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Abstract 

This thesis develops two families of numerical methods, based upon rational 

approximations having distinct real poles, for solving first- and second-order 

parabolic/ hyperbolic partial differential equations. These methods are third

and fourth-order accurate in space and time, and do not require the use of 

complex arithmetic. In these methods first- and second-order spatial deriv

atives are approximated by finite-difference approximations which produce 

systems of ordinary differential equations expressible in vector-matrix forms. 

Solutions of these systems satisfy recurrence relations which lead to the devel

opment of parallel algorithms suitable for computer architectures consisting 

of three or four processors. Finally, the methods are tested on advection, 

advection-diffusion and wave equations with constant coefficients. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

With the increasing availability of powerful computing machines and the im

provement in numerical techniques finite difference methods are being used 

more and more in the solution of physical problems that arise in various 

branches of continuum physics such as heat flow, diffusion, fluid dynamics, 

magneto-fluid dynamics, electromagnetism, wave mechanics, radiation trans

fer, neutron transfer, elastic vibrations ([IJ, [33]), medical fluid dynamics, 

bioengeering, soil physics and chemistry [1] and population dynamics [16]. 

In the description of these physical problems partial differential equations 

and systems of such equations appear which involve two or more indepen

dent variables that determine the behaviour of the dependent variable. 

It is often useful to classify partial differential equations into two kinds: 

steady-state equations (for example, the Poisson equation and the bihar

monic equation) and evolutionary equations which model systems that un

dergo change as a function of time and they are important inter alia in the 
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description of wave phenomena, thermodynamics, diffusive processes and 

population dynamics [16]. 

According to a natural classification of partial differential equations de

pending upon characteristic directions a partial differential equation may be 

elliptic, parabolic or hyperbolic (see [35], [41], etc). Elliptic equations are of 

the steady-state type whilst both parabolic and hyperbolic partial differential 

equations are evolutionary (unsteady). 

The method of characteristics (see [35], [41], etc) is undoubtedly the 

most effective method for solving hyperbolic equations in one space dimen

sion, but loses its impact in higher dimensions where it is less satisfactory 

[5], and where, therefore, finite differences still have a role to play. So in 

the last two decades much attention has been given in the literature to the 

development, analysis and implementation of stable and accurate methods 

for the numerical solution of partial differential equations with mixed initial 

and boundary conditions specified. 

There are many forms of model hyperbolic partial differential equations 

that are used in analysing various finite difference methods. These range 

from simple one-dependent variable first-order partial differential equations 

through multiple dependent-variable second-order partial differential equa

tions with as many as three space variables [23]; for example, finite-difference 

methods for the wave equation are used in [4), [9], [11], [12], [24], [27], [30], 

[34), [40], [47], [49], and [50] and accurate methods for first-order hyperbolic 

partial differential equations are developed in [5], [20] and [31]. 

In this thesis third- and fourth-order numerical methods for the solution 

of hyperbolic partial differential equations which do not require complex 
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arithmetic will be developed and tested on well-known problems with exact 

solutions known. 

1.2 Method of Lines 

Covering the region, in which a numerical solution is to be solved, by a rec

tangular grid with sides parallel to the axes and then replacing the spatial 

derivatives in the partial differential equation by their finite-difference ap

proximations, thus transforming the partial differential equations, is called 

the Method of Lines. Time-dependent problems in Partial Differential Equa

tions (PDEs) are often solved by the Method of Lines (MOL). By this method 

the initial/boundary-value problem is transformed into an initial-value in sys

tem form; it can be written in vector-matrix form and its solution satisfies 

a recurrence relation. Then numerical methods are developed using suitable 

approximations in this recurrence relation. 

1.3 Rational Approximations to exp( t ) 

Several algorithms for the numerical solution of partial differential equations 

can be generated through an approximation to the elementary function ap

pearing in the recurrence relation, which is satisfied by the exact solution of 

the initial value problem. The use of rational functions for this purpose has 

a long and rich history (see, for example, [4], [5J, [27J, [32J, [38J, [39J, [47J, 

[54J and referrences therein). Perhaps the most well known and frequently 

used are the Pade approximants due to their order and/or stability proper

ties. But methods for solving partial differential equations corresponding to 

higher-order Pade approximations entail the use of complex arithmetic in a 
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splitting context. Third- and fourth-order,L-acceptable rational approxima

tions to exp(t), introduced by Taj and Twizell in [38] and [39], which possess 

real and distinct poles are given, for a real scalar t, as 

and 

1 + (1 - a)t + (i - a + b )t2 

E3(t) = 1 _ at + bt2 - (~ - ~ + b)t3 ( 1. 1 ) 

1 + (1 - a)t + (1 - a + b)t2 + (1 - .!! + b - c)t3 

E (t) = 2 6 2 ( 1. 2 ) 
.. 1 - at + bt 2 - ct3 + (_...L + .!! - k + C)t4 24 6 2 

in which a, b and c are real numbers, respectively. The error constants for 

these rational approximations are 

1 a b -- + - --
832 

and 
1 abc 

- 30 + 8 - 3 + 2 
respectively. These approximations to exp(t) will playa particular role in 

later chapters. 

1.4 Notations 

Usually the theoretical solution of a hyperbolic partial differential equation 

is denoted by u and the theoretical solution of a finite-difference equation is 

denoted by V, while the computed solution is denoted by {;. The position 

at which the solution is taken is shown by appropriate indices, for example, 

u~ denotes the theoretical solution of a certain hyperbolic partial differential 

equation in one space dimension at mesh point (x, t) = (mh, nl) and V::, 

denotes the theoretical solution of a finite-difference scheme at the same 

mesh point. A description of each mesh used in this thesis is given as it is 

introduced. 
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1.5 Analysis of Difference Schemes 

1.5.1 Local Truncation Error 

Suppose that a hyperbolic equation is written in the form 

L(u) = 0 

with exact solution u, and let F( U) = 0 represent the approximating finite

difference equation with exact solution U. Replacing U by u at each mesh 

point occurring in the finite-difference scheme, and carrying out Taylor ex

pansions about (mh, nl), the value of I-I Fm.n{u)- L{ u:!,) (in case of first-order 

hyperbolic equation) or /-2Fm,n{u) - L(u::.) (in case of second-order hyper

bolic equation) is the local truncation error at the mesh point (mil, nl); 

that is, the local truncation error is the difference between the finite-difference 

scheme and the differential equation it replaces. The order of the scheme is 

the order of the lowest-order terms in h and I. 

1.5.2 Local Discretization Error 

The local discretization error is the difference between the theoretical solution 

of the differential and difference equations and is represented at the mesh 

point (mh, nl) by 

z~ = u~ - U~. 

1.5.3 Consistency 

A difference approximation to a hyperbolic equation is consistent if 

local truncation error ~ 0 
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as space and time steps are refined. 

1.5.4 Stability 

A finite difference scheme used to solve a P DE is said to be stable if the 

difference between the theoretical solution of the difference equation and the 

solution actually obtained at the mesh point (mh, nl) remains bounded as n 

increases, for fixed h, I and h, 1 --+ 0 for a fixed value of t = nl. The concept 

of stability is concerned with the boundedness of the solution of the finite

difference equation (Twizell [41]) and this is examined by finding conditions 

under which 

zn = un - {;n 
m m m 

remains bounded as n increases for fixed h, I. 

There are two methods which are commonly used for examining this na

tion of stability of a finite difference scheme for hyperbolic partial differential 

equations namely, the von Neumann Method and the Matrix Method. 

(a) The von Neumann Method 

Consider the local discretization error 

zn = un - ir m m m 

and introduce the error function at a given time level t 

where (3 is real and a is, in general, complex, such that 

z~ = G(x,t) # O. 

To investigate the error propagation as t increases, it is necessary to find a 

solution of the finite-difference equation which reduces to eifh: when t = O. 
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Let such a solution be 

The original error component will not grow with time if 

for all a. This is von Neumann's necessary condition for stability. Here the 

quantity 

is called the amplification factor. 

(b) The Matrix Method 

The totality of difference equations connecting values of U at two neighbouring 

time levels can be written in the matrix form 

( 1. 3 ) 

where Uk(k = n - l,n,n + 1) denotes the column vector 

lut, U;, ... ,u~f, 

b n is a vector which depends on the boundary conditions and D, B, C are 

square matrices of order N (where N is the number of mesh points at each 

time level). In the case of a differential equation with constant coefficients the 

matrices D, B, C are constant, in the case of a variable coefficients problems, 

the matrices D, B, C are evaluated at times (n+ 1)/, nl, (n-1)! respectively. 

Wri ting (l.1) in the form 

follows that a perturbation ZO of the initial conditions will satisfy 

zn+l = D-1 BZn + D-1CZn - 1. 
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This may be written as 

[ zn+I]=[D-IA D-IC][ zn] 
zn I 0 zn-l ( 1. 4 ) 

which is of the form 

where II . " denotes a suitable norm. The necessary and sufficient condition 

for the stability of a scheme based on a constant time step and proceeding 

indefini tely in time is 

II w II~ 1, 

for all n, and so the stability condition for the difference scheme, used III 

this way, depends on obtaining a suitable estimate for " W ". When W is 

symmetric, 

where A.(S = 1,2, ... , N) are the eigenvalues of W and II . 112 denotes the 

L2-norm. Here, max. I ,X. I is the spectral radius of W and W is called the 

amplification matrix. 

1.5.5 Convergence 

A finite-difference method for hyperbolic partial differential equations is said 

to be convergent if the local discretization error 

at the fixed mesh point (xm, tn), tends to zero as the mesh is refined by letting 

h, I -t 0 simultaneously. In carrying out the convergence analysis, it may be 
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convenient to assume that h and I do not tend to zero independently but 

according to a relationship of the form 

I = rho, 

where r is a constant and Q ~ 1 is some parameter. 
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Chapter 2 

Third-Order Numerical 
Methods for the Advection 
Equation 

2.1 Introduction 

There are many finite-difference approximations which can be used to develop 

numerical methods for first-order hyperbolic partial differential equations of 

the type 

8u(x, t) A 8u(x, t) = 0 A 0 
at + ax ' >, ( 2. 1 ) 

with appropriate initial and boundary conditions specified. For example, 

central-difference approximations for Ut and U,r, or alternatively a forward

difference approximation for U,r and a central-difference approximation for 

ut,etc, can be used. But in this chapter only the space derivative in the par

tial differential equation (2.1) is replaced by new third-order finite-difference 

approximations resulting in a system of first-order ordinary differential equa

tions. The solution of this system satisfies a recurrence relation. The accu

racy in time is controlled by choosing a third-order approximation (intro-
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duced by Taj and Twizell [38]) to the matrix exponential function and after

wards a parallel algorithm is developed and tested on well-known problems 

with exact solutions are already known in the literature. 

2.2 The Model Problem 

A typical problem in applied mathematics consisting of the first-order hy

perbolic partial differential equation is the advection equation. This initial/ 

boundary-value problem (rBVP) is given by 

au(x, t) A au(x, t) = 0 
at + ax ' 

A > 0, x > 0, t > 0 ( 2. 2 ) 

with the boundary conditions 

u(O, t) = I(t), t > 0 ( 2. 3 ) 

and the initial condition 

u(x,O) = g(x), x ~ ° ( 2. 4 ) 

where g(O) = /0(0) and g(x) is a given continuous function of x. There 

will exist a discontinuity between the initial-condition and the boundary

condition at origin if 

g(O) =f /0(0). 

2.3 The Method 

Suppose that the solution u(x, t) of {(2.2)-(2.4)} is to be determined in some 

arbitrary region R = [0 $ x ~ XJ x [t > OJ. Dividing the interval [0, XJ into 

N subintervals each of width h, so that N h = X, and the time variable 
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t into time steps each of length I gives a rectangular mesh of points with 

co-ordinates 

(m = 0,1,2, ... , N and n = 0,1,2, ... ) covering the region R = [0 < x < 

X] x [t > 0] and its boundary 8R consisting of the lines x = 0, x = X and 

t = O. 

To approximate the space derivative in (2.2) to third-order accuracy at 

some general point (x, t) of the mesh, assume that it may be replaced by the 

four-point formula 

8u(x, t) 
8x 

1 
= h {a u(x, t) + bu{x - h, t) + eu(x - 2h, t) 

+ du(x - 3h,t)}. ( 2. 5 ) 

Expanding the terms u(x - h, t), u(x - 2h, t) and u(x - 3h, t) as Taylor series 

about (x, t) in (2.5) gives 

h 8u(x, t) 
= (a+b+e+d)u(x,t) 

8x 

+ (-b - 2e - 3d) h 8u(x, t) 
8x 

+ ~(b 4 9d) h'l8'lu(x, t) 
2! + e + 8x2 

+ ~(-b - Be _ 27d) h3 ff'u(x, t) 
3! 8x3 

+ -.!.(b + I6e + BId) h4 {)4U(X, t) 
4! 8x4 

+ O(hri) as h -+ O. ( 2. 6 ) 

Equating powers of hi(i = 0, 1,2,3) in (2.6) gives 

a + b+ e+ d = 0, 

-b - 2e - 3d = 1, 
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b + 4c + 9d = 0, ( 2. 7 ) 

-b- Be - 27d O. 

The solution of the linear system (2.7) is 

Thus 

ou(x, t) 
ox 

11 3-1 
a = 6' b = -3, c = 2' d = T· ( 2. 8 ) 

1 
- 6h {-2u(x - 3h, t) + 9u(x - 2h, t) - 18u(x - h, t) 

h3 ()'4u{x i) 
+ llu(x,t)} +"4 ox'" + O(h4) as h --+ 0 ( 2. 9) 

is the desired third-order approximation to the first-order space derivative at 

(x, i). 

Equation (2.9) is valid only for (x, i) = (xm, tn) with Tn = 3,4, ... , N. 

To attain the same accuracy at the end points (Xl, tn) and (Xl, in), special 

formulae must be developed which approximate ou( x, t) / ax not only to third

order but also with dominant error term ~h304u(x, i)/ax4 for x = Xl, X2 and 

t = tn. To achieve both of these, five-point formulae will be needed in 

each case. Consider, then, the approximation to ou(x, t)/ox at the point 

(x, i) = (xt, in): let 

6h ou(x, t) = 
ax 

a u(x - h, t) + bu(x, i) + eu(x + h, i) 

3 ()4u(x,i) 
+ du(x+2h,i)+eu{x+3h,t)+-h4 a" 

2 x 

+ O(h5) as h --+ O. ( 2. 10 ) 

Then expanding the terms u{x - h, t), u(x + h, t), u(x + 2h, t) and u(x + 3h, t) 

as Taylor series about the point (x, t) gives 

6h au(x, t) = 
ax 

(a + b + c + d + e) u( x, i) 
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au(x, t) 
+ (-a + c + 2d + 3e) h ax 

1 a2u(x,t) 
+ ,(a+c+4d+ge)h2 a 2 2. x 

~(- 8d 27 )h3iJ3U(x,t) + 3! a + c++ e ax3 

1 8"u(x t) 
+ ,(a + c + I6d + 81 e + 36) h" a" 4. x 

+ O(h5) as h ~ O. ( 2. 11 ) 

Equating powers of hi(i = 0,1,2,3,4) in (2.11) gives 

a+b+c+d+e = 0, 

-a + c + 2d + 3e = 6, 

a + c + 4d + ge = 0, ( 2. 12 ) 

-a + c + 8d + 27 e = 0, 

a + c + I6d + 8Ie = -36. 

The solution of the linear system (2.12) is 

a = -3, b = 1, c = 0, d = 3, e = -1. ( 2. 13 ) 

Thus, at the mesh point (Xl! tn), the desired third-order approximation to 
8,,(zo,t) • h d . ", 84 ,,(.,t) . 

8zo WIt omlDant error term.. 8zo IS 

au(x, t) 
ax 

1 
= 6h {-3u(x - h, t) + u(x, t) + 3 u(x + 2h, t) - u(x + 3h, t)} 

+ h
3 

8"u(x, t) O(h") h 0 ( 2. 14 ) 
4 ax" + as ~. 

Suppose, now, that at the point (x, t) = (X2, tn) the approximation to 

the first-order space derivative au(x, t)/ax is given by 

6h ou(x, t) = a u(x - 2h, t) + bu(x - h, t) + cu(x, t) 
ax 

3 a4u(x,t) 
+ du(x+h,t)+eu(x+2h,t)+2 h4 ax4 

+ O(h5) as h ~ O. ( 2. 15 ) 
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Then expanding the terms u(x-2h, t), u(x-h,t), u(x+h, t) and u(x+2h, t) 

as Taylor series about the point (x, t) gives 

6h au(x, t) = (a + b + c + d + e) u(x, t) 
ax 

+ 
au(x, t) 

( - 2a - b + d + 2e) h ax 

1 a 2u(x t) 
+ ,(4a+b+d+4e)h2 a 2' 2. x 

+ 2.( -8a - b + d + 8e) h3lJ3U(X, t) 
3! ax3 

1 fru(x t) 
+ ,(16a + b + d + 16e + 36) h4 a" 4. x 

+ O(h5) as h -.. ° 
and equating the powers of hi(i = 0,1,2,3,4) in (2.16) gives 

a + b + c + d + e + f = 0, 

-2a-b+d+2e - 6, 

4a + b + d + 4e = 0, 

-8a - b + d + 8e 0, 

16a + b + 16c + d + 16e = -36. 

