

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

I

A FLEXIBLE APPROACH FOR MAPPING
BETWEEN

OBJECT-ORIENTED DATABASES AND XML

A TWO WAY METHOD BASED ON AN OBJECT GRAPH

by

Taher Ahmed Jabir Naser

Submitted to School of Computing, Informatics and Media

in Partial Fulfilment of the Requirements

for the Degree

Doctor of Philosophy

in Computer Science

University of Bradford

Bradford, United Kingdom

November 2011

II

Acknowledgments

First and foremost I am very grateful to Allah the Almighty for the blessings,

bounties, grace, and guidance He has bestowed upon me throughout my whole life

and throughout the journey of the completion of my research and thesis.

Also I would like to express my deep gratitude and sincere appreciation to my thesis

advisors; Mr. Mick Ridley and Professor Reda Al Hajj whom so patiently

supervised and encouraged me throughout my research journey. Their continuous

support and valuable advises were very decisive. My great thanks go to both of them

for their full support during my study journey and for their valuable suggestions and

guidance during my research. Their precious advises regarding thesis structure and

suggestions for different corrections was indispensable and inevitable. Without their

guidance and encouragement, I would not been able to accomplish this mission.

My gratitude also goes to my parents, my wife Eman, and to my children

Mohammad, Hana’a, Abeer, Lamis, and Abdullah for their supplication, patience and

support.

III

Abstract

One of the most popular challenges facing academia and industry is the development

of effective techniques and tools for maximizing the availability of data as the most

valuable source of knowledge. The internet has dominated as the core for

maximizing data availability and XML (eXtensible Markup Language) has emerged

and is being gradually accepted as the universal standard format for platform

independent publishing and exchanging data over the Internet. On the other hand,

there remain large amount of data held in structured databases and database

management systems have been traditionally used for the effective storage and

manipulation of large volumes of data. This raised the need for effective

methodologies capable of smoothly transforming data between different formats in

general and between XML and structured databases in particular. This dissertation

addresses the issue by proposing a two-way mapping approach between XML and

object-oriented databases. The basic steps of the proposed approach are applied in a

systematic way to produce a graph from the source and then transform the graph into

the destination format. In other words, the derived graph summarizes characteristics

of the source whether XML (elements and attributes) or object-oriented database

(classes, inheritance and nesting hierarchies). Then, the developed methodology

classifies nodes and links from the graph into the basic constructs of the destination,

i.e., elements and attributes for XML or classes, inheritance and nesting hierarchies

for object-oriented databases. The methodology has been successfully implemented

and illustrative case studies are presented in this document.

IV

Table of Contents

ACKNOWLEDGMENTS .. II

ABSTRACT .. III

TABLE OF CONTENTS ... IV

LIST OF TABLES ... VII

LIST OF FIGURES .. VIII

PUBLICATIONS ASSOCIATED WITH THIS RESEARCH ... X

CHAPTER 1 INTRODUCTION ..1

1.1 MARKUP LANGUAGES OVERVIEW ... 1
1.2 MOTIVATION.. 3
1.3 PROBLEM STATEMENT ... 7
1.4 RESEARCH ISSUES .. 9
1.5 CONTRIBUTIONS OF THE RESEARCH ... 10
1.6 OUTLINE OF THE THESIS .. 12

CHAPTER 2 BACKGROUND AND RELATED WORK ... 14

2.1 XML REVIEW ... 15
2.1.1 Introduction .. 15
2.1.2 XML Primer ... 17
2.1.3 XML Schema Languages ... 23

2.1.3.1 Document Type Definition (DTD) .. 23
2.1.3.2 XML Schema (XSD) ... 25

2.1.4 XML Databases ... 28
2.1.4.1 XML Enabled databases .. 29
2.1.4.2 Native XML databases ... 31
2.1.4.3 Hybrid XML databases ... 33

2.1.5 XML Query Languages .. 33
2.1.5.1 Lorel .. 34
2.1.5.2 XML-QL .. 34
2.1.5.3 XQuery .. 34

2.1.6 Other XML Technologies .. 35
2.1.6.1 DOM .. 35
2.1.6.2 SAX ... 35
2.1.6.3 XSLT ... 36
2.1.6.4 XML Namespaces ... 36
2.1.6.5 XPATH .. 36

2.2 OBJECT DATABASES AND OBJECT ORIENTED CONCEPTS .. 37
2.2.1 Introduction .. 37
2.2.2 OODBs History .. 39
2.2.3 Object Oriented Concepts ... 43

2.2.3.1 Object Model .. 43
2.2.3.2 Class ... 43
2.2.3.3 Encapsulation .. 44
2.2.3.4 Inheritance ... 45
2.2.3.5 Polymorphism .. 46
2.2.3.6 Transient and Persistent Objects .. 47

2.2.4 Object Oriented Database Management Systems ... 47
2.2.5 Benefits of Using Object Oriented Databases .. 48

2.3 RELATED WORK .. 49
2.3.1 Mapping XML to Traditional Databases .. 49

V

2.3.2 Mapping XML to Object-Oriented Databases .. 50
2.3.3 Mapping XML to Object-Relational Databases .. 53
2.3.4 Mapping XML to Relational Databases .. 54
2.3.5 Other XML Mapping ... 56

2.4 CONCLUSION .. 58

CHAPTER 3 TRANSFORMING OBJECT-ORIENTED DATABASE INTO XML 62

3.1 INTRODUCTION ... 62
3.2 RELATED WORK .. 66
3.3 OBJECT-ORIENTED TO XML TRANSFORMATION PROCESS ... 67

3.3.1 Object-Oriented Database Characteristics ... 67
3.3.1.1 The Basic Terminology and Definitions ... 67
3.3.1.2 Object-Oriented Schema Information ... 70

3.3.2 The Object Graph (OG) ... 72
3.3.3 Flat and Nested XML Schema Types ... 78

3.3.3.1 Nested XML Schema and Document Structure .. 78
3.3.3.2 Flat XML Schema and Document Structure .. 80

3.4 TRANSFORMING OBJECT GRAPH INTO XML SCHEMA ... 83
3.4.1 Object Graph into Flat XML Schema Transformation ... 84
3.4.2 Object Graph into Nested XML Schema Transformation ... 90

3.5 GENERATING XML DOCUMENT ... 93
3.6 CONCLUSION .. 96

CHAPTER 4 TRANSFORMING XML INTO OBJECT-ORIENTED DATABASE USING XML
SCHEMA... 97

4.1 INTRODUCTION ... 97
4.2 RELATED WORK .. 98
4.3 XML TO OBJECT-ORIENTED TRANSFORMATION PROCESS ... 98

4.3.1 XML Schema Characteristics .. 99
4.3.1.1 The Basic Terminology and Definitions ... 100
4.3.1.2 Nested and Flat XML Schemas .. 101
4.3.1.3 XML Schema Information .. 104

4.3.2 The Object Graph (XOG) ... 110
4.3.3 Transforming Object Graph into Object-Oriented Schema .. 112
4.3.4 Transforming XML Document into Object-Oriented Database 113

4.4 CONCLUSION .. 115

CHAPTER 5 IMPLEMENTATION FOR CONVERTING BETWEEN OBJECT- ORIENTED
DATABASE AND XML .. 116

5.1 INTRODUCTION ... 116
5.2 CUTOMIZED JAVA CLASSES IMPLEMENTATION ... 117

5.2.1 Defining the Object-Oriented Database ... 117
5.2.2 Extracting the Object-Oriented Database Schema ... 118
5.2.3 Creating XML Schema .. 119
5.2.4 Constructing the XML Document ... 120

5.3 IMPLEMENTATION USING OODB DB4O .. 121
5.4 PRESENTING COODAX .. 124

5.4.1 Introduction .. 124
5.4.2 COODaX Architecture ... 125
5.4.3 Extracting the Object Graph ... 126
5.4.4 Transforming Object Graph Model to XML Schema ... 127
5.4.5 Generating XML Document .. 128
5.4.6 Transforming XML Schema into Object-Oriented Schema ... 128

5.5 CONCLUSION .. 128

VI

CHAPTER 6 MAPPING BETWEEN OBJECT DEFINITION LANGUAGE (ODL) AND XML
SCHEMA... 130

6.1 INTRODUCTION ... 130
6.2 A COMPARISON BETWEEN OBJECT GRAPH TO XML MAPPING AND ODL TO XML MAPPING 131
6.3 PREVIOUS WORK .. 133
6.4 RULES FOR CONVERSION FROM ODL STRUCTURE TO XML SCHEMA .. 134
6.5 RULES FOR CONVERTING XML SCHEMA INTO ODL .. 146
6.6 RULES FOR DATA CONVERSION .. 150
6.7 IMPLEMENTATION DETAILS ... 152
 CONCLUSION .. 153
6.8 153

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 155

7.1 INTRODUCTION ... 155
7.2 RESEARCH CONTRIBUTION AND BENEFITS .. 155
7.3 THEORY CONTRIBUTION ... 158
7.4 PRACTICAL CONTRIBUTIONS .. 159
7.5 LESSONS LEARNED FROM THE RESEARCH JOURNEY ... 160
7.6 LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH ... 160
7.7 EPILOGUE .. 162

REFERENCES .. 163

APPENDIX A UNIVERSITY OBJECT-ORIENTED DATABASE SCHEMA 174

APPENDIX B GENERATED NESTED XML SCHEMA FROM UNIVERSITY OBJECT-ORIENTED
DATABASE SCHEMA EXAMPLE .. 177

APPENDIX C GENERATED FLAT XML SCHEMA FROM UNIVERSITY OBJECT-ORIENTED
DATABASE SCHEMA EXAMPLE .. 180

APPENDIX D GENERATED FLAT XML DOCUMENT FROM UNIVERSITY OBJECT-ORIENTED
DATABASE SCHEMA EXAMPLE .. 185

APPENDIX E GENERATED NESETD XML DOCUMENT FROM DB4O OBJECT-
ORIENTEDDATABASE .. 190

VII

List of Tables

Table 3.1 ObjectAttributes . 71
Table 4.1 XMLAttributesNE .
 (a) List of all elements attributes with primitive domain
 (b) List of all elements attributes with non-primitive domains

104

Table 4.2 XMLAttributesFL.
 (a) List of all elements attributes with primitive and non-primitive domains
 (b) List of all keys for the complexType elements
 (c) List of key references of the complexType elements

107

Table 6.1 Comparison between (OODB and XML) and (ODL and XML)
Mapping . 132

Table 6.2 Primitive Type Mapping . 138

VIII

List of Figures

Figure 1.1 Block Diagram for Two Way Mapping Between XML and OODB . 8

Figure 1.2 Object Graph . 11

Figure 2.1 XML Document Example . 18

Figure 2.2 Definition Format for Start Tag, End Tag, and Attribute 20

Figure 2.3 Tree Presentation for StudentGrades . 21

Figure 2.4 DTD Schema Example . 24

Figure 2.5 XML Schema Example . 26

Figure 2.6 Impedance Mismatch when Storing Object in RDBMS 49

Figure 2.7 XML Segment Inlining Example . 51

Figure 3.1 XML Fragment for StdGrades Complex Type 64

Figure 3.2 Object-Oriented Presentation for XML Fragment in Table 3.1 64

Figure 3.3 Relational Presentation for XML Fragment in Figure 3.1 65

Figure 3.4 Object-Oriented to XML Transformation . 66

Figure 3.5 Object Oriented Schema Classes Represented as Nodes in OG 74

Figure 3.6 Direct Connections from the Class to its Superclasses 75
Figure 3.7 Direct Connections from the Class to all its Non-Primitive

Attributes . 76

Figure 3.8 Object Graph for Object-Oriented Schema in Example 3.1 77

Figure 3.9 Nested XML Schema for SUPERVISOR and STUDENT Classes . . 79

Figure 3.10 A Fragment for Nested XML Document . 80

Figure 3.11 Flat XML Schema for Person and Country Classes 82

Figure 3.12 A Fragment for Flat XML Document . 83

Figure 3.13 Flat UNIVERSITY XML Schema . 88

Figure 3.14 Example for Key and Keyref Constraints . 89

Figure 3.15 Example for UNIVERSITY Nested Schema Fragment 92

Figure 3.16 Nested XML Document Fragment . 95
Figure 4.1 Nested XML Schema Segment for Person and Country Complex

Types 101

Figure 4.2 Flat XML Schema for Person and Country Complex Types 103

Figure 4.3 XML Schema Fragment for Staff Class . 105

IX

Figure 4.4 Staff Class . 105

Figure 4.5 Object Graph for Object-Oriented Schema in Example 4.1 111

Figure 5.1 Java Code for Staff Class. 117

Figure 5.2 Generated XML Schema Segment . 119

Figure 5.3 Generated Flat XML Document Fragment . 120

Figure 5.4 Java Segment for Creating Person and Country Classes Using db4o . 122
Figure 5.5 Java Segment for Dumping Country Class Data Using Different

Queries 123

Figure 6.1 Sample ODL Schema . 135

X

Publications Associated with this Research

1. Taher Naser, Keivan Kianmehr, Reda AlHajj, and Mick J. Ridley.

“Transforming Object-Oriented Database into XML”. In IEEE International

Conference on Information Reuse and Integration (IRI-2007), August 2007.

2. Taher Naser, Reda AlHajj, and Mick J. Ridley. “Reengineering XML into

Object-Oriented Database”. IEEE International Conference on Information

Reuse and Integration (IRI-2008), July 2008.

3. Taher Naser, Reda AlHajj, and Mick J. Ridley “Flexible approach for

representing object-oriented databases in XML format”. Proceedings of the

10th International Conference on Information Integration and Web-based

Applications & Services. ACM SIGWEB, pp 430-433, 2008.

4. Taher Naser, Reda AlHajj, and Mick J. Ridley. “Two-Way Mapping between

Object-Oriented Databases and XML”. Informatica 33, pp 297–308, 2009.

5. T. N. Jarada, A. M. Elsheikh, T. Naser, K. Chung, A. Shimoon, P.

Karampelas, J. Rokne, M. Ridley and R. Alhajj, “Rules for Effective

Mapping between two Data Environments: Object Database Language and

XML”. In Recent Trends in Information Reuse and Integration. Springer-

Verlag, 2011.

1

Chapter 1

Introduction

1.1 Markup Languages Overview

The World Wide Web (WWW) has made a revolution in disseminating information

over the internet. Nowadays, business information, library information, research

papers, software downloads, and all other types of information are smoothly

exchanged over the internet. People have already accomplished major steps towards

moving into the electronic world; the classical paper based storage, transfer and

sharing of information is gradually becoming part of the history. Electronic

governments are even possible in many of the developed countries. The information

to be electronically shared have been traditionally published using the Hyper Text

Markup Language (HTML) [36, 59].

HTML was originally designed by Berners Lee at CERN (European Council for

Nuclear Research). It is based upon the well-known meta-language Standard

Generalized Markup Language (SGML) [35]. HTML is composed of a fixed set of

tags that specify how to display information (presentation) rather than identifying the

content of the data. This markup language tells the browsers how to manipulate and

display a document: header, title, font, colour, paragraph and the like. HTML has

limitations on segregating the presentation and the content (data) that makes it

difficult to manage dynamic web information. The search for a piece of data in

HTML is very difficult because there is no indication for the meaning of the data, so

the results could be misleading. For instance, someone looking for the world "left"

2

will get links involving different semantics for the word “left” including left as

direction indicator, left-wings, left the place, left brain and so forth. Due to HTML

shortcomings and drawbacks, the semi-structured and self-describing eXtensible

Markup Language (XML) has emerged to fill a gap and satisfy a need for platform

independent language. XML has some other attractive features including

extensibility, flexibility, etc.

The World Wide Web Consortium (W3C) has defined XML [76]. It is a meta-

language derived from the well-known SGML meta language. XML can be used to

define other application/domain centric markup languages. XML is a text-based

markup language that is fast becoming the standard for data interchange on the web.

It is the best choice for transferring data cross-platform over the internet and so is

becoming a standard for platform independent data exchange. In addition, it is

extendable in the sense that any desirable tag can be defined, so this will not rely on

browsers makers to incorporate new tags in their products if needed. Rather, XML

uses tags to identify and classify the content of the data; in other words, the tags are

intended to show the contextual meaning of the data. For best understanding, tags are

analogous to field names in a conventional data file or to column names in a

relational table. Combining XML with the traditional HTML provides an attractive

markup tool for publishing data on the web. However, data exists in different forms

ranging from completely unstructured text to totally structured databases. While

HTML in isolation as well as the combination of HTML and XML have been

successfully used for dealing with unstructured and semi-structured documents, they

are less used to directly handle structured databases. Hence, the research community

has realised the need for tools capable of transforming between XML and the

3

different structured database platforms; object-oriented and relational are the two

most popular data models and hence are the basic models that has to have dominated

the XML-based transformation.

1.2 Motivation

Academia and industry have widely accepted the fact that XML is now accepted as

the standard format for publishing and exchanging data over the Internet. Due to

being platform independent, XML has been used widely as a standard for data

interchange on the web. There is a real need for generating XML documents from the

databases because of the following facts. First, users may want to publish their data

in their web applications. Since XML is the standard format for data exchange over

the World Wide Web, users want to provide an XML view of their data. Second, web

applications may need to exchange their data with other web applications over the

Internet.

As described in the literature, research on XML is mainly focusing on storing and

managing XML data using both structured database (mostly relational and object-

oriented) and native XML databases. There are generally three main ways to store,

query and manage XML documents:

 Store XML as a Text File:

With XML documents stored as text file, external index can be created and

maintained, and a query mechanism could be used to improve the retrieval of

data.

 Store XML into XML Enabled Database:

 XML Enabled databases extend traditional relational or object-relational

4

databases with middleware, mediator, or with an extension to allow storing

XML documents, publishing relational data as XML document and querying

XML views over the underlying data. These types of XML databases are

mostly used for data-centric applications (structured documents and less

commonly semi structured documents). Data-centric documents [14] are those

XML documents that are well structured and can be easily fragmented and fit

into structured relational database (relational tables have been the most widely

used structure). Examples for data-centric applications include invoice

payments, medical records, stock shares and so on. The middleware layer,

mediator, or other database extensions map the logical structure of the XML

document presented by XML schemas such as DTD [8] or XML Schema [75]

into an equivalent relational database schema. This allows the DB to execute

XML queries against the underlying relational database. A XML query is

translated into a SQL query [27] which is then executed by the DBMS. The

results presented by tuples from the database are transformed into XML format

by tagging them as elements and/or attributes to generate the XML document.

XPERANTO [19] and SilkRoute [31] are two typical examples for the

middleware solutions, and Agora [47] is an example of an XML mediator.

 Store XML into Native XML Database:

The term Native XML database first became popular from the campaign of the

XML server Tamino [69], a product from Software AG produced in 1999. The

internal model of this database is based on XML structure. The fundamental

data structure unit is XML document. This means that an XML document can

be stored as a whole rather than segmented into pieces as is the case for XML

5

documents stored in XML Enabled databases. A native XML database like

other databases should support transactions, security, multi-user environment,

XML query language, etc. Native XML databases are mostly used to store

document-centric documents. Document-centric documents [14] are the

unstructured and mostly the semi-structured documents that are designed for

human use such as books, emails, newspaper, advertisements, news reports,

images and so on. Mostly they are read-only documents. They have irregular

structure, which means no strict data format or data structuring is manipulating

the content other than being well organized as required by the particular

domain/application. For instance, a book is divided into chapters; each chapter

is divided into sections; a section may be divided into subsections; and both

sections and subsections may consist of paragraphs. This structure may differ

from one book to another. Also a good example is the newspaper pages where

each page has a different structure. The location, size, shape of advertisements,

news, weather forecast and so on, do not have a regular structure over different

pages.

As described in the literature, there are many approaches for transformation between

relational databases and XML documents. IBM DB2 XML Extender [24] is an

example where user should provide the tool with the relational input schema as well

as the XML output schema; also the user has to map the relational and the XML

schemas. SilkRoute, XPERANTO, Oracle 10g, and Agora are also examples of tools

that work as middleware between the users and the database systems. The user

provides the relational schema and the XML queries. The tool translates the XML

queries into SQL queries. These are then executed by the RDBMS. The result is

6

tagged as XML document. As XML query languages and SQL [27] do not have the

same semantics, the mapping is not perfect.

The mapping from XML into object-oriented database facilitates storing XML

documents using object-oriented structure is more attractive than the relational or

object relational structure as there is more overlap between XML Schema and the

object-oriented paradigm than between XML Schema and the relational paradigm

(explained with example in Section 3.1). So, due to this similarity of the structure for

both object-oriented database and XML, it is more efficient to store and manage

XML documents using object-oriented databases. This mapping process is expected

to preserve as much information as possible during the transformation.

The transformation of object-oriented databases into XML has received little

attention. Since the business data currently stored and maintained in object-oriented

database management systems is increasing steadily, it is important to automate the

process of generating XML documents containing information from those existing

databases. The object-oriented-to-XML transformation involves mapping names of

the classes and attributes into XML names of elements and attributes, mapping the

inheritance and nesting hierarchies into XML hierarchies, and processing values in

an application specification manner.

The similarity of the structure between XML Schema and object-oriented database

schema encourages developing an approach for both ways of transformation between

XML and object-oriented databases. As a result of the research efforts that produced

this dissertation, two basic steps are identified in the process of transforming object-

oriented databases into XML. First, an intermediate graph from the given object-

7

oriented database is constructed. This process requires knowing the meta-data of that

object-oriented database schema. The meta-data should be extracted by using the

underlying object-oriented database management system constructs or by composing

it through scanning the entire database data (refer to Section 5.4). Second, the

obtained intermediate graph is to be transformed into XML Schema. The reverse

process of transferring XML Schema into object-oriented database is also performed

into two steps. First, the XML complexTypes elements are extracted to construct an

intermediate graph. Second, the obtained intermediate graph is to be transformed into

an object-oriented schema. Detailed description of this process is found in Chapters 3

and Chapter 4.

1.3 Problem Statement

Storing, managing and retrieving XML documents has been a main challenge since

XML emerged and adapted for data exchange. Most of the XML documents are now

stored in relational or object relational databases. These are the concerns facing the

process of managing and storing XML document into relational or object relational

databases:

 The mapping from the relational schema into XML Schema and vice versa is

specified by human experts. Therefore, when a large relational schema and the

corresponding data need to be translated into XML documents, a significant

investment of human effort is required to initially design the target schema.

This process is error-prone, time consuming and tedious.

 XML document should be fragmented into several pieces before it can be

stored into relational or object-relational database. It should be reassembled

when the document is retrieved. Because of a lack of referential integrity

8

between parts and the significant time it takes for reassembling the XML

document, query response will be very slow and the process is inefficient.

Figure 1.1: Block Diagram for Two Way Mapping Between XML and OODB

The block diagram in Figure 1.1 summarizes the core and the spirit of this research.

The process starts with analysing the XML Schema and corresponding XML

document. It breaks down the schema into the core components of XML that may

hold data; elements and attributes. Then the object graph is constructed from

elements and attributes. The object graph is then used as an input to construct the

object structure. The object structure is stored as an object oriented database. The

reverse process starts by extracting the object structure into object graph and then the

object graph is used to construct the XML Schema and related document. The

generated graphs are equivalent in term of vertices and edges but they are different in

content. Because of the similarities between the structure of the XML Schema and

the object-oriented schema, most of the data is preserved during the mapping. The

proposed approach could be classified under database reengineering. However, each

side of the mapping is considered as independent reengineering process as both

9

models are classified as recent technologies. In other words, the reengineering of

XML into object-oriented database as well as the reengineering of object-oriented

database into XML is handled. Each of the two reengineering processes consists of a

reverse engineering step and a forward engineering step. The former step derives the

basic characteristics of the source model to be reengineered and the latter step

derives the target model.

This work argues that the mapping between XML and object-oriented databases is

the most natural because of the very narrow semantic gap between the two models as

compared to the semantic gap between XML and each of the relational and the

object-relational model. The mapping between the object-relational schema and the

XML Schema is inefficient because it is completed in two steps. First, the XML

Schema is mapped to an object schema. Second, the object schema is mapped to a

relational schema. To sum up, the problem tackled in this dissertation is simply the

two way mapping between XML and object-oriented database.

1.4 Research Issues

When we are seeking solutions for efficient mapping between XML structure and

object-oriented paradigm, many challenges and critical issues had been raised. These

challenges are explained as:

a. Existing research for mapping between XML and OODB is inadequate (refer

to Section 2.3.2).

b. XML Schema is a complex structure comparing to other XML schemas such

as DTD.

10

c. Different object oriented databases have different data model schema

structure.

d. Mapping should support nesting and inheritance.

e. An intermediate structure such as a directed object graph is preferred to be

incorporated to clearly demonstrate the mapping process.

Due to mentioned challenges, the following research questions have been raised:

1. Can we define a generic object oriented database model that can be a subset

of most of objects oriented databases models?

2. Can we have a successful two way mapping between the complex XML

Schema structure and a generic object oriented database schema structure

using an object graph? Why and how to incorporate a directed object graph

into the mapping process?

3. Does the mapping process support inheritance and nesting, and can this

process generate flat and nested XML schemas and their corresponding

documents?

4. How to minimize the user involvement and how to recover database meta-

data if not exists?

5. Can the concepts of this approach apply successfully to other way of mapping

(mapping between XML and ODL as an example)?

1.5 Contributions of the Research

Contributions of the work described in this dissertation could be enumerated as

follows.

11

 Analysing the schema (meta-data) and the content of object oriented database

and then extract an intermediate graph called Object Graph (OG) - similar to

the entity-relationship diagram in relational databases - from that database. This

research proved that object graph can be used successfully for mapping

between object oriented databases and XML. A sample object graph is shown

in Figure 1.2. For more details, refer to Chapter 3.

Figure 1.2: Object Graph

 Transforming the derived object graph to flat or nested XML Schema as

specified by the user; and then transfer database content accordingly.

 Transforming an XML Schema into object-oriented schema, and then transfer

the XML document(s) to the developed object-oriented database. This is a

reverse process of object-oriented schema into XML Schema transformation.

This is performed by creating an OG derived from the XML Schema. The OG

12

is then transformed into the object-oriented schema and then the XML

document is produced accordingly.

All these contributions are integrated into a rigorous framework capable of providing

a workable solution for the defined problem. The produced solution is described in

this dissertation according to the outline given in the next section.

