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Integro-differential Equations
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14.1 Introduction

The Dirichlet boundary value problem for the “Laplace” linear differential
equation with variable coefficient is reduced to boundary-domain integral
or integro-differential equations (BDIEs or BDIDEs) based on a specially
constructed parametrix. The BDI(D)Es contain potential-type integral
operators defined on the domain under consideration and acting on the
unknown solution as well as integral operators defined on the boundary
and acting on the trace and/or conormal derivative of the unknown so-
lution or on an auxiliary function. Some of the considered BDIDEs are
to be supplemented by the original boundary conditions, thus constituting
boundary-domain integro-differential problems (BDIDPs). Solvability, so-
lution uniqueness, and equivalence of the BDIEs/BDIDEs/BDIDPs to the
original boundary value problem (BVP) are investigated in appropriate
Sobolev spaces.

Reduction of boundary-value problems with arbitrarily variable coeffi-
cients to boundary integral equations is usually not effective for numer-
ical implementations, since the fundamental solution necessary for such
reduction is generally not available in an analytical form (except some spe-
cial dependence of the coefficients on coordinates, see e.g. [1]). Using a
parametrix (Levi function) as a substitute of a fundamental solution, it
is possible however to reduce such a BVP to a BDIE integral equation
(see, e.g., [2], [3], [4, Sect. 18], [5], and [6], where the Dirichlet, Neumann,
and Robin problems for some partial differential equations (PDEs) were
reduced to indirect BDIEs).

In [7], [8], and [10], the 3D mixed (Dirichlet–Neumann) BVP for the
variable-coefficient “Laplace” equation was considered. Such equations
appear, e.g., in electrostatics, stationary heat transfer and other diffu-
sion problems for inhomogeneous media. The BVP has been reduced to
either segregated or united direct BDI(D)Es or BDIDPs. Some of the
BDI(D)Es/BDIDPs are associated with the BDIDE and BDIE formulated
in [9]. Although several of the integral and integro-differential formulations
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for the mixed problem in [7], [8], and [10] look like equations of the second
kind, the spaces for the out-of-integral terms are different from the spaces
for the right-hand sides of the equations, thus the equations are of “almost”
second kind.

Analysis of the four different (systems of) BDI(D)Es/BDIDP, to which
the Dirichlet problem for the same PDE is reduced in the present paper,
requires special consideration. Equivalence of the considered BDI(D)Es/
BDIDP to the original BVP is proved along with their solvability, solu-
tion uniqueness, and the operator invertibility in corresponding Sobolev–
Slobodetski spaces. In particular, it is shown that the Dirichlet problem
can be reduced to a genuine second-kind integral or integro-differential
equation.

14.2 Formulation of the Boundary Value Problem

Let Ω be a bounded open three-dimensional region of R3. For simplicity, we
assume that the boundary S := ∂Ω is a simply connected, closed, infinitely
smooth surface. Let a ∈ C∞(Ω̄), a(x) > 0 for x ∈ Ω̄. Let also ∂xj

:= ∂/∂xj

(j = 1, 2, 3), ∂x = (∂x1 , ∂x2 , ∂x3).
We consider the scalar elliptic differential equation

Lu(x) := L(x, ∂x)u(x)

:=
3∑

i=1

∂

∂xi

(
a(x)

∂u(x)
∂xi

)
= f(x), x ∈ Ω, (14.1)

where u is an unknown function and f is a given function in Ω.
In what follows, Hs(Ω) = Hs

2(Ω) and Hs(S) = Hs
2(S) are the Bessel

potential spaces, where s ∈ R is an arbitrary real number (see, e.g., [11]
and [12]). We recall that Hs coincide with the Sobolev–Slobodetski spaces
W s

2 for any nonnegative or integer s.
For a linear operator L∗, we introduce the subspace of H1(Ω) [13]

H1,0(Ω;L∗) := {g : g ∈ H1(Ω), L∗g ∈ L2(Ω)},
endowed with the norm

‖g‖H1,0(Ω;L∗) := ‖g‖H1(Ω) + ‖L∗g‖L2(Ω).

