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SEGAL’S CONJECTURE AND THE BURNSIDE RINGS OF
FUSION SYSTEMS

ANTONIO DIAZ AND ASSAF LIBMAN

ABSTRACT. For a given saturated fusion system F we define the ring A(S)” of
the F-invariants of the Burnside ring functor. We show how this ring is related
to the Burnside ring of the fusion system F and how it appears naturally in
the analogue of Segal’s conjecture for the classifying spectrum BF. We give
an explicit description of A(S)? and we prove it is a local ring.

1. INTRODUCTION

A saturated fusion system JF on a finite p-group S is a small category whose ob-
jects are the subgroups of S. Its morphism sets F (P, Q) consist of group monomor-
phisms P — @, where P,Q < S, which are subject to a certain set of axioms listed
in §2. Isomorphic objects in F are called F-conjugate. Puig was the first to de-
fine these objects but in this note we will use the formulation of Broto-Levi-Oliver
in [2]. The model is the category Fg(G) associated to a Sylow p-subgroup S of
a finite group G. In this case the objects are the subgroups of S and the mor-
phisms in Fg(G) are those monomorphisms P — @ which are restrictions of inner
automorphisms of G.

For any contravariant functor H : F — C we can consider the inverse limit
lim F H. We call this limit the F-invariants of H(S) because, as it is easy to
see, it consists of the elements x € H(S) such that p(z) = ¥(z) for every ¢,
Y € F(P,S) and every subgroup P of S. We will use the suggestive notation H(S)*
to denote this inverse limit. For example, by [2, Theorem 5.8], the cohomology of
the classifying space of a p-local finite group is isomorphic to H*(S;F,)” for the
obvious functor P — H*(P;F,) which assigns to P < S its mod-p cohomology. In
this paper we study the F-invariants A(S)” of the functor A4 : F — Rings which
maps P < S to its Burnside ring A(P). We call this ring “the ring of F-invariant
virtual S-sets”. Clearly A(S)” is a subring of A(S) which contains the identity and
therefore the standard augmentation map e: A(S) — Z restricts to an augmentation
epimorphism e: A(S)” — Z whose kernel is denoted I(S)”. Proposition 3.6 and
Lemma 4.2 give an alternative description of A(S)” and I(9)”.

Recall that the Burnside ring A(G) of a finite group G is the Grothendieck group
of the monoid B(G) of the isomorphism classes of finite G-sets. In symbols, A(G) =
Gr(B(G)). The multiplication in this ring is induced by cartesian product of G-
sets. As an abelian group A(G) is free with one basis element for each conjugacy
class of subgroups of G. In [3] we construct the Burnside ring A(F) of saturated
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fusion system F. As in the case of finite groups, where A(G) is the Grothendieck
group of the monoid of the isomorphism classes of finite G-sets, A(F) is defined
as the Grothendieck group of the monoid of the isomorphism classes of objects in
a small category which is derived from F and has finite coproducts and products.
See §2 for details. The additive group of A(F) is free with one basis element for
every F-conjugacy class of F-centric subgroups of S, see [2, Def. 1.6].

Our first result shows the close relation between the rings A(F) and A(S)*. We
will write A ,)(S)” for the ring Z,) ® A(S)” and similarly A, (F) for Zg) @ A(F).

Theorem A. The underlying group of A(S)” is free with one generator for each
F-conjugacy class of subgroups of S. The Z,)-submodule of A(p)(S)f generated by
the F-invariant S-sets all of whose isotropy groups are non-F-centric subgroups of
S, forms an ideal N. There is a ring isomorphism Ay (F) = Ay (S)T/N.

The product in the ring A(,)(F) is described on basis elements explicitly in [3,
Theorem 4.6]. Thus we have a good understanding of a quotient ring of A, (S)”
The desire to understand this ring springs from Segal’s conjecture. This conjecture
was proven by Carlsson and it asserts that for any finite group G the stable cohomo-
topy group 7°(BG) is isomorphic to the I-adic completion A(G)7, where [ is the
augmentation ideal of the Burnside ring A(G), 7*(—) denotes stable cohomotopy
groups and the subscript + means adding a disjoint base-point.

A variation of Segal’s conjecture at the prime p is proven by Ragnarsson in [§].
He extends results of May-McClure and describes ﬁo((BGZ/,\)+) where G is a finite
group and 7*(—) denotes the reduced stable cohomotopy groups. He shows that
this group is isomorphic to the p-adic completion of a quotient of the submodule
of A(G) generated by the G-sets with p-power isotropy. In this paper we prove an
analogue of Segal’s conjecture for saturated fusion systems at the prime p.

Any saturated fusion system F on a p-group S has a natural classifying spec-
trum BF constructed by Ragnarsson in [9]. It is equipped with a structure map
or: BS — BF where BS is the suspension spectrum of BS and F can be recovered
from the pair (o7, BF) [9, Theorem A]. When F has a classifying space, i.e., if
there is a p-local finite group (S, F, L) (see [2]), then BF is the suspension spec-
trum of the p-completed classifying space \E\Q. In particular, when F = Fg(G) is
the saturated fusion system induced by a finite group G, then there is a homotopy
equivalence BF ~ EOO(BG);\ and or is induced from the inclusion BS — BG.
Conjecturally, BF is always a suspension spectrum of some space that one can
associate to the saturated fusion system F. Throughout the symbol S will denote
the sphere spectrum. The next result gives a description of the cohomotopy group
7O(BF V' S) as the completion of A(S)” by its augmentation ideal. Recall that
7OBSVS) = 7%BS,) = A(S)?(S) (see Remark 4.6.)