1.6 Outline of the Thesis

The thesis is composed of 7 chapters, including this introduction chapter. Chapter 2

gives an overview of the necessary background and describes the related work. It

describes XML primer, XML schemas, XML databases, XML query languages,

object oriented concepts, and mapping approaches between XML and different

databases such as relational, object-relational, and object-oriented. Chapter 3

explores the details of transforming an object-oriented database into XML Schema

and XML related document. This chapter includes the details of the approach that

has been followed in this transformation, the definition of the object graph, and the

algorithms used for this purpose. It discusses the XML Schema structures and the

mapping techniques used in this work. Also, it shows how to generate flat and nested

XML Schemas and documents. Chapter 4 explores the reverse process of the

approach followed in Chapter 3. It shows the details of the work done about the

transformation of XML Schema and corresponding document into an object-oriented

database. Chapter 5 describes the implementation of the work presented in Chapter 3

and chapter 4 exposing a flexible framework for representing the object-oriented

database into XML format. Chapter 6 discusses a new mapping between object-

oriented schema described in object definition language (ODL) and XML Schema.

This work also discusses the two way transformation of data between ODL and

13

XML, and then the steps for the implementation of this work. Chapter 7 includes the

conclusion and highlights the future research directions.

14

Chapter 2

Background and Related Work
This chapter provides an overview of various XML technologies, object databases

and object oriented concepts, and the mapping between XML and different

databases. As stated in Section 2.3.1, little research of mapping between XML and

object oriented databases exists. This is mainly due to the emergence of object-

relational databases. As relational databases are still the dominating model and

because object relational model is benefiting from the matured relational model,

researchers argue that object relational model is the most appropriate solution for

handling object oriented data and for storing XML data. Therefore, research

communities concentrate on mapping object-relational with XML. We argue that

object oriented databases are more appropriate because of their sufficient level of

maturity [ODMG 3.0], robustness, and because of their complementary model to

XML structure; object oriented model and XML structure share more features and

therefore the semantic gap is limited. Because of the similarity between the object

oriented and XML structures ̧storing XML documents into object oriented databases

preserve the XML structure. Also, there is a steadily increase in using these

databases, so a good amount of data is stored in object oriented databases and this

data is required to be exposed into XML format. Another benefit that can be gained

from storing XML into OODB is the ability to apply an object oriented query

language on stored XML data. Furthermore, as object relational model is based on

relational structure, storing objects will suffer from the impedance mismatch problem

(Section 2.2.5).

15

Section 2.1 explains the structure of an XML document, a description of some XML

schema languages, types of XML databases, and different XML query languages.

Section 2.2 discusses the object databases, the history of their development,

definition of object and class, and the object oriented concepts such as inheritance,

encapsulation, polymorphism, persistence objects and so on. Mapping between XML

and different types of databases is explained in Section 2.3. This section discusses

the mapping between XML and relational, object-relational, object-oriented

databases, and the indirect mapping between XML and databases.

2.1 XML Review

2.1.1 Introduction

XML (eXtensible Markup Language) [76] has been defined by the World Wide Web

Consortium (W3C). XML is emerging as the standard universal format – as a text-

based markup language - for data exchange and presentation over the internet. As

XML is a text-based markup language, it is accepted as a convenient choice for

transferring data cross-platform over the internet. Being a markup language, the roots

of XML may go back to the 60s as the history of the markup languages started from

the late 60's when IBM created the GML (General Markup Language) to facilitate

text management in large information systems. Then in 1978 the American National

Standards Institute (ANSI) created its first version of SGML [35] (Standard General

Markup Language), and the first standard release of SGML was published in 1986.

SGML is a meta language; a language that can be used to define other languages.

Example for this is HTML [36, 59].

16

HTML was originally designed in 1990 by Tim Berners-Lee at CERN (European

Laboratory for Particle Physics) to allow "physics nerds" to communicate with each

other. It was first released in December 1990 within CERN, and then became

available for the public in 1991. The HTML markup language is composed of fixed

set of predefined tags that show how to manipulate and display information rather

than how to identify the content of the data. It directs the browsers on how to display

paragraphs, headers, colours, fonts and so on.HTML does not allow users to define

their own tags; the set of tags allowed in HTML is rather predefined. Further, HTML

is static; that means it does not show dynamic information. For example, suppose

some static HTML web pages include information about weather, what could happen

if the temperature or wind speed is continuously changing? It is required to re-edit

the page and update the changes. It is not practical to make changes in the web page

constantly without the use of automated tools. For instance, a scripting language such

as Java server Pages (JSP) can be used to grab the weather information from an

updated database and apply it to the weather web pages. This script should be loaded

and executed on a web application server. Also AJAX (Asynchronous JavaScript and

XML) can be used for accessing dynamic data through HTML. AJAX is a new

approach of using programming standards that have been populated by Google. It is

based on making HTTP (Hyper Text Transfer Protocol) request from JavaScript to

the database server so as to get the requested information. It does not need to reload

the web page as other web programming scripting languages do. It still needs to call

a script loaded on the internet application server side that can extract the requested

data.

17

HTML is also characterized by having little semantic structure. It tells how to display

information, but it does not tell what the information is about. The search for a piece

of data in HTML is very difficult because there is no indication for the meaning of

the data, so the search results could be misleading. When people started using

HTML, they quickly started realising the limitations of this markup language.

Due those shortcomings of HTML, researchers, designers, and developers started

thinking of using a markup language that can overcome the above mentioned

problems. Because SGML is a very difficult markup language to use, the semi-

structured and self-describing eXtensible Markup Language (XML) [76] has

emerged. As XML is simpler than SGML and has very powerful features comparing

to HTML, it becomes a dominant markup language.

2.1.2 XML Primer

XML [76] can be seen as a simple, flexible meta language derived from SGML.

XML is originally designed to meet the challenges of large-scale electronic

publishing. It is also playing an increasingly important role in the exchange of a wide

variety of data on the Web and elsewhere. It uses a tree-like document representation

model. XML provides a simple, yet extensible and platform independent syntax that

has made it the preferred option for data interchanges on the Internet. This due to its

flexibility and extendibility, XML is becoming the format of choice for data across

many fields. All XML documents must abide to grammars and constraints defined in

their XML schema languages such as Document Type Definition (DTD) or XML

Schema. The schema languages are very flexible that allows users to define an

arbitrary complex document in a tree-like structure. As has been already mentioned,

19

used. The next line of the document describes the root element StudentGrades. Title,

StdFullName, Note, and CoursesTaken are the subelements of the root element

StudentGrades. StudentGrades, StdFullName, and CoursesTaken elements are called

complexType elements because they contain other subelements. ID is an attribute of

StdFullName element and "UB014091" is the value of ID attribute. XML attributes

normally provide additional information about element. This information is not

necessarily being part of the data. In the next XML segment, "gender" is an attribute

name for the employee element and "Male" is the value for this attribute. Attribute

values should be quoted by either single or double quotes.

 <employee gender = "Male">
 <firstname>Taher</firstname>
 <lastname>Naser</employe e>
 </lastname>

The next XML segment is equivalent to the above one; that means they provide the

same information. The latter segment uses an element instead of attribute to describe

gender.

 <employee>
 <gender>Male</gender>
 <firstname>Taher</firstname>
 <lastname>Naser</lastname>
 </employee>

In this thesis, element approach instead of attribute approach will be used. This is

useful because if the attribute is stored into the database, it is required either to

specify a class that holds all attributes and a link from the attribute to the original

class or to define an instance variable into the original class to hold the attribute

value and a flag to tell that this is an attribute for the stored element. The problem is

that; when this database is retrieved by another client, he may not understand such

structure and may not realise that this instance is an attribute and the defined flag is

not an element. So, although this approach may cause partial loss of the original

22

The next XML segment is not a well-formed XML segment because there is an

overlap between "employee" element tag and "lastname" element tag. They are

nested incorrectly. The "lastname" element tag should be closed before the

"employee" element tag. Also the value "Male" for the attribute "gender" should be

quoted by single or double quotes.

<employee gender = Male>
 <firstname>Taher</firstname>
 <lastname>Naser</employee>
</lastname>

The next XML segment is the correct well-formed version of the previous segment

<employee gender = "Male">
 <firstname>Taher</firstname>
 <lastname>Naser</lastname>
</employee>

All modern browsers have a built-in XML parser that can be used to read and

manipulate XML. Most XML parsers are based on Document Object Model (DOM).

The parser reads XML into memory and converts it into an XML DOM object.

The well-formed xml document may not be a valid document. Looking into the

following example, the XML document is a well-formed document, but it is

confusing and meaningless. The value for attribute unit of element Qty is defined as

"ml" and "gm". This is meaningless, so most of XML parsers detect such errors.

<Ingredient>
 <Qty unit="ml">100</Qty>
 <Qty unit="gm">50</Qty>
 <Item>Orange Juice</Item>
</Ingredient>

So, the valid XML document is the document that can conform with the grammar

that is represented by the XML document schema. In our case, the document should

23

meet the XML Schema structure and rules. XML schemas are explained in details in

the next Section.

2.1.3 XML Schema Languages

An XML document is typically composed of the schema and the document content

(data). The schema reflects the basic constructs of the model together with the rules

and semantics that control the content of the document. There are many XML

schema languages recently available such as Data Type Definition (DTD), XML-

Schema, and RELAX NG and so on. The following is a description for the most

commonly used schema languages DTD and XML Schema.

2.1.3.1 Document Type Definition (DTD)

Document Type Definition (DTD) [8] is an XML schema language that defines the

grammar and constraints of the structure of the XML document. It defines the

document structure by defining the root element, subelements, element attributes,

types of elements and type of attributes, the allowed values for attributes and so on.

The DTD has a different structure and syntax from XML documents compared to

XML Schema (Section 2.1.3.2) which itself is an XML language. The DTD can be

used to specify the order and the occurrences of the elements. Figure 2.4 is a

fragment DTD Schema that represents the XML document shown in Figure 2.4.

25

CoursesTaken)>, a declaration for an element called “StudentGrade” that have

three declared subelements named “StdFullName”, “Note”, and “CoursesTaken is

defined. The three subelements “StdFullName”, “Note”, and “CoursesTaken” should

appear in corresponding XML document in the same order. “StdFullName” is the

first, “Note” if exist (as denoted by the “?” symbol which means it is optional) is the

second, and “CoursesTaken” is the last. DTD has the facility to define elements

occurrences. The indicator (+) means one or many occurrences of the element, the

indicator (?) means 0 or 1 occurrences, the indicator (*) means 0 or many

occurrences, and the element between two brackets (element name) means one

occurrence only. In the following examples, “StdFullName” should occur only once,

“Note” should occur 0 or 1 time, “CoursesTaken” should occurs once or more, and

middleInitial* should occur 0 or more times.

2.1.3.2 XML Schema (XSD)

XML Schema is a W3C recommendation [75]. It contains rules, constraints and

semantics that describe the structure of the content model of XML documents. It

supports many data types and allows of creating custom data types. It has been

widely accepted by the software industry.

The XML Schema fragment shown in Figure 2.5 below specifies PersonClass

complexType element. The elements SSN, name, age, sex, spouse and nation are

called simple elements because they do not contain any other elements. PersonClass

element is called a complex element because it include simple elements

(subelements). There is a basic difference between complex types which allow

27

 Predefined and User-defined Types.
It provides predefined simple types but also allows the user to define

Customised complex types derived from the simple types. The next XML

fragment shows the employee complexType element which is composed of

firstname and lastname simple type elements.

 <employee>
 <firstname>July</firstname>
 <lastname>Moore</lastname>
 </employee>

Element “employee” complexType can be used as a new Customised type in

the XML document.

 Parsable
It is written in XML syntax, so any XML parser can parse it. Also there is no

need to learn another language.

 Type inheritance
It allows the reuse of any part of an XML Schema in other XML Schema

definitions. In addition, it allows us to reuse reference multiple schemas in an

XML document.

 Namespaces
Namespaces are used to provide unique names for elements and attributes in

the XML documents. XML Schema has very good control over namespaces

and their definitions.

 Uniqueness Constraints, Keys, and References (Keyrefs).
It is possible to define uniqueness constraints and key/foreign key declarations

for elements and attributes using “key” and “keyref” constructors.

 Occurrence Constraints
XML Schema allows us to define the cardinality of an element (number of

28

possible occurrences). It can be defined by using two XML Schema build in

occurrence constrains attributes (also called indicators) named : “minOccurs”

and “maxOccurs”. The default value for “minOccurs” is 1.The appearance of

an element is optional when the value of the minOccurs attribute in its

declaration is 0 and the appearance is required when it has the value 1 or more.

The “maxOccurs” attribute takes 1 as a default value and should take a value 1

or greater. The maximum number of times an element may appear is

determined by the value of a maxOccurs attribute in its declaration. It should be

greater or equal to minOccurs attribute. If both minOccurs and maxOccurs are

omitted, the element must appear exactly once. The “unbounded” value

indicates that there is no maximum number of occurrences.

The features that have been discussed above make XML Schema the most

appropriate option to be mapped with relational, object-relational, or object-oriented

databases schemas and data. Detailed specification for the XML Schema language

can be found in [75].

2.1.4 XML Databases

An XML database is a collection of XML documents that can be stored and

manipulated. XML documents are defined in two main categories: data-centric

(structured documents) and document-centric (unstructured and often semi-structured

documents). Data-centric documents are those that have a highly regular data

structure. Examples for data-centric are patients records, flight schedules, stock

shares, and invoice payments. The physical structure of data-centric documents, such

29

as the order of sibling elements is often unimportant. Sibling elements are the

elements that share the same parent element. Object-oriented databases do not have

the concept of sequence among their properties, and similarly relational databases do

not have this concept in their column properties. So when storing document-centric

XML data with mixed content into an object-oriented or relational database, it is very

significant to store sibling order of elements in a data repository either within the

database or within the elements.

Document-centric [14] (unstructured or semi-structured documents) are those that

have irregular structure, such as in user's manuals, advertisements, newspapers, and

marketing brochures. They are characterized by irregular structure and mixed

content; and their physical structure is important.

There are two main categories of XML databases, namely XML Enabled databases

explained in Section 2.1.4.1 and Native XML databases explained in Section 2.1.4.2.

Oracle Database 11g with the extension Oracle XML DB [56] could be counted as a

third type of XML databases. It is a hybrid database that can manage both XML-

centric and relational data. XML-centric means both the data-centric and the

document-centric XML documents. For more information refer to Section 2.1.4.3.

2.1.4.1 XML Enabled databases

XML Enabled databases are constructed with an underlying traditional database,

such as relational, object-relational, or object-oriented databases that have a

capability to store and retrieve XML schemas and documents. XML Enabled

databases are managing, storing and querying XML documents in different ways.

Firstly, an extension is built for databases such as Oracle Database 11g [57], and

30

IBM DB2 [24]. Secondly, middleware software is built over the database, as in

SilkRoute [31] and XPERANTO [19]. Thirdly, a mediator that can manage XML

documents and that has been built over different databases, as in Agora [47]. XML

Enabled databases are mostly appropriate for the data-centric documents and

applications.

Databases with extension are responsible for storing and retrieving XML Schemas

and documents to and from the underlying database. During the storage of the XML

document, XML schema (DTD or XML Schema) is mapped into the database

schema and then the data is transferred accordingly. Data is shredded into many parts

and stored in relations. During the retrieval of an XML document, the database

schema is mapped into XML Schema and the XML document is extracted and

composed accordingly. XML Enabled databases with extensions enable users to

execute XML-based queries against the underlying database. XML requests (queries)

are translated into SQL queries which are executed by the DBMS. The tabular query

results are converted and tagged into XML, and then the XML document is

generated and returned back to user.

The middleware software is providing query-able XML views over the underlying

relational or object relational database. Users can then query and (re)structure XML

data using an XML query language, without having to deal with the underlying SQL

tables and SQL query language. XPERANTO [19] and SilkRoute [31] are well-

known examples for middleware projects.

31

2.1.4.2 Native XML databases

Native XML databases [38, 49, 56, 69] are databases that have an internal model or

structure that have the capability to store any XML Schema and document. The term

native means that documents are stored in data structures that have been designed for

only XML data, not in the form of relations as in traditional DBMSs. Like other

databases, they support features like transactions, security, crash recovery, query

languages, and so on. Native XML databases preserve document identity, document

order, processing instructions, and comments. Also, this type of XML database could

have better integration as all pieces of XML documents are stored in a known

structure that do not need any mapping to other structures. So, native XML databases

are mostly useful for storing document-centric documents. They support XML query

languages that allow the execution of complex queries such as this example: "Give

me all documents that have the bold word "food" with “red” colour located in the

second section of the fourth paragraph". It is not an easy task to perform such query

in XML Enabled databases since it is necessary to fragment and store the XML

document in many relational tables. Tables will be used to store the content, font

style (bold), colour, location (section, paragraph) and other attributes. When trying to

execute this query against a relational database system, it is first required to translate

the XML query into SQL and then to execute the generated SQL against the

underlying RDBMS. This will require many joins across tables, many indexes and

reads lookups to retrieve the data where that will be very costly.

A typical example of a Native XML database is the Tamino XML server [67, 69],

Developed by Software AG in 1999. Tamino has a complete native XML database

management system that is supporting transactions, security, multi user access,

32

logging, crash recovery etc. It supports XQuery [9] and full text retrieval

functionality, handles document-centric documents regardless of their structure, and

has the facility to store other types of data such as MS Word documents, HTML

pages, images, sound files, etc. It has metadata repository that include XML schemas

such as DTDs and XML Schema, and Style Sheets.

Lore [49] is a database management system designed to handle semi-structured data.

Lore's data model, Object Exchange Model (OEM) is self-describing and nested

object model. It supports a query language called Lorel, multiple indexing

techniques, a cost-based query optimizer, logging, and recovery. One of Lore's

features is the DataGuide, which is a structural summary of the managed database.

DataGuide are used to explore the structure of the database and to formulate queries.

They are also used to store statistics and guide query optimization.

Timber [38] is a native XML database developed at the University of Michigan [37]

and build on top of SHORE (Scalable Heterogeneous Object Repository) [17]. It has

been developed based on the relational model considering that many components of

a standard database system can be reused with no change (such as Transaction

Management Facilities). Some components have been modified to accommodate the

new data model and query language. For example Timber extends XQuery (see

2.1.5.3) with functions for inserting, updating or deleting nodes, attributes or their

contents. Cost estimation and query optimization techniques have also been

developed. Timber is based upon set-at-a-time processing that can manipulate sets of

ordered, labelled trees and natively stores XML. Each operator in the algebra would

take one or more sets of trees as input and produce a set of trees as output.

33

2.1.4.3 Hybrid XML databases

 Oracle Database 11g developed an extension called Oracle XML DB [56] that

supports managing XML documents. Oracle Database, with Oracle XML DB

provides a hybrid database for managing both XML-centric and relational data.

Oracle XML DB is built on the core components of XMLType abstraction for

storing, querying, accessing, and manipulating XML data. XMLType is an abstract

data type that allows different storage models to best fit XML data. Oracle XML DB

supports three main storage models for XML data; structured, unstructured, and

binary storage models. It is recommended that data-centric (structured) XML

documents can be stored in object-relational storage model with B-Tree indexes

while semi structured XML documents can be stored in hybrid object-relational and

CLOB (Character Large Object) with B-Tree, XML, and full text indexes. Also,

document-centric structured XML documents can be stored in binary XML or CLOB

storage with XML and full text indexes, while document-centric unstructured XML

documents can best fit binary XML or CLOB storage model with XML and full text

indexes.

2.1.5 XML Query Languages

Since XML emerged, many XML query languages have been proposed. Among

those, three XML query languages (namely Lorel, XML-QL, and XQuery) have been

chosen to represent the spectrum of most XML query languages. Lorel [4] is the

known XML query language designed for the semi-structured data. XML-QL [25] is

the first query language in XML syntax. XQuery [9] is the first proposal of a W3C

standard query language for XML; it was accepted as the standard in February 2007.

34

XQuery includes the experience of the previously defined query languages and

highly imitates SQL. The following is a brief review of those three query languages:

2.1.5.1 Lorel

Lorel [4] query language was originally designed for querying semi-structured data.

It was then implemented as the query language of the native XML Lore database

management system. It is a user friendly language in the SQL/OQL (Object Query

Language) style. For wide applicability, the simple object model underlying Lorel

can be viewed as an extension of the ODMG (Object Data Management Group) data

model and the Lorel language as an extension of OQL.

2.1.5.2 XML-QL

XML-QL was designed at AT&T Labs; it has been developed based on other query

languages (UnQL and Strudel) for semi-structured data [25]. XML-QL language

extends SQL with an explicit CONSTRUCT clause for building the document

resulting from the query and uses the element patterns (patterns built on top of XML

syntax) to match data in an XML document. XML-QL can express queries as well as

transformations, for integrating XML data from different sources [13].

2.1.5.3 XQuery

XQuery is the W3C proposal for a standard XML query language, published in

February 2001, revised in June 2001 [16] and in February 2007 [9]. It is a query

language designed to express queries across all kind of XML data sources, whether

they are stored in XML documents or in databases and can be viewed as XML.

XQuery is derived from an XML query language called Quilt [23], which in turn

35

inherited features from several other languages, including XPath [7], XML-QL [25],

SQL, and OQL [15].

2.1.6 Other XML Technologies

2.1.6.1 DOM

The XML DOM (Document Object Model) [74] is an API that allows programs and

scripts to dynamically access and update the content, structure and style of XML

documents. In DOM, XML documents are represented as objects (nodes) in a tree

structure; i.e. it reads the entire XML document into the memory to build the tree

structure. Their content (text and attributes) can be modified or deleted, and new

elements can be created. DOM defines interfaces for each different entity in an XML

document (elements, attributes, etc.), and specifies methods for manipulating the

structure and the content of the document. Large documents are difficult to process

as it will require large amount of RAM.

2.1.6.2 SAX

Simple API for XML (SAX) [62] is an event based API used to break the structure of

an XML document into a linear stream of events. A compatible SAX XML parser

uses a set of callback methods when an event occurs, such as when the parser

encounters the start tag and end tag of elements. It does not allow navigation and

backtracking of the XML document. SAX can handle XML documents of any size as

it does not need to construct a tree structure for the XML, but it place a high load on

the application developers as they have to handle the events received.

36

2.1.6.3 XSLT

Extensible Stylesheet Language Transformation (XSLT) [42] defines a language for

transforming an XML document into a different data presentation based on the

designer of that stylesheet. This presentation can construct a new result tree from the

XML source tree, and produce a formatted result suitable for presentation on the

web.

2.1.6.4 XML Namespaces

Elements in XML documents are defined by the developers [12]. When having

documents with the same element names but different content, this causes conflict

when those documents are gathered in one XML application. To overcome this

problem, namespaces are used. Namespaces are prefixes defined before the element

name to distinguish it from any other element with the same name. The namespace

declaration is defined in the start tag of the element; it has this syntax:

xmlns:prefix="URI". This assures that there will be no conflict between elements

names for the whole application.

2.1.6.5 XPATH

XPath [7, 18] is a path-based language designed and standardized by W3C since

1999; it forms one of the basic constructs of XQuery. It views an XML document as

a tree structure consisting of nodes (element, attributes, etc.), each representing the

entities of a document. XPath uses path notation for navigating through the

hierarchical structure of an XML document and then addressing and returning the

required parts of the data. Its syntax is simple and efficient, so it is easy to learn.

Conditions can be applied within a path to extract the required information and filter

37

unwanted data. It is used by various XML technologies such as XSLT (XML

transformation language), XQuery, and XLink (XML linking language).

2.2 Object Databases and Object Oriented Concepts

2.2.1 Introduction

Relational model is a successful structure used since the mid-1980s for developing

traditional business applications. However, there are clear shortcomings when it is

required to design and develop complex database applications for systems such as

computer-aided design (CAD), computer-aided Software engineering (CASE),

geographical information systems (GIS), and multimedia data such as audio, video,

graphics, images and so on. These complex structures require a database model that

can support, manage, and handle these data. As the available traditional databases do

not support complex data types and query languages and operations that can apply to

these complex models, object oriented databases emerged. Another reason for the

creation of object oriented databases is the domination of object oriented

programming languages such as C++, Java, Smalltalk in building business

applications. [EN97].

An object database uses a database model that support storing, manipulating, and

handling complex data represented as objects. For example complex objects could

include photos, video, audio, and images. Object oriented database management

systems (OODBS) can be defined as a combination of database capabilities with the

combination of object-oriented programming language capabilities.

38

An object is the key element of understanding the object-oriented technology and

their concepts. In real-world, object is a physical thing than can be seen around such

as car, television, bicycle, and PC. Also conceptual things can be counted as objects

such as temperature, air pressure, and human feeling. For the purpose of modeling, a

teaching staff could see students, curriculum, class room, and text book as objects for

a taught course. An automotive engineer could view body, engine, automatic

transmission, and tires as objects for a model of a car.

An object usually has two components; state and behaviour. State is the internal

value (data) of an object while behaviour is the operation (method which are similar

to function in traditional programming languages) that apply to the object. For

example, the state of an engine object could be (on, off) and behaviour could be

(starting engine, stopping engine), the state of a car transmission could be (Drive,

Reverse, Park, related speed) and behavior could be (current gear-shift lever, current

speed), and the state of human being could be (name, eye colour, length, weight,

hungry) and behaviour (eat, walk, sleep). Also, object data may contain relationships

between this object and other objects.

Each object has a unique object identifier OID. This identifier is generated by the

database system and it is neither changeable (immutable) nor can be reused or

assigned to another object when the object is deleted. OIDs can be used to reference

other objects. This is similar to the use of foreign keys and referential integrity in

relational model.

An object may have an arbitrary complex structure in order to contain all of the

necessary information that describes the object. For example a car is an object that is

composed of other instances of type object such as engine, gear, and tires and some

39

other simple structures such as colour, shape, and model.

2.2.2 OODBs History

Object oriented concepts are formally introduced with the emergence of object

oriented programing languages in the late 1960s. Simula-67 was the example for the

first developed object oriented language designed by Dahl et al. [26] at the

Norwegian Computing Centre. Smalltalk, developed by Alan Kay et al. [43] at the

Learning Research Group at Xerox's Palo Alto Research Centre in the 1970s is

considered to be the first real and pure object oriented programming language as the

language structure is designed to be object oriented language; i.e. it incorporate

concepts such as inheritance and message passing. This language forces the

developers to use the object oriented paradigm.

In the early 1980s, many object oriented database projects were started in research

and university labs. Some of these projects include IRIS at Hewlett-Packard, ODE at

Bell Labs, Encore-Ob/Server at Brown University, and ORION at Microelectronics

and Computer Technology Corporation (MMC). Among all, ORION [44, 45] is one

of the main research projects that had started by Won Kim at MCC from which the

current object oriented database Versant [71] traces its history from this project.

Starting from 1985, the term of object-oriented database system was used [5]. A

number of commercial OODBs products had been developed after the mid of 1980s

and during 1990s. This includes Gemtone [34] from Servo-Logic (Changed to

Gemtone Systems), Grapheal from GBase, Versant [71] from Versant Corporation

(was Object Sciences Corp), Objectivity/DB from Objectivity Inc. [55], and O2 from

Ontologic (changed to ONTOS Inc.).