The solution of the linear system (2.17) is 

a=-I, b=2, c=-9, d=10, e=-2. 

( 2. 16 ) 

( 2. 17 ) 

( 2. 18 ) 

Hence, at the mesh point (X2' tn), the approximation to {)u(x, t)/8x is 

au(x, t) 

ax 
1 

= 6h {-u(x - 2h, t) + 2u(x - h, t) - 9u(x, t) + 10u(x + h, t) 

h3 a4u(x t) 
- 2u(x + 2h, t)} +"4 ax; + O(h4) as h -.. o. (2. 19 ) 

Applying (2.2) with (2.9), (2.14) and (2.19) as appropriate to the N 

mesh points of the grid at time level t = in leads to the system of first-order 
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ordinary differential equations given in vector-matrix form by 

~;t) = -,xAU(t) + b(t), t > 0 ( 2. 20 ) 

with initial distribution 

U(O) = g ( 2. 21 ) 

in which U(t) = [Udt), ... ,UN(t)f, b(t) = 6
Ah[3f(t),f(t),2f(t),0,,,.,O]T 

g = [g(Xt),g(X2),'" ,g(XN)]T, T denoting transpose and 

1 0 3 -1 0 
2 -9 10 -2 
9 -18 11 

1 -2 9 -18 11 ( 2. 22 ) A=-
6h -2 9 -18 11 

0 -2 9 -18 11 NxN 

Solving (2.20) subject to (2.21) gives the solution 

U(t) = exp( -,xtA)U(O) + l' exp[-,xA(t - s)]b(s)ds ( 2. 23 ) 

which satisfies the recurrence relation 

1
1+1 

U(t + l) = exp(-,xlA)U(t) + 1 exp[-,xA(t + /- s)]b(s)ds. ( 2. 24 ) 

Approximating the matrix exponential function exp( -MA) in (2.24) by 

exp( -,xIA) = D- ' N ( 2. 25 ) 

where 

( 2. 26 ) 

is non-singular and 

( 2. 27 ) 
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which is analogous to (1.1) and the integral term by 

where 81 =f 82 =f 83 and WI, W2 and W3 are matrices, it can be shown that 

(i) when b(s) = [1,1,1,.", IJT 

( 2. 29 ) 

where 

Ml = -(..\Atl(exp( --\IA) -/), ( 2. 30 ) 

(ii) when b(s) = [s,s,s,,,.,slT 

( 2. 31 ) 

where 

M2 = -(-\Atl {t exp( --\IA) - (t + I) 1- (-\Atl(exp( --\IA) -/)} 

( 2. 32 ) 

and 

(iii) when b(s) = [s2,s2, ... ,s2JT 

( 2. 33 ) 

where 

M3 = _(-\Atl {t 2exp(--\IA) - (t + /)2/_ 2(-\A)-I{tcxp(lA) - (t + J) I 

- (-\A)-l(exp(--\IA) - I)}}. ( 2. 34 ) 

Solving (2.29), (2.31) and (2.33) simultaneously gives 

17 



and 

or 

and 

-1 
W3 = ( )( ) {8182Ml - (82 + 83)M2 + M3} . 

82 - 83 83 - 81 

Taking 81 = t, 82 = t + ~ and 83 = t + 1 gives 

WI - ~ {(t
2 + ~It + ~ )MI - (2t + ~/)M2 + M3} , 

W2 - ~; {(t2 + It)Ml - (2t + I)M2 + M3} I 

2{ 2 I (I } W3 = /2 (t +'2 t )MI - 2t+'2)M2+M3 . 

( 2. 38 ) 

( 2. 39 ) 

( 2. 40 ) 

( 2. 41 ) 

( 2. 42 ) 

( 2. 43 ) 

Using (2.30), (2.32) and (2.34) in (2.41), (2.42) and (2.43) gives 

W 2 [2 3 /2 1 
I = J2 (t + '2/t + "2)( -~A)- (exp( -~/A) - I) 

- (2t + ~/)( _~Atl {t exp( -~IA) - (t + I) I - (~A)-l (exp( -~/A) - I)} 

- (~A)-l {t2exp(-~IA) - (t + 1)2/_ 2(~Atl{texp(-~/A) - (t + I) I 

- (~Arl(exp(-~/A) - In}] , (2. 44 ) 

-4( W2 = [2 (t 2 + 1t)(-~A)-l(exp(-~IA) - I) 

+ (2t + /)(AA)-I {t exp( -AlA) - (t + I) I - (~A)-1 (exp( -~/A) - I)} 

- (~A)-l {t2exp( -~IA) - (t + 1)21 - 2(AAtl {t exp( -MA) - (t + I) I 
- (~A)-l(exp(-MA) - In}] ( 2. 45 ) 

18 



and 

W 2 [2 I J2 1 
3 = i2 (t + 2t + "2)( -AA)- (exp( -AlA) - I) 

or 

+ (2t + ~)(AAtl {texp(-AIA) - (t + 1)1 - (AA)-l(exp(-AIA) - I)} 

- (AA)-l {t2exp( -AlA) - (t + 1)21 - 2(AAt l {t exp( -AlA) - (t + I) I 

- (AA)-l(exp( -AlA) - In}] ( 2. 46 ) 

2 [ 3 12 WI - [2((AAtI)3 _(t2 + 2ft + "2)(AAfZ(exp(-AIA) - I) 

+ (2t + ~/)(AA)2 {t exp( -AlA) - (t + I) I - (AAtl(exp( -AlA) - I)} 
- (AA)2 {t2exp(IA) - (t + 1)2 1- 2(AA)-1{t exp( -AlA) - (t + I) I 

- (AAtl(exp( -AlA) - In}] I ( 2. 47 ) 

W2 = ~24((AAtl)3 [_({Z + It)(AA)2(exp(-AIA) - I) 

and 

+ (2t + I)(AA)2 {t exp( -AlA) - (t + I) I - (AAtl(exp( -AlA) - I)} 

- (AA)2 {t2exp(lA) - (t + 1)2 I - 2(AAtl {t exp( -AlA) - (t + /) I 

- (AA)-l(exp( -AlA) - I)}}] ( 2. 48 ) 

2 [ I 12 W3 - [2(A-1)3 _(t 2 + 2t + "2)A2(exp(IA) - I) 

+ (2t + ~)(AA)2 {t exp( -AlA) - (t + I) 1- (AA)-I(exp( -AlA) - I)} 
- (AA)2 {t 2exp(lA) - (t + 1)21 - 2(AA)-1 {t exp( -AlA) - (t + I) I 

- AA)-l (exp( -ALA) - I)}}] . ( 2. 49 ) 

Then it is easy to show that 

2 {A2[2 3Al 
WI = 12 ((AA)-1)3 -(-2- A2 + TA + 21) exp( -AlA) 
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+ (~l A + 21) } , 

W2 = - ~ ((~A)-1)3 ({2/ + ~/A) exp( -~/A) 

+ (21 - ~IA)} , 

2 { ~I W3 - 12 ((~Atl)3 -(2/ + "2 A )exp( -~/A) 

+ (21 _ 3~1 A + ~2/2 A2)} 
2 2 . 

Using (2.25) in (2.50)-(2.52) gives 

WI = ~{(1 - (4 - 9al + 12a2)~/A} D- I
, 

W2 = ~I {(I + (1 - 3a1 + 6a2)~/A} D- I 

and 

Hence (2.24) can be written as 

( 2 .. jO ) 

( 2. 51 ) 

( 2. 52 ) 

( 2. 53 ) 

( 2. 54 ) 

1 
U(t + I) = exp( -~/A)U(t) + Wlb(t) + W2b(t + '2) + W3b(t + I). ( 2. 56 ) 

2.4 Algorithm 

Assuming that rJ, r2 and r3 are the real zeros of 

( 2. 57 ) 

then /J given by (2.26) can be factorized as 

~I ~I AI 
D = (I - -A)(I - -A)(I - -A) 

rl r2 r3 
( 2. 58 ) 
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and then (2.56) can be written in partial fraction form as 

where 
1 - (1 - adrj + (~ - al + a2)rJ 

elj = n3. (1 _ !:J.) , 
z = 1 r, 

j = 1,2,3, 

ii=j 
1 - (4 - gal + 12a2)rj 

c2i = n3 . (1 _ ~ ) , 
1 = 1 r, 

j = 1,2,3, 

ii=j 
1 + (1 - 3al + 6a2)rj 

c3i = n3 . (1 _ !:J.) , 
1 = 1 r, 

j = 1,2,3 

i i= j 

and 

c . _ 1 - (3 - gal + 12a2)ri + (1 - 3al + 6a2)rl 4) - n3. (1 _ ~) , , = 1 r, 

j = 1,2,3. 

i i= j 

so that 
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where 

or 

where 

Let 

then 

>'1 
Ai=/--A, i=1,2,3, 

rj 

3 

U(t + l) = L A;-IZi 
i=1 

A -I 
i Zi = Yi 

in which Yl, Y2 and Y3 are the solutions of the systems 

AiYi = Zi, i = 1,2,3. 

( 2. 61 ) 

( 2. 62 ) 

( 2. 63 ) 

( 2. 64 ) 

respectively. This algorithm is presented in tabular form in Table 2.1. 

2.5 Numerical Examples 

In this section only a representative of many other methods based on (2.25) 

will be used. So taking 

and 

65431 
al = 50000 

171151 
a2 = 300000 

Taj and Twizell [38], which give a very small local truncation error, gives 

rl = 2.18837132239, r2 = 2.33987492248, r3 = 2.35690139372 
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as the real zeros of (2.57). These values produce 

Cll = -176.185066638, Cn = 2051.11129521, el3 = -1873.92622858, 

C2l = -224.317807049, C22 = 2358.75587416, C23 = -2133.43806711, 

C3l = -19.0008161810, C32 = 326.498892802, C33 = -306.498076621, 

C41 = -182.736963963, C42 = 1594.78928297, C43 = -1411.05231901 

2.5.1 Example 1 

Consider the one space variable partial differential equation 

ou + ou _ 0 0 < x < 1, t > O. at ax - , 
subject to the boundary conditions 

u(O, t) = -sin(2k1rt), t > 0, 

where k is a positive integer and the initial condition 

u(x,O) = sin(2k1rx), 0 ~ x ~ 1. 

This problem has theoretical solution 

u(x, t) = sin{2k1r(x - t)} 

( 2. 65 ) 

( 2. 66 ) 

( 2. 67 ) 

( 2. 68 ) 

(see Oliger [31]). The integer k gives the number of complete waveR in the 

interval ° ~ x ~ 1. Using the algorithm developed in section 2.4 with 

the information given at the beginning of this section, the problem ((2.65)

(2.67)} is solved for h = s.!o and I = io so that r = 8.0(r = k), using k = 2 

and 4 and compared with the results obtained by Arigu et al. [5J whose 

algorithm requires the use of complex arithmetic. The theoretical solutions 
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and the numerical solutions for k = 2 and k = 4 at time t = 0.5 and 

t=lO.O respectively are depicted in Figure 2.1 - 2.4. In these experiments the 

method behaves smoothly over the whole interval 0 ::; x ::; 1 and no contrived 

oscillations are observed. The apparent decay in amplitude in Figure 2.4 is 

due to the build-up of round-off errors. Maximum errors at time t=O.5, 1.0, 

2.0, 4.0, 10.0, are given in Table 2.2. 

2.5.2 Example 2 

Consider again the one space variable partial differential equation 

au au 
at + ax = 0, 0 < x < 1, t > O. ( 2. 69 ) 

subject to the boundary conditions 

u(O,t) = e- t
, t > 0, ( 2. 70 ) 

and the initial condition 

( 2. 71 ) 

This problem has theoretical solution 

u(x,t) = er
-

t ( 2. 72 ) 

(see Arigu et al. [5]), which decays as time increases. Using once again 

the algorithm developed in Section 2.4 with the information given at the 

beginning of this section the problem {(2.69)-(2. 71)} is solved for h = 8~ 
and I = l~O and compared once again with the results obtained by Arigu 

et al. [5]. In these experiments the method behaves smoothly over the 

whole interval 0 ::; x ::; 1 and no contrived oscillations are observed. From 

Table 2.3 it is clear that accuracy of this method is much much better than 
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the O(h2 + [4) method of Arigu et al. From Table 2.4 it is also clea.r tha.t 

the method is third-order at time t=l.O and 10.0 because, as h and I are 

both successively halved, the errors decrease in magnitude by a factor of 

8( approximately). Theoretical and numerical solutions at time t= 1.0, 10.0 

are depicted in Figure 2.5 - 2.8. Maximum errors at time t=0.5, 1.0, 2.0, 4.0 

and 10.0 are given in Table 2.3. 

2.6 Non-linear Problem 

Consider the first-order non-linear hyperbolic partial differential equation 

au ~ au2 
_ ° at + 2 ax - , ,O$x$X, t>O ( 2. 73 ) 

where u = u(x, t), which is ubiquitous in wave theory and in quantum me

chanics, with the boundary conditions 

u(O, t) = f(t), t > 0 ( 2. 74 ) 

and the initial condition 

u(x,O) = g(x), 0:5 x :5 X ( 2. 7.5 ) 

where g(x) is a given continuous function of x. There will exist a discontinuity 

between the initial condition and the boundary condition at the origin if 

g(O) 'f f(O}. 

Equation (2.73) may be written as 

au au 
at + u ax = 0, 0 :5 x :5 X, t > O. ( 2. 76 ) 
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Using the same discretization and finite-difference approximations as in the 

first-order linear case gives 

dU(t) = A(U(t))U(t) + b(t), t > 0 
dt 

with initial distribution 

U(O) = g 

in which 

U(t) = [U1(t), ... , UN(t)]T, 

b(t) 1 ]T = 6h [3U1(t)f(t), U2(t)f(t), 2U3(t)f(t), 0, ... ,0 

g = [g(Xt},g(X2),,,.,g(XN)]T, 

T denoting transpose and 

1 
A = A(U(t)) = -

6h 

-U1(t) 
-2U2(t) 
-9U3 (t) 

2U .. (t) 

o 
9U2(t) 

18U3 ( t) 
-9U .. (t) 

-3U1(t) 
-lOU2(t) 
-l1U3 (t) 

18U .. (t) -l1U .. (t) 

( 2. 77 ) 

( 2. 78 ) 

o 

o 2UN(t) -9UN(t) 18UN(t) -llUN(t) NxN 
( 2. 79 ) 

Regarding this non-linear problem Algorithm 1 is modified and is given in 

tabular form as Algorithm 2 in Table 2.5. 

By way of example, consider the problem 

au a(~u2) _ 0 at + ax -, ,0 ~ x ~ 1, t > 0 ( 2. 80 ) 

or 
au au 
-+u-=O ,O<_x<_I, t>O at ax ' ( 2. 81 ) 

with the boundary condition 

u(O, t) = 0, t > 0 ( 2. 82 ) 
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and the initial condition 

u(x,O)=x, O~x~l 

which has theoretical solution 

x 
u(x, t) = -1-' +t 

( 2. 83 ) 

( 2. 84 ) 

(see [17]). Using Algorithm 2 the problem {(2.81)-(2.83)} is solved for h = l~ 

and r = 1.0,2.0, using 150, 300 and 600 time-steps and compared with the 

results of the Lax-Wendroff O(h2 + 13 ) method [17]. In these experiments the 

method behaves smoothly over the whole interval 0 ~ x ~ 1 and no contrived 

oscillations are observed. The theoretical solution and the numerical solution 

at time t = 15.0 are depicted in Figure 2.9 and Figure 2.10 respectively. 

