashed line is a linear fit to the high n (0)0.07rad/s) tail of the data. 

The obtained values of the scale factor and the null-shift are 

So=O.126-1()6counts/rad and Ow=Q.025rad/s. Note that the scale factor is once again 

well below the expected value and the null-shift is significant 

.... 

30 

20 

10 

0.05 0.10 

n (radii) 

O.lS 

Fig.4.2-12 Alternative fitting schemes (data from Fig.4.2-2): 

solid lines: f = Son = 131 n kHz and f = 113 [(0+0.056)2. 0.0652] 1fl kHz; 

dashed line: f = 126 (0+0.025) kHz; 

broken line: f = 131 [(0+0.068)2 - 0.0812]112 kHz. 
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4.2 Results: Solid-Block Gyroscope 

The broken line is a fit to the low end of the data (Q<O.OSrad/s). The scale 

factor here was assumed to have the expected value of So-O.131·106c0unU/nd. 

The obtained values of the lock-in threshold and the null-shift were 

OL=O.081rad/s and ON=Q.068rad/s. 

The conclusions to be drawn from these fits are twofold. FU'St, the data do 

not extend to rotation rates high enough to achieve the ideal linear form of the 

gyroscope signal. Second, whatever phenomenon is causing the exaggerated 

curvature of the data at low rotation rates, it cannot be extrapolated to higher 

regions using the conventional formula, and the parameters derived from it are 

not valid to describe the rest of the data. 

FigA.2-13 shows the fit to the positive scale factor corrected function 

This was performed in the following manner. Consider at fU'St only the high 

tail of the data ( !l»Qd: the approximate function is then 

f ;: son (1 + '1.
A ) 

n +B 

Given a known so, A and B can be determined by plotting (fISC - 1)-1 against 

n2 and fitting to a first-degree polynomial (Fig.4.2-13a). Following that, CL 

can be determined by calculating the average of 

a'(1 + a':S '1. 
So 

It turns out that for the correct value of So no values of constants A, B and 

nL can be found which will achieve a good fit between the positive scale factor 

corrected function and the data (Fig.4.2-13b). 

99 



20 

lS 

---, 
c::: S 10 
~ -

5 

25 

20 

15 

10 

5 

0.00 om 

0.05 

4.2 Results: Solid-Block Gyroscope 

a 

b 

0.10 

n (radls) 

0.02 0.03 

0.15 

Fig.4.2-13 Data in Fig.4.2-2 fitted to the positive-seale-factor correc1ed function: 

a) intermediate step; b) final fit: 

So=O.131·106counts/rad, A=O.OO4s-2. B=O.0095-2, QL.wO.02rad/S. 
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4.2 Results: Solid-Block Gyroscope 

Nevenheless, it is possible to achieve a good fit to the data by carrying out 

an unconstrained fit, i.e. by treating So as a free parameter (and also optionally 

making use of null shift): Fig.4.2-14 shows the result. Note three points 

regarding the fit First, unlike the standard function, the fit is non-unique: that is 

to say, widely different sets of parameters result in remarkably similar 

functions, all fitting the data equally well. Adding null-shift to the equation will 

give rise to many more possible combinations and an even wider range of 

parameter values. Second, the scale factor is still far below the expected value: 

the discrepancy remains. Third, none of the fits quite follow the bulge in the 

low end of the data, failing to account for this odd feature. 

Thus the goodness of the fit reflects the obvious fact that a function 

possessing an additional rapidly decreasing term governed by two free 

parameters will fit the data better that a function lacking such term. The use of 

the positive scale factor corrected function demonstrably fails to provide an 

explanation for the wrong scale factor or the bulge in the data - as it would had 

Fig.4.2-13b proved a good fit. Nor is it surprising, since it is not to be expected 

that such large effects be fully accounted for by means of an intrinsically 

perturbational theory. 
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4.2 Results: Solid-Block Gyroscope 

a b 

25 25 

20 20 -- --N N 
::I: 15 ::I: 15 
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0.05 0.10 0.15 0.05 0.10 0.15 
n (rad/s) n (radls) 

Fig.4.2-14 Data in Fig.4.2-2 fitted to the positive-scale-factor corrected function: 

a) So=O.llO·l()6counts/rad. OL-=O.OIOrad/s A-o.OI05s-2, B-o.0120s-2, X2:1.0·1()4; 

b) So=O.110·106c0unts/nld, OL-=O.OIOrad/s A=O.0120s-2, B-o.0150s-2, X2=1.1·1()4; 

c) So=O.115·1()6counts/nld, OL-=O.015rad/s A=O.0075s-2, B-o.0080s-2, X2aO.8.1()4; 

d) SO=<>.115·106c0unWrad. OL-=O.015rad/s A-o.0085s-2, B=O.0100s-2, X2=O.9·1()4; 

e) So=O.120·1()6counts/rad, OL_=O.02OradIs A;;:0.0055s-2, B=O.0060s-2, x2:1.l.1()4; 

f) So=O.120·106counts/rad, OL-=O.02Orad/s A;;:O.0070s-2, B=0.00905-2, X2=1.2·1()4; 
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4.2 Results: Solid-Block Gyroscope 

4.2.4 Conclusions 

Having considered all these. one can·draw several conclusions - with varying 

degrees of certainty. 

