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A non-linear Abel-type equation is obtained in the paper to model creep
crack time-dependent propagation in the infinite visco-elastic plane. A finite
time when the integral equation solution becomes unbounded is obtained an-
alytically as well as the equation parameters when solution blows up for all
times. A modification to the Nystrom method is introduced to numerically
solve the equation and some computational results are presented.

1.1 Introduction

The strength of materials under creep conditions depends not only on the
instant value of the load but also on the load duration and generally on the
temporal load history. This effect is essential, e.g. for concrete and some plas-
tics under room temperature, and for structural metals under elevated tem-
peratures. The temporal strength condition under constant uniaxial stress,
starting at time ¢ = 0, takes the form

o]
o*(t)

where the dependence of the temporal strength on time has a form shown in
Fig. 1.1.

A popular approximation of the temporal strength o*(¢) is the power-type
function, given by o*(t) = ¢°t~/® that we will call (similar to fatigue) the
Basquin diagram, where ¢° and b are constant material parameters, see e.g.
[Ra69, PeMaT1].

When the load is not constant but varies with time, different generaliza-
tions of relation (1.1), often called accumulation rules, are possible. A novel
accumulation rule for life time under variable loading, given in [MiNa09] has
the following form,

lo| <o*(t) ie., <1, (L.1)
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Fig. 1.1. Durability diagram: material strength o*(¢) under constant uniaxial stress
as function of life time.

s[4 ]

where 0*(t) is the durability under constant loading and S # 0 is another
material constant.

Particularly for the Basquin diagram o*(t) = 6°t~'/®, temporal strength
condition (1.2) takes the form,

d t
4<a;t>=[5/0
1/
= i taTﬁ —7'%717
_[bog/o|()|(t ) d] <1

As remarked in [MiNa09, MiNall], for § = b the above strength condition is
equivalent to the Robinson partial life time linear accumulation rule.

Further generalizations are needed for the multiaxial loading. One of them,
that we will further employ, is substituting the maximal principal stress for o
in (1.2) and (1.3).

Let us apply temporal strength condition (1.3) to predict crack propaga-
tion in a visco-elastic isotropic infinite plane loaded at infinity at time t = 0
by a traction ¢ constant in space and time, see Fig. 1.2.

Let the crack have a length of 2a(7). The stress distribution oaa(7;21)
ahead of the crack in an infinite elastic isotropic (or orthotropic) plane has
the following form (e.g. [Sa61]), which remains valid also for the visco-elastic
material, see [Ra80],

o(7)

8 1/8
dT‘| <1, (1.2)

o(r) |

a0

1/6
(t— T)B/de] (1.3)

qry

_— 1.4
x? —a?(1) (1.4)

0'22(7—; Jil) =

Note that due to the problem symmetry, o2z is a principal stress component
at x9 = 0.

Assuming that the durability of the visco-elastic material is described by
the durability condition given in (1.3) with o = 092(7, 1), we substitute there
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Fig. 1.2. Crack in an infinite plane

stress distribution (1.4). Replacing the inequality with the equality at the tip
of the propagating crack, 1 = a(t), we arrive at the following nonlinear
Volterra integral equation and initial condition for a(7),

¢ t— 7)1 B
|| s = e 0. >0 (15)

a(0) = ao, (1.6)

b -8
where b, > 0, c = = (i) and the initial crack half-length a¢ are known
o

3 \o0
constants.

Normalising the variables ¢ — ¢/to and a — a/ag, where too = (00/q)"
is the life time of the infinite plane without a crack under the same load g¢,
simplifies the problem to

t im _ b, 1.7
/0 [a?(t) — a*(7)] w 47

[N]e)
=

a(0) = 1, (1.8)

The function to be sought is a(t), which denotes the normalized length of the
crack, and ¢ denotes the normalized time.

1.2 Integral Equation Characterization

Equation (1.7) is a non-linear Volterra integral equation and more specifi-
cally, since the integrand has a week singularity as 7 approaches ¢, this is an
integral equation of the Abel type. The unknown function participates nonlin-
early both in the integrand and in the out-of-integral term, and the integrand
depends not only on a(7) but also on a(t).

For 8 = b, equation (1.7) was obtained and solved analytically in [MiNa03a,
MiNa03b]. For this case the equation is reduced to a simpler Abel-type integral
equation,
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ab(t t;dezl. 1.9
()/o [a*(t) — a?(7)]2 ()

After the change of dependent and independent variables (cf. also [GoVe91])
the equation becomes linear, and the solution can be written as

a2 2sin (252) b b b al
ta)=1- (L) — > 2 J . p(1-2,1-2,2-2%) (110
(e) (a) tb—2) ° 1< 2’ 27T Y 2) (1.10)

where 9 F} is the hypergeometric function.

