THE BURNSIDE RING OF FUSION SYSTEMS

ANTONIO DÍAZ AND ASSAF LIBMAN

ABSTRACT. Given a saturated fusion system \mathcal{F} on a finite *p*-group S we define a ring $\mathcal{A}(\mathcal{F})$ modeled on the Burnside ring $\mathcal{A}(G)$ of finite groups. We show that these rings have several properties in common. When \mathcal{F} is the fusion system of G we describe the relationship between these rings.

1. INTRODUCTION

Let G be a finite group. The category of finite G-sets is closed under formation of disjoint unions $X \sqcup Y$ and products $X \times Y$. The set of isomorphism classes of finite G-sets therefore forms a commutative monoid under the operation \sqcup . Its Grothendieck group completion is denoted $\mathcal{A}(G)$. Disjoint unions (coproducts) of G-sets distribute over products whence products of G-sets render $\mathcal{A}(G)$ a commutative ring. This is the Burnside ring of G, and it is one of the fundamental representation rings of G (see [1] for a survey on the subject).

A finite group G and a choice of a Sylow *p*-subgroup S in G give rise to a fusion system $\mathcal{F}_S(G)$ over S. This is a small category whose objects are the subgroups of S and it contains all the *p*-local information of G. The more general concept of a "saturated fusion system \mathcal{F} on a finite *p*-group S" was introduced by Lluis Puig (e.g. in [9].) It will be recalled in Section 2. A saturated fusion system \mathcal{F} over Sis associated with an orbit category $\mathcal{O}(\mathcal{F})$, see e.g. [3], [9, §4] and Definition 2.5. Even when \mathcal{F} is the fusion system of a finite group G, $\mathcal{O}(\mathcal{F})$ is very different from \mathcal{O}_G or any of its subcategories.

Let $\mathcal{O}(\mathcal{F}^c)$ be the full subcategory of $\mathcal{O}(\mathcal{F})$ generated by the \mathcal{F} -centric subgroups. The additive extension of $\mathcal{O}(\mathcal{F}^c)$, denoted $\mathcal{O}(\mathcal{F}^c)_{\sqcup}$ was defined in [8]. Informally, this is the category of finite sequences in $\mathcal{O}(\mathcal{F}^c)$. See Section 2 for more details. Concatenation of sequences is the categorical coproduct in $\mathcal{O}(\mathcal{F}^c)_{\sqcup}$. Puig proves in [9, Proposition 4.7] that $\mathcal{O}(\mathcal{F}^c)_{\sqcup}$ has products (in the category-theory sense.) This product distributes over the coproduct. Therefore we can define the Burnside ring $\mathcal{A}(\mathcal{F})$ as the group completion of the abelian monoid of the isomorphism classes of the objects of $\mathcal{O}(\mathcal{F}^c)_{\sqcup}$ under coproducts. The product in $\mathcal{A}(\mathcal{F})$ is induced from the product in $\mathcal{O}(\mathcal{F}^c)_{\sqcup}$. We will prove that $\mathcal{A}(\mathcal{F})$ has similar properties to the Burnside ring of a finite group.

1.1. **Theorem.** Let \mathcal{F} be a saturated fusion system over a finite p-group S. Then $\mathbb{Q} \otimes \mathcal{A}(\mathcal{F})$ is a commutative semisimple \mathbb{Q} -algebra with one primitive idempotent for every isomorphism class of objects of $\mathcal{O}(\mathcal{F}^c)$.

A more elaborate version of this result will be proven in Theorem 3.3.

Date: June 22, 2009.

The authors were supported by an EPSRC grant EP/D506484/1.

Now let G be a finite group. It is easy to see that the subgroup of $\mathcal{A}(G)$ generated by the G-sets all of whose isotropy groups are finite p-groups forms an ideal $\mathcal{A}(G; p)$ in $\mathcal{A}(G)$. We will show this in Section 3. The identity in $\mathcal{A}(G)$ corresponds to the G-set with one element. This G-set is not present in $\mathcal{A}(G; p)$ and in general this subring of $\mathcal{A}(G)$ does not have a unit. Given a saturated fusion system let $\mathcal{A}(\mathcal{F})_{(p)}$ denote $\mathbb{Z}_{(p)} \otimes \mathcal{A}(\mathcal{F})$. We will prove in Corollary 3.5

1.2. **Theorem.** For any saturated fusion system \mathcal{F} the ring $\mathcal{A}(\mathcal{F})_{(p)}$ has a unit.

The ring $\mathcal{A}(G; p)$ is not local in general as it exhibits \mathbb{F}_q as a quotient ring for several primes q (see [6]). However, we will give a description of the prime spectrum of $\mathcal{A}(\mathcal{F})_{(p)}$ in Corollary 3.10 which in particular includes the following statement.

1.3. **Theorem.** For any saturated fusion system \mathcal{F} the ring $\mathcal{A}(\mathcal{F})_{(p)}$ is a local ring.

When \mathcal{F} is the fusion system of a finite group G we expect to find a relationship between the Burnside rings $\mathcal{A}(G)$ and $\mathcal{A}(\mathcal{F})$. To do this we now define a certain section of the ring $\mathcal{A}(G)$.

Let $\mathcal{A}(G; p - \neg \text{cent})$ denote the subgroup of $\mathcal{A}(G)$ generated by the *G*-sets all of whose isotropy groups are *p*-subgroups which are not *p*-centric subgroups of *G* (see Section 2 below). We will see that this is an ideal of $\mathcal{A}(G)$ which is contained in $\mathcal{A}(G; p)$. The quotient ring $\mathcal{A}(G; p)/\mathcal{A}(G, p - \neg \text{cent})$ is denoted $\mathcal{A}^{p\text{-cent}}(G)$. We shall write $\mathcal{A}^{p\text{-cent}}(G)_{(p)}$ for $\mathbb{Z}_{(p)} \otimes \mathcal{A}^{p\text{-cent}}(G)$. In Theorem 3.11 we will prove

1.4. **Theorem.** Let S be a Sylow p-subgroup of a finite group G and let \mathcal{F} denote the associated fusion system. Then the rings $\mathcal{A}(\mathcal{F})_{(p)}$ and $\mathcal{A}^{p-\text{cent}}(G)_{(p)}$ are isomorphic.

1.5. Notation. If X, Y are objects in a category \mathcal{C} we denote the set of morphisms $X \to Y$ by $\mathcal{C}(X, Y)$. When \mathcal{C} is equal to a fusion system \mathcal{F} or to its orbit category $\mathcal{O}(\mathcal{F})$, we will also use the standard notation $\operatorname{Hom}_{\mathcal{F}}(X, Y)$ and $\operatorname{Hom}_{\mathcal{O}(\mathcal{F})}(X, Y)$ which is widespread in the literature.

Organisation of the paper. In $\S2$, we introduce saturated fusion systems and we define the associated Burnside ring. We also set up some notation and prove some basic results. In $\S3$, we consider the analogue of the "table of marks". Then we study both the rational and *p*-local versions of the Burnside ring. We conclude this section by analyzing the relation to the classical Burnside ring for saturated fusion systems induced by finite groups. In $\S4$, we compute some examples. In particular, we describe the Burnside rings of the Ruiz-Viruel saturated fusion systems [11].

2. Saturated fusion systems and their Burnside ring

A fusion system \mathcal{F} on a finite *p*-group *S* is a category whose objects are the subgroups of *S*, and whose morphism sets $\operatorname{Hom}_{\mathcal{F}}(P,Q)$, where $P, Q \leq S$, consist of group monomorphisms which satisfy the following two conditions:

(a) The set $\operatorname{Hom}_{S}(P,Q)$ of all the homomorphisms $P \to Q$ which are induced by conjugation by elements of S is contained in $\operatorname{Hom}_{\mathcal{F}}(P,Q)$. In particular all the inclusions $P \leq Q$ are morphisms in \mathcal{F} .

(b) Every morphism in \mathcal{F} factors as an isomorphism in \mathcal{F} followed by an inclusion.

It easily follows that $\varphi \colon P \to Q$ in \mathcal{F} is an isomorphism in \mathcal{F} if and only if it is an isomorphism of groups. In this case we say that P and Q are \mathcal{F} -conjugate. Another consequence is that the endomorphisms of every object of \mathcal{F} are automorphisms and we write $\operatorname{Aut}_{\mathcal{F}}(P)$ for $\operatorname{Hom}_{\mathcal{F}}(P, P)$.

Fusion systems form a convenient framework to study the p-local structure of finite groups. Let G be a finite group. For subgroup $H, K \leq G$ denote

$$N_G(H,K) = \{g \in G : gHg^{-1} \le K\}.$$

Every element $g \in N_G(H, K)$ gives rise to a group monomorphism $c_g \colon H \to K$ where $c_g(h) = ghg^{-1}$. That is, c_g is a restriction of the inner automorphism c_g of G to H and K.

A Sylow *p*-subgroup *S* of *G* gives rise to a fusion system $\mathcal{F}_S(G)$ over *S*. Its objects are the subgroups of *S*. The morphisms $P \to Q$ in $\mathcal{F}_S(G)$ for $P, Q \leq S$ are the group monomorphisms $c_g \colon P \to Q$ for all $g \in N_G(P,Q)$. That is, the set of morphisms $P \to Q$ in $\mathcal{F}_S(G)$ is $N_G(P,Q)/C_G(P)$. The fusion system $\mathcal{F}_S(G)$ satisfies several crucial axioms which lead L. Puig to consider the class of saturated fusion systems.

2.1. **Definition** ([3]). Let \mathcal{F} be a fusion system over a *p*-group *S*. A subgroup $P \leq S$ is called *fully centralized in* \mathcal{F} if $|C_S(P)| \geq |C_S(P')|$ for all P' which is \mathcal{F} -conjugate to *P*. It is called *fully normalized in* \mathcal{F} if $|N_S(P)| \geq |N_S(P')|$ for all P' which is \mathcal{F} -conjugate to *P*.

The fusion system \mathcal{F} is called *saturated* if the following two conditions hold:

- (I) If $P \leq S$ is fully normalized then it is fully centralized and $\operatorname{Aut}_{S}(P)$ is a Sylow *p*-subgroup of $\operatorname{Aut}_{\mathcal{F}}(P)$.
- (II) For every $P \leq S$ and $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, S)$ set

$$N_{\varphi} = \{ g \in N_S(P) \mid \varphi \circ c_q \circ \varphi^{-1} \in \operatorname{Aut}_S(\varphi P) \},\$$

If $\varphi(P)$ is fully centralized then there is $\overline{\varphi} \in \operatorname{Hom}_{\mathcal{F}}(N_{\varphi}, S)$ such that $\overline{\varphi}|_{P} = \varphi$.

The fusion system $\mathcal{F} = \mathcal{F}_S(G)$ associated to a finite group G is saturated by [3, Proposition 1.3].

2.2. **Definition.** Let \mathcal{F} be a fusion system over a *p*-group *S*. A subgroup $P \leq S$ is \mathcal{F} -centric if *P* and all its \mathcal{F} -conjugates contain their *S*-centralizers.

