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A non-linear Abel-type equation is obtained in the paper to model 
reep
ra
k time-dependent propagation in the in�nite vis
o-elasti
 plane. A �nitetime when the integral equation solution be
omes unbounded is obtained an-alyti
ally as well as the equation parameters when solution blows up for alltimes. A modi�
ation to the Nyström method is introdu
ed to numeri
allysolve the equation and some 
omputational results are presented.1.1 Introdu
tionThe strength of materials under 
reep 
onditions depends not only on theinstant value of the load but also on the load duration and generally on thetemporal load history. This e�e
t is essential, e.g. for 
on
rete and some plas-ti
s under room temperature, and for stru
tural metals under elevated tem-peratures. The temporal strength 
ondition under 
onstant uniaxial stress,starting at time t = 0, takes the form
|σ| < σ∗(t) i.e., |σ|

σ∗(t)
< 1, (1.1)where the dependen
e of the temporal strength on time has a form shown inFig. 1.1.A popular approximation of the temporal strength σ∗(t) is the power-typefun
tion, given by σ∗(t) = σ0t−1/b that we will 
all (similar to fatigue) theBasquin diagram, where σ0 and b are 
onstant material parameters, see e.g.[Ra69, PeMa71℄.When the load is not 
onstant but varies with time, di�erent generaliza-tions of relation (1.1), often 
alled a

umulation rules, are possible. A novela

umulation rule for life time under variable loading, given in [MiNa09℄ hasthe following form,
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Fig. 1.1. Durability diagram: material strength σ
∗(t) under 
onstant uniaxial stressas fun
tion of life time.
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< 1, (1.2)where σ∗(t) is the durability under 
onstant loading and β 6= 0 is anothermaterial 
onstant.Parti
ularly for the Basquin diagram σ∗(t) = σ0t−1/b, temporal strength
ondition (1.2) takes the form,
Λ(σ; t) =

[
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dt

∫ t
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< 1.As remarked in [MiNa09, MiNa11℄, for β = b the above strength 
ondition isequivalent to the Robinson partial life time linear a

umulation rule.Further generalizations are needed for the multiaxial loading. One of them,that we will further employ, is substituting the maximal prin
ipal stress for σin (1.2) and (1.3).Let us apply temporal strength 
ondition (1.3) to predi
t 
ra
k propaga-tion in a vis
o-elasti
 isotropi
 in�nite plane loaded at in�nity at time t = 0by a tra
tion q 
onstant in spa
e and time, see Fig. 1.2.Let the 
ra
k have a length of 2a(τ). The stress distribution σ22(τ ;x1)ahead of the 
ra
k in an in�nite elasti
 isotropi
 (or orthotropi
) plane hasthe following form (e.g. [Sa61℄), whi
h remains valid also for the vis
o-elasti
material, see [Ra80℄,
σ22(τ ;x1) =

qx1
√

x2
1 − a2(τ)

. (1.4)Note that due to the problem symmetry, σ22 is a prin
ipal stress 
omponentat x2 = 0.Assuming that the durability of the vis
o-elasti
 material is des
ribed bythe durability 
ondition given in (1.3) with σ = σ22(τ, x1), we substitute there
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Fig. 1.2. Cra
k in an in�nite planestress distribution (1.4). Repla
ing the inequality with the equality at the tipof the propagating 
ra
k, x1 = a(t), we arrive at the following nonlinearVolterra integral equation and initial 
ondition for a(τ),

∫ t

0

(t− τ)
β
b
−1

[a2(t)− a2(τ)]β/2
dτ = ca−β(t), t > 0, (1.5)

a(0) = a0, (1.6)where b, β > 0, c = b

β

( q

σ0

)

−β and the initial 
ra
k half-length a0 are known
onstants.Normalising the variables t → t/t∞ and a → a/a0, where t∞ = (σ0/q)
bis the life time of the in�nite plane without a 
ra
k under the same load q,simpli�es the problem to