Theorem B. Let F be a saturated fusion system over a p-group S.
F )/\

(1) The structure map ox induces an isomorphism w°(BF V S) = (A(S))?},

where I is the augmentation ideal of A(S)”.
(2) As abelian groups (A(S)”)} = Z& (IQZ)) and IR L) is a free Z)-module
with one generator for every F-conjugacy class of subgroups H < S with

H+#S.

As the referee pointed out to us, it is probably more natural to consider BF
in Theorem B than BF VvV S. However, in order to do this, one has to rewrite
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Ragnarsson’s results in [9] and to redefine the structure map o as a map BS; —
BF. rather than BS — BF. To avoid this and use Ragnarsson’s work in its present
form we chose to work with BF V S.

Corollary C. If (S,F, L) is a p-local finite group then there is an isomorphism of
rings 770((|£|;\)+) =~ (A(S)T)). In particular, if G is a finite group then

w((BGp)+) = (A(S) )} = Z e (Zy ©1)

where I is the augmentation ideal of A(S)7s(%),

There is some overlap between this note and Ragnarsson’s results in [8]. The
authors would like to thank him for helpful discussions during a week long visit to
Aberdeen in 2008.

We start in Section 2 with preliminaries about fusion systems, Burnside rings
and completions. Then we devote Section 3 to prove Theorem A. Finally, in Section
4 we prove Theorem B and in Proposition 4.12 we describe the spectrum of the
prime ideals of Z,) @ (A(S)%)?}.

Notation: We denote the trivial subgroup of a groups G by by e. If X is a
G-set and H < G, we write X for the set of points of X fixed by H and | X |
for its cardinality. We will identify a G-set X with its isomorphism class in the
monoid B(G). Throughout 7*(—) will always mean stable cohomotopy groups of
spectra or of pointed spaces. If GG is a finite group BG is the suspension spectrum
of BG with some basepoint chosen. If X is any CW-complex (pointed or not) X
is obtained by adding a disjoint new basepoint to X. Finally, we reserve the letter
k to denote a commutative ring, frequently it is torsion-free.

2. PRELIMINARIES: FUSION SYSTEMS, BURNSIDE RINGS AND COMPLETIONS

Saturated fusion systems and their classifying spectrum. Let S be a finite
p-group. A fusion system over S is a small category whose objects are the subgroups
of S. The morphism sets F (P, Q) where P, Q < S consists of group monomorphisms
P — @ such that

(a) The set Homg (P, Q) of the morphisms P — @ obtained by conjugation in
S, is contained in F(P, Q).

(b) Every morphism in F factors as an isomorphism in F followed by an inclu-
sion of groups.

For example, if S is a Sylow p-subgroup of a finite group G then there results a fusion
system Fg(G) where F(P,Q) = Homg(P, Q) is the set of the homomorphisms

-1
cg: P i) @ obtained by conjugation in G. This fusion system has a rigid
structure which was first recognized and axiomatised by Puig and later by others.
The set of axioms we will use are due to Broto-Levi-Oliver in [2].

Isomorphic objects in a fusion system F are called F-conjugate and we will write
P ~z P'. A subgroup P < S is called fully F-centralised if |Cs(P)| > |Cs(P’)]
for any P’ which is F-conjugate to P. Similarly, P is called fully F-normalised if
INs(P)| > |Ng(P’)| for any P’ which is F-conjugate to P.

2.1. Definition. (See [2, Def. 1.2]) A fusion system F over S is called saturated if

(I) Every fully F-normalised P < S is also fully F-centralised and Autg(P) is
a Sylow p-subgroup of Autz(P).
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(IT) For every P < S and every ¢ € F(P,S) set
Ny ={g € NsP: pocgop™" € Auts(p(P))}-
If p(P) is fully F-centralised then there is ¢ € F (N, S) such that @|p = ¢.

A subgroup P < S is called F-centric if P and all its F-conjugates contain their
S-centraliser, see [2, Def. 1.6]. It is clear that if P is F-centric and P < @ then Q
is also F-centric. We will write F¢ for the full subcategory of F generated by the
F-centric subgroups of S.

Ragnarsson constructed the classifying spectrum BF in [9, Section 7]. It is
equipped with a structure map ox: BS — BF and a transfer map ¢tx: BF — BS.
The fusion system is completely determined by its classifying spectrum BF and the
map o in the sense that F can be recovered from this data by means of the set of
stable maps {BP,BF} where P < S. The composite tx o o is homotopic to the
stable characteristic idempotent @z € {BS,BS} and ox ot ~ idgz. In particular
BF splits off BS.

The Burnside ring. The orbit category of a fusion system F is the small category
O(F) whose objects are the subgroups of S and O(F)(P, Q) = F(P,Q)/Inn(Q); See
[2, Def. 2.1]. We write O(F¢) for the full subcategory generated by the F-centric
subgroups of S.