Note that P is \mathcal{F} -centric if and only if $C_S(P') = Z(P')$ for any $P' \leq S$ which is \mathcal{F} -conjugate to P. In particular if P is \mathcal{F} -centric then all its \mathcal{F} -conjugates are fully centralized in \mathcal{F} . In addition any subgroup of S which contains P must also be \mathcal{F} -centric.

The collection of the $\mathcal{F}_S(G)$ -centric subgroups has another description.

2.3. **Definition.** A *p*-subgroup $P \leq G$ is *p*-centric if Z(P) is a Sylow *p*-subgroup of $C_G(P)$. Equivalently, $C_G(P) = Z(P) \times C'_G(P)$ where $C'_G(P)$ is a subgroup of $C_G(P)$ of order prime to *p* which is generated by the elements of $C_G(P)$ of order prime to *p*.

In particular $C'_G(P)$ is characteristic in $C_G(P)$. It is easy to see that $P \leq S$ is $\mathcal{F}_S(G)$ -centric if and only if it is *p*-centric in *G*.

The following result will be useful later.

2.4. **Proposition.** Let \mathcal{F} be a saturated fusion system over S and let $P, Q \leq S$ be \mathcal{F} -centric subgroups. Consider a morphism $\varphi: Q \to P$ in \mathcal{F} and an element $s \in N_S(Q)$ such that $c_x \circ \varphi = \varphi \circ c_s$ for some $x \in P$. Then there exists a subgroup $Q' \leq S$ and a morphism $\varphi': Q' \to P$ in \mathcal{F} such that $Q \leq Q'$ and $s \in Q'$ and $\varphi'|_Q = \varphi$.

Proof. Set $Q' = \langle Q, s \rangle$. By [9, Theorem 3.8] there exists a morphism $\psi \in \mathcal{F}(Q', S)$ which extends $\varphi \colon Q \to S$. Now, $\psi \circ c_s \circ \psi^{-1} = c_{\psi(s)}$ as elements in $\operatorname{Aut}_{\mathcal{F}}(\psi(Q'))$ and by restriction to $\varphi(Q)$ we see that

$$c_{\psi(s)}|_{\varphi(Q)} = \psi \circ c_s \circ \psi^{-1}|_{\varphi(Q)} = \varphi \circ c_s \circ \varphi^{-1} = c_x \qquad (\text{ in } \operatorname{Aut}_{\mathcal{F}}(\varphi(Q)).)$$

Since $\varphi(Q)$ is \mathcal{F} -centric, $x^{-1}\psi(s) \in C_S(\varphi(Q)) \leq \varphi(Q) \leq P$, whence $\psi(s) \in P$. This shows that ψ restricts to a morphism $\varphi' \in \mathcal{F}(Q', P)$ which extends φ . \Box

2.5. **Definition.** The orbit category $\mathcal{O}(\mathcal{F})$ of a fusion system \mathcal{F} over S has the same object set as \mathcal{F} and the set of morphisms $P \to Q$ is the set $\operatorname{Hom}_{\mathcal{F}}(P,Q)$ modulu the action of $\operatorname{Inn}(Q)$ by postcomposition. The category \mathcal{F}^c is the full subcategory of \mathcal{F} on the set of the \mathcal{F} -centric subgroups. The category $\mathcal{O}(\mathcal{F}^c)$ is the full subcategory of $\mathcal{O}(\mathcal{F})$ on the object set of \mathcal{F}^c .

The morphisms $P \to Q$ in $\mathcal{O}(\mathcal{F})$ will be denoted by $[\varphi]$ for some $\varphi \colon P \to Q$ in \mathcal{F} . Thus, $[\varphi] = [\psi]$ in $\mathcal{O}(\mathcal{F})$ if and only if there exists some $x \in Q$ such that $\psi = c_x \circ \varphi$ as morphisms in \mathcal{F} . It is easy to see that every endomorphism of P in $\mathcal{O}(\mathcal{F})$ is an isomorphism and we write $\operatorname{Out}_{\mathcal{F}}(P)$ for the automorphism group of P in $\mathcal{O}(\mathcal{F})$.

2.6. **Proposition** (Puig, [9, Corollary 3.6]). Let \mathcal{F} be a saturated fusion over S. Then every morphism in $\mathcal{O}(\mathcal{F}^c)$ is an epimorphism (in the category-theory sense.)

Fix a saturated fusion system \mathcal{F} over S and let \mathcal{C} denote $\mathcal{O}(\mathcal{F}^c)$. With the notation in 1.5 we observe $\operatorname{Out}_{\mathcal{F}}(K) = \mathcal{C}(K, K) = \operatorname{Aut}_{\mathcal{C}}(K)$ acts on $\mathcal{C}(K, P)$ for any \mathcal{F} -centric subgroups $K, P \leq S$. In particular, $\operatorname{Out}_S(K)$ whose elements are denoted $[c_s]$ for $s \in N_S(K)$, acts on $\mathcal{C}(K, P)$ and the set of orbits is denoted $\mathcal{C}(K, P)/\operatorname{Out}_S(K)$. The fixed point set of $[\alpha] \in \operatorname{Out}_{\mathcal{F}}(K)$ is denoted as usual by $\mathcal{C}(K, P)^{[\alpha]}$.

2.7. **Proposition.** Let \mathcal{F} be a saturated fusion system over S and let \mathcal{C} denote $\mathcal{O}(\mathcal{F}^c)$. Consider \mathcal{F} -centric subgroups $K, P \leq S$ and let H be the subgroup of S which is generated by K and some $s \in N_S(K)$. Then there is a bijection $\mathcal{C}(H, P) \approx \mathcal{C}(K, P)^{[c_s]}$ which is induced by the assignment $[\varphi] \mapsto [\varphi|_K]$.

Proof. If $[\varphi] \in \mathcal{C}(H, P)$ then

$$[\varphi|_K] \circ [c_s] = [\varphi \circ c_s|_K] = [c_{\varphi(s)} \circ \varphi|_K] = [\varphi|_K]$$

because s normalises K and $\varphi(s) \in P$. This shows that restriction $[\varphi] \mapsto [\varphi|_K]$ induces a well defined map $r: \mathcal{C}(H, P) \to \mathcal{C}(K, P)^{[c_s]}$. It is injective because by Corollary 2.6 the inclusion $K \leq H$ is an epimorphism in \mathcal{C} .

If $[\varphi] \in \mathcal{C}(K, P)^{[c_s]}$ then there exists some $x \in P$ such that $c_x \circ \varphi = \varphi \circ c_s$. Proposition 2.4 implies that φ extends to a morphism $\varphi' \colon H \to P$ and in particular $r([\varphi']) = [\varphi]$. This shows that r is also surjective.

As a corollary we obtain the next result, see also [9, 4.3.2].

2.8. **Proposition.** Set $C = O(\mathcal{F}^c)$. Then $|C(P, P')| = |\operatorname{Out}_{\mathcal{F}}(P')| \mod p$ for any $P \leq P'$ in \mathcal{F}^c . In particular, $|C(P, S)| = |\operatorname{Out}_{\mathcal{F}}(S)| \mod p$ for any $P \in \mathcal{F}^c$.

Proof. Use induction on n = |P': P|, the case n = 1 being trivial. Choose $Q \leq P'$ which contains P and |Q: P| = p. By Proposition 2.7, $\mathcal{C}(Q, P') \approx \mathcal{C}(P, P')^{Q/P}$ and since $Q/P \cong \mathbb{Z}/p$ these sets have the same number of elements modulo p. By induction hypothesis $|\mathcal{C}(Q, P')| = |\operatorname{Out}_{\mathcal{F}}(P')| \mod p$ and the result follows. \Box

As before let \mathcal{C} denote $\mathcal{O}(\mathcal{F}^c)$. The additive extension of \mathcal{C} , denoted \mathcal{C}_{\sqcup} is defined as follows. Let $\hat{\mathcal{C}}$ denote the category of contravariant functors $\mathcal{C} \to \mathbf{Sets}$. Then \mathcal{C} embeds as a full subcategory of $\hat{\mathcal{C}}$ via the Yoneda embedding $P \mapsto \mathcal{C}(-, P)$. Then \mathcal{C}_{\sqcup} is the full subcategory of $\hat{\mathcal{C}}$ consisting of the functors $F: \mathcal{C}^{\mathrm{op}} \to \mathbf{Sets}$ which are isomorphic to $\coprod_{i=1}^{n} \mathcal{C}(-, P_i)$ for some $n \geq 0$ and some $P_1, \ldots, P_n \in \mathcal{C}$. We will write $P_1 \sqcup \cdots \sqcup P_n$ for this functor. By construction \mathcal{C}_{\sqcup} is equipped with coproducts of finitely many objects. In fact \mathcal{C}_{\sqcup} contains \mathcal{C} as a full subcategory and every object of \mathcal{C}_{\sqcup} is isomorphic to the coproduct of finitely many objects in \mathcal{C} . Moreover, for any $X, Y, Y' \in \mathcal{C}_{\sqcup}$,

$$\mathcal{C}(X, Y \sqcup Y') = \mathcal{C}(X, Y) \coprod \mathcal{C}(X, Y').$$

Compare this with [8]. One observes that if for every $P, Q \in \mathcal{C}$ there are objects A_1, \ldots, A_n such that $\mathcal{C}(-, P) \times \mathcal{C}(-, Q) \cong \coprod_i \mathcal{C}(-, A_i)$ then \mathcal{C}_{\sqcup} has products $\times_{\mathcal{C}}$ which distributes over the coproduct, namely

$$(\coprod_i P_i) \times_{\mathcal{C}} (\coprod_j Q_j) = \coprod_{i,j} P_i \times_{\mathcal{C}} Q_j.$$

This is the content of Puig's result in [9, Proposition 4.7]. Together with [9, Remark 4.6] we obtain the proposition below. See also the remark following it.

2.9. **Proposition.** Let \mathcal{F} be a saturated fusion on S and let \mathcal{C} denote $\mathcal{O}(\mathcal{F}^c)$. Then \mathcal{C}_{\sqcup} admits distributive product $\times_{\mathcal{C}}$.

2.10. **Remark.** By definition of \mathcal{C}_{\sqcup} , if P, Q are \mathcal{F} -centric subgroups, then $[P] \times_{\mathcal{C}} [Q] = \coprod_i [A_i]$ for some \mathcal{F} -centric subgroups A_i . The A_i 's are described as follows.

Given $P, Q \leq S$ as above, let $K_{P,Q}$ denote the set of all the morphisms $[\alpha]: A \to Q$ in \mathcal{C} where $A \leq P$ is \mathcal{F} -centric. We say that $[\gamma]: \mathcal{C} \to Q$ extends $[\alpha]$ if $A \leq C \leq P$ and $[\alpha] = [\gamma|_A]$. We write $[\alpha] \preceq [\gamma]$. Then set $K_{P,Q}$ is partially ordered by the relation \preceq of extension. The set of maximal elements of $K_{P,Q}$ under this relation is denoted $K_{P,Q}^{\max}$. Fix $[\alpha]: A \to Q$ in $K_{P,Q}$ and an element $x \in P$. Clearly $A^x = x^{-1}Ax$ is an \mathcal{F} -centric subgroup of P and we define an element $[\alpha] \cdot x$ in $K_{P,Q}$ by

$$[\alpha] \cdot x = [\alpha \circ c_x],$$
 where $c_x \colon A^x \to A$ is conjugation.