∫ t

0

(t− τ)
β
b
−1

[a2(t)− a2(τ)]
β
2

dτ =
b

β
a−β(t). (1.7)

a(0) = 1, (1.8)The fun
tion to be sought is a(t), whi
h denotes the normalized length of the
ra
k, and t denotes the normalized time.1.2 Integral Equation Chara
terizationEquation (1.7) is a non-linear Volterra integral equation and more spe
i�-
ally, sin
e the integrand has a week singularity as τ approa
hes t, this is anintegral equation of the Abel type. The unknown fun
tion parti
ipates nonlin-early both in the integrand and in the out-of-integral term, and the integranddepends not only on a(τ) but also on a(t).For β = b, equation (1.7) was obtained and solved analyti
ally in [MiNa03a,MiNa03b℄. For this 
ase the equation is redu
ed to a simpler Abel-type integralequation,
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ab(t)

∫ t

0

1

[a2(t)− a2(τ)]
b
2

dτ = 1. (1.9)After the 
hange of dependent and independent variables (
f. also [GoVe91℄)the equation be
omes linear, and the solution 
an be written as
t(a) = 1−

(a0
a

)2−b 2 sin
(

π(b−2)
2

)

π(b− 2)
2F1

(

1−
b

2
, 1−

b

2
, 2−

b

2
;
a20
a2

) (1.10)where 2F1 is the hypergeometri
 fun
tion.One 
an 
on
lude from (1.10) that the solution a(t) of equation (1.9) tendsto in�nity as t → 1. That is, the 
ra
k propagates through the whole in�niteplane in the normalized time t = 1. Another one 
on
lusion from expression(1.10) is that the solution of (1.9) does exist when 0 < b < 2 and blows upwhen b → 2. The latter phenomenon also follows from the observation thatthe integral does not exist in (1.9) for β = 2 for any t.Let us analyse these e�e
ts for more general 
ases of equation (1.7). Fromme
hani
al reasonings, we assumed that parameters b and β are positive. Atany t where the fun
tion a(τ) has a 
ontinuous derivative a′(t), the integrandin (1.7) tends to
(t− τ)

β
b
−

β
2
−1[2a(t)a′(t)]−

β
2as τ → t. Thus for the integral in (1.7) to exist, we obtain the same 
ondition

0 < b < 2 as for equation (1.9).To �nd the normalized breaking time t as a(t) tends to in�nity, let usmultiply both sides of equation (1.7) by aβ(t) to arrive at the equation
∫ t

0

(t− τ)
β
b
−1aβ(t)

[a2(t)− a2(τ)]
β
2

dτ =
b

β
(1.11)and 
onsider its limit as a(t) → ∞. Evidently,

lim
a(t)→∞

aβ(t)

[a2(t)− a2(τ)]
β
2

= 1.Assuming that the limit 
an be transferred under the integral, the limit ofequation (1.11) redu
es to
∫ t

0

(t− τ)
β
b
−1dτ =

b

β
.Evaluating the integral yields t

β
b = 1, whi
h gives t = 1. Therefore for any

β > 0 and b ∈ (0, 2), the normalized breaking time is t = 1 if the assumptionon the limit transfer is 
orre
t.
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al AlgorithmsNo exa
t or numeri
al solution of equation (1.7) seems to be available in theliterature for 
ases when β 6= b. This paper aims to solve numeri
ally equation(1.7) in order to �nd the normalized 
ra
k length, a, as the normalized time,
t, in
reases, for di�erent values of β.There is a wide range of numeri
al methods for solving Fredholm andVolterra equations. One of the methods is known as the Nyström method andis explained in details e.g. in [At97℄. However, the standard Nyström methodis not well suited for integral equations with singularities. Therefore, to usethe Nyström method for �nding approximate solutions to equation (1.7), wemodi�ed it as des
ribed in the following.Let us introdu
e a mesh of n node points, 
ontaining equidistant timesteps, ti = ih, where h is the step size, i = 0, 1, 2, ..., n . Then, we apply
ollo
ations for equation (1.7) in the node points starting from i = 1,

∫ ti

0

(ti − τ)
β
2
−1

[a2(ti)− a2(τ)]
β
2

dτ =
b

β
a−β(ti), i = 1, 2, ..., n. (1.12)To handle the singularity, we split the integral into two parts,