Maximum errors which occured at x = 1.0 are given in Table 2.6. 
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Table 2.1: Algorithm 1 

Steps II Processor 1 I Processor 2 I Processor 3 

1 /, rl, Vo,A I,r:h Vo, A I, r3, Vo, A 
Input Cll, C2l! C3l , Cn Cn, C22, C32, C42 C13, C23, C33, c..3 

2 
Compute / - ,\1 A 

rl 
/-MA 

rl 
/_ .\IA 

r3 

3 / - ,\1 A / - ,\1 A / - ,\1 A 
rl rl r3 

Decompose = L1Ul = L2U2 = L3U3 

4 b(t), b(t + 4) b(t), b(t + 4) b( t), b( t + 4) 
Evaluate b(t + I) b(t + /) b(t + /) 

5 Wl(t) = ~(C21b(t) W2(t) = ~(C22b(t) W3(t) = ~(C23b(t) 
+4C31 b(t+4) +4C32b(t + 4) +4C33b( t + 4) 

Using +c..lb(t + I)) +C42 b(t + I)) +C43b( t -+ /)) 

6 L1U1Yl(t) L2U2Y2(t) L3 U3Y3(t) 
Solve = Cll V ( t) + WI ( t ) = cnV(t) + W2(t) = C13V(t) + W3(t) 

7 V(t + /) = Yl(t) + Y2(t) + Y3(t) 

8 GO TO Step 4 for next time step 
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Table 2.2: Maximum errors for Example 1 at t = 0.5, 1.0,2.0,4.0, 10 

It" 0.5 1.0 2.0 4.0 10.0 

k=2 -0.6160-3 -0.1100-2 -0.1100-2 -0.1100-2 -0.1100-2 

* 0.2710-2 0.2690-1 0.2610-1 0.2600-2 -

k=4 -0.9620-2 -0.1810-1 -0.1810-1 -0.1810-1 -0.1810-1 

* - - - - 0.6410-1 

* Maximum absolute errors of Arigu et al.[5] O(h2 + P) Method 

Table 2.3: Maximum errors for Example 2 at t = 0.5,1.0,2.0,4.0, 10.0 

It" 0.5 1.0 2.0 4.0 10.0 

-0.3940-6 -0.4500-6 -0.1650-6 -0.2240-7 -0.5550-10 

* - -- 0.5110-2 0.2150-4 0.8690-6 

* Maximum absolute errors of Arigu et al.[5] O(h'J + 14) Method 

Table 2.4: Maximum errors for Example 2 showing third-order accuracy. 

h, I " 0.1 0.05 0.025 0.0125 

t = 1.0 -0.1920-03 -0.2360-04 -0.3080-05 -0.423D-06 

t = 10.0 0.3410-05 0.5570-06 0.8200-07 0.112D-07 
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Table 2.5: Algorithm 2 

I Steps Processor 1 Processor 2 Processor 3 

1 I, rl! Vo I, r2, Vo I, r3, Vo 
Input Cn, C2l! C3l, en C12, C22, C3l, e42 C13, C23, C33, C .. 3 

2 
Update A A A 

3 
Compute / _ AI A / _ AI A /_ AlA 

rl r2 r3 

4 / _ AlA / _ AlA / _ AlA 
rl r2 r3 

Decompose = Ll UI = L2U2 = L3U3 

5 b(t), b(t + 4) b(t), b(t + 4) b(t), b(t + 4) 
Evaluate b(t + I) b(t + I) b(t + I) 

6 Wl(t) = ~(C21b(t) W2(t) = ~(C22b(t) W3( t) = ~ (C23b( t) 
+4C3l b(t + 4) +4C32 b(t + 4) +4C33b(t + 4) 

Using +C .. l b( t + I)) +C"2b(t + I» +C"3b(t + I» 

7 L1U1Yl(t) L2Ul Y2(t) L3U3Y3(t) 
Solve =CllU(t)+Wl(t) = CI2 U(t) + W2(t) = CI3U(t) + W3(t) 

8 U(t + I) = Yl(t) + Y2(t) + Y3(l) 

9 GO TO Step 2 for next time step 
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Table 2.6: Maximum errors for non-linear problem 

" Time steps I h I r I Maximum absolute errors I • 
" 150 0.1 1 0.540-03 0.790-03 

150 0.1 2 0.360-03 0.380-03 

300 0.1 1 0.lBO-03 0.120-02 

300 0.1 2 0.110-03 0.610-03 

600 0.1 1 0.330-04 -

600 0.1 2 0.660-05 -

* Maximum absolute errors of Lax-Wendroff O(h2 + [3) Method [17](p. 426) 
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Figure 2.1: Theoretical solution of example I for k = 2 at time t=O.5 
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Figure 2.2 
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Figure 2.2: Numerical solution of example 1 for k = 2, h = &!o and 1= io at 
time t=O.5 
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Figure 2.3 
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Figure 2.3: Theoretical solution of example 1 for k = 4 at time t=10.0 
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Figure 2.4 
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Figure 2.4: Numerical solution of example 1 for k = 4, It = 6!O and I = ~ at 
time t=10.0 
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Figure 2.5: Theoretical solution of example 2 at time t= 1.0 
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Figure 2.6: Numerical solution of example 2 for h = ;0 and I = I~O at time 
t=l.O 
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Figure 2.7 
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Figure 2.7: Theoretical solution of example 2 at time t=lO.O 
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Figure 2.8: ~umerical solution of example 2 for It = io and I = l~O at time 
t=10.0 
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Figure 2.9 
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Figure 2.9: Theoretical solution of Non-Linear Problem at t=15. 
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Figure 2.10 
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Figure 2.10: Numerical solution of Non-Linear Problem using h=O.1 and 
r=1.0 at t=15. 

41 

10 



Chapter 3 

Fourth-Order Numerical 
Methods for the Advection 
Equation 

To develop fourth-order numerical methods for first-order hyperbolic partial 

differential equations of the type (2.1) with appropriate initial and boundary 

conditions specified, the space derivative in the partial differential equation 

is replaced by new fourth-order finite-difference approximations resulting in 

a system of first-order ordinary differential equations the solution of which 

satisfies a recurrence relation. The accuracy in time is controlled by a fourth

order approximation to the matrix exponential function which is introduced 

by Taj and Twizell [39]. 

3.1 The Method 

Assume that the combination 

au(x - 4h,t) + bu(x - 3h,t) + cu(x - 2h,t) + du(x - h,t) + eu(x,t) 
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gives the fourth-order approximation to ~; at (x, t). Then expanding the 

terms u(x - 4h,t),u(x - 3h,t),u(x - 2h,t) and u(x - h,t) as Taylor series 

about the point (x,t) gives 

a u(x - 4h, t) + bu(x - 3h, t) + cu(x - 2h, t) + du(x - h, t) + e u(x, t) 

= (a+b+c+d+e)u(x,t) 

ou + (-4a - 3b - 2e - d)h ox 

1 o'2u 
+ ,(16a + 9b + 4e + d)h 2

0 
'2 

2. x 
1 3~u + -(-64a - 27b - Be - d)h -
3! ox3 

1 ~u 
+ ,(256a + BIb + 16e + d)h"

o 
.. 

4. x 
1 ~u + -(-1024a - 243b - 32e - d)h 5

-
5! ax!> 

+ O(h6) as h ~ O. ( 3. 1 ) 

Equating the powers of hi(i = 0,2,3,4) in (3.1) to zero and the power of h 

to 1 gives 

e+d+c+b+a = 0 

-d - 2c - 3b - 4a = 
d+4c+9b+16a = 0 ( 3. 2 ) 

-d - 8e - 27b - 64a = 0 

d + 16e + 81 b + 256a = O. 

The solution of this linear system is 

1 
a =-, 

4 

Thus 

-4 
b=T' e = 3, d = -4, 

25 
e =-. 

12 

1 
4'u(x-4h,t) -

4 25 
3u(x - 3h, t) + 3 u(x - 2h, t) - 4 u(x - h, t) + 12 u(x, t) 

_ h ou _ !hrJ)5
u + O(h6) as h -+ O. ( 3. 3 ) 

ax 5 ax5 
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or 

1 
12 {3u(x - 4h, i) - 16u(x - 3h, t) + 36u(x - 2h, t) - 48u(x - h, t) 

+25u(x, tn ( 3. 4 ) 

Thus the desired approximation to ~; is given by 

au 1 
ax - 12h {3u(x - 4h, t) - 16u(x - 3h, t) 

+ 36u(x - 2h, t) - 48u(x - h, t) + 25u(x, t)} 

1 .. a5
u O( Ii) h + 5 h ax5 + h as -+ O. ( 3. 5 ) 

Equation (3.5) is valid only for (x, t) = (xm, tn) with m = 4,5, ... , N. To 

attain the same accuracy at the end point (Xl, tn), (X'l' in) and (X3, in) special 

formulae must be devolped which approximate ~; not only to fourth-order 

but also with dominant error term lh"~ for X = Xl, X2, X3 and t = tn. 

Consider then the approximation to ~; at the point (x, t) = (Xl, tn); let 

12h ~: = a u(x - h, t) + bu(x, t) + cu(x + h, t) + du(x + 2h, t) 

12 5 a5u 
+ eu(x+3h,t)+f u(x+4h,t)+5 h axs 

+ 0(h6) as h -+ O. ( 3. 6 ) 

Expending the terms u(x - h,t),u(x + h,t),u(x + 2h,t),u(x + 3h,t) and 

u( X + 4 h, t) as Taylor series abou t the point (x, t) gi ves 

12h
au 

= (a+b+c+d+e+f)u(x,t) 
ax 

au 
+ ( -a + c + 2d + 3e + 4f)h ax 

1 a2u + 2(a+c+4d+ge+16f)h'la
x

'l 

1 ~u 
+ ii( -a + c + 8d + 27e + 64f)hl axl 

1 ~u 
+ 24 (a + c + 16d + 81e + 256f)h" ax" 
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1 12 fl)u 
+ 120 (-a + c + 32d + 243e + 1024/ + 5" )h 5 

ax 5 

+ O(h6) as h -+ O. 

Equating the powers of hi(i = 0,1,2,3,4,5) in (3.7) gives 

b+a+c+d+e+/ = 0 

-a + c + 2d + 3e + 4/ = 12 

a + c + 4d + ge + 16/ = 0 

-a + c + 8d + 27 e + 64/ = 0 

a + c + 16d + 81 e + 256/ = 0 

-a + c + 32d + 243e + 1024/ = -288. 

The solution of the linear system (3.8) is 

a = 0, b = -25, c = 48, d = -36, e = 16, / = -3. 

thus 

au(x, t) 

ax 

1 
= 12h {-25u(x, t) + 48u(x + h, t) 

( 3. 7 ) 

( 3. 8 ) 

- 36u(x + 2h, t) + 16u(x + 3h, t) - 3u(x + 4h, t)} 

1 B5u + Sh4 ax5 + O(h5) as h -+ O. ( 3. 9 ) 

Consider, now the approximation to 8vJ:,t) at the point (x, t) = (X:h tn); let 

12h:: = au(x-2h,t)+bu(x-h,t)+cu(x,t)+du(x+h,t) 

12 lJ5u 
+ cu(x + 2h,t) + /u(x + 3h,t) + 5' h5 ax5 

( 3. 10 ) 

Expending the terms u(x - 2h, t), u(x - h, t), u(x + h, t), u(x + 2h, t) and 

u(x + 3h, t) as Taylor series about the point (x, t) gives 

12h
Bu 

= (a+b+c+d+e+f)u(x,t) 
ax 
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iJu + (-2a - b + d + 2e + 3f)h ax 
1 iJ2u 

+ 2(4a + b+ d + 4e + 9f)h
2 ax2 

1 3~u + "6( -8a - b + d + 8e + 27 f)h ax3 

1 ~u 
+ 24 (16a + b + d + 16e + 81f)h

4 ox4 

1 12 585U 
+ 120 (-32a - b + d + 32e + 243/ + 5")h ax5 

+ O(h6) as h --+ O. ( 3. 11 ) 

Equating the powers of hi(i = 0,1,2,3,4,5} in (3.11) gives the system 

c+b+a+d+e+/ = 0 

-b - 2a + d + 2e + 3/ = 12 

b + 4a + d + 4e + 9/ ::: 0 ( 3. 12 ) 

-b - 8a + d + 8e + 27/ = 0 

b + 16a + d + 16e + 81/ = 0 

- b - 32a + d + 32e + 243/ = -288 

which has solution 

Thus 

8u(x, t) 
ax 

a=3, b=-18, c=20, d=-12, e=9, /=-2. 

1 
= 12h {3u(x - 2h, t) - 18u(x - h, t) 

+ 20u(x, t) - 12u(x + h, t) + 9u(x + 211, t) - 2u(x + 311, t)} 

1 4 a5
u 5 ) + "5 h ax" + O(h } as h --+ O. ( 3. 13 

is the desired fourth-<>rder approximation to alt,t) with dominant error term 
h' 8~u(r.t) . 
"5 8r5 at the pomt (X2' tn). 
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let 

Consider, next the approximation to OUJ:,I) at the point (x, t) = (X3, tn); 

12h f)u = 
f)x 

a u(x - 3h, t) + bu(x - 2h, t) + cu(x - h, t) + du(x, t) 

12 f)5 u + eu{x + h,t) + /u(x + 2h,t) + 5" h5 f)x 5 

+ O(h6) as h ~ O. ( 3. 14 ) 

Expanding the terms u(x - 3h,t),u(x - 2h,t),u(x - h,t),u(x + h,t) and 

u(x + 2h, t) as Taylor series about the point (x, t) gives 

12h au 
ax 

= (a + b + c + d + e + f)u(x, t) 

au 
+ ( -3a - 2b - c + e + 2f)h-

{)x 
1 {)~u 

+ -(9a + 4b + c + e + 4f)h~ {) ~ 
2 x 
1 3~U 

+ - ( - 27 a - 8b - c + e + 8 f) h -
6 ox3 

1 ~u 
+ 24 (81a + 16b + c + e + 16f)h" ax" 

1 12 {)6U 

+ -(-243a - 32b - c+ e + 32/ + _)h6
_ 

120 5 axt; 

+ O(h6
) as h ~ O. ( 3. 15 ) 

Equating the powers of hi(i = 0,1,2,3,4,5) in (3.15) gives 

d+e+c+b+a+/ = 0 

e - c - 2b - 3a + 2/ = 12 

e + c + 4b + 9a + 4/ = 0 ( 3. 16 ) 

e - c - 8b - 27a + 8/ = 0 

e + c + 16b + 81 a + 16/ = 0 

e - c - 32b - 243a + 32/ = -288 
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The solution of the linear system (3.16) is 

Thus 

8u{x, i) 
Ox 

a = 2, b = -9, c = 12, d = -20, c = 18, / = -3. 

1 
= 12h {2u(x - 3h, t) - 9u{x - 2h, t) 

+ 12u(x - h, t} - 20u(x, t) + 18u{x + h, t) - 3u{x + 2h, i)} 

1 .. 05U (5) h ( ) + Sh OX5 + 0 h as -+ O. 3. 17 

is the desired approximation to But,,) at the point (X3, tn). 

Applying (2.2) with (3.5) or (3.9) or (3.13) or (3.17) as appropriate to 

the N mesh points at the time level t = nl, leads to the system of first-order 

ordinary differential equations given in vector-matrix form as 

cIU(t} 
---;Jt = -~AU(t) + b(t), t > 0 

with initial distribution 

in which 

U(O) = g 

U(t) = [Ul(t), ... , UN(t)]T, 
b(t) - l;h [0, -3/(t), -2/(t), -3/(t), 0, ... , O]T, 

g = [g(xd, g(Xl),'" ,g(XN )]T, 

T denoting transpose and 

-25 48 -36 16 -3 0 
-18 20 -12 9 -2 
-9 12 -20 18 -3 

I -16 36 -48 2.5 0 
A=- 3 -16 36 -48 25 12h 

3 -16 36 -48 25 

o 3 -16 36 -48 25 NxN 

48 
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( 3. 19 ) 
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It is observed that the matrix A has distinct eigenvalut>s with negative rt>al 

parts for N=7, 9, 19 and 39 given in Appendix A. 

Solving (3.18) subject to (3.19) gives the solution 

U(t) = exp(-..\tA)U(O) + fo' exp[-AA(t - s)]b(s)ds ( 3. 21 ) 

which satisfies the recurrence relation 

1
,+1 

U(t + l) = exp( -"\IA)U(t) +, exp[-"\A(t + 1- s)]b(s)ds. ( 3. 22 ) 

Approximating the matrix exponential function exp( -ALA) in (3.22) by 

exp( -ALA) = D-1 N ( 3. 23 ) 

where 

is non-singular and 

which is analogous to (1.2) and the integral term by 

where 81 f; 82 f; S3 f; s" and W), W2 , W3 and W" are matrices, it can be 

shown that 

(i) when b(8) = (l,l,l, ... ,I)T 

( 3. 27 ) 

where 

( 3. 28 ) 
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(ii) 1 [ JT Wlen b(8) = 8,8,8, ... ,8 

( 3. 29 ) 

where 

M2 = (AAr l {(t + 1)1 - t exp( -ALA) - (AA)-I(l- exp( -ALA»}, 

( 3. 30 ) 

( 3. 31 ) 

where 

M3 = (AA)-I {(t + 1)2 I - t 2exp( -ALA) - 2(AAr 1 {(t + 1)1 - t exp( -ALA» 

- (AArl(I - exp( -AlA»}} I ( 3. 32 ) 

and 

where 

M. = pArt {(t + 1)31- t3exp( -AlA) 

- 3(AA)-' {(t + 1)2 I - t'lexp( -AlA) 

- 2(AAr' {(t + 1)1 - t exp(lA) 

- (AArt(l- exp( -AlA»))}} . 