There results an action of P on $K_{P,Q}$ which is easily seen to be order preserving. In particular P acts on the finite set $K_{P,Q}^{\max}$. Any choice of representatives $[\alpha_i]: A_i \to Q$ for the orbits $K_{P,Q}^{\max}/P$ gives the subgroups A_i . Moreover, $A_i \xrightarrow{\text{incl}} P$ and $A_i \xrightarrow{[\alpha_i]} Q$ give the structure maps $P \times_{\mathcal{C}} Q \to P$ and $P \times_{\mathcal{C}} Q \to Q$.

Note that the set of isomorphism classes of the objects of \mathcal{C}_{\sqcup} form an abelian monoid with respect to the coproduct.

2.11. **Definition.** The Burnside ring $\mathcal{A}(\mathcal{F})$ of a saturated fusion system \mathcal{F} on S is the group completion of the monoid of the isomorphism classes of the objects of $\mathcal{C}_{\sqcup} = \mathcal{O}(\mathcal{F}^c)_{\sqcup}$. The product in the ring is induced from the product $\times_{\mathcal{C}}$ in \mathcal{C}_{\sqcup} .

It is clear that the underlying abelian group of $\mathcal{A}(\mathcal{F})$ is free with one generator for every \mathcal{F} -conjugacy class of an \mathcal{F} -centric subgroup $P \leq S$ which we denote by [P]. The product on basis elements [P] and [Q] is given by $[P] \cdot [Q] = [P \times_{\mathcal{C}} Q]$.

3. Properties of the Burnside ring

We shall now fix a saturated fusion system \mathcal{F} over S and let \mathcal{C} denote $\mathcal{O}(\mathcal{F}^c)$; See Definition 2.5. We shall write $[\mathcal{C}]$ for the set of the isomorphism classes of the objects of \mathcal{C} , that is, $[\mathcal{C}]$ is the set of the \mathcal{F} -conjugacy classes of the \mathcal{F} -centric subgroups of S. The elements of $[\mathcal{C}]$ are denoted [P] for an \mathcal{F} -centric $P \leq S$. Obviously, $[\mathcal{C}]$ is a finite set.

We now consider the ring $\prod_{[\mathcal{C}]} \mathbb{Z}$. As an abelian group it is free with the set $[\mathcal{C}]$ as a natural choice of a basis. Thus, every element in $\prod_{[\mathcal{C}]} \mathbb{Z}$ has the form $\sum_{[Q] \in [\mathcal{C}]} n_Q \cdot [Q]$ and we shall sometimes abbreviate by writing (n_Q) for this element. The product in this ring is defined coordinate-wise, namely $(n_Q) \cdot (m_Q) = (n_Q m_Q)$.

As an abelian group $\mathcal{A}(\mathcal{F}) = \bigoplus_{[\mathcal{C}]} \mathbb{Z}$ and we let $[\mathcal{C}]$ be a basis. By determining its values on basis elements, we obtain a homomorphism of groups

(3.1)
$$\Phi: \mathcal{A}(\mathcal{F}) \to \prod_{[H] \in [\mathcal{C}]} \mathbb{Z}, \qquad [P] \mapsto \sum_{[H] \in [\mathcal{C}]} |\mathcal{C}(H, P)| \cdot [H].$$

In fact, this is a ring homomorphism because for every $P, Q \in \mathcal{C}$ and every $H \in \mathcal{C}$ we have $|\mathcal{C}(H, P \times_{\mathcal{C}} Q)| = |\mathcal{C}(H, P)| \cdot |\mathcal{C}(H, Q)|$.

Thus, the homomorphism Φ is represented by a matrix **m** whose entries are

$$\mathbf{m}([Q],[P]) = |\mathcal{C}(Q,P)|, \qquad [Q], [P] \in [\mathcal{C}].$$

In the language of tom-Dieck, this is the analogue of the "table of marks" for the Burnside ring of a finite group.

It is clearly possible to totally order the set $[\mathcal{C}]$ in such a way that $[H] \leq [K]$ implies $|H| \leq |K|$. Using this total order the matrix **m** becomes upper triangular and its diagonal entries are $|\operatorname{Out}_{\mathcal{F}}(Q)|$ for $[Q] \in [\mathcal{C}]$.

The rational Burnside ring. We shall use the symbol $Q \simeq_{\mathcal{F}} P$ for the statement that Q and P are \mathcal{F} -conjugate subgroups in a fusion system \mathcal{F} .

3.2. **Proposition.** Let \mathcal{F} be a saturated fusion system over S and let \mathcal{C} denote $\mathcal{O}(\mathcal{F}^c)$. Then, for every \mathcal{F} -centric subgroups $Q, P \leq S$

$$\left|\mathcal{C}(Q,P)\right| = \frac{|Z(Q)| \cdot |\operatorname{Aut}_{\mathcal{F}}(Q)|}{|P|} \cdot \left|\{T \le P : T \simeq_{\mathcal{F}} Q\}\right|$$

Proof. Consider the action of P on $\mathcal{F}(Q, P)$ by conjugation. The stabiliser group P_{φ} of $\varphi \in \mathcal{F}(Q, P)$ is $C_P(\varphi(Q)) = Z(\varphi(Q)) = \varphi(Z(Q))$ because Q is \mathcal{F} -centric. In particular $|P_{\varphi}| = |Z(Q)|$ for all φ . Now, $\mathcal{C}(Q, P)$ is the set of orbits of P in this action, so by the "orbit-stabilizer property"

(1)
$$|\mathcal{C}(Q,P)| = \frac{1}{|P|} \cdot \sum_{\varphi \in \mathcal{F}(Q,P)} |P_{\varphi}| = \frac{|Z(Q)|}{|P|} \cdot |\operatorname{Hom}_{\mathcal{F}}(Q,P)|.$$

The assignment $\varphi \mapsto \varphi(Q)$ defines a surjective function

$$\mathcal{F}(Q, P) \to \{T \le P : T \simeq_{\mathcal{F}} Q\}.$$

The fibre of this function over an element T is clearly $\operatorname{Iso}_{\mathcal{F}}(Q, T)$ which is, in turn, equipotent to $\operatorname{Aut}_{\mathcal{F}}(Q)$. Therefore $|\mathcal{F}(Q, P)| = |\operatorname{Aut}_{\mathcal{F}}(Q)| \cdot |\{T \leq P : T \simeq_{\mathcal{F}} Q\}|$. Combining this with (1) yields the result.

Let \mathcal{P} be a finite poset. The Möbius function of \mathcal{P} is a function $\mu: \mathcal{P} \times \mathcal{P} \to \mathbb{Z}$ which is defined recursively by the requirement that $\mu(a, b) = 0$ unless $a \leq b$ and the following equivalent equalities hold for any $a \leq b$,

$$\sum_{a \le c \le b} \mu(a, c) = \delta_{a, b}, \quad \text{and} \quad \sum_{a \le c \le b} \mu(c, b) = \delta_{a, b}$$

where δ is the Kronecker delta function (See e.g. Solomon [12] or Rota [10].)

The set of \mathcal{F} -centric subgroups of S forms a poset and we let $\mu_{\mathcal{F}}$ denote its Möbius function. Using the homomorphism (3.1) we are now ready to describe the the rational Burnside ring of \mathcal{F} , cf. e.g. Solomon [12], Gluck [7] or [14].

3.3. **Theorem.** Let \mathcal{F} be a saturated fusion system over S and let $[\mathcal{C}]$ denote the set of the \mathcal{F} -conjugacy classes of the \mathcal{F} -centric subgroups of S. Then $\mathbb{Q} \otimes \Phi$ is an isomorphism of rings $\mathbb{Q} \otimes \mathcal{A}(\mathcal{F}) \approx \prod_{[\mathcal{C}]} \mathbb{Q}$. In particular $\mathbb{Q} \otimes \mathcal{A}(\mathcal{F})$ is a semisimple algebra with one primitive idempotent e_P for every element [P] of $[\mathcal{C}]$. In fact, using $[\mathcal{C}]$ as a basis for $\mathbb{Q} \otimes \mathcal{A}(\mathcal{F})$,

$$e_P = \frac{1}{|P| \cdot |\operatorname{Out}_{\mathcal{F}}(P)|} \cdot \sum_{Q \le P, \ Q \in \mathcal{F}^c} \left(|Q| \cdot \mu_{\mathcal{F}}(Q, P) \right) \cdot [Q].$$

The summation is over $Q \leq P$ such that $Q \in \mathcal{F}^c$.

Proof. Consider the ring homomorphism Φ defined in (3.1). We have already remarked that by appropriately ordering the elements of $[\mathcal{C}]$, the matrix \mathbf{m} which represents Φ becomes an upper triangular with non-zero values on the diagonal. Therefore, $\mathbb{Q} \otimes \Phi$ is an isomorphism. In particular $\mathbb{Q} \otimes \mathcal{A}(\mathcal{F})$ is semisimple with primitive idempotents $(\mathbb{Q} \otimes \Phi)^{-1}([P])$ for every basis element [P] of $\prod_{[\mathcal{C}]} \mathbb{Q}$.

To avoid clutter we shall write Φ for $\mathbb{Q} \otimes \Phi$ and for every $[Q] \in [\mathcal{C}]$ we write Φ_Q for the projection of Φ onto the factor of [Q] in $\prod_{[\mathcal{C}]} \mathbb{Q}$. It remains to show that $\Phi(e_P) = [P]$ for all [P]. For every $[Q] \in [\mathcal{C}]$ use Proposition 3.2 and the definition of Φ to deduce that

$$(1) \quad \Phi_Q\Big(\sum_{H \le P, H \in \mathcal{F}^c} |H| \cdot \mu_{\mathcal{F}}(H, P) \cdot [H]\Big) = \sum_{H \le P, H \in \mathcal{F}^c} |H| \cdot \mu_{\mathcal{F}}(H, P) \cdot |\mathcal{C}(Q, H)| =$$

$$\sum_{H \le P, H \in \mathcal{F}^c} \Big(|H| \cdot \mu_{\mathcal{F}}(H, P)\Big) \cdot \frac{|Z(Q)| \cdot |\operatorname{Aut}_{\mathcal{F}}(Q)|}{|H|} \cdot |\{T \le H : T \simeq_{\mathcal{F}} Q\}| =$$

$$|Z(Q)| \cdot |\operatorname{Aut}_{\mathcal{F}}(Q)| \cdot \sum_{H \le P, H \in \mathcal{F}^c} \sum_{T \le H, T \simeq_{\mathcal{F}} Q} \mu_{\mathcal{F}}(H, P) =$$

$$|Z(Q)| \cdot |\operatorname{Aut}_{\mathcal{F}}(Q)| \cdot \sum_{T \le P, T \simeq_{\mathcal{F}} Q} \sum_{H \le P, T \le H} \mu_{\mathcal{F}}(H, P).$$

Here we used the fact that if $T \simeq_{\mathcal{F}} Q$ then T is \mathcal{F} -centric, hence so is every subgroup $H \leq S$ containing T. By the recursive relation of $\mu_{\mathcal{F}}$ and Proposition 3.2 we see that (1) is equal to

$$|Z(Q)| \cdot |\operatorname{Aut}_{\mathcal{F}}(Q)| \cdot \sum_{T \leq P, T \simeq_{\mathcal{F}} Q} \delta_{T,P} = \begin{cases} 0 & \text{if } Q \not\simeq_{\mathcal{F}} P \\ |P| \cdot |\operatorname{Out}_{\mathcal{F}}(P)| & \text{if } Q \simeq_{\mathcal{F}} P \end{cases}$$

Therefore, $\Phi_Q(e_P) = \delta_{[Q],[P]}$ i.e. $\Phi(e_P) = [P]$.

