
THE BURNSIDE RING OF FUSION SYSTEMS

ANTONIO DÍAZ AND ASSAF LIBMAN

Abstract. Given a saturated fusion system F on a finite p-group S we define

a ring A(F) modeled on the Burnside ring A(G) of finite groups. We show
that these rings have several properties in common. When F is the fusion
system of G we describe the relationship between these rings.

1. Introduction

Let G be a finite group. The category of finite G-sets is closed under formation
of disjoint unions X ⊔ Y and products X × Y . The set of isomorphism classes
of finite G-sets therefore forms a commutative monoid under the operation ⊔. Its
Grothendieck group completion is denoted A(G). Disjoint unions (coproducts) of
G-sets distribute over products whence products of G-sets render A(G) a com-
mutative ring. This is the Burnside ring of G, and it is one of the fundamental
representation rings of G (see [1] for a survey on the subject).

A finite group G and a choice of a Sylow p-subgroup S in G give rise to a fusion
system FS(G) over S. This is a small category whose objects are the subgroups of
S and it contains all the p-local information of G. The more general concept of a
“saturated fusion system F on a finite p-group S” was introduced by Lluis Puig
(e.g. in [9].) It will be recalled in Section 2. A saturated fusion system F over S
is associated with an orbit category O(F), see e.g. [3], [9, §4] and Definition 2.5.
Even when F is the fusion system of a finite group G, O(F) is very different from
OG or any of its subcategories.

LetO(Fc) be the full subcategory ofO(F) generated by the F-centric subgroups.
The additive extension of O(Fc), denoted O(Fc)⊔ was defined in [8]. Informally,
this is the category of finite sequences in O(Fc). See Section 2 for more details.
Concatenation of sequences is the categorical coproduct in O(Fc)⊔. Puig proves in
[9, Proposition 4.7] that O(Fc)⊔ has products (in the category-theory sense.) This
product distributes over the coproduct. Therefore we can define the Burnside ring
A(F) as the group completion of the abelian monoid of the isomorphism classes of
the objects of O(Fc)⊔ under coproducts. The product in A(F) is induced from the
product in O(Fc)⊔. We will prove that A(F) has similar properties to the Burnside
ring of a finite group.

1.1. Theorem. Let F be a saturated fusion system over a finite p-group S. Then
Q ⊗ A(F) is a commutative semisimple Q-algebra with one primitive idempotent
for every isomorphism class of objects of O(Fc).

A more elaborate version of this result will be proven in Theorem 3.3.
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Now let G be a finite group. It is easy to see that the subgroup of A(G) generated
by the G-sets all of whose isotropy groups are finite p-groups forms an ideal A(G; p)
in A(G). We will show this in Section 3. The identity in A(G) corresponds to the
G-set with one element. This G-set is not present in A(G; p) and in general this
subring of A(G) does not have a unit. Given a saturated fusion system let A(F)(p)
denote Z(p) ⊗A(F). We will prove in Corollary 3.5

1.2. Theorem. For any saturated fusion system F the ring A(F)(p) has a unit.

The ring A(G; p) is not local in general as it exhibits Fq as a quotient ring for
several primes q (see [6]). However, we will give a description of the prime spectrum
of A(F)(p) in Corollary 3.10 which in particular includes the following statement.

1.3. Theorem. For any saturated fusion system F the ring A(F)(p) is a local ring.

When F is the fusion system of a finite group G we expect to find a relationship
between the Burnside rings A(G) and A(F). To do this we now define a certain
section of the ring A(G).

Let A(G; p -¬ cent) denote the subgroup of A(G) generated by the G-sets all
of whose isotropy groups are p-subgroups which are not p-centric subgroups of G
(see Section 2 below). We will see that this is an ideal of A(G) which is contained
in A(G; p). The quotient ring A(G; p)/A(G, p -¬ cent) is denoted Ap - cent(G). We
shall write Ap - cent(G)(p) for Z(p) ⊗Ap - cent(G). In Theorem 3.11 we will prove

1.4. Theorem. Let S be a Sylow p-subgroup of a finite group G and let F denote the
associated fusion system. Then the rings A(F)(p) and Ap - cent(G)(p) are isomorphic.

1.5. Notation. If X,Y are objects in a category C we denote the set of morphisms
X → Y by C(X,Y ). When C is equal to a fusion system F or to its orbit category
O(F), we will also use the standard notation HomF (X,Y ) and HomO(F)(X,Y )
which is widespread in the literature.

Organisation of the paper. In §2, we introduce saturated fusion systems and
we define the associated Burnside ring. We also set up some notation and prove
some basic results. In §3, we consider the analogue of the “table of marks”. Then we
study both the rational and p-local versions of the Burnside ring. We conclude this
section by analyzing the relation to the classical Burnside ring for saturated fusion
systems induced by finite groups. In §4, we compute some examples. In particular,
we describe the Burnside rings of the Ruiz-Viruel saturated fusion systems [11].

2. Saturated fusion systems and their Burnside ring

A fusion system F on a finite p-group S is a category whose objects are the
subgroups of S, and whose morphism sets HomF (P,Q), where P,Q ≤ S, consist of
group monomorphisms which satisfy the following two conditions:

(a) The set HomS(P,Q) of all the homomorphisms P → Q which are induced by
conjugation by elements of S is contained in HomF (P,Q). In particular all the
inclusions P ≤ Q are morphisms in F .

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

It easily follows that ϕ : P → Q in F is an isomorphism in F if and only if it is an
isomorphism of groups. In this case we say that P and Q are F-conjugate. Another
consequence is that the endomorphisms of every object of F are automorphisms
and we write AutF (P ) for HomF (P, P ).

2



Fusion systems form a convenient framework to study the p-local structure of
finite groups. Let G be a finite group. For subgroup H,K ≤ G denote

NG(H,K) = {g ∈ G : gHg−1 ≤ K}.

Every element g ∈ NG(H,K) gives rise to a group monomorphism cg : H → K
where cg(h) = ghg−1. That is, cg is a restriction of the inner automorphism cg of
G to H and K.

A Sylow p-subgroup S of G gives rise to a fusion system FS(G) over S. Its
objects are the subgroups of S. The morphisms P → Q in FS(G) for P,Q ≤ S
are the group monomorphisms cg : P → Q for all g ∈ NG(P,Q). That is, the set
of morphisms P → Q in FS(G) is NG(P,Q)/CG(P ). The fusion system FS(G)
satisfies several crucial axioms which lead L. Puig to consider the class of saturated
fusion systems.

2.1. Definition ([3]). Let F be a fusion system over a p-group S. A subgroup
P ≤ S is called fully centralized in F if |CS(P )| ≥ |CS(P

′)| for all P ′ which is
F-conjugate to P . It is called fully normalized in F if |NS(P )| ≥ |NS(P

′)| for all
P ′ which is F-conjugate to P .

The fusion system F is called saturated if the following two conditions hold:

(I) If P ≤ S is fully normalized then it is fully centralized and AutS(P ) is a
Sylow p-subgroup of AutF (P ).

(II) For every P ≤ S and ϕ ∈ HomF (P, S) set

Nϕ = {g ∈ NS(P ) | ϕ ◦ cg ◦ ϕ
−1 ∈ AutS(ϕP )},

If ϕ(P ) is fully centralized then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.