Solving (3.27), (3.29), (3.31) and (3.33) simultaneously gives 

WI _ [ (.'13 - .'12)(.'1. - S'l)(s. - .'13) 1 
(.'12 - .'1.)(.'13 - sd(s. - Sd(S3 - S'l)(s. - .'12)(.'1. - .'13) 

( 3. 33 ) 

( 3. 34 ) 

X [S'lS3s.M, - (.'12.'13 + .'12.'1. + s3s.)M'l + (.'12 + .'13 + s.)M3 - M.J, 
( 3. 35 ) 

50 



W2 = [ (S3 - sd(s .. - sd(s .. - S3) 1 
(82 - 81)(83 - 81)(8 .. - SI)(83 - 82)(84 - 82)(84 - 83) 

X [8IS3S .. MI - (SIS3 + SIS .. + s3s .. )M2 + (Sl + S3 + s .. )M3 - M .. J , 

( 3. 36 ) 

W3 = [ (S2 - S.)(S .. - S.)(S .. - S2) 1 
(S2 - S.)(S3 - S.)(S .. - S')(S3 - S2)(S .. - S2)(S .. - S3) 

x [SIS2S .. Ml - (SIS2 + SIS .. + s2s .. )M2 + (SI + S2 + s .. )M3 - M .. J , 

( 3. 37 ) 

W.. _ [ (S2 - S.)(S3 - 8.)(83 - 82) 1 
(S2 - Sd(83 - S.)(S .. - 8.)(83 - S2)(8 .. - S2)(84 - 83) 

X [SIS2S3Ml - (SIS2 + S283 + 8183)M2 + (81 + 82 + 83)M3 - M .. J , 

( 3. 38 ) 

or 

( 3. 39 ) 

( 3. 40 ) 

( 3. 41 ) 

( 3. 42 ) 
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Taking 8] = t, 82 = t + 4, 83 = t + ~I and 8. = t + I give~ 

W 9 {( 3 2 11 2 2 3 2 11 2 ] = 2/3 t + 2ft + -I t + -I )MI - (3t + 41t + -I )M2 
9 9 9 

+ {3t + 2l)M3 - M.} , ( 3. 43 ) 

W2 = -~ {(tJ + ~/t2 + ~/2t)MI - (3t 2 + .!E./t + ~/2)M2 
2[3 3 3 3 3 

+ (3t + ~/)M3 - M.} , ( 3. 44 ) 

W 27 {( 3 4 2 1 2 ) (2 8 1 2 
J = 213 t + '3 1t + '31 t MI - 3t + '3 ft + '31 )M2 

+ (3t + ~/)M3 - M. } , ( 3. 45 ) 

W 9 {3 2 22) (2 22 
4 = - 213 (t + It + 91 t MI - 3t + 2ft + 91 )M2 

+ (3t + I)MJ - M.}. ( 3. 46 ) 

Using (3.28), (3.30), (3.32) and (3.34) in (3.43)- (3.46) simultaneously gives 

WI = 2~3 [(t3 + 2ft2 + 191/2t + ~/3)(AA)-I(l- exp( -AlA)) 

- (3t 2 + 4ft + 1
9
1/2 )(AA)-1 {(t + 1)1 - t exp( -,xIA) 

- (AAtl(I - exp( -ALA))} 

+ (3t + 2/)(AAtl {(t + 1)21 - t2exp( -ALA) 

-2(AAtl {(t + 1)1 - t exp( -,xIA)) 

- (AA)-I(I - exp( -ALA))}} 

- (AA)-l {(t + 1)31- t3exp( -AlA) 

-3(AA)-1 {(t + 1)21- t 2exp( -ALA) 

-2(AA)-1 {(t + 1)/ - t exp( -AlA) 

- (AA)-l(1 - eXP(-AIA))}}}], 

W2 - - ~~ [(t3 + ~lt2 + ~/2t)(AArl(l- exp(-MA)) 

10 2 
(3t2 + "3lt + '3(Z)(AA)-1 {(t + 1)/ - t exp( -AlA) 
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- (AA)-I(J - exp( -AlA»} 

+ (3t + ~/)(AA)-l {(t + 1)2/ - t2exp( -AlA) 

-2(AArl ({t + 1)/ - t exp( -ALA» 

- (AA)-I(J - exp( -ALA»}} 

(AAr l {(t + 1)3 1- t3exp( --\IA) 

-3(AA)-1 {(t + 1)2/ - t2exp( -ALA) 

-2(AA)-1 ({t + 1)/ - t exp( -AlA) 

- (AA) -1 (/ - exp( - AI A» } } } J ' 

W3 = :~ [(t3 + ~1t2 + 1r1t)(AA)-I(J - exp( -ALA» 

8 1 
- (3t 2 + 3lt + 3/2)(AArl {(t + 1)/ - t exp( -ALA) 

- (-\Arl(J - exp( --\IA»} 

+ (3t + ~/)(AArl {(t + 1)2/ - t2exp( -ALA) 

-2(-\Arl ({t + 1)/ - t exp( --\IA» 

- (-\A)-I(J - exp( -MA))}} 

- (-\Arl {(t + 1)3/ - t3exp( -ALA) 

-3(AAr l {(t + 1)2/ - t 2exp( -ALA) 

-2(AAr l ({t + 1)/ - t exp( -AlA) 

- (-\At1(J-exp(-AIA»}}}], 

W. = - 2~3 [(t3 + U2 + ~/2t)(AA)-I(I - exp( -ALA» 

2 
(3t 2 + 21t + g/2)(-\A)-1 {(t + 1)/ - t cxp( -AlA) 

- (AA)-I(J - exp( -ALA»} 

+ (3t + I)(AA)-1 {(t + l)2/ - t2exp( -AlA) 

-2(AA)-1 {(t + 1)/ - t exp( -ALA» 
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or 

- (~A)-I(I- exp( -MA»}} 

(~A)-I {(t + 1)3J - t3 exp( -~/A) 

-3(AAr l {(t + l)2J - t2exp( -~/A) 

-2(~Arl Ht + 1)1 - t exp( -~/A) 

- (AArl(l- exp( -~/A»}}}] , ( 3. 50 ) 

WI - 2~3 [(AA)-1]4 [(t3 + 2lt2 + 191/2t + ~/3)(~A)3(1 - exp( -~/A» 

- (3t 2 + 4lt + 191/2)(~A)3«t + 1)1 - t exp( -~/A» 

+ (3t 2 + 4lt + 1; 12)(~A)2(1 - exp( -MA» 

+ (3t + 2/)(~A)3«t + 1)21 - t'l exp( -MA» 

- 2(3t + 2/)(AA)2«t + 1)/ - t exp( -~/A» 

+ 2(3t + 2/)(~A)(/ - exp( -~/A» 

- (AA)3«t + 1)3J - t3exp(-~/A» 

+ 3(~A)'l«t + 1)2 J - t2 exp( -~/A» 

- 6(~A)(t + I)J - t exp( -~/A» 

+ 6(/ - exp( -AlA»], ( 3. 51 ) 

W2 = - ~~[(AA)-1]4 [(t3 + ~lt'l + ~/2t)(~A)3(1_ exp(-~IA» 
10 2 

- (3t 2 + :fit + 3/2)(~A)3«t + 1)/ - t exp( -~/A» 

10 2 + (3t 2 + :fit + 3/2)(~A)2(1- exp( -~/A» 

+ (3t + ~/)(~A)3«t + I)'lJ - t:l cxp( -~IA» 
5 

- 2(3t + 31)(~A)2«t + 1)/ - t exp( -~IA» 

5 + 2(3t + 3/)(~A)(I- exp( -~/A» 
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- (,xA)3((t + 1)3/_ t3exp(-,xIA)) 

+ 3(,xA)2((t + 1)2/ - t2 exp( -,xIA)) 

- 6(,xA)((t + 1)/ - t exp( -,xIA)) 

+ 6(/ - exp( -,xIA))] , ( 3. 52 ) 

W3 = ~/~ [(,xAtl]4 [(t3 + ~1t2 + ~rlt)(,xA)3(1- exp( -,xIA)) 

8 1 
- (3t2 + 31t + 3/2)(,xA)3((t + 1)/ - t exp( -,xIA)) 

8 1 + (3t2 + 31t + 3/2)('\A)2(I - exp( -'\IA)) 

+ (3t + ~/)('\A)3((t + 1)2/ - t2 exp( -'\IA)) 

4 
- 2(3t + a/)(,xA)2((t + 1)/ - t exp( -,xIA)) 

4 + 2(3t + 3/)(,xA)(I - exp(-,xIA)) 

_ (AA)3((t + 1)3/ - t3 exp( -'\IA)) 

+ 3('\A)2((t + 1)2/ - t2 exp( -'\IA)) 

- 6('\A)((t + 1)/- texp(-MA)) 

+ 6(1 - exp( -'\IA))), ( 3. 53 ) 

W4 = - 2~3[(AA)-l]4 [(t3 + /t 2 + ~/2t)('\A)3(J - exp( -'\IA)) 

2 
- (3t2 + 21t + g/2)('\A)3((t + 1)/ - t exp( -'\IA)) 

+ (3t2 + 21t + ~/2)('\A)2(J - exp( -,xIA)) 

+ (3t + 1)(,xA)3((t + 1)2/ - t 2 exp( -,xIA)) 

- 2(3t + 1)(,xA)2((t + 1)/ - t eXIJ( -'\IA)) 

+ 2(3t + I)('\A)(/ - exp( -MA)) 

- (,xA)3((t + 1)3/ - t3exp(-.\IA)) 

+ 3(,xA)2((t + 1)2/_ t2 exp( -,xIA)) 
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- 6('\A)((t + 1)1 - 1 exp( -AlA) 

+ 6(1 - exp( -'\IA)]. 

Simplification gives 

( 3. 54 ) 

WI = _(PA)-l),' t3 + 2/t' + -/'t + _/3 
- (I + 1)(31' + 41t + _I') 9 [{ 11 2 11 

2J3 9 9 9 

+ (3t + 2/)(t + I)' - (t + 1)3} ('\A)3 

+ {3t' + 4lt + 191/2 - 2(3t + 2/)(t + I) + 3(t + I)'} ('\A)' 

+ {2(3t + 2/) - 6(t + I)} ('\A) + 61 

+ {{ _(t3 + 2lt' + 1; (It + ~/3) + t(3t2 + 41t + 1
9
1/,) 

- (3t + 2/)t2 + t3} PA)3 

+ {-(3t 2 + 41t + 1
9
1/,) + 2t(3t + 2/) - 3t:l} ('\A):l 

+ {-2(3t + 2/) + 6t)} ('\A) - 61} exp( -'\A)] , ( 3. 55 ) 

W2 = -_(PA)-1)4 t3 + _It' + -/'t - (t + 1)(3t' + -It + _I') 27 [{ 5 2 10 2 
213 3 3 3 3 

+ (3t + ~/)(t + I)' - (t + 1)3} pA)3 

+ {3t2 + 1; It + ~/' _ 2(3t + ~/)(t + I) + 3(t + I)'} PA)' 

+ {2(3t + ~/) - 6(t + I)} ('\A) + 61 

+ {{ _(t3 + ~It' + ~/:lt) + t(3t' + 1; It + ~/:l) 

- (3t + ~/)t2 + t3} pA)3 

+ {-(3t 2 + 13° It + ~/') + 2t(3t + ~/) - 3t2} ('\A)' 

+ {-2(3t + ~/) + 6t)} ('\A) - 61} tXp( -.\A)] , ( 3. 56 ) 

W3 _ ~(('\A)-1)4 [{t3 + ~/t' + !/2t - (t + 1)(3t' + ~It + !/') 
2/3 3 3 3 3 

+ (3t + ~I)(t + I)' - (t + 1)3} ('xA)3 
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+ {3t2 + ~tt + ~/2 - 2(3t + ~/)(t + l) + 3(t + 1)2} (..\A)2 
333 

+ {2(3t + ~/) - 6(t + l) } (..\A) + 61 

{{ 
4 1 8 1 + _(t3 + 3 lt2 + 3 /2t ) + t(3t2 + 3ft + 3/2) 

- (3t + ~/)t2 + t3} (AA)3 

+ {-(3t 2 + ~lt + ~/2) + 2t(3t + ~/) - 3t2} (AA)2 

+ {-2(3t + ~/) + 6t)} (AA) - 61} exp( -AA)] , ( 3. 57 ) 

W4 = -~«,xA)-1)4 [{t3 + /t 2 + ~/2t - (t + 1)(3t2 + 2lt + ~rl) 
2[3 9 9 

+ (3t + I)(t + I? - (t + 1)3} (AA)3 

+ {3t2 + 2lt + ~/2 - 2(3t + I)(t + I) + 3(t + 1)2} (AA)2 

+ {2(3t + I) - 6(t + In (AA) + 61 

+ {{ _(t3 + tt2 + ~/2t) + t(3t2 + 21t + ~/2) 
- (3t + l)t2 + t3} (AA)3 

+ {-(3t 2 + 21t + ~/2) + 21(31 + I) - 3{1} (AA)2 

+ {-2(3t + I) + 6t)} (AA) - 61} exp( -AA)]. 

Then it is easy to show that 

WI - 2~3 [(,xA)-1)4 { 61 - 2AIA + ~(AIA)2 

( 3. 58 ) 

- (61 + 4 AlA + 1: (AIA)2 + ~(AIA)3) exp( -ALA)} ,( 3. 59 ) 

W2 - - ~~ [(AA)-1]4 {61 - ~AIA + ~(..\IAf' 

- (61 + 13° AlA + ~(AIA)2) exp( -AlA) } , ( 3. 60 ) 

W3 = 27 [(AAfl)4 {61 - ~AIA + ~(AIA)2 
2[3 3 3 

- (61 + ~AIA + ~(AlA)2) exp( -AlA)} , ( 3. 61 ) 
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W.. = -~[(AA)-II'. {61 - 4AIA + .!..!.(AIA)l - ~(A1A)3 
2P 9 9 

- (61 + 2 ALA + ~(AIA)l) exp( -ALA)} . ( 3. 62 ) 

Using (3.23) in (3.59)-(3.62) gives 

I 
WI = 24 {(31 - (-19 + 78al - 216a2 + 324a3)AIA 

+(3 - 8a1 + 12a2)(AIA)2} D- I
, ( 3. 63 ) 

3 
W2 = 161 {(21 + (-16 + 56al - 144a2 + 216a3)AIA 

+(1 - 4a1 + 12a2 - 24a3)(AIA)2} D-1, ( 3. 64 ) 
3 

W3 = 81 {(I + (7 - 26a1 + 72a2 - 108a3)AIA 

-(1 - 4al + 12a2 - 24a3)(AIA)2} D- 1
, ( 3. 6.5 ) 

I 
W" - 481 {(61 - (44 - 168al + 432a2 - 648a3)AIA 

+( 11 - 44al + 132a2 - 216a3)(AlAf" 

- (2 - 8al + 24a2 - 48a3)(AIA)3} D- I
. ( 3. 66 ) 

Hence (3.22) can be written as 

I 2 
U(t + /) = exp( -AlA)U(t) + WI b(t) + W2b(t + 3) + W3b(t + 3/) + W"b(t + I). 

( 3. 67 ) 

3.2 Algorithm 

Assuming that rlt r2, r3 and r" are the real zeros of 

( :~. 68 ) 

then D given by (3.24) can be factorized as 

AI AI Al AI 
D = (J - -A)(I - -A)(1 - -A)(I - -A), 

rl rl r3 r4 
( 3. 69 ) 
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in which, for i = 1,2,3,4, 
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2 3 

Ej = 6 - PlOr, + Pl1 r, - pur, 

n4 
. (1 - ~) } = 1 r J 

j#i 

where 

PI = 1 - al 

1 
1'2 - - - at + a2 

2 
1 al 

1'3 = - - - + a2 - a3 
6 2 

P4 = -19 + 78al - 216a2 + 324a3 

ps = 3 - 8al + 12a2 

1'6 - 16 - 56al + 144a2 - 216a3 

P7 - 1 - 4al + 12a2 - 24a3 

Ps = -7 + 26al - 72a2 + 108a3 

pg = 1 - 4al + 12a2 - 24a3 

PIO = 44 - 168al + 432a2 - 648a3 

Pll = 11 - 44al + 132a2 - 216a3 

P12 = 2 - 8al + 24a2 - 48a3. 