The *p*-local Burnside ring. We shall now study $\mathcal{A}(\mathcal{F})_{(p)} = \mathbb{Z}_{(p)} \otimes \mathcal{A}(\mathcal{F})$ and prove that it has a unit.

We denote $\mathcal{O}(\mathcal{F}^c)$ by \mathcal{C} and let $[\mathcal{C}]$ denote the set of the isomorphism classes of its objects. Consider Φ from (3.1) and denote $\Phi_{(p)} = \mathbb{Z}_{(p)} \otimes \Phi$. Clearly, its domain $\mathcal{A}(\mathcal{F})_{(p)}$ and codomain $\prod_{[\mathcal{C}]} \mathbb{Z}_{(p)}$ are free $\mathbb{Z}_{(p)}$ -modules with basis $[\mathcal{C}]$.

3.4. **Theorem.** Let \mathcal{F} be a saturated fusion system over S. For \mathcal{F} -centric subgroups $H, K \leq S$ such that K is fully normalized in \mathcal{F} set

$$n(K,H) = \left| \{ [c_s] \in \operatorname{Out}_S(K) : \langle s, K \rangle \simeq_{\mathcal{F}} H \} \right|.$$

Then an element $(y_H) \in \prod_{[H] \in [\mathcal{C}]} \mathbb{Z}_{(p)}$ is in the image of $\Phi_{(p)}$ if and only if the following congruences hold for any fully \mathcal{F} -normalized \mathcal{F} -centric subgroup $K \leq S$

(1)
$$\sum_{[H]\in[\mathcal{C}]} n(K,H) \cdot y_H \equiv 0 \mod (|\operatorname{Out}_S(K)|) \qquad in \mathbb{Z}_{(p)}$$

Proof. First, note that n(K, H) is well defined because if $s, s' \in N_S(K)$ define the same element in $\operatorname{Out}_S(K)$ then $s^{-1}s' \in K$ because K is \mathcal{F} -centric so $C_S(K) \leq K$. It follows that $\langle s, K \rangle = \langle s', K \rangle$. It is also clear that n(K, H) = n(K, H') if $H \simeq_{\mathcal{F}} H'$.

We shall now fix once and for all representatives H for the elements $[H] \in [\mathcal{C}]$ which are fully normalized in \mathcal{F} . We also totally order $[\mathcal{C}]$ in such a way that $[H] \leq [K]$ implies that $|H| \leq |K|$.

With respect to the ordered basis $[\mathcal{C}]$ of $\mathcal{A}(\mathcal{F})_{(p)}$ and $\prod_{[\mathcal{C}]} \mathbb{Z}_{(p)}$, the homomorphism Φ is is represented by an upper triangular matrix \mathbf{m} whose entries are

$$\mathbf{m}([H], [P]) = |\mathcal{C}(H, P)|$$

Using the choice of representatives H for the elements of $[\mathcal{C}]$ we now define matrices \mathbf{n} and \mathbf{t} with the same dimensions as \mathbf{m} and with the set $[\mathcal{C}]$ as basis whose entries are

$$\mathbf{n}([K], [H]) = n(K, H) \quad , \qquad [K], [H] \in [\mathcal{C}] \text{ and}$$
$$\mathbf{t}([K], [P]) = |\mathcal{C}(K, P) / \operatorname{Out}_S(K)| \quad , \qquad [K], [P] \in [\mathcal{C}].$$

In addition let \mathbf{d} be the diagonal matrix whose diagonal entries are

$$\mathbf{d}([K], [K]) = |\operatorname{Out}_S(K)|, \qquad [K] \in [\mathcal{C}].$$

We now note that if K and K' are \mathcal{F} -conjugate subgroups of S which are fully normalized in \mathcal{F} , then axiom (I) of saturation (Definition 2.1) and Sylow's theorems imply that there is an isomorphism $\psi \colon K \to K'$ such that $\psi \operatorname{Out}_S(K)\psi^{-1} =$ $\operatorname{Out}_S(K')$. Therefore $N_{\psi} = N_S(K)$ and ψ extends to $\tilde{\psi} \colon N_S(K) \to N_S(K')$. This shows that the definition of \mathbf{n}, \mathbf{t} and \mathbf{d} is independent of our choice of the fully \mathcal{F} -normalized representatives K for the elements [K] of $[\mathcal{C}]$.

Claim 1. The matrices **n** and **t** are invertible over $\mathbb{Z}_{(p)}$.

Proof. The choice of the total order of $[\mathcal{C}]$ implies n(K, H) = 0 if $[H] \not\supseteq [K]$ because in this case either |H| < |K| or H and K are not \mathcal{F} -conjugate. Therefore \mathbf{n} is an upper triangular matrix. Also n(K, K) = 1 because $\langle K, s \rangle = K$ if and only if $s \in K$. Hence the diagonal entries of \mathbf{n} are equal to 1 and therefore \mathbf{n} is invertible.

Similarly, $\mathbf{t}([K], [P]) = 0$ if [P] < [K] so \mathbf{t} is upper triangular. Its diagonal entries are equal to

$$|\operatorname{Out}_{\mathcal{F}}(K) : \operatorname{Out}_{S}(K)| \neq 0 \mod p$$

because the representative K of $[K] \in [\mathcal{C}]$ is fully normalized in \mathcal{F} . They are therefore units in $\mathbb{Z}_{(p)}$, hence **t** is invertible. Q.E.D.

Claim. 2 $\mathbf{n} \cdot \mathbf{m} = \mathbf{d} \cdot \mathbf{t}$.

Proof. Fix some [K], [P] in $[\mathcal{C}]$ and recall that $\operatorname{Out}_S(K)$ acts on $\mathcal{C}(K, P)$. Since every subgroup of S which contains K is \mathcal{F} -centric, the ([K], [P])-entry of $\mathbf{n} \cdot \mathbf{m}$ is

$$\begin{split} \sum_{[H]\in[\mathcal{C}]} & \mathbf{n}([K],[H]) \cdot \mathbf{m}([H],[P]) = \\ & \sum_{[H]\in[\mathcal{C}]} \left| \left\{ [c_s] \in \operatorname{Out}_S(K) \ : \ \langle K,s \rangle \simeq_{\mathcal{F}} H \right\} \right| \cdot \left| \mathcal{C}(H,P) \right| = \\ & \sum_{[H]\in[\mathcal{C}]} \left(\sum_{[c_s]\in \operatorname{Out}_S(K), \langle s,K \rangle \simeq_{\mathcal{F}} H} \left| \mathcal{C}(H,P) \right| \right) = \\ & \sum_{[c_s]\in \operatorname{Out}_S(K)} \left| \mathcal{C}(\langle s,K \rangle,P) \right| = & \text{by Proposition 2.7} \\ & \sum_{[c_s]\in \operatorname{Out}_S(K)} \left| \mathcal{C}(K,P)^{[c_s]} \right| = & \text{by Frobenius's Lemma} \\ & |\operatorname{Out}_S(K)| \cdot |\mathcal{C}(K,P)/\operatorname{Out}_S(K)| = |\operatorname{Out}_S(K)| \cdot \mathbf{t}([K],[P]) \end{split}$$

which is the ([K], [P])-entry of $\mathbf{d} \cdot \mathbf{t}$. Q.E.D.

We now prove that every element in the image of $\Phi_{(p)}$ satisfies the congruences (1). By linearity it suffices to prove this for elements of the form

$$\Phi([P]) = \sum_{[H] \in [\mathcal{C}]} \left| \mathcal{C}(H, P) \right| \cdot [H] = \sum_{[H] \in [\mathcal{C}]} \mathbf{m}([H], [P]) \cdot [H]$$

which we now denote by $(y_H) \in \prod_{[\mathcal{C}]} \mathbb{Z}_{(p)}$, that is $y_H = |\mathcal{C}(H, P)|$.

For every $K \leq S$ which is fully normalized in \mathcal{F} we have seen that it may be assumed to be the representative of [K] in the definitions of $\mathbf{m}, \mathbf{n}, \mathbf{t}$ and \mathbf{d} and therefore Claim 2 implies

$$\sum_{[H]\in[\mathcal{C}]} n(K,H) \cdot y_H = \sum_{[H]\in[\mathcal{C}]} \mathbf{n}([K],[H]) \cdot \mathbf{m}([H],[P]) = |\operatorname{Out}_S(K)| \cdot \mathbf{t}([K],[P]) = 0 \mod (|\operatorname{Out}_S(K)|).$$

That is, $(y_H) = \Phi_{(p)}([P])$ satisfies the congruence (1).

Conversely, assume that $(y_H) \in \prod_{[\mathcal{C}]} \mathbb{Z}_{(p)}$ satisfies all the congruences (1). We view (y_H) as a column vector and note that satisfying these congruences is equivalent to the existence of a column vector $(z_H) \in \prod_{[\mathcal{C}]} \mathbb{Z}_{(p)}$ such that

$$\mathbf{n} \cdot (y_H) = \mathbf{d} \cdot (z_H)$$

Since \mathbf{n} and \mathbf{t} are invertible by Claim 1, we deduce from Claim 2 that

$$(y_H) = \mathbf{n}^{-1} \cdot \mathbf{d} \cdot (z_H) = \mathbf{m} \cdot \mathbf{t}^{-1} \cdot (z_H) \in \operatorname{Im} \mathbf{m} = \operatorname{Im} \Phi_{(p)}$$

because the matrix **m** represents $\Phi_{(p)}$. This completes the proof.

3.5. Corollary. Let \mathcal{F} be a saturated fusion system over S. Then $\mathcal{A}(\mathcal{F})_{(p)}$ is a commutative ring with a unit. More precisely, let \mathcal{C} denote $\mathcal{O}(\mathcal{F}^c)$ and $[\mathcal{C}]$ the set of isomorphism classes of its objects. Then $\Phi_{(p)}$ embeds $\mathcal{A}(\mathcal{F})_{(p)}$ as a subring of

 $\prod_{[\mathcal{C}]} \mathbb{Z}_{(p)}$ and moreover, the cokernel of $\Phi_{(p)}$ is a finite abelian p-group. Furthermore the unit of $\prod_{[\mathcal{C}]} \mathbb{Z}_{(p)}$ is contained in $\mathcal{A}(\mathcal{F})_{(p)}$.