The fusion system F = FS(G) associated to a finite group G is saturated by [3,
Proposition 1.3].

2.2. Definition. Let F be a fusion system over a p-group S. A subgroup P ≤ S is
F-centric if P and all its F-conjugates contain their S-centralizers.

Note that P is F-centric if and only if CS(P
′) = Z(P ′) for any P ′ ≤ S which

is F-conjugate to P . In particular if P is F-centric then all its F-conjugates are
fully centralized in F . In addition any subgroup of S which contains P must also
be F-centric.

The collection of the FS(G)-centric subgroups has another description.

2.3. Definition. A p-subgroup P ≤ G is p-centric if Z(P ) is a Sylow p-subgroup
of CG(P ). Equivalently, CG(P ) = Z(P ) × C ′

G(P ) where C ′
G(P ) is a subgroup of

CG(P ) of order prime to p which is generated by the elements of CG(P ) of order
prime to p.

In particular C ′
G(P ) is characteristic in CG(P ). It is easy to see that P ≤ S is

FS(G)-centric if and only if it is p-centric in G.
The following result will be useful later.

2.4. Proposition. Let F be a saturated fusion system over S and let P,Q ≤ S
be F-centric subgroups. Consider a morphism ϕ : Q → P in F and an element
s ∈ NS(Q) such that cx ◦ ϕ = ϕ ◦ cs for some x ∈ P . Then there exists a subgroup
Q′ ≤ S and a morphism ϕ′ : Q′ → P in F such that Q ≤ Q′ and s ∈ Q′ and
ϕ′|Q = ϕ.

3



Proof. Set Q′ = 〈Q, s〉. By [9, Theorem 3.8] there exists a morphism ψ ∈ F(Q′, S)
which extends ϕ : Q → S. Now, ψ ◦ cs ◦ ψ

−1 = cψ(s) as elements in AutF (ψ(Q
′))

and by restriction to ϕ(Q) we see that

cψ(s)|ϕ(Q) = ψ ◦ cs ◦ ψ
−1|ϕ(Q) = ϕ ◦ cs ◦ ϕ

−1 = cx ( in AutF (ϕ(Q)).)

Since ϕ(Q) is F-centric, x−1ψ(s) ∈ CS(ϕ(Q)) ≤ ϕ(Q) ≤ P , whence ψ(s) ∈ P . This
shows that ψ restricts to a morphism ϕ′ ∈ F(Q′, P ) which extends ϕ. �

2.5. Definition. The orbit category O(F) of a fusion system F over S has the same
object set as F and the set of morphisms P → Q is the set HomF (P,Q) modulu the
action of Inn(Q) by postcomposition. The category Fc is the full subcategory of F
on the set of the F-centric subgroups. The category O(Fc) is the full subcategory
of O(F) on the object set of Fc.

The morphisms P → Q in O(F) will be denoted by [ϕ] for some ϕ : P → Q in F .
Thus, [ϕ] = [ψ] in O(F) if and only if there exists some x ∈ Q such that ψ = cx ◦ϕ
as morphisms in F . It is easy to see that every endomorphism of P in O(F) is an
isomorphism and we write OutF (P ) for the automorphism group of P in O(F).

2.6. Proposition (Puig, [9, Corollary 3.6]). Let F be a saturated fusion over S.
Then every morphism in O(Fc) is an epimorphism (in the category-theory sense.)

Fix a saturated fusion system F over S and let C denote O(Fc). With the
notation in 1.5 we observe OutF (K) = C(K,K) = AutC(K) acts on C(K,P ) for
any F-centric subgroups K,P ≤ S. In particular, OutS(K) whose elements are
denoted [cs] for s ∈ NS(K), acts on C(K,P ) and the set of orbits is denoted
C(K,P )/OutS(K). The fixed point set of [α] ∈ OutF (K) is denoted as usual by
C(K,P )[α].

2.7. Proposition. Let F be a saturated fusion system over S and let C denote
O(Fc). Consider F-centric subgroups K,P ≤ S and let H be the subgroup of S
which is generated by K and some s ∈ NS(K). Then there is a bijection C(H,P ) ≈
C(K,P )[cs] which is induced by the assignment [ϕ] 7→ [ϕ|K ].

Proof. If [ϕ] ∈ C(H,P ) then

[ϕ|K ] ◦ [cs] = [ϕ ◦ cs|K ] = [cϕ(s) ◦ ϕ|K ] = [ϕ|K ]

because s normalises K and ϕ(s) ∈ P . This shows that restriction [ϕ] 7→ [ϕ|K ]
induces a well defined map r : C(H,P ) → C(K,P )[cs]. It is injective because by
Corollary 2.6 the inclusion K ≤ H is an epimorphism in C.

If [ϕ] ∈ C(K,P )[cs] then there exists some x ∈ P such that cx ◦ ϕ = ϕ ◦ cs.
Proposition 2.4 implies that ϕ extends to a morphism ϕ′ : H → P and in particular
r([ϕ′]) = [ϕ]. This shows that r is also surjective. �

As a corollary we obtain the next result, see also [9, 4.3.2].

2.8. Proposition. Set C = O(Fc). Then |C(P, P ′)| = |OutF (P
′)| mod p for any

P ≤ P ′ in Fc. In particular, |C(P, S)| = |OutF (S)| mod p for any P ∈ Fc.

Proof. Use induction on n = |P ′ : P |, the case n = 1 being trivial. Choose Q ≤ P ′

which contains P and |Q : P | = p. By Proposition 2.7, C(Q,P ′) ≈ C(P, P ′)Q/P

and since Q/P ∼= Z/p these sets have the same number of elements modulo p. By
induction hypothesis |C(Q,P ′)| = |OutF (P

′)| mod p and the result follows. �
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As before let C denote O(Fc). The additive extension of C, denoted C⊔ is defined

as follows. Let Ĉ denote the category of contravariant functors C → Sets. Then C
embeds as a full subcategory of Ĉ via the Yoneda embedding P 7→ C(−, P ). Then

C⊔ is the full subcategory of Ĉ consisting of the functors F : Cop → Sets which are
isomorphic to

∐n
i=1 C(−, Pi) for some n ≥ 0 and some P1, . . . , Pn ∈ C. We will write

P1 ⊔ · · · ⊔ Pn for this functor. By construction C⊔ is equipped with coproducts of
finitely many objects. In fact C⊔ contains C as a full subcategory and every object
of C⊔ is isomorphic to the coproduct of finitely many objects in C. Moreover, for
any X,Y, Y ′ ∈ C⊔,

C(X,Y ⊔ Y ′) = C(X,Y )
∐

C(X,Y ′).

Compare this with [8]. One observes that if for every P,Q ∈ C there are objects
A1, . . . , An such that C(−, P ) × C(−, Q) ∼=

∐

i C(−, Ai) then C⊔ has products ×C

which distributes over the coproduct, namely

(
∐

i

Pi)×C (
∐

j

Qj) =
∐

i,j

Pi ×C Qj .

This is the content of Puig’s result in [9, Proposition 4.7]. Together with [9, Remark
4.6] we obtain the proposition below. See also the remark following it.