In this paper, we will particularly use the space H1,0(Ω; L∗) for L∗ being
either the operator L from (14.1) or the Laplace operator ∆. Since

Lu−∆u =
3∑

i=1

∂a

∂xi

∂u

∂xi
∈ L2(Ω)

for u ∈ H1(Ω), we have H1,0(Ω;L) = H1,0(Ω;∆).
From the trace theorem (see, e.g., [11] and [13]–[15]) for u ∈ H1(Ω), it

follows that u+ := τ+
S u ∈ H1/2(S), where τ+

S is the trace operator on S
from Ω.



14. Boundary-domain Integral and Integro-differential Equations 163

For u ∈ H2(Ω) we can denote by T+ the corresponding conormal differ-
entiation operator on S in the sense of traces,

T+(x, n+(x), ∂x)u(x) : =
3∑

i=1

a(x)n+
i (x)

(
∂u(x)
∂xi

)+

= a(x)
(

∂u(x)
∂n+(x)

)+

,

where n+(x) is the exterior (to Ω) unit normal vectors at the point x ∈ S.
Let u ∈ H1,0(Ω;∆). We can correctly define the generalized conormal

derivative T+u ∈ H−1/2(S) with the help of Green’s formula (see, for
example, [13] and [15], Lemma 4.3),

〈
T+u , v+

〉
S

:=
∫

Ω

v(x)Lu(x) dx

+
∫

Ω

3∑

i=1

a(x)
∂u(x)
∂xi

∂v(x)
∂xi

dx ∀ v ∈ H1(Ω), (14.2)

where 〈 · , · 〉S denotes the duality brackets between the spaces H−1/2(S)
and H1/2(S), extending the usual L2 scalar product.

We will investigate the following Dirichlet boundary value problem.
Find a function u ∈ H1(Ω) satisfying the conditions

Lu = f in Ω, (14.3)

u+ = ϕ0 on S, (14.4)

where ϕ0 ∈ H1/2(S) and f ∈ L2(Ω).
Equation (14.3) is understood in the distributional sense and condition

(14.4) in the trace sense.
We have the following uniqueness theorem.

Theorem 1. BVP (14.3)–(14.4) with ϕ0 ∈ H1/2(S) and f ∈ L2(Ω) has
at most one solution in H1(Ω).

Proof. The assertion follows immediately from Green’s formula (14.2)
with v = u as a solution of the homogeneous Dirichlet problem, i.e., with
f = 0 and ϕ0 = 0.

14.3 Parametrix and Potential-type Operators
We say that a function P (x, y) of two variables x, y ∈ Ω is a parametrix
(the Levi function) for the operator L(x, ∂x) in R3 if (see, e.g., [2]–[6] and
[9])

L(x, ∂x)P (x, y) = δ(x− y) + R(x, y), (14.5)
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where δ(·) is the Dirac distribution and R(x, y) possesses a weak (inte-
grable) singularity at x = y, i.e.,

R(x, y) = O (|x− y|−κ) with κ < 3. (14.6)

It is easy to see that for the operator L(x, ∂x) given by the right-hand side
in (14.1), the function

P (x, y) =
−1

4π a(y) |x− y| , x, y ∈ R3, (14.7)

is a parametrix; the corresponding remainder function is

R(x, y) =
3∑

i=1

xi − yi

4π a(y) |x− y|3
∂ a(x)
∂xi

, x, y ∈ R3, (14.8)

and satisfies estimate (14.6) with κ = 2, due to the smoothness of the
function a(x).

Evidently, the parametrix P (x, y) given by (14.7) is a fundamental so-
lution to the operator L(y, ∂x) := a(y)∆(∂x) with “frozen” coefficient
a(x) = a(y), i.e.,

L(y, ∂x)P (x, y) = δ(x− y).

Note that remainder (14.8) is not smooth enough for the parametrix (14.7)
and the corresponding potential operators to be treated as in [15].

For some scalar function g, let

V g(y) := −
∫

S

P (x, y) g(x) dSx, y 6∈ S, (14.9)

Wg(y) := −
∫

S

[
T (x, n(x), ∂x)P (x, y)

]
g(x) dSx, y 6∈ S, (14.10)

be the single and the double layer surface potential operators, where the
integrals are understood in the distributional sense if g is not integrable.