In [3, §4] we consider the category O(F€), of the finite collections in O(F¢).
To make the construction precise one looks at the category of the contravariant
functors O(F¢) — Sets which are isomorphic to [[;_; O(F¢)(—, P;) where n < oo
and P; are objects in O(F¢). By construction, O(F¢),, is closed to finite coproducts
and by Yoneda’s Lemma it contains O(F¢) as a full subcategory. The surprise is
that O(F°¢), has finite products [7], [3, Theorem 1.2]. The product distributes
over the coproduct and we define the Burnside ring A(F) as a special case of the
following general construction applied to O(F€)y. See [5].

Consider an essentially small category C with finite coproducts and products
and assume that the product distributes over the coproduct. Define A(C) as the
free abelian group generated by the isomorphism classes [C] of the objects C € C
subject to the relation [Cq [] C2] = [C1] + [C2]. The product in C gives A(C) the
structure of a ring where [C4] - [Cs] = [C1 x Cs]. If the morphism sets of C are
finite then for every isomorphism class [C], the ring A(C) is equipped with a ring
homomorphism

o AC) = Z, (X |e(X,C))).
For any commutative ring k we define Ag(C) := k ®7 A(C). We will denote
A(p) (C) = AZ(p) (C) and Aﬁ(C) = AZQ (C)
If C is an object of C we obtain, by tensoring with k, another ring homomorphism
(22) k ® XC: A]k(C) — ]k,

that we denote also by x¢. It would be clear from the context which homomorphism
we mean.

2.3. Example. The Burnside ring A(G) of a finite group G is A({finite G-sets}).
It is a free group generated by the G-conjugacy classes of the transitive G-sets, each
of which has as representative G/H for some H < G. The homomorphism (2.2)
for the subgroup H < G assigns to any G-set X the cardinality of X namely the
subset of X fixed by H.



Given a prime p we let A(G;p) be the subring of the finite G-sets whose isotropy
groups are p-subgroups of GG. This is the Burnside ring of the category of the finite
G-sets whose isotropy groups are p-groups. From the homomorphisms (2.2), we
obtain ring homomorphisms

(2.4) x: A(G) — H k and x: A(G;p) — H k,
ces(G) cesp(G)

where ccs(G) and ces,(G) denote the set of conjugacy classes of the subgroups of G
and the set of the conjugacy classes of the p-subgroups of G. These homomorphisms
are, in fact, ring monomorphisms provided k is torsion free. The trivial G-set * is
the identity element in A(G) and more generally in Ax(G). We will use the integer
n to denote n - *.

The augmentation homomorphism x(1): Ax(G) — k is of particular importance.
It is usually denoted by € and it sends a finite G-set X to its cardinality |X|. Its
kernel is the augmentation ideal Iy (G). If k is torsion free then Iy (G) has an additive
basis G/H — |G/H| with H running over the G-conjugacy classes of subgroups H
of G where H # G.

Going back to saturated fusion systems, we define A(F) as A(O(F¢),). As
an abelian group it is free with one basis element for each F-conjugacy class of
F-centric subgroups of S [3, Proposition 4.10]. We obtain a ring homomorphism

(25) e:AF) — I 2z [Q=0F)PQ)
[P]€ccs(Fe)
where ccs(F°¢) stands for the set of the F-conjugacy classes of the F-centric sub-
groups of S. This is, in fact, a monomorphism by [3, Theorem 5.3] and therefore
b,y = Zp) @ @ is also a ring monomorphism.
In [3, Theorem 5.4] we show that (yp) is in the image of @, if and only if for
any fully F-normalised ) < S the following congruence holds

(2.6) > n(Q,P)-yp=0 mod (|Outs(Q))),

Pe[Fe]

where P runs over a set of representatives for ccs(F¢), where (|Outgs(Q)|) is the
ideal in Z () generated by | Outs(Q)| and where

n(Q,P) = ’{cs € Outs(Q) : (s,Q) ~r P}‘

Completion of rings. Let I be an ideal in a commutative ring R. Then the ideals
I™ form a set of neighbourhoods for 0 € R which generates the I-adic topology on
R and on any R-module M. The I-adic completion of an R-module M is
Mp = lim M/I™ M.
n

It is clear from the construction that M} is an R}'-module. Also note that M — M}
is injective if and only if the I-adic topology on M is Hausdorff, namely N, I" M = 0.

When R is Noetherian one has more control on the I-completion. We recall
below some basic results. Throughout, we write M for M}* and R = R} etc.

2.7. Theorem. ([4, Theorem 7.1].) If R is Noetherian then R is Noetherian. More-
over, as an R-module, R is I-complete.



2.8. Theorem. (Artin-Rees Lemma, [4, Theorem 7.2].) If R is Noetherian and M
is a finitely generated R-module then M = RQgr M. Moreover R is a flat R-module.

The I-adic topology on R/I is discrete and therefore }/E/\I = R/I. If Ris Noether-
ian then Theorem 2.8 gives rise to a short exact sequence 0 — I — R — R/I — 0.

2.9. Theorem. ([4, Corollary 7.13].) If R is Noetherian then IR = I. In particular
R is I-complete.

3. F-INVARIANT SETS

In this section we prove Theorem A in the introduction. We begin studying and
describing F-invariant sets.

For any finite group G denote by B(G) the monoid, via disjoint unions, of the
isomorphism classes of the finite G-sets, and by A(G) = Gr(B(QG)) its Grothendieck
group, i.e. the Burnside ring of G. Recall that the product in this ring is induced
by the product of G-sets. A homomorphism ¢ : H — G gives rise to a morphism
of monoids ¢* : B(G) — B(H) and a homomorphism of rings ¢* : A(G) — A(H).
If ¢ is the inclusion of H into G we write res§ instead of ¢*.