2.9. Proposition. Let F be a saturated fusion on S and let C denote O(Fc). Then
C⊔ admits distributive product ×C.

2.10.Remark. By definiion of C⊔, if P,Q are F-centric subgroups, then [P ]×C [Q] =
∐

i[Ai] for some F-centric subgroups Ai. The Ai’s are described as follows.
Given P,Q ≤ S as above, let KP,Q denote the set of all the morphisms [α] : A→

Q in C where A ≤ P is F-centric. We say that [γ] : C → Q extends [α] if
A ≤ C ≤ P and [α] = [γ|A]. We write [α] � [γ]. Then set KP,Q is partially ordered
by the relation � of extension. The set of maximal elements of KP,Q under this
relation is denoted Kmax

P,Q . Fix [α] : A→ Q in KP,Q and an element x ∈ P . Clearly

Ax = x−1Ax is an F-centric subgroup of P and we define an element [α] ·x in KP,Q

by

[α] · x = [α ◦ cx], where cx : A
x → A is conjugation.

There results an action of P on KP,Q which is easily seen to be order preserving. In
particular P acts on the finite setKmax

P,Q . Any choice of representatives [αi] : Ai → Q

for the orbits Kmax
P,Q /P gives the subgroups Ai. Moreover, Ai

incl
−−→ P and Ai

[αi]
−−→ Q

give the structure maps P ×C Q→ P and P ×C Q→ Q.

Note that the set of isomorphism classes of the objects of C⊔ form an abelian
monoid with respect to the coproduct.

2.11. Definition. The Burnside ring A(F) of a saturated fusion system F on S
is the group completion of the monoid of the isomorphism classes of the objects of
C⊔ = O(Fc)⊔. The product in the ring is induced from the product ×C in C⊔.

It is clear that the underlying abelian group of A(F) is free with one generator
for every F-conjugacy class of an F-centric subgroup P ≤ S which we denote by
[P ]. The product on basis elements [P ] and [Q] is given by [P ] · [Q] = [P ×C Q].

5



3. Properties of the Burnside ring

We shall now fix a saturated fusion system F over S and let C denote O(Fc);
See Definition 2.5. We shall write [C] for the set of the isomorphism classes of
the objects of C, that is, [C] is the set of the F-conjugacy classes of the F-centric
subgroups of S. The elements of [C] are denoted [P ] for an F-centric P ≤ S.
Obviously, [C] is a finite set.

We now consider the ring
∏

[C] Z. As an abelian group it is free with the set

[C] as a natural choice of a basis. Thus, every element in
∏

[C] Z has the form
∑

[Q]∈[C] nQ ·[Q] and we shall sometimes abbreviate by writing (nQ) for this element.

The product in this ring is defined coordinate-wise, namely (nQ) · (mQ) = (nQmQ).
As an abelian group A(F) = ⊕[C]Z and we let [C] be a basis. By determining its

values on basis elements, we obtain a homomorphism of groups

(3.1) Φ: A(F) →
∏

[H]∈[C]

Z, [P ] 7→
∑

[H]∈[C]

|C(H,P )| · [H].

In fact, this is a ring homomorphism because for every P,Q ∈ C and every H ∈ C
we have |C(H,P ×C Q)| = |C(H,P )| · |C(H,Q)|.

Thus, the homomorphism Φ is represented by a matrix m whose entries are

m([Q], [P ]) = |C(Q,P )|, [Q], [P ] ∈ [C].

In the language of tom-Dieck, this is the analogue of the “table of marks” for the
Burnside ring of a finite group.

It is clearly possible to totally order the set [C] in such a way that [H] � [K]
implies |H| ≤ |K|. Using this total order the matrix m becomes upper triangular
and its diagonal entries are |OutF (Q)| for [Q] ∈ [C].

The rational Burnside ring. We shall use the symbol Q ≃F P for the statement
that Q and P are F-conjugate subgroups in a fusion system F .

3.2. Proposition. Let F be a saturated fusion system over S and let C denote
O(Fc). Then, for every F-centric subgroups Q,P ≤ S

∣

∣C(Q,P )
∣

∣ =
|Z(Q)| · |AutF (Q)|

|P |
·
∣

∣{T ≤ P : T ≃F Q}
∣

∣

Proof. Consider the action of P on F(Q,P ) by conjugation. The stabiliser group
Pϕ of ϕ ∈ F(Q,P ) is CP (ϕ(Q)) = Z(ϕ(Q)) = ϕ(Z(Q)) because Q is F-centric. In
particular |Pϕ| = |Z(Q)| for all ϕ. Now, C(Q,P ) is the set of orbits of P in this
action, so by the “orbit-stabilizer property”

(1) |C(Q,P )| =
1

|P |
·

∑

ϕ∈F(Q,P )

|Pϕ| =
|Z(Q)|

|P |
· |HomF (Q,P )|.

The assignment ϕ 7→ ϕ(Q) defines a surjective function

F(Q,P ) → {T ≤ P : T ≃F Q}.

The fibre of this function over an element T is clearly IsoF (Q,T ) which is, in turn,
equipotent to AutF (Q). Therefore |F(Q,P )| = |AutF (Q)| · |{T ≤ P : T ≃F Q}|.
Combining this with (1) yields the result. �
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Let P be a finite poset. The Möbius function of P is a function µ : P × P → Z
which is defined recursively by the requirement that µ(a, b) = 0 unless a ≤ b and
the following equivalent equalities hold for any a ≤ b,

∑

a≤c≤b

µ(a, c) = δa,b, and
∑

a≤c≤b

µ(c, b) = δa,b

where δ is the Kronecker delta function (See e.g. Solomon [12] or Rota [10].)
The set of F-centric subgroups of S forms a poset and we let µF denote its

Möbius function. Using the homomorphism (3.1) we are now ready to describe the
the rational Burnside ring of F , cf. e.g. Solomon [12], Gluck [7] or [14].

3.3. Theorem. Let F be a saturated fusion system over S and let [C] denote the
set of the F-conjugacy classes of the F-centric subgroups of S. Then Q ⊗ Φ is an
isomorphism of rings Q⊗A(F) ≈

∏

[C] Q. In particular Q⊗A(F) is a semisimple

algebra with one primitive idempotent eP for every element [P ] of [C]. In fact, using
[C] as a basis for Q⊗A(F),

eP =
1

|P | · |OutF (P )|
·

∑

Q≤P, Q∈Fc

(

|Q| · µF (Q,P )
)

· [Q].

The summation is over Q ≤ P such that Q ∈ Fc.

Proof. Consider the ring homomorphism Φ defined in (3.1). We have already re-
marked that by appropriately ordering the elements of [C], the matrix m which
represents Φ becomes an upper triangular with non-zero values on the diagonal.
Therefore, Q ⊗ Φ is an isomorphism. In particular Q ⊗ A(F) is semisimple with
primitive idempotents (Q⊗ Φ)−1([P ]) for every basis element [P ] of

∏

[C] Q.