Proof. First, ker $\Phi_{(p)}$ is a free $\mathbb{Z}_{(p)}$ -module because it is a submodule of the free $\mathbb{Z}_{(p)}$ -module $\mathcal{A}(\mathcal{F})_{(p)}$ (note that $\mathbb{Z}_{(p)}$ is a principal ideal domain.) Similarly coker $\Phi_{(p)}$ is a finitely generated $\mathbb{Z}_{(p)}$ -module. Since $\mathbb{Q} \otimes -$ is an exact functor, Theorem 3.3 implies that ker $\Phi_{(p)} = 0$ and that coker $\Phi_{(p)}$ must be a finite abelian *p*-group. In particular $\mathcal{A}(\mathcal{F})_{(p)}$ is a commutative ring because $\prod_{[\mathcal{C}]} \mathbb{Z}_{(p)}$ is commutative.

Now we apply Theorem 3.4 to show that the unit $(1)_H$ of $\prod_{[\mathcal{C}]} \mathbb{Z}_{(p)}$ is in the image of $\Phi_{(p)}$. For every $Q \in \mathcal{F}^c$ which is fully normalized we have

$$\sum_{P \in [\mathcal{C}]} n(Q, P) \cdot 1 = \sum_{P \in [\mathcal{C}]} \left(\sum_{[c_s] \in N_S(Q)/Q, \langle s, Q \rangle \simeq_{\mathcal{F}} P} 1 \right) = \sum_{[c_s] \in N_S(Q)/Q} 1$$
$$= |N_S(Q)/Q| \equiv 0 \mod (|\operatorname{Out}_S(Q)|),$$

because every subgroup of S which contains Q must be \mathcal{F} -centric.

3.6. **Remark.** Recall that for a finite group G the Burnside ring $\mathcal{A}(G)$ has as unit the unique G-set of cardinal 1. However, $\mathcal{A}(\mathcal{F})$ has no unit in general. To see this notice that the "table of marks" **m** defining the monomorphism (3.1) is an upper triangular matrix and that $\mathbf{m}([S], [S]) = |\operatorname{Out}_{\mathcal{F}}(S)|$ is the only non-zero entry in its row. Thus if $\operatorname{Out}_{\mathcal{F}}(S) \neq 1$ there are no (integral) idempotents in $\mathcal{A}(\mathcal{F})$.

The prime spectrum. We shall now study the set of the prime ideals of $\mathcal{A}(\mathcal{F})_{(p)}$. Here it is subsumed in the definition of prime ideal that a prime ideal is strictly included in the ring. The prime spectrum of the Burnside ring of a finite group was determined by Dress [6]. Here we describe the prime spectrum of the *p*-localized Burnside ring $\mathcal{A}(\mathcal{F})_{(p)}$ of a saturated fusion system \mathcal{F} .

Throughout we shall fix a saturated fusion system \mathcal{F} over S and let \mathcal{C} denote $\mathcal{O}(\mathcal{F}^c)$. The \mathcal{F} -conjugacy class of an object $H \in \mathcal{C}$ is denoted [H] and we let $[\mathcal{C}]$ denote the collection of these classes. Clearly \mathcal{C} is a poset under inclusion of groups and $[\mathcal{C}]$ is a poset as well.

3.7. **Definition.** Let [H] be an \mathcal{F} -conjugacy class of some $H \in \mathcal{C}$ and let q denote either the integer p or 0. Define $\mathfrak{p}_{[H],q}$ as the kernel of the ring homomorphism

$$\mathcal{A}(\mathcal{F})_{(p)} \xrightarrow{\Phi_{(p)}} \prod_{[\mathcal{C}]} \mathbb{Z}_{(p)} \xrightarrow{\operatorname{proj}_{[H]}} \mathbb{Z}_{(p)} \longrightarrow \mathbb{Z}_{(p)}/(q).$$

which we denote by $\pi_{[H],q}$.

We observe that the homomorphism in 3.7 must be surjective because $\mathcal{A}(\mathcal{F})_{(p)}$ is a unital ring by Corollary 3.5. Its image is therefore either $\mathbb{Z}_{(p)}$ or \mathbb{F}_p , whence $\mathfrak{p}_{[H],q}$ are prime ideals of $\mathcal{A}(\mathcal{F})_{(p)}$.

Our next result is that these are the only prime ideals of $\mathcal{A}(\mathcal{F})_{(p)}$. Recall that an additive basis for $\mathcal{A}(\mathcal{F})_{(p)}$ is the set $[\mathcal{C}]$.

3.8. **Proposition.** Let \mathfrak{p} be a prime ideal in $\mathcal{A} = \mathcal{A}(\mathcal{F})_{(p)}$ and let q be the characteristic of \mathcal{A}/\mathfrak{p} . Then

- (a) Among all the classes $[K] \in [\mathcal{C}]$ whose image under the projection $\mathcal{A} \to \mathcal{A}/\mathfrak{p}$ is non-zero, there exists a unique minimal class [H].
- (b) Either q = 0 or q = p and moreover $\mathfrak{p} = \mathfrak{p}_{[H],q}$.

Proof. (a) Let $\pi: \mathcal{A} \to \mathcal{A}/\mathfrak{p}$ denote the projection. Since \mathcal{A} is generated by the classes $[K] \in [\mathcal{C}]$ and $\mathcal{A}/\mathfrak{p} \neq 0$ there must exist some [K] such that $\pi([K]) \neq 0$. Choose some [H] which is minimal in the poset $[\mathcal{C}]$ with this property. Given an arbitrary $[Q] \in [\mathcal{C}]$, we recall from Proposition 2.9 and Remark 2.10 that $[H] \times_{\mathcal{C}} [Q] \cong \coprod_i [A_i]$ where $A_i \leq H$. Since $\mathcal{C}([H], [H \times_{\mathcal{C}} Q]) = \mathcal{C}([H], [H]) \times \mathcal{C}([H], [Q])$ and since $\mathcal{C}([H], [A_i]) = \emptyset$ unless $A_i = H$, we see that

$$[H \times_{\mathcal{C}} Q] = |\mathcal{C}(H, Q)| \cdot [H] + \sum_{i} [A_i], \qquad (A_i \leq H).$$

From the minimality of H we now deduce that $\pi([H]) \cdot \pi([Q]) = |\mathcal{C}(H,Q)| \cdot \pi([H])$ and since \mathcal{A}/\mathfrak{p} is an integral domain with a unit,

(1)
$$\pi([Q]) = |\mathcal{C}(H,Q)| \cdot 1_{\mathcal{A}/\mathfrak{p}}.$$

If $[Q] \in [\mathcal{C}]$ satisfies $\pi([Q]) \neq 0$ then $\mathcal{C}(H, Q) \neq \emptyset$, namely $[H] \leq [Q]$ in $[\mathcal{C}]$. If, in addition, [Q] is also minimal with respect to this property, then [H] = [Q].

(b) Clearly \mathcal{A}/\mathfrak{p} is a $\mathbb{Z}_{(p)}$ -module and since \mathcal{A} is generated by the classes [Q], equation (1) implies that $\mathcal{A}/\mathfrak{p} = \mathbb{Z}_{(p)}/(q)$. Since $\mathcal{A}/\mathfrak{p} \neq 0$ then either q = p or q = 0. It now follows by inspection of $\Phi_{(p)}$ (see (3.1)) that the homomorphism in Definition 3.7 coincides with $\pi: \mathcal{A} \to \mathcal{A}/\mathfrak{p} \cong \mathbb{Z}_{(p)}/(q)$. In particular it follows that $\mathfrak{p} = \ker(\pi) = \mathfrak{p}_{[H],q}$.

It remains to understand the relationship between the ideals $\mathfrak{p}_{[H],q}$.

3.9. **Proposition.** The following holds in $\mathcal{A}(\mathcal{F})_{(p)}$.

- (a) $\mathfrak{p}_{[H],0} = \mathfrak{p}_{[K],0}$ if and only if [H] = [K].
- (b) $\mathfrak{p}_{[H],0} \leq \mathfrak{p}_{[H],p}$ for any $[H] \in [\mathcal{C}]$.
- (c) $\mathfrak{p}_{[H],p} = \mathfrak{p}_{[S],p}$ for all $[H] \in [\mathcal{C}]$ where S is the Sylow of \mathcal{F} .

Proof. (a) One implication is trivial. Assume that $\mathfrak{p}_{[H],0} = \mathfrak{p}_{[K],0}$. Observe that $[H] \notin \mathfrak{p}_{[H],0}$ because $\pi_{[H],0}([H]) = |\mathcal{C}(H,H)| \neq 0$ (see Definition 3.7.) Therefore $[H] \notin \mathfrak{p}_{[K],0}$, namely $|\mathcal{C}(K,H)| = \pi_{[K],0}([H]) \neq 0$. Similarly $|\mathcal{C}(H,K)| \neq 0$ which implies that H and K are \mathcal{F} -conjugate.

(b) Clearly $\mathfrak{p}_{[H],0} \subseteq \mathfrak{p}_{[H],p}$. Now, $\pi_{[H],q}$ are surjective so $\mathcal{A}(\mathcal{F})_{(p)}/\mathfrak{p}_{[H],0} \cong \mathbb{Z}_{(p)}$ while $\mathcal{A}(\mathcal{F})_{(p)}/\mathfrak{p}_{[H],p} \cong \mathbb{F}_p$.

(c) Consider some $[Q] \notin \mathfrak{p}_{[H],p}$, that is $|\mathcal{C}(H,Q)| = \pi_{[H],p}([Q]) \neq 0 \mod p$. In particular H is \mathcal{F} -conjugate to a subgroup of Q. By Proposition 2.8, $|\mathcal{C}(H,Q)| =$ $|\operatorname{Out}_{\mathcal{F}}(Q)| \mod (p)$ whence $|\operatorname{Out}_{\mathcal{F}}(Q)| \neq 0 \mod (p)$. The axioms for saturated fusion system (Definition 2.1) imply that Q = S. That is, the only class [Q] which projects non-trivially in $\mathcal{A}(\mathcal{F})_{(p)}/\mathfrak{p}_{[H],p}$ is [S]. Proposition 3.8 now implies that $\mathfrak{p}_{[H],p} = \mathfrak{p}_{[S],p}$.

3.10. Corollary. Let \mathcal{F} be a saturated fusion system over S an let $\mathcal{A}(\mathcal{F})_{(p)}$ be its p-localized Burnside ring. Then $\mathcal{A}(\mathcal{F})_{(p)}$ is a local ring with a maximal ideal $\mathfrak{m} = \mathfrak{p}_{[S],p}$. The remaining prime ideals in $\mathcal{A}(\mathcal{F})_{(p)}$ have the form $\mathfrak{p}_{[H],0}$; They are all distinct and none of them is contained in the other.

Proof. Every prime ideal \mathfrak{p} in $\mathcal{A} = \mathcal{A}(\mathcal{F})_{(p)}$ has the form $\mathfrak{p}_{[H],q}$ by Proposition 3.8. Parts (b) and (c) of Proposition 3.9 show that $\mathfrak{p}_{[S],p}$ is a unique maximal ideal in \mathcal{A} . The remaining prime ideals have the form $\mathfrak{p}_{[H],0}$ and they are all distinct by part (a). Suppose that $\mathfrak{p}_{[H],0} \subseteq \mathfrak{p}_{[K],0}$. There results a surjective ring homomorphism

$$\mathbb{Z}_{(p)} \cong \mathcal{A}/\mathfrak{p}_{[H],0} \to \mathcal{A}/\mathfrak{p}_{[K],0} \cong \mathbb{Z}_{(p)}$$

which must be an isomorphism, whence $\mathfrak{p}_{[H],0} = \mathfrak{p}_{[K],0}$.