Hence, if F is a saturated fusion system we have functors B: F — Monoids and
A: F — Rings whose values on the subgroup P is B(P) and A(P) respectively.
Moreover, for any torsion-free commutative ring k we consider also the functor
Ay =k ® A.

3.1. Definition. Let F be a saturated fusion system over S and let k be a torsion-
free commutative ring. We define the F-invariant S-sets as B(S)” = lim B and

A(S; F) := Gr(B(S)”). We also define Ax(S;F) =k ® A(S; F).

It is easy to see that A(S;F) is a subalgebra of A(S) and therefore Ag(S;F) is
a k-subalgebra of Ag(S) provided k is torsion-free.

3.2. Definition. Let F be a saturated fusion system over S and let k be a torsion-
free commutative ring. We define the ring of F-invariant virtual S-sets as A(S)” =
lim__ A. We also define Ag(S)” = lim _ Ay.

—F —F

It is clear that Ay(S)” is a k-subalgebra of Ay(S). The next goal is to prove
that Ay(S; F) = Ax(S)” provided k is a torsion-free commutative ring.

By definition, an S-set X, which we identify with its isomorphism class in B(S),
is F-invariant if for every P < S and every ¢ € F(P,S) the P-sets resp(X)
and ¢*(X) are isomorphic. It is easy to see that X is F-invariant if and only if
|XP| = |X?'| whenever P and P’ are F-conjugate subgroups of S.

3.3. Proposition. For any fully F-normalised P < S there ezists an F-invariant
S-set Qp such that

(1) All the isotropy groups of Qp are F-conjugate to subgroups of P.
(2) Qp contains exactly one orbit isomorphic to S/P, and hence |(2p)7| =
15551
Proof. Let (P)z denote the F-conjugacy class of P. Let Py,..., Py be represen-
tatives for the S-conjugacy classes in (P)z. We may assume that P, = P. Then
|NgPi| > |NsP;| for all i and we consider the S-set
|Ng P |
-S/P;.
H |Ns Pl /
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Observe that for any ¢ we have

|Ng P | |NgP]

|Ns P |P|

Let H be the collection of all the subgroup @ < S which are F-conjugate to a
proper subgroup of P. If Q ¢ H then either @ is not F-conjugate to a subgroup of

- |NsPi/Pi| =

Q'] =

P or it is F-conjugate to P. In the first case it is clear that Q8 =0= QOQ/ for any
Q" which is F-conjugate to Q. In the second case @ is S-conjugate to one of the
P;’s and therefore |Q§)| = |NgP/P|. We can now apply [2, Lemma 5.4] and deduce
that there exists an F-invariant S-set 2 which contains 2o and which also satisfies
Q9| = |Qg9 | for all @ ¢ H. In particular it follows that all the isotropy groups of
Q belong to H U {(P) £} and that |QF| = |[NsP/P|. O

Since Ay(S)” is a k-subalgebra of Ay(S) the statement of the following lemma
makes sense.

3.4. Lemma. For any u € Ax(S)” and any two F-conjugate subgroups Q, Q' < S,
Xo(u) = xq/(u) where xq is defined in (2.2) (see also (2.4)).

Proof. Note that xq(u) is the coefficient of the trivial Q-set Q/Q in resg)(u) €
Ak(Q). Similarly x ¢ (u) is the coefficient of the trivial Q’-set in resg,(u). In turn,
this is the coefficient of the trivial Q-set Q/Q in ¢*(u) € Ax(Q) where p € F(Q, S)
is an isomorphism of @ onto @’. The result follows since u € Ay(S)” whence
resg (u) = p*(u). O

3.5. Remark. Consider the restriction of (2.4) to x : Ax(S)" — [Lccs(s) k- From
Lemma 3.4 it is clear that x factors through an injective ring homomorphism
x: Ax(S)T — HCCS(}-) k, where the product runs through the F-conjugacy classes
of the subgroups of S.

If X is an F-invariant S-set then it represents an element in Ay (S)”. Thus,
A (S; F) C Ax(S)”, where we regard both as k-subalgebras of A,(S). Now we are
ready to prove that this inclusion is an equality and to describe a basis for Ag(S; F).

3.6. Proposition. Let F be a saturated fusion system over S and let k be a torsion-
free commutative ring. Let Q1, ..., Q, be representatives for the F-conjugacy classes
of the subgroups of S such that the Q;’s are fully F-normalised. Then
(1) A(S;F) = Ax(S)”.
(2) Ax(S;F) is a free k-module with basis Qq, , ..., Qq, where Qg, are defined
i Proposition 3.3.

Proof. We arrange the @Q,;’s so that |Q;| > |Q;+1|. Thus, if 5 > i then Q; is not

F-conjugate to a subgroup of Q; and in particular (S/P)%: = () if P is F-conjugate
to @;. From Remark 3.5 and Example 2.3, there is a ring monomorphism

x: Ax(9) = [k X=(XQu:-->XQ,)-
=1

Since (Qq,)% = 0 if j < i we see from Proposition 3.3 that

Q0,) = (0,...,0, 8=l
x(Qq,) = ( Qi

1—1 times
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where % # 0 because k is torsion-free. Thus, x(Qq,),...,x(Qq,) are k-

linearly independent in k" and therefore Qg,,...,Qq, form a basis for the k-
submodule B < Ag(S) it generates. We now have

B < Au(S;F) < A(8)” 5 [[ &
j=1

It remains to prove that B = Ay (9)7.