The corresponding boundary integral (pseudodifferential) operators of
direct surface values of the simple layer potential V and of the double layer
potential W, and the conormal derivatives of the simple layer potential W ′
and of the double layer potential L+ are

V g(y) := −
∫

S

P (x, y) g(x) dSx, (14.11)

W g(y) := −
∫

S

[
T (x, n(x), ∂x)P (x, y)

]
g(x) dSx, (14.12)
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W ′ g(y) := −
∫

S

[
T (y, n(y), ∂y)P (x, y)

]
g(x) dSx, (14.13)

L+g(y) := [T (y, n(y), ∂y)Wg(y)]+, (14.14)

where y ∈ S.
The parametrix-based volume potential operator and the remainder

potential operator, corresponding to parametrix (14.7) and to remainder
(14.8) are

Pg(y) :=
∫

Ω

P (x, y) g(x) dx, (14.15)

Rg(y) :=
∫

Ω

R(x, y) g(x) dx. (14.16)

For g1 ∈ H−1/2(S) and g2 ∈ H1/2(S), there hold the jump relations
on S

[V g1(y)]+ = Vg1(y)

[Wg2(y)]+ = − 1
2 g2(y) +Wg2(y),

[T (y, n(y), ∂y)V g1(y)]+ = 1
2 g1(y) +W ′g1(y),

where y ∈ S.
The jump relations as well as mapping properties of potentials and op-

erators (14.9)–(14.16) are well known for the case a = const. They were
extended to the case of variable coefficient a(x) in [7] and [8].

14.4 Green Identities and Integral Relations

Let u ∈ H1,0(Ω;∆), v ∈ H1,0(Ω;∆) be some real functions. Then, sub-
tracting (14.2) from its counterpart with exchanged roles of u and v, we
obtain the so-called second Green identity for the operator L(x, ∂x),

∫

Ω

[
v L(x, ∂x)u− u L(x, ∂x)v

]
dx =

〈
T+u , v+

〉
S
− 〈

u+ , T+v
〉

S
. (14.17)

For u ∈ H1,0(Ω;∆) and v(x) = P (x, y), where the parametrix P (x, y)
is given by (14.7), we obtain from (14.17), (14.5) by the standard limiting
procedures (cf. [4]) the third Green identity,

u(y) +Ru(y)− V T+u(y) + Wu+(y) = PLu(y), y ∈ Ω. (14.18)

If u ∈ H1,0(Ω;∆) is a solution of equation (14.1), then (14.18) gives

Gu := u +Ru− V T+u + Wu+ = Pf in Ω, (14.19)
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Gu := 1
2u+ + [Ru]+ − VT+u +Wu+ = [Pf ]+ on S, (14.20)

T u := 1
2T+u + T+Ru−W ′T+u + L+u+ = T+Pf on S. (14.21)

For some functions f , Ψ, Φ, let us consider a more general “indirect”
integral relation, associated with (14.19), namely,

u(y) +Ru(y)− V Ψ(y) + WΦ(y) = Pf(y), y ∈ Ω. (14.22)

Lemma 1. Let Ψ ∈ H−1/2(S), Φ ∈ H1/2(S), and f ∈ L2(Ω). Suppose a
function u ∈ H1(Ω) satisfies (14.22). Then u ∈ H1,0(Ω; ∆), it is a solution
of PDE (14.3) in Ω, and

V (Ψ− T+u)(y)−W (Φ− u+)(y) = 0, y ∈ Ω.

Proof. First of all, equation (14.22) and mapping properties of the oper-
ators R, P, V and W imply u ∈ H1,0(Ω;∆). The rest of the lemma claims
follow from its counterpart proved in [7], Lemma 4.1.

The following statement is well known (see, for example, [7], Lemma
4.2).

Lemma 2. (i) Let Ψ∗ ∈ H−1/2(S). If V Ψ∗(y) = 0, y ∈ Ω, then Ψ∗ = 0.
(ii) Let Φ∗ ∈ H1/2(S). If WΦ∗(y) = 0, y ∈ Ω, then Φ∗ = 0.

Theorem 2. Let f ∈ L2(Ω). A function u ∈ H1,0(Ω;∆) is a solution of
PDE (14.3) in Ω if and only if it is a solution of BDIDE (14.19).

Proof. If u ∈ H1,0(Ω;∆) solves PDE (14.3) in Ω, then it satisfies (14.19).
On the other hand, if u ∈ H1,0(Ω;∆) solves BDIDE (14.19), then Lemma
1 with Ψ = T+u and Φ = u+ completes the proof.

14.5 Segregated Boundary-domain Integral
Equations

Let us consider a segregated purely integral boundary-domain formulation
for the Dirichlet problem, similar to the formulations introduced and an-
alyzed in [7], [8], and [10] for the mixed problem with u ∈ H1(Ω) and
u ∈ H1,0(Ω;∆).