∫ ti−1

0

(ti − τ)
β
b
−1

[a2(ti)− a2(τ)]
β
2

dτ +

∫ ti

ti−1

(ti − τ)
β
b
−1

[a2(ti)− a2(τ)]
β
2

dτ =
b

β
a−β(ti)

i = 1, 2, ..., n, (1.13)where the �rst integral disappears if i = 1.First, we use linear interpolation to approximate the square bra
ket termin the denominator of the se
ond integral,
a2(ti)− a2(τ) ≈ [a2(ti)− a2(ti−1)]

ti − τ

h
, ti−1 ≤ τ ≤ ti, i = 1, 2, ..., n.(1.14)Then substituting this approximation into the se
ond integrand of equation(1.13), applying a quadrature rule to the �rst integral and denoting ai = a(ti),we redu
e problem (1.7)-(1.8) to the following triangular algebrai
 system for

aj , j = 0, ..., n,
a0 = 1, (1.15)
i−1
∑

j=0

(ti − tj)
β
b
−1

[a2i − a2j ]
β
2

wi−1,j +

(

h

a2i − a2i−1

)
β
2
∫ ti

ti−1

(ti − τ)
β
b
−1− β

2 dτ

=
b

β
a−β
i , i = 1, 2, ..., n, (1.16)where wi−1,j represent the quadrature weights. To make equation (1.16) validfor i = 1 we set w0,j = 0.
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an rewrite equation(1.16) as
i−1
∑

j=0

(ti − tj)
β
b
−1

[a2i − a2j ]
β
2

wi−1,j+
h

β
b

(

β
b − β

2

)

[a2i − a2i−1]
β
2

=
b

β
a−β
i i = 1, ..., n. (1.17)Sin
e the summation term vanishes in (1.17) for i = 1, we 
an �nd from(1.15) and (1.17) an expli
it expression for a1 in terms of h, β and b,

a1 =



1−

[

β

b
h

β
b

(

β

b
−

β

2

)

−1
]

2

β





−
1

2

. (1.18)To �nd ai for i ≥ 2 we will use a numeri
al algorithm. The trapeziumquadrature rule was used further in this paper, i.e., the quadrature weights inequation (1.17) have the form
wi−1,j =







h

2
for j = 0 or j = i− 1

h otherwise .Substituting the weights and making simpli�
ations, equation (1.17) 
anbe written as
F (ai, i) :=

h(ti − t0)
β
b
−1

2[a2i − a20]
β
2

+ h

i−2
∑

j=1

(ti − tj)
β
b
−1

[a2i − a2j ]
β
2

+

h
β
b

(

1 + 2
(

β
b − β

2

)

−1
)

2[a2i − a2i−1]
β
2

−
b

β
a−β
i = 0, i = 2, 3, ..., n. (1.19)For a �xed i, we will solve non-linear equation (1.19) for ai using the New-ton method. Thus, ea
h ai will be approximated using the following iterativerelation

ai,k+1 = ai,k −
F (ai,k, i)

F ′(ai,k, i)
i = 2, ..., n. (1.20)where F ′(ai, i) denotes the derivative of F (ai, i) with respe
t to ai. Here, irefers to the 
ollo
ation point in the mesh, while k is the iteration step in theNewton method. Di�erentiating and simplifying the result yields the followingexpression for the derivative of F (ai, i),

F ′(ai, i) = −
hβai(ti − t0)

β
b
−1

2[a2i − a20]
β
2
+1

− h

i−2
∑

j=1

βai(ti − tj)
β
b
−1

[a2i − a2j ]
β
2
+1

−

h
β
b βai

(

1 + 2
(

β
b − β

2

)

−1
)

2[a2i − a2i−1]
β
2

+ ba−β−1
i , i = 2, ..., n.
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al problems related with the in�nite growth of a(t) as
t → 1 while 
omputing the iterations in the Newton method solving equation(1.16), we introdu
ed a new variable,

Ai =
1

a2i
. (1.21)Thus, by substituting (1.21) in (1.16) and dividing it by A

β/2
i , we arrive atthe equation

G(Ai, i) =
h(ti − t0)

β
b
−1

2
[

1− Ai

A0

]β/2
+

h
β
2

(

1 + 2
(

β
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2

)
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)

2
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]
β
2

+
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∑

j=1

h(ti − tj)
β
b
−1

[

1− Ai
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]
β
2

−
b

β
= 0, i = 2, 3, ..., nCal
ulating the derivative of G with respe
t to Ai gives

G′(Ai, i) =
βh(ti − t0)

β
b
−1

4A0

[
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]
β
2
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+