Assume to the contrary that this is not the case and let m be the maximal integer
with the property that there exists some u € Ay (S)”\B such that xq,(u) = 0 for
alli = 1,...,m — 1. Clearly m < r or else u = 0 because x is injective. Also
XQ.. (u) # 0. Express v in terms of the basis of Ay(S), namely

u= Z ag - S/Q
(Q)€ccs(S)
and consider the smallest integer j = 1, ..., r for which there is some R ~ @; such
that ag # 0. Thus, if ag # 0 then |R| > |Q|. Since k is torsion-free, by Lemma
3.4 and Proposition 3.3 we have

X, () =xr(w)= Y aq-xr(S/Q)=ar-|NsR/R|#0.
(@)€ces(s)

It follows from the definition of m that j > m. Now, if ag # 0 then @ is F-
conjugate to @; where i > j, and therefore i > m. We deduce that |Q,,| > |Q] so
(S/Q)%™ = ) unless Q is S-conjugate to Q,,. It follows that

(37) XQm (u) = QQ,, - |N5Qm/Qm|7

which implies that ag,, # 0 because xq,, (v) # 0. From the minimality of j we
deduce that j < m and therefore j = m.

Consider v := u — ag, Qq,,. Clearly v € Ax(S)7\B. Moreover, if i < m then
(Qg,,)% = 0 by Proposition 3.3 so

XQ: (v) = xq: (u) = x@,(2q,, ,) =0,  ifi<m.
From (3.7) we also deduce that

NsQnm
Xam () = Xau. (1) - X (00, 20..) = Xa..(u) — g, gf =0

This contradicts the maximality of m and therefore B = Ay(S)”. O

3.8. Remark. It follows from Proposition 3.6 that if k is torsion free then
Ay (S; F) =k® A(S; F) =k ® A(S)” = Ai(S)” < Ak(S).

3.9. Example. Let S be a Sylow p-subgroup of a finite group G. If X is a finite
G-set then res§ (X) is an Fg(G)-invariant S-set. This gives a ring homomorphism
res: A(G;p) — A(S;F), see Example 2.3. Observe that a basis for A(G;p) is the
set {G/Q;}i—; and a basis for A(S; Fs(G)) is the set {Qq, }_; where Q; < S are
chosen as in Proposition 3.6. If P = @); then

NgP
NgP

resg(G/P)= Y S/SNIP=|

geS\G/P

|- S/P+Y

where Y is a finite S-set whose isotropy groups are conjugate in G to subgroups
@ < P and @Q is not S-conjugate to P itself. Thus, by Propositions 3.3 and 3.6,
8



the matrix which represents res: A(G;p) — A(S;F) with respect to the bases
GQI . Since Ng(Q;) is
a Sylow p-subgroup of Ng@;, this matrix is invertible in Z( ) Hence Lp) @ 1es is
an isomorphism A,)(S; F) = A, (G;p).

described above, is upper triangular with diagonal entries |

Proof of Theorem A. In light of Proposition 3.6 and remark 3.8, we may replace
A(p)(S)}- with A (S; F). Let Q1,Q1, ..., Q, be fully F-normalised representatives
for the F-conjugacy classes of the subgroups of S. We order them in such a way that
Q1,...,Qs are F-centric, Qs11,...,Q, are not F-centric and |Q1] > -+ > |Qs]. In
Proposition 3.6 we showed that A,)(S;F) is a free Z,)-module generated by the
S-sets Qg, .

Consider the restriction x: A, (S;F) — Hr_l Zp) of the ring homomorphism
(2.4) for k = Z(y). See also Remark 3.5. Then by Proposition 3.3, xq, (Qq,) = 0 if
j < i and XQi(QQi) = |Ns?’ # 0. From this it easily follows that IV is the kernel
of the composite homomorphism

proj
Ay (S;F) 5 [T 2wy == 11 Zw
ccs(F) ces(Fe)

because every u € N must be a linear combination of those {1g,’s such that Q; is
not F-centric. Here, ccs(F) is the set of the F- conjugacy classes of the subgroups
of S and ccs(F€) is the set of the F-conjugacy classes of the F-centric subgroups
of S. We deduce that there is a ring monomorphism

)ZA(p)(S,]:)/N—) H Z(p)a X:(XQ17"'7XQS).
ces(Fe)

In light of (2.5), it remains to show that Im(y) = Im(®(,)). First we claim that
Im(x) € Im(®(,). To see this we choose some F-invariant S-set X. Then for every
i < s we have Yq,(X) = [X%| and to see that x(X) belongs to Im(®(,)) we use
(2.6). By Cauchy-Frobenius formula, for any fully F-normalised @ € F¢,

> on@p)xt= Y (Y X7 =

Peces(Fe©) Peces(Fe)  ge NgQ,(Q,s)EFP

1] = 1252 f{orbits of 5

Seigﬂ

NsQ

on X%} =0 mod (| ).