3.1. Relationship with the classical Burnside ring. Let G be a finite group. The set of all its subgroups is denoted S(G). The conjugacy class of $H \leq G$ is denoted [H]. The Burnside ring $\mathcal{A}(G)$ of G is isomorphic to the free abelian group $\bigoplus_{[S(G)]}\mathbb{Z}$ where product of basis elements [H] and [K] is given by the double coset formula $[H] \cdot [K] = \sum_{g \in K \setminus G/H} [K^g \cap H].$

A collection in G is a subset \mathcal{H} of S(G) which is closed to conjugation in G. The set of the conjugacy classes of the elements of \mathcal{H} is denoted $[\mathcal{H}]$. Let $\mathcal{A}(G; \mathcal{H})$ be the subgroup of $\mathcal{A}(G)$ generated by the basis elements $[H] \in [\mathcal{H}]$. Thus,

$$\mathcal{A}(G;\mathcal{H}) = \bigoplus_{[H] \in [\mathcal{H}]} \mathbb{Z} \le \mathcal{A}(G)$$

The double coset formula implies that $\mathcal{A}(G; \mathcal{H})$ is an ideal in $\mathcal{A}(G)$ if \mathcal{H} is closed to formation of subgroups. For example, the collection $S_p(G)$ of all the *p*-subgroups of *G* has this property and it defines an ideal

$$\mathcal{A}(G;p) = \mathcal{A}(G;S_p(G)) \lhd \mathcal{A}(G).$$

The collection $S_p(G)$ contains the collections $S_p^{\text{cent}}(G)$ of all the *p*-centric subgroups and the collection $S_p^{\neg \text{cent}}(G)$ of all the *p*-subgroups of *G* that are not *p*-centric; See Definition 2.3. The discussion after 2.3 shows that $S_p^{\neg \text{cent}}(G)$ is closed to formation of subgroups and defines an ideal

$$\mathcal{A}(G; p - \neg \operatorname{cent}) \lhd \mathcal{A}(G)$$

which is clearly contained in $\mathcal{A}(G;p)$. There results a quotient ring

$$\mathcal{A}^{p\operatorname{-cent}}(G) = \mathcal{A}(G; p) / \mathcal{A}(G; p \operatorname{-} \neg \operatorname{cent}).$$

As an abelian group it is free with basis $[S_p^{\text{cent}}(G)]$. The product of basis elements [P] and [Q] is $\sum_g [Q^g \cap P]$ where the sum ranges through the double cosets QgP such that $Q^g \cap P$ is *p*-centric.

We can tensor the constructions above with $\mathbb{Z}_{(p)}$. We denote $\mathbb{Z}_{(p)} \otimes \mathcal{A}(G)$ by $\mathcal{A}(G)_{(p)}$. Similarly we consider $\mathcal{A}(G;p)_{(p)}$ and $\mathcal{A}(G;p-\neg \operatorname{cent})_{(p)}$ and $\mathcal{A}^{p\operatorname{-cent}}(G)_{(p)}$. We remark that the latter is the free $\mathbb{Z}_{(p)}$ module with basis $[S_p^{\operatorname{cent}}(G)]$ with the same formula for the product of basis elements and moreover

$$\mathcal{A}^{p\operatorname{-cent}}(G)_{(p)} = \mathcal{A}(G;p)_{(p)} / \mathcal{A}(G;p\operatorname{-}\neg\operatorname{cent})_{(p)}.$$

3.11. **Theorem.** Let \mathcal{F} be the fusion system associated to a finite group G and a Sylow p-subgroup S. Then the rings $\mathcal{A}(\mathcal{F})_{(p)}$ and $\mathcal{A}^{p-\text{cent}}(G)_{(p)}$ are isomorphic.

Proof. Given a G-set X we denote by X^H the points of X fixed by H. A subgroup $K \leq G$ gives rise to a transitive G-set G/K by left translations. The G-sets G/K and G/K' are isomorphic if and only if K and K' are conjugate. There is a ring monomorphism, introduced already by Burnside,

$$\chi \colon \mathcal{A}(G)_{(p)} \to \prod_{[H] \in [S(G)]} \mathbb{Z}_{(p)}, \qquad [K] \mapsto \sum_{[H] \in [S(G)]} |(G/K)^H| \cdot [H].$$

The inclusion $[S_p^{p-\text{cent}}(G)] \subseteq [S_p(G)]$ gives rise to a composite ring homomorphism

$$\tilde{\Psi} \colon \mathcal{A}(G;p)_{(p)} \xrightarrow{\text{incl}} \mathcal{A}(G)_{(p)} \xrightarrow{\chi} \prod_{[S_p(G)]} \mathbb{Z}_{(p)} \xrightarrow{\text{proj}} \prod_{[S_p^{p-\text{cent}}(G)]} \mathbb{Z}_{(p)}$$
12

Since $S_p^{\neg p\text{-cent}}(G)$ is closed to formation of subgroups, if $K \in S_p^{\neg \text{cent}}(G)$ and $H \in S_p^{p\text{-cent}}(G)$ then $(G/K)^H$ is empty. Hence, $\mathcal{A}^{\neg p\text{-cent}}(G)_{(p)}$ is contained in the kernel of $\tilde{\Psi}$ and there results a ring homomorphism (1)

$$\Psi: \mathcal{A}^{p\text{-cent}}(G)_{(p)} \to \prod_{[Q] \in [S_p^{p\text{-cent}}(G)]} \mathbb{Z}_{(p)}, \qquad [P] \mapsto \sum_{[Q] \in [S_p^{p\text{-cent}}(G)]} |G/P^Q| \cdot [Q]$$

For subgroups $H, K \leq G$ consider now

$$N_G(H,K) = \{g \in G : gHg^{-1} \le K\}.$$

Clearly K acts on $N_G(H, K)$ by left translations and $N_G(H)$ acts on $N_G(H, K)$ by right translations. Clearly, the action of H on $K \setminus N_G(H, K)$ is trivial.

By construction of $\mathcal{F} = \mathcal{F}_S(G)$ and $\mathcal{C} = \mathcal{O}(\mathcal{F}^c)$, see Section 2, we see that $\mathcal{C}(P,Q) = Q \setminus N_G(P,Q)/C_G(P)$ for any $P,Q \leq S$ which are \mathcal{F} -centric. As usual we let $[\mathcal{C}]$ denote the set of the isomorphism classes of the objects of \mathcal{C} .

Claim 1. If P, Q are \mathcal{F} -centric subgroups of S then $|G/Q^P| = |C'_G(P)| \cdot |\mathcal{C}(P,Q)|$. Proof. By inspection

$$G/Q^P = N_G(P,Q)^{-1}/Q \approx Q \setminus N_G(P,Q)$$

Note that P is p-centric in G because it is \mathcal{F} -centric. Thus, $C_G(P) = C'_G(P) \times Z(P)$ and since Z(P) acts trivially on $Q \setminus N_G(P, Q)$ it follows that

$$\mathcal{C}(P,Q) = Q \setminus N_G(P,Q) / C'_G(P).$$

Furthermore, the action of $C'_G(P)$ on $Q \setminus N_G(P, Q)$ is free because for any $x \in C'_G(P)$ and any $Qg \in Q \setminus N_G(P, Q)$, if Qgx = Qg then $gxg^{-1} \in Q$, which implies x = 1because x has order prime to p. Therefore $|\mathcal{C}(P,Q)| = |Q \setminus N_G(P,Q)| \cdot |C'_G(P)|$ and the result follows. Q.E.D.

By construction $P, Q \leq S$ are \mathcal{F} -conjugate if and only if they are conjugate in G. Also, $P \leq S$ is \mathcal{F} -centric if and only if it is *p*-centric. It follows that there is a natural one-to-one correspondence between the sets $[S_p^{\text{cent}}(G)]$ and $[\mathcal{C}]$. There results an isomorphism of free $\mathbb{Z}_{(p)}$ -modules

$$\lambda \colon \mathcal{A}(\mathcal{F})_{(p)} \to \mathcal{A}^{p-\operatorname{cent}}(G)_{(p)}$$

which is the identity on basis elements under the identification $[\mathcal{C}] = [S_p^{\text{cent}}(G)]$. Clearly λ is an isomorphism of $\mathbb{Z}_{(p)}$ -modules (but it is not a ring homomorphism.)

Let η denote the following element in $\prod_{[Q] \in [S_p^{cent}(G)]} \mathbb{Z}_{(p)}$

(2)
$$\eta = \sum_{[Q] \in [S_p^{p-\operatorname{cent}}(G)]} |C'_G(Q)| \cdot [Q].$$

It follows from the definition of Ψ in (1), from Claim 1 and from the definition of the ring homomorphism Φ in (3.1) that the following square of $\mathbb{Z}_{(p)}$ -modules is commutative. (Note: this is not a commutative square of rings!)

The arrow at the bottom is induced by multiplication by η which is an isomorphism of $\mathbb{Z}_{(p)}$ -modules because the $|C'_G(Q)|$'s are invertible in $\mathbb{Z}_{(p)}$.

Claim 2. $\eta \in \operatorname{Im} \Phi_{(p)}$.

Proof. We apply Theorem 3.4, that is, we show that for every $K \leq S$ which is \mathcal{F} -centric (equivalently, K is p-centric) and fully normalized in \mathcal{F} , the following congruence hold

$$\sum_{H \in [\mathcal{C}]} n(K,H) \cdot |C'_G(H)| = 0 \mod (|\operatorname{Out}_S(K)|).$$

In this sum only the terms where, up to \mathcal{F} -conjugacy, $K \leq H \leq N_S(K)$ and H/Kis cyclic show up because the numbers n(K, H) vanish for all other H's. Now fix some $s \in N_S(K)$. Clearly $N_S(K)$ normalizes $C_G(K)$ and it therefore normalizes the characteristic subgroup $C'_G(K)$. Thus, $N_S(K)/K$ acts via conjugation on $C'_G(K)$ and for any $s \in N_S(K)$ the group $\langle s, K \rangle$ is *p*-centric because it contains K. Moreover,

$$C'_G(\langle s, K \rangle) = C_G(\langle s, K \rangle) \cap C'_G(K) = C'_G(K)^s,$$

namely, these are the fixed points of s in its action on $C'_G(K)$. Using Frobenius's formula,

$$\sum_{H \in [\mathcal{C}]} n(K,H) \cdot |C'_G(H)| = \sum_{H \in [\mathcal{C}]} \left(\sum_{[s] \in N_S(K)/K, \langle s, K \rangle \simeq_{\mathcal{F}} H} |C'_G(H)| \right) =$$

$$\sum_{H \in [\mathcal{C}]} \left(\sum_{[s] \in N_S(K)/K, \langle s, K \rangle \simeq_{\mathcal{F}} H} |C'_G(\langle s, K \rangle)| \right) =$$

$$\sum_{[s] \in N_S(K)/K} |C'_G(\langle s, K \rangle)| = \sum_{[s] \in N_S(K)/K} |C'_G(K)^{[s]}| =$$

 $|N_S(K)/K| \cdot |\{\text{orbits of } N_S(K)/K \text{ on } C'_G(K)\}| \equiv 0 \mod |\operatorname{Out}_S(K)|.$

We conclude from Theorem 3.4 that $\eta \in \text{Im }\phi$. Q.E.D.

