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Abstract. A stationary-periodic quasi-static model of rock percussive deep drilling is described,
that includes an auxiliary problem of stationary indentation of a rigid bit into a rock. The rock is
modeled by an infinite elastic medium with damage-induced material stiffness reduction. The bore-hole
is a semi-infinite cylinder with a curvilinear bottom. It is assumed the indentation is produced by a
stationary motion of the rupture front at which an appropriate rock strength condition is violated. The
stationarity of the problem allows to reduce the damage history in a material point to the damage
distribution down in space. The bore-hole boundary is not known in advance and consists of four
parts: a traction-free non-rupturing part, a contact non-rupturing part, a traction-free part of the
rupture front, and a contact part of the rupture front. Thus the problem is formulated as a non-local
non-linear free-boundary contact problem and algorithms of its numerical solution are discussed. It
includes a multi-level iteration process, reducing the problem to a sequence of problems of elastic
damage mechanics with a fixed boundary, which, in turn, is reduced to a nonlinear boundary-domain
integro-differential equation.

Introduction

The bore-hole progression in the percussive drilling is caused by a material rupture under the action
of a drilling bit applied at the bore-hole boundary points x(τ) moving in time τ due to rupture.
This boundary loading generates a strain process εij(x, τ) at all material points x. Let a material
point x has Cartesian coordinates (x1, x2, x3) in the non-deformed state. The radius-vector of the
same material point x in a deformed state at a time τ is x̃(x, τ) = x + ū(x, τ), where ū(x, τ) is the
displacement vector. We will use all equations in terms of the non-deformed (reference) coordinates
x and refer the boundary conditions to the non-deformed boundary surfaces (Lagrange approach).

Let us consider stationary-periodic percussive drilling of a half-infinite bore-hole, ΩH(τ), spreading
to x3 = ∞ in an infinite elastic space, see Fig. 1. Let x3-axis of the coordinate system coincide with the
bore-hole axes, and the drill bit progressive-periodic motion occurs only in the x3 direction. Let Ω(τ) =
IR3\ΩH(τ) be the domain occupied by the material (i.e. the infinite space with drilled bore-hole) and
∂Ω(τ) be the bore-hole surface in the non-deformed state. If the rupture front ∂F Ω(τ) constitutes
only a finite part of the boundary ∂Ω(τ), then the borehole is a semi–infinite (not necessarily circular)
cylinder with a curvilinear bottom being the rupture front ∂F Ω(τ). Otherwise, the bore-hole has a
monotonously widening shape. If the bit is axially-symmetric then the bore-hole is axially symmetric
as well.

Let C0
ijkl be a known initial (virgin material) constant stiffness tensor and and ε0

ij be a pre-
strain tensor in the rock (without a bore-hole). Introducing ui(x) = ūi(x) − ε0

ijxj as displacement
perturbations of the initial deformation described by ε0

kl, the total strain can be presented as εkl(x) =
(uk,l + ul,k)/2 + ε0

kl.
The Hook law for an elastic anisotropic damaging material can be written in the form (see e.g. [1,2]),

σij(x, τ) = Cijkl(x, τ)εkl(x, τ).

The damage implies a decrease of the secant elastic stiffness tensor Cijkl(x, τ) at a point x caused by
the strain tensor history εqp(x, τ ′) at that point during all preceding time instants, τ ′ ≤ τ .
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Figure 1: Stationary-periodic percussive drilling

Let the stiffness evolution equation be presented as follows,

Ċijkl(x, τ) = −Ĉijkl({ε(x)}(τ), ε(x, τ))

〈
∂F ({ε(x)}(τ), e)

∂epq

∣∣∣∣
e=ε(x,τ)

ε̇pq(x, τ)

〉
, (1)

where the over dot means partial derivative with respect to τ , which for the chosen Lagrange approach
coincides with the material derivative in time; Ĉijkl({ε}(τ), ε) and F ({ε}(τ), ε) are known functionals
of the strain history {ε}(τ) = {ε(τ ′)}τ

τ ′=−∞, and functions of the currant strain ε; F ({ε}(τ), ε) = 1
is the currant damage surface in the strain space εij , and Ĉijkl({ε}(τ), ε) = 0 if F ({ε}(τ), ε) < 1, that
is if ε is inside the currant damage surface (e.g. during initial loading stage or unloading); the angular
McAuley brackets are defined as 〈a〉 := (a + |a|)/2. Note that (1) comprises damage rules, which may
be not associated with the damage surface, as well as the strain tensor decomposition on the positive
and negative parts, c.f. [1, 2].