To avoid clutter we shall write Φ for Q⊗Φ and for every [Q] ∈ [C] we write ΦQ
for the projection of Φ onto the factor of [Q] in

∏

[C] Q. It remains to show that

Φ(eP ) = [P ] for all [P ]. For every [Q] ∈ [C] use Proposition 3.2 and the definition
of Φ to deduce that

ΦQ
(

∑

H≤P,H∈Fc

|H| · µF (H,P ) · [H]
)

=
∑

H≤P,H∈Fc

|H| · µF (H,P ) · |C(Q,H)| =(1)

∑

H≤P,H∈Fc

(

|H| · µF (H,P )
)

·
|Z(Q)| · |AutF (Q)|

|H|
·
∣

∣{T ≤ H : T ≃F Q}
∣

∣ =

|Z(Q)| · |AutF (Q)| ·
∑

H≤P,H∈Fc

∑

T≤H,T≃FQ

µF (H,P ) =

|Z(Q)| · |AutF (Q)| ·
∑

T≤P, T≃FQ

∑

H≤P, T≤H

µF (H,P ).

Here we used the fact that if T ≃F Q then T is F-centric, hence so is every subgroup
H ≤ S containing T . By the recursive relation of µF and Proposition 3.2 we see
that (1) is equal to

|Z(Q)| · |AutF (Q)| ·
∑

T≤P,T≃FQ

δT,P =

{

0 if Q 6 ≃FP
|P | · |OutF (P )| if Q ≃F P

Therefore, ΦQ(eP ) = δ[Q],[P ] i.e. Φ(eP ) = [P ]. �
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The p-local Burnside ring. We shall now study A(F)(p) = Z(p) ⊗ A(F) and
prove that it has a unit.

We denote O(Fc) by C and let [C] denote the set of the isomorphism classes of
its objects. Consider Φ from (3.1) and denote Φ(p) = Z(p) ⊗Φ. Clearly, its domain
A(F)(p) and codomain

∏

[C] Z(p) are free Z(p)-modules with basis [C].

3.4. Theorem. Let F be a saturated fusion system over S. For F-centric subgroups
H,K ≤ S such that K is fully normalized in F set

n(K,H) =
∣

∣

∣
{[cs] ∈ OutS(K) : 〈s,K〉 ≃F H}

∣

∣

∣
.

Then an element (yH) ∈
∏

[H]∈[C] Z(p) is in the image of Φ(p) if and only if the

following congruences hold for any fully F-normalized F-centric subgroup K ≤ S

(1)
∑

[H]∈[C]

n(K,H) · yH ≡ 0 mod (|OutS(K)|) in Z(p).

Proof. First, note that n(K,H) is well defined because if s, s′ ∈ NS(K) define the
same element in OutS(K) then s−1s′ ∈ K becauseK is F-centric so CS(K) ≤ K. It
follows that 〈s,K〉 = 〈s′,K〉. It is also clear that n(K,H) = n(K,H ′) if H ≃F H ′.

We shall now fix once and for all representatives H for the elements [H] ∈ [C]
which are fully normalized in F . We also totally order [C] in such a way that
[H] � [K] implies that |H| ≤ |K|.

With respect to the ordered basis [C] of A(F)(p) and
∏

[C] Z(p), the homomor-

phism Φ is is represented by an upper triangular matrix m whose entries are

m([H], [P ]) = |C(H,P )|.

Using the choice of representatives H for the elements of [C] we now define matrices
n and t with the same dimensions as m and with the set [C] as basis whose entries
are

n([K], [H]) = n(K,H) , [K], [H] ∈ [C] and

t([K], [P ]) =
∣

∣C(K,P )/OutS(K)
∣

∣ , [K], [P ] ∈ [C].

In addition let d be the diagonal matrix whose diagonal entries are

d([K], [K]) = |OutS(K)|, [K] ∈ [C].

We now note that if K and K ′ are F-conjugate subgroups of S which are fully
normalized in F , then axiom (I) of saturation (Definition 2.1) and Sylow’s theo-
rems imply that there is an isomorphism ψ : K → K ′ such that ψOutS(K)ψ−1 =

OutS(K
′). Therefore Nψ = NS(K) and ψ extends to ψ̃ : NS(K) → NS(K

′). This
shows that the definition of n, t and d is independent of our choice of the fully
F-normalized representatives K for the elements [K] of [C].

Claim 1. The matrices n and t are invertible over Z(p).

Proof. The choice of the total order of [C] implies n(K,H) = 0 if [H] � [K] because
in this case either |H| < |K| or H and K are not F-conjugate. Therefore n is
an upper triangular matrix. Also n(K,K) = 1 because 〈K, s〉 = K if and only if
s ∈ K. Hence the diagonal entries of n are equal to 1 and therefore n is invertible.

Similarly, t([K], [P ]) = 0 if [P ] < [K] so t is upper triangular. Its diagonal
entries are equal to

|OutF (K) : OutS(K)| 6= 0 mod p
8



because the representative K of [K] ∈ [C] is fully normalized in F . They are
therefore units in Z(p), hence t is invertible. Q.E.D.

Claim. 2 n ·m = d · t.

Proof. Fix some [K], [P ] in [C] and recall that OutS(K) acts on C(K,P ). Since
every subgroup of S which contains K is F-centric, the ([K], [P ])-entry of n ·m is

∑

[H]∈[C]

n([K], [H]) ·m([H], [P ]) =

∑

[H]∈[C]

∣

∣

∣

∣

{[cs] ∈ OutS(K) : 〈K, s〉 ≃F H}

∣

∣

∣

∣

·

∣

∣

∣

∣

C(H,P )

∣

∣

∣

∣

=

∑

[H]∈[C]

(

∑

[cs]∈OutS(K), 〈s,K〉≃FH

∣

∣C(H,P )
∣

∣

)

=

∑

[cs]∈OutS(K)

|C(〈s,K〉, P )| = by Proposition 2.7

∑

[cs]∈OutS(K)

|C(K,P )[cs]| = by Frobenius’s Lemma

|OutS(K)| · |C(K,P )/OutS(K)| = |OutS(K)| · t([K], [P ])

which is the ([K], [P ])-entry of d · t. Q.E.D.

We now prove that every element in the image of Φ(p) satisfies the congruences (1).
By linearity it suffices to prove this for elements of the form

Φ([P ]) =
∑

[H]∈[C]

∣

∣C(H,P )
∣

∣ · [H] =
∑

[H]∈[C]

m([H], [P ]) · [H]

which we now denote by (yH) ∈
∏

[C] Z(p), that is yH = |C(H,P )|.
For every K ≤ S which is fully normalized in F we have seen that it may be

assumed to be the representative of [K] in the definitions of m,n, t and d and
therefore Claim 2 implies

∑

[H]∈[C]

n(K,H) · yH =
∑

[H]∈[C]

n([K], [H]) ·m([H], [P ]) =

|OutS(K)| · t([K], [P ]) = 0 mod (|OutS(K)|).

That is, (yH) = Φ(p)([P ]) satisfies the congruence (1).
Conversely, assume that (yH) ∈

∏

[C] Z(p) satisfies all the congruences (1). We

view (yH) as a column vector and note that satisfying these congruences is equiv-
alent to the existence of a column vector (zH) ∈

∏

[C] Z(p) such that

n · (yH) = d · (zH).