Then 
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which gives 

where 

Let 

then 

and 

U(t + /) 

(1- .!.A1AtlZi = Yi, i = 1,2,3,4 
ri 

1 
(1- -~IA)yj = Zi, i = 1,2,3,4 

rj 

U(t + /) = Yl + Y:z + Y3 + Y. 

in which y., Y:z, Y3 and Y. a.re the solutions of the systems 

(l - .!.A1A)Yi = Zi, i = 1,2,3,4 
ri 

( 3. 72 ) 

( 3. 73 ) 

( 3. 74 ) 

( 3. 75 ) 

respectively. This algorithm is presented in tabular form in 'I'abl(· ~J.l. 
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3.3 Numerical Examples 

In this section a representative of many other methods ba.'ied on (:3.23) will 

be used. So taking 

and 

64 
at =-

25 
1 

al = -
3 

547 
a3 = 600 

Taj and Twizell [39], which give a small local trunction error, it is found that 

rt =-0.931580908085238, rl=-1.81471985800593, 
r3=-2.00000000000000, r .. =-2.26051914612921 

are the real zeros of (3.24). These values produce 

Al = 0.211455566708523, 
A3= 108.000000000009, 
B t = -92.8251781314359, 
B3=-81O.000000000074, 
Ct = 68.1850562154185, 
C3 =972.000000000081, 
D t = -37.3634484931130, 
D3=-486.000000000044 , 
Et = 255.352513419023, 
E3 =4212.00000000038, 

3.3.1 Example 1 

A 2= -53.3503067445635, 
A .. = -53.8611488221542, 
B 2= 164.030220881621, 
B .. = 141.194951249882, 
C2=-160.226330382964 , 
C .. =-217.958125892541, 
D l = 399.961234456115, 
D .. = 124.402214036502, 
E l =-:3296.46069786R71 , 
E .. =-1164.89181555069 

Consider the one space variable partial differential equation 

au au 
at+ax=O' O<x<l, t>O. 
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subject to the boundary conditions 

u(O, t) = -sin(2k7rt), t > 0, ( 3. 77 ) 

where k is a positive integer and the initial condition 

u(x,O) = sin(2k7rx), 0 ~ x $ 1. ( 3. 78 ) 

This problem has theoretical solution 

u(x, t) = sin[2k1l'"(x - i)] ( 3. 79 ) 

(see Oliger [31)). The integer k gives the number oC complete waves in the 

interval 0 $ x ~ 1. Using the Algorithm 1 with the inCormation given at the 

beginning of this section the problem ({3. 76)-(3. 78)} is solved Cor h = 6!0 
and I = io so that r = 8.0(r = *), using k = 2 and 4 and compared with 

the results obtained by Arigu et al. [5] whose method requires the use of 

complex arithmatic. The numerical solutions Cor k = 2 and k = 4 at time 

t = 1.0 and t=1O.0 respectively are depicted in Figure 3.1 and Figure 3.2. 

In these experiments the method behaves smoothly over the whole interval 

o $ x $ 1 and no oscillations are observed. Maximum errors at time t=O .. '), 

1.0, 2.0, 4.0, 10.0, are given in Table 3.2. 

3.3.2 Example 2 

Consider again the one space variable partial differential equation (3.2) 

au au at + ax = 0, 0 < x < 1, t > O. ( :J. 80 ) 

subject to the boundary conditions 

u(O,t) = e-', t > 0, ( 3. 81 ) 
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and the initial condition 

( 3. 82 ) 

This problem has theoretical solution 

u(x, t) = ez - I ( 3. 83 ) 

(see Arigu et al. [5]), which decays as time increases. Using once again 

the algorithm developed in Section 3.2 with the information given at the 

beginning of this section the problem {(3.80)-(3.82)} is solved for h = 8
1
0 and 

I = l~O and compared once again with the results obtained by Arigu et al. 

[5]. The numerical solutions at time t=1.0 and t=IO.0 are depicted in Figure 

3.3 and Figure 3.4 respectively. In these experiments the method behaves 

smoothly over the whole interval 0 ~ x ~ 1 and no contrived osciJIations are 

observed. Maximum errors at time t=0.5, 1.0, 2.0, 4.0 and 10.0 are given 

in Table 3.3. In addition, the experiments are performed for h, 1=0.1, 0.05, 

0.025, 0.0125 at time t=1.0, 10.0 and it is noted from Table 3.4 that the 

method is fourth-order accurate for large values of h and I because, as h and 

I are both successively halved, the error decreases in magnitude by a factor 

of 16(approximately). However, the accuracy ill affected for smaller values 

of h and I because so many arithmetic operations cause a.1I accumulation of 

round-off error. 
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Table 3.1: Algorithm 1 

Steps Processor 1 Processor 2 Processor 3 Processor 4 

1 I, rh V o, A, Al I, r2, V o, A, A2 I, r3. V o, A. A3 I. r ... VOl A, A .. 
Input BI.CI,DI.EI B2• C2, D2 , E2 B3• C3, D3• E3 B ... C ... D ... E .. 

2 
Comp 1- ~'A 

rl 
1- ).,/A 

r, 
1- ).,/A 

r3 
1- ~, A 

r. 

3 1- ~'A 1- ~I A I - ,\1 A I - ,\1 A 
rl r, r3 r. 

Decom = LlUl = L2U2 = L3U3 = L .. U .. 

4 b I = b(t) bl = b(t) bI = b(t) bl = b(t) 
b2 = b(t + 1) b2 = b(t + i) 

Comp b3 = b(t + ¥) b3 = b(t + -t) 
b1 = b(t + ~} 
b3 = b(t + :f} 

b:l = b(t + i) 
b3 = b(t + ~) 

b .. = b(t + I) b .. = b(t + I) b .. = b(t + I) b .. = b(t + I) 

5 WI(t) Wl(t) W3(t) w .. (t) 
Using = "'8 {2B l b l = "'8 {2B2b I = .. ~ {2B3 b l = 18 {2B .. b l 

+9CI b2 +9C2bl +9C3 b1 +9C.lb2 

+18Dlb3 +18D2b3 +18D3 b3 +18D .. b3 

+ Elb .. } + Elb .. } + E3b .. } +E .. b .. } 

6 LIUlYI(t) L2U2Y2(t} L3U3Y3(t} L .. U .. y .. (t) 
Solve = AIU(t) = AlV(t) = A3U (t) = A .. U(t) 

+Wl (t) +W2(t} +W3(t) +w .. (t} 

7 U(t + l) = ydt) + Y2(t) + Y:I(t) + y .. (t} 

8 GO TO Step 4 for next time step I 
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Table 3.2: Maximum errors for Example 1 at t = 0.5,1.0,2.0,4.0,10 

I t II 0.5 1.0 2.0 4.0 10.0 

k=2 -0.1320-3 0.2410-3 0.242D-3 0.2420-:1 0.2420-3 

* 0.2710-2 0.2690-1 0.2610-1 0.2600-2 --~ 

k=4 -0.3950-2 -0.693D-2 -0.693D-2 -0.693D-2 -0.693D-2 

* - - - - 0.6410-1 

* Maximum absolute errors of Arigu et al. O(h'l + 13
) Method 

Table 3.3: Maximum errors for Example 2 at t = 0.5,1.0,2.0,4.0,10.0 

II t II 0.5 1.0 2.0 4.0 10.0 

0.419050-6 -0.282700-7 -0.571210-8 -0.436060-9 -0.142740-11 

* -- -- 0.5110-2 0.2150-4 0.8690-6 

• Maximum absolute errors of Arigu d al. O(h2 + 1") Method 

Table 3.4: Maximum errors showing fourth-order accuracy for Example 2 at 
t=l.O and 10.0 

h, I 0.1 0.05 0.025 0.0125 

t = 1.0 -0.13664 0-4 -0.819960-6 -0.46864 D- 7 -0 .. 1)85.',)4 D-8 
I 

I; 

t = 10.0 -0.174170-8 -0.99378D-10 -0.614530-11 -0.99222D-12 
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Figure 3.1: Numerical solution of example 1 for k = 2, h = ts!o and I = 'io at 
time t=O.5 
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Figure 3.2: N umerica.l solution of example 1 for k = 4, h = e!o and I = io at 
time t=10.0 
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Figure 3.3 
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Figure 3.3: Numerical solution of example 2 for h = io and I = 1~ at time 
t=1.0 
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Figure 3.4: Numerical solution of example 2 for h = 8~ and I = 1;0 at time 
t=1O.0 
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Chapter 4 

Third-Order Methods for the 
Advection-Diffusion Equation 

4.1 The Model Problem 

A typical problem in applied mathematics is the advection-diffusion equation. 

This initial/ boundary-value problem (IBVP) is given by 

au(x, t) + au(x, t) _ aa2u f( t) 
at a ax - tJ ax2 + x, , a,/3 > 0, 0 < x < X, t > 0 

with the boundary conditions 

and the initial condition 

u(O, t) - h1(t), t> 0 

u(X, t) - h2(t), t > 0 

u(x,O)=g(x), O~x~X 

(4. 1 ) 

( 4. 2 ) 

( 4. 3 ) 

( 4. 4 ) 

where g(x) is a given continuous function of x and h1(t), h2(t) are given 

continuous functions of t. 
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4.2 The Method 

Dividing the interval [0, X] into N + 1 subintervals each of width h, so that 

(N + l)h = X, and the time variable t into time steps each of length I gives 

a rectangular mesh of points with co-ordinates 

(m = 0,1,2, ... ,N + 1 and n = 0,1,2, ... ) covering the region R = [0 < x < 

X] x [t > 0] and its boundary 8R consisting of the lines x = 0, x = X and 

t = 0. 

To approximate the first-order space deri vati ve in (4.1) to third -order 

accuracy at some general point (x, t) of the mesh, assume that it may be 

replaced by the four-point formula 

8u(x, t) 
8x - *{au(x-h,t)+bu(x,t)+CU(X+h,t) 

+ du(x + 2h, tn. ( 4. 5 ) 

Expanding the terms u(x - h, t), u(x + h, t) and u(x + 2h, t) as Taylor series 

about (x, t) in (4.5) gives 

h 8u(x,t) _ (a+b+c+d)u(x,t) 
8x 

( 2d) h
8u(x, t) 

+ -a+c+ 8x 

+ ~( 4d) h282u(x, t) 
2! a + c+ 8x2 

+ ~(_ 8d)h3lJ3U(x,t) 
3! a + c+ 8x3 

+ ~( 16d) h4 tru(x, t) 
4! a+c+ 8x" 

+ O(h") as h ~ O. 
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Equating powers of hi(i = 0,1,2,3) in (4.6) gives 

a + b+ c+ d - 0, 

-a+c+2d - 1, 

a + c+ 4d - 0, 

-a +c+8d - O. 

The solution of the linear system (4.7) is 

Thus 

8u(x, t) 
8x 

-1 -1 -1 
a = 3' b = 2' c = 1, d = T' 

1 
- 6h {-2u(x - h, t) - 3u(x, t) + 6u(x + h, t) 

( 4. 7 ) 

( 4. 8 ) 

h3 84u(x t) 
u(x + 2h, tn + 12 8X4' + O(h4) as h ~ O( 4. 9 ) 

is the desired third-order approximation to the first-order space derivative at 

(x, t). 

Equation (4.9) is valid only for (x, t) = (xm' tn) with m = 1,2, ... ,N - 1. 

To attain the same accuracy at the end point (XN' tn), a special formula 

must be developed which approximates 8u(x, t)/8x not only to third order 

but also with dominant error term 112h3B4u(x, t)/8x4 for x = XN and t = tn. 

To achieve this, a five-point formula will be needed. Consider, then, the 

approximation to 8u(x, t)/8x at the point (x, t) = (XN' t n ): let 

6h 8u(x, t) 
8x - a u(x - 3h, t) + bu(x - 2h, t) + cu(x - h, t) 

1 4B4U(X,t) 
+ du(x,t)+eu(x+h,t)+2"h 8x4 

+ O(h5) as h ~ O. ( 4. 10 ) 
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Then expanding the terms u(x - 3h, t), u(x - 2h, t), u(x - h, t) and u(x + h, t) 

as Taylor series about the point (x, t) gives 

6h
ou

(x,t) (a+b+c+d+e)u(x,t) 
ox 

au(x, t) + ( -3a - 2b - c + e) h ax 

1 a2u(x t) 
+ ,(9a++4b+c+e)h2 a 2' 2. x 

1 ) 3l)3U(X,t) + - ( -27 a - 8b - c + e h -..,~....:.. 
3! ax3 

+ ~(81a + +16b + c + e - 12) h404u
a(:, t) 4. x 

+ O( h5
) as h ~ O. ( 4. 11 ) 

Equating powers of hi(i = 0,1,2,3,4) in (4.11) gives 

a+b+c+d+e - 0, 

-3a - 2b - c+ e - 6, 

9a + 4b+ c+ e - 0, ( 4. 12 ) 

-27a - 8b - c + e - 0, 

81a + 16b + c + e - -12. 

The solution of the linear system (4.12) is 

a=-1, b=5, c=-12, d=7, e=l. ( 4. 13 ) 

Thus, at the mesh point (XN, tn), the desired approximation to ovJ:") is 

ou(x, t) 1 
ox - 6h {-u(x - 3h, t) + 5u(x - 2h, t) - 12 u(x - h, t) + 7u(x, t) 

h3 04u(x t) 
+ u(x + h, in + 12 ox4' + O(h4) as h ~ O. ( 4. 14 ) 

Third-order approximations to the second-order space derivative in (4.1) 

(introduced in [38]) are given by 

02U(x, t) 1 
OX2 = 12h2 {l1u(x - h, t) - 20u(x, t) + 6 u(x + h, t) + 4u(x + 2h, t) 
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- u(x + 3h, tn + h
3 
8S~(~, t) + O(h4) as h -+ O. 

12 x 
( 4. 15 ) 

for (x,t) = (xm,tn ), m = 1,2, ... ,N - 2, 

82u(x, t) 1 
8x2 - 12h2 {u(x - 3h, t) - 6u(x - 2h, t) + 26 u(x - h, t) 

- 40u(x, t) + 21u(x + h, t) - 2u(x + 2h, tn 

h
3 

8
S
u(x, t) O(h4) as h -+ O. 

+ 12 8xs + ( 4. 16 ) 

for (x, t) = (XN-b tn) and 

82u(x,t) 1 
8x2 = 12h2 {2u(x - 4h, t) - llu(x - 3h, t) + 24 u(x - 2h, t) 

- 14u(x - h, t) - 10u(x, t) + 9u(x + h, tn 
+ h

3 
8

S
u(x, t) + O(h4) as h -+ O. 

12 8xs 

for (x, t) = (XN, tn). 

( 4. 17 ) 

Applying (4.1)-(4.4) with (4.9), (4.14), (4.15), (4.16) and (4.17) as ap

propriate to the N mesh points of the grid at time level t = tn leads to the 

system of first-order ordinary differential equations given in vector-matrix 

form as 

~;t) = AU(t) + bet), t > 0 

with initial distribution 

U(O) = g, 

where 

( 4. 18 ) 

( 4. 19 ) 

U(t) = [U1(t), ... , UN(t)V, 
1 

bet) = [!t(t) + 12h2 (4ah + ll,O)hl(t), ll(t), 13(t), ... , IN-3(t), 

{3 1 
IN-2(t) - 12h2h2(t),IN-l(t) + 12h2(2ah - 2{3)h2(t), 

1 
IN(t) + 12h2 (-2ah + 9{3)h2(t)V, 

g = [g(Xl),g(X2), .. ' ,9(XN)]T, 
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T denoting transpose and 

1 
A=-

12h2 

in which 

al = 4a:h + 11,8, 
a4 = 2ah + 4{3, 
a1 = -6,8, 

a2 
al 

0 

alO = -12ah + 21,8, 
al3 = -10a:h + 24,8, 

a3 a4 as 
a2 a3 a4 as 
al a2 a3 a4 

al a2 
al 

a6 a1 
all al2 

a2 = 4ah + 11,8, 
as = -(3, 
as = 4a:h + 26{3, 
an = 2{3, 
al4 = 24ah - 14,8, 

0 

as 

a3 a4 as 
a2 a3 a4 
as a9 alO 
al3 al4 au NxN 

a3 = -12a:h + 6{3, 
a6 =,8, 
a9 = 6a:h - 40,8, 
al2 = 2ah - 11,8, 
au = -14a:h - 10{3. 

Solving (4.18) subject to (4.19) gives the solution 

U(t) = exp(tA)U(O) + fot exp[(t - s)A]b(s)ds 

which satisfies the recurrence relation 

{HI 
U(t + I) = exp(IA)U(t) + Jt exp[(t + /- s)A]b(s)ds. 

( 4. 20 ) 

( 4. 21 ) 

( 4. 22 ) 

Approximating the matrix exponential function exp(lA) in (4.22) by 

exp(lA) = D- I N ( 4. 23 ) 

in which 

D 22 (1 1 )33 = I - aliA + a21 A - - - -at + a2 I A 
6 2 

( 4. 24 ) 

is non-singular and 

( 4. 25 ) 
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as in Chapter 2 and the integral term by 

rt+1 

it exp((t + 1- s)A)b(s)ds = Wlb(sl) + W2b(S2) + W3b(S3) (4. 26 ) 

where SI =f S2 =f S3 and WI, W 2 and W3 are matrices. 