Similar to the pure plasticity, we will suppose the functionals Ĉijkl({ε}(τ), ·) and F ({ε}(τ), ·)
depend on the strain history as a sequence of events only, i.e. are independent explicitly of time or
strain rate. Then the same will be true also for the stiffness tensor Cijkl.

To describe the material strength for a point x, we will use an instant strength condition at a point
x at an instant τ written as

Λ(ε(x, τ)) < 1, x ∈ Ω(τ), (2)

where the function Λ(ε) is associated with the von Mises, Coulomb–Mohr, Drucker–Prager or another
appropriate strength condition. Generally, the function Λ(ε) may be not directly connected with the
damage softening.

We suppose that the rupture appears in the form of a rupture front ∂F Ω(τ), c.f. [3] (see also [2]
for discussion about damage and rupture without macro-crack nucleation at multiaxial compression).
The rupture front is a part of the bore-hole boundary ∂Ω(τ). The rupture front equation can be taken
as

Λ(ε(x), τ) = 1, y ∈ ∂F Ω(τ). (3)

The bore-hole boundary ∂Ω generally consists of four non-overlapping parts: a free of traction
non-rupturing part ∂00Ω, a contact non-rupturing part ∂c0Ω, a free of traction part of the rupture
front ∂0F Ω, and a contact part of the rupture front ∂cF Ω.

Stationary Indentation Model with Damage

The stationary-periodic quasi-static elastic damage mechanics model of percussive drilling introduced
in [4] consists of three stages: elastic loading, constant-force rupture progression, and elastic unloading
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parallel to the loading. Thus the problem can be split into a free-boundary non-linear non-local
problem of stationary indentation for the rupture stage of the cycle, and an elastic conforming contact
problem for the rest of the cycle.

In the stationary indentation problem, the displacements, strains, stresses and stress function are
the same at the corresponding points at the corresponding instants,

ui(x, τ) = ui(x− τ ḣ, 0), εij(x, τ) = εij(x− τ ḣ, 0), σij(x, τ) = σij(x− τ ḣ, 0), (4)
Λ(ε(x, τ)) = Λ(ε(x− τ ḣ, 0)), x ∈ Ω(τ), (5)

where ḣ = (0, 0, ḣ3) is a constant progression rate vector in the x3 direction and ḣ3 < 0. This implies
that all time derivatives can be reduced to derivatives in x3 coordinate,

u̇i(x, τ) = −ḣ3ui,3(x, τ), ε̇ij(x, τ) = −ḣ3εij,3(x, τ), σ̇ij(x, τ) = −ḣ3σij,3(x, τ), x ∈ Ω(τ). (6)

From the second of relations (6) we have,

Ċijkl(x, τ) = − ḣ3Cijkl,3(x, τ) (7)
{ε(x)}(τ) := {ε(x, τ ′)}τ

τ ′=−∞ = {ε(x− τ ḣ, 0)}τ
τ ′=−∞ = [[ε]](x− τ ḣ) (8)

[[ε]](x− τ ḣ) := {ε(z, 0)}z={x−τḣ}
z={x1,x2,−∞} (9)

Thus the temporal history {ε(x)}(τ) at a point x is equivalent to [[ε]](x− τ ḣ), the strain distribution
on the space interval (−∞, y − τ ḣ). Then (1) can be rewritten for t = 0 in the form

Cijkl,3(x, 0) = −Ĉijkl([[ε]](x), ε(x, 0))

〈
∂F ([[ε]](x), e)

∂epq

∣∣∣∣
e=ε(x,0)

εpq,3(x, 0)

〉
. (10)