40

Atkinson et al. [1]. In their popular and influential paper “The Object-Oriented

Database System Manifesto” defines an object oriented database management system

as: it should be an object-oriented system and it should be a database management

system (DMBS). They had grouped the characteristics into three categories:

 Mandatory

An object-oriented database system must satisfy two criteria: it should be a

DBMS and it should be an object-oriented system. DBMS translates into five

features: persistence, secondary storage management, concurrency, recovery

and an ad hoc query facility, and object-oriented system translates into eight

features: complex objects, object identity, encapsulation, types or classes,

inheritance, overriding combined with late binding, and extensibility and

computational completeness. Any systems that satisfy these characteristics

deserve the OODBS label.

 Optional

Those features are not mandatory to make the system an object-oriented

database system, but clearly they improve it. Those features are: Multiple

inheritance,Type checking and type inferencing, Distribution, Design

transactions, and Versions.

 Open

These are the characteristics where OODBS designers and implementers can

select from a number of equally acceptable solutions. No consensus has yet

been reached and it is not known which of the alternatives are better. Those

41

characteristics are: programming paradigm, representation system, type

system, and uniformity.

Although there were many object-oriented databases present and available in the

market, there were no agreed-upon standard model and query languages for these

databases. Many benefits can be gained out of the presence of a standard OODBS

model such as portability, interoperability, and the possibility to compare different

commercial products. Portability means that an application can be migrated from one

product to another with minimal changes and cost. Interoperability means that the

same application can access different DBMS packages in different databases such as

OODMS and RDBMS packages. Comparing different products help in showing

which features of the standards are supported, and this help in making proper

decision when purchasing a product. The lack of standards for object-oriented

database model could be one of the reasons that lead to no wide spread take up of

object-oriented databases. In contrast, the standard SQL was one of the main causes

for the wide-spreading of RDBMS model.

In 1991, Rick Cattle and other five major OODBS vendors form the Object Data

Management Group (ODMG). The major aim of this group is seta standard object-

oriented database model and specification that allow developers to write portable

applications. In 1993, ODMG published their first release ODMG-93 of the standard

specification for object oriented database management systems and for object-

relational mappings. This version has the initial standards that include Object

Definition Language (ODL) which is compatible with object management group

Interface Description Language (IDL), Object Query Language (SQL-like

declarative language), and C++ and Smalltalk Bindings.

42

The second version of ODMG standards was published in 1997. This version has

many enhancements and improvements to OMDG-93 version. It includes four main

components: the ODMG object model, the object definition language (ODL), the

object query language (OQL), and object-oriented programming languages bindings

for C++, SMALLTALK, and JAVA languages. Language bindings are the definition

on how to write a portable code that manages and manipulates persistent objects. The

ODMG members that represent most of the ODMS industry are supporting this

specification. So these specifications become the de facto standard for OODB

industry [15].

In 2001, ODMG published their last standard release ODMG 3.0. This release

includes enhancements to Java bindings, improvements to object model, verification

for the implementation of the standards in industry, and the specification for

persistence of object-oriented programming language objects in databases [15].

The initiative started with ODMG-93 for creating a standard object query language

(OQL) has been abandoned in 2001. Instead, ODMG submit ODMG Java Binding to

the Java Community Process as a start for the Java Data Objects (JDO) Specification,

then after that, ODMG disbanded.

The emergence of open source for ODBMS had started in 2004 with the launch of

db4o database system from db4objects, Inc. In 2005, William Cook et al. [21, 22]

proposed to use the object oriented programming languages to express queries using

the language itself; e.g. use Java or C# to query objects data. This was the start of

using Native Queries. The main benefit of native queries is ability of writing

complex and precise queries is quick and easy way. In late 2005, db4o is one of the

first to implement Native Queries to access object oriented data. Also, Microsoft

43

announced Language Integrated Query (LINQ) that allow the integration of the query

capabilities with its programming languages C# and VB.NET 9.

In early 2006, the Object Management Group (OMG) started developing a new

specifications based on the ODMG 3.0. They formulate the Object Database

Technology Working Group (ODBTWG) that had started creating standards to

incorporate advanced features in OODBS such as replication, data management (e.g.,

spatial indexing) and data formats (e.g., XML).

2.2.3 Object Oriented Concepts

Object orientation has a set of major characteristics. Some of these characteristics

include: the object model, encapsulation, inheritance, polymorphism, classes, and

persistence. Next are some details of the main object oriented concepts.

2.2.3.1 Object Model

Object Model is a database model that can determine the characteristics of the object.

These characteristics include how an object can be named, how it can be identified,

how the object can be related to other objects, and how the object can be stored,

retrieved and manipulated. This model handles objects natively, i.e. the object can

easily fit into the model regardless of its complex structure.

2.2.3.2 Class

Class is the logical construct that defines the characteristics of an object. Once the

class is defined, new data types of type object is already created, so class can be

considered as a template for creating objects of that class. The variables created of

type class are called instance variables. For instance, in Java, a class could be

44

depicted as in this small code:

class Car {
double Model;
string Color;
string Type;

}

A new instant variable of type “Car” can be defined such as in the next line of code.

Car mycar = new Car();

2.2.3.3 Encapsulation

Encapsulation is the mechanism that put together the object operation (method and

interface) with the state (data) and protects them from any external visibility. The

internal structure of the encapsulated object is not visible (hidden) to the external

objects and the object is only accessed by an external object is through predefined

operations of the encapsulated object. This feature protects data from any misuse.

Encapsulation allow modification of the internal object operations and state without

causing any disturbance for the external objects that are invoking these object

operations. In other words, the external object access the encapsulated object the

same way by using same operations and interfaces (name and argument) regardless

of any internal complex changes that may occurs into operation and state of the

object. A good example of encapsulation is a car that includes automatic

transmission, gas pedal, tires and so forth. The automatic transmission is an object

that encapsulates a complex structure of the gear and its relation to engine. The

interface for accessing this operation is the gear-shift lever, so the driver is only

using this interface and has nothing to do with the internal structure of the

transmission. All automotive companies have different internal structure of the

45

automatic transmission. Any changes they may make in the internal structure of the

transmission do not affect the way the driver is using the gear. [27, 63].

2.2.3.4 Inheritance

Inheritance is one of the cornerstones of object-oriented concepts. Simply it can be

described as a process that allows an object to possess the properties and attributes of

another object. This is very significant because it support the concept of hierarchical

classification. If some objects are sharing the same attributes, then an object can be

defined to include these attributes and then all objects can inherit this new object

attributes. For example, the objects (classes) EMPLOYEE, STUDENT, and

SECRETARY have same attributes such as name, ID, department, salary and so

forth. A general object (class) named PERSON can be defined to include these

shared attributes (name, ID, department, salary). Then PERSON object can be

inherited by objects EMPLOYEE, STUDENT, and SECRETARY. Hierarchical

classification can be illustrated by this example. The Orinoco Crocodile is part of

crocodile classification, which in turn is part of the reptile class. Reptiles are part of

the animal classification. Objects in real-world are related to each other in a

hierarchical way such as animals, reptiles, and crocodiles. Animals have common

behavior such as eat, sleep, move, and breathe. Reptiles have behaviors (creep, hide)

that may not necessarily be present in all animals. Crocodiles have behaviors (swim,

preys) that may not necessarily present in all reptiles. So the attributes of an animal

class can be inherited in reptile class and the attributes of animal and reptile classes

can be inherited into crocodile class.

46

2.2.3.5 Polymorphism

Polymorphism, also called overloading, is a generic term that means many forms.

This feature makes it possible to process objects, methods, and variables in different

forms depending on their data types. It makes it possible to use one generic interface

for a group of related activities such as methods [63].

Java allows us to define more than one method with the same name but with different

parameters declarations. This is called method overloading, which is the Java

implementation of polymorphism. Next is a Java segment that shows different

methods called using one interface.

// Example for method overloading
class poly {

 // Overload polytest for one integer parameter
 void polytest(int x) {
 System.out.println("x: " + x);
 }

 // Overload polytest for two integer parameters
 void polytest(int x, int y) {
 System.out.println("x: " + x + " y: " + y);
 }
}
class Polyoverload {
 public static void main(String args[]) {
 poly my_par = new poly();
 // call the 2 versions of polytest()
 My_par.polytest(15);
 My_par.polytest(15,20);
 }
}
When executing this segment, the result will be as:
x: 15
x: 15 y: 20

This Java segment shows that the method “polytest” is defined in the class “poly”

with the same name for two times; first with one integer parameter argument and the

second with two integer parameter arguments.

47

2.2.3.6 Transient and Persistent Objects

Objects in object oriented programing languages exist only during program

execution. They are allocated to the main memory like variables and once the

program terminates, the objects are destroyed. This type of objects is called transient

objects. In contract, object oriented databases extend the existence of the object and

store it permanently to a durable storage. This object persists after the program

terminates and can be retrieved, and shared by other programs. These types of

objects are called persistent objects.

2.2.4 Object Oriented Database Management Systems

An object oriented database management system (OODBMS) is a database

management system that supports the object data model. This model allows creating,

storing, and managing objects in the database. The object model specifies the

semantics that can be defined explicitly to an object database management system.

For instance, the semantics of the object model could determine the characteristics of

objects, how objects can be related to each other, how objects can be named, and

how they can be identified, ..etc. [15]. Applying the former definition and

characteristics of object-oriented databases on a created database using set of Java

classes, the result will clearly show that this created database is classified as an

object-oriented database.

There are two ways to manage objects; first is to use object database management

systems (ODBMS) that store objects directly, and second is to use the approach of

Object-to-Database Mappings (ODMs) that map and store the object in relational or

other types of database presentation. The two types are called object data

management systems (ODMSs) [15].

48

Object oriented database model is designed so that the object oriented programming

languages can easily and smoothly handle and integrate the data because they share

the same semantics; i.e. the data of objects can be read and stored from/to the

database directly without any mapping.

Due to the popularity of relational model and the need to present objects (complex

data), RDBMS manufacturers added extra features and characteristics to support the

object model, so object-relational databases emerged. OODBMS was expected to

replace relational databases, but due the popularity of relational model (significant

amount of applications running under RDBMS), a very high cost of migration, and

the emergence of object relational databases; all this contributed to the lack of

wide-spread use of object oriented databases.

2.2.5 Benefits of Using Object Oriented Databases

OODBS is used when it is required to have a business need for high performance on

complex data presentation [6]. Complex structure can be stored in the database

without any translation or mapping as the database model supports storing complex

objects. Performance can be gained because when reading the complex structure

from disk, there is no need to translate or map the data as the development tools such

as Java or C++ can natively read any arbitrary complex format. Less code is required

to write applications because the development tools such as Java or C++ won’t have

to translate into an intermediate language (sub-language|) such as SQL via JDBC, or

ODBC. Also using OODBS will avoid the object-relational impedance mismatch

problem. Impedance mismatch occurs when there is a clash between two

incompatible models; i.e. object model structure is totally different than relational

model, so when trying to store an object into object-relational database, object will

50

designed specially to accommodate XML documents. Those databases are called

native XML databases [38, 49, 56, 69]. However, most of the e-business applications

are stored and managed in relational, object-relational or object-oriented databases

that have very powerful set of management services that can handle and manage the

data in an efficient manner (including ad-hoc queries, transactions, security,

referential integrity, concurrency control, scalability, etc.). Further, benefiting from

the highly optimized relational query processors, researchers considered storing,

retrieving and managing XML documents in relational [11, 14, 31, 30, 28, 64, 66, 73,

77], object relational [14,19, 57, 61, 68]and object-oriented databases [2, 20, 41, 54,

51, 52]; these are called XML Enabled databases.

2.3.2 Mapping XML to Object-Oriented Databases

Little work has been performed on mapping between XML Schema and object-

oriented databases schemas.

The work conducted by Tae-Sun Chung et al. [20] has proposed a technique for

extracting object-oriented database schemas from XML DTDs using inheritance.

From the DTD declaration of an element, they create subelements that inherit the

common attributes of the parent element. Those subelements are mapped as child

classes of the parent element. Inlining technique of relational databases have been

used. Inlining is to store as many descendants of an element as possible into a single

class so as to resolve the fragmentation problem. Figure 2.7 is an example for the

"univ" XML fragment.

52

translations that take place in the wrapper. A developed wrapper is an interface that

translates a data source’s data model to a common data model known by the

mediator. Object-oriented query language of the mediator called AmosQLis used to

query the imported data.

Ahmad, et al. [2] developed a system called “Transformation of data between XML

and object databases” (TransODB). This system is to resolve the problems facing

CERN (European Organization for Nuclear Research) in replicating and transferring

data between different data repositories in a heterogeneous operating system

environment. TransODB is composed of two modules. First is TransODB Database

to XML module that extracts the object-oriented schema and corresponding object-

oriented data from the object-oriented database and convert them into an XML

Schema and an XML document. The second is TransODB XML to Database

Conversion module, which is composed of two main sub modules, DB Schema

Builder and Object Builder. DB Schema Builder rebuilds the object-oriented schema

from the extracted XML Schema generated by first module TransODB Database to

XML, and Object Builder recreate the objects data from the extracted XML

document. The architecture is not well explained and the internal mechanism is not

discussed.

Toth and Valenta [70] investigated possibilities of reuse already known techniques

from object and object-oriented processing in XML-native database systems. This

addresses the mapping of the contents of an existing XML into object-oriented

database.

Our work in [54, 51, 53] discuss the two-way mapping between object-oriented

database and XML. Details are discussed in chapters 3 and 4. The work in [52]

53

explains the implementation for converting object-oriented database into XML, and

the work in [40] describes the mapping between ODL and XML. Details can be

found in chapter 5 and 6 respectively.

2.3.3 Mapping XML to Object-Relational Databases

Object-Relational databases have more powerful features over relational databases;

this attracted researchers to use those databases for storing and managing XML

documents.

Runapongsa et al. [61] mapped XML documents to tables in an Object-Relational

Database Management System (ORDBMS) using XML DTD schema. An important

part of this mapping is assigning a fragment of an XML document to a new XML

data type.

XPERANTO [19] (XML Publishing of Entities, Relationships, ANd Typed Objects)

project from IBM Almaden Research Centre is a middleware layer that supports

publishing object-relational database as XML data. It provides a virtual XML view

over an object-relational database and supports XML queries against this view. It

allows users to query and (re)structure the contents of the database as XML data,

without worrying about the underlying SQL tables and without having to learn SQL

query language. XPERANTO translates requested XML queries into SQL, submits

SQL queries to the underlying database system, receives SQL execution (by

RDBMS) results, and then tags the results for constructing XML documents.

R. Bourret [14] discussed the object-relational mapping (called it object-based

mapping) between XML DTD schema and object-relational schema. This model the

XML document as a tree of objects based on the data in the document. XML DTD

54

schema is mapped to an object schema, and then the object schema is mapped to the

relational database schema. Classes in object schema are mapped to tables in

relational schema, and complexType elements are identified in the mapped tables by

foreign keys.

Oracle 11g XML DB [56] provides a way to store and retrieve data-centric structured

XML Schema by mapping it to object-relational schema. Also for storing the data-

centric unstructured XML Schema, a hybrid of object-relational and Character Large

OBject [CLOB] is a good option [56]. B-tree indexes are used for querying data-

centric structured XML documents, while XML and Full Text Indexes are used for

querying the data-centric unstructured XML documents.

2.3.4 Mapping XML to Relational Databases

Since XML emerged, there has been a significant amount of research work on using

the relational database as a mean for storing and managing XML documents.

 Bohannon et al. [11] provide a cost-based approach that models the target

application with an XML Schema, XML data statistics, and an XQuery workload. It

explores a space of possible XML-to-relational mappings and automatically finds the

best and efficient relational configuration for a target XML application.

Yushikawa et al. [77] developed an approach for storage and retrieval of XML

documents on top of any off-the-shelf relational databases. No extension is required

for the relational database. It decomposed XML documents into nodes based on

document tree structure and stored them in relational tables according to the node

55

type, with path information from the root to each node even without any information

about the DTDs.

Florescu et al. [30] developed a way to store XML documents named “the edge

approach”. Edges of an XML documents tree are stored in a relational database as

relational tuples. XML documents are represented as an ordered and labelled directed

graph. Each XML element is represented by a node in the graph, and the node is

labelled with an object identifier (OID).

Schmidt et al. [64] proposed a data model for storing and retrieving XML documents

based on binary fragmentation of the document tree. XML document is decomposed

into small units. This caused all associations such as parent-child relationship,

attributes and the sibling order to be described, stored, and queried.

 Shanmugasundaram et al. [66] converts XML Schema DTD to relational schema

and then the XML documents to relational tuples, translates semi-structured queries

over XML documents to SQL queries over tables, and converts back the results to

XML. They used Basic, Shared, and Hybrid inlining techniques to resolve the

fragmentation of XML documents by storing as many descendants of an element as

possible into a single relation.

XML Extender [24] serves as a repository for XML documents as well as their

Document Type Definitions (DTDs), and also generates XML documents from

existing data stored in relational databases. It is used to define the mapping of

relational tables and columns to DTD. XSLT and XPath syntax are used to specify

the transformation and the location path.

56

SilkRoute [33] is described as a tool for viewing and querying relational data in

XML. It serves as middle-ware between a relational database and an application

accessing that data over the Internet. In SilkRoute, XML views of relational

databases are defined using a relational to XML transformation language called

RXL. XML-QL queries are issued against views. The query composer combines

queries and views together, and the combined RXL queries are then translated into

corresponding SQL queries. In order to use SilkRoute, it is necessary to learn the

new language RXL.

VXE-R [46] is an engine for transforming a relational schema into equivalent XML

Schema. They issue XML queries against the XML Schema. The engine is composed

of three components. A translator of relational schema into XML Schema, a query

translator for the XQuery queries against the XML Schema into SQL queries against

the underlying relational database, and the last is the generator of the SQL query

result into an XML document.

2.3.5 Other XML Mapping

Some other XML mappings are not done directly to databases. They use intermediate

models such as EER and UML, then they map this model to a database.

Mani et al [50] proposed the conversion of EER-to-XML. The idea of this

conversion is to generate XGrammar from a given XML model, then convert

XGrammar to EER model, or vice versa.

Fong et al. [28] applies the Indirect Schema Translation Method that translates

relational schema into an Extended Entity Relationship model (EER). EER model is

mapped into XML Schema Definition Language (XSD) Graph, and then the XSD

57

graph is mapped into XML Schema. In [32], Fong et al. derive the EER model from

relational database and store it in an intermediate repository. Then they map EER

entities to DTD elements and relationships to DTD Hrefs attribute. Finally they

propose to construct the XML instance (document) by mapping the data from

relational database using the generated XML DTD Schema and SAX APIs and the

XSLT processor.

The work done by Booch et al. [10] describes a graphical notation in UML (Unified

Modelling Language) for designing XML schemas. UML is a standard object-

oriented design language. They map all elements and data types in XML Schema to

classes annotated with stereotypes that reflect the semantics of the related XML

Schema concept.

Wang et al. [72] developed an approach to convert legacy relational databases into

XML databases through reverse engineering. They had addressed this issue by first

applying the reverse engineering approach by extracting the ER (Entity Relationship)

model from a legacy relational database, then convert the ER to XML Schema. The

proposed approach is capable of reflecting the relational schema flexibility into XML

Schema by considering the mapping of binary and nary relationships. Also

Wang et al. [73] had developed a system, named COCALEREX (Conversion of

Catalog-based and Legacy Relational databases to XML), which handles the

reengineering of relational databases into XML. It can let users view XML of the

underlying relational data.

58

2.4 Conclusion

In this chapter, Section 2.1 includes a review of XML and relevant XML

technologies. Different examples are discussed to clarify XML document structure,

XML Schema languages, XML databases, XML query languages, and XML

technologies such as DOM, XPATH, SAX and others. Section 2.2 discusses the

object-oriented databases and object-oriented concepts. The history of OODB is

explored and the definition of the basic components such as objects, object model,

and the classes are discussed. In addition, the object oriented concepts such as

encapsulation, inheritance, object persistence, and polymorphism are explained.

Besides, the benefit of using OODBs is discussed. Section 2.3 discusses in details

different work carried out by researchers, techniques used for mapping between

XML and object-oriented, object-relational, and relational databases management

systems. The work discussed in Section 2.3.2 is about mapping XML into object

oriented, and in Section 2.3.3 is for mapping XML into object relational databases,

and in Section 2.3.4 is about mapping XML into relational databases, while

Section 2.3.5 discusses the mapping of XML into other ways such as EER, UML and

others.

Storing an XML document into relational database requires fragmenting the

document into small components of data to fit in relational structure. Also, referential

integrity constraints are to be defined for referencing different parts of the document.

When retrieving the XML document, it is required to collect different components of

that stored document from different relations. The difference between the XML

59

model and the relational model is called impedance mismatch.

Mapping XML to object relational database is performed in two steps. First, XML is

mapped into objects, and second the objects are mapped into relations. When

retrieving a stored XML document, it requires collecting information from different

tables for composing the requested document. Impedance mismatch is here inevitable

as well.

The work performed in this thesis for mapping between XML and object-oriented

databases is more attractive and more natural process because there is clear overlap

between the XML Schema and the object-oriented Schema paradigm (refer to

Section 3.1), so the impedance mismatch is avoided. XML Schema complex types

are mapped to classes and elements are mapped to attributes. Also in this work, XML

Schema is used while most the previous discussed work used DTDs. XML Schema is

more powerful, flexible and accepted widely more than other schema languages such

as DTD. XML Schema supports many rich build-in data types and has the flexibility

to compose new complex data types. This makes it a more appropriate tool for

creating different data types during the mapping process. The schema meta-data is by

itself written in XML syntax, so the same tools used to process XML documents can

be used to read, parse, and manage the XML Schema. In addition, it supports

namespaces that helps in avoiding the name conflict of elements and attributes of

different XML documents within an application. Detailed specification for the XML

Schema language can be found in [75].

As the mapping from XML to object-oriented databases is concerned, the work

described in [20] generates an object-oriented database schema from DTDs, stores it

into the object-oriented database and processes XML queries; it mainly concentrates

60

on representing the semi-structural part of XML data by inheritance. However, the

work detailed in [52] differentiates between inheritance and nesting, which is a more

natural approach for handling object-oriented databases. In addition, XML Schema is

used rather than DTD Schema.

The work presented in [2] does not include details about the mechanism for the

extraction of XML Schema and corresponding documents from an object-oriented

database neither the creation of the object schema and corresponding data from the

generated XML Schema.

The work in [41] is a one way mapping of XML Schema into a virtual object-

oriented database mediator. It creates Java classes for the mapped XML Schema in

the Amos II system, and then use an object-oriented query language called AmosQL

against the virtual object-oriented database. This work differs from the work

presented in this thesis as it does not have the facility to generate an XML Schema

and corresponding document from an object-oriented database data. Also a new

query language should be learned.

In contrast, the novelty of our work comparing to others is as follows:

 XML Schema is mapped into object-oriented database schema. It is done by

mapping the XML Schema into an intermediate object graph (OG) and then

the OG is mapped into object-oriented database schema. This work

differentiates between nesting and inheritance and handles them accordingly.

 XML Schema and corresponding document are constructed from an object-

oriented database (a reverse process of the former process).

61

 It uses object-oriented database as the underlying database.

 This work uses XML Schema as it is more flexible comparing to other XML

Schemas such as DTD.

 As the mapping between OODB and XML is natural, the impedance

mismatch has been avoided.

62

Chapter 3

Transforming Object-Oriented Database into
XML

3.1 Introduction

In this chapter we will discuss in details an approach of mapping a generic OODB

schema and corresponding data into XML schema and corresponding XML

document using a directed object graph (OG) as a mean for describing this process.

Both nested and flat XML schemas are handled. Further, inheritance and nesting

attributes of classes are recognized and handled.

When starting this research, we were facing different challenges that can be

enumerated as: a) a lack of research on mapping between object-oriented model and

XML Schema. Some work is available about mapping between object relational and

DTD schema. b) it is required to define an object model components that are shared

in most of object oriented databases. c) XML Schema has a complex structure, so it

is required to define the core components that should be used in the mapping process.

c) to investigate for a smooth and efficient way for incorporating the object graph

into the mapping process. d) As the process will handle the nesting and flat schema

structures, one of the challenges is to find a way to incorporate and differentiate

between the inheritance and nesting.

 Extensible Markup Language (XML) [76] has become the dominant means for

representing, exchanging and accessing data over the Internet. As many applications

are dependent on XML, there is an interest in storing XML data in databases. There

is a considerable amount of research that has been performed into managing and

63

storing XML documents into relational and object-relational databases [11, 14, 19,

33, 61, 66, 73]. However little attention and work have been performed on storing

and managing XML documents into object-oriented databases [2, 20, 41]. The

mapping from XML into an object-oriented database is more attractive than the

relational or object-relational alternatives as there is more overlap between XML

Schema and the object-oriented paradigm. Consequently, it is more efficient to store

and manage XML documents using object-oriented databases. Bourret [14] make a

comparison between relational and object-relational and XML models. The next

example show the similarity of structure between object-relational database and

XML comparing to relational database, Figure 3.1 shows an example of an XML

document fragment that represents student grades. Figure 3.2 shows an object-

oriented structure presentation for the XML fragment in Figure 3.1. StdGrades

complexType element in Figure 3.1 is represented by the StdGrades class in Figure

3.2, where the Courses variable is pointing to the Course class. In contrast, Figure 3.3

presents the relational structure presentation for the same XML fragment. This shows

that the XML structure (Figure 3.1) is more similar to object-oriented structure

(Figure 3.2) than the relational structure (Figure 3.3).

67

What we tried to do in this research is to have direct transformation from object-

oriented database to XML document. Work in this chapter is represented in the

dotted side of the triangle in Figure 3.4.

3.3 Object-Oriented to XML Transformation Process

The main objective of this research [54] is to develop a system that takes a given

object-oriented database as input, and produces a corresponding XML document.

These are the main steps that will be followed to achieve this goal:

 Investigate the characteristics of the object-oriented database and derive a

summary for the object-oriented schema.

 Derive an object graph (OG) from the investigated object-oriented schema.

 Investigate flat and nested XML Schemas.

 Transform the OG into flat or nested XML Schema.

 Generate XML document.

The next Section 3.3.1 will discuss in detail the mentioned steps above.

3.3.1 Object-Oriented Database Characteristics

3.3.1.1 The Basic Terminology and Definitions

An Object-Oriented database schema is a description of database objects. The Object

Oriented Database Management System (OODBMS) schema defines what objects

are stored within the database. Within an OODBMS, the class construct is normally

the main component used to define the database schema. Object-oriented modeling is

68

based on the concept of a class. A class defines the data values stored by, and the

functionality associated with, an object of that class [48]. An object is often referred

to as an instance of a class. Refer to Section 2.2 for more details.