Since n and t are invertible by Claim 1, we deduce from Claim 2 that

(yH) = n−1 · d · (zH) = m · t−1 · (zH) ∈ Imm = ImΦ(p)

because the matrix m represents Φ(p). This completes the proof. �

3.5. Corollary. Let F be a saturated fusion system over S. Then A(F)(p) is a
commutative ring with a unit. More precisely, let C denote O(Fc) and [C] the set
of isomorphism classes of its objects. Then Φ(p) embeds A(F)(p) as a subring of
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∏

[C] Z(p) and moreover, the cokernel of Φ(p) is a finite abelian p-group. Furthermore

the unit of
∏

[C] Z(p) is contained in A(F)(p).

Proof. First, kerΦ(p) is a free Z(p)-module because it is a submodule of the free Z(p)-
module A(F)(p) (note that Z(p) is a principal ideal domain.) Similarly cokerΦ(p)

is a finitely generated Z(p)-module. Since Q⊗− is an exact functor, Theorem 3.3
implies that kerΦ(p) = 0 and that cokerΦ(p) must be a finite abelian p-group. In
particular A(F)(p) is a commutative ring because

∏

[C] Z(p) is commutative.

Now we apply Theorem 3.4 to show that the unit (1)H of
∏

[C] Z(p) is in the

image of Φ(p). For every Q ∈ Fc which is fully normalized we have

∑

P∈[C]

n(Q,P ) · 1 =
∑

P∈[C]

(

∑

[cs]∈NS(Q)/Q, 〈s,Q〉≃FP

1
)

=
∑

[cs]∈NS(Q)/Q

1

= |NS(Q)/Q| ≡ 0 mod (|OutS(Q)|),

because every subgroup of S which contains Q must be F-centric. �

3.6. Remark. Recall that for a finite group G the Burnside ring A(G) has as unit
the unique G-set of cardinal 1. However, A(F) has no unit in general. To see this
notice that the “table of marks” m defining the monomorphism (3.1) is an upper
triangular matrix and that m([S], [S]) = |OutF (S)| is the only non-zero entry in
its row. Thus if OutF (S) 6= 1 there are no (integral) idempotents in A(F).

The prime spectrum. We shall now study the set of the prime ideals of A(F)(p).
Here it is subsumed in the definition of prime ideal that a prime ideal is strictly
included in the ring. The prime spectrum of the Burnside ring of a finite group was
determined by Dress [6]. Here we describe the prime spectrum of the p-localized
Burnside ring A(F)(p) of a saturated fusion system F .

Throughout we shall fix a saturated fusion system F over S and let C denote
O(Fc). The F-conjugacy class of an object H ∈ C is denoted [H] and we let [C]
denote the collection of these classes. Clearly C is a poset under inclusion of groups
and [C] is a poset as well.

3.7. Definition. Let [H] be an F-conjugacy class of some H ∈ C and let q denote
either the integer p or 0. Define p[H],q as the kernel of the ring homomorphism

A(F)(p)
Φ(p)

//
∏

[C] Z(p)

proj[H]
// Z(p) // // Z(p)/(q).

which we denote by π[H],q.

We observe that the homomorphism in 3.7 must be surjective because A(F)(p)
is a unital ring by Corollary 3.5. Its image is therefore either Z(p) or Fp, whence
p[H],q are prime ideals of A(F)(p).

Our next result is that these are the only prime ideals of A(F)(p). Recall that
an additive basis for A(F)(p) is the set [C].

3.8. Proposition. Let p be a prime ideal in A = A(F)(p) and let q be the charac-
teristic of A/p. Then

(a) Among all the classes [K] ∈ [C] whose image under the projection A → A/p
is non-zero, there exists a unique minimal class [H].

(b) Either q = 0 or q = p and moreover p = p[H],q.
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Proof. (a) Let π : A → A/p denote the projection. Since A is generated by the
classes [K] ∈ [C] and A/p 6= 0 there must exist some [K] such that π([K]) 6= 0.
Choose some [H] which is minimal in the poset [C] with this property. Given an
arbitrary [Q] ∈ [C], we recall from Proposition 2.9 and Remark 2.10 that [H] ×C

[Q] ∼=
∐

i[Ai] where Ai ≤ H. Since C([H], [H ×C Q]) = C([H], [H]) × C([H], [Q])
and since C([H], [Ai]) = ∅ unless Ai = H, we see that

[H ×C Q] = |C(H,Q)| · [H] +
∑

i

[Ai], (Ai � H).

From the minimality of H we now deduce that π([H]) · π([Q]) = |C(H,Q)| · π([H])
and since A/p is an integral domain with a unit,

(1) π([Q]) = |C(H,Q)| · 1A/p.

If [Q] ∈ [C] satisfies π([Q]) 6= 0 then C(H,Q) 6= ∅, namely [H] � [Q] in [C]. If, in
addition, [Q] is also minimal with respect to this property, then [H] = [Q].

(b) Clearly A/p is a Z(p)-module and since A is generated by the classes [Q],
equation (1) implies that A/p = Z(p)/(q). Since A/p 6= 0 then either q = p or
q = 0. It now follows by inspection of Φ(p) (see (3.1)) that the homomorphism in
Definition 3.7 coincides with π : A → A/p ∼= Z(p)/(q). In particular it follows that
p = ker(π) = p[H],q. �

It remains to understand the relationship between the ideals p[H],q.

3.9. Proposition. The following holds in A(F)(p).

(a) p[H],0 = p[K],0 if and only if [H] = [K].
(b) p[H],0 � p[H],p for any [H] ∈ [C].
(c) p[H],p = p[S],p for all [H] ∈ [C] where S is the Sylow of F .

Proof. (a) One implication is trivial. Assume that p[H],0 = p[K],0. Observe that
[H] /∈ p[H],0 because π[H],0([H]) = |C(H,H)| 6= 0 (see Definition 3.7.) Therefore
[H] /∈ p[K],0, namely |C(K,H)| = π[K],0([H]) 6= 0. Similarly |C(H,K)| 6= 0 which
implies that H and K are F-conjugate.

(b) Clearly p[H],0 ⊆ p[H],p. Now, π[H],q are surjective so A(F)(p)/p[H],0
∼= Z(p)

while A(F)(p)/p[H],p
∼= Fp.

(c) Consider some [Q] /∈ p[H],p, that is |C(H,Q)| = π[H],p([Q]) 6= 0 mod p. In
particular H is F-conjugate to a subgroup of Q. By Proposition 2.8, |C(H,Q)| =
|OutF (Q)| mod (p) whence |OutF (Q)| 6= 0 mod (p). The axioms for saturated
fusion system (Definition 2.1) imply that Q = S. That is, the only class [Q] which
projects non-trivially in A(F)(p)/p[H],p is [S]. Proposition 3.8 now implies that
p[H],p = p[S],p. �

3.10. Corollary. Let F be a saturated fusion system over S an let A(F)(p) be
its p-localized Burnside ring. Then A(F)(p) is a local ring with a maximal ideal
m = p[S],p. The remaining prime ideals in A(F)(p) have the form p[H],0; They are
all distinct and none of them is contained in the other.