One can conclude from (1.10) that the solution a(t) of equation (1.9) tends
to infinity as ¢t — 1. That is, the crack propagates through the whole infinite
plane in the normalized time ¢ = 1. Another one conclusion from expression
(1.10) is that the solution of (1.9) does exist when 0 < b < 2 and blows up
when b — 2. The latter phenomenon also follows from the observation that
the integral does not exist in (1.9) for 8 = 2 for any ¢.

Let us analyse these effects for more general cases of equation (1.7). From
mechanical reasonings, we assumed that parameters b and § are positive. At
any t where the function a(7) has a continuous derivative a’(¢), the integrand

n (1.7) tends to
8

(t —7)2 % 2a(t)a’ (1) 2
as 7 — t. Thus for the integral in (1.7) to exist, we obtain the same condition
0 < b < 2 as for equation (1.9).

To find the normalized breaking time ¢ as a(t) tends to infinity, let us
multiply both sides of equation (1.7) by a”(t) to arrive at the equation

G )"1_(1%7 b 1.11
/o[a2<t>—a2< A —

and consider its limit as a(t) — co. Evidently,

m @
a(t)—oo [a2(t) — a2(7)] 2

Assuming that the limit can be transferred under the integral, the limit of

equation (1.11) reduces to
t
B_1 b
t—71)0 dr ==
fjenitr=3

Evaluating the integral yields - 1, which gives t = 1. Therefore for any
B8 >0 and b € (0,2), the normalized breaking time is ¢ = 1 if the assumption
on the limit transfer is correct.
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1.3 Numerical Algorithms

No exact or numerical solution of equation (1.7) seems to be available in the
literature for cases when (8 # b. This paper aims to solve numerically equation
(1.7) in order to find the normalized crack length, a, as the normalized time,
t, increases, for different values of /3.

There is a wide range of numerical methods for solving Fredholm and
Volterra equations. One of the methods is known as the Nystrém method and
is explained in details e.g. in [At97]. However, the standard Nystrom method
is not well suited for integral equations with singularities. Therefore, to use
the Nystrom method for finding approximate solutions to equation (1.7), we
modified it as described in the following.

Let us introduce a mesh of n node points, containing equidistant time
steps, t; = ith, where h is the step size, + = 0,1,2,...,n . Then, we apply
collocations for equation (1.7) in the node points starting from i = 1,

" (ti-m)E dr =208, i=1,2,..n. 1.12
/0 [a2(t;) — a%(r)) 2 B (t:), i (1.12)

To handle the singularity, we split the integral into two parts,

(o T)%A dr + ’ (ti = T)%A dr = éafﬁ t;
/0 [a2(t;) — CLQ(T)]g /til [a2(t;) — a2(7')]§ g (t:)
' , (1.13)

where the first integral disappears if ¢ = 1.
First, we use linear interpolation to approximate the square bracket term
in the denominator of the second integral,

ti—T

a’(t;) — a®(7) = [a®(t;) — a®(ti—1)] P

tic1 <7<t 1=12,..,n.

(1.14)
Then substituting this approximation into the second integrand of equation
(1.13), applying a quadrature rule to the first integral and denoting a; = a(t;),
we reduce problem (1.7)-(1.8) to the following triangular algebraic system for
aj,7=0,..,n,

ap =1, (1.15)
i—1 B 8 )
ti—t;)5 ! h 7 b
yo ) w+< . ) [ w-mpiar
2 215 2 _
=0 a7 —ajl> ay —a;_q ti1
b o
= 34 B i=1,2,..,n, (1.16)

where w;_1_ ; represent the quadrature weights. To make equation (1.16) valid
for i =1 we set wg ; = 0.
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Evaluating the integral and simplifying the result, we can rewrite equation
(1.16) as

i—1 B

ti_t 3*1 h,? b _
Z%wiflﬁ- =—a;? i=1,..n (117
— a2 — a3 ’ 8_B\r2_.2 12 B°
j=o0 lai —aj b —g)lai —ai4]®

Since the summation term vanishes in (1.17) for ¢ = 1, we can find from
(1.15) and (1.17) an explicit expression for a; in terms of h, 8 and b,

1 F
ar=[1- [ghf <§ - g) ] . (1.18)

To find a; for ¢ > 2 we will use a numerical algorithm. The trapezium
quadrature rule was used further in this paper, i.e., the quadrature weights in
equation (1.17) have the form

h
Wi—1,57 = 2
h  otherwise

forj=0o0rj=:—-1

Substituting the weights and making simplifications, equation (1.17) can
be written as

B i—2 B
i h(fi—t0)3_1 (ti—t‘)f_
Flag,i):= — =2+ h) g
2[aj — ag)> =1 laf — a‘j] 2

a;? =0, i=23,..,n (1.19)

For a fixed 4, we will solve non-linear equation (1.19) for a; using the New-
ton method. Thus, each a; will be approximated using the following iterative

relation . )
F/(ai,kv 7’)
where F’(a;,4) denotes the derivative of F(a;,i) with respect to a;. Here, i
refers to the collocation point in the mesh, while k is the iteration step in the
Newton method. Differentiating and simplifying the result yields the following
expression for the derivative of F'(a;,1),