Let A denote the image of $\Phi_{(p)}$ and B denote the image of Ψ . Both are $\mathbb{Z}_{(p)}$ submodules of $M = \prod_{[S_p^{cent}(G)]} \mathbb{Z}_{(p)}$. Diagram (3) shows that $B = \eta \cdot A$. Since A
is a subring of M, Claim 2 implies that $\eta \cdot A \subseteq A$. Multiplication with η therefore
gives rise to a morphism of short exact sequences of $\mathbb{Z}_{(p)}$ -modules

It follows that $M/A \xrightarrow{\cdot \eta} M/A$ is an epimorphism. By Corollary 3.5 M/A is a finite *p*-group and $\Phi_{(p)}$ is a monomorphism. It follows that $M/A \xrightarrow{\cdot \eta} M/A$ is an isomorphism and that Ψ is a ring monomorphism. Application of the five lemma now shows that $A \xrightarrow{\cdot \eta} A$ is an isomorphism. In particular $\eta \cdot A = A$. Since $\Phi_{(p)}$ and Ψ are ring monomorphisms $\mathcal{A}(\mathcal{F})_{(p)} \cong A = \eta \cdot A = B \cong \mathcal{A}^{p-\text{cent}}(G)_{(p)}$. \Box

4. Examples

The Burnside ring of a finite group is an algebraic invariant which does not characterize the isomorphism type of the group: Thévenaz constructed in [13] two non-isomorphic groups $G_1 \ncong G_2$ with isomorphic Burnside rings.

The situation for fusion systems is similar: consider the 2-group $S = (\mathbb{Z}_2)^9$ and its automorphism group $\mathrm{GL}_9(2)$. As the symmetric group Σ_9 acts faithfully on Sthere are subgroups \mathbb{Z}_9 and $\mathbb{Z}_3 \times \mathbb{Z}_3$ in $\mathrm{GL}_9(2)$. Now consider the fusion systems $\mathcal{F}_1 = \mathcal{F}_S(S \rtimes \mathbb{Z}_9)$ and $\mathcal{F}_2 = \mathcal{F}_S(S \rtimes (\mathbb{Z}_3 \times \mathbb{Z}_3))$. These two saturated fusion systems are not isomorphic as $\mathrm{Out}_{\mathcal{F}_1}(S) = \mathbb{Z}_9 \ncong \mathbb{Z}_3 \times \mathbb{Z}_3 = \mathrm{Out}_{\mathcal{F}_2}(S)$. Moreover, since S is abelian, the only \mathcal{F}_i -centric group for i = 1, 2 is S itself. Thus the matrix defining the monomorphism (3.1) becomes the scalar $|\operatorname{Out}_{\mathcal{F}_i}(S)|$ for i = 1, 2. As $|\operatorname{Out}_{\mathcal{F}_1}(S)| = 9 = |\operatorname{Out}_{\mathcal{F}_2}(S)|$ we deduce that $\mathcal{A}(\mathcal{F}_1)_{(2)} \cong \mathcal{A}(\mathcal{F}_2)_{(2)}$.

Also notice that the fusion systems of the groups $G_1 = \mathbb{Z}_3 \rtimes \mathbb{Z}_2$ and $G_2 = \mathbb{Z}_9 \rtimes \mathbb{Z}_2$ at the prime 3 show that we can have isomorphic Burnside rings even with different order Sylow subgroups because $\mathcal{A}(\mathcal{F}_{\mathbb{Z}/3}(G_1))_{(3)} \cong \mathbb{Z}_{(3)} \cong \mathcal{A}(\mathcal{F}_{\mathbb{Z}/9}(G_2))_{(3)}$.

Here are more examples.

4.1. **Lemma.** Let \mathcal{F} be a saturated fusion system over S. Assume that \mathcal{F} has exactly $n \geq 1$ conjugacy classes of \mathcal{F} -centric subgroup $P \leq S$ all of which have index p or 1 in S. Then $\mathcal{A}(\mathcal{F})_{(p)}$ is isomorphic to the subring of $\mathbb{Z}_{(p)}^n$ whose $\mathbb{Z}_{(p)}$ -basis is $p \cdot e_1, \ldots, p \cdot e_{n-1}$ and $e_1 + \cdots + e_n$ where e_i are the standard basis vectors.

Proof. Let P_1, \ldots, P_{n-1} be representatives for the \mathcal{F} -conjugacy classes of the \mathcal{F} centric subgroups of S of index p. Let \mathcal{C} denote the category $\mathcal{O}(\mathcal{F}^c)$ and let $\mathcal{C}(P_i, S)$ denote the set of morphisms $\operatorname{Hom}_{\mathcal{O}(F^c)}(P_i, S)$. The matrix representing $\Phi_{(p)}: \mathcal{A}_{(p)}(\mathcal{F}) \to \mathbb{Z}_{(p)}^n$ has the form

$$\begin{pmatrix} |\operatorname{Out}_{\mathcal{F}}(P_1)| & 0 & |\mathcal{C}(P_1,S)| \\ & \ddots & \vdots \\ & |\operatorname{Out}_{\mathcal{F}}(P_{n-1})| & |\mathcal{C}(P_{n-1},S)| \\ 0 & & |\operatorname{Out}_{\mathcal{F}}(S)| \end{pmatrix}$$

Thus $\mathcal{A}(\mathcal{F})_{(p)}$ is isomorphic to the image of this matrix, namely the submodule of $\mathbb{Z}_{(p)}^n$ generated by its columns. Since P_i is \mathcal{F} -centric and $|S:P_i| = p$, it follows that $|\operatorname{Out}_{\mathcal{F}}(P_i)| = p\zeta_i$ where ζ_i is a unit in $\mathbb{Z}_{(p)}$. In particular the submodule U of $\mathbb{Z}_{(p)}^n$ spanned by $\{p \cdot e_1, \ldots, p \cdot e_{n-1}\}$ is contained in the image of $\Phi_{(p)}$. Proposition 2.8 and the fact that $|\operatorname{Out}_{\mathcal{F}}(S)|$ is a unit in $\mathbb{Z}_{(p)}$ now imply that the last column of the matrix above is equal modulus U to the column vector $e_1 + \cdots + e_n$ and therefore the image of $\Phi_{(p)}$ is equal to the submodule generated by U and $e_1 + \cdots + e_n$. \Box

4.2. **Example.** Lemma 4.1 implies that if \mathcal{F} is a fusion system over S where $|S| = p^3$ then $\mathcal{A}(\mathcal{F})_{(p)}$ depends only on the number of conjugacy classes of the \mathcal{F} -centric subgroups because no subgroup of order p can be \mathcal{F} -centric.

This gives a hassle-free calculation of the rings $\mathcal{A}(\mathcal{F})_{(p)}$ of the fusion systems on the extraspecial group p_+^{1+2} where p is odd - all of which were classified by Ruiz and Viruel in [11]. For example, the ring $\mathcal{A}(\mathcal{F})_{(7)}$ of the exotic examples at the prime 7 listed in rows 8 and 11 of Table 1.2 in [11] are isomorphic to the 7-local Burnside ring of the fusion system of Fi₂₄ at the prime 7. The exotic example appearing in the 12th row of this table has a 7-local Burnside ring whose underlying $\mathbb{Z}_{(7)}$ -module has rank 2, and no other fusion system on 7^{1+2}_+ has an isomorphic Burnside ring.

Recall that if \mathcal{F}_1 is a sub fusion system of \mathcal{F}_2 over the same S then any \mathcal{F}_2 -centric subgroup is also \mathcal{F}_1 -centric.

4.3. **Proposition.** Let S be a finite p-group and let $\mathcal{F}_1 \subseteq \mathcal{F}_2$ be saturated fusion systems on S. Assume that the following hold for any $P \leq S$ which is \mathcal{F}_2 -centric.

- (i) The conjugacy class of P in \mathcal{F}_2 is equal to its conjugacy class in \mathcal{F}_1 .
- (ii) $|\operatorname{Aut}_{\mathcal{F}_2}(P): \operatorname{Aut}_{\mathcal{F}_1}(P)| = 1 \mod |R|$ where $R \leq \operatorname{Out}_{\mathcal{F}_1}(P)$ is a Sylow psubgroup. Moreover, if $\operatorname{Aut}_{\mathcal{F}_1}(P) \neq \operatorname{Aut}_{\mathcal{F}_2}(P)$ then P is minimal with respect to the property that it is \mathcal{F}_2 -centric.

Then the $\mathbb{Z}_{(p)}$ -submodule I of $\mathcal{A}(\mathcal{F}_1)_{(p)}$ generated by the elements [P] such that $P \leq S$ is \mathcal{F}_1 -centric but not \mathcal{F}_2 -centric, is an ideal in $\mathcal{A}(\mathcal{F}_1)_{(p)}$ and moreover, $\mathcal{A}(\mathcal{F}_2)_{(p)} \cong \mathcal{A}(\mathcal{F}_1)_{(p)}/I$.

Proof. Let C_1 and C_2 denote the sets of the conjugacy classes of the \mathcal{F}_1 -centric and \mathcal{F}_2 -centric subgroups of S. Moreover, let \mathcal{C}_1 and \mathcal{C}_2 denote the categories $\mathcal{O}(\mathcal{F}_1^c)$ and $\mathcal{O}(\mathcal{F}_2^c)$ respectively. By definition I is the $\mathbb{Z}_{(p)}$ -submodule of $\mathcal{A}_{(p)}(\mathcal{F}_1)$ generated by the elements $[P] \in C_1 \setminus C_2$. Consider the ring monomorphisms (3.1)

$$\Phi_1: \mathcal{A}_{(p)}(\mathcal{F}_1) \to \mathbb{Z}_{(p)}^{C_1}, \qquad \Phi_2: \mathcal{A}_{(p)}(\mathcal{F}_2) \to \mathbb{Z}_{(p)}^{C_2}.$$

By hypothesis (i) there is a natural inclusion $C_2 \subseteq C_1$, whence a ring epimorphism

$$\pi\colon \mathbb{Z}_{(p)}^{C_1} \to \mathbb{Z}_{(p)}^{C_2}.$$

Claim. $I = \ker(\pi \circ \Phi_1).$

Proof. Observe that if $[P] \in C_1 \setminus C_2$ then $C_1(Q, P)$ is empty if $[Q] \in C_2$ (otherwise P must be \mathcal{F}_2 -centric.) It follows immediately that $I \subseteq \ker(\pi \circ \Phi_1)$.

Conversely consider an element $x = \sum_{[P] \in C_1} \alpha_P[P]$ in $\mathcal{A}(\mathcal{F}_1)$ and assume that it is not in I. Then $\alpha_Q \neq 0$ for some $[Q] \in C_2$ and we choose Q of maximal order with this property. Recall that $\Phi_1(x)$ is a function $C_1 \to \mathbb{Z}_{(p)}$ and the maximality of P implies that

$$\Phi_1(x)([Q]) = \sum_{[P]} \alpha_P \cdot |\mathcal{C}_1(Q, P)| = \alpha_Q \cdot |\operatorname{Out}_{\mathcal{F}_1}(Q)| \neq 0.$$

This shows that $x \notin \ker(\pi \circ \Phi_1)$. We deduce that $I = \ker(\pi \circ \Phi_1)$. Q.E.D.