Proof. Every prime ideal p in A = A(F)(p) has the form p[H],q by Proposition 3.8.
Parts (b) and (c) of Proposition 3.9 show that p[S],p is a unique maximal ideal in A.
The remaining prime ideals have the form p[H],0 and they are all distinct by part
(a). Suppose that p[H],0 ⊆ p[K],0. There results a surjective ring homomorphism

Z(p)
∼= A/p[H],0 → A/p[K],0

∼= Z(p)
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which must be an isomorphism, whence p[H],0 = p[K],0. �

3.1. Relationship with the classical Burnside ring. Let G be a finite group.
The set of all its subgroups is denoted S(G). The conjugacy class of H ≤ G is
denoted [H]. The Burnside ring A(G) of G is isomorphic to the free abelian group
⊕[S(G)]Z where product of basis elements [H] and [K] is given by the double coset
formula [H] · [K] =

∑

g∈K\G/H [K
g ∩H].

A collection in G is a subset H of S(G) which is closed to conjugation in G. The
set of the conjugacy classes of the elements of H is denoted [H]. Let A(G;H) be
the subgroup of A(G) generated by the basis elements [H] ∈ [H]. Thus,

A(G;H) =
⊕

[H]∈[H]

Z ≤ A(G).

The double coset formula implies that A(G;H) is an ideal in A(G) if H is closed to
formation of subgroups. For example, the collection Sp(G) of all the p-subgroups
of G has this property and it defines an ideal

A(G; p) = A(G;Sp(G))⊳A(G).

The collection Sp(G) contains the collections S
cent
p (G) of all the p-centric subgroups

and the collection S¬ cent
p (G) of all the p-subgroups of G that are not p-centric; See

Definition 2.3. The discussion after 2.3 shows that S¬ cent
p (G) is closed to formation

of subgroups and defines an ideal

A(G; p -¬ cent)⊳A(G)

which is clearly contained in A(G; p). There results a quotient ring

Ap - cent(G) = A(G; p)/A(G; p -¬ cent).

As an abelian group it is free with basis [Scent
p (G)]. The product of basis elements

[P ] and [Q] is
∑

g[Q
g ∩ P ] where the sum ranges through the double cosets QgP

such that Qg ∩ P is p-centric.
We can tensor the constructions above with Z(p). We denote Z(p) ⊗ A(G) by

A(G)(p). Similarly we consider A(G; p)(p) and A(G; p -¬ cent)(p) and Ap - cent(G)(p).
We remark that the latter is the free Z(p) module with basis [Scent

p (G)] with the
same formula for the product of basis elements and moreover

Ap - cent(G)(p) = A(G; p)(p)/A(G; p -¬ cent)(p).

3.11. Theorem. Let F be the fusion system associated to a finite group G and a
Sylow p-subgroup S. Then the rings A(F)(p) and Ap−cent(G)(p) are isomorphic.

Proof. Given a G-set X we denote by XH the points of X fixed by H. A subgroup
K ≤ G gives rise to a transitive G-set G/K by left translations. The G-sets G/K
and G/K ′ are isomorphic if and only if K and K ′ are conjugate. There is a ring
monomorphism, introduced already by Burnside,

χ : A(G)(p) →
∏

[H]∈[S(G)]

Z(p), [K] 7→
∑

[H]∈[S(G)]

|(G/K)H | · [H].

The inclusion [Sp - centp (G)] ⊆ [Sp(G)] gives rise to a composite ring homomorphism

Ψ̃: A(G; p)(p)
incl
−−→ A(G)(p)

χ
−→

∏

[Sp(G)]

Z(p)
proj
−−→

∏

[Sp - cent
p (G)]

Z(p).
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Since S¬p - cent
p (G) is closed to formation of subgroups, if K ∈ S¬ cent

p (G) and H ∈

Sp - centp (G) then (G/K)H is empty. Hence, A¬p - cent(G)(p) is contained in the kernel

of Ψ̃ and there results a ring homomorphism
(1)

Ψ: Ap - cent(G)(p) →
∏

[Q]∈[Sp - cent
p (G)]

Z(p), [P ] 7→
∑

[Q]∈[Sp - cent
p (G)]

|G/PQ| · [Q].

For subgroups H,K ≤ G consider now

NG(H,K) = {g ∈ G : gHg−1 ≤ K}.

Clearly K acts on NG(H,K) by left translations and NG(H) acts on NG(H,K) by
right translations. Clearly, the action of H on K\NG(H,K) is trivial.

By construction of F = FS(G) and C = O(Fc), see Section 2, we see that
C(P,Q) = Q\NG(P,Q)/CG(P ) for any P,Q ≤ S which are F-centric. As usual we
let [C] denote the set of the isomorphism classes of the objects of C.

Claim 1. If P,Q are F-centric subgroups of S then |G/QP | = |C ′
G(P )| · |C(P,Q)|.

Proof. By inspection

G/QP = NG(P,Q)−1/Q ≈ Q\NG(P,Q).

Note that P is p-centric in G because it is F-centric. Thus, CG(P ) = C ′
G(P )×Z(P )

and since Z(P ) acts trivially on Q\NG(P,Q) it follows that

C(P,Q) = Q\NG(P,Q)/C ′
G(P ).

Furthermore, the action of C ′
G(P ) onQ\NG(P,Q) is free because for any x ∈ C ′

G(P )
and any Qg ∈ Q\NG(P,Q), if Qgx = Qg then gxg−1 ∈ Q, which implies x = 1
because x has order prime to p. Therefore |C(P,Q)| = |Q\NG(P,Q)| · |C ′

G(P )| and
the result follows. Q.E.D.

By construction P,Q ≤ S are F-conjugate if and only if they are conjugate in
G. Also, P ≤ S is F-centric if and only if it is p-centric. It follows that there
is a natural one-to-one correspondence between the sets [Scent

p (G)] and [C]. There
results an isomorphism of free Z(p)-modules

λ : A(F)(p) → Ap - cent(G)(p)

which is the identity on basis elements under the identification [C] = [Scent
p (G)].

Clearly λ is an isomorphism of Z(p)-modules (but it is not a ring homomorphism.)
Let η denote the following element in

∏

[Q]∈[Scent
p (G)] Z(p)

(2) η =
∑

[Q]∈[Sp - cent
p (G)]

|C ′
G(Q)| · [Q].

It follows from the definition of Ψ in (1), from Claim 1 and from the definition
of the ring homomorphism Φ in (3.1) that the following square of Z(p)-modules is
commutative. (Note: this is not a commutative square of rings!)

(3) A(F)(p)
λ
∼=

//

Φ(p)
��

Ap - cent(G)(p)

Ψ
��

∏

[Q]∈[Scent
p (G)]

Z(p)
·η

∼=
//

∏

[Q]∈[Scent
p (G)]

Z(p)
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The arrow at the bottom is induced by multiplication by η which is an isomorphism
of Z(p)-modules because the |C ′

G(Q)|’s are invertible in Z(p).

Claim 2. η ∈ ImΦ(p).

Proof. We apply Theorem 3.4, that is, we show that for every K ≤ S which is
F-centric (equivalently, K is p-centric) and fully normalized in F , the following
congruence hold

∑

[H]∈[C]

n(K,H) · |C ′
G(H)| = 0 mod (|OutS(K)|).