Since @ is F-centric and fully F-normalised, | Outs(Q)| = \NCSQQL hence ¥(X) €
Im(CI>(p)).

Now, a basis for Im(y) is the set {X(Qq,)};=, and a basis for Im(®,)) is the set
{®,)([Qi])}5—,. Note that for every i we have xq, () = ®q,([Q:]) = 0if j <i by
Proposition 3.3 and (2.5). Furthermore, ®¢,([Q:]) = | Out#(Q;)| and xq,(Qg,) =
\Nfg—? differ by a unit in Z,) because Outs(Q;) is a Sylow p-subgroup of Out #(Q;).
It is now an easy exercise in linear algebra to see that Im(x) = Im(®;)). O

4. SEGAL’S CONJECTURE

The aim of this section is to prove Theorem B of the introduction. We start
describing the augmentation ideal Iyx(S; F) of Ax(S;F) and modules for which the
Iy (S; F)-adic topology is equivalent to the p-adic topology. To avoid triviality
we will assume throughout this section that the saturated fusion system F are
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defined over a non trivial p-group S # 1. We recall from Proposition 3.6 that
Ay (S; F) = Ax(S)” if k is torsion-free.

Recall from Remark 3.8 that if k is torsion-free then Ag(S;F) is a k-subalgebra
of Ak(S)

4.1. Definition. There is a standard augmentation map e: Ak(S) — k sending an
S-set X to its cardinality. Let I (S; F) denote the kernel of e: Ak (S;F) — k.

Recall that the trivial S-set is the unit in Ag(S). We will therefore use integers
to represent the corresponding elements in Ag(S).

4.2. Lemma. With the notation and hypotheses of Proposition 3.6, Iy(S;F) is a
free k-module of rank r —1 with basis {Qq, —|Qq,|} where i runs through the indices
such that Q; # S.

Proof. We may assume that @ = S and that g, = *. It is clear from Proposition
3.6 that Qg, — [Q0,1,.--,Qq, — Q0. | are k-linearly independent in Ay(S;F). The
result follows from the fact that the Qg,’s form a basis for Ay (S; F). O

4.3. Proposition. Assume that k is torsion-free. Then the Iy (S; F)-adic topology
on Ix(S; F) is equivalent to the p-adic topology.

Proof. May and McClure show in [6, p. 212] that I(S)"*! C p-I(S) where |S| = p".
Therefore, after tensoring with k and using Lemma 4.2, we see that I(S)"*1 C
p - Ix(S). In addition,

I (S; F)"T C Ap(S;F) N L(S)™ T C Ax(S; F) Np - Ie(S) = p - Iu(S; F),

where for the last equality we argue as follows. First, the inclusion O is obvious.
Consider u € Ag(S; F)Np-Ix(S) and use Proposition 3.6 to write u = Y _,_; 8:;Q0q, -
Clearly, u € p- Ax(S) and by looking at the coefficients of S/Q;, one easily deduces
from Proposition 3.3 that 3; = p-«; for all ¢. It follows that v = p- (3, @iQg,). Now,
€(u) = 0 and since k is torsion free, we deduce that €(}, a;€Q¢q,) = 0. Therefore
u € p- Ix(S; F).
We now claim that
P Ik(S; F) C L(S; F)%.

To see this consider n = (S/e — |S]) as an element in Ix(S;F). Observe that
{(8/Q —15/Q|)} form a basis for Ix(S), where Q runs through the representatives
for the S-conjugacy classes of the subgroups of S different from S. By inspection

n-(S/Q—15/Ql) = —IS]- (5/Q = [5/Q]) = (=p") - (§/Q = |5/Q)).
That is, multiplication by 1 results in multiplication by (—p™) in Ix(S). Therefore
L(S; F)? 2 Ie(S; F) = p" - Iu(S; F).
This completes the proof. ([
4.4. Corollary. Ifk is torsion-free then Ik(S;]-')?k(S;]_-) = Ix(S; .7-')2 = Ixy (S5 F).

Proof. The first equality follows from Proposition 4.3, the second follows since

Iy (S; F) is a finitely generated free k-module by Lemma 4.2 and therefore I (S; .7-")2 =

k;\ R Ik(S,]:) |
10



Any group homomorphism ¢: H — G induces a ring homomorphism ¢*: Ax(G) —
Ag(H). Note that ¢* carries Ix(G) into Ix(H) and hence there results a natural
ring homomorphism ¢*: Ax(G)} @ — Ax(H ) ()" Thus there is a contravariant

functor Ay: F — Rings which maps P < § to Ak( )= Ak(P)? P

4.5. Definition. Let F be a saturated fusion L system over the > p-group S. We define
the ring of F-invariant completed S-sets as Ak(S) = lim Ay

Notice that :4&(5) is the subring of :4\]1((5) of the elements 4 such that *(4) =
resy (@) for all ¢ € F(P,S) and any subgroup P < S.

4.6. Remark. Notice that for any pointed CW-complex X there is a natural equiv-
alence X*°X VS ~ (X, ) in the homotopy category of spectra (see [1].)

Recall from §2 that the classifying spectrum of a saturated fusion system F
over S is equipped with a structure map or: BS — BF where BS is the suspension
spectrum of BS with some chosen basepoint. From the remark above we see that for
any spectrum E there is are isomorphisms {BSVS, E} = {¥*°BS,, E} = E°(BS,).
In particular, for E =S we have 7%(BS V' S) = 7%(BS,).