From the claim it follows that $I \triangleleft \mathcal{A}_{(p)}(\mathcal{F}_1)$ and that $\operatorname{Im}(\pi \circ \Phi_1) \cong \mathcal{A}_{(p)}(\mathcal{F}_1)/I$. Clearly $\operatorname{Im}(\pi \circ \Phi_1)$ is a subring of $\mathbb{Z}_{(p)}^{\mathcal{C}_2}$ and it remains to prove that it is equal to the image of Φ_2 which is isomorphic to $\mathcal{A}_{(p)}(\mathcal{F}_2)$ by Corollary 3.5.

Let P_1, \ldots, P_k be representatives for the \mathcal{F}_2 -conjugacy classes of minimal \mathcal{F}_2 centric subgroups of S. By hypothesis (ii)

$$|\operatorname{Out}_{\mathcal{F}_2}(P_i)| = \zeta_i \cdot |\operatorname{Out}_{\mathcal{F}_1}(P_i)|$$

where $\zeta_i = 1 \mod |R_i|$ where R_i is a Sylow *p*-subgroup of $\operatorname{Out}_{\mathcal{F}_1}(P_i)$ and also of $\operatorname{Out}_{\mathcal{F}_2}(P_i)$. The equality of the \mathcal{F}_1 - and \mathcal{F}_2 -conjugacy classes of P_i together with Proposition 3.2 also implies that for any \mathcal{F}_2 -centric $Q \leq S$

(1)
$$|\mathcal{C}_2(P_i, Q)| = \zeta_i \cdot |\mathcal{C}_1(P_i, Q)|.$$

For every P_i we consider $f_i = \pi \circ \Phi_1([P_i])$ and $g_i = \Phi_2([P_i])$. The minimality of P_i implies that $f_i([Q]) = |\operatorname{Out}_{\mathcal{F}_1}(P_i)|$ if $[Q] = [P_i]$ and it is zero otherwise. Similarly $g_i([Q]) = |\operatorname{Out}_{\mathcal{F}_2}(P_i)|$ if $[Q] = [P_i]$ and it is zero otherwise. Since R_i is a Sylow *p*-subgroup in both $\operatorname{Out}_{\mathcal{F}_1}(P_i)$ and $\operatorname{Out}_{\mathcal{F}_2}(P_i)$ we see that the $\mathbb{Z}_{(p)}$ -submodules Uof $\mathbb{Z}_{(p)}^{C_2}$ generated by f_1, \ldots, f_k and g_1, \ldots, g_k is equal to the submodule generated by $|R_1| \cdot e_{[P_1]}, \ldots, |R_k| \cdot e_{[P_k]}$ where $e_{[P_i]}$ are the obvious standard-basis elements in $\mathbb{Z}_{(p)}^{C_2}$.

Now consider any $[P] \in C_2$ which is not minimal. We now show that $f := \pi \circ \Phi_1([P])$ and $g := \Phi_2([P])$ are equal modulus U. Set $f = \pi \circ \Phi_1([P])$ and $g = \Phi_2([P])$. Given any $[Q] \in C_2$ observe that if Q is not minimal \mathcal{F}_2 -centric then $\mathcal{C}_1(Q, P) = \mathcal{C}_2(Q, P)$ by hypothesis (ii) and Alperin's fusion theorem. Thus, by definition f([Q]) - g([Q]) = 0. We deduce that the support of f - g is contained in $\{[P_1], \ldots, [P_k]\}$.

Now fix some $[P_i]$. Then from (1) we deduce that

$$f([P_i]) - g([P_i]) = |\mathcal{C}_1(P_i, P)| - |\mathcal{C}_2(P_i, P)| = (1 - \zeta_i) \cdot |\mathcal{C}_1(P_i, P)| = 0 \mod |R_i|.$$

It follows immediately that $f - g \in U$. This completes the proof that $\operatorname{Im}(\Phi_2) = \operatorname{Im}(\pi \circ \Phi_1)$.

4.4. **Example.** We recall from [4, Proposition 5.3] a useful method to construct saturated fusion systems. We start with any fusion system $\mathcal{F}_S(G)$ of a finite group and fix subgroup Q_1, \ldots, Q_m of S such that Q_i is not subconjugate to Q_j if $i \neq j$. To avoid triviality we assume that $Q_i \neq S$. We set $K_i \leq \operatorname{Out}_G(Q_i)$ and fix $\Delta_i \leq \operatorname{Out}(Q_i)$ which contain K_i . We assume that $p \not||\Delta_i : K_i|$. We also assume that Q_i is *p*-centric in G but for any $P \leq Q_i$ there exists some $\alpha \in \Delta_i$ such that $\alpha(P)$ is not *p*-centric in G. Furthermore, we assume that for any $\alpha \in \Delta_i \setminus K_i$ the order of $K_i \cap K_i^{\alpha} \leq \Delta_i$ is prime to p. Then the fusion system \mathcal{F} generated by $\mathcal{F}_S(G)$ and $\mathcal{F}_{Q_i}(\Delta_i)$ is saturated.

This method of construction was introduced in [2, Proposition 5,1]. It yields many exotic examples, e.g. [3, Example 9.3], [2], [11, Table 1.2] and [5]. We claim that in all these cases Proposition 4.3 applies to the inclusion $\mathcal{F}_S(G) \leq \mathcal{F}$.

To see this observe that the conditions under which the construction of \mathcal{F} is carried out guarantee that the Q_i 's are minimal \mathcal{F} -centric subgroups. Thus, the \mathcal{F} -centric subgroups are the $\mathcal{F}_S(G)$ -centric subgroups which are not subconjugate to one of the Q_i 's. From the construction it is clear that the \mathcal{F} -conjugacy class of any \mathcal{F} -centric $P \leq S$ is equal to its conjugacy class in $\mathcal{F}_S(G)$. It is also clear that only the automorphism groups of the Q_i 's are altered in the passage from $\mathcal{F}_S(G)$ to \mathcal{F} and they are minimal \mathcal{F} -centric by construction. Thus it only remains to prove that $|\Delta_i : K_i| = 1 \mod |R_i|$ where R_i is a Sylow *p*-subgroup of K_i .

Fix some $\alpha \in \Delta_i \setminus K_i$. By hypothesis the order of $K_i \cap K_i^{\alpha}$ is prime to p and therefore $R_i \cap R_i^{\alpha} = 1$. As a consequence, since $Q_i \neq S$ so $R_i \neq 1$, we see that $N_{\Delta_i}(R_i) = N_{K_i}(R_i)$.

We now let R_i act by conjugation on $\operatorname{Syl}_p(K_i)$ and on $\operatorname{Syl}_p(\Delta_i)$. It is clear that $\operatorname{Syl}_p(K_i) \subseteq \operatorname{Syl}_p(\Delta_i)$ and both consists of the K_i - and Δ_i -conjugates of R_i . If R_i^{α} is not contained in K_i then then its stabilizer is

$$R_i \cap N_{\Delta_i}(R_i^{\alpha}) = R_i \cap N_{\Delta_i}(R_i)^{\alpha} = R_i \cap R_i^{\alpha} = 1.$$

Thus, the action of R_i on $\operatorname{Syl}_p(\Delta_i) \setminus \operatorname{Syl}_p(K_i)$ is free so the number of elements of this set is divisible by $|R_i|$. Now,

$$|\operatorname{Syl}_p(K_i)| = |K_i \colon N_{K_i}(R_i)| \quad \text{and} |\operatorname{Syl}_p(\Delta_i)| = |\Delta_i \colon N_{\Delta_i}(R_i)| = |\Delta_i \colon N_{K_i}(R_i)|.$$
17

It follows that

$$|\Delta_i \colon K_i| = \frac{|\operatorname{Syl}_p(\Delta_i)|}{|\operatorname{Syl}_p(K_i)|} = \frac{|\operatorname{Syl}_p(K_i)|}{|\operatorname{Syl}_p(K_i)|} \mod |R_i| = 1 \mod |R_i|.$$

This shows that all the conditions of Proposition 4.3 are fulfilled for the inclusion $\mathcal{F}_S(G) \leq \mathcal{F}$ and therefore $\mathcal{A}_{(p)}(\mathcal{F})$ is a quotient ring of $\mathcal{A}_{(p)}(\mathcal{F}_S(G))$.

For example, all the fusion systems listed in the [3, Example 9.3] have the same *p*-local Burnside ring as the fusion system of the groups $\Gamma \rtimes A$ appearing in their construction.

References

- S. Bouc, Burnside rings, Handbook of algebra, Vol. 2, 739–804, North-Holland, Amsterdam, 2000.
- [2] C. Broto, R. Levi, B. Oliver A geometric construction of saturated fusion systems. An alpine anthology of homotopy theory, 11–40, Contemp. Math., 399, Amer. Math. Soc., Providence, RI, 2006.
- [3] C. Broto, R. Levi, B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), 779–856.
- [4] C. Broto, R. Levi, R. Oliver, The theory of p-local groups: a survey, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, 51–84, Contemp. Math., 346, Amer. Math. Soc., Providence, RI, 2004.
- [5] A. Díaz, A. Ruiz, A. Viruel, All p-local finite groups of rank two for odd prime p, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1725–1764.
- [6] A. Dress, A characterisation of solvable groups, Math. Z. 110 (1969), 213-217.
- [7] Gluck, David Idempotent formula for the Burnside algebra with applications to the psubgroup simplicial complex. Illinois J. Math. 25 (1981), no. 1, 63–67.
- [8] S. Jackowski, J. McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992), no. 1, 113–132.
- [9] Ll. Puig, Frobenius categories. J. Algebra 303 (2006), no. 1, 309-357.
- [10] Rota, G. C., On the Foundations of Combinatorial Theory. I, Theory of Möbius Functions, Z. Wahrscheinlichkeitstheorie 2 (1964), 340-368.
- [11] A. Ruiz, A. Viruel, The classification of p-local finite groups over the extraspecial group of order p³ and exponent p. Math. Z. 248 (2004), no. 1, 45–65.
- [12] L. Solomon, *The Burnside algebra of a finite group*, J. Combinatorial Theory 2, 1967, 603–615.
- [13] J. Thévenaz, Isomorphic Burnside rings, Comm. Algebra 16 (1988), no. 9, 1945–1947.
- [14] T. Yoshida, Idempotents of Burnside rings and Dress induction theorem., J. Algebra 80 (1983), no. 1, 90–105.

(Antonio Díaz) DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF COPENHAGEN, UNI-VERSITETSPARKEN 5, DK-2100 COPENHAGEN Ø, DENMARK *E-mail address*: adiaz@math.ku.dk

(Assaf Libman) Department of Mathematical Sciences, King's College, University of Aberdeen, Aberdeen AB24 $3\mathrm{UE}$, Scotland, U.K.

E-mail address: assaf@maths.abdn.ac.uk