In this sum only the terms where, up to F-conjugacy, K ≤ H ≤ NS(K) and H/K
is cyclic show up because the numbers n(K,H) vanish for all other H’s. Now
fix some s ∈ NS(K). Clearly NS(K) normalizes CG(K) and it therefore normal-
izes the characteristic subgroup C ′

G(K). Thus, NS(K)/K acts via conjugation on
C ′
G(K) and for any s ∈ NS(K) the group 〈s,K〉 is p-centric because it contains K.

Moreover,
C ′
G(〈s,K〉) = CG(〈s,K〉) ∩ C ′

G(K) = C ′
G(K)s,

namely, these are the fixed points of s in its action on C ′
G(K). Using Frobenius’s

formula,
∑

H∈[C]

n(K,H) · |C ′
G(H)| =

∑

H∈[C]

(

∑

[s]∈NS(K)/K,〈s,K〉≃FH

|C ′
G(H)|

)

=

∑

H∈[C]

(

∑

[s]∈NS(K)/K,〈s,K〉≃FH

|C ′
G(〈s,K〉)|

)

=

∑

[s]∈NS(K)/K

|C ′
G(〈s,K〉)| =

∑

[s]∈NS(K)/K

|C ′
G(K)[s]| =

|NS(K)/K| · |{orbits of NS(K)/K on C ′
G(K)}| ≡ 0 mod |OutS(K)|.

We conclude from Theorem 3.4 that η ∈ Imφ. Q.E.D.

Let A denote the image of Φ(p) and B denote the image of Ψ. Both are Z(p)-
submodules of M =

∏

[Scent
p (G)] Z(p). Diagram (3) shows that B = η · A. Since A

is a subring of M , Claim 2 implies that η · A ⊆ A. Multiplication with η therefore
gives rise to a morphism of short exact sequences of Z(p)-modules

0 −−−−→ A −−−−→ M −−−−→ M/A −−−−→ 0

·η





y

·η





y

∼=





y

·η

0 −−−−→ A −−−−→ M −−−−→ M/A −−−−→ 0

It follows that M/A
·η
−→ M/A is an epimorphism. By Corollary 3.5 M/A is a

finite p-group and Φ(p) is a monomorphism. It follows that M/A
·η
−→ M/A is an

isomorphism and that Ψ is a ring monomorphism. Application of the five lemma

now shows that A
·η
−→ A is an isomorphism. In particular η ·A = A. Since Φ(p) and

Ψ are ring monomorphisms A(F)(p) ∼= A = η ·A = B ∼= Ap - cent(G)(p). �

4. Examples

The Burnside ring of a finite group is an algebraic invariant which does not
characterize the isomorphism type of the group: Thévenaz constructed in [13] two
non-isomorphic groups G1 ≇ G2 with isomorphic Burnside rings.
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The situation for fusion systems is similar: consider the 2-group S = (Z2)
9 and

its automorphism group GL9(2). As the symmetric group Σ9 acts faithfully on S
there are subgroups Z9 and Z3 × Z3 in GL9(2). Now consider the fusion systems
F1 = FS(S⋊Z9) and F2 = FS(S⋊ (Z3×Z3)). These two saturated fusion systems
are not isomorphic as OutF1

(S) = Z9 ≇ Z3 × Z3 = OutF2
(S). Moreover, since

S is abelian, the only Fi-centric group for i = 1, 2 is S itself. Thus the matrix
defining the monomorphism (3.1) becomes the scalar |OutFi

(S)| for i = 1, 2. As
|OutF1

(S)| = 9 = |OutF2
(S)| we deduce that A(F1)(2) ∼= A(F2)(2).

Also notice that the fusion systems of the groups G1 = Z3⋊Z2 and G2 = Z9⋊Z2

at the prime 3 show that we can have isomorphic Burnside rings even with different
order Sylow subgroups because A(FZ/3(G1))(3) ∼= Z(3)

∼= A(FZ/9(G2))(3).
Here are more examples.

4.1. Lemma. Let F be a saturated fusion system over S. Assume that F has exactly
n ≥ 1 conjugacy classes of F-centric subgroup P ≤ S all of which have index p or
1 in S. Then A(F)(p) is isomorphic to the subring of Zn(p) whose Z(p)-basis is

p · e1, . . . , p · en−1 and e1 + · · ·+ en where ei are the standard basis vectors.

Proof. Let P1, . . . , Pn−1 be representatives for the F-conjugacy classes of the F-
centric subgroups of S of index p. Let C denote the category O(Fc) and let
C(Pi, S) denote the set of morphisms HomO(F c)(Pi, S). The matrix representing
Φ(p) : A(p)(F) → Zn(p) has the form











|OutF (P1)| 0 |C(P1, S)|
. . .

...
|OutF (Pn−1)| |C(Pn−1, S)|

0 |OutF (S)|











Thus A(F)(p) is isomorphic to the image of this matrix, namely the submodule of
Zn(p) generated by its columns. Since Pi is F-centric and |S : Pi| = p, it follows that

|OutF (Pi)| = pζi where ζi is a unit in Z(p). In particular the submodule U of Zn(p)
spanned by {p · e1, . . . , p · en−1} is contained in the image of Φ(p). Proposition 2.8
and the fact that |OutF (S)| is a unit in Z(p) now imply that the last column of the
matrix above is equal modulus U to the column vector e1 + · · ·+ en and therefore
the image of Φ(p) is equal to the submodule generated by U and e1 + · · ·+ en. �

4.2. Example. Lemma 4.1 implies that if F is a fusion system over S where |S| = p3

then A(F)(p) depends only on the number of conjugacy classes of the F-centric
subgroups because no subgroup of order p can be F-centric.

This gives a hassle-free calculation of the rings A(F)(p) of the fusion systems on

the extraspecial group p1+2
+ where p is odd - all of which were classified by Ruiz and

Viruel in [11]. For example, the ring A(F)(7) of the exotic examples at the prime
7 listed in rows 8 and 11 of Table 1.2 in [11] are isomorphic to the 7-local Burnside
ring of the fusion system of Fi24 at the prime 7. The exotic example appearing in
the 12th row of this table has a 7-local Burnside ring whose underlying Z(7)-module

has rank 2, and no other fusion system on 71+2
+ has an isomorphic Burnside ring.

Recall that if F1 is a sub fusion system of F2 over the same S then any F2-centric
subgroup is also F1-centric.
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4.3. Proposition. Let S be a finite p-group and let F1 ⊆ F2 be saturated fusion
systems on S. Assume that the following hold for any P ≤ S which is F2-centric.

(i) The conjugacy class of P in F2 is equal to its conjugacy class in F1.
(ii) |AutF2

(P ) : AutF1
(P )| = 1 mod |R| where R ≤ OutF1

(P ) is a Sylow p-
subgroup. Moreover, if AutF1

(P ) 6= AutF2
(P ) then P is minimal with

respect to the property that it is F2-centric.

Then the Z(p)-submodule I of A(F1)(p) generated by the elements [P ] such that
P ≤ S is F1-centric but not F2-centric, is an ideal in A(F1)(p) and moreover,
A(F2)(p) ∼= A(F1)(p)/I.