4.7. Lemma. For any saturated fusion system F over S the map or V'S induces a
split monomorphism

(cxVS)*

°(BF VS) O BSVS) = 1°(BS,) = A(S)

whose image is isomorphic to the subring A(S)”

Proof. Consider the transfer map tx: BF — BS, see §2 and [9]. The composite
oF oty is homotopic to idgr so ¥ (tF V S) is a left inverse for 7°(c+ V S) which is
therefore a split monomorphism. Set @z =tz o ox, see [9].

0 g,
For any spectrum E, the image of EY(BF) Elor), go (BS) is equal to the image

of E°(BS) ECIN E°(BS). By [9, Corollary 6.4], the image of E®(&f) is equal to
the set of homotopy classes f € {BS, E} which are F-invariant, that is

0 (o
(BF,E} 2970, lim {BP,E)} = E°(BS)”
= peFor

where B: P — BP is a functor from F to the category of spectra. It follows that

0
(4.8) E°BFVS) 2979 lim EBPVS) = E°BS VS)©
- PEFop

The assignments below induce isomorphic functors F°P — Ab,

P {BPVS,FE} and P+ {¥*°BP,,E} = E°(BP,).
This is because we have cofibre sequences S — ¥X*BP, — BP and S — BP VS —
BP in which S is a retract. Thus, {BS VS, E}” = E°(BS,)”. We now specialise
to E = S. Using the fact that the isomorphism 7%(BG,) = A(G) is natural in

the group G, we obtain a natural isomorphism of rings 7°(BS, )" = A\(S)}- as a
subring of 7°(BS V'S) = 7%(BS,) = A(S). The result now follows from (4.8). [

In order to simplify the notation, we will denote the Iy(S;F)-adic completion
of Ax(S;F) by Ak(S;F). Similarly Iy(S;F) is the Ix(S;F)-adic completion of
11



I,(S; F). When F is the trivial fusion system over S this clearly becomes :4\]1{(5)
and Iy(S). Set I(S)” = I(S) N Ax(S)”.
4.9. Proposition. Let k be a torsion-free commutative ring such that lk;,\ is also
torsion-free. Assume that F is a saturated fusion system over S # 1. Then

(1) L(8)T = L(8; F) = k) @ L(S; F).

(2) A(S)F = Au(S: ).

(3) Ax(S; F) contains Iy (S; F) as an ideal with quotient k. Ifk is p-complete

then Ay(S; F) = Ay(S; F).

Proof. We first observe that if M is an R-module and [ is an ideal in R then the

I-adic topology on M/IM is discrete and the short exact sequences 0 — IIW% —
% — % — 0 for all n > 1 yield a short exact sequence
(4.10) 0—>(IM)?—>MI/\—>M/IM—>O

because the tower {IM/I"™ M },>¢ is Mittag-Leffler. In particular, the augmentation
Ay (S) = k extends to a short exact sequence

(4.11) 0— In(S; F) = Au(S; F) S k—0

which is split because k is contained as a k-subalgebra of Ag(S;F) generated by
the trivial S-set *. Applying this to the trivial fusion system over S we obtain a
short exact sequence

0 — Lu(S) — Ax(S) S k — 0.
The inclusions Ag(S; F) C Ax(S) and Ix(S; F) C Ix(S) yield a ring homomorphism
Ag(S; F) — Ax(S) which factors through
U Ap(S; F) — Ax(S)”
because Ak(S;F) C Ax(S)” by Proposition 3.6.

By definition E{(S)f = fn;(S) N A\k(s)f and therefore from (4.11) we now obtain
the following morphism of short exact sequences

0 —— L($; F) — Au(S; F) >k —>0

0 —— Lu(S)F —— A(S)F —=k—>0

By Proposition 4.3 and from the fact that Ix(S;F) is a finitely generated free k-
module by Lemma 4.2, we see that

L(8; F) = L (S; F)p = I(S; F) @ kyy = Ly (S5 F),

ju;(S) = I]k(S)I/)\ = I]k(S) Rk k;\ = I]k;\ (S)
Thus, ¥’ is the map

Ly (S F) C Lp ()
induced by the inclusion I(S;F) C I(S)” = A(S)” NI(S). By Proposition 3.6 and
Lemma 4.2, this inclusion is in fact an equality and therefore ¥’ is an isomorphism.
This proves point (1) of this Proposition. The five-lemma now shows that ¥ is an
isomorphism and this is point (2). The first assertion of point (3) follows from the
12



first row in the commutative ladder abgve. The second assertion follows because if
k is p-complete, namely k) =k, then I (S; F) = I(S; F). O

Proof of Theorem B. This follows from Lemma 4.7 and Propositions 4.9 and 3.6.
For part (2) of the theorem we also need Lemma 4.2. O

Proof of Corollary C. In the presence of a p-local finite group, the canonical map
f:BS — |£|A induces wx. By Theorem B, it gives rise to a ring monomorphism

(L) vS) T, 20(Bs v S) & A(S) whose image is A(S)T = (A(S)7)).
Finally, we note that 7°(f V' S) can be replaced with 7r0(|£|2+) U, 7%(BS,),
see Remark 4.6. O

In the next result we obtain some information on Z,, ® n°(BF V S).