14.5.1 Integral Equation System (GG)

To reduce BVP (14.3)–(14.4) to a BDIE system in this section, we will use
equation (14.19) in Ω and equation (14.20) on S, where the known function
ϕ0 is substituted for u+ and an auxiliary unknown function ψ ∈ H−1/2(S)
for T+u. Then we arrive at the system

u(y) +Ru(y)− V ψ(y) = F0(y), y ∈ Ω, (14.23)
R+u(y)− Vψ(y) = F+

0 (y)− ϕ0(y), y ∈ S, (14.24)



14. Boundary-domain Integral and Integro-differential Equations 167

where
F0(y) := Pf(y)−Wϕ0(y), y ∈ Ω. (14.25)

Note that for f ∈ L2(Ω) and ϕ0 ∈ H1/2(S), we have the inclusion
F0 ∈ H1,0(Ω;∆) due to the mapping properties of the Newtonian (volume)
and layer potentials.

Remark 1. F0 = 0 if and only if (f, ϕ0) = 0. Indeed, the latter equality
evidently implies the former. Inversely, let F0 = 0. Keeping in mind
equation (14.25), Lemma 1 with F0 = 0 for u implies f = 0 and Wϕ0 = 0
in Ω. Lemma 2(ii) then gives ϕ0 = 0 on S.

Let us prove that BVP (14.3)–(14.4) in Ω is equivalent to the system of
BDIEs (14.23)–(14.24).

Theorem 3. Let f ∈ L2(Ω) and ϕ0 ∈ H1/2(S).
(i) If some u ∈ H1(Ω) solves BVP (14.3)–(14.4) in Ω, then the solution

is unique and the couple (u, ψ) ∈ H1(Ω)×H−1/2(S), where

ψ = T+u on S, (14.26)

solves BDIE system (14.23)–(14.24);
(ii) If a couple (u, ψ) ∈ H1(Ω)×H−1/2(S) solves BDIE system (14.23)–

(14.24), then the solution is unique, u solves BVP (14.3)–(14.4), and ψ
satisfies (14.26).

Proof. Remark that if u ∈ H1(Ω) is a solution of the BVP (14.3)–(14.4)
with f ∈ L2(Ω), then u ∈ H1,0(Ω;∆). On the other hand, if U = (u, ψ) ∈
H1(Ω)×H−1/2(S) is a solution of system (14.23)-(14.24) with f ∈ L2(Ω)
and ϕ0 ∈ H1/2(S), then u ∈ H1,0(Ω;∆) due to mapping properties of
operators R, V , and W (see [10] and [8]).

Let u ∈ H1(Ω) be a solution to BVP (14.3)–(14.4). It is unique due to
Theorem 1. Set ψ by (14.26), evidently, ψ ∈ H−1/2(S). Then it imme-
diately follows from relations (14.19)–(14.20) that the couple (u, ψ) solves
system (14.23)–(14.24), which completes the proof of item (i).

Let now a couple (u, ψ) ∈ H1(Ω)×H−1/2(S) solve BDIE system (14.23)–
(14.24). Taking trace of equation (14.23) on S and subtracting equation
(14.24) from it, we obtain

u+(y) = ϕ0(y), y ∈ S, (14.27)

i.e., u satisfies the Dirichlet condition (14.4).
Equation (14.23) and Lemma 1 with Ψ = ψ and Φ = ϕ0 imply that u is

a solution of PDE (14.3) and

V Ψ∗(y)−WΦ∗(y) = 0, y ∈ Ω,

where Ψ∗ = ψ−T+u and Φ∗ = ϕ0− u+. Due to equation (14.27), Φ∗ = 0.
Lemma 2(i) implies that Ψ∗ = 0, which completes the proof of conditions
(14.26).
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Uniqueness of the solution to BDIE system (14.23)–(14.24) follows from
(14.26) along with Remark 1 and Theorem 1.

System (14.23)–(14.24) can be rewritten in the form

AGGU = FGG ,

where U> := (u, ψ) ∈ H1,0(Ω;∆)×H−1/2(S),

AGG :=
[

I −R −V
R+ −V

]
, FGG :=

[
F0

F+
0 − ϕ0

]
.