This work is mainly interested in class characteristics as present in Definition 3.1 and

illustrated in Example 3.1, given next.

Definition 3.1 (Class)

A class can be defined as a tuple (Cp(c), Cb(c), Lattributes(c), Lbehavior(c), Linstances(c),

OIDG), where c is a class identifier, Cp(c) is a list of direct superclasses of class c,

Cb(c) is a set of direct subclasses of class c, Lattributes(c) is the set of additional

attributes locally defined in class c, Lbehavior(c) is the set of additional methods added

to the definition of class c, Linstances(c) is the set of object identifiers of objects added

locally to class c, and OIDG is object identifier generator that holds the identifier to

be granted to the next object to be added to Linstances(c).

Inheritance makes it possible to utilize the attributes, instances, and methods defined

in the superclasses of the class. The precedence for super classes is followed as from

left to right and from bottom to up. For example, if class A has two superclasses B

and C, then the left side class B is superseding class C. Also if class B has a

superclass D and class D has a superclass E, then class D is superseding class E and

so on.

Every attribute in a class has a domain. Attribute domains can be either primitive like

integer, string or non-primitive domain that are built from primitives.

 As illustrated in class Definition 3.1 (Class), class can be composed of those

components:

69

1. All attributes defined locally in the class plus all attributes inherited from the

superclasses of the class.

2. All Instances defined locally in the class plus all instances inherited from the

super classes of the class.

3. All behaviors defined locally in the class plus all behaviors inherited from the

superclasses of the class.

4. All subclasses instances that may understand any of the class behavior.

Example 3.1 (Classes)

Next is an object-oriented database schema named "UNIVERSITY". It is composed

of classes Person, Country, Student, Staff, ResearchAssistant, Course, Department,

and Secretary. Detailed characteristics of each class are shown below.

Person:

Cp(Person) =[] Cb(Person) ={Student, Staff, Secretary}

Lattributes(Person) = {SSN:integer; name:string; age:integer; sex:character;

 spouse:Person; nation:Country}

Lbehavior(Person) = {SSN(); SSN(i); name(); name(t); age(); age(i); sex(); sex(i);

spouse(); spouse(p); nation(); nation(c)}

Country:Cp(Country) =[] Cb(Country) ={}

Lattributes(Country) = {Name:string; area:integer; population:integer}

Lbehavior(Country) = {Name();Name(t); area(); area(i); population(); population(i)}

Student:

Cp(Student) =[Person]Cb(Student) ={ResearchAssistant}

Lattributes (Student) = {StudentID:integer; gpa:real; student in:Department;

 Takes:{(course:Course; grade:string)}}

Lbehavior (Student) = {StudentID(); StudentID(i); gpa(); gpa(i); student_in();

 student_in(d);Takes();Takes(t)}

70

Staff:

Cp(Staff) =[Person] Cb(Staff) ={ResearchAssistant}

Lattributes (Staff) = {StaffID:integer; salary:integer; works_in:Department}

Lbehavior (Staff) = {StaffID(); StaffID(i); salary(); salary(i);works_in(); works_in(d)}

ResearchAssistant:

Cp (ResearchAssistant) =[Student,Staff]

Cb (ResearchAssistant) ={}

Lattributes (ResearchAssistant) = {}

Lbehavior (ResearchAssistant) = {}

Course:

Cp (Course) =[] Cb(Course) ={}

Lattributes (Course) = {Code:integer; title:string; credits:integer;Prerequisite:{Course}}

Lbehavior (Course) = {Code();Code(i); title(); title(t);credits(); credits(i); Prerequisite();

 Prerequisite(c)}

Department:

Cp (Department) =[] Cb(Department) ={}

Lattributes (Department) = {Name:string; head:Staff}

Lbehavior (Department) = {Name();Name(t); head(); head(t)}

Secretary:

Cp (Secretary) = [Person] Cb(Secretary) = {}

Lattributes (Secretary) = {words_mimute:integer; works in:Department}

Lbehavior(Secretary) = {words_mimute();words_mimute(i); works in(); works in(d)}

3.3.1.2 Object-Oriented Schema Information

In the object-oriented schema shown in Example 3.1, the analysis is based on the

domain information summarized in Table 3.1 ObjectAttributes (a) and (b). Table 3.1

ObjectAttributes includes information about all attributes in the object-oriented

72

3.3.2 The Object Graph (OG)

An Object Graph (OG) is a structure that present the non-primitive attributes as

nodes and the directed links between them. Nodes are the Vertices and links are the

Edges of the graph (V,E). We use the information present in Table 3.1

ObjectAttributes (b) and the inheritance information defined in Example 3.1 to

construct the OG. This includes all possible relationships between the classes present

in the given object-oriented schema. Nodes in the OG are the schema classes and

representatives of tuple type domains. Two nodes are connected by a link to show the

inheritance or a nesting relationship between them. Nodes and links are represented

by small rectangles and directed arrows, respectively. Inheritance link is assigned

score 0, for example; Person class is a superclass of Student class, so a link between

Person and Student has the score 0. Nesting links are assigned the score 1. In Person

class there is a non-primitive attribute (nation) of type Country, so Country class is

nested inside Person class and therefore a link of score 1 is created between Person

and Country. A link is assigned the score 2 if it is connecting a node that represents a

tuple domain with the class that is referenced to. To illustrate this, refer to attribute

Takes in Lattributes(Student) in Example 3.1 and to the corresponding link connecting

the two nodes T1 and Student in Figure 3.8. More formal details related to OG are

included in Definition 3.2, given next.

73

Definition 3.2 (Object Graph)

Every object-oriented schema has a corresponding OG graph(V,E) such that,

1. For every class c in the object-oriented schema there is a corresponding node c in

V,

2. For all classes c1 and c2, such that c2 є Cp(c1), an edge(c1, c2, 0) is added to E

3. For every class c

For every attribute a є Lattributes(c), such that a has a non-primitive domain,

If domain of a involves a class, say c’, then an edge (c, c’, 1) is added to E

 Else if domain of a involves a tuple Ti,(I ≥1) then

 A node Ti is added to V and an edge(Ti, c, 2) is added to E

For every class c’’ that appears as a domain in tuple Ti, an edge(Ti,, c’’, 1) is added

to E.

78

3.3.3 Flat and Nested XML Schema Types

In XML Schema, there are two ways to represent a relationship between two parts of

an XML document:

 Nested XML; The complexType elements nested in another complexType

elements.

 Flat XML; This type of structure is called flat XML Schema and flat XML

document. It specifies “key" and “keyref" constraints in the structure of the

XML Schema. Those constraints behave in the same as keys and referential

integrity constraints in relational model.

The next sections explicate the nested and flat XML Schemas and corresponding

document,

3.3.3.1 Nested XML Schema and Document Structure

Nested complexType definitions in an XML Schema define relationships between

two elements. If we specify nested complex types to create a relationship between

two parts of an XML document, this will create a nested XML document structure.

For example, the following XML Schema fragment shows that the “Student” element

is nested under the “SUPERVISOR” element. All students having the same

supervisor are grouped as a unit. Although a nested XML Schema reflects better the

natural structure and linkage between elements, is easy to read, and may reduce

search time, it would occupy more space because of redundant data. Figure 3.9 is an

example of nested XML Schema for SUPERVISOR_Class and Student_Class

elements.

81

more than search time of the query raised on nesting XML document because of the

join-like operations. To illustrate this let us look into this example. Suppose we have

a flat XML document that include two complex types, the first one represents

Student information and the second represents student GRADES. If it is required to

generate a document that includes a student with his grades, then the search engine

either will make a full document scan or use the keys and keyrefs constraints which

exist to join the Student and GRADES parts of the document so as to retrieve the

information. In contrast to nesting, all student GRADES data are clustered under the

same Student data, so search is faster because there is no need for a full document

scan and for using constraints joins to get the data.

The next XML fragment illustrates the presentation of a flat XML Schema. Figure

3.11 is an example of Flat XML Schema for Person and Country Classes defined in

Example 3.1.

84

structure as an input and generates the flat XML Schema, and the second generates

the nested XML Schema. Details follow in the next sections.

3.4.1 Object Graph into Flat XML Schema Transformation

Below is the pseudo-code for an algorithm named OG2FXML that derives a flat

XML Schema from the input Object Graph.

Algorithm 3.1 OG2FXML (Object Graph to Flat XML Conversion)
Input: The Object Graph

Output: The corresponding flat XML Schema

1. Transform each node in the object graph (we call it class hereafter) into a

“complexType” in the XML Schema.

2. Map each attribute in a class transformed in Step (1) into a subelement within

the corresponding “complexType”.

3. Create a root element as the object-oriented database schema name and insert

each class identified in Step (1) as a subelement with the corresponding

”complexType”.

4. Define the primary key for each class identified in Step (1) by using “key”

element.

5. Map in the object graph each link between classes identified in Step (1) by

using “keyref” element.

END Algorithm3.1

To illustrate how the OG2FXML algorithm works, we present more details with

supporting examples.

 Each node in the OG is represented in XML by a “complexType” element, where

this complexType element includes one empty element. Empty elements in XML

Schema cannot have content but they can have attributes. The tag of the empty

85

element is ended by “/” before the final right-angle bracket of the tag. The next

schema fragment shows that Person node in the OG is mapped into Person_Class

“complexType”. Person_Class “complexType” has only one empty element

“Person_Object” which has only attributes and no content. Person_Object

declaration has the “Person_Object” type definition. This is useful to define

complexTypes elements that can be used as a type for other declared elements.

<xsd:complexType name="Person_Class">

<xsd:sequence>
<xsd:element name="Person_Object"

type="Person_Object" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Person_Object">

<xsd:sequence>
.

</xsd:sequence>

</xsd:complexType>

The occurrence constraints “minOccurs” and “maxOccurs” are used with value

“unbounded” for the Person_Object element defined in Person_Class as shown in

the XML fragment above.

 The empty element Person_Object defined in the XML Schema includes

subelements that are mapped with the attributes of the class. In this example,

subelements of the empty element Person_Object are mapped with attributes of

class Person. A schema fragment illustrating this is shown below.

86

<xsd:complexType name="Person_Class ">

<xsd:sequence>
<xsd:element name="Person_Object"

type="oodb:Person_Object" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
 <xsd:complexType name="Person_Object">

<xsd:sequence>
<xsd:element name="SSN"type="xsd:int”/>
<xsd:element name="name"type="xsd:string"/>
<xsd:element name="age"type="xsd:int”/>
.
.
.

</xsd:sequence>
</xsd:complexType>

 The “sequence” constructor (called also indicator) in XML Schema is very

important because it control the sequence order of information in the XML

document. It enforces the appearance of subelements in same order as they were

declared within a complexType element. For instance, the “sequence” used in the

above XML fragment enforce the subelements (SSN, Name, Age,..) to appear in

this order. This process tries to preserve the sequence within classes by creating

the instances and attributes of the class in the same order of the XML Schema

elements sequence. When retrieving data from a class, the data is extracted in the

same sequence it appears in that class structure. As work deals with data-centric

documents, the order of instances in different classes is usually not very

significant.

 Each class in the OG is mapped into the XML Schema. First it is required to

create a root element that represents the entire given object-oriented database.

The root element is created as a “complexType” in XML Schema and is given

the same name as the object-oriented database schema. Then each class is

87

inserted as a subelement of the root element. Figure 3.13 is an illustrated example

of an XML Schema that can be generated from the algorithm 3.1. The schema

defines the root element named UNIVERSITY and contains the complexType

elements for the eight classes Person, Country, Student, Staff, ResearchAssistant,

Course, Department, and Secretary that are composing the object-oriented

database Example 3.1.

90

”keyref” is used to specify the foreign key relationship between Country_Class and

Person_Class. In Person_Class, “nation” attribute is of type Country_Class, so to

implement the “key” and “keyref” it is required to map the “name” attribute of

Country_Class to the “nation” attribute of Person_Class.

After this illustration, it is clearly shown that the algorithm can generate the flat

XML Schema. The next section will discuss the process of generating the nested

XML Schema.

3.4.2 Object Graph into Nested XML Schema Transformation

In XML Schema, nested complexType elements are used to define the relation

between two elements. One advantage of the nested XML structure is to store all

related information in one fragment of an XML document. This reduces the time for

data retrieval when users query the XML document. Algorithm 3.2 OG2NXML does

the transformation from the object graph to a nested XML structure.

Algorithm OG2NXML depends on the nesting sequence specified in the object graph

and generates an output of nested XML Schema. Pseudo-code is depicted as:

Algorithm 3.2 OG2NXML (object Graph to Nested XML Conversion)

Input: The object graph
Output: The corresponding nested XML Schema

1. For classes connected by a link labeled with 1 or 2 in the object graph, we nest
the element that corresponds to the class at the head of the arrow inside the
element that correspond to the class at the tail of the arrow.

2. For classes connected by a link labeled with 0 do
Extend the element that corresponds to the subclass to include the content of
the element that corresponds to the superclass.

End Algorithm 3.2

To illustrate the nesting process, consider the UNIVERSITY database in Example

3.1; it is taken as input by OG2NXML which generates as output the XML Schema

91

in a nested structure. In the Object Graph Figure 3.8, an arrow is connecting Person

class (node) with Country node where the head of arrow is pointing to Country with

a score of connection 1. According to the algorithm 3.2 OG2NXML, Country class

should be nested inside Person class. Also, an arrow is connecting Staff class with

Person class where the head of arrow is pointing to Person with a 0 score of

connection. Person class is a superclass of Staff class, so Staff class inherits the

Person class and a new element named Staff_SP1 with type Person is added as a

nested element into Staff class in the nested XML Schema presentation. Figure 3.15

is an example of the generated nested XML Schema segment. It illustrates the

nesting between Person and Country and the nesting between Staff and Person.

93

3.5 Generating XML Document

After the XML Schema is generated using the algorithms OG2FXML and

OG2NXML discussed above, the next step is to generate XML document(s) from the

object-oriented database Example 3.1. Algorithm 3.3 GenXMLDoc checks top-down

through the list of selected objects and generates an element for each object.

Algorithm 3.3 GenXMLDoc (Generating XML Document)

Input: XML Schema and object-oriented database

Output: The corresponding XML Document

Create XML document and set its namespace declaration
Create a root element of the XML document with the same name as the root name of
the XML Schema
For each class R in the object-oriented database do

If R is selected and does not contain any nested classes
Create R Class element for R
Let queryString = “select * from R”
ResultSet = execute(queryString)
For each object T in ResultSet do

Create R_Object element for object T
Create an element for each attribute in R and insert it into R_Object

element
else if R is selected and contains a nested class Rc then

Create R Class element for R and Rc Class for Rc
Let queryString = “select selectedAttrs from R, Rc”
ResultSet = execute(queryString)
For each object T in ResultSet do

Create R_Object element for the tuple of R, and Rc_Object element for the
object of Rc
Create an element for each selected attribute in R and insert it to
R_Object element, and do same for Rc

EndAlgorithm 3.3

This is a generic algorithm for creating both flat and nested XML documents from an

object-oriented database. The idea of the algorithm is to create a complexType

element for each class and for each non-primitive domain instance within the class.

94

The first two lines in GenXMLDoc algorithm creates the XML declaration,

namespaces, and the root element of the document. This could be depicted as:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:oodb="http://scim.brad.ac.uk/xml">
<xsd:element name="UNIVERSITY">
 <xsd:complexType>

.

</xsd:complexType>
</xsd:element>
</xsd:schema>

The rest of the algorithm describes the process of generating the body of XML

document. If the class has primitive domains only, then insert all elements

representing those primitive domains into class mapped complexType. The next

fragment of the algorithm depicts this.

For each class R in the object-oriented database do
If R is selected and does not contain any nested classes

Create R Class element for R
Let queryString = “select * from R”
ResultSet = execute(queryString)
For each object T in ResultSet do

Create R_Object element for object T
Create an element for each attribute in R and insert it into R_Object

element

If the class has non-primitive domains then insert the corresponding elements of

primitive and non-primitive domains of the class into class mapped complexType

and insert all elements of the non-primitive domains into their corresponding

complex types. The next algorithm segment represents what we have already

discussed.

else if R is selected and contains a nested class Rc then
Create R Class element for R and Rc Class for Rc
Let queryString = “select selectedAttrs from R, Rc”
ResultSet = execute(queryString)

96

3.6 Conclusion

This chapter discussed the process of mapping an object-oriented database schema

and corresponding data into an XML Schema and corresponding XML document.

An example of object-oriented schema called “UNIVERSITY” and its related

characteristics are described. A presentation of flat and nested XML Schemas and the

differences between them is discussed in details. The construction of object graph

from the object-oriented schema is discussed. Also, how to extract flat and nested

XML Schemas and corresponding documents from the constructed object graph is

explained in details. The next chapter will discuss the reverse process; i.e.

transferring XML Schema and corresponding data into object-oriented database.

97

Chapter 4

Transforming XML into Object-Oriented
Database Using XML Schema

4.1 Introduction

In this chapter, a reverse process of the work described in chapter 3 is performed.

This work maps XML Schema into a generic object oriented database schema and

store related XML document into the database. This process preserves the structure

of XML document. A directed object graph is used to clarify and simplify the

mapping process. Both flat and nested XML Schemas are stored and the superclasses

and nesting attributes are handled.

XML emerged as one of the key universal formats for platform independent data

exchange between different partners [76]. Since structured databases are widely used

to store data, it is important to automate the process of storing XML documents in

those databases; this will help in better analysis of the data using the efficient

querying facilities of the existing structured databases. Of course, one would like to

preserve as much information as possible during the transformation process.

Chapter 3 discussed the process of extracting XML Schema and corresponding XML

document from an object-oriented database. This chapter will discuss the reverse

process; i.e. storing XML documents into an object-oriented database. The acronym

XOG (XML to Object Graph) for the Object Graph will be used to distinguish it

from the OG acronym used in chapter 3.

98

Since many applications store and maintain their data in object-oriented database

management systems, an approach is proposed for the transformation of an existing

XML Schema into an object-oriented database schema [51] and to transfer the data in

the corresponding XML document accordingly. To achieve the mapping, an object

graph (XOG) based on the characteristics of the XML Schema is derived; it simply

summarizes and includes all complexType elements and the links between them

which are the basics of the XML Schema model. With user involvement, suggestions

can be made to divide the nested complexType elements into two groups; the

elements that are actually nested and the elements that are inherited. User

involvement is explained in Section 4.3.1.3. XOG is composed of nodes that

represent the complexType elements and the links between these nodes that are

derived from nesting and from key and keyref constructs if exist. In this way,

everything in a simulated XOG can be directly represented in object-oriented

database schema. Finally, data from the XML document is mapped into

corresponding XML object-oriented database.

4.2 Related Work

While XML to relational transformation received considerable attention; however,

XML-to object-oriented conversion is at least equally important because the latter

conversion tends to preserve most of the model characteristics during the conversion

process e.g., [2, 20, 70]. More details are found in Section 2.3.2.

4.3 XML to Object-Oriented Transformation Process

A major motivation to carry out this study is the fact that there are more common

features between XML and object-oriented databases; thus it is more attractive to

99

store XML Schema and data, and more data is preserved; refer to Section 3.1 for

more details. This is actually backward engineering; the forward engineering part

described in [54] and discussed in chapter 3, extracts XML from object-oriented

database. This backward engineering process takes a given XML Schema as input

and produces a corresponding object-oriented schema. So our main objective is to

develop a technique that takes a given XML Schema and corresponding XML

document as input and store them into an object-oriented database. This process can

be summarized as follows:

 Investigate the characteristics of the XML Schema and derive a summary for

it.

 Derive an object graph (XOG) from the investigated XML Schema. This

includes inheritance and nesting links.

 Map the derived object graph (XOG) into object-oriented database and build

the related schema and classes. The process is capable of taking as input both

nested and flat XML Schemas. However, as the mapping is into object-

oriented schema, nested XML Schema is preferred and more emphasized.

 Store the corresponding XML document.

The following is a detailed description for the XML to object-oriented

transformation process summarized above.

4.3.1 XML Schema Characteristics

This section investigates the characteristics of a given XML Schema and shows how

to derive the corresponding object graph (XOG).

100

4.3.1.1 The Basic Terminology and Definitions

XML Schema can be described as a set of rules and constraints to which an XML

document must confine in order to be considered a well-formed and valid document.

This work [51] will use XML Schema complexType elements, primitive type

(simple) elements and the sequence indicator. Cardinality minOccurs and maxOccurs

constraints will also be used. For more details about cardinality refer to

Section 2.1.3.2.

Definition 4.1 (ComplexType) A complexType element is defined as a tuple,

Ccomplextypes (ct), Cprimitivetypes(ct), Ckeys(ct), Ckeyrefs(ct), where ct is the complexType

identifier, Ccomplextypes(ct) is the complexType elements of complexType ct,

Cprimitivetypes (ct) is the set of primitive type elements of ct, Ckeys(ct) is the set of keys

defined for ct, Ckeyrefs(ct) is the set of key references defined for ct.

To demonstrate the complexType concept introduced in Definition 4.1, consider

Example 4.1 which starts by a description of some complex types followed by the

corresponding XML Schema definition.

Example 4.1 (XML Schema)

In the next set of complex types, each complexType has a set of attributes with their

domains and could have a primary key.

Person Complex Type:Key=SSN
Attributes = {ssn :integer; name:string; age :integer; sex :character;spouse :Person; nation :Country}

Country Complex Type:Key= Name
Attributes = {name:string; area :integer; population :integer}

Student Complex Type:Key= StudentID
Attributes = {StudentID:integer; gpa :real; student in :Department; Takes:{(course :Course; grade
:string)}}

Staff Complex Type:Key= StaffID

102

This shows that Country element is a child element of the Person element. The

Person element has the subelement “nation”, which includes details of the “Country”

element that represents the nationality of “Person” element.

The Person complexType element includes an empty Person_Object element,

whereas the Person_Object element is defined as a complexType that include all

attributes of Person element.

A flat XML Schema can be constructed in the same way as the way nested XML

Schema is constructed with the difference that the subelement Country in the

“complexType” element Person is defined as a string element type. The two parts of

the constructed flat XML Schema are connected by "key" and "keyref" constraints if

exist instead of nesting. Figure 4.2 depicts a fragment flat XML Schema. It includes

Person_Class and Country_Class complex types. Also it defines the key and keyrefs

for both classes. Refer to sections 3.3.3.1 and 3.3.3.2 for more details about flat and

nested XML Schemas and documents.

106

nesting or inheritance. Now in the example above, when mapping the same generated

schema to an object-oriented database, there is no information about the

complexType element PersonSuperclass that tells if this element can be mapped as a

super class or as a class instance, and the same applies to work_in element as both

element are nested elements in the schema. Even through if nesting and inheritance

information are mapped and stored into the complexType elements, there is no

guarantee that this information can be available with other XML Schemas For that,

the user involvement is required to tell which complexType elements that could be

mapped as instances for a class (nested). By default, the rest of nested elements can

be handled as super classes (inherited).

In Table 4.1 XMLAttributesNE(b), an "Inheritance Flag" is assigned to each element.

The score 0 is given for the candidate superclass elements (inherited element), score

1 is given for the nested non-primitive domain elements and score 2 is assigned for

the tuple domain elements. Subclasses are not included in the attributes of the class

because they have been included when considering the superclasses list of

subclasses. To illustrate the “Inheritance Flag”, in Table 4.1 XMLAttributesNE(b) the

"nation" element is given the value 1 because it is a nested non-primitive domain.

The “Inheritance Flag” in row 3 is given the value 1 because student_in of type

Department is a nested type, while it is given the value 0 in row 5 because Person is a

candidate superclass for Student (inheritance). Also, row seven is give the value 0 as

ResearchAssistant is a subclass of Student and Staff; that means Student and Staff

are superclasses for ResearchAssistant. This way, it becomes clear to identify

superclasses, subclasses and non-primitive domain attributes using Table 4.1

XMLElementsNE(a) and XMLElementsNE(b).

108

Table 4.2 XMLAttributesFL represents the flat XML Schema. To understand better

the content and purpose of this table, Table 4.2 XMLAttributesFL includes

information about all elements, attributes, keys and keyrefs in the XML Schema

given in Example 4.1 and Figure 4.2. For each element, it is necessary to know its

complexType name, element name, domain, expected domain name, and the

inheritance status (inherited or not). Also it is necessary to know the complexType

elements "keys" and "keyrefs". Information about the elements is placed in Table 4.2

XMLElementsFL(a), keys information is placed in Table 4.2 XMLKeys(b), and key

reference information is placed in Table 4.2 XMLKeyRefs(c).

In Table 4.2 XMLElementsFL(a), user involvement is required to suggest which

element is inherited (a candidate superclass in the object-oriented database), the

element that can represent the nested non-primitive domain attributes and the

element that can represent the tuple type domain attributes. For each element, a value

is assigned to “Inheritance Flag”. The score 0 is given for the inherited element (the

candidate superclass elements), score 1 is given for the nested non-primitive domain

elements, score 2 is assigned for the tuple domain elements, and score 9 is assigned

to the primitive domain elements. Score 9 is given because primitive domains are

different from all other non-primitive domain, so this gap is kept for any future new

non-primitive domain types. User involvement and the information available in

Table 4.2 XMLKeys(b) and XMLKeyRefs(c) can define the expected non-primitive

domain for flat XML primitive domain elements. For instance, the "nation" in

complexType Person is a primitive type element of type “string” and expected to

have the score 9 for the "Inheritance Flag" but it is given the value 1 instead. This is

because by analysing and linking the information in Table 4.2 XMLKeys(b) and in

109

XMLKeyRefs(c), it is shown that there is a reference link between the “nation”

element of complexType Person and the “country_pk” of Country complexType, so

the expected domain is Country and not “string”. Row 1 is given the score 9 because

it is a primitive domain element. In Student “complexType” element, "Person"

element of primitive type is given the score 0 because user involvement can decide

that this is an inherited element, and thus it could be mapped as a superclass for

Student.

As a result, it becomes not so hard to construct Table 4.1 - which represents the

nested schema - from information in Table 4.2. Explicitly, primitive domains in

Table 4.2 XMLElementsFL(a) can be mapped into Table 4.1 XMLElementsNE(a),

and expected non-primitive domains of Table 4.2 XMLElementsFL(a) can be mapped

into Table 4.1 XMLElementsNE(b). This way, it becomes clear to identify

superclasses, subclasses and non-primitive domain attributes using Table 4.1

XMLElementsNE(a) and Table 4.1 XMLElementsNE(b). This is useful because one

algorithm can be used to handle both flat and nested XML Schemas as the

anticipated input for the algorithm is Table 4.1 XMLAttributesNE.