Proof. Let C1 and C2 denote the sets of the conjugacy classes of the F1-centric and
F2-centric subgroups of S. Moreover, let C1 and C2 denote the categories O(Fc

1) and
O(Fc

2) respectively. By definition I is the Z(p)-submodule of A(p)(F1) generated
by the elements [P ] ∈ C1\C2. Consider the ring monomorphisms (3.1)

Φ1 : A(p)(F1) → ZC1

(p), Φ2 : A(p)(F2) → ZC2

(p).

By hypothesis (i) there is a natural inclusion C2 ⊆ C1, whence a ring epimorphism

π : ZC1

(p) → ZC2

(p).

Claim. I = ker(π ◦ Φ1).

Proof. Observe that if [P ] ∈ C1\C2 then C1(Q,P ) is empty if [Q] ∈ C2 (otherwise
P must be F2-centric.) It follows immediately that I ⊆ ker(π ◦ Φ1).

Conversely consider an element x =
∑

[P ]∈C1
αP [P ] in A(F1) and assume that

it is not in I. Then αQ 6= 0 for some [Q] ∈ C2 and we choose Q of maximal order
with this property. Recall that Φ1(x) is a function C1 → Z(p) and the maximality
of P implies that

Φ1(x)([Q]) =
∑

[P ]

αP · |C1(Q,P )| = αQ · |OutF1
(Q)| 6= 0.

This shows that x /∈ ker(π ◦ Φ1). We deduce that I = ker(π ◦ Φ1). Q.E.D.

From the claim it follows that I ⊳A(p)(F1) and that Im(π ◦ Φ1) ∼= A(p)(F1)/I.

Clearly Im(π ◦ Φ1) is a subring of ZC2

(p) and it remains to prove that it is equal to

the image of Φ2 which is isomorphic to A(p)(F2) by Corollary 3.5 .
Let P1, . . . , Pk be representatives for the F2-conjugacy classes of minimal F2-

centric subgroups of S. By hypothesis (ii)

|OutF2
(Pi)| = ζi · |OutF1

(Pi)|

where ζi = 1 mod |Ri| where Ri is a Sylow p-subgroup of OutF1
(Pi) and also of

OutF2
(Pi). The equality of the F1- and F2-conjugacy classes of Pi together with

Proposition 3.2 also implies that for any F2-centric Q ≤ S

(1) |C2(Pi, Q)| = ζi · |C1(Pi, Q)|.

For every Pi we consider fi = π ◦Φ1([Pi]) and gi = Φ2([Pi]). The minimality of Pi
implies that fi([Q]) = |OutF1

(Pi)| if [Q] = [Pi] and it is zero otherwise. Similarly
gi([Q]) = |OutF2

(Pi)| if [Q] = [Pi] and it is zero otherwise. Since Ri is a Sylow
p-subgroup in both OutF1

(Pi) and OutF2
(Pi) we see that the Z(p)-submodules U

of ZC2

(p) generated by f1, . . . , fk and g1, . . . , gk is equal to the submodule generated
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by |R1| · e[P1], . . . , |Rk| · e[Pk] where e[Pi] are the obvious standard-basis elements in

ZC2

(p).

Now consider any [P ] ∈ C2 which is not minimal. We now show that f :=
π ◦ Φ1([P ]) and g := Φ2([P ]) are equal modulus U . Set f = π ◦ Φ1([P ]) and
g = Φ2([P ]). Given any [Q] ∈ C2 observe that if Q is not minimal F2-centric then
C1(Q,P ) = C2(Q,P ) by hypothesis (ii) and Alperin’s fusion theorem. Thus, by
definition f([Q])− g([Q]) = 0. We deduce that the support of f − g is contained in
{[P1], . . . , [Pk]}.

Now fix some [Pi]. Then from (1) we deduce that

f([Pi])− g([Pi]) = |C1(Pi, P )| − |C2(Pi, P )| =

(1− ζi) · |C1(Pi, P )| = 0 mod |Ri|.

It follows immediately that f − g ∈ U . This completes the proof that Im(Φ2) =
Im(π ◦ Φ1). �

4.4. Example. We recall from [4, Proposition 5.3] a useful method to construct
saturated fusion systems. We start with any fusion system FS(G) of a finite group
and fix subgroup Q1, . . . , Qm of S such that Qi is not subconjugate to Qj if i 6= j.
To avoid triviality we assume that Qi 6= S. We set Ki ≤ OutG(Qi) and fix ∆i ≤
Out(Qi) which contain Ki. We assume that p 6 ||∆i : Ki|. We also assume that Qi
is p-centric in G but for any P � Qi there exists some α ∈ ∆i such that α(P ) is
not p-centric in G. Furthermore, we assume that for any α ∈ ∆i\Ki the order of
Ki ∩K

α
i ≤ ∆i is prime to p. Then the fusion system F generated by FS(G) and

FQi
(∆i) is saturated.

This method of construction was introduced in [2, Proposition 5,1]. It yields
many exotic examples, e.g. [3, Example 9.3], [2], [11, Table 1.2] and [5]. We claim
that in all these cases Proposition 4.3 applies to the inclusion FS(G) ≤ F .

To see this observe that the conditions under which the construction of F is
carried out guarantee that the Qi’s are minimal F-centric subgroups. Thus, the
F-centric subgroups are the FS(G)-centric subgroups which are not subconjugate
to one of the Qi’s. From the construction it is clear that the F-conjugacy class of
any F-centric P ≤ S is equal to its conjugacy class in FS(G). It is also clear that
only the automorphism groups of the Qi’s are altered in the passage from FS(G) to
F and they are minimal F-centric by construction. Thus it only remains to prove
that |∆i : Ki| = 1 mod |Ri| where Ri is a Sylow p-subgroup of Ki.

Fix some α ∈ ∆i\Ki. By hypothesis the order of Ki ∩ K
α
i is prime to p and

therefore Ri ∩ Rαi = 1. As a consequence, since Qi 6= S so Ri 6= 1, we see that
N∆i

(Ri) = NKi
(Ri).

We now let Ri act by conjugation on Sylp(Ki) and on Sylp(∆i). It is clear that
Sylp(Ki) ⊆ Sylp(∆i) and both consists of the Ki- and ∆i-conjugates of Ri. If Rαi
is not contained in Ki then then its stabilizer is

Ri ∩N∆i
(Rαi ) = Ri ∩N∆i

(Ri)
α = Ri ∩R

α
i = 1.

Thus, the action of Ri on Sylp(∆i)\Sylp(Ki) is free so the number of elements of
this set is divisible by |Ri|. Now,

| Sylp(Ki)| = |Ki : NKi
(Ri)| and

| Sylp(∆i)| = |∆i : N∆i
(Ri)| = |∆i : NKi

(Ri)|.
17



It follows that

|∆i : Ki| =
| Sylp(∆i)|

| Sylp(Ki)|
=

| Sylp(Ki)|

| Sylp(Ki)|
mod |Ri| = 1 mod |Ri|.

This shows that all the conditions of Proposition 4.3 are fulfilled for the inclusion
FS(G) ≤ F and therefore A(p)(F) is a quotient ring of A(p)(FS(G)).

For example, all the fusion systems listed in the [3, Example 9.3] have the same
p-local Burnside ring as the fusion system of the groups Γ ⋊ A appearing in their
construction.
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