1. The scale factor variation must be due to the effects of in-phase scattering31 

andlor extreme grating burning across the mirrors31• 

2. The same, in main, can be said with regard to the null-shift. However, it 

must also be mentioned here that Anderson et ai. 3 observed a non-reciprocal 

null-shift in a two-mode gyroscope (see Fig.2.4-7b). It is possible, therefore, 

that a similar mechanism offsets the null-shift in the present case. 

3. The lock-in threshold appears to decrease in proportion to the intensity ratio 

of the two modes. Superficially, this agrees with the predictions of the 

two-mode theory in Ch.2.S. Nonetheless, in view of the extreme distortion of 

the scale factor and the null-shift, it is impossible to say whether this is a 

genuine effect, or an artifact of interpretation, or perhaps another result of the 

same process which gives rise to the other irregularities. 

4. The presence of two modes eliminates the positive scale factor correction. It 

probably achieves this through preventing formation of a standing wave in the 

resonator, thus precluding the burning of grating across the mirrors. 

To conclude: if the experimental data cannot, with any certainty. be said to 

support the lock-in reduction theory, they do not contradict it either. On the 

other hand, they do provide a firm evidence that the presence of two modes 

significantly affects the operation of a ring laser gyroscope. 
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5. Conclusion 

s. CONCLUSION 

It has been the aim of this work to investigate the possibility of lock-in 

reduction in a two-mode ring laser gyroscope. 

For this purpose, a new two-mode lock-in theory was developed which 

extended the single-mode theory to the two-mode case by employing techniques 

used in the analysis of two coupled lasers. The theory makes no use of 

small-signal approximation and is valid for all values of intensity ratio. The 

result was a function having a rapidly oscillating component superimposed on 

the one-mode form, the amplitude of oscillation being proponional to the 

intensity ratio of the two modes. 

The two-mode equation was found to have no analytic solution; a numerical 

solution indicated that the time-averaged behaviour of the two-mode function 

may be similar in all respects to the one-mode case. However, solutions of the 

two-mode equation were shown to be non-unique: analysis indicates that in 

certain special circumstances some of them may lead to threshold reduction. If 

the reduction takes place, it will be in proportion to the intensity ratio of the two 

modes, possibly eliminating lock-in when the modes are equal. The theory does 

not provide means for determining whether these special circumstances obtain 

in practice. All considered, therefore, no conclusion can be drawn from this 

version of two-mode theory as to the efficacy of two-mode operation in 

reducing the lock-in threshold. 

A ring laser gyroscope testing set-up was developed in order to verify the 

conjecture experimentally. The set-up consisted of a rate table, a digital circuit 

linked to a computer to record gyroscope signal versus rotation rate, and a 

Fabry-Perot spectrum analyser coupled with a piezoelectric mirror to control 
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5. Conclusion 

and monitor the mode structure. Unfortunately, the motion of the rate table at 

low speed was uneven. while the limited digitisation resolution caused large 

errors at high speed. These factors together set the boundaries of the useful 

experimental range of rotation rates. 

Two ring laser gyroscopes were used. FlI'St. a modular ring laser was built. 

Running single-mode, it perfonned as expected theoretically, yielding the 

correct scale factor and the expected order of magnitude of the lock-in 

threshold. However, the discharge tube had been filled with the natural mixture 

He:Ne20lNe22 instead of the proper gyroscope half-and-half mix. This. together 

with the inherent mechanical instability of a modular laser, prevented it running 

on two modes. 

The second gyroscope was a BAe solid-block model. It possessed stable 

modes easily adjustable with a piezo-mirror. However, the control over the 

mode structure was poor. precluding the possibility of obtaining two equal 

modes without having a third one appear as well. Unhappily, it also had 

presumably defective mirrors which gave rise to extreme Hennitian scattering 

and grating burning. 

The results were thus equivocal. The presence of a second mode clearly 

influenced the operation of the ring laser, the effect being most noticeable for 

modes of similar intensities. However. the general behaviour of the system was 

so irregular, so many parameters appeared to be affected, that it was impossible 

to tell whether the difference was due to reduction in lock-in threshold or to 

some other processes. Furthennore. the perturbative theory of positive scale 

factor correction failed to achieve a good fit to the data for realistic values of 

scale factor and null-shift, thus showing itself unsuitable for treating such 

severe effects. The most important deviations from the expected behaviour - the 

scale factor errors - were the apparently incorrect scale factor and the large 

106 



5. Conclusion 

non-reciprocal null-shift; another was the odd bulge of positive scale factor 

correction at low rotation rates. All these errors were greatly reduced in the 

presence of two modes. On balance, one may conclude that although the data 

cannot be said to demonstrate threshold reduction, it does not exclude it either, 

indeed there are hints that it may be taking place. 

The three-mode operation showed no clear trend; no attempt was made to 

provide a theoretical description of it. 