To solve the stationary indentation problem, it is sufficient to consider it only for t = 0. Thus,
following [4] and dropping the argument t = 0 for brevity, we arrive at a non-classical non-linear
functional-integro-differential free boundary problem,

σij,j(x) = 0, Λ(σ(x)) < 1, x ∈ Ω; (11)

σij(x)ηj(x)ξi(x) = 0, σij(x)ηj(x)ζi(x) = 0, σij(x)ηj(x)ηi(x) < 0,

η3(x) = 0, dη(x + u(x)) = 0, Λ(σ(x)) < 1, x ∈ ∂c0Ω; (12)

σij(x)ηj(x)ξi(x) = 0, σij(x)ηj(x)ζi(x) = 0, σij(x)ηj(x)ηi(x) < 0,

η3(x) > 0, dη(x + u(x)) = 0, Λ(σ(x)) = 1, x ∈ ∂cF Ω; (13)

σij(x)ηj(x) = 0,
η3(x) = 0, dη(x + u(x)) > 0, Λ(σ(x)) < 1, x ∈ ∂00Ω; (14)

σij(x)ηj(x) = 0,
η3(x) > 0, dη(x + u(x)) > 0, Λ(σ(x)) = 1, x ∈ ∂0F Ω; (15)

ui(x) → 0, y →∞. (16)

where
σij(x) = Cijkl([[ε]];x)εkl(x), εkl(x) = (uk,l(x) + ul,k(x))/2 + ε0

kl, (17)

Cijkl([[ε]];x) is determined in terms of ε by the following non-local relation obtained by integrating
(10),

Cijkl([[ε]];x) = C0
ijkl + C̃ijkl([[ε]];x), C̃ijkl([[ε]];x) := −

∫ x3

−∞
Ĉijkl([[ε]](x1, x2, x

′
3), ε(x1, x2, x

′
3))×

〈
∂F ([[ε]](x1, x2, x

′
3), e)

∂epq

∣∣∣∣
e=ε(x1,x2,x′3)

εpq,3(x1, x2, x
′
3)

〉
dx′3, x ∈ Ω (18)
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and ξj(x), ζj(x) are unit vectors orthogonal to the normal vector ηj(x) and to each other. Condition
(16) is understood on almost any straight ray originating from x = 0, thus permitting a non-zero limit
of displacements as x → ∞ parallel to the bore-hole. By dη(x) we denote a (positive or negative)
distance between the point x and the bit boundary ∂B in the η direction.

All the four boundary parts ∂00Ω, ∂0F Ω, ∂c0Ω, ∂cF Ω, and consequently dη(x), are generally un-
known in advance in this setting and the corresponding ”excessive” boundary equalities and inequal-
ities are provided in (12) - (15) to allow their determination.

Note that the strains decrease with the distance from the bore-hole surface ∂Ω, and tend to
constant as x3 increases, in the elastic space. Thus the integrand in (18) equals to zero at suffi-
ciently small and sufficiently large x′3 since the strains there are inside the damage surface, where
Ĉijkl([[ε]](x1, x2, x

′
3), ε(x1, x2, x

′
3)) = 0. This means the stiffness tensor Cijkl(x, t) will be equal to the

initial one, C0
ijkl, outside some neighbourhood of the bore-hole, and will be independent of x3 at some

distance from the bore-hole bottom in this neighbourhood.
Different strategies can be chosen to solve this problem, c.f. [5, 6]. One of the possibilities is the

multi-level iteration algorithm. It consists of global iterations, each solving a nonlinear mixed boundary
value functional-integro-differential problem (11)-(18) with some fixed boundaries, ∂00Ω, ∂0F Ω, ∂c0Ω,
∂cF Ω. Then the ”excessive” conditions in (11)-(15) are checked and the boundaries are changed to
decrease the discrepancies, and the next global iteration starts.

On the first global iteration one can reasonably assume that the rupture front coincides with the
contact part of the bit, ∂cB, which in turn coincides with the bit bottom, ∂bB, (consisting of the
bit surface points with algebraically smallest x3 coordinate, over the points with the same (x1, x2)
coordinates), i.e. ∂cF Ω = ∂cB = ∂bB, ∂0F Ω = ∅, and there is no contact without rupture, i.e. ∂c0Ω =
∅. These assumptions imply that the bore-hole free boundary ∂0Ω is the semi-infinite cylindrical
surface ended by the bit bottom, on the first iteration.