To sum up, the information needed for mapping XML Schema into the object-

oriented database is summarized in Table 4.1 XMLElementsNE. This table is derived

directly from a nested XML Schema. However, for flat XML Schema, the process

involves preprocessing step to derive the information in Table 4.2 XMLElementsFL

which in turn is used to construct Table 4.1 XMLElementsNE. This opens the door

for a new relational to object-oriented database conversion by converting a relational

database directly into a flat XML Schema and then mapping the latter into object-

oriented schema.

110

4.3.2 The Object Graph (XOG)

In this section, information presented in Table 4.1 XMLElementsNE and

complexType information defined in Section 4.1 is used to draw the Object Graph

that includes nodes that represent complexType elements and all possible

relationships between them. Two nodes are connected by a link to show the

inheritance or a nesting relationship between them. Nodes are represented by small

rectangles and links are represented by directed arrows. Inheritance links are

assigned the scores 0 and nesting links are assigned the scores 1. A link is assigned

the score 2 if it is connecting a node that represents a tuple (element) domain and the

entity in which it is referenced. To illustrate this, refer to the attribute Takes in

Student in Example 4.1 and to the corresponding link connecting the two nodes

T1and Student in Figure 4.5.

Definition 3.2 in Section 3.3.2, defines the Object Graph (OG) for the object-oriented

schema while the next definition 4.2 is for defining the Object Graph from XML

Schema (XOG). More details related to object graph are included in Definition 4.2,

given next.

112

4.3.3 Transforming Object Graph into Object-Oriented Schema

In this section, an algorithm will be presented for transforming the object graph to

object-oriented Schema (XOG2OODB).

Algorithm 4.1 XOG2OODB (Object Graph to Object-Oriented Schema

Conversion)

Input: The Object Graph

Output: The corresponding object-oriented Schema

1. Transfer each node in the XOG (it is called complexType hereafter) into a class

in the object-oriented schema. Exclude nodes like Ti, (i≥1).

2. Map each subelement of primitive type in Table 4.1 XMLElementsNE(a) into a

primitive attributes in the corresponding class. Exclude subelements like Ti, (i≥1).

3. Map each subelement of non-primitive domain with score 1 defined in Table 4.1

XMLElementsNE(b) into the non-primitive attributes in the corresponding class.

Exclude subelements like Ti, (i≥1).

4. Map each subelement of non-primitive domain with score 2 defined in Table 4.1

XMLElementsNE(b) as a tuple non-primitive attributes in the corresponding

class. Add to this tuple non-primitive attributes all elements of complexType

name equivalent to its domain.

5. Add each subelement of non-primitive domain with score 0 defined in Table 4.1

XMLElementsNE (b) into the superclasses list of the corresponding class.

EndAlgorithm 4.1

To understand the steps of Algorithm 4.1, more details with supporting examples

will be presented.

113

Each complexType E in the XOG is translated into a class of the same name E in the

object-oriented schema. In each “complexType” E, there is only one empty element,

which includes several subelements. Those primitive and non-primitive subelements

and their domains are mapped into class attributes with same domains. Also,

superclasses of the class are added to its superclasses list. Information related to three

example classes is given next; only attributes, superclasses and subclasses are shown;

functions are excluded because they are trivial. Each attribute satisfies encapsulation

by having two corresponding functions, one to set its value and one to return its

value.

Person class can be depicted as
Personattributes = {ssn :integer; name:string; age :integer; sex :character; spouse

:Person; nation Country}
Personsuperclasses = []
Personsubclasses={Student, Staff, Secretary}

Country class can be depicted as
Countryattributes = {name:string; area :integer; population :integer}
Countrysuperclasses = []
Countrysubclasses = []

Student class can be depicted as
Studentattributes = {StudentID:integer; gpa :real; student in :Department; Takes:{(course :Course; grade

:string)}}
Studentsuperclasses = [Person]
Studentsubclasses={ResearchAssistant}

4.3.4 Transforming XML Document into Object-Oriented
Database

In this section, an algorithm will be presented for transforming the XML document

to object-oriented database (XMLDoc2OODB).

114

Algorithm 4.2 XMLDoc2OODB (Storing XML Document into OODB)

Input: XML Schema, Corresponding XML Document, Generated object-oriented

database

Output: Storing XML Document into OODB

If XML Schema is flat then
 for each complexType ct in flat XML Schema do
 let C = mapped class of ct
 Create T elements for ct
 for each complexType ci within ct do {
 let queryString = “select * from T”
 ResultSet = execute (queryString)
 for each element E in ResultSet do {
 C(E) = ci(E)
 }
 Store class C
 }
else if Schema is nested then
 for each second hierarchy level complextype ct in nested XML Schema do
 Create T elements for ct and Tn elements for nested complextypes in ct
 For each complexType ci in ct do {
 let C = mapped class of ci, Cn = mapped class of Tn
 let queryString = “select * from T,Tn ”
 ResultSet = execute (queryString)
 for each element E in ResultSet do {
 C(E) = T(E)
 Cn (E) = Tn(E)
 }
 Store class C // related classed are automatically stored
 }
EndAlgorithm 4.2

To understand the steps of Algorithm 4.2, more details will be presented. Each

complexType E in the flat XML Schema is mapped with the same name of the class

created by algorithm 4.1. In each “complexType” E, there are complexType

115

subelements E2 that include the all data instances of the class. Each complexType

element E2 is recursively stored into mapped class of the object-oriented database.

In nested XML Schema, each complexType E is also mapped with the same name of

the class created by algorithm 4.1. In each “complexType” E, there are complexType

subelements E2 that include the data of the class and the data of inheritance

(superclasses) or the data of nested classes. Each complexType element E2 is

recursively stored into mapped class of the object-oriented database. All related

nested or inherited classes are stored during the store of the main class that includes

their data.

4.4 Conclusion

This chapter discussed the process of mapping an XML Schema into object-oriented

database schema and storing the corresponding XML document into the database.

This is a reverse process of what has been discussed in chapter 3. An example of an

XML Schema was proposed and related characteristics were defined. The defined

schema is populated into a nested XML Schema structure and presented by set of

tables. The same approach is followed for the flat XML Schema that allocates the

characteristics into another set of table structure. The flat XML Schema tables

structure are mapped to match the nested XML Schema tables structure. Then, this

unified structure is used for constructing the object graph. The object graph and the

unified schema tables are used for creating the object-oriented schema and storing

the corresponding XML document. The user involvement discussed in this chapter

can be minimized using different scenarios explained in details in Section 7.2.

116

Chapter 5

Implementation for converting between Object-
Oriented Database and XML

5.1 Introduction

The objective of the implementation is to test the approaches explained in chapters 3

and 4. Also, a proposed framework for combining the two way mapping discussed in

chapter 3 and chapter 4 is explained. In the implementation process, an XML

Schema and XML document are constructed from an object-oriented database. After

inspecting different options, two approaches were followed. The first approach is

using one of the known object oriented databases db4o, while the second approach is

using Java and Java classes as a Customised object-oriented database. OODB db4o

supports both object oriented programming languages Java and C Sharp (C#). The

latter (Java) approach could be better because the implementation will not be limited

to a specific object-oriented database schema; i.e. this can define a generic object-

oriented database schema. Java is an object-oriented development language that

supports most of the object-oriented languages features such as encapsulation,

polymorphism, inheritance, and others. In other words, it is the "lingua franca" of

object-oriented databases. The availability of Java as a free tool for personal use is

another consideration. Moreover, developers and users have limited control over the

structure of open source object-oriented databases comparing to Java that developers

have full control on the generated source of a database schema. The next Section 5.2

explains the implementation of the second approach; Customised Java database using

118

statements on top of the Java code starting with " // class Staff " and ends with "//

End Class Definition" summarize the data dictionary information. It mentions the

primitive attributes, non-primitive attributes, superclasses, keys and so on. The

statement "// primitive attribute in StaffID" summarizes the instance StaffID as a

primitive (simple) type instance, while the statement"// non-primitive attribute

Department works_in" shows a non-primitive (complex) instance work_in of type

Department. All classes in the UNIVERSITY schema are defined in similar way and

have been located in a given directory named OODB.

5.2.2 Extracting the Object-Oriented Database Schema

Set of Java programs are developed to extract the object-oriented database schema

data dictionary information and then to construct the XML Schema. Also they are

used to extract the data and generate the XML document. These are the major steps

followed to achieve this goal:

 Read all Java classes of type ".java" from the object-oriented database directory

OODB.

 Use Java reflection feature to extract primitive attributes, non-primitive

attributes, superclasses and so on. Superclasses are considered as non-primitive

attributes of their subclasses.

 Construct working area arrays to populate the extracted data dictionary

information.

121

5.3 Implementation Using OODB db4o

In Section 5.2, a Customised Java classes object-oriented database is implemented.

Another way of implementation is performed by using one of the well-known open

source object-oriented databases currently available in the market; db4o database.

This object-oriented database is the first database that had implemented the native

queries proposed in work described in [21, 22]. Native queries are written in object

oriented programming languages themselves such as Java and C# rather than query

languages. The next example Java segment shows a native query for retrieving

information of Person.

 public static void retrievePersonNQ(ObjectContainer db) {
 List<Person> result=db.query(new Predicate<Person>() {
 public boolean match(Person person) {
 return true;
 }
 });
 listResult(result);
 }

Also, query by example can be implemented with this database. The next Java

program segment retrieves all Person classes using query by example.

 public static void retrieveAllPersons(ObjectContainer db) {
 ObjectSet result = db.queryByExample(Person.class);
 listPerson(result);
 }

Both, native query and query by example can retrieve information for classes with

specific information. The next Java segment illustrates retrieving Person class with

the attributes age is greater than 20 and name is "Mary Tomson".

 public static void retrievePersonNQ(ObjectContainer db) {
 List<Person> result=db.query(new Predicate<Person>() {
 public boolean match(Person person) {
 return person.getName().equals("Mary Tomson")
 && person.getAge > 20;
 }
 });
 listResult(result);
 }

124

 University object oriented schema is extracted from the db4o database.

 A nested XML document is generated from this database. This document is

shown in Appendix E.

This implementation using db4o OODB used the same input data as the previous

implementation discussed in Section 5.2. The generated outputs (XML Schema and

corresponding XML document) of this implementation are the same as the outputs

generated from the former implementation.

5.4 Presenting COODaX

5.4.1 Introduction

In [52], a flexible approach is introduced for representing the object-oriented

database into XML format named COODaX (Converting Object-Oriented Databases

to XML). This approach is based on work presented in [54, 51] that have been

thoroughly explained in chapters 3 and 4 and depends on previous findings on

reverse engineering of legacy databases explored in [3]. The main purpose of

COODaX system is to extract an XML Schema and corresponding document from

an object-oriented database.

Two basic steps are identified in the process of transforming object-oriented

databases into XML. The first step is reconstructing the object-graph from the given

object-oriented database. The generated object-graph summarizes the structure of the

object-oriented schema by exploring the inheritance and nesting links of the given

object-oriented database. Second, the obtained object-graph is transformed into XML

Schema in a process known as forward engineering. In the first step, the process

requires knowing the metadata. Also, the opportunity to bypass the metadata (which

125

may not be fully available) and to apply reverse engineering to derive information

about inheritance and nesting is introduced. In other words, COODaX either utilizes

the metadata when it is available, or applies reverse engineering to extract

information missing from the metadata. COODaX enable users to view the

underlying object-oriented data as either flat or nested XML structure Also, users can

specify the nesting sequence. Users can directly view the result of each phase during

the process.

5.4.2 COODaX Architecture

COODaX is composed of four main modules:

1) EOGOR – Extracting Object Graph from Object Oriented Database by

Reverse Engineering Module. This module in COODaX extracts all possible

schema information (meta-data) by analysing the content of the given

object-oriented database, and then generates the OG. Details can be found in

Section 5.4.3.

2) EOGMOD- Extracting Object Graph from Meta-data of Object-oriented

Database Module. It has a function similar to EOGOR, but it generates the OG

model from an existing database catalogue; it employs EOGOR in case some

catalogue information is missing

3) OG2X- OG to XML Module.

It takes the OG generated from EOGOR or EOGMOD as input, and applies the

OG to XML transformation algorithm to obtain the XML Schema. It can also

generate the XML documents.

126

4) X2OG- XML Schema to OG Module.

It takes the XML Schema file as input, generates the OG, and then runs the

XML Schema to object-oriented schema transformation algorithm to generate

the corresponding object-oriented schema; it also stores the result in object-

oriented database.

The next sections of 5.4 explain in details the COODaX components.

5.4.3 Extracting the Object Graph

The OG contains one node (vertex) per class and two types of edges; inheritance and

nesting. There are two ways to extract data from the object-oriented database; either

by content-based or by catalogue-based. EOGOR module is used to extract all

possible information by analysing the content of the object-oriented database, usually

legacy database, while EOGMOD extracts data from the catalogue of the database.

Any missing information from the catalog could be extracted using EOGOR.

Constructing OG from the catalogue-based analysis is explained in Definition 3.2.

Extracting OG by analysing database contents can be depicted in the following steps:

1. For each class in the object-oriented database schema: find the domains of its

attributes.

2. For each class c: identify candidate direct inheritance links between c and

every class ci such that the list of domains for attributes of c is a subset of the

list of domains for attributes of ci (denoted c<<ci), and there is no class cj,

where c<<cj<<ci.

127

3. For each class c, identify every class ck, such that ckis the domain for an

attribute in c.

4. Use the result from Steps 2 and 3 to construct the initial OG. We can apply the

same rules explained in Definition 3.2.

5.4.4 Transforming Object Graph Model to XML Schema

COODaX can properly handle all types of relationships in the conversion from

object-oriented database into XML. The OG2X module is responsible for

transforming the object-graph of the given object-oriented database into the

corresponding XML Schema. The schema itself is an XML document, and so can be

processed by the same tools that read the XML documents it describes. The XML

Schema supports rich built-in types and allows building complex types based on

built-in types.

We also consider mapping all different types of the constraints particular to the class

hierarchy, including: object-identifiers (denoted PKs), object-references from within

other objects (denoted FKs), null/not-null, unique, etc, to the XML Schema.

Basically, the null/not-null constraint can be easily represented by properly setting

“minOccurs” of the XML element transformed from the object-oriented attribute.

The unique constraint can also be represented by the unique mechanism in the XML

Schema in a straight forward manner.

The OG2X module by default generates a flat structure of the XML Schema.

However, users may specify a nested structure in a way to improve the performance

of querying XML documents. The conversion into flat XML Schema is explained in

128

details in Algorithm 3.1 OG2FXMLand the conversion into nested XML Schema is

thoroughly explained in Algorithm 3.2 OG2NXML.

5.4.5 Generating XML Document

After the XML Schema is obtained, COODaX can generate XML document(s) from

the considered object-oriented database. It uses the XML Schema to decide which

type of XML document will be generated. If the XML Schema is nested, then a

nested XML document is generated and if the schema is flat, then a flat document is

generated. This process is explained in details in Algorithm 3.3 GenXMLDoc.

5.4.6 Transforming XML Schema into Object-Oriented Schema

We use the same approach discussed in Section 4.3.1 to construct the OG from an

XML Schema. We also use Algorithm 4.1 OG2OODB that transforms the object

graph to object-oriented Schema.

5.5 Conclusion

In this chapter Java classes are used to represent an object-oriented database. Flat and

nested XML Schemas are generated from object-oriented UNIVERSITY database

example and the flat XML document is generated from the database. Another way of

implementation is presented by using the open source object-oriented db4o. Nested

Schema and nested document is generated from this implementation. The set of Java

classes used for the implementation of the generic object oriented approach are used

for the implementation of db4o approach. With simple extension and incorporation

of db4o database classes, the implementation of the same examples used in the

129

generic object oriented database are successfully performed. This clearly proves that

classes for the generic approach can be used as a base for any implementation with

other OODBMS.

COODaX framework is presented. It has a GUI interface to extract and store flat and

nested XML Schemas and corresponding documents from/to object-oriented

databases. This system extracts the meta-data from the database catalogue, and when

database catalogue or part of it is not available, it investigates and extract the missing

meta-data from the data itself.

130

Chapter 6

Mapping between Object Definition Language
(ODL) and XML Schema

6.1 Introduction

Chapter 3 and chapter 4 discuss in details the mapping between a generic OODB

model and XML, including both structure specification and database content. An

intermediate graph is used to map between OODB and XML Schema. This chapter

discusses another approach of mapping; the mapping between Object Definition

Language (ODL) and XML. One of the major components for ODMG 3.0

specification [15] is the object specification language Object Definition Language. It

is used to define the semantic constructs of the object database schema, operations,

and specifications of object types that conform to the ODMG object model. As ODL

is programming languages independent, it supports the portable object schemas

across ODMG-compliant object data management systems (ODMSs) and facilitates

the migration of data. ODL is used in the same way as the data definition language

(DDL) of the traditional databases such as relational database. If java is the “lingua

franca” of object-oriented languages, we also consider ODL as the “lingua franca” of

object-oriented specification.

In this work [40], a comprehensive approach is presented for the mapping between

the object database language (ODL) and XML, including both structure specification

and database content. This study concentrates on deriving a set of transformation

rules for two way mapping between ODL and XML. For the mapping from ODL to

XML, the set of rules described in [39] are expanded and developed. The fact that the

131

rules only cover a subset of ODL, as well as the fact that the rules provided a solid

foundation for expansion, is the main motivation for continuing the study. After

analysing and evaluating the correctness and completeness of the rules, some

improvements and extensions are proposed to have a complete set of transformation

rules. By modifying the existing rule set, a wider variety of ODL to XML mapping is

able to be handled. Also some ODL scenarios are discussed that the original rule set

cannot handle. The presented complete rule set is capable of handling a larger subset

of ODL (including dictionaries, global and local scope enumerations, and most

importantly, inheritance). No research is encountered for XML to ODL mapping.

Hence, a complete set of rules capable of handling the mapping process is developed.

Finally, a set of rules for handling the two-way mapping of data is proposed.

Implementation for two-way mapping between ODL and XML is performed to

ensure effectiveness and correctness. This work could be a solid base for future

investigation of transformation between ODL and XML.

6.2 A Comparison between Object Graph to XML Mapping
and ODL to XML Mapping

The main work described in chapters 1, 2, 3, 4, and 5 is explaining in detail the

mapping approach between OODB and XML using object graph. The approach of

mapping between ODL and XML has common similarities with the former approach.

The main similarities can be summarized as:

 OODB to XML mapping is depending on the OODB schema information and

in case catalogue information is not available, the database content is

analysed and the missing schema information is built; refer to section 5.4.3.

133

6.3 Previous Work

The work in [65] presents a set of rules to help in the transformation from ODL to

XML Schema. It makes the argument that the ODMG standard [15] has reached a

sufficient level of maturity, and therefore, it is a valid and attractive alternative for

the storage of XML data. The work describes the fundamental cornerstone concept:

in order to store XML documents in conventional databases (relational, object-

relational, and object oriented), a certain amount of translation work is unavoidable.

The work in [39] presents an approach for the transformation of ODL Schemas into

XML Schemas. The approach starts with an incomplete set of rules described in the

literature to assist in the transformation process. This work presumes that the global

adoption of XML will push forward the acceptance of object-oriented databases as

the most appropriate repository for maintaining XML data without sacrificing the

semantics of the XML model as when storing XML into relational database. Thus,

they believe that more rule based work should be done regarding bi-directional

translation between XML documents and object-oriented databases. It is then

asserted that ODL is the language of choice for specifying the object-oriented

database schema because it is the proposed language standard from the ODMG. This

will result in high portability between different object-oriented databases. The

authors address the issue that the rules are not complete, and that more work must be

done. First, new rules are needed to handle more complex object-oriented modeling

constructs. Second, a new set of rules are needed for conversion in the reverse

direction (XML Schemas to ODL). Third, some more rules will be needed for data

migration. This work is thoroughly handling all these three mentioned aspects. The

134

next sections discuss in detail this mapping approach

6.4 Rules for Conversion from ODL structure to XML
Schema

ODL is a well-structured language that allows for specifying the definition of an

object-oriented schema, including classes, inheritance and attributes. Given an ODL

specification, the goal is to produce a corresponding XML Schema. The XML

Schema has elements and attributes in addition to sequences, keys/keyrefs,

cardinality, etc. Rules are defined to provide a smooth transformation of an ODL

schema into XML Schema by considering and maintaining as much as possible the

characteristics of each model. The process starts from the root, then moves on to the

classes and finally considers the inheritance and the attributes. Further, complex

attributes are considered in more details by investigating and mapping the details of

the underlying domain. The sample ODL schema shown in Figure 6.1 will be used as

a running example for illustrating the conversion rules. The resulting XML Schema

will be shown at the end after all the rules are introduced. The following are ODL to

XML Schema (O2X) conversion rules.

136

the root element. This is where the content of the database will be stored. The XML

schema declaration of the root element (whose name may be arbitrary; we will use

the name database here) will be referred as the element declaration, while the schema

element will be referred to as the schema root. The additional rules will insert child

elements in all of these places. Elements representing classes also have anonymous

content models; they are inserted in the root element. The sequence element defining

the content model of the class will be referred to as the class root.

Rule 2

O2X_R2. Top-level classes: Each top-level class in the ODL schema is converted

into an element in XML schema with the same name. These elements are included in

the special choice element created by applying rule O2X R1. Within each element,

the sequence constructor is created as a container to include the content of the class

element. For each class in the ODL schema, a corresponding, like-named container is

created, in which its attributes will be stored based on later rules. With the

simplifying assumption stated next, only the key attributes are included to define

class types, as an object in a class is entirely defined by the values of its key

attributes. Finally, class types are implemented in the same manner as relationships

(see rules O2X R5 and O2X R6), also to simplify the implementation, n the ability to

visually differentiate between attributes and relationships is lost.

One additional note to make is how to declare keyrefs for attributes whose type is a

list of class type: the name of the keyref would then be given as

classType.attribute.item.ref, where classType is the name of the declaring class and

attribute is the name of the attribute. The selector XPath is then given the value

”./classType/attribute/item”. In short, the name of a keyref closely mirrors that of its

137

selector XPath expression.

Simplifying Assumption: ODL schemas allow for a key to be any set of properties

that is defined for the class. This means that in addition to primitive type attributes,

keys may also be complex types, classes, structures, unions, or even relationships.

However, the implementation of any type beyond the primitive ones increases the

complexity of the transformation process substantially. In this work, the simplifying

assumption is adopted. This assumption allows to make progress in the

implementation, while avoiding some tricky technical details beyond the scope of

this research. The simplifying assumption can be stated as follows: All classes must

have at least one key attribute, and every key must be of primitive or enumerated

type.

Rule 3

O2X_R3. Attributes with primitive domains: This rule states that each basic

datatype attribute is mapped into a like-named element within the container

described in rule R2. In other words, the attributes specified in ODL with basic data

types(string, short, date, float, etc.) are translated into atomic elements included in

the corresponding special sequence element that has already been produced by rule

O2X R2, and their data types should, if possible, be the same.

The handling of attributes of primitive type is accomplished as follows: an element is

created with the same name as the corresponding attribute name, and the value of the

type attribute for the new element is specified as the XSD analogue of its ODL type.

Refer to Table 6.2 for list of type mapping [75].

139

 An anonymous complex data type with a special element complexContent.

 Special restricted element that contains an attribute with the name of the key

attribute of the referred class.

Special keyref element has also to be declared as a subelement of the element that

has been produced by rule O2X R1. This special element should also have a name

attribute with its value specified as:

class_name_which_the_relationship_belongs.relationship_name.ref. This

special element should also include a refer attribute with the value:

key_element_name_of_referred_class. The xpath attribute of the selector

(sub)element belonging to this special element should contain a Xpath expression

like: .//class_name_which_the_relationship_belongs_to/relationnship_name.

The xpath attribute of the (sub)element field of this special element should contain a

Xpath expression like: @key_attribute_name_of_the_referred_class. The

example below explains these definitions.

<xsd:keyrefname="author.write.ref" refer="book.key">
<xsd:selectorxpath="./author/write"/>
<xsd:fieldxpath="@ISBN"/>

</xsd:keyref>

Rule 6

O2X R6. One-to-One relationships: One-to-One relationship means that the

keywords set, list, or bag are not involved into relationship. An element with the

same relationship name is created in sequence element defined in O2X R2.This

element does not have maxOccurs attributes as the default value for this constructor

is 1. A new like-named element is created within the class root for the relationship.

This element includes an anonymous complex datatype. For each key attribute in the

140

related class, an attribute with the name of the related key attribute is added to the

complexType, with its type matching that of the type of the related key attribute.

Special keyref element has also to be declared as a subelement of the element that

has been produced by rule O2X R1. In the declaration of the special keyref element,

the xpath attribute of the selector element should contain a Xpath expression like:

class_name_which_the_relationship_belongs_to. The xpath attribute of the field

element should contain a Xpath expression like: //relationship name. If the name of

the relationship is “relationship”, the name of the declaring class is classType, and

the name of the related class is relatedType, then the name of the keyref is

classType.relationship.ref and the value of its refer attribute is relatedType.key. The

xpath attribute of the selector element child is given as “./classType”. For each key

attribute in the class, a field element is added as a child to the key element. The xpath

attribute therein is given the value “@attribute”, where attribute is the name of the

key attribute. In Figure 6.1, an example of both one-to-one and one-to-many

relationships, namely “writtenby” of class “book”, and “write” of class “author”,

respectively.

Rule 7

O2X_ R7. Lists: Each attribute of a class in ODL schema that contains the keyword

“list” in its definition is converted into an element with the same name; the new

element is included in the special sequence element that has resulted from rule O2X

R2. This element should include an anonymous simple data type.

If an attribute is of a list type, could be specified as list, set, bag, sequence, or array, a

new element is created with an anonymous complexType as its content model. This

141

complexType will have an unbounded number of child elements named item. This

element type is then inserted into the class root. In Figure 6.1, the attribute “ratings”

of the class “book” is of list type.

Rule 8

O2X_R8. Complex data type attributes: Each attribute with a complex data type

specified in ODL is converted into an element with the same name. This element

should be included in the special sequence element that has resulted from rule O2X

R2. This special element should include an anonymous complexType with a special

sequence element in which the elements corresponding to the conversion of the

attributes integrated in the class (that defines the complexType of the attribute being

converted)are declared.

Rule 9

O2X_R9. Enumerations: Each attribute of a class in ODL that contains the keyword

enum in its definition is converted into an element in the special sequence element

that has resulted from rule O2X R2. This element should include an anonymous

simple data type and this simple data type should include a special restriction

element with a base attribute. The restriction element should also include, for each

one of the values of the enum data type, a special enumeration element with the same

value in its value attribute.