4.12. Proposition. Consider the rings Ry = Z,) @ A(S; F) and Ry = Ay (S5 F).
Then
(1) Both rings are local with residue field isomorphic to F,,.
(2) Their non-mazimal prime ideals are in one-to-one correspondence with the
F-conjugacy classes [H| of the subgroups of S and we denote them by
f’[H],o < Ry and pg)o0 < Re. Each one of these ideals is contained only
in the mazimal ideal.
(3) The quotient rings Ra/pim)o are isomorphic to Z,y. The quotient rings
R1/p(m,0 are isomorphic to Zyy if H # 1 and to Z, if H = 1.

Proof. To avoid triviality we assume that S # 1. Set R = A, (S;F) and [ =
I,)(S; F). By (4.11) the inclusion A(S;F) C A, (S;F) induces a morphism of
short exact sequences

0 —I(S; F) — A(S; F) y/ 0

T

OHI(p)(S F) 4>A »(S: F) — L)y —0
and by Proposition 4.9 the vertical arrow on the left is an isomorphism because
I(S; F) = Ipy (S; F) = %>wﬂ~%wﬂ

It follows that N -

R = Z(p) ® A(S; F) = A(p)(S;f) = R?
Our goal now is to study the prime ideals in R = R}. We will write I for the
I-completion of I and we note that this is an ideal of R. By Theorem 2.9 R is
I -complete.

Observe that R is a subring of R because the I-adic topology on R is Hausdorff
because the I-adic topology on I is equivalent to the p-adic topology and I is a free
Zp)-module. Also note that R is a Noetherian ring because it is a finitely generated
Zp)-module. As a consequence R is also Noetherian by Theorem 2.7.

Fix a prime ideal p <R. By Theorem 2.8 and the fact that R is I-complete, we
deduce that R/ pis I -complete as an R-module. However, the I-adic topology on
R/ p is equivalent to the I-adic topology by Theorem 2.9. We now deduce that R/ P
is I-complete as an R-module.
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Recall from Proposition 3.6 that R has a Z,)-basis {Qq,} where Q; are rep-
resentatives for the F-conjugacy classes of the subgroups of S. Let 7: R — R/ﬁ
denote the quotient map and note that R C R. Choose H = Q; of minimal order
such that 7(Qp) # 0. For any K = @Q; we know that all the isotropy groups of
Qp x Qg are F-conjugate to subgroups of H. Therefore, by Proposition 3.6

Qp x Qx = ()| - Qu + ) oy -Qu,
J
where L; are F-conjugate to proper subgroups of H, whence 7(2;) = 0 by the
minimality of |H|. It follows that 7(Qp ) 7(Qk) = [(Qx ) |-7(Qy). Since 7(Qp) #
0 and R/p is an integral domain we deduce that

Q) = Q)| 15 = xu(Qx) - 1 50

Thus, the following square in the category of R-modules is commutative

R—">Z)

incll \LLHi £—é-1
R—= R/p,
where the R-module structure on Z,) is induced by x . Since ]%/ﬁ is I-complete,
7 is equal to the composite
R (2)7 2 R,

Now, if H = 1 then the I-adic topology on Z,) is the discrete one because € = x(1)
and if H # 1 then it is the p-adic topology because x g (S/e — |S]) # 0. Since 7 is
surjective, we deduce that R/p is either Z,) or Z) or it is F,.

Assume first that R/p = F,,. Now, x#(Qr) =0 mod p if H < S by Proposition
3.3, so from the way H was chosen we deduce that H = S. Therefore p is the kernel
of

R*7) - T,
and it follows that R is a local ring. Now assume that char(R/p) = 0. In this case,
R/p = (Z(,)} and so p is the kernel of

Xu:R—1Z) ifH#1lor

X1:R—>Zy ifH=1

We denote these kernels by ]3[ 1,0 Which are clearly prime ideals. It only remains
to show that these ideals are distinct and that none is contained in the other.
Suppose that pgj0 € Pixj0- Then we get a surjection R/]S[H],o — R/ﬁ[K]’O
where both rings are isomorphic to either Z, or Zz/)\’ whence this surjection must
be an isomorphism and therefore ﬁ[H]}O = ﬁ[K],O~ Now suppose that H = @); and
K = @Q; are not F-conjugate. Without loss of generality we may assume that
H is not F-conjugate to a subgroup of K whence (Qx) = (). This shows that
Qx € ker(Xy) = pimyo- However Xx(Qx) = [ME| # 0 so Qx ¢ pix)0. Thus,
pra),0 and pig are distinct. This completes the analysis of the spectrum of the

prime ideals in R; = R.
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The analysis of the spectrum of the prime ideals in Ry = R is similar. Let pjg)0
be the kernel of xp: R — Z,) and let m denote the kernel of xs: R — Z,) — F,,.
Consider a prime ideal p < R ad let 7: R — R/p denote the quotient map. Set
H = @ where H has minimal order with the property that 7(Qg) # 0. One argues
as above to prove that m may be identified with

R EI—? Z(p) or R ij{—) Z(p) — IFp.

If the second possibility happens then H = S because 7(Qp) = xu(Qp) = |23 | =

0 mod p if H < S. We therefore see that m is the unique maximal ideal in R. If
R/p = Z then p = piyo and the argument above for ﬁ[H],O shows that the
ideals p(xj o are distinct for non-F-conjugate K’s and that none is contained in the
other. |
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