These matrices can be obtained by putting" = -1 in (2.53)-(2.55) giving 

I _ 
WI = '6{(I + (4 - gal + 12a2)IA} D I, ( 4. 27 ) 

W. 21{ } 1 () 2 - 3" (I - (1 - 3al + 6a2)IA D- , 4. 28 

W3 = f{(I + (3 - 9al + 12a2)lA + (1 - 3al + 6a2)/2 A2} D-1
• 

( 4. 29 ) 

Hence (4.22) can be written as 

1 
U(t + I) = exp(lA)U(t) + Wlb(t) + W2b(t + 2) + W3b(t + I). (4. 30 ) 

4.3 Algorithm 

The algorithm is very similar to that given in Section 2.4 of Chapter 2 but 

it is included in the interests of completeness. 

Assuming that rl, r2 and r3 are the real zeros of 

( 4. 31 ) 

then D given by (4.24) can be factorized as 

I I I 
D = (I - -A)(I - -A)(I - -A) 

rl r2 r3 
( 4. 32 ) 

and then (4.54) can be written in partial fraction form as 

U(t + I) = {Cll (I - ~A)-I + c12(I - ~A)-l + CI3(I _ -\l A)-I} U(t) 
rl r2 r3 
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1 {( 1 I ( I) I I I} + -6 C21 1- -A)- + C22 I - -A - + C23(i- -A)- bet) 
rl r2 r3 

21 { 1 I I I II} 1 + -3 C31(i- -At + C32(i- -At + c33(I - -A)- bet + -2) 
rl r2 r3 

I { 1 1 I I I I} + - C41(I - -At + c42(I - -At + C43(I - -At bet + l) 
6 ~ ~ ~ 

( 4. 33 ) 

where 

j = 1,2,3, 

i = 1,2,3 

and 

C . = 1 + (3 - gal + 12a2)rj + (1 - 3al + 6a2)rJ 
4) n3. (1 _ !J.) , 

1=1 r, 

i = 1,2,3. 

i:f:i 
So that 

U(t + I) - All{cu U(t) + ~(C2Ib(t) + 4c3l b(t + ~) + C4l b(t + I))} 

+ A;I{CI2U(t) + ~(C22b(t) + 4C32b(t + ~) + C42b(t + I))} 

where 

l{ 1 I } + A3" C13U (t) + 6(C23b(t) + 4C33b(t + 2') + C43b(t + I)) , 

1 
Ai = I - - A, i = 1, 2, 3, 

ri 

78 

( 4. 34 ) 

( 4. 35 ) 



or 

where 

Let 

then 

3 

U(t + I) = E A;lZi 
;=1 

A- 1z - y' i i - • 

in which yt, Y2 and Y3 are the solutions of the systems 

AiYi = Z;, i = 1,2,3. 

( 4. 36 ) 

( 4. 37 ) 

( 4. 38 ) 

respectively. This algorithm is presented in tabular form in Table 4.1. 

4.4 Numerical Example 

In this section only a representative of many other methods based on (4.23) 

will be used. So taking 

and 

as in chapter 2, gives 

65431 
at = 50000 

171151 
a2 = 300000' 

r1 = 2.18837132239026, r2 = 2.33987492247039, r3 = 2.356901393726.52 

as the real zeros of (4.55). These values produce 

ell = -176.185066638, C12 = 2051.11129521, C13 = -1873.92622858, 
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C21 = -224.317807049, C22 = 2358.75587416, C23 = -2133.43806711, 

C31 = -19.0008161810, C32 = 326.498892802, C33 = -306.498076621, 

C41 = -182.736963963, C42 = 1594.78928297, C43 = -1411.05231901 

By the way of an example consider the one space variable partial differ

ential equation 

au au a 2u 
at + 5 ax = p ax2 ' 0 < x < 1, t > O. ( 4. 39 ) 

subject to the boundary conditions 

h (t) _ ( ) _ f2 (-(2 + 5t)2) 
I - u O,t - V2+7ii exp 4(2 + pt) , t > 0, ( 4. 40 ) 

f2 (-(1 + 5t)2) 
h2(t) = u(l, t) = V 2+7ii exp 4(2 + pt) ,t > 0, ( 4. 41 ) 

and the initial condition 

g(x) = u(x,O) = exp (-(x; 2)2), t > O. ( 4. 42 ) 

This problem has theoretical solution 

f2 (-(X - 2 - 5t)2) 
u(x, t) = V 2+7ii exp 4(2 + pt) , ( 4. 43 ) 

(see Jain et al. [19]). Using the algorithm developed in Section 4.3 with the 

information given at the beginning of this section the problem {( 4.63)-( 4.66)} 

was solved for h = 0.1,0.05,0.005,0.001 and I = 0.1,0.05,0.005,0.001 using 

f3 = 1000. In these experiments the method behaves smoothly over the whole 

interval 0 $ x $ 1 and no contrived oscillations are observed. The maximum 

errors at time t=0.5 are observed at mid point of the region and are given 

in Table 4.2. For pictorial evidence of stability, accuracy and smoothness of 

the method the theoretical and numerical solutions for h = 0.1 and I = 0.1 

at time t = 0.5 are depicted in Figure 4.1 and Figure 4.2 respectively. 
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Table 4.1: Algorithm 1 

Steps " Processor 1 I Processor 2 I Processor 3 

1 l,rll Uo,A l,r2, U o, A I, T3, U O, A 
Input cu, C211 C3t, C4I CI2, C22, C32, c..2 CI3,C23,C33,c..3 

2 
Compute I - .LA 

rl 
I - .LA 

r2 
I - .LA 

r3 

3 
Decompose I - .LA = LIUI rl 

I - .LA = L2U2 r2 
I - .LA = L3U3 r, 

4 b(t), b(t + 4) b(t), b(t + 4) b(t), b(t + 4) 
Evaluate b(t + /) b(t + /) b(t + /) 

5 Wl(t) = ~(C21b(t) W2(t) = ~(C22b(t) W3(t) = HC23b(t) 
+ 4C31 b(t + 4) +4C32b(t + 4) + 4C33b( t + 4) 

Using +c41b(t + I)) +C42b(t + I)) +C43b(t + I)) 

6 L1U1Yl(t) L2U2Y2(t) L3U3Y3(t) 
Solve = Cll U(t) + Wl(t) = c12U(t) + W2(t) = C13U(t) + W3(t) 

7 U(t + I) = Yl(t) + Y2(t) + Y3(t) 

8 GO TO Step 4 for next time step 
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Table 4.2: Maximum errors for Example 1 at t = 0.5 

II h 
" 0.1 0.05 0.005 0.001 " 

1 = 0.1 0.1270D-6 0.1270D-6 0.1270D-6 0.1270D-6 

1=0.05 0.2746D-7 0.2746D-7 0.2744D-7 0.2747D-7 

1 = 0.005 0.1192D-8 0.1192D-8 0.1182D-8 0.U89D-8 

1 = 0.001 0.4805D-9 0.4806D-9 0.4716D-9 0.4752D-9 
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Figure 4.1 
0.~28r----r----r----r----r---~---.r---'----'----.----, 

0.0627 

0.0626 

:::J 0.0626 

0.~26 

0.0625 

0.0624~--~--__ L-__ ~ __ ~~ __ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ 
o 0.1 0.2 0.3 0.4 0.5 

x 
0.6 0.7 0.8 

Figure 4.1: Theoretical solution of example 1 for time t=O.5 
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Figure 4.2 
0.~28r----.----~--~--~----~--~----~--~----~--~ 

0.0627 

0.~26 

:) 0.0626 

0.0626 

0.0625 

0.0624~--~--~ ____ ~ __ -L ____ ~ __ ~ __ ~ ____ ~ __ ~ __ ~ 
o 1 2 3 456 

Space Steps 
7 8 9 

Figure 4.2: Numerical solution of example 1 for h = 0.1, and 1= 0.1 at time 
t=O.5 
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Chapter 5 

Fourth-Order Numerical 
Methods for the 
Advection-Diffusion Equation 

To develop fourth-order numerical methods for advection-diffusion equations 

of the type (4.1) with appropriate initial and boundary conditions speci

fied, the space derivatives in the partial differential equation are replaced by 

fourth-order finite-difference approximations resulting in a system of first

order ordinary differential equations the solution of which satisfies a recur

rence relation. The accuracy in time is controlled by a fourth-order approx

imation to the matrix exponential function as in Cha.pter 3. 

5.1 The Method 

Consider the advection-diffusion equa.tion (4.1), mentioned here for conve
nience , 

£..u(x,.!2 + au(x, t) _ (302u(x, t) f( t). {3 0 X 0 
at 0 ax - ox2 + X, , 0, > 0, < x < , t > 

( 5. 1 ) 
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with the boundary conditions 

u(O,t) = !t(t)} t> ° 
u(l, t) = h(t) , ( 5. 2 ) 

in which fl(t), f2(t) are given continuous functions of t and the initial con

dition 

u(x,O) = g(x), ° ~ x ~ X, ( 5. 3 ) 

in which g(x) is a given continuous functions of x. For a positive integer 

N, let h = N~l' Considering the discretization of the region R = [0 < 

x < X] x [t > 0] and its boundary oR as in Section 4.2, assume that the 

combination 

a u(x - 2h, t) + bu(x - h, t) + cu(x, t) + du(x + h, t) + eu(x + 2h, t) 

gives the fourth-order approximation to ~; at some general point (x, t) of the 

mesh. Expanding the terms u(x-2h, t), u(x -h, t), u(x+h, t) and u(x+2h, t) 

as Taylor series about the point (x, t) gives 

a u(x - 2h, t) + bu(x - h, t) + cu(x, t) + du(x + h, t) + e u(x + 2h, t) 

- (a + b + c + d + e)u(x, t) 
ou 

+ (-2a - b + d + 2e)h-
ox 

1 o'lu 
+ 2! (4a + b + d + 4e )h'l ox2 

1 3 {flu 
+ - ( -Sa - b + d + Se)h -

3! ox3 

1 lru 
+ ,(16a + b + d + 16e)h4 0 4 

4. x 
1 ~u 

+ -( -324a - b + d + 32e)h5
-

5! ox5 

+ O(h6) as h ~ O. ( 5. 4 ) 

Equating the powers of hi(i = 0,2,3,4) in (5.4) to zero and the power of h 

to 1 gives 

c+d+b+e+a = 0 
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d - b + 2e - 2a - 1 

d + b + 4e + 4a - 0 

d - b + 8e - 8a - 0 

d + b + 16e + 16a - O. 

Solution of this linear system is 

1 -8 8 1 
a = 12' b = 12' c = 0, d = 12' e = - 12' 

So that 

1 

( 5. 5 ) 

- u(x - 2h t) 
12 ' 

8 8 1 
12 u(x - h,t) + 12 u(x + h,t) - 12 u(x + 2h, t) 

_ h 8u _ ~hs85U + O(h6) as h -+ O. ( 5. 6 ) 
8x 30 8xs 

Thus the desired approximation to ~: is given by 

au 1 
ax - 12h {u(x - 2h, t) - 8u(x - h, t) + 8u(x + h, t) - u(x + 2, tn 

1 4
8su 

5 (5 7) + 30 h ax5 + O( h) as h -+ O. . 

It can be noted that equation (5.7) is only valid for (x, t) = (xm , tn ) with 

m = 2,3,4, ... , N -1. To attain the same accuracy at the end points (XI! tn) 

and (XN, tn) special formulae must be devolped which approximate ~; not 

only to fourth-order but also with dominant error term ;Oh4~ for x = Xl. XN 

and t = tn. 

Consider then the approximation to ~; at the point (x, t) = (XlJ in); let 

12h au ax - a u(x - h, t) + bu(x, t) + cu(x + h, t) + du(x + 2h, t) 

( 5. 8 ) 
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Expanding the terms u(x - h, t), u(x + h, t), u(x + 2h, t) and u(x + 3h, t) as 

Taylor series about the point (x, t) gives 

12h
oU _ (a+b+c+d+e)u(x,t) ox 

au 
+ (-a+c+2d+3e)h

ax 
1 a2u 

+ -(a+c+4d+ge)h2

a 
2 

2 x 
1 alf3u 

+ -(-a+c+8d+27e)h a 3 
6 x 
1 • {)4u 

+ 24 (a + c + 16d + 81e)h ax. 

1 5a~ 
+ 120 (-a + c + 32d + 243e)h ax5 

+ O(h6) as h -+ O. 

Equating the powers of hi(i = 0,1,2,3,4) in (5.9) gives 

b+a+c+d+e - 0 

-a+ c+ 2d +3e - 12 

a +c+4d +ge - 0 

-a+c+8d+27e = 0 

a + c + I6d + 8Ie = 0 

Solution of the linear system (5.10) is 

Thus 

a = -3, b = -10, c = 18, d = -6, e = 1. 

ou(x, t) 
ox 

1 
- 12h {-3u(x - h, t) - 10u(x, t) 

+ 18u(x + h, t) - 6u(x + 2h, t) + u(x + 3h, t)} 

- ~h4a5u O(h5) as h -+ O. 
20 ox5 + 
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Consider, now the approximation to 8U~:.t) at the point (x, t) = (XN, tn); let 

12h :: - a u(x - 3h, t) + bu(x - 2h, t) + cu(x - h, t) + du(x, t) 

( 5. 12 ) 

Expanding the terms u(x-3h, t), u(x-2h, t), u(x- h, t) and u(x+h, t) about 

the point (x, t) gives 

12h:: - (a+b+c+d+e)u(x,t) 

au + (-3a - 2b - c + e)h ax 

1 a2u 
+ 2(9a+4b+c+e)h2

ax2 
1 3[J3u + 6 ( - 27 a - 8b - c + e) h ax3 

1 tru 
+ -(81a + 16b + c + e)h"a " 

24 x 
1 a"u 

+ 120 (-243a - 32b - c + e)h" ax" 

+ O(hB) as h -t O. 

Equating the powers of hi(i = 0,1,2,3,4) in (5.13) gives 

a+b+c+d+e - 0 

-3a - 2b - c+ e - 12 

9a + 4b+ c+ e - 0 

- 27 a - 8b - c + e - 0 

81a + 16b + c + e = O. 

Solving the linear system (5.14) gives 

a=-I, b=6, c=-18, d=10, e=3. 
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Thus 

8u(x, t) 
8x 

1 
12h {-u(x - 3h, t) + 6u(x - 2h, t) 

18u(x - h, t) + 10u(x, t) + 3u(x + h, tn 
1 8su + -h4

-
8 

+ O(hS) as h -+ O. 
20 XS 

( 5. 15 ) 

is the desired approximation to 8uJ:,t) at the point (XN, tn). 

Consider, next the fourth-order a.pproxima.tions to 83;i;,t) [39]; 

1 
- 12h2 {-u(x - 2h, t) + 16u(x - h, t) 

30u{x, t) + 16u(x + h, t) - u{x + 2h, tH 
1 fJ6u 5 + -h4

-
a 

+ O(h) as h -+ O. 
90 x6 

( 5. 16 ) 

valid for points (x,t) = (mh,nl) m = 2,3,4, ... ,N -1, 

= 12
1
h2 {9u(x - h, t) - 9u(x, t) - 19u(x + h, t) 

+ 34u(x + 2h, t) - 21u(x + 3h, t) + 7u(x + 4h, t) 

1 4 EJ6u Ii) h (5 7) - u(x + 5h, tn + 90 h ax6 + O(h as -+ 0", . 1 

the approximation to 82;i~,t) at the point (Xl, tn) and 

- 12\2 {-u(x - 5h, t) + 7u(x - 4h, t) - 21u(x - 3h, t) 

+ 34u(x - 2h, t) - 19u(x - h, t) 

- 9u(x, t) + 9u(x + h, tn 
1 4

asu (5) h + -h a 6 + 0 h as -+ O. 90 X 
( 5. 18 ) 

the approximation to 82;~2,t) at the point (XN, tn). 