After the global iterations converge, the integration of the component σ3j(x)ηj(x) of the contact
traction gives the total axial force P applied to the bit during the progression,

P =
∫

∂cΩ
σ3j(x)ηj(x) dS(x). (19)

Note that the obtained solution and particularly the total force P is independent of the progression
rate ḣ3 or the progression itself.

Auxiliary BVP of Stationary Elastic Damage Mechanics

Taking in mind (11)-(18), let us formulate an auxiliary mixed nonlinear functional-integro-differential
boundary-value problem of elastic damage mechanics, used on each global iteration,

[Lik([[ε]])uk](x) :=
∂

∂xj
[Cijkl([[ε]];x)uk,l(x)] = f̃i([[ε]];x), x ∈ Ω, (20)

ui(x) = ũi(x), x ∈ ∂DΩ, (21)
[Tik([[ε]])uk](x) := Cijkl([[ε]];x)uk,l(x)ηj(x) = t̃i([[ε]];x), x ∈ ∂NΩ, (22)

ui(y) → 0, y →∞, (23)

where

εkl(x) = (uk,l(x) + ul,k(x))/2 + ε0
kl, f̃i([[ε]];x) := f̌i(x)− C̃ijkl,j([[ε]];x)ε0

kl, (24)
ũi(x) := ǔi(x)− ε0

ilxl, t̃i([[ε]];x) := ťi(x)− Cijkl([[ε]];x)ε0
klηj(x) (25)

and C̃ijkl,j([[ε]];x), Cijkl([[ε]];x) are defined by (18). Here ηi(x) is an outward normal vector to the
boundary ∂Ω; ε0

il is the known constant initial rock pre-strain, [T ([[ε]])u](x) = [Tik([[ε]])uk](x) is the
(perturbation) traction vector at a boundary point x, while T ([[ε]]) = Tik([[ε]]) is the nonlocal nonlinear
traction differential operator; f̌(x), ǔ(x) and ť(x) are known volume force, displacement and traction
vectors on the parts ∂DΩ and ∂NΩ of the boundary, respectively.



Advances in Boundary Element Techniques VI 111

Two-Operator Green-Betti Identity and BDIDE of Stationary Elastic Damage Mechanics

Let us fix a point y and consider the following auxiliary differential operators of linear elasticity with
initial stiffness coefficients C0

ijkl independent of x,

[L0
ikvk](x) :=

∂

∂xj

[
C0

ijkl

∂vk(x)
∂xl

]
, [T 0

ikvk](x) := C0
ijkl

∂vk(x)
∂xl

nj(x).

Integrating by parts, we have the first Green identities for the differential operators
[L([[ε]])u](x) = [Lik([[ε]])uk](x) and [L0v](x) = [L0

ikvk](x),
∫

Ω
vi(x)[Lik([[ε]])uk](x)dΩ(x) =

∫

∂Ω
vi(x)[Tik([[ε]])uk](x)dΓ(x)−

∫

Ω

∂vi(x)
∂xj

Cijkl([[ε]];x)
∂uk(x)

∂xl
dΩ(x),

∫

Ω
ui(x)[L0

ikvk](x)dΩ(x) =
∫

∂Ω
ui(x)[T 0

ikvk](x)dΓ(x)−
∫

Ω

∂ui(x)
∂xj

C0
ijkl

∂vk(x)
∂xl

dΩ(x),

where u(x) and v(x) are arbitrary vector-functions (for that the operators and integrals in the above
expressions have sense), and ε is related with u by (24). Subtracting the identities from each other and
taking into account the symmetry of the tensor Cijkl, we derive the two-operator second Green-Betti
identity,

∫

Ω

{
u(x)[L0v](x)− v(x)[L([[ε]])u](x)

}
dΩ(x) =

∫

∂Ω

{
u(x)[T 0v](x)− v(x)[T ([[ε]])u](x)

}
dΓ(x) +

∫

Ω
[∇v(x)]C̃([[ε]];x)∇u(x)dΩ(x), (26)

where C̃([[ε]];x) is given by (18) and thus is non-zero only at the damaged material points x.
If L([[ε]]) = L0, i.e. L([[ε]]) is a linear homogeneous elasticity operator without damage, then the

last domain integral disappears in eq (26), which thus degenerates into the classical second Green-Betti
identity.