Enumerated types may be declared on the same level of classes, within the class, or

anonymously within the attribute. For each enumerated type, a simpleType

restricting xsd:string is inserted into the schema root. Given the enumerated type

enumType:

 If enumType is globally declared, the name enumType.enum is given

142

 If enumType is locally declared in class classType, the name
classType.enumType.enum is given.

 If enumType is declared anonymously in attribute of class classType, the
name classType.attribute.enum is given.

In Figure 6.1, enum “sex”, which is the type of the attribute “gender”, is an example

of locally declared enumerated types in the class author.

Rule 10

O2X_R10. Dictionary Types: The object-oriented dictionary constructor allows a

user to query a list of associations, searching for an entry that matches the search

criteria. ODL defines a dictionary as an Association [15]. Association is a simple list

of structure that defines a key and a value. Dictionary type transformation creates an

element with an attribute as its name and an anonymous complexType as its content

model. This anonymous complexType - named sequence - will have an unbounded

number of children of elements named item. The content model sequence has two

child elements named key and value.

The content models of the key and value elements depend on the key and value types

of the dictionary; this is handled in a manner similar to that of lists. If the key and

value types involve classes, keyrefs will also be added accordingly. In Figure 6.1, a

dictionary attribute named chapterPageNumbers is defined as a dictionary type

example that associates chapters with page numbers.

Rule 11

O2X_R11. Inheritance: Inheritance is one a main concepts of object-oriented

model, so transformation process would not be complete without supporting this

feature. Because the content models of classes are anonymously declared, XML

Schema cannot be defined to include the equivalence of the extended classes. This

143

can be handled in a symmetrical manner of the approach discussed in Section 3.4.1

and in Section 3.4.2. Inheritance can be handled as the following:

If a class extends another class, then all inherited properties of the superclass are

included in the subclass. As XML does not support explicit inheritance, it is

interpreted as nesting. This can be handled in two ways based on the user preference.

First, a nested XML structure may be produced where the element that corresponds

to a subclass is extended to include all the inherited definitions of the superclass.

Second, a flat XML structure using key/keyref can be produced as follows. The

selector element in the superclass key element has its xpath attribute appended with

”—./subclass”, where subclass is the name of the subclass. Similarly, the selector

element in any keyref element referencing the superclass keymust have its xpath

attribute appended in the same way. This process is repeated for every superclass in

the class hierarchy.

To illustrate the functionality of inheritance, in figure 6.1, the “person” class is

inherited in the “author” class.

Rule 12

O2X_R12. Structures and Unions: Structured and union types are implemented

relatively in straightforward manner. Classes that do not have an extent, have an

extent but no key, or violating the simplifying assumption stated in O2X_R2 are to

be considered in a future extension of this work.

Structure is mapped into complexTypes that will be added to the schema root, with a

naming scheme similar to that of enumerated types, but with the “.struct” extension.

These complexTypes have a sequence element that contains the structure members.

The above rules apply to related members.

144

As structures, union is also implemented as complexTypes. The union contains a

discriminator member that is sharing the name of the union type. This discriminator

must be of primitive or enumerated type, which will be the first sequence child. The

second child is a choice element that will contain each member of the union. Again,

union type elements are added to the schema root with a naming scheme similar to

that of enumerated types, but with the “.union” extension. Similar to structures and

enumerated types, attributes of union type can then be coded in the same way as

primitive types.

There may be no full implementation due to the cyclic dependency problem. The

cyclic dependency problem is caused when a structure has a member that may

declare a member of the original structure type. In this case, the transformation

process may not terminate. In fact, the simplifying assumption in O2X_R2 was

introduced as a response to tackle the cyclic dependency.

Rule 13

O2X_R13. Times, Intervals, and Time-stamps: ODL has a way of codifying dates,

times, intervals, and timestamps, using the structured types date, time, interval, and

timestamp, as well as their corresponding class type counterparts Date, Time,

Interval, and Timestamp [6]. These types can be treated specially by converting them

into the XSD types xsd:date, xsd:time, xsd:duration, and xsd:datetime, respectively.

However, a proper translation between these two types must be defined, owing to the

possible fine-print differences between them.

Rule 14

O2X_R14. Null Objects: ODL does not define that the property can take the value of

null. However, the implementation of null objects is discussed. Elements declaring

145

classes must set the nillable attribute to true. Elements representing attributes of list

and dictionary type attributes must also set the nillable attribute of their item, key, or

value children, In addition, elements representing relationships and attributes of class

type must set the use attribute of each attribute child to optional.

Note that there is no way in XML Schema to enforce attributes to be required,

optional, or prohibited: For example, if the lastName variable is set to null, then the

XML Schema can be translated as: <xsd:element name="lastName"

type="xsd:string" nillable="true"/>, while the XML document can be set as:

<lastNamexsi:nil="true"></lastName>.

Rule 15

O2X_R15. Interfaces: Though interfaces are normally ignored because they are

defining only the behavior of an object (which would be lost in the XML

transformation), interfaces may also declare enumerated types, structures, and

unions, which can then be used by any class implementing any of the mentioned

types. Further exploration of this is needed.

As a result of applying the rules described above to the sample ODL described in

figure 6.1, Appendix F includes the generated XML Schema. This process is

repeated against many ODL example inputs and each of these has generated the

corresponding XML Schema where the results are validated by an XML Schema

validator.

146

6.5 Rules for Converting XML Schema into ODL

XML schema core components are elements and attributes; elements may be nested

or presented in a flat structure that simulates the nesting using key/keyref constructs.

The rules presented in this section will produce an ODL structure from the input flat

or nested XML Schema. As ODL allows for inheritance, which is not part of XML

by definition, there are two options; either to produce a one level class hierarchy

where all classes are under the root or to produce a multi-level class hierarchy by

applying an optimization rule on the one level hierarchy to minimize overlap and

redundancy between the classes. Conversion of flat XML by using key/keyref

constructs will produce a class hierarchy that incorporates nesting in a more natural

way. Next is a summary of rules required for the conversion of XML Schema into

the corresponding ODL.

Rule 1

X2O_R1. Create the main classes: Locate the XML Schema first level of element.

For each first level element create a corresponding main class with the same name as

the element.

Rule 2

X2O_R2. Create the nested classes: XMLSchema allows the definition of flat and

nesting. Each element E that is mapped into a class c in X2O_R1 will be recursively

checked for all nesting elements that are represented by nesting or a flat structure that

is using key/keyrefs. For each element E for which a class c has been created, apply

the following two sub rules.

147

X2O_2.1. Nested classes from nested XML schema: If element E has a

subelement Es such that Es has complex structure (includes some subelements)

then create a new class cs corresponding to Es.

X2O_R2.2. Nested classes from flat XML schema: If element E has keyref

specification which references another element Ek then add to the definition of

class c a new non-primitive attribute with the name AEk and specify the domain

of AEk as the class that corresponds to element Ek; create the latter class if it

does not exist.

Rule 3

X2O_R3. Define primitive attributes for simple elements: For each simple element

found in any of the already processed elements E, create in the corresponding class c

a primitive attribute with the same name and domain as the simple element.

Rule 4

X2O_R4. Define primitive attributes for attributes in elements: For each attribute

found in any of the already processed elements E, create in the corresponding class c

a primitive attribute with the same name and domain as the attribute in E.

Rule 5

X2O_R5. Define the keys in classes: If element E has a key that is composed of one

or more attributes/elements then create a key for the corresponding class c; the

keyfor class c must include all the attributes that correspond to the components of the

key of E.

Rule 6

X2O_R6. Define non-primitive attributes in classes: Both XML and ODL allow for

complex domains to be specified. Below are rules of mapping for some

148

complexType domains.

X2O_R6.1. Relationships: For every element representing a relationship type

inside element E, create a corresponding attribute in class c that corresponds to

E. The mapped relationship type attribute should be set equivalent to the

definition of the corresponding element in E (to an existing class) and the

linking attribute should be determined.

X2O_R6.2. Collections: Both simple and complex domains may be allowed to

have collections (set, list, bag or array) as the value; this may be found

explicitly specified in XML using “maxOccurs”. Also relationships may be

specified to connect to a collection of values. For all these cases, determine the

collection type from the definition of the corresponding element and reflect that

into the definition of the attribute or relationship in the given class.

X2O_R6.3. Enumeration: Locate all specifications of enumerated type in the

XML schema. Each of these enumerated types is defined with an element E;

accordingly, locate the corresponding class c and define in class c the same

enumerated type found in E.

X2O_R6.4. Dictionary: For elements specified to have the dictionary type in

the XML schema, find the components of the dictionary type and define it

accordingly for the corresponding attributes in the ODL schema.

Rule 7

X2O_R7. Decide on attributes that may have null value: For every attribute A in

the ODL schema, if the element that corresponds to A has its “minOccurs” specified

as “0” then attribute A is allowed to have the value “null” and this should be

reflected into the definition of attribute A in ODL.

149

Rule 8

X2O_R8. Define interfaces in classes: Encapsulation is one of the paradigm’s

object-oriented paradigm main features, so for each attribute A defined in ODL,

define two methods get() and set(X); these methods will have very simple code; the

former will display the value of attribute A in the receiving object and the latter will

replace in the receiving object the existing value of A with X.

Enforcing Inheritance into the Hierarchy

XML to ODL generates a one level hierarchy, so the inheritance is not explicitly

defined. This means that both superclasses and subclasses are not defined. However,

the inheritance information is implicitly present in the hierarchy and simulated by

duplication of information in various classes. Hence, the target is to enforce

reusability instead of duplication; this is possible by deriving a list of superclasses for

each given class c to increase inheritance instead of duplication.

Non-inherited characteristics of class c include both locally defined attributes and

locally defined behavior, denoted Lattributes(c) and Lbehavior(c), respectively. The

inherited characteristics of class c include both all attributes and behavior in the

superclasses of class C, denoted (Wattributes(c) - Lattributes(c)) and (Wbehavior(c) - Lbehavior(c)),

respectively. To maximize inherited and hence minimize locally defined

characteristics, it is required to adjust the list of superclasses of class c to include

classes that maximize inherited and minimize locally defined characteristics.

150

Rules are defined to add some existing classes to the list of superclasses of class c,

denoted Cp(c), or by pushing class c into the list of superclasses of some existing

classes. This will be straightforward to find the overlap between classes.

Rule 9

X2O_R9. Find potential superclasses: For each pair of classes c1 and c2 produced

as the result of applying rules X2O_R1 to X2O_R8, if Lattributes(c1) ∩ Lattributes(c2) is

not empty then create a new class c1_2 to include all attributes in Lattributes(c1) ∩

Lattributes(c2), Further, Lbehavior(c1_2) is set to include Lbehavior(c1) ∩ Lbehavior(c2) as

every class has in its local behaviour only pairs of methods, one pair per attribute to

set/modify and get/return the value of the attribute.

6.6 Rules for Data Conversion

The XML document to object database data mapping process involves two main

rules. First, one object (root element) is generated for each root element (object) and

attributes (elements) with primitive domains are mapped directly. Second, all

complex domains are mapped after their containers are ready to hold them. The

object database to XML document mapping is performed in one pass to produce

instantiations for elements with values for their primitive and non-primitive

components specified. Next are the rules for mapping XML documents into object

data and the object data into instantiation of elements (XML document).

X2O_D_R1. Creating objects from documents: In XML to ODL mapping rules,

class c is created for every element E of complexType. For each instantiation IE of

element E, create a corresponding object Oc in the local instances of class c, denoted

151

Linstances(c); object oc will have a new unique identifier and the values of its primitive

attributes will be taken from the corresponding instantiation IE.

X2O_D_R2. Deciding on values of non-primitive attributes for objects: This rule

uses the object identifiers created by rule X2O_D_R1 to specify the values of non-

primitive attributes. For every object oc which has been created by rule X2O_D_R1,

if class c of object oc has non-primitive attributes then for each non-primitive

attribute A in class c, locate object(s) oI that corresponds to the instantiation of the

element that corresponds to attribute A and set the value of attribute A in object oc to

object(s) oI. The latter value may be single or collection of values; for the collection

of values case, the values oI are arranged to fit the specification of the collection type

whether set, list, bag or array.

O2X_D_R1. Creating documents from objects: For each element E, locates its

corresponding class c. Some subelements from E may have their definition exists in

superclass(es) of c because of the inheritance characteristic specified for class c but

missing in XML. If this is the case, then start with elements E that correspond to

classes c with no subclasses; produce one instantiation of E for each object oc in c;

each instantiation will utilize from oc in c the values that are part of oc due to the

inheritance relationship between class c and its superclasses. For each non-leaf class

cL which has a corresponding element EL, if cL has some objects (in Linstances(cL)) then

for each object in Linstances(cL) create a corresponding instantiation for element EL.

152

6.7 Implementation Details

After the description of transformation rules between ODL and XML for both

schemas and data, a reference implementation is written using the Java language.

This reference implementation contains a lexer and parser to accept input, as well as

a transformer to do the actual XML and ODL transformations. The parser creates a

set of objects representing ODL classes, attributes, relationships, and enumerated

types; it is also capable of producing XML schemas and XML documents; it raises

an error if the simplifying assumption is violated. The parser parses all parts of ODL

and XML schemas that corresponds to rules specified in Section 6.3 and Section 6.4.

The transformation process is described in ODLTransformer and XMLTransformer

classes. As each class process is a reverse for the other class process, only ODL to

XML transformation process specified in the ODLTransformer class is described.

After lexing and parsing the input ODL file, the ODL object representing the ODL

schema, an object of type ODLSchema, is passed into the ODLTransformer, which

proceeds to build a DOM tree. This DOM tree can then be further manipulated using

XSL Transformations. In this case, it is chosen to output the DOM tree as-is, which

then is our output XML Schema file.

 ODLTransformer depends on a set of ItemBuilders to create the content models of

each class type. There are separate ItemBuilders for primitive types, enumerated

types, class types (which are also used in relationships), list types, and dictionary

types. These ItemBuilders will also create the necessary keyrefs, though

ODLTransformer itself holds the responsibility of creating keys as well as

simpleTypes representing enumerated types.

153

6.8 Conclusion

The need to convert between the object-oriented database model and the XML

database model has been covered in this work. It is eventually more attractive than

the XML to relational conversion because the two models covered have more

commonalities and hence the semantic gap almost disappears to the benefit of the

transformation process both ways. The mapping from ODL to XML involves the

conversion between an object schema, in the form of ODL, to an XML schema,

using XML Schema, and then the conversion of the data itself following the schemas

that have been created. The conversion of an object-oriented schema to an XML

schema is a nontrivial process, requiring both human intervention and automated

tools. Though we may make rules representing general guidelines on how to covert

between ODL and XSD, they can only cover a limited subset of the ODL grammar.

However, these rules cover a sufficiently large portion of ODL so that human

intervention is kept to a minimum. Finally, the converted XML schema may also

impose conditions on how the data is to be transformed as well, as with the case with

date and time data types. The conversion from XML to ODL is more challenging as

it is required to decide on the inheritance for ODL; it could successfully handle this

vital property and requirement by invoking an optimization process that minimizes

the overlap between classes, redundancy in other words. It is argued that the rules

that we have defined should cover the vast majority of the needs of most object-

oriented database users and administrators.

This work is a result of researchers collaboration listed in [40]. Our contribution to

this research is covering the concepts of the mapping between OODB into XML.

This includes: a) using a similar deductive approach to extract the meta-data from the

154

database if not exists, b) using an intermediate object graph in the mapping process,

c) Using the approach of a generic schema so as to deal with any object oriented

database. Also, the contribution covers major involvement into XML into ODL

conversion rules (Rule 1 to Rule 6). Further, we have little involvement into rules

(Rule 1 to Rule 4 and Rule 8) for conversion from ODL to XML.

155

Chapter 7

Conclusion and Future Work

7.1 Introduction

In Chapter 3 of this thesis, a process for extracting XML Schema and corresponding

XML document from an object-oriented database is presented. This process maps a

generic OODB into an object graph (OG), and then the OG is used to generate the

required XML Schema and related document. A reverse process is also presented in

Chapter 4 to store XML Schema and corresponding document into an object-oriented

database. OG is used as a mean for the mapping process. Chapter 5 discusses the

implementation of extracting XML schema and corresponding document from an

object oriented database. Also, it discusses a framework mapper called COODaX.

This mapper extracts the object-oriented schema meta-data from the object-oriented

database. When meta-data does not exist, the system tries to construct it from the

entire data. Chapter 6 explains another way of mapping between ODL and XML.

This work structures the rules required to map different components of ODL and

XML Schema.

7.2 Research Contribution and Benefits

As a very little work had been performed on mapping between XML and object-

oriented database, this research fills a gap that had not been addressed. This work

introduces a novel approach (theoretical back up) that have been performed on

providing a sound basis for extracting XML Schema and corresponding XML

156

document from an object-oriented database (although some OODBMS provide XML

export facility). As a very little work had been performed on mapping between XML

and object-oriented database, this research fills a gap that had not been addressed.

This work introduces a novel approach (theoretical back up) that have been

performed on providing a sound basis for extracting XML Schema and

corresponding XML document from an object-oriented database (although some

OODBMS provide XML export facility). In this research, we tried answering the

research questions that had been raised before starting this work. In the first start, we

define a generic object oriented database that can be a subset of most of object

oriented databases. The main component of this proposed database that may hold

data and relations is the class, so a class explained in Definition 3.1 is used as a core

component in the mapping process. The class primitive attributes, non-primitive

attributes (instances), inherited attributes, super classes, and the object identifiers

(OID) are the components that either extracted from the database or used for writing

data into the database. Also, we successfully perform a research of two way mapping

between a generic object oriented database and XML Schema. Corresponding data is

also handled. The mapping process successfully uses an object graph (OG) as a

means for the mapping. The mapping process is able to handle and generate both

nesting and flat XML schemas and related documents and is able to differentiate

between inheritance and nesting. This is represented by the work described in chapter

3 and chapter 4. The user involvement in mapping OODB into XML is very minimal

if exists because the introduced framework COODaX can extract the meta-data either

by reading the database catalogue or by analysing the content of the database. If the

catalogue data is not sufficient then the content analysis could build the missing

157

information. The user involvement for mapping XML into OODB is required

because as XML does not support inheritance, the is no way to differentiate between

components that represent nesting and components that represent inheritance. The

best way to reduce the user involvement is to map all XML complex components as

OODB nested attributes. All data can then be scanned and analysed and a heuristic

approaches can be applied to segregate between inheritance and nesting. Also, a GUI

interface for both XML and generated OODB presentations can simplify the human

intervention.

A two-way mapping between ODL and XML is also introduced. The mapping from

XML to ODL is newly introduced, while the mapping from ODL to XML added

some improvement to previous research performed. The mapping between XML and

OODB (using OG) proves that this approach is successfully applied into XML and

ODL mapping. Section 6.2 discusses in details the overlap between the two different

mappings.

The main benefits gained from the outcomes of this study within the context of new

emerging technologies are based on the mapping approach provided in this research

to facilitate the availability of XML data.. The most notable attractions of XML is its

ability to provide an ideal solution as platform independent. With the widespread of

next generation technologies including web services, semantic web, web of things,

cloud computing, etc., researchers and users will be working without any need to

consider the underlying platform or to stick to a single platform and hence limit their

productivity and the availability of their products whether services or platforms.

Structured data whether relational or object-oriented could maximize the availability

158

and sharing of their content by using our approach to convert into XML and vice

versa.

7.3 Theory Contribution

 Thorough investigation is performed about the conducted research on all types of

mapping between XML and different types of databases. The investigation clearly

showed that little research is accomplished on mapping between XML and OODB.

This work introduces a two-way mapping between XML and OODB. Further, a

framework called COODaX is wrapping these mapping processes, and different

algorithms are created for handling different components. The mapping process from

OODB into XML can be summarized as:

 Set of algorithms are created to perform this process.

 A directed object graph (OG) is constructed from the object oriented database

schema.

 OODB schema meta-data is extracted either by reading the database catalog

or by analysing the content of the database. If the database catalog is not

present or missing some information, the content analysis could recover the

missing meta-data..

 Inheritance and nesting are presented properly in the OG.

 Both nested and flat XML Schemas are constructed from the OG.

 The corresponding XML document is generated from the database.

The mapping from XML into OODB can be summarized as:

 Set of algorithms are created to perform this process.

159

 A directed object graph (OG) is constructed from the XML Schema.

 OODB Schema is constructed from the OG.

 The corresponding XML document is stored into the database.

Also, another way of mapping between ODL and XML is introduced. Different rules

found in the literature for mapping from ODL to XML are improved, and the

mapping rules from XML to ODL are constructed.

7.4 Practical Contributions

This research work was performed using two different modes of practical

implementation. The first implementation is performed using a Customised object-

oriented database composed of Java classes. The second implementation used db4o

object-oriented database where a set of Java programs are written for achieving this

task. The UNIVERSITY object-oriented database example introduced in Chapter 3 is

used for the implementation. Hence, the practical contributions can be listed as the

following:

 Object-oriented database schema information of UNIVERSITY example is

extracted.

 Flat XML schemas for UNIVERSITY example is generated based on the

extracted database schema.

 Nested XML schema is generated.

 Flat and nested corresponding XML documents are generated.

Generated outputs are verified against the algorithms defined in Chapters 3 and 4.

The generated outputs are listed in the appendixes.

160

7.5 Lessons Learned from the Research Journey

I had started my research journey by investigating about the major components of the

object-oriented database schema and the structure of XML Schema. As there was

very limited research and published work about mapping between object-oriented

and XML, I had started exploring the research conducted on relational or object-

relational and XML mapping. This research was mostly about mapping between

relational or object relational and DTD Schema but not using the XML Schema.

Most of this research was concerned about how to map the two different model

structures of XML and relational databases. As the two models have different

structures, the mapping was trying to fit the tree-like XML structure into the linear

relational structure; in other words, trying to resolve the impedance mismatch

problem.

The challenge was that; we have to initiate the mapping between object-oriented and

XML Schema without having any previous work. Concerns are raised up on trying to

make smooth and proper mapping between the basic object-oriented database

component (class) and the complex types of the XML Schema. This implies to

differentiate between inherited, local, complex, and primitive attributes. Hence, we

learn how to map the nesting caused by inheritance and the natural nesting of

complex domain type. Also, we learn how to map flat and nested schemas.

7.6 Limitations and Directions for Future Research

Although the research conducted for this work is properly handling the mapping

between object-oriented databases and XML, these are some limitations encountered

on this work.

161

 The mapping between XML and OODB is taking a subset of the XML

Schema and OODB schema structures. For instance limited number of

primitive attributes such as integer, string, etc. is handled. Also as an

example, mapping of lists, bag, set, and arrays are not handled.

 Attributes are presented as simple elements inside their type element. This

option is more natural but this may cause losing the indication that the

attribute element is an attribute and not a normal element. This causes that the

initial structure of the XML document may not be exactly retrieved

There are some issues that can be addressed for the future work.

 As XML structure does not support inheritance and nesting, so during the

mapping from XML to OODB, there is no way to tell if an XML attribute is

mapped as nesting or inheritance database attribute. The way to tell in this

research is user invovment. Therefore, a heuristic approach could be applied

to minimize the user involvement in defining inheritance and nesting. The

proposed idea is to make a full database scan. Out of this process and through

the comparisons between classes attributes values, a process can infer and

segregate between inheritance and nesting.

 The conducted research for this work can be extended and developed to have

mapping for a wider range of structures of both XML and OODB schemas.

This may include lists, arrays, and dictionaries.

 Mapping from XML to OODB is based on XML Schema. When schema does

not exist, some available tools such as Microsoft Visual Studio XML Editor

or Microsoft XSD Inference can be incorporated into the process to generate

the schema before performing the mapping process.

162

 COODaX could be implemented with a GUI interface. The process of

extracting OG from the database and the generated graph can be exposed into

the system. Further, a native XML query can be incorporated into this

framework. Also, the system could be adjusted to generate a subset of the

schema when required.

7.7 Epilogue

This thesis has demonstrated a novel approach for mapping between XML and a

generic object-oriented database using directed object graph. The experience gained

from this work showed that the sematic gap between XML and object-oriented

structures is minimal if exists. This reflects positively on smooth and natural

mapping between XML and OODB compared to other databases structures such as

relational databases. Nested and flat schemas are handled and the differentiation

between inherited and non-primitive attributes is considered. Implementation is

performed using two different object-oriented databases and the results produced are

similar. Another way of mapping between ODL and XML is introduced as well and

different rules are introduced.

163

References

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik.

“The Object-Oriented Database System Manifesto”.In Proceedings of the

First International Conference on Deductive and Object-Oriented

Databases, pages 223-40, Kyoto, Japan, December 1989.

 [2] U. Ahmad, M. Hassan, A. Ali, R. McClatchey, and I. Willers. “An Integrated

Approach for Extraction of Objects from XML and Transformation to

Heterogeneous Object Oriented Databases”. InProceedings of the Fifth

International Conference on Enterprise Information Systems (ICEIS), pp

445-449, 2003.

[3] Reda Alhajj. “Extracting the Extended Entity-Relationship Model from

legacy Relational Database”. Information Systems, Vol. 28, No. 6, pp.597-

618, 2003.

 [4] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener, and J. Widom.

“The Lorel Query Language for Semistructured Data”. International Journal.

on Digital Libraries (IJDL), 1(1):68-88, Apr. 1997.

[5] T. Atwood, “An Object-Oriented DBMS for Design Support Applications”.

In Proceedings of the IEEE COMPINT 85, pp 299-307, September 1985.

[6] D. Barry. “Object Oriented Database Management Systems”. [Online]

available at:

http://www.service-architecture.com/object-oriented-

databases/articles/odbms_faq.html

[7] A. Berglund, S. Boag, D. Chamberlin M. Fernandez, M. Kay, J. Robie,

J. Simeon. “XML Path Language (XPath) 2.0”. W3C Recommendation,

January 2007. [Online] available at: http://www.w3.org/TR/xpath20/.

164

[8] J. Bosak, T. Bray, D. Connolly, E. Maler, G. Nicol, C. M. Sperberg-

McQueen, L. Wood, J. Clark, “W3C XML Specification DTD”, 1998.

[Online] available at:

http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm.

 [9] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon.

“XQuery 1.0: An XML Query Language”. W3C Recommendation, January

2007. [Online] available at:

http://www.w3.org/TR/2007/REC-xquery-20070123/.

[10] G. Booch, M. Christerson, M. Fuchs, and J. Koistinen. “UML for XML

Schema mapping specification”, Rational Software Corp. and CommerceOne

Inc., 1999. [Online] available at:

http://xml.coverpages.org/fuchs-uml_xmlschema33.pdf.