Due to the mapping properties of operators V , V, W , W, P, R, and R+

(see [10] and [8]), we have FGG ∈ H1,0(Ω; ∆)×H1/2(S), and the operators

AGG : H1,0(Ω;∆)×H−1/2(S) → H1,0(Ω;∆)×H1/2(S) (14.28)

: H1(Ω)×H−1/2(S) → H1(Ω)×H1/2(S) (14.29)

are continuous. By Theorem 3 and the uniqueness Theorem 1, both oper-
ators (14.28) and (14.29) are injective.

Theorem 4. Operators (14.28) and (14.29) are continuous and invertible.

Proof. Let us consider the proof for the operator AGG given by (14.29)
first. The continuity and injectivity are proved above. To prove the invert-
ibility, let us consider the operator

AGG
0 :=

[
I −V
0 −V

]
.

As a result of compactness properties of the operators R and R+, the
operator AGG

0 is a compact perturbation of the operator AGG .
The operator AGG

0 is an upper triangular matrix operator with the scalar
diagonal invertible operators

I : H1(Ω) → H1(Ω),

V : H−1/2(S) → H1/2(S)

(see [14], Ch. XI, Part B, Sect. 2, Theorem 3 for V). This implies that

AGG
0 : H1(Ω)×H−1/2(S) → H1(Ω)×H1/2(S)

is an invertible operator. Hence, the operator AGG possesses the Fredholm
property and its index is zero. The injectivity of the operator AGG , already
proved, completes the theorem proof for this operator.

Let us now construct an inverse to operator (14.28). Let (AGG)−1 :
H1(Ω)×H1/2(S) → H1(Ω)×H−1/2(S) be the operator inverse to (14.29).
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Thus, for any FGG ∈ H1,0(Ω;∆) × H1/2(S), the solution of the system
AGGU = FGG in H1(Ω) × H−1/2(S) is U = (AGG)−1FGG . Taking into
account that the operators V : H−1/2(S) → H1,0(Ω;∆) and R : H1(Ω) →
H2,0(Ω;∆) are continuous [9: Th. A.1, Remark B.2], the first equation of
this system then implies u = U1 ∈ H1,0(Ω;∆) and the operator (AGG)−1

is continuous also from H1,0(Ω;∆)×H1/2(S) to H1,0(Ω;∆)×H−1/2(S).

The original BVP (14.3)–(14.4) can be written in the form

ADu = FD,

where

AD :=
[

L
τ+

]
, FD =

[
f
ϕ0

]
.

The operator AD : H1,0(Ω;L) → L2(Ω)×H1/2(S) is evidently continuous
and, due to the uniqueness theorem for the BVP, it is also injective.

The invertibility of the operator (14.28) and equivalence Theorem 3 lead
to the following assertion.

Corollary. The operator AD : H1,0(Ω; L) → L2(Ω)×H1/2(S) is contin-
uous and continuously invertible.

Note that the above statement and the uniqueness Theorem 1 evidently
imply the following existence theorem in H1(Ω).

Theorem 5. Let ϕ0 ∈ H1/2(S) and f ∈ L2(Ω). Then BVP (14.3)–(14.4)
is uniquely solvable in H1(Ω).

14.5.2 Integral Equation System (GT )

To obtain a segregated BDIE system of the second kind, we will use equation
(14.19) in Ω and equation (14.21) on S, where again the known function
ϕ0 is substituted for u+ and an auxiliary unknown function ψ ∈ H−1/2(S)
for T+u. Then we arrive at the following system (GT ):

u +Ru− V ψ = F0 in Ω, (14.30)
1
2 ψ + T+Ru−W ′ψ = T+F0 on S, (14.31)

where F0 is given by (14.25).
Let us prove that BVP (14.3)–(14.4) is equivalent to system (14.30)–

(14.31).

Theorem 6. Let f ∈ L2(Ω) and ϕ0 ∈ H1/2(S).
(i) If some u ∈ H1(Ω) solves BVP (14.3)–(14.4) in Ω, then the couple

(u, ψ)> ∈ H1(Ω)×H−1/2(S), where

ψ = T+u on S, (14.32)
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solves BDIE system (14.30)–(14.31).
(ii) If a couple (u, ψ)> ∈ H1(Ω)×H−1/2(S) solves BDIE system (14.30)–

(14.31), then the solution is unique, u solves BVP (14.3)–(14.4), and ψ
satisfies (14.32).