Applying (5.1) with (5.7) or (5.11) or (5.16) or (5.17) or (5.18) as appro

priate to the N mesh points at the time level t = nl, leads to the system of 
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first-order ordina.ry differentia.l equations given by vector-matrix form as 

d~?) = AU(t) + b(t), t> 0 ( 5. 19 ) 

with initial distribution 

U(O) = g ( .5. 20 ) 

in which 

U(t) - [UI(t), U2(t) ... , UN(t)]T, 
b(t) - [!t(t) + ~(9;3 + 3ah), h(t) - rks(;3 + ah), h(t), ... , 

fN-2, fN-I(t) - 12
I
h2 (;3 - ah), fN(t) + 1'J~2(9f3 - 3ah)]T, 

g - (g(xt} , g(X2),'" ,g(XN )]T, 

T denoting transpose and 

al a2 a3 a4 all as 0 
as a9 alO an 

1 
a7 as a9 alO an 

A=- ( 5. 21 ) 
12h2 

aT as a9 alO an 
a7 as a9 alO 

0 a6 all a4 a3 a2 at NxN 

where 

al = -9;3 + lOah a2 - -19;3 - ISah a3 - 34;3 + 6ah 
a4 = -21;3 - ah all - 7;3 a6 - -;3 
a7 - -;3 - ah as - 16{J + Sah a9 - -30;3 
alO - 16;3 - Sah an - -{J + oh 

Solving (5.19) subject to (5.20) gives the solution 

U(t) = exp(tA)U(O) + lo' exp[(t - s)A]b(s)ds ( 5. 22 ) 

which satisfies the recurrence relation 

{HI 
U(t + I) = exp(1A)U(t) + 1, exp[(t + 1 - s)A]b(s)ds. ( 5. 23 ) 
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Approximating the matrix exponential function exp(lA) in (5.23) by 

exp(lA) = n- I N ( 5. 24 ) 

where 

is a non-singular matrix and 

as in Chapter 3 and the integral term by 

These matrices can be obtained by putting ,\ = -1 in (3.63)-(3.66) to 

give 

1 
WI = 24 {{31 + (-19 + 78al - 216a2 + 324a3)IA 

+(3 - 8al + 12a2)(IA)2} n-1
, ( 5. 28 ) 

3 
W2 = 161 {{21 - (-16 + 56al - 144a2 + 216a3)IA 

+(1 - 4al + 12a2 - 24a3)(IA)2} n- I
, ( 5. 29 ) 

3 
Wa - 81 {(I - (7 - 26al + 72a2 - 108a3)IA 

-(1 - 4al + 12a2 - 24a3)(lA)2} n-1
, ( 5. 30 ) 

1 
W4 - 481 {(61 + (44 -168al + 432a2 - 648a3)IA 

+(11 - 44al + 132a2 - 216a3)(IA)2 

+ (2 - 8a1 + 24a2 - 48aa)(lA)3} n-1
• ( 5. 31 ) 
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Hence (5.23) can be written as 

I 2 
U(t + /) = exp(lA)U(t) + W1b(t) + W2b(t + 3) + W3b(t + 31) + W.b(t + I). 

( 5. 32 ) 

5.2 Algorithm 

The algorithm is similar to that detailed in chapter 3 but it is included for 

completeness. Assuming that rt, r2, r3 and r. (ri :F 0) are the real zeros of 

( 5. 33 ) 

then D given by (5.25) can be factorized as 

/ I I I 
D = (I - -A)(I - -A)(J - -A)(I - -A) 

rl r2 r3 r. 
( 5. 34 ) 

and then (5.68) can be written in partial-fraction form as 

U(t + /) = {Al(I - .i.Atl + A2(I - .i.Atl 

rl r2 

/ 1 I I} () + A3(J - -At + A.(I - -At U t 
r3 r. 

+ - B1(I - -At + B2(I - -A)-I { I 1 I 1 

24 rl r2 

+ B3(I - .i.Atl + B.(I - .i.Atl} bet) 
r3 r. 

+ 2./ {CI(J - .i.A)-l + C2(J - .i.At l 

16 rl r2 

+ C3 (I - .i.Atl + C.(J - .i.Atl} bet + ~) 
r3 r. 3 

+ ~l {Dl (J - .i.Atl + D2 (J - .i.A)-1 
8 ~ ~ 

+ D3(I - .i.A)-l + D.(J - .i.Atl} bet + -32/) 
r3 r. 
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( 5. 35 ) 

in which for i = 1,2,3,4 

Ai 
1 + Piri + P2rl + P3r? - 114 (1") j= 1 -~ 

j:/:i 

B, 3 + P4r, + P5rl 
- 114 . (1 - !i )' 

J = 1 'J 

j:/: i 

Ci 
2 - Pari + P7rl 

- 114. (1 - !i) , 
J = 1 'J 

j:/: i 

Di 
1 - PSri - P9r~ 

- 114 . (1 - !i) , 
J = 1 'J 

j:/: i 

E, 6 + PlOr, + pu rl + pur? 
= 114 (1 - !a.) 

j = 1 'J 

j:/: i 

where 

PI - 1 - at, 

1 
P2 - '2 - al + a2, 

1 al 
Pa - '6 -"2 + a2 - aa, 

P4 = -19 + 78al - 216a2 + 324a3, 

ps = 3 - 8al + 12a2, 

P6 = -16 + 56al - 144a2 + 216a3, 

P7 - 1 - 4al + 12a2 - 24a3, 

ps - 7 - 26al + 72a2 - 108aa, 
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Hence 

which gives 

where 

PlO = 44 - 168al + 432a2 - 648a31 

Pu = 11 - 44al + 132a2 - 216a31 

U(t + I) - (I - ~/AtlZl + (I - 2.1AtlZ2 
rl ri 

+ (I - ~/AtlZ3 + (I - ~/AtlZ4' 
r3 r. 

I 3 I 
Zi = AiU(t) + 24 (Bib(t) + 161Cib(t + '3) 

+ ~/Dib(t + ~l) + 4~ Eib(t + I)) i = 1,2,3,4. 
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Let 

then 

and 

1 1 (I - -IAt Zi = Yi, i = 1,2,3,4 
ri 

1 
(I - -IA)Yi = Zi, i = 1,2,3,4 

ri 

in which Yl, Y2, Y3 and Y4 are the solutions of the systems 

(/ - .!.-\IA)Yi = Zi, i = 1,2,3,4 
ri 

( 5. 38 ) 

( 5. 39 ) 

( 5. 40 ) 

respectively. This algorithm is presented in tabular form in Table 5.1. 

5.3 Numerical Example 

In this section a representative of many other methods based on (5.24) will 

only be used. Taking 

and 
547 

a3 = 600 

it is found that 

rl = 2.1883713223893, r2 = 2.3398749224808 

r3 = 2.18837132239, r4 = 2.33987492248 

are the real zeros of (5.69). These values produce 

Al = -176.18490160503, A2 = 2051.1048759736, 
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A3 = -1873.9199743685, A .. = 1873.9199743685, 

Bl = -176.18490160503, B2 = 2051.1048759736, 

B3 = -1873.9199743685, B .. = 1873.9199743685, 

C1 = -176.18490160503, C2 = 2051.1048759736, 

C3 = -1873.9199743685, C .. = 1873.9199743685, 

Dl = -176.18490160503, D2 = 2051.1048759736, 

D3 = -1873.9199743685, D. = 1873.9199743685, 

El = -176.18490160503, E2 = 2051.1048759736, 

E3 = -1873.9199743685, E .. = 1873.9199743685 

Consider once again the problem {(4.63)-(4.66)}, mentioned here for 

convenience, 

( 5. 41 ) 

subject to the boundary conditions 

h1(t) = u(O, t) = J2 (-(2+5t)2) V 2"+ji exp 4(2 + ,Bt) , t > 0, (5. 42 ) 

~ (-(1 + 5t)2) 
- V 2"'+"Pt exp 4(2 + pt) , t > 0, (5. 43 ) 

and the initial condition 

g(x) = u(x,O) = exp (-(2; X)2) , 0 $ x :5 1. ( 5. 44 ) 

This problem has theoretical solution 

J2 (-(X - 5t - 2)2) 
u(x, t) = V 2"+ji exp 4(2 + ,Bt) ( 5. 45 ) 
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(see Jain et el. [19]). Using the Algorithm developed in Section 5.2 with 

the information given at the beginning of this section the problem {(5.41)

(5.45)} is solved for h = 0.1,0.05,0.025,0.01,0.005 and 1=0.1,0.05,0.025, 

0.01,0.005 using f3 = 1000. In these experiments the method behaves smoothly 

with third-order accuracy over the whole interval 0 ~ x ~ 1 and no contrived 

oscillations are observed. Maximum errors at time t=0.5 are observed at the 

mid-point of the region except for very small values of h and I and are given 

in Table 5.2. For h = 0.05 and I = 0.001 the maximum error and relative 

percentage error obtained are -0.980D-14 and -0.157D-1O respectively at 

point 8 of the discretization. It is noticed that the numerical solution crosses 

the analytical solution in this experiment but no oscillations are observed. 

The numerical solutions for h = 0.1 and 1= 0.1 at time t = 0.5 is depicted 

in Figure 5.1. 
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Table 5.1: Algorithm 1 

Steps Processor 1 Processor 2 Processor 3 Processor 4 

1 I,rl, Uo,A,Al I, r2, Uo, A, A2 I, r3, Uo, A, A3 I, r .. , Uo, A, A .. 
Input B l , Cl , D l , El B2, C2, D2, E2 B3 , C3 , D3, E3 B ... C .. , D .. , E .. 

2 
Comp I - .LA 

rl 
I - .LA 

r2 
I -.LA 

ra 
I - .LA 

r, 

3 I - .LA I - .LA I -LA I - .LA 
Decom 

rl r2 ra r, 
= LlUl = L2U2 = L3U3 = L .. U .. 

4 b I = b(t) bl = b(t) b l = b(t) b l = b(t) 
b2 = b(t + 1) b2 = b(t + i) b2 = b(t + 1) b2 = b(t + 1) 

Comp b3 = b(t +~) b3 = b(t +-/) b3 = b(t +~) b3 = b(t + ~) 
b4 = b(t + I) b4 = b(t + 1) b4 = b(t + I) b .. = b(t + I) 

5 wt{t) W2(t) W3(t) w .. (t) 
Using = f8 {2Bl b l = is {2B2bl = is {2B3b l = .. 's {2B .. b1 

+9Cl b2 +9C2b2 +9C3b2 +9C .. lb2 

+18D1b3 +18D2h3 +18D3h3 +18D .. h3 

+El b4 } +E2b .. } +E3b4 } +E.b .. } 

6 LIUlYl(t) L2U2Y2(t) L3U3Y3(t) L4U4Y4(t) 
Solve = Al U(t) = A2U(t) = A3U(t) = A .. U(t) 

+Wl (t) +W2(t) +W3(t) +W4(t) 

7 U(t + I) = Yl(t) + Y2(t) + Y3(t) + Y4(t) 

8 GO TO Step 4 for next time step 
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Table 5.2: Maximum errors for Example 1 at t = 0.5 

h 0.1 0.05 0.025 0.01 0.005 
N 9 19 39 99 199 

1=0.1 -0.107D-7 -0.107D-7 -0.107D-7 -0.107D-7 -0.107D-7 
5 10 20 50 100 

1=0.05 -0.10SD-S -0.10SD-S -0.107D-8 -0.108D-S -0.107D-S 
5 10 20 50 100 

1=0.025 -0.119D-9 -0.119D-9 -0.1l9D-9 -0.117D-9 -0.115D-9 
5 10 20 50 100 

1=0.01 -0.650D-ll -0.645D-11 -0.646D-l1 -0.555D-l1 -0.602D-ll 
5 10 20 51 107 

1 = 0.005 -0.660D-12 -0.61SD-12 -0.669D-12 -0.S15D-12 -0.709D-13 
5 10 20 49 80 
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Figure 5.1 
0.0628r---,----,---,------r--r---'T"'"----r--...,..----.----, 

0.0627 

0.0626 

::l 0.0626 

0.0626 

0.0624~-......I---.l----L.-_...l..----1..-_...L..-_---L-_..J.----L----' o 1 2 3 456 
Space Steps 

7 8 9 

Figure 5.1: Numerical solution of example 1 for h = 0.1, and 1= 0.1 a.t timt" 
t=0.5 

101 

10 



Chapter 6 

Third-Order Finite-Difference 
Methods for Second-Order 
Hyperbolic Partial Differential 
Equations 

6.1 The Model Problem 

Consider the one-dimensional initial/boundary-value (I BV P) problem con

sisting of the partial differential equation (P DE) 

{Pu f)2u 
2 

ot2 = C ox2' 0< x < X, t > ° (6. 1 ) 

in which u = u(x, t) subject to the homogeneous boundary conditions 

u(O,t) = u(X,t) = 0, t > 0 

and the initial conditions 

u(x,O) 
8u(x, 0) 

8t 

= g(x), 

= f(x), 
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( 6. 3 ) 

( 6. 4 ) 
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in which g(x) and f(x) are given continuous functions of x. 

There will exist discontinuities between the initial and the boundary 

conditions if 

g(O) ::I 0 and/or g(X)::I 0. 

6.2 Discretization of R U oR 

The region R (the open rectangle bounded by the lines x = 0, t = 0, x = X) 

and its boundary 8R are covered by a grid, consisting of lines parallel to the 

time axis and lines parallel to the space axis (x-axis). Assuming h > 0 and 

I > 0, the interval 0 ~ x ~ X is divided into N + 1 subintervals each of width 

h, so that 

(N + l)h = X 

and the time t ;::: 0 is divided into equal time steps of length I. The parameter 

h is called the space-step and I is the time-step. Each discrete mesh point 

has co-ordinates of the form 

for m =: 0,1,2, ... , N + 1 and n = 0,1,2, .... 

6.3 The Method 

Replacing the space derivative 82;~!t) in the P DE (6.1) by the third-order 

difference approximations [38] 

82u{x, t) 1 
8x2 = 12h2 {ll u(x - h, t) - 20 u(x, t) + 6 u{x + h, t) 
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h3 85u(x, t) + 4u(x + 2h, t) - u(x + 3h, tn + 12 8x5 

+ O(h4)as h~O ( 6. 5 ) 

for the mesh points (xm, tn) with m = 1,2, ... ,N - 2, 

1 
= I2h2 {u(x - 3h,t) - 6u(x - 2h,t) + 26u(x - h,t) 

h3 85u(x t) 
- 40 u(x, t) + 21 u(x + h, t) - 2u(x + 2h, tn + 12 8x'" 

+ O(h4) as h ~ 0 ( 6. 6 ) 

for the mesh point (XN-t. tn) and 

1 
- I2h2 {2 u(x - 4h, t) - 11 u(x - 3h, t) + 24 u(x - 2h, t) 

h3 8'u(x, t) 
- I4u(x - h,t) -IOu(x,t) - 9u(x + h,t)} + 12 8x" 

+ 0 ( h 4 ) as h ~ 0 ( 6. 7 ) 

for the mesh point (XN, tn), provides a system of N second-order ordinary 

differential equations (ODE's) which can be written in matrix-vector form 

as 

with initial conditions 

and 

in which 

tPU(t) = AU(t) t > 0 
dt2 ' 

U(O) = g 

dU(O) = f(x) 
dt 

U(t) - [Ut (t), U2(t), ... , UN(t)]T, 
g - [g(Xt},g(X2), ... ,g(XN)]T, 
f = [J(Xt},/(X2), ... ,/(XN)]T, 
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T denoting transpose and 

-20 6 4 -1 0 
11 -20 6 4 -1 

11 -20 6 4 -1 
c2 

A=- ( 6. 11 ) 12h2 11 -20 6 4 -1 
11 -20 6 4 

1 -6 26 -40 21 
0 2 -11 24 -14 -10 

NxN 

It is noted that the approximations in (6.5), (6.6) and (6.7) all have the same 

leading error term ~~ 86;~,t), thus ensuring the same accuracy at all mesh 

points at time level tn. 

The eigenvalues of A are not known in closed form and must be calcu

lated using, for instance, NAG subroutine F02AFF for a given vale of N. It 

will be seen that the stability of an algorithm can only be established if all 

eigenvalues of A, for a given N, have negative real parts. 

The analytical solution of (6.8)-(6.10) is given by 

11_ 
U(t) = "2exp(tB){g + B-1f} + "2exp( -tB){g - B If} 

in which B is a square matrix of order N such that 

( 6. 12 ) 

For a time-step I, the semi-discrete solution U(t) satisfies the recurrence 

relation 

U(t + I) = {exp(lB) + exp( -IB)}U(t) - U(t - I), t = 1,2/, .... (6. 13 ) 

Twizell [40]. 
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6.4 Solution at the First Time-Step 

Using Taylor's series 

Substituting t = I in (6.12) gives 

1 1 
U(l) = 2exp(lB){g + B- l f} + 2exp( -IB){g - B- l f} ( 6. 14 ) 

which can be written as 

1 1 
U(l) = 2 {exp(lB) + exp( -IB)} g + 2 {exp(lB) - exp( -IB)} B-1f. 

( 6. 15 ) 

Now 

and 

exp( -IB) = I -IB+.!.12 B2_.!./3 B3+~/4B4_~/5B5+~z6B6_ ~f B7 + ... 
2! 3! 4! 5! 6! 7! 

( 6. 17 ) 

Thus 

( 6. 18 ) 

and 

exp(lB) - exp( -IB) = 2 (IB + ~/3 B3 + ~/5 B 5 + ~z7 B7 + ) (6. 19 ) 
3! 5! 7! " . 

or 

{
Ill} exp(lB) - exp( -IB) = 2 1+ 3! /2 B2 + 5! I"B4 + 7! f3 B6 + . .. lB. 

( 6. 20 ) 
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Substituting these values in (6.15) gives 

U(l) (
1221[44 1 166 ) - 1+ ,[ B +, B + 6,rB + ... g 
2. 4. . 

( 
1 2 2 1 4 4 1 r6B6 ) If + 1+ ,/ B + ,I B + 7"- + ... 3. 5. . 