[11] P. Bohannon, J. Freire, P. Roy, and J. Siméon. “From XML Schema to

relations: a cost-based approach to XML storage”. In Proceedings of the 18th

IEEE International on Data Engineering, February 2002.

[12] T. Bray, D. Hollander, A. Layman, R. Tobin. “Namespaces in XML 1.0

(Second Edition) ”. W3C Recommendation, August 2006. [Online] available

at: http://www.w3.org/TR/2006/REC-xml-names-20060816.

[13] A. Bonifati and D. Lee. “Technical survey of XML schema and query

languages”. Technical report, July 2001. [Online] available at:

http://www.csd.uoc.gr/~hy561/Data/Papers/surveyxmlschema-

querylanguages.pdf .

[14] R. Bourret. Mapping DTDs to Databases, Mapping XML and Databases,

1999. [Online] available at:

http://www.rpbourret.com/xml/DTDToDatabase.htm,

165

http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[15] R.G.G. Cattel, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,

O. Schadow, T. Stanienda, F. Velez. “The Object Database Standard:

ODMG-93”. Morgan Kaufmann, 1994.

 [16] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon, M. Stefanescu.

“XQuery 1.0: An XML Query Language”. W3C Working Draft, June 2001.

[Online] available at: http://www.w3.org/TR/2001/WD-xquery-20010607/.

[17] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F.

Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J.

White, and M. J. Zwilling. “Shoring up Persistent Applications”. In

Proceedings of Management of Data ACM SIGMOD Conference, ACM

SIGMOD Record, Volume 23, issue 2, pp 383–394, 1994.

[18] J. Clark and S. J. DeRose (Eds). “XML Path Language (XPath) Version 1.0”.

W3C Recommendation, April. 1999. [Online] available at:

http:///www.w3.org/TR/xpath.

[19] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Schanmugasundaram, E. Shekita,

and S. Subramanian. “XPERANTO: Publishing object-relational data as

XML”. In Proceedings of the Third International Workshop on the Web and

Databases (WebDB), pp 105-110, May 2000.

 [20] Tae-Sun Chung, Sangwon Park, Sang-Young Han, and Hyoung-Joo Kim.

“Extracting Object-Oriented Database Schemas from XML DTDS Using

Inheritance”. In Proceedings of the Second International Conference on

Electronic Commerce and Web Technologies (EC-WEB), pp 49-59, 2001.

166

[21] William. Cook and Siddhartha Rai. “Safe query objects: statically typed

objects as remotely executable queries”. In Proceedings of the 27th

International Conference on Software Engineering (ICSE), pages 97-106.

ACM, 2005. [Online] available at:

http://www.cs.utexas.edu/~wcook/papers/SafeQuery05/SafeQueryFinal.pdf.

[22] William Cook and Carl Rosenberger.“ Native Queries for Persistent Objects,

A Design White Paper ”. February, 2006. [Online] available at:

http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8

-23-05.pdf.

[23] D. Chamberlin, J. Robie, and D. Florescu. “Quilt: An XML Query Language

for Heterogeneous Data Sources”. In Third International Workshop on the

Web and Databases (WebDB), May 2000.

[24] J. Cheng and J. Xu. XML and DB2. In Proceedings of the 16th IEEE

International Conference on Data Engineering, pp 569-573, 2000.

[25] A. Deutsch , M. Fernandez , D. Florescu, A. Levy , D. Suciu “XML-QL: A

Query Language for XML”. W3C Recommendation, August 1998. [Online]

available at: http://www.w3.org/TR/NOTE-xml-ql/.

[26] Ole Johan Dahl and Kristen Nygaard.“Class and Subclass Declarations”. In

IFIP TC 2 Working Conference on Simulation Languages, NCC Documents,

March, 1967.

[27] R. Elmasri and S. B. Navathe. “Fundamental of Database Systems, Fourth

Edition”. Addison-Wesley, 2003, ISBN: 0321122267.

[28] Joseph Fong, and San Kuen Cheung. “Translating relational schema into

XML Schema definition with data semantic preservation and XSD graph”.

Information and Software Technology, Volume 47, Issue 7, pp 437-462, May

2005.

167

[29] D. Florescu, G. Graefe, G. Moerkotte, H. Pirahesh, and H. Schning.

“Panel: XML data management: Go Native or spruce up Relational

Systems?”. In Proceedings of the ACM SIGMOD International Conference

on Management of Data”, May 2001.

[30] D. Florescu and D. Kossman. “Storing and querying XML data using an

RDBMS”. In IEEE Data Engineering Bulletin, volume 22, pp 27-34,

September 1999.

[31] M. Fernandez, A. Morishima, D. Suciu, and W. Tan. “Publishing relational

data in XML: The SilkRoute approach”. In IEEE Data Engineering Bulletin,

volume 24, pp 12-19, 2001.

[32] J. Fong, F. Pang, and C. Bloor. “Converting Relational Database into XML

Document”. In Proceedings of the 12th International Workshop on Database

and Expert Systems Applications, pp61-65, 2001.

[33] M. Fernandez, W. Tan, and D. Suciu. “SilkRoute: Trading between relational

and XML”. In Proceedings of the 9th International World Wide Web

Conference (WWW), volume 33, pp 723-745, 2000.

[34] Gemestone Object Oriented Database. [Online] available at:

http://www.gemtone.com.

[35] Charles F. Goldfarb. The SGML Handbook. OxfordUniversityPress, USA,

1991.

[36] Hyper Text Markup Language (HTML) 4.01, W3C Recommendation.

[Online] available at : http://www.w3.org/TR/html4, December 1999.

168

[37] H. Jagadish et al. (The Timber Team, University of Michigan). “Timber”,

2000. [Online] available at: http://www.eecs.umich.edu/db/timber.

[38] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmanan, A. Nierman, S.

Paparizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, C. Yu.

“Timber: A Native XML Database”. The VLDB Journal, Volume 11,

Number 4, Springer, December, 2002. [Online] available at:

www.eecs.umich.edu/db/timber/files/timber.pdf

[39] Jarada T.N., Chung K., Shimoon A., Karampelas P., Alhajj R. and Rokne J.,

“Mapping Rulesfor Converting from ODL to XML Schemas”. In

Proceedings of International Conference onInformation Integration and Web-

based Applications & Services, Paris, Nov. 2010.

[40] T. N. Jarada, A. M. Elsheikh, T. Naser, K. Chung, A. Shimoon, P.

Karampelas, J. Rokne, M. Ridley and R. Alhajj, “Rules for Effective

Mapping between two Data Environments: Object Database Language and

XML”. In Recent Trends in Information Reuse and Integration. Springer-

Verlag, 2011.

[41] Tony Johansson and Richard Heggbrenna. “Importing XML Schema into an

Object-Oriented Database Mediator System”. In Uppsala Master's Theses in

Computing Science no. 260 Examensarbete DV3 20 p, ISSN 1100-1836,

2003.

[42] Michael Kay. “XSL Transformations (XSLT) Version 2.0”. W3C

Recommendation, January 2007. [Online] available at:

http://www.w3.org/TR/2007/REC-xslt20-20070123/.

[43] Alan Kay. “The Early History of Smalltalk”, 1993. [Online] available at:

http://www.smalltalk.org/downloads/papers/SmalltalkHistoryHOPL.pdf.

 http://www.smalltalk.org/people/alankay.html

169

[44] W. Kim, J. F. Garza, N. Ballou, and D. Woelk. “Architecture of the ORION

Next-Generation Database System”. IEEE Transactions on Knowledge and

Data Engineering, Volume 2, March 1990.

[45] Kim, Won. “Introduction to Object-Oriented Databases”. The MIT Press,

1990. ISBN 0-262-11124-1.

[46] C. Liu, M. W. Vincent, J. Liu, and M. Guo. “A Virtual XML Database

Engine for Relational Database”, SpringerLink, pp 37-51, Volume 2824.,

2003.

[47] I. Manolescu, D. Florescu, and D. Kossmann. “Answering XML queries over

heterogeneous data sources”. In Proceedings of the 27th International

Conference on VLDB, Morgan Kaufmann, pp 241-250, 2001.

[48] Gregory McFarland, Andres Rudmik, and David Lange. “Object-Oriented

Database Management Systems Revisited”. Contract Number SP0700-98-

4000, DoD Data & Analysis Center for Software (DACS), Dec. 1997.

[49] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. “Lore: A

Database Management System for Semi-structured Data”. SIGMOD Record,

26(3): pp54–66, September 1997. [Online] available at:

http://infolab.stanford.edu/lore/pubs/lore97.pdf.

http://www-db.stanford.edu/lore

[50] M. Mani, D. Lee, and R. R. Muntz “Semantic data modeling using XML

schemas”. In the 20th International Conference on Conceptual Modeling

(ER), pp 149-163, Springer, November 2001.

170

[51] Taher Naser, Reda AlHajj, and Mick J. Ridley. “Reengineering XML into

Object-Oriented Database”. IEEE International Conference on Information

Reuse and Integration (IRI-2008), July 2008.

[52] Taher Naser, Reda AlHajj, and Mick J. Ridley “Flexible approach for

representing object-oriented databases in XML format ”. Proceedings of the

10th International Conference on Information Integration and Web-based

Applications & Services. ACM SIGWEB, pp 430-433, 2008.

[53] Taher Naser, Reda AlHajj, and Mick J. Ridle. “Two-Way Mapping between

Object-Oriented Databases and XML”. Informatica 33, pp 297–308, 2009.

[54] Taher Naser, Keivan Kianmehr, Reda AlHajj, and Mick J. Ridley.

“Transforming Object-Oriented Database into XML”. In IEEE International

Conference on Information Reuse and Integration (IRI-2007), August 2007.

[55] Objectivity Object Oriented Database. [Online] available at:

http://www.objectivity.com.

[56] Oracle Database 11g XML DB Technical Overview, Started in Oracle

Database 9i Release 2, 2002. [Online] available at:

 http://www.oracle.com/technology/tech/xml/xmldb/Current/xmldb_11g_twp.

pdf.

[57] Oracle Database 11g, 2009. [Online] available at:

 http://www.oracle.com/technology/products/database/oracle11g/index.html.

[58] Jim Paterson, Stefan Edlich, Henrik Hörning, and Reidar Hörning “The

Definitive Guide to db4o”, Apress, 2006.

171

[59] Dave Raggett, Arnaud Le Hors, Ian Jacobs. HTML 4.0 Specification, W3C

Recommendation, 1999. [Online] available at:

http://www.w3.org/TR/html4/.

[60] Tore Risch. “AMOS II Active Mediators for Information Integration”, 2000.

Uppsala Database Laboratory, 2001. [Online] available at:

http://user.it.uu.se/~udbl/amos/amoswhite.html.

[61] K. Runapongsa and J. M. Patel. “Storing and querying XML data in object-

relational DBMSs”. 8thInternational Conference on Extending Database

Technology (EDBT) XML-Based Data Management (XMLDB) Workshop,

March 2002. [Online] available at:

http://gear.kku.ac.th/~krunapon/research/pub/xorator.pdf

[62] SAX Project Team. "Simple API for XML (SAX 2.0)". January 2002.

[Online] available at: www.saxproject.org.

[63] Herbert Schildt. “Java 2: The Complete Reference, Fifth Edition”. McGraw-

Hill Osborne Media, 2002, ISBN: 0072224207.

[64] Albrecht Schmidt, Martin Kersten, Menzo Windhouwer, and Florian Waas.

“Efficient Relational Storage and Retrieval of XML Documents”. The Third

International Workshop WebDB 2000 on The World Wide Web and

Databases, May 2000.

[65] de Sousa, A., Pereiera, J., Carvalho, J., “Mapping Rules to Convert from

ODL to XML SCHEMA”. In Proceedings of 22nd International Conference

of the Chilean Computer Science Society, IEEE Computer Society, 2002.

172

[66] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J.

Naughton. “Relational Databases for Querying XML Documents:

Limitations and Opportunities”. In Proceedings of the 25th International

Conference on Very Large Data Bases, pp 302–314, September 1999.

[67] H. Schoning and J. Wasch. “Tamino - An Internet Database System”. In

proceedings of the 7th International Conference on Extending Database

Technology (EDBT), 2000. [Online] available at:

ftp://ftp.cse.buffalo.edu/users/azhang/disc/disc01/cd1/out/papers/edbt/tamino

aninternehaj.pdf.

[68] T. Shimura, M. Yoshikawa, and S. Uemura. “Storage and Retrieval of XML

Documents Using Object-Relational Databases”. In the 10thInternational

Conference on Database and Expert Systems Applications, pp 206–217,

September 1999.

[69] “Tamino: The Native XML Management System”, 2003. [Online] available

at: http://www.softwareag.com/tamino.

[70] D. Toth and M. Valenta, “Using Object And Object-Oriented Technologies

for XML-native Database Systems”. In Proceedings of the Dateso Annual

International Workshop on Databases, Texts, Specifications and Objects,

2006.

[71] Versatile Object Oriented Database. [Online] available at:

http://www.versant.com/.

[72] C. Wang, A. Lo, R. Alhajj, and K. Barker. “Converting legacy relational

database into XML database through reverse engineering”. In the 6th

International Conference on Enterprise Information Systems (ICEIS), pp

216-221, April 2004.

173

[73] Chunyan Wang, Reda Alhajj, Ken Barker, and Svetlana N. Yanushkevich.

“COCALEREX: An Engine for Converting Catalog-based and Legacy

Relational Databases into XML”, 2004. [Online] available at:

http://www.visualgenomics.ca/~wangc/Chunyan_Thesis.pdf.

[74] L. Wood et al., “Document Object Model (DOM) Version 1. W3C

Recommendation, October 1998.[Online] available at:

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

[75] XML Schema Part 2: Data types Second Edition. W3C Recommandation,

October 2004. [Online] available at: http://www.w3.org/TR/xmlschema-2/.

[76] Extensible Markup Language (XML) 1.0 Fifth Edition, W3C

Recommendation, November 2008. [Online] available at:

http://www.w3.org/TR/REC-xml/.

[77] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. “XRel: A Path-

Based Approach to Storage and Retrieval of XML Documents Using

Relational Databases”. ACM Transactions on Internet Technology (TOIT),

Volume 1, pp: 110 – 14, 2001.

174

Appendix A

UNIVERSITY Object-Oriented Database Schema

// class Country
// primary key name
// primitive attribute string name
// primitive attribute int area
// primitive attribute int population
// End Class Definition

public class Country {

 private String name;
 private int area;
 private int population;
}

// class Department
// primary key Name
// primitive attribute string name
// nonprimitive attribute Staff head
// End Class Definition

public class Department {

 private String Name;
 private Staff head;
}

// class Person
// primary key SSN
// primitive attribute int SSN
// primitive attribute string name
// primitive attribute int age
// primitive attribute char sex
// nonprimitive attribute Person spouse
// nonprimitive attribute Country nation
// End Class Definition

public class Person {

 private int SSN;
 private String name;
 private int age;
 private char sex;
 private Person spouse;
 private Country nation;

}

// class Course
// primary key Code
// primitive attribute int Code
// primitive attribute String title
// primitive attribute int credits

175

// nonprimitive attribute Prerequisite prerequisite
// End Class Definition

public class Course {

 private int Code;
 private String title;
 private int credits;
 private Prerequisite prerequisite;

}

// class Prerequisite
// primary key course
// nonprimitive attribute Course course
// End Class Definition

public class Prerequisite {

 private Course course;

}

// class Staff
// primary key StaffID
// primitive attribute int StaffID
// primitive attribute int salary
// nonprimitive attribute Department works_in
// superclasses Person
// End Class Definition

public class Staff extends Person {

 private String[] superclasses = {"Person"};
 private int StaffID;
 private int salary;
 private Department works_in;

}

// class Student
// primary key StudentID
// primitive attribute int StudentID
// primitive attribute float gpa
// nonprimitive attribute Department student_in
// nonprimitive attribute Takes takes1
// superclasses Person
// End Class Definition

public class Student extends Person {

 private String[] superclasses = {"Person"};
 private int StudentID;
 private float gpa;
 private Department student_in;
 private Takes takes;
 public class Takes {

176

 private Course course;
 private String grade;

 }
}

// class ResearchAssistant
// superclasses Student Staff
// End Class Definition

public class ResearchAssistant extends Student
{
 private String[] superclasses = {"Student", "Staff"};
}

// class Secretary
// primitive attribute int wordsPERminute
// nonprimitive attribute Department works_in
// superclasses Person
// End Class Definition

public class Secretary extends Person {

 private String[] superclasses = {"Person"};
 private int wordsPERminute;
 private Department works_in;

}

// class Takes
// primary key student
// nonprimitive attribute Student student
// nonprimitive attribute Course course
// primitive attribute String grade
// End Class Definition

public class Takes {

 private Student student
 private Course course;
 private String grade;
}

177

Appendix B

Generated Nested XML Schema from
UNIVERSITY Object-Oriented Database Schema

Example

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="CountryClass" >
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="area" type="xsd:int"/>
 <xsd:element name="population" type="xsd:int"/>
 </xsd:sequence>
 <xsd:key name="CountryPK">
 <xsd:selector xpath="CountryClass"/>
 <xsd:field xpath="name"/>
 </xsd:key>
 </xsd:complexType>

 <xsd:complexType name="CourseClass" >
 <xsd:sequence>
 <xsd:element name="Code" type="xsd:int"/>
 <xsd:element name="title" type="xsd:String"/>
 <xsd:element name="credits" type="xsd:int"/>
 <xsd:element name="prerequisite" type="PrerequisiteClass"/>
 </xsd:sequence>
 <xsd:key name="CoursePK">
 <xsd:selector xpath="CourseClass"/>
 <xsd:field xpath="Code"/>
 </xsd:key>
 </xsd:complexType>

 <xsd:complexType name="DepartmentClass" >
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="head" type="StaffClass"/>
 </xsd:sequence>
 <xsd:key name="DepartmentPK">
 <xsd:selector xpath="DepartmentClass"/>
 <xsd:field xpath="Name"/>
 </xsd:key>
 </xsd:complexType>

 <xsd:complexType name="PersonClass" >
 <xsd:sequence>
 <xsd:element name="SSN" type="xsd:int"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="age" type="xsd:int"/>
 <xsd:element name="sex" type="xsd:char"/>
 <xsd:element name="spouse" type="PersonClass"/>

178

 <xsd:element name="nation" type="CountryClass"/>
 </xsd:sequence>
 <xsd:key name="PersonPK">
 <xsd:selector xpath="PersonClass"/>
 <xsd:field xpath="SSN"/>
 </xsd:key>
 </xsd:complexType>

 <xsd:complexType name="PrerequisiteClass" >
 <xsd:sequence>
 <xsd:element name="course" type="CourseClass"/>
 </xsd:sequence>
 <xsd:key name="PrerequisitePK">
 <xsd:selector xpath="PrerequisiteClass"/>
 <xsd:field xpath="course"/>
 </xsd:key>
 </xsd:complexType>

 <xsd:complexType name="ResearchAssistantClass" >
 <xsd:sequence>
 <xsd:element name="StudentSuperclass" type="Student"/>
 <xsd:element name="StaffSuperclass" type="Staff"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="SecretaryClass" >
 <xsd:sequence>
 <xsd:element name="wordsPERminute" type="xsd:int"/>
 <xsd:element name="works_in" type="DepartmentClass"/>
 <xsd:element name="PersonSuperclass" type="Person"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="StaffClass" >
 <xsd:sequence>
 <xsd:element name="StaffID" type="xsd:int"/>
 <xsd:element name="salary" type="xsd:int"/>
 <xsd:element name="works_in" type="DepartmentClass"/>
 <xsd:element name="PersonSuperclass" type="Person"/>
 </xsd:sequence>
 <xsd:key name="StaffPK">
 <xsd:selector xpath="StaffClass"/>
 <xsd:field xpath="StaffID"/>
 </xsd:key>
 </xsd:complexType>

 <xsd:complexType name="StudentClass" >
 <xsd:sequence>
 <xsd:element name="StudentID" type="xsd:int"/>
 <xsd:element name="gpa" type="xsd:float"/>
 <xsd:element name="student_in" type="DepartmentClass"/>
 <xsd:element name="PersonSuperclass" type="Person"/>
 </xsd:sequence>
 <xsd:key name="StudentPK">
 <xsd:selector xpath="StudentClass"/>
 <xsd:field xpath="StudentID"/>
 </xsd:key>
 </xsd:complexType>

179

 <xsd:complexType name="TakesClass" >
 <xsd:sequence>
 <xsd:element name="student" type="StudentClass"/>
 <xsd:element name="grade" type="xsd:String"/>
 <xsd:element name="course" type="CourseClass"/>
 </xsd:sequence>
 <xsd:key name="TakesPK">
 <xsd:selector xpath="TakesClass"/>
 <xsd:field xpath="student"/>
 </xsd:key>
 </xsd:complexType>

 <xsd:element name="UnivSchema">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Country" type="CountryClass"/>
 <xsd:element name="Course" type="CourseClass"/>
 <xsd:element name="Department" type="DepartmentClass"/>
 <xsd:element name="Person" type="PersonClass"/>
 <xsd:element name="Prerequisite" type="PrerequisiteClass"/>
 <xsd:element
name="ResearchAssistant"type="ResearchAssistantClass"/>
 <xsd:element name="Secretary" type="SecretaryClass"/>
 <xsd:element name="Staff" type="StaffClass"/>
 <xsd:element name="Student" type="StudentClass"/>
 <xsd:element name="Takes" type="TakesClass"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

180

Appendix C

Generated Flat XML Schema from UNIVERSITY
Object-Oriented Database Schema Example

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:oodb="http://scim.brad.ac.uk/xml">
 <xsd:complexType name="Country_Class" >
 <xsd:sequence>
 <xsd:element name="Country_Object" type="oodb:Country_Object"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Country_Object" >
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="area" type="xsd:int"/>
 <xsd:element name="population" type="xsd:int"/>
 </xsd:sequence>
 <xsd:key name="CountryPK">
 <xsd:selector xpath="oodb:Country_Class/oodb:Country_Object"/>
 <xsd:field xpath="oodb:name"/>
 </xsd:key>
 </xsd:complexType>

 <xsd:complexType name="Course_Class" >
 <xsd:sequence>
 <xsd:element name="Course_Object" type="oodb:Course_Object"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Course_Object" >
 <xsd:sequence>
 <xsd:element name="Code" type="xsd:int"/>
 <xsd:element name="title" type="xsd:String"/>
 <xsd:element name="credits" type="xsd:int"/>
 <xsd:element name="prerequisite" type="xsd:string"/>
 </xsd:sequence>
 <xsd:key name="CoursePK">
 <xsd:selector xpath="oodb:Course_Class/oodb:Course_Object"/>
 <xsd:field xpath="oodb:Code"/>
 </xsd:key>
 <xsd:keyref name="prerequisiteFK" refer="PrerequisitePK">
 <xsd:selector xpath="oodb:Course_Class/oodb:Course_Object"/>
 <xsd:field xpath="oodb:prerequisite"/>
 </xsd:keyref>
 </xsd:complexType>

 <xsd:complexType name="Department_Class" >
 <xsd:sequence>
 <xsd:element name="Department_Object"
 type="oodb:Department_Object" maxOccurs="unbounded"/>
 </xsd:sequence>

181

 </xsd:complexType>
 <xsd:complexType name="Department_Object" >
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="head" type="xsd:int"/>
 </xsd:sequence>
 <xsd:key name="DepartmentPK">
 <xsd:selector
 xpath="oodb:Department_Class/oodb:Department_Object"/>
 <xsd:field xpath="oodb:Name"/>
 </xsd:key>
 <xsd:keyref name="headFK" refer="StaffPK">
 <xsd:selector
 xpath="oodb:Department_Class/oodb:Department_Object"/>
 <xsd:field xpath="oodb:head"/>
 </xsd:keyref>
 </xsd:complexType>

 <xsd:complexType name="Person_Class" >
 <xsd:sequence>
 <xsd:element name="Person_Object" type="oodb:Person_Object"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Person_Object" >
 <xsd:sequence>
 <xsd:element name="SSN" type="xsd:int"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="age" type="xsd:int"/>
 <xsd:element name="sex" type="xsd:char"/>
 <xsd:element name="spouse" type="xsd:int"/>
 <xsd:element name="nation" type="xsd:string"/>
 </xsd:sequence>
 <xsd:key name="PersonPK">
 <xsd:selector xpath="oodb:Person_Class/oodb:Person_Object"/>
 <xsd:field xpath="oodb:SSN"/>
 </xsd:key>
 <xsd:keyref name="spouseFK" refer="PersonPK">
 <xsd:selector xpath="oodb:Person_Class/oodb:Person_Object"/>
 <xsd:field xpath="oodb:spouse"/>
 </xsd:keyref>
 <xsd:keyref name="nationFK" refer="CountryPK">
 <xsd:selector xpath="oodb:Person_Class/oodb:Person_Object"/>
 <xsd:field xpath="oodb:nation"/>
 </xsd:keyref>
 </xsd:complexType>

 <xsd:complexType name="Prerequisite_Class" >
 <xsd:sequence>
 <xsd:element name="Prerequisite_Object"
 type="oodb:Prerequisite_Object" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Prerequisite_Object" >
 <xsd:sequence>
 <xsd:element name="course" type="xsd:int"/>
 </xsd:sequence>
 <xsd:key name="PrerequisitePK">

182

 <xsd:selector
xpath="oodb:Prerequisite_Class/oodb:Prerequisite_Object"/>
 <xsd:field xpath="oodb:course"/>
 </xsd:key>
 <xsd:keyref name="courseFK" refer="CoursePK">
 <xsd:selector
 xpath="oodb:Prerequisite_Class/oodb:Prerequisite_Object"/>
 <xsd:field xpath="oodb:course"/>
 </xsd:keyref>
 </xsd:complexType>

 <xsd:complexType name="ResearchAssistant_Class" >
 <xsd:sequence>
 <xsd:element name="ResearchAssistant_Object"
 type="oodb:ResearchAssistant_Object" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ResearchAssistant_Object" >
 <xsd:sequence>
 <xsd:element name="StudentSuperclass" type="xsd:int"/>
 <xsd:element name="StaffSuperclass" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Secretary_Class" >
 <xsd:sequence>
 <xsd:element name="Secretary_Object"
 type="oodb:Secretary_Object" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Secretary_Object" >
 <xsd:sequence>
 <xsd:element name="wordsPERminute" type="xsd:int"/>
 <xsd:element name="works_in" type="xsd:string"/>
 <xsd:element name="PersonSuperclass" type="xsd:int"/>
 </xsd:sequence>
 <xsd:keyref name="works_inFK" refer="DepartmentPK">
 <xsd:selector
 xpath="oodb:Secretary_Class/oodb:Secretary_Object"/>
 <xsd:field xpath="oodb:works_in"/>
 </xsd:keyref>
 </xsd:complexType>