Proof. As in the proof of Theorem 3, u ∈ H1,0(Ω;∆) if either hypothesis
(i) or (ii) is satisfied.

Let u ∈ H1(Ω) be a solution to BVP (14.3)–(14.4). Set ψ = T+u. Evi-
dently, ψ ∈ H−1/2(S). Then it immediately follows from relations (14.19)
and (14.21) that the couple (u, ψ) solves system (14.30)-(14.31), which
completes the proof of item (i).

Let now a couple (u, ψ) ∈ H1(Ω)×H−1/2(S) solve BDIE system (14.30)–
(14.31).

Take the conormal derivative of equation (14.30) on S and subtract it
from equation (14.31) to obtain

Ψ∗ := ψ − T+u = 0 on S,

that is, equation (14.32) is proved.
Equation (14.30) and Lemma 1 with Ψ = ψ and Φ = ϕ0 imply that u is

a solution of equation (14.1) and

V Ψ∗(y)−WΦ∗(y) = 0, y ∈ Ω, (14.33)

where Φ∗ = ϕ0 − u+. Since Ψ∗ = 0 on S, (14.33) reduces to

WΦ∗(y) = 0, y ∈ Ω,

and Lemma 2(ii) implies that Φ∗ = 0 on S. This means that u satisfies the
Dirichlet condition (14.4).

By Remark 1, the unique solvability of BDIE system (14.30)-(14.31) then
follows from (14.32) along with the unique solvability of BVP (14.3)–(14.4).

System (14.30)–(14.31)) can be rewritten in the form

AGT U = FGT ,

where U> := (u, ψ)> ∈ H1(Ω)×H−1/2(S),

AGT :=

[
I +R −V

T+R 1
2

I −W ′

]
, FGT :=

[
F0

T+F0

]
. (14.34)

Due to the mapping properties of the operators involved in (14.34) we
have FGT ∈ Hs,0(Ω+; ∆)×H−1/2(S), and the operators

AGT : H1,0(Ω;∆)×H−1/2(S) → H1,0(Ω;∆)×H−1/2(S) (14.35)

: H1(Ω)×H−1/2(S) → H1(Ω)×H−1/2(S) (14.36)

are continuous. By Theorem 6 and the uniqueness Theorem 1, both oper-
ators (14.35) and (14.36) are injective.
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Theorem 7. Operators (14.35) and (14.36) are continuous and invertible.

Proof. The operator

AGT
0 :=

[
I −V
0 1

2 I

]

is a compact perturbation of both operators (14.35) and (14.36), due to
compactness properties of the operators R and W (see [7], [8], and [10]).
The invertibility of operators (14.35) and (14.36) then follows by arguments
similar to those in the proof of Theorem 4.

14.6 United Boundary-domain Integro-differential
Equations and Problems

Instead of introducing an auxiliary function ψ, we will work in this section
with the original form of the equations containing the conormal derivative
operator T+ of the internal field.

14.6.1 Integro-differential Problem (GD)

The equivalence of the differential and boundary-domain integro-different-
ial equations proved in Theorem 2 allows us to supplement BDIDE (14.19)
with the original Dirichlet boundary conditions and arrive at BDIDP (GD)
constituted by (14.19), (14.4). The BDIDP is equivalent to the Dirichlet
boundary value problem (14.3)–(14.4) in Ω, in the following sense.

Theorem 8. Let f ∈ L2(Ω), ϕ0 ∈ H1/2(S). A function u ∈ H1,0(Ω; ∆)
solves BVP (14.3)–(14.4) in Ω if and only if u solves BDIDP (14.19), (14.4).
Such a solution does exist and is unique.

Proof. A solution of BVP (14.3)–(14.4) does exist and is unique, by
Theorem 5, and provides a solution to BDIDP (14.19), (14.4), by Theorem
2. On the other hand, any solution of BDIDP (14.19), (14.4) also satisfies
(14.3), due to the same Theorem 2.

BDIDP (14.19), (14.4) can be written in the form

AGDu = FGD, (14.37)

where

AGD :=
[

I +R− V T+ + Wτ+

τ+

]
, FGD =

[Pf
ϕ0

]
.