βh
β
b

(
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(

β
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)
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[
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β
2
+1

+
i−2
∑
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βh(ti − tj)
β
b
−1

2Aj

[

1− Ai

Aj

]
β
2
+1

,and we 
an �nd values of Ai by using the Newton method
Ai,k+1 = Ai,k −

G(Ai,k, i)

G′(Ai,k, i)
where i = 2, 3, ..., nand then obtain ai = 1/

√

Ai.This algorithm modi�
ation 
an be asso
iated with solving numeri
allythe equation in the form of equation (1.11) instead of (1.7).1.4 Numeri
al ResultsThe des
ribed algorithms were implemented using MATLAB as a program-ming language. As was already dis
ussed, we are interested in the parameterranges β > 0, 0 < b < 2. The numeri
al examples given in this paper are for
b = 1.5 and several values of β.First, we 
onsider the 
ase β = b, for whi
h exa
t solution (1.10) is avail-able, and plot on the same graph, Fig. 1.3, the exa
t and numeri
al solutions
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Fig. 1.3. Creep 
ra
k length vs. normalized time for di�erent n, β = b = 1.5.
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Fig. 1.4. Zoomed in version of the graphs from Fig. 1.3.for a verses t for di�erent numbers of steps, n, on the interval 0 < t < 1. Thezoomed in part of the plot is given in Fig. 1.4. The graphs show the numeri
alsolution 
onvergen
e to the exa
t solution, as n in
reases.To quantify the 
onvergen
e, let us 
onsider the relative error
ǫ =

maxi(| Ai,approx −Ai,exa
t |)
maxi(| Ai,exa
t |) . (1.22)Note thatmaxi(| Ai,exa
t |) = A0 = a−2

0 = 1 in our 
ase. For b = 1.5, the graphin Fig. 1.5 represents the error verses n, where both axes are in logarithmi
s
ale.One 
an expe
t that the 
onvergen
e at other values of the parameter β,where no analyti
al solution is available, will have the same 
hara
ter as for
β = b and, parti
ularly, for the number of steps, n = 500, the error in A willnot ex
eed 1%.
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Fig. 1.5. Error for A vs. n for b = β = 1.5Figs. 1.6, 1.7 present numeri
al results for the 
ases β = 2b, β = b/2, and
β = 1 with n = 500 on the graphs of ln[a(t)/a0] verses t, and the graphs of
A(t)/A0 verses t.
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Fig. 1.6. Creep 
ra
k length vs. normalized time for b = 1.5Graphs representing A(t) are parti
ularly useful for analysing the breakingtime; this is when the 
urve 
rosses the time axes, sin
e the 
ra
k length
a = 1/A2 tends to in�nity when A tends to zero. From the graph in Fig. 1.7,we 
an see that when β = 2b the normalized breaking time is t = 1. For othervalues of β, it is not 
ompletely 
lear from the graphs but we 
ome to thesame 
on
lusions under the assumption made in Se
tion 1.2.
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lusionA non-linear Abel-type equation, whi
h kernel depends on the unknown fun
-tion at several values of the variable, was obtained in the paper to model 
reep
ra
k propagation in the in�nite vis
o-elasti
 plane.A modi�
ation to the Nyström method was introdu
ed to numeri
allysolve the equation. The numeri
al results obtained for the spe
ial 
ase β =
b, and the analysis of the error with respe
t to the mesh size, demonstrate
onvergen
e of the modi�ed Nyström method and indi
ate that this s
heme
an be applied to solve the integral equation with other values of the parameter
β and also more general nonlinear Abel-type equations.From the results on the 
reep 
ra
k growth presented in the paper, one
an 
on
lude that an in
rease of the parameter β de
reases the 
ra
k growthrate. The theoreti
al analysis of the integral equation shows that its solutionblows up at b ≥ 2 for any β > 0. On the other hand, for 0 < b < 2 and any
β > 0, the normalized breaking time for an in�nite plane with a 
ra
k is t = 1.Under some fatigue models, the analysis of fatigue 
ra
k propagation in anelasti
 material 
an be similarly redu
ed to equation (1.7), where the time, t,should be however repla
ed with the number of load 
y
les, n, 
f. [MiNa03a℄.One 
an use this similarity to make 
orresponding 
on
lusions about the fa-tigue 
ra
k propagation as well.Referen
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