 <xsd:complexType name="Staff_Class" >
 <xsd:sequence>
 <xsd:element name="Staff_Object" type="oodb:Staff_Object"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Staff_Object" >
 <xsd:sequence>
 <xsd:element name="StaffID" type="xsd:int"/>
 <xsd:element name="salary" type="xsd:int"/>
 <xsd:element name="works_in" type="xsd:string"/>
 <xsd:element name="PersonSuperclass" type="xsd:int"/>
 </xsd:sequence>
 <xsd:key name="StaffPK">
 <xsd:selector xpath="oodb:Staff_Class/oodb:Staff_Object"/>

183

 <xsd:field xpath="oodb:StaffID"/>
 </xsd:key>
 <xsd:keyref name="works_inFK" refer="DepartmentPK">
 <xsd:selector xpath="oodb:Staff_Class/oodb:Staff_Object"/>
 <xsd:field xpath="oodb:works_in"/>
 </xsd:keyref>
 </xsd:complexType>

 <xsd:complexType name="Student_Class" >
 <xsd:sequence>
 <xsd:element name="Student_Object" type="oodb:Student_Object"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Student_Object" >
 <xsd:sequence>
 <xsd:element name="StudentID" type="xsd:int"/>
 <xsd:element name="gpa" type="xsd:float"/>
 <xsd:element name="student_in" type="xsd:string"/>
 <xsd:element name="takes1" type="xsd:string"/>
 <xsd:element name="PersonSuperclass" type="xsd:int"/>
 </xsd:sequence>
 <xsd:key name="StudentPK">
 <xsd:selector xpath="oodb:Student_Class/oodb:Student_Object"/>
 <xsd:field xpath="oodb:StudentID"/>
 </xsd:key>
 <xsd:keyref name="student_inFK" refer="DepartmentPK">
 <xsd:selector xpath="oodb:Student_Class/oodb:Student_Object"/>
 <xsd:field xpath="oodb:student_in"/>
 </xsd:keyref>
 <xsd:keyref name="takes1FK" refer="TakesPK">
 <xsd:selector xpath="oodb:Student_Class/oodb:Student_Object"/>
 <xsd:field xpath="oodb:takes1"/>
 </xsd:keyref>
 </xsd:complexType>

 <xsd:complexType name="Takes_Class" >
 <xsd:sequence>
 <xsd:element name="Takes_Object" type="oodb:Takes_Object"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Takes_Object" >
 <xsd:sequence>
 <xsd:element name=”studentID” type “xsd:int”/>
 <xsd:element name="grade" type="xsd:String"/>
 <xsd:element name="course" type="xsd:int"/>
 </xsd:sequence>
 <xsd:key name="TakesPK">
 <xsd:selector xpath="oodb:Takes_Class/oodb:Takes_Object"/>
 <xsd:field xpath="oodb:studentID"/>
 </xsd:key>
 <xsd:keyref name="courseFK" refer="CoursePK">
 <xsd:selector xpath="oodb:Takes_Class/oodb:Takes_Object"/>
 <xsd:field xpath="oodb:course"/>
 </xsd:keyref>
 </xsd:complexType>

184

 <xsd:element name="UnivSchema">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Country" type="Country_Class"/>
 <xsd:element name="Course" type="Course_Class"/>
 <xsd:element name="Department" type="Department_Class"/>
 <xsd:element name="Person" type="Person_Class"/>
 <xsd:element name="Prerequisite" type="Prerequisite_Class"/>
 <xsd:element name="ResearchAssistant"
 type="ResearchAssistant_Class"/>
 <xsd:element name="Secretary" type="Secretary_Class"/>
 <xsd:element name="Staff" type="Staff_Class"/>
 <xsd:element name="Student" type="Student_Class"/>
 <xsd:element name="Takes" type="Takes_Class"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

185

Appendix D

Generated Flat XML Document from
UNIVERSITY Object-Oriented Database Schema

Example

<?xml version="1.0" encoding="UTF-8"?>
<xsd:xmldoc xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:oodb="http://www.brad.ac.uk/xml">
 <oodb:UNIVERSITY>
 <oodb:CountryClass>
 <oodb:CountryObject>
 <oodb:name>United Kingdom</oodb:name>
 <oodb:area>244820</oodb:area>
 <oodb:population>60,000,000</oodb:population>
 </oodb:CountryObject>
 <oodb:CountryObject>
 <oodb:name>Jordan</oodb:name>
 <oodb:area>100000</oodb:area>
 <oodb:population>6,000,000</oodb:population>
 </oodb:CountryObject>
 <oodb:CountryObject>
 <oodb:name>United States</oodb:name>
 <oodb:area>9372610</oodb:area>
 <oodb:population>300,000,000</oodb:population>
 </oodb:CountryObject>
 <oodb:CountryObject>
 <oodb:name>Canda</oodb:name>
 <oodb:area>9000000</oodb:area>
 <oodb:population>28,000,000</oodb:population>
 </oodb:CountryObject>
 <oodb:CountryObject>
 <oodb:name>Japan</oodb:name>
 <oodb:area>400000</oodb:area>
 <oodb:population>120,000,000</oodb:population>
 </oodb:CountryObject>
 </oodb:CountryClass>

 <oodb:PersonClass>
 <oodb:PersonObject>
 <oodb:SSN>115</oodb:SSN>
 <oodb:name>Tushi Imamura</oodb:name>
 <oodb:age>50</oodb:age>
 <oodb:sex>M</oodb:sex>
 <oodb:spouse>50</oodb:spouse>
 <oodb:nation>Japan</oodb:nation>
 </oodb:PersonObject>
 <oodb:PersonObject>
 <oodb:SSN>132</oodb:SSN>
 <oodb:name>Mohammad Taher</oodb:name>
 <oodb:age>25</oodb:age>
 <oodb:sex>M</oodb:sex>

186

 <oodb:spouse></oodb:spouse>
 <oodb:nation>Jordan</oodb:nation>
 </oodb:PersonObject>
 <oodb:PersonObject>
 <oodb:SSN>80</oodb:SSN>
 <oodb:name>Mary Tomson</oodb:name>
 <oodb:age>22</oodb:age>
 <oodb:sex>F</oodb:sex>
 <oodb:spouse>60</oodb:spouse>
 <oodb:nation>United Kingdom</oodb:nation>
 </oodb:PersonObject>
 <oodb:PersonObject>
 <oodb:SSN>50</oodb:SSN>
 <oodb:name>Suzuki Yoshikawa</oodb:name>
 <oodb:age>40</oodb:age>
 <oodb:sex>F</oodb:sex>
 <oodb:spouse></oodb:spouse>
 <oodb:nation>Japan</oodb:nation>
 <oodb:></oodb:>
 </oodb:PersonObject>
 <oodb:PersonObject>
 <oodb:SSN>60</oodb:SSN>
 <oodb:name>Fong Loo</oodb:name>
 <oodb:age>32</oodb:age>
 <oodb:sex>M</oodb:sex>
 <oodb:spouse></oodb:spouse>
 <oodb:nation>United States</oodb:nation>
 </oodb:PersonObject>
 <oodb:PersonObject>
 <oodb:SSN>70</oodb:SSN>
 <oodb:name>James Robert</oodb:name>
 <oodb:age>29</oodb:age>
 <oodb:sex>M</oodb:sex>
 <oodb:spouse></oodb:spouse>
 <oodb:nation>Sweden</oodb:nation>
 </oodb:PersonObject>
 <oodb:PersonObject>
 <oodb:SSN>71</oodb:SSN>
 <oodb:name>Alan Barter</oodb:name>
 <oodb:age>22</oodb:age>
 <oodb:sex>M</oodb:sex>
 <oodb:spouse></oodb:spouse>
 <oodb:nation>United Kingdom</oodb:nation>
 </oodb:PersonObject>
 <oodb:PersonObject>
 <oodb:SSN>73</oodb:SSN>
 <oodb:name>Karen Duncan</oodb:name>
 <oodb:age>20</oodb:age>
 <oodb:sex>F</oodb:sex>
 <oodb:spouse></oodb:spouse>
 <oodb:nation>United Kingdom</oodb:nation>
 </oodb:PersonObject>
 <oodb:PersonObject>
 <oodb:SSN>75</oodb:SSN>
 <oodb:name>Diana Booth</oodb:name>
 <oodb:age>23</oodb:age>
 <oodb:sex>F</oodb:sex>
 <oodb:spouse></oodb:spouse>
 <oodb:nation>Canada</oodb:nation>

187

 </oodb:PersonObject>
 </oodb:PersonClass>

 <oodb:StaffClass>
 <oodb:StaffObject>
 <oodb:person>115</oodb:person>
 <oodb:staffID>922</oodb:staffID>
 <oodb:salary>26,000</oodb:salary>
 <oodb:work_in>Physics</oodb:work_in>
 </oodb:StaffObject>
 <oodb:StaffObject>
 <oodb:person>132</oodb:person>
 <oodb:staffID>924</oodb:staffID>
 <oodb:salary>33,000</oodb:salary>
 <oodb:work_in>Computing</oodb:work_in>
 </oodb:StaffObject>
 <oodb:StaffObject>
 <oodb:person>60</oodb:person>
 <oodb:staffID>960</oodb:staffID>
 <oodb:salary>15,000</oodb:salary>
 <oodb:work_in>Computing</oodb:work_in>
 </oodb:StaffObject>
 </oodb:StaffClass>

 <oodb:DepartmentClass>
 <oodb:DepartmentObject>
 <oodb:name>Computing</oodb:name>
 <oodb:head>924</oodb:head>
 </oodb:DepartmentObject>
 <oodb:DepartmentObject>
 <oodb:name>Physics</oodb:name>
 <oodb:head>922</oodb:head>
 </oodb:DepartmentObject>
 </oodb:DepartmentClass>

 <oodb:SecretaryClass>
 <oodb:SecretaryObject>
 <oodb:person>50</oodb:person>
 <oodb:wordsPERminute>35</oodb:wordsPERminute>
 <oodb:works_in>Physics</oodb:works_in>
 </oodb:SecretaryObject>
 <oodb:SecretaryObject>
 <oodb:person>80</oodb:person>
 <oodb:wordsPERminute>45</oodb:wordsPERminute>
 <oodb:works_in>Computing</oodb:works_in>
 </oodb:SecretaryObject>
 </oodb:SecretaryClass>

 <oodb:CourseClass>
 <oodb:CourseObject>
 <oodb:code>COMP3100</oodb:code>
 <oodb:title>Data Structure</oodb:title>
 <oodb:credits>3</oodb:credits>
 <oodb:prerequisite>COMP2100</oodb:prerequisite>
 </oodb:CourseObject>
 <oodb:CourseObject>
 <oodb:code>PHYS1000</oodb:code>
 <oodb:title>Fundamental of Physics</oodb:title>
 <oodb:credits>4</oodb:credits>

188

 <oodb:prerequisite></oodb:prerequisite>
 </oodb:CourseObject>
 <oodb:CourseObject>
 <oodb:code>PHYS3210</oodb:code>
 <oodb:title>Classical Physics</oodb:title>
 <oodb:credits>4</oodb:credits>
 <oodb:prerequisite></oodb:prerequisite>
 </oodb:CourseObject>
 <oodb:CourseObject>
 <oodb:code>COMP4500</oodb:code>
 <oodb:title>Compilers Construction</oodb:title>
 <oodb:credits>4</oodb:credits>
 <oodb:prerequisite>COMP3100</oodb:prerequisite>
 </oodb:CourseObject>
 <oodb:CourseObject>
 <oodb:code>COMP2100</oodb:code>
 <oodb:title>Java Programming</oodb:title>
 <oodb:credits>4</oodb:credits>
 <oodb:prerequisite></oodb:prerequisite>
 </oodb:CourseObject>
 <oodb:CourseObject>
 <oodb:code>COMP3200</oodb:code>
 <oodb:title>Algorithms</oodb:title>
 <oodb:credits>3</oodb:credits>
 <oodb:prerequisite>COMP1100</oodb:prerequisite>
 </oodb:CourseObject>
 <oodb:CourseObject>
 <oodb:code>COMP1000</oodb:code>
 <oodb:title>Introduction to CS</oodb:title>
 <oodb:credits>3</oodb:credits>
 <oodb:prerequisite></oodb:prerequisite>
 </oodb:CourseObject>
 </oodb:CourseClass>

 <oodb:PreresquisiteClass>
 <oodb:PreresquisiteObject>
 <oodb:course>COMP3100</oodb:course>
 </oodb:PreresquisiteObject>
 <oodb:PreresquisiteObject>
 <oodb:course>COMP1100</oodb:course>
 </oodb:PreresquisiteObject>
 <oodb:PreresquisiteObject>
 <oodb:course>COMP2100</oodb:course>
 </oodb:PreresquisiteObject>
 </oodb:PreresquisiteClass>

 <oodb:StudentClass>
 <oodb:StudentObject>
 <oodb:person>75</oodb:person>
 <oodb:studentID>08201</oodb:studentID>
 <oodb:gpa>3.3</oodb:gpa>
 <oodb:student_in>Computing</oodb:student_in>
 <oodb:takes>08201</oodb:takes>
 </oodb:StudentObject>
 <oodb:StudentObject>
 <oodb:person>71</oodb:person>
 <oodb:studentID>09001</oodb:studentID>
 <oodb:gpa>2.7</oodb:gpa>
 <oodb:student_in>Computing</oodb:student_in>

189

 <oodb:takes>09001</oodb:takes>
 </oodb:StudentObject>
 <oodb:StudentObject>
 <oodb:person>70</oodb:person>
 <oodb:studentID>10005</oodb:studentID>
 <oodb:gpa>3.7</oodb:gpa>
 <oodb:student_in>Physics</oodb:student_in>
 <oodb:takes>10005</oodb:takes>
 </oodb:StudentObject>
 <oodb:StudentObject>
 <oodb:person>60</oodb:person>
 <oodb:studentID>06110</oodb:studentID>
 <oodb:gpa></oodb:gpa>
 <oodb:student_in>Computing</oodb:student_in>
 <oodb:takes></oodb:takes>
 <oodb:></oodb:>
 </oodb:StudentObject>
 </oodb:StudentClass>

 <oodb:TakesClass>
 <oodb:TakesObject>
 <oodb:studentID>08201</oodb:studentID>
 <oodb:course>COMP2100</oodb:course>
 <oodb:grade>B-</oodb:grade>
 </oodb:TakesObject>
 <oodb:TakesObject>
 <oodb:studentID>08201</oodb:studentID>
 <oodb:course>COMP3200</oodb:course>
 <oodb:grade>B+</oodb:grade>
 </oodb:TakesObject>
 <oodb:TakesObject>
 <oodb:studentID>09001</oodb:studentID>
 <oodb:course>COMP2100</oodb:course>
 <oodb:grade>C+</oodb:grade>
 </oodb:TakesObject>
 <oodb:TakesObject>
 <oodb:studentID>09001</oodb:studentID>
 <oodb:course>PHYS1000</oodb:course>
 <oodb:grade>B-</oodb:grade>
 </oodb:TakesObject>
 <oodb:TakesObject>
 <oodb:studentID>10005</oodb:studentID>
 <oodb:course>PHYS1000</oodb:course>
 <oodb:grade>A+</oodb:grade>
 </oodb:TakesObject>
 </oodb:TakesClass>

 <oodb:ResearchAssistantClass>
 <oodb:ResearchAssistantObject>
 <oodb:student>06110</oodb:student>
 <oodb:staff>960</oodb:staff>
 </oodb:ResearchAssistantObject>
 </oodb:ResearchAssistantClass>
 </oodb:UNIVERSITY>
</xsd:xmldoc>

190

Appendix E

Generated Nesetd XML Document from db4o
Object-OrientedDatabase

<?xml version="1.0" encoding="UTF-8"?>
<xsd:nesteddoc xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:oodb="http://scim.brad.ac.uk/xml">
<oodb:DB>
 <Person>
 <SSN>115</SSN>
 <name>Tushi Imamura</name>
 <age>50</age>
 <sex>M</sex>
 <spouse>
 <SSN>50</SSN>
 <name>Suzuki Yoshikawa</name>
 <age>40</age>
 <sex>F</sex>
 <spouse>null</spouse>
 <nation>
 <name>Japan</name>
 <area>400000</area>
 <population>120000000</population>
 </nation>
 </spouse>
 <nation>
 <name>Japan</name>
 <area>400000</area>
 <population>120000000</population>
 </nation>
 </Person>
 <Person>
 <SSN>50</SSN>
 <name>Suzuki Yoshikawa</name>
 <age>40</age>
 <sex>F</sex>
 <spouse></spouse>
 <nation>
 <name>Japan</name>
 <area>400000</area>
 <population>120000000</population>
 </nation>
 </Person>
 <Person>
 <SSN>132</SSN>

191

 <name>Mohammad Taher</name>
 <age>25</age>
 <sex>M</sex>
 <spouse></spouse>
 <nation>
 <name>Jordan</name>
 <area>100000</area>
 <population>6000000</population>
 </nation>
 </Person>
 <Person>
 <SSN>80</SSN>
 <name>Mary Tomson</name>
 <age>22</age>
 <sex>F</sex>
 <spouse>
 <SSN>60</SSN>
 <name>Fong Loo</name>
 <age>32</age>
 <sex>M</sex>
 <spouse>null</spouse>
 <nation>
 <name>United States</name>
 <area>9372610</area>
 <population>300000000</population>
 </nation>
 </spouse>
 <nation>
 <name>United Kingdom</name>
 <area>244820</area>
 <population>60000000</population>
 </nation>
 </Person>
 <Person>
 <SSN>60</SSN>
 <name>Fong Loo</name>
 <age>32</age>
 <sex>M</sex>
 <spouse></spouse>
 <nation>
 <name>United States</name>
 <area>9372610</area>
 <population>300000000</population>
 </nation>
 </Person>
 <Person>
 <SSN>70</SSN>
 <name>James Robert</name>
 <age>29</age>
 <sex>M</sex>
 <spouse></spouse>
 <nation>
 <name>Canda</name>

192

 <area>9000000</area>
 <population>28000000</population>
 </nation>
 </Person>
 <Person>
 <SSN>71</SSN>
 <name>Alan Barter</name>
 <age>22</age>
 <sex>M</sex>
 <spouse></spouse>
 <nation>
 <name>United Kingdom</name>
 <area>244820</area>
 <population>60000000</population>
 </nation>
 </Person>
 <Person>
 <SSN>73</SSN>
 <name>Karen Duncan</name>
 <age>20</age>
 <sex>F</sex>
 <spouse></spouse>
 <nation>
 <name>United Kingdom</name>
 <area>244820</area>
 <population>60000000</population>
 </nation>
 </Person>
 <Person>
 <SSN>75</SSN>
 <name>Diana Booth</name>
 <age>23</age>
 <sex>F</sex>
 <spouse></spouse>
 <nation>
 <name>Canda</name>
 <area>9000000</area>
 <population>28000000</population>
 </nation>
 </Person>

 <Staff>
 <personsuperclass>
 <SSN>115</SSN>
 <name>Tushi Imamura</name>
 <age>50</age>
 <sex>M</sex>
 <spouse>
 <SSN>50</SSN>
 <name>Suzuki Yoshikawa</name>
 <age>40</age>
 <sex>F</sex>
 <spouse>null</spouse>

193

 <nation>
 <name>Japan</name>
 <area>400000</area>
 <population>120000000</population>
 </nation>
 </spouse>
 <nation>
 <name>Japan</name>
 <area>400000</area>
 <population>120000000</population>
 </nation>
 </personsuperclass>
 <staffID>922</staffID>
 <salary>26000</salary>
 <works_in>
 <name>Physics</name>
 <head>
 <personsuperclass>
 <SSN>115</SSN>
 <name>Tushi Imamura</name>
 <age>50</age>
 <sex>M</sex>
 <spouse>
 <SSN>50</SSN>
 <name>Suzuki Yoshikawa</name>
 <age>40</age>
 <sex>F</sex>
 <spouse>null</spouse>
 <nation>
 <name>Japan</name>
 <area>400000</area>

 <population>120000000</population>
 </nation>
 </spouse>
 </personsuperclass>
 <staffID>922</staffID>
 <salary>26000</salary>
 <works_in>
 <name>Physics</name>
 <head></head>
 </works_in>
 </head>
 </works_in>

 </Staff>

 <Staff>
 <personsuperclass>
 <SSN>132</SSN>
 <name>Mohammad Taher</name>
 <age>25</age>
 <sex>M</sex>

194

 <spouse></spouse>
 <nation>
 <name>Jordan</name>
 <area>100000</area>
 <population>6000000</population>
 </nation>
 </personsuperclass>
 <staffID>924</staffID>
 <salary>33000</salary>
 <works_in>
 <name>Computing</name>
 <head>
 <personsuperclass>
 <SSN>132</SSN>
 <name>Mohammad Taher</name>
 <age>25</age>
 <sex>M</sex>
 <spouse></spouse>
 </personsuperclass>
 <staffID>924</staffID>
 <salary>33000</salary>
 <works_in>
 <name>Computing</name>
 <head></head>
 </works_in>
 </head>
 </works_in>

 </Staff>

 <Staff>
 <personsuperclass>
 <SSN>60</SSN>
 <name>Fong Loo</name>
 <age>32</age>
 <sex>M</sex>
 <spouse></spouse>
 <nation>
 <name>United States</name>
 <area>9372610</area>
 <population>300000000</population>
 </nation>
 </personsuperclass>
 <staffID>960</staffID>
 <salary>15000</salary>
 <works_in>
 <name>Computing</name>
 <head>
 <personsuperclass>
 <SSN>132</SSN>
 <name>Mohammad Taher</name>
 <age>25</age>
 <sex>M</sex>

195

 <spouse></spouse>
 </personsuperclass>
 <staffID>924</staffID>
 <salary>33000</salary>
 <works_in>
 <name>Computing</name>
 <head></head>
 </works_in>
 </head>
 </works_in>

 </Staff>

 <Secretary>
 <personsuperclass>
 <SSN>50</SSN>
 <name>Suzuki Yoshikawa</name>
 <age>40</age>
 <sex>F</sex>
 <spouse></spouse>
 <nation>
 <name>Japan</name>
 <area>400000</area>
 <population>120000000</population>
 </nation>
 </personsuperclass>
 <wordsPERminute>35</wordsPERminute>
 <works_in>
 <name>Physics</name>
 <head>
 <personsuperclass>
 <SSN>115</SSN>
 <name>Tushi Imamura</name>
 <age>50</age>
 <sex>M</sex>
 <spouse>
 <SSN>50</SSN>
 <name>Suzuki Yoshikawa</name>
 <age>40</age>
 <sex>F</sex>
 <spouse>null</spouse>
 <nation>
 <name>Japan</name>
 <area>400000</area>

 <population>120000000</population>
 </nation>
 </spouse>
 </personsuperclass>
 <staffID>922</staffID>
 <salary>26000</salary>
 <works_in>
 <name>Physics</name>

196

 <head></head>
 </works_in>
 </head>
 </works_in>

 </Secretary>

 <Course>
 <Code>COMP1100</Code>
 <title>Introduction to CS</title>
 <credits>3</credits>
 <prerequisite></prerequisite>

 </Course>

 <Course>
 <Code>COMP2100</Code>
 <title>Java Programming</title>
 <credits>4</credits>
 <prerequisite></prerequisite>

 </Course>

 <Course>
 <Code>COMP3100</Code>
 <title>Data Structure</title>
 <credits>3</credits>
 <prerequisite>
 <Code>COMP2100</Code>
 <title>Java Programming</title>
 <credits>4</credits>
 </prerequisite>

 </Course>

 <Course>
 <Code>PHYS1000</Code>
 <title>Fundamental of Physics</title>
 <credits>4</credits>
 <prerequisite></prerequisite>

 </Course>

 <Course>
 <Code>PHYS3210</Code>
 <title>Classical Physics</title>
 <credits>4</credits>
 <prerequisite></prerequisite>

 </Course>

 <Course>
 <Code>COMP4500</Code>

197

 <title>Compilers Construction</title>
 <credits>4</credits>
 <prerequisite>
 <Code>COMP3100</Code>
 <title>Data Structure</title>
 <credits>3</credits>
 <prerequisite></prerequisite>
 </prerequisite>
 </Course>

 <Course>
 <Code>COMP3200</Code>
 <title>Algorithms</title>
 <credits>3</credits>
 <prerequisite>
 <Code>COMP1100</Code>
 <title>Introduction to CS</title>
 <credits>3</credits>
 <prerequisite></prerequisite>
 </prerequisite>

 </Course>
</oodb:DB>
</xsd:nesteddoc>

198

Appendix F

 Generated XML Schema from ODL Example 6.1

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schemaxmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="database">
<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element name="person">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="firstName" type="xsd:string"/>
<xsd:element name="lastName" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="book">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ratings">
<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">
<xsd:element name="item" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="ISBN" type="xsd:int"/>
<xsd:element name="chapterPageNumbers">
<xsd:complexType>
<xsd:sequence maxOccurs="unbounded">
<xsd:element name="item">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="key" type="xsd:int"/>
<xsd:element name="value" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="writtenby">
<xsd:complexType>
<xsd:attribute name="ID" type="xsd:int"/>

199

</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="author">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="firstName" type="xsd:string"/>

<xsd:element name="ID" type="xsd:int"/>
<xsd:element name="lastName" type="xsd:string"/>
<xsd:element name="gender" type="author.sex.enum"/>
<xsd:element maxOccurs="unbounded" name="write">
<xsd:complexType>
<xsd:attribute name="ISBN" type="xsd:int"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
<xsd:key name="person.key">
<xsd:selector xpath="./person|./author"/>
<xsd:field xpath="firstName"/>
<xsd:field xpath="lastName"/>
</xsd:key>
<xsd:key name="book.key">
<xsd:selector xpath="./book"/>
<xsd:field xpath="ISBN"/>
</xsd:key>
<xsd:keyref name="book.writtenby.ref" refer="author.key">
<xsd:selector xpath="./book/writtenby"/>
<xsd:field xpath="@ID"/>
</xsd:keyref>
<xsd:key name="author.key">
<xsd:selector xpath="./author"/>
<xsd:field xpath="ID"/>
</xsd:key>
<xsd:keyref name="author.write.ref" refer="book.key">
<xsd:selector xpath="./author/write"/>
<xsd:field xpath="@ISBN"/>
</xsd:keyref>
</xsd:element>
<xsd:simpleType base="xsd:string" name="author.sex.enum">

200

<xsd:restriction>
<xsd:enumeration value="FEMALE"/>
<xsd:enumeration value="MALE"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

	cover_sheet_thesis
	University of Bradford eThesis

	Taher Naser