Owing to the mapping properties of operators V , W , P, and R, we have
FGD ∈ H1,0(Ω;∆) × H1/2(S), and the operator AGD : H1,0(Ω;∆) →
H1,0(Ω;∆) × H1/2(S) is continuous. By Theorem 8, it is also injective.
Let us now characterize the range of the operator AGD in the whole space
H1,0(Ω;∆)×H1/2(S).
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Theorem 9. Let

FGD = (FGD
1 ,FGD

2 ) ∈ H1,0(Ω;∆)×H1/2(S).

System (14.37) has a solution in H1,0(Ω;∆) if and only if there exists
f∗ ∈ L2(Ω) such that

FGD
1 = Pf∗ in Ω. (14.38)

When the solution does exist, it is unique.

Proof. If condition (14.38) is satisfied, then, according to Theorem 7,
there exists a unique solution of system (14.37).

On the other hand, if u ∈ H1,0(Ω;∆) is a solution of system (14.37),
then it satisfies the third Green identity (14.18). Comparing it with the first
equation of system (14.37) implies representation (14.38) with f∗ = Lu.

Let T+
∆ , V∆, and W∆ denote the operators of the conormal deriva-

tive, single-layer potential and double-layer potential associated with the
Laplace operator, that is, for the coefficient a = 1.

Remark 2. Condition (14.38) for an FGD
1 ∈ H1,0(Ω;∆) is equivalent to

the condition

V∆T+
∆ (aFGD

1 )−W∆(aFGD
1 )+ = 0 in Ω, (14.39)

or

V

[
T+FGD

1 + FGD+
1

∂a

∂n+

]
−W (FGD

1 )+ = 0 in Ω. (14.40)

Indeed, condition (14.38) can be rewritten as

aFGD
1 = P∆f∗ in Ω. (14.41)

The third Green identity (14.18) for u = aFGD
1 and for the potentials

associated with the operator ∆ gives

aFGD
1 − V∆T+

∆ (aFGD
1 ) + W (aFGD

1 )+ = P∆∆(aFGD
1 ) in Ω. (14.42)

Thus (14.39) implies (14.41) with f∗ = ∆(aFGD
1 ).

On the other hand, if (14.41) is satisfied, then application of the Laplace
operator to it gives ∆(aFGD

1 ) = f∗. Substituting this into (14.42) and
comparing with (14.41) implies (14.39).

Condition (14.40) follows from (14.39) and the definitions of V and W .

To realize how restrictive condition (14.38), or, equivalently, conditions
(14.39) and (14.40), are, we prove the following assertion.
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Lemma 3. For any function F1 ∈ H1,0(Ω; ∆), there exists a unique couple
(f∗,Φ∗) = CΦF1 ∈ L2(Ω)×H1/2(S) such that

F1(y) = Pf∗(y)−WΦ∗(y), y ∈ Ω, (14.43)

and CΦ : H1,0(Ω;∆) → L2(Ω)×H1/2(S) is a linear bounded operator.

Proof. We adapt here the proof scheme from [8], Lemma 5.2.
Suppose first that there exist some functions f∗(y), Φ∗(y) satisfying

(14.43) and find their expressions in terms of F1(y). Taking into account
definitions (14.7) and (14.9) for the volume and double layer potentials,
ansatz (14.43) can be rewritten as

a(y)F1(y) = P∆f∗(y)−W∆[aΦ∗](y), y ∈ Ω, (14.44)

where P∆ = P|a=1, W∆ = W |a=1 are the volume and double layer potential
operators associated with the Laplace operator ∆.

Applying the Laplace operator to (14.44) we obtain that

f∗ = ∆(aF1) in Ω. (14.45)

Then (14.44) can be rewritten as

W∆[aΦ∗](y) = Q(y), y ∈ Ω, (14.46)

where
Q(y) := P∆[∆(aF1)](y)− a(y)F1(y), y ∈ Ω. (14.47)

The trace of (14.46) on the boundary gives
[− 1

2 I +W∆

]
[aΦ∗](y) = Q+(y), y ∈ S, (14.48)

where W∆ := W|a=1 is the direct value on S of the double layer operator
associated with the Laplace operator.

Since [−(1/2)I +W∆

]
is an isomorphism (see, e.g., [14], Ch. XI, Part

B, Sect. 2, Remark 8) and a(y) 6= 0, we obtain the following expression for
Φ∗:

Φ∗(y) =
1

a(y)
[− 1

2 I +W∆

]−1
Q+(y), y ∈ S, (14.49)

Now we have to prove that f∗(y), Φ∗(y) given by (14.45) and (14.49)
do satisfy (14.43). Indeed, the potential W∆[aΦ∗](y) with Φ∗(y) given by
(14.49) is a harmonic function, and one can check that Q given by (14.47)
is also harmonic. Since (14.48) implies that they coincide on the boundary,
the two harmonic functions should also coincide in the domain, i.e., (14.46)
holds true, which implies (14.43).