For a fixed y, let F 0(x, y) = F 0
km(x, y) be a fundamental solution for the linear differential operator

[L0
ikvk](x) with constant coefficients, i.e.,

[L0
ikF

0
km(·, y)](x) := C0

ijkl

∂2F 0
km(x, y)

∂xj∂xl
= δimδ(x− y),

where δim is the Kronecker symbol and δ(x − y) is the Dirac delta-function. Note that generally
F 0(x, y) is not a parametrix for the original operator L([[ε]]) if the tensor C depends on ε.

If the material is originally isotropic, then

C0
ijkl = λ0δijδkl + µ0(δikδjl + δilδjk), µ0 > C > 0, λ0 +

2
3
µ0 > C > 0 (27)

and F 0
im(x, y) is the Kelvin-Somigliana solution,

F 0
im(x, y) =

−1
8πr

{
δim − r,ir,m

λ0 + 2µ0
+

δim + r,ir,m

µ0

}
(28)

in the the 3D case.
In the 2D isotropic case,

F 0
im(x, y) =

−1
4π

{−δim ln r − r,ir,m

λ0 + 2µ0
+
−δim ln r + r,ir,m

µ0

}
(29)

for the plane strain state; for the plane stress, λ0 in (27) and (29) should be replaced by 2λ0µ0/(λ0 +
2µ0). Here r :=

√
(xi − yi)(xi − yi), r,i := ∂r/∂xi = (xi − yi)/r. One can similarly write down
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(and use in further formulation) also the corresponding axially symmetric fundamental solution of the
linear homogeneous isotropic elasticity, if the bore-hole is axially symmetric.

For anisotropic material, the fundamental solution can be written down in an analytical form for
arbitrary anisotropy in the 2D case and for some particular anisotropy in the 3D case; otherwise, it
can be expressed as a linear integral over a circle, [7–9].

Assuming u(x) is a solution of nonlinear system (20) and using the fundamental solution F 0(x, y)
as v(x) in the Green identity (26), we obtain, similar to the linear homogeneous elasticity (see e.g.
[10–13]), the following non-linear two-operator third Green identity,

c(y)u(y)−
∫

∂Ω
u(x)[T 0F 0(·, y)](x)dΓ(x) +

∫

∂Ω
F 0(x, y)[T ([[ε]])u](x)dΓ(x)−

∫

Ω
[∇(x)F 0(x, y)]C̃([[ε]];x)∇u(x)dΩ(x) =

∫

Ω
F 0(x, y)f̃([[ε]];x)dΩ(x), (30)

where cim(y) = δim if y ∈ Ω; cim(y) = 0 if y /∈ Ω̄; cim(y) = 1
2δim if y is a smooth point of the boundary

∂Ω; and cim(y) = cim(a(y), α(y)) is a function of the anisotropy tensor a(y) and the interior space
angle α(y) at a corner point y of the boundary ∂Ω.

Substituting boundary conditions (21), (22) into eq (30) and using it at y ∈ Ω, we arrive at
a (partly segregated) nonlinear two-operator BDIDE for u(x) at x ∈ Ω and an unknown traction
t(x) = [T ([[ε]])u](x) on ∂DΩ,

ct(y)u(y) −
∫

∂NΩ
u(x)[T 0F 0(·, y)](x)dΓ(x) +

∫

∂DΩ
F 0(x, y)t(x)dΓ(x) = F̃(y), y ∈ Ω, (31)