Altogether the most salient experhnental result was that the presence of two 

modes greatly reduces, or perhaps in some circumstances even eliminates, the 

effects which give rise to various forms of positive scale factor correction. One 

possible explanation may be that the rapid oscillation prevents or counteracts the 

formation of a grating across the mirrors. 

In conclusion, both the theory developed in Ch.2.S and the experiments 

described in Ch.4.2 hint at the possibility of lock-in reduction by means of 

two-mode operation. Since the system has the advantages of having a simple 

resonator and lacking moving parts, it may well deserve funher investigation. 

Further work 

With regard to theory, it would be of great interest to try to obtain a 

time-averaged numerical solution of the lock-in equation and to investigate its 

dependence on the various parameters of the system. In addition, an attempt 

may be made to extend the theory to three modes. 

As far as experimental work is concerned. for a thorough investigation of all 

aspects of two-mode gyroscope operation a semi-modular ring laser appears to 

be necessary. This would on the one hand possess a rigid structure not 

susceptible to vibration; while on the other having adjustable mirrors, and 

perhaps apertures as well, to allow full mode selection and control. Needless to 
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5. Conclusion 

say, the experiments would require a commercial rate table. 

Among questions to be answered are: What is the difference, if any, 

between the effect of a longitudinal-longitudinal pair and a longitudinal-

transverse pair? Does a TEMutoo-TEMmlO pair behave differently from a 

TEMmOO-TEM(m+l)10 pair? What is the margin of error on the two-mode 

intensity ratio which yet preserves acceptably low threshold? How can a given 

mode configuration be stabilised without the recourse to a continuous specoum 

analyser monitoring? 
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APPENDIX 

1. Proof of Eq.Z.5.3-2 

Let ",(t) be differentiable everywhere. 

Define F(t) = ",(t+ n -",(t) 

Then F(t) = w(t+ n -o/(t) 

. . 
If ",(t+ n = ",(t) 

F(t) is differentiable 

then F(t) = 0 => F(t) = constant = A 

Then ",(t) = ",(t+ n -A 

2. Proof of Eq.2.S.3-4 

Assume ",(t+ n = 'V(t) + A 

Let 

Then 

'P(t) = _1 J toNI' 'If{u) dJ 
Nfl 

then 'V(t+N1) - ",(t) = NA 

for any integer N 

Appendix 

-¥(t) = 'I'(t+h) - 'I'(t) = _1_ [f l+h+NT ",(U) 00 - f l+NT 'If{u) 00] 
h hNT t+h l 

1 [fl+h fl+h+NT] = .m - 'V(U) dJ + ",(U) OJ 
t t+NT 

Let v=u-NT 
then 
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Thus 

'P(t) = _1_ [_ Jt+h'll<U) c:b + f+ft'll<v+N1) c:tv] 
hNT t t 

s ti.r [r !.<1l+NI') -ljI{u») ell] 

= ti.r [r NA ell] 

. A 
'P(t) = -

T 

=> 'P(t) = constant + A 
T 

3. Time average over a period of arbitrary length T* 

Assume 'I'(t+ T) = 'I'(t) + A 

Then (letting v = U - T ) 

1 f t+T+T* 1 f t+r-
'P(t+ T) = - 'l'<u) w = - 'I'(v+ T) dv 

'r' t+T 'r' t 

1 It+r- 1 It+r-= - hv(v) + A) dv = - '!I(v) dv + A 
'r't 'r't 

= 'P(t) + A 

. . 
Also 'P(t+ T) = 'P(t) . 

Appendix 

=> 'P(t) is periodic with period T 
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Appendix 

4. Non-uniqueness 

It is possible that for a given m two ~lutions having different n's may pass 

through the same point. 

For example, consider solutions '1'1 (t) and 'l'2(t). 

Let 

and 

where 

"'1(t) = 'l'1(t+2m7t/avv -2nln 

'l'2(t) = 'l'2(t+2mn/avv -2n2n 

Let both 'l'1(t) and 'l'2(t) have initial condition '1'1(0) = '1'2(0) = '1'0· 

Then 

and 

Subtracting gives 

'1'1(0) = '1'0 = 'l'1(2mn/av2) - 2n1n 

"'2(0) = '1'0 = "'2(2mn/Av2) - 2n2n 

'l'1(2mn/Av2) - 'l'1(2mnlAv2) = 2n(n1-n2) * 0 

Hence "'1 (t) and "'2(t) both pass through (0.'1'0) but differ at t=2m1t/av2: 

they are therefore distinct functions. 

Consequently a solution with given initial condition is not unique. 

5. Numerical solution 

The numerical solutions shown in Fig.A-l were obtained using the Runge­

Kutta method. Apart from the superimposed rapid fluctuation, all solutions 

calculated in this way are identical to the analytical ones for the one-mode case. 

However, due to the fluctuation, they remain periodic for all values of K. 
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Fig.A-l Numerical solutions of the two-mode lock-in equation: 

L\V2=20 (for better clarity in printing). p:O.l; 

the smooth line denotes the one-mode solution. 
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