Thus we constructed a bounded operator CΦ : H1,0(Ω;∆) → L2(Ω) ×
H1/2(S) given by (14.45), (14.49), (14.47).

Lemma 3 implies that ansatz (14.38) does not cover the whole space
H1,0(Ω;∆).
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14.6.2 Integro-differential Equation (G)

In this section, we eliminate the Dirichlet boundary condition to deal with
only one integro-differential equation. Substituting the Dirichlet bound-
ary condition (14.4) into (14.19) leads to the following BDIE (G) for u ∈
H1,0(Ω;∆):

AGu := u +Ru− V T+u = FG in Ω, (14.50)

where
FG = F0 = Pf −Wϕ0. (14.51)

Let us prove the equivalence of the BDIDE to the BVP (14.3)–(14.4).

Theorem 10. Let f ∈ L2(Ω), ϕ0 ∈ H1/2(S). A function u ∈ H1,0(Ω; ∆)
solves the mixed BVP (14.3)–(14.4) in Ω if and only if u solves BDIDE
(14.50) with right-hand side (14.51). Such a solution exists and is unique.

Proof. Any solution of BVP (14.3)–(14.4) solves BDIDE (14.50) due to
the third Green formula (14.19).

On the other hand, if u is a solution of BDIDE (14.50), then Lemma 1
implies that u satisfies equation (14.3) and W (ϕ0 − u+) = 0 in Ω. Lemma
2(ii) then implies that the Dirichlet boundary condition (14.4) is satis-
fied. Thus any solution of BDIDE (14.50) satisfies BVP (14.3)–(14.4). The
unique solvability of the latter is implied by Theorem 5.

The mapping properties of operators V , W , P, and R imply the mem-
bership FG ∈ H1,0(Ω;∆) and continuity of the operator AG in H1,0(Ω;∆),
while Theorem 10 implies its injectivity.

Theorem 11. The operator AG is continuous and continuously invertible
in H1,0(Ω;∆).

Proof. The continuity of AG is already proved, and we have to prove the
existence of a bounded inverse operator (AG)−1.

Let us consider equation (14.50) with an arbitrary function FG from
H1,0(Ω;∆). By Lemma 3, FG can be presented as

FG(y) = Pf∗(y)−WΦ∗(y) y ∈ Ω,

where (f∗, Φ∗) = CΦFG and CΦ is a bounded operator from H1,0(Ω;∆) to
L2(Ω)×H1/2(S). Then Theorem 10 and the Corollary imply that equation
(14.50) has a unique solution u = (AD)−1(f∗, Φ∗)>, where (AD)−1 is a
bounded operator.

14.7 Concluding Remarks
The Dirichlet problem for a variable-coefficient PDE with a right-hand side
function from L2(Ω), and with the Dirichlet data from the spaces H1/2(S),
has been considered in the paper. It was shown that the BVP can be
equivalently reduced to two direct segregated boundary-domain integral
equation systems, one of them of the second kind. On the other hand, the
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BVP can be equivalently reduced to a united boundary-domain integro-
differential problem, or to a united boundary-domain integro-differential
equation of the second kind. It was shown that the operators associated
with the left-hand sides of all the four systems/problems/equations are
continuous and three of them continuously invertible in the corresponding
Sobolev–Slobodetski spaces.

A further analysis of spectral properties of the two second kind equations
obtained in the paper is needed to decide whether the resolvent theory
and the Neumann series method (see [16], [17], and references therein) are
efficient for solving the equations.

By the same approach, the corresponding BDIDEs/BDIDPs for un-
bounded domains can be analyzed as well. The approach can also be
extended to more general PDEs and to systems of PDEs, while smoothness
of the variable coefficients and the boundary can be essentially relaxed.

This study can serve as a starting point for approaching BDIDEs/
BDIDPs based on the localized parametrices, leading after discretization
to sparsely populated systems of linear algebraic equations, attractive for
computations [9]. This can then be extended to analysis of localized
BDIDEs/BDIDPs of nonlinear problems [18].
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