é i—2

b

hPalti )P S Pailti - ;)51

Bai(ti —t;)7
2[a2—a = e} —a} +1

h' Ba; (1 +2 (gj -4 1)

B
2[“12 - azz—l] 2

Qi k41 = Qi ke — n. (1.20)

F/(ai,i) =

+ba; Y i=2,.,n.
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To avoid the numerical problems related with the infinite growth of a(t) as
t — 1 while computing the iterations in the Newton method solving equation
(1.16), we introduced a new variable,
1

A= —. 1.21
= (121)

Thus, by substituting (1.21) in (1.16) and dividing it by Af/2, we arrive at
the equation

5 -1
hz (1 +2(8-8 ) i—2 8
g b2 e
G(Asi) = h(t; — to) ( ) h(t; —t;)

=)

Calculating the derivative of G’ with respect to A; gives

-1
Bh(t; — to) 7! . Bh% <1 +2 (% - g) )

TOA. 2 —
G'(Ai, 1) A5+ A 1541
140 |1 - 4] 141 1 - 424
i—2 8
Bh(t; —t;)5 "}
+Z1 a1t
=, 1 ]
and we can find values of A; by using the Newton method
G(Ai,kv Z) .
Aipr1 = Aig — A where i=23,..,n

and then obtain a; = 1/4/A4;.
This algorithm modification can be associated with solving numerically
the equation in the form of equation (1.11) instead of (1.7).

1.4 Numerical Results

The described algorithms were implemented using MATLAB as a program-
ming language. As was already discussed, we are interested in the parameter
ranges § > 0, 0 < b < 2. The numerical examples given in this paper are for
b = 1.5 and several values of 3.

First, we consider the case 8 = b, for which exact solution (1.10) is avail-
able, and plot on the same graph, Fig. 1.3, the exact and numerical solutions
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Fig. 1.4. Zoomed in version of the graphs from Fig. 1.3.

for a verses t for different numbers of steps, n, on the interval 0 < ¢ < 1. The
zoomed in part of the plot is given in Fig. 1.4. The graphs show the numerical
solution convergence to the exact solution, as n increases.

To quantify the convergence, let us consider the relative error

maXi(| Ai,approx - Ai,exact |)

1.22
max; (l Ai,exact |) ( )

€ =

Note that max; (| A; exact |) = 4o = agz = 1in our case. For b = 1.5, the graph
in Fig. 1.5 represents the error verses n, where both axes are in logarithmic
scale.

One can expect that the convergence at other values of the parameter 3,
where no analytical solution is available, will have the same character as for
B = b and, particularly, for the number of steps, n = 500, the error in A will
not exceed 1%.
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Fig. 1.5. Error for Avs. nforb=p5=1.5

Figs. 1.6, 1.7 present numerical results for the cases § = 2b, 8 = b/2, and
B =1 with n = 500 on the graphs of In[a(t)/a¢] verses ¢, and the graphs of
A(t)/ Ao verses t.

T B=b/2=0.75 B=1," ]

Fig. 1.6. Creep crack length vs. normalized time for b = 1.5

Graphs representing A(t) are particularly useful for analysing the breaking
time; this is when the curve crosses the time axes, since the crack length
a = 1/A? tends to infinity when A tends to zero. From the graph in Fig. 1.7,
we can see that when 5 = 2b the normalized breaking time is ¢ = 1. For other
values of f3, it is not completely clear from the graphs but we come to the
same conclusions under the assumption made in Section 1.2.
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Fig. 1.7. A vs. normalized time for b = 1.5

1.5 Conclusion

A non-linear Abel-type equation, which kernel depends on the unknown func-
tion at several values of the variable, was obtained in the paper to model creep
crack propagation in the infinite visco-elastic plane.

A modification to the Nystrom method was introduced to numerically
solve the equation. The numerical results obtained for the special case § =
b, and the analysis of the error with respect to the mesh size, demonstrate
convergence of the modified Nystrém method and indicate that this scheme
can be applied to solve the integral equation with other values of the parameter
B and also more general nonlinear Abel-type equations.

From the results on the creep crack growth presented in the paper, one
can conclude that an increase of the parameter 8 decreases the crack growth
rate. The theoretical analysis of the integral equation shows that its solution
blows up at b > 2 for any 5 > 0. On the other hand, for 0 < b < 2 and any
B > 0, the normalized breaking time for an infinite plane with a crack is ¢ = 1.

Under some fatigue models, the analysis of fatigue crack propagation in an
elastic material can be similarly reduced to equation (1.7), where the time, ¢,
should be however replaced with the number of load cycles, n, cf. [MiNa03a].
One can use this similarity to make corresponding conclusions about the fa-
tigue crack propagation as well.
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