F̃(y) := [ct(y)− c(y)]ũ(y) +
∫

∂DΩ
ũ(x)[T 0F 0(·, y)](x)dΓ(x)−

∫

∂NΩ
F 0(x, y)t̃([[ε]];x)dΓ(x)+

∫

Ω
F 0(x, y)f̃([[ε]];x)dΩ(x) +

∫

Ω
[∇(x)F 0(x, y)]C̃([[ε]];x)∇u(x)dΩ(x). (32)

ct(y) = 0 if y ∈ ∂DΩ, ct(y) = c(y) if y ∈ Ω ∪ ∂NΩ. (33)

The left-hand side operator of BDIDE (31) is linear but the right hand side nonlinearly and non-locally
depends on the strain distribution below the integration point x, see (18), (24)-(25), if the damage-
caused decrease of the elastic moduli, C̃([[ε]];x), is non-zero. The integral equation is of the second
kind, includes at most the first derivatives of the unknown solution u(x), both directly in the last
domain integral in the right hand side and through the function C̃([[ε]];x). The function [∇(x)F 0(x, y)]
is at most weakly singular in Ω. The boundary integrals have at most the Cauchy-type singularity.

As was noted above, the stiffness tensor Cijkl(x) will be equal to the initial one, C0
ijkl, outside some

neighbourhood of the bore-hole, and will be independent of x3 at some distance from the bore-hole
bottom in this neighbourhood. This implies the last integral in (32) is to be taken only over some
neighbourhood of the bore-hole, and the same holds true also for the penultimate integral if the volume
force f̌ is absent. If the pre-strain ε0

ij is absent along with the volume force f̌ , then the penultimate
integral disappears completely.

The nonlinear BDIDE (31) can be reduced after some discretization to a system of nonlinear
algebraic equation and solved numerically. The system will include unknowns not only on the boundary
but also at internal points. Solution of BDIDE (31) on each global iteration can be achieved using
sub-iterations. Taking in mind the previous paragraph, one can solve on each, n−th sub-iteration step
the discrete counterpart of the linear boundary integral equation

ct(y)u(n)(y)−
∫

∂NΩ
u(x)(n)[T 0F 0(·, y)](x)dΓ(x) +

∫

∂DΩ
F 0(x, y)t(n)(x)dΓ(x) = F̃ (n)(y), y ∈ ∂Ω,

(34)
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F̃ (n)(y) :=
∫

∂DΩ
ũ(x)[T 0F 0(·, y)](x)dΓ(x)−

∫

∂NΩ
F 0(x, y)t̃([[ε(n−1)]];x)dΓ(x)+

∫

Ω
F 0(x, y)f̃([[ε(n−1)]];x)dΩ(x) +

∫

Ω
[∇(x)F 0(x, y)]C̃([[ε(n−1)]];x)∇u(n−1)(x)dΩ(x). (35)

ε
(n−1)
kl (x) = (u(n−1)

k,l (x) + u
(n−1)
l,k (x))/2 + ε0

kl (36)

On the first iteration, one can take u(0) = 0. The iteration process should proceed before the difference
between solutions on neighbouring iterations becomes negligible. One can remark that algorithmically
the sub-iteration process is rather similar to that used usually for solution of nonlinearly elastic and
elasto-plastic problems by the Boundary Element Method, c.f. e.g. [10–13], but includes also the
non-local downward operator for calculating the stiffness tensor decrease due to damage.

The iteration algorithms can be further simplified and optimised using information on spectral
properties of the linear left hand side boundary integral operator in (34), c.f. [14]. This looks especially
promising for the case of the pure Neumann problem, ∂NΩ = ∂Ω.

The stationary damage mechanics problem can be also reduced to some other (e.g. united) nonlin-
ear BDIDEs if one will calculate [T ([[ε]])u](x) from unknown displacement u(x) instead of substituting
it with the auxiliary function t(x) in the integral term of (31) over ∂DΩ, c.f. [15, 16].

Summary

A stationary elastic damage mechanics model of the percussive drilling leads to a non-classical func-
tional non-linear partial integro-differential free-boundary problem. By an iteration algorithm its so-
lution can be reduced to a sequence of corresponding functional non-linear partial integro-differential
mixed problems with fixed boundaries. The latter are then formulated as a nonlinear boundary-domain
integro-differential equations that are in turn reduced iteratively to the linear boundary integral equa-
tions of linear elasticity on each sub-iteration.
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