( 6. 21 ) 

or 

6.5 Rational Approximation to Matrix Expo
nential Function 

To approximate the matrix exponential function in (6.13) consider the ratio

nal approximant (1.1) 

E3( fJ) = 1 + (1 - adO + (i
l 

- al + a2)02 . ( 6. 23 ) 
1 - atO + a202 - (-6 - T + a2)03 

where al and a2 are parameters. Let 

( 6. 24 ) 

and 

1- atO + a202 - (~- ~l + a2)()3 = q(O). ( 6. 25 ) 

Now consider the sum 

_ p(fJ) + p( -0) = P(O) 
q( 0) q( -0) Q( 0) 

( 6. 26 ) 

where 

( 6. 27 ) 
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and 

Q( 0) q( 0) x q( -0) 

- 1 + (2a2 - an02 - (~al - a~ + 2ala2 - an04 

1 1)2 6 (6 + a2 - 2"a1 O. ( 6. 28 ) 

Assuming 4> = 02 gives 

( 6. 29 ) 

and 

( 6. 30 ) 

6.6 Accuracy 

It is convenient to consider the single initial-value problem 

D2y == y"{t) = f(t,y),t > to, y{tO) = Yo, y'(tO) = zo ( 6. 31 ) 

where y = y(t) and D2 = ~. The numerical solution to this problem may 

be obtained from the formula 

y(t + I) = {exp(lD) + exp(-ID)}y{t) - y(t -I). ( 6. 32 ) 

Replacing 0 by ID in (6.26) and then substituting the value of exp(lD) + 
exp( -ID) in (6.32) leads to 

Yn+l = 
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( 6. 33 ) 

in which Yn is an approximation to y(tn). The associated local truncation 

error is 

L[y(t); I) 

( 6. 34 ) 

which may be expanded as a Taylor series about t to give 

L[ () ] I 1 II 1 3 III 1 " 1111 1 5 11/11 

Y t ; 1 = y(t) + Iy (t) + 2r~y (t) + '6 1 y (t) + 241 y (t) + 1201 Y (t) 

1 6 111111 

+720 1 y + ... 
( 2 )[2{ "() 1 III() 1 (~ IIII() 1/3 1I111( ) 1 1" 111111 - a 1 - 2a2 y t + y t + 2 y t + 6 y t + 24 Y 

+ ... } 
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1 [6 111111 
+720 y - ... 

+ (2 2) 2{ "() 1 III() 1/2 IIII() 1/3 1II11( ) 1 I" 111111 a2 - a1 1 y t - Y t + 2 y t - '6 y t + 24 Y 

- ... } 

After simplification (6.35) becomes 

1 1 4 1111 6 
L[y(t); 1] = (-4 + 2a1 - a2)1 Y (t) + 0(1 ). ( 6. 36 ) 

6.7 Development of Parallel Algorithm 

Suppose that ri(i = 1,2,3,rj =f:. 0) are distinct real zeros of Q(tI» defined by 

(6.30) then 

3 ( 1)-1 
exp(lB) + exp( -IB) = ~ c; 1 - rj A ( 6. 37 ) 

where B2 = A and Cj (i = 1,2,3), the partial-fraction coefficients, are defined 

by 

( 6. 38 ) 

in which 

P(rd - 2{1+(2a2-a~+~)rj 
3 2 2 1 2 1 2} + (2a2 - 2a1a2 + a2 - 3a1 + 2 a1 + '6 )rj 

i = 1,2,3. So, using (6.31) in (6.13) gives 

( 

3 ( 12) -1) U(t + I) = ~ c; 1 - Tj A U(t) - U(t -I). ( 6. 39 ) 
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t = 1,21,31,. '" Now let 

( 
12)-1 

Ci 1 - r. A U(t) = Wi(t), i = 1,2,3, ( 6. 40 ) 

Then the systems of linear equations 

(1 - ~: A) Wi(t) = csU(t), i = 1,2,3 ( 6. 41 ) 

can be solved for wi(t)(i = 1,2,3) on three different processors simultane

ously, and finally 

3 

U(t + 1) = Ew.(t) - U(t -1) t = 1,21,31, .... ( 6. 42 ) 
.=1 

This algorithm is given in tabular form in Table 6.1. 

6.8 Numerical Examples 

In this section a representative of many other methods based on (6.23) will 

only be used. So taking at = :~ and a2 = i~ as before gives 

rl = 4.788969044658795, r2 = 5.475014652818082, r3 = 5.554994179738606 

as the real zeros of (6.30). Using these values in (6.38) gives 

Cl = -352.369803216, C2 = 4102.20974857, C3 = -3747.83994535 

6.8.1 Example 1 

Considering the one dimensional wave equation with constant coefficients 

(6.1) and taking X = 1, g(x) = lsin(1rx) and f(x) = 0 in {(6.1)-(6.4)} the 

model problem becomes 

( 6. 43 ) 
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subject to the initial conditions 

u(x,O) 

au(x, O) 
at 

and the boundary conditions 

- ~Sin(1rx), 0 ~ x ~ 1 

- 0, 0 ~ x ~ 1 

u(O,t) = u(l,t) = 0, t > O. 

This problem, which has theoretical solution 

u(x, t) = ~Sin(1rx) cos (C1I"t) 

( 6. 44 ) 

( 6. 45 ) 

( 6. 46 ) 

( 6. 47 ) 

has no discontinuities between the initial conditions and the boundary condi

tions at x = 0 and x = 1. The theoretical solution at time t = 1.0 is depicted 

in Figure 6.1. 

Using the algorithm developed in Section 6.7 the model problem {(6,43)

(6.46)} is solved for h, 1=0.1,0.05, 0.025, 0.0125 using c = }10 at time t=1.0, 

2.0, and 3.0 In these experiments the method behaves smoothly over the 

whole interval 0 :$ x :$ 1. The numerical solution for h = 0.1 and I = 0.1 at 

time t=1.0 is depicted in Figure 6.2. The profile depicted in Figure 6.2 (and 

in Figure 6.4 later) appears not to be smooth. This is because h and I are 

large and the software used (MATHEMATICA) joins the points associated 

with the calculations with straight lines. Comparing the peaks of Figure 6.1 

and 6.2 confirms the accuracy of the method. The maximum absolute errors 

with positions are given in Table 6.2. It is clear from Table 6.2 that the 

method is third-order accurate for all values of t but error grows slightly as 

time increases. 
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6.8.2 Example 2 

Considering the equation with constant coefficients (6.1) and taking X = 0.5, 

g(x) = 0) and f(x) = sin(411"x) in {(6.1)-(6.4)} the model problem becomes 

{)2u 1 82u 
8t2 = 1611"2 8x2 ' 0 < x < 0.5, t > 0 

subject to the initial conditions 

0, 0 ~ x ~ 0.5 u(x, 0) -
8u(x, 0) 

- sin(42rx), 0 ~ x ~ 0.5 
at 

and the boundary conditions 

'11(0, t) = '11(1, t) = 0, t > O. 

This problem, which has theoretical solution 

u(x, t) = sin{41rx) sin(t) 

( 6. 48 ) 

( 6. 49 ) 

( 6. 50 ) 

( 6. 51 ) 

( 6. 52 ) 

[6] has no discontinuities between the initial conditions and the boundary 

conditions at x = 0 and x = 1. The theoretical solution at time t = 0.5 is 

depicted in Figures 6.3. 

The model problem ({6.48)-(6.51)} was also solved for h,I=0.05, 0.025, 

0.0125, 0.00625 at time t=0.5 and 1.0. The method again behaves smoothly 

over the whole interval 0 ~ x ~ 0.5 and gives maximum error at the centre 

of the region except for h,I=0.05 and 0.025. The numerical solution for 

h = 0.05 and I = 0.05 at time t=0.5 is depicted in Figure 6.4. Comparing 

the peaks and troughs of Figures 6.3 and 6.4 confirms the accuracy obtained 

using the method. All other numerical solutions produce better graphs. The 

maximum absolute errors with their positions are given in Table 6.3. It is 

clear from Table 6.3 that the method is third-order accurate for both values 

of t but maximum absolute error grows slightly as time increases. 
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1 

Table 6.1: Algorithm 1 

Steps II Processor 1 I Processor 2 I Processor 3 

1 I, rh C., I, r2, C2, I, ra, C3, 
Input Uo,A Uo,A Uo,A 

2 
Compute 1- .l..A 

rl 
1- .l..A 

r2 
1- .l..A 

r3 

3 1- .l..A 1- .l..A I - .l..A 
Decompose 

rl r2 r3 

= LtUt = L2U2 = L3U3 

4 
Find Solution at the first time step 

5 LtUtWt(t) L2U2W2(t) L3U3W3(t) 
Solve = Cl U(t) = C2 U(t) = C3U(t) 

6 U(t + 1) = Wl(t) + W2(t) + W3(t) - U(t -I) 

7 GO TO Step 5 for next time step 
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Table 6.2: Maximum absolute errors for Example 1 

II 
9 19 39 79 

0.1 0.05 0.025 0.0125 

t=1.0 0.124847D-4 O.177997D-5 0.231373D-6 O.305657D-7 
Positions 1 17 4 72 

I: I 

t=2.0 0.399566D-4 O.612910D-5 0.785875D-6 O.106804D-6 
Positions 8 16 7 66 

t=3.0 0.741103D-4 O.107269D-4 0.135521D-5 0.190258D-6 
Positions 7 15 9 61 

POlilion. are Ihowll by Ipace .Iepl. 

Table 6.3: Maximum absolute errors for Example 2 

N 9 19 39 79 
h,l 0.05 0.025 0.0125 0.00625 

t = 0.5 0.386306D-3 O.512678D-4 0.650840D-5 0.818575D-6 
Positions 4 9 20 40 

t = 1.0 0.286251D-2 O.379984D-3 0.482384D-4 0.606705D-5 
Positions 4 9 20 40 

POlilioll1 are Ihowll by Ipace .Iepl. 
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Figure 6.1 
0.12r---r----.----.---.-~~~--r---.---~----,---, 

0.1 

0.08 

:J 0.06 

0.04 

0.02 

0.2 0.3 0.4 0.5 
x 

0.6 0.7 0.8 

Figure 6.1: Theoretical solution of example 1 for time t=l.O 
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Figure 6.2 
O.14r----r----r---~----~--~----~--_,----._--_.,_--~ 

0.1 

1 2 3 4 5 6 7 8 9 10 
Space Steps 

Figure 6.2: Numerical solution of example 1 for h = 0.1, and 1= 0.1 at time 
t=1.0 
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Figure 6.3 
0.5r----.----r---~----~--~--_.----,_--~----~--~ 

0.4 

0.3 

0.1 

::J 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

x 

Figure 6.3: Theoretical solution of example 2 for time t=O.5 
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Figure 6.4 
0.5r----r----r---~----~--~--_,----,_--_,----~--_, 

0.1 

-0.1 

-0.2 

-O.5~--~--~~--~--~----J---~----~--~----~--~ o 1 2 3 456 
Space Steps 

7 8 9 

Figure 6.4: Numerical solution of example 2 for h, 1=0.05 at time t=0.5 
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Chapter 7 

Fourth-Order Finite-Difference 
Methods for Second-Order 
Hyperbolic Partial Differential 
Equations 

7.1 The method 

Considering the model problem of Chapter 6 consisting of the partial differ-

ential equation 

82
1.1. 282

1.1. 
8t2 = C 8x2 ' 0 < x < X, t > 0 (7. 1 ) 

in which 1.1. = u(x, t) subject to the boundary conditions 

u(O, t) = u(X, t) = 0, t > 0 

and the initial conditions 

u(x,O) 
8u(x, 0) 

8t 

= g(x), 

- lex), 
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in which g(x) and f(x) are given continuous functions of x, the method 

can be developed by replacing the space derivative 8
3;£2,t) in (7.1) by the 

fourth-order difference approximations [39) 

(j2u(x, t) 
8x2 

1 
'" 12h2 {9u(x - h, t) - 9u(x, t) - 19u(x + h, t) 

+ 34u(x + 2h, t) - 21u(x + 3h, t) + 7u(x + 4h, t) 
h4 lJ6u(x, t) 

- u(x + 5h, tn + 90 8x6 

( 7. 5 ) 

for the mesh point (XI, tn), 

82u(x, t) 1 
{)x2 '" 12h2 {-u(x - 2h, t) + 16u(x - h, t) - 30u(x, t) 

h4 lJ6u(x, t) 
+ 16u(x + h, t) - u(x + 2h, tn + 90 8x6 

( 7. 6 ) 

for the mesh points (xm' tn) with m = 2,3, ... , N - 1 and 

()2u(x, t) 1 
{)X2 '" 12h2 {-u(x - 5h, t) + 7u(x - 4h, t) - 21 u(x - 3h, t) 

+ 34u(x - 2h, t) - 19u(x - h, t) - 9u(x, t) + 9u(x + h, t)} 

+ ~~ ()6~~~,t) + O(h5)as h ~ 0 ( 7. 7 ) 

for the mesh point (XN, tn), provides a system of N second-order ordinary 

differential equations which can be written in vector-matrix form as 

with initial conditions 

and 

in which 

cPU(t) = AU(t) t > 0 
dt2 ' 

U(O) = g 

dU(O) = f(x) 
dt 
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U(t) - [U1(t), U2(t), ... , UN(t)]T, 
g - [g(Xl),g(X2),'" ,g(XN)]T, 
f [J(Xl), !(X2),'" ,!(XN)]T, 

T denoting transpose and 

-9 -19 34 -21 7 -1 0 
16 -30 16 -1 
-1 16 -30 16 -1 

-1 16 -30 16 -1 
( 7. 11 ) 

-1 16 -30 16-1 
-1 16 -30 16 

o -1 7 -21 34 -19 -9 NxN 

It is noted that the approximations in (7.5), (7.6) and (7.7) all have the same 

leading error term ~ 88;~:.t), thus ensuring the same accuracy at all mesh 

points at time level tn. 

The eigenvalues of A must have negative real parts to ensure the stability 

of the algorithm to be developed. These eigenvalues are not known in closed 

form and must be calculated for a given value of N using software such as 

NAG subroutine F02AFF. 

7.2 Solution at the First Time-Step 

U sing Taylor's series 

Substituting t = I in (6.12) gives 

1 1 
U{l) = 2exp{lB){g + B- l f} + 2exp( -IB){g - B- l f} ( 7. 12 ) 

which can be written as 

1 1 
U{l) = 2 {exp(lB) + exp( -IB)} g + 2 {exp{lB) - exp( -IB)} B-1r. 

( 7. 13 ) 
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Now 

and 

Thus 

exp(lB) + exp( -IB) = 2 (I + ~/2 B2 + ~/4B" + i~ B6 + ... ) (7. 16 ) 
2. 4. 6. 

and 

exp(1B) - exp( -IB) = 2 (IB + ~13 B3 + ~/5 B5 + ~f B7 + ... ) (7. 17 ) 
3. 5. 7. 

or 

exp{lB)-exp( -IB) = 2 {I + i/2 B2 + ~/4B4 + 7\ZSB6 + ... } IB ( 7. 18 ) 
3. 5. . 

Substituting these values in (7.13) gives 

or 

U(l) 

U(l) - (I + ;,12A + :,/4A2 + 0(16») g 

+ (I + ;,12A + 0(15») If. 
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7.3 Rational Approximation to Matrix Expo
nentional Function 

To approximate the matrix exponential functions in (7.13) consider the ra

tional approximant (1.2), given for a real scalar (), by 

E (() = 1 + (1 - ad() + (! - at + a2)()2 + a -!al + a2 - a3)()3 (7. 21 ) 
4 ( 1 G G )04 • 1 - al() + a2()2 - a3()3 + -2,i + It - !f + a3 

where at a2 and a3 are parameters . Let 

and 

1 fJ 2 3 1 at a2 )()4 (fJ) - al + a2() - a3() + (-- + - - - + a3 = q . 
24 6 2 

( 7. 23 ) 

Now consider the sum 

p( 0) + p( -() = P( () 
- q( 0) q( -0) Q( 0) 

( 7. 24 ) 

where 

and 

Q( () - q( () x q( -() 

( 7. 26 ) 
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and 

Q(¢» 

( 7. 28 ) 

7.4 Accuracy 

It is convenient to consider the single initial-value problem as in Chapter 6 

D2 " '( ) y = Y (t) = f(t, y). t > to, y(to) = Yo, Y to = %0, ( 7. 29 ) 

where y = yet) and D2 = ,. The numerical solution to this problem may 

be obtained from the formula 

yet + I) = {exp(lD) + exp(-ID)}y(t) - yet -I). ( 7. 30 ) 

Replacing () by ID in (7.24) and then substituting the value of exp(lD) + 
exp( -ID) in (7.30) leads to 

yet + I) - -{ql /2y"(t + I) + q2/4y(4)(t + 1) + Q3 /6y(6)(t + I) + q,,/8y(8)(t + I)} 

+ 2{y(t) + Pl /2y"(t) + p2/4y(4)(t) + P316y(6)(t)} 

- {yet - I) + Ql /2y"(t -I) + Q2/4y(")(t -I) + Q3z6y(6)(t -I) 

( 7. 31 ) 

in which Yn is an approximation to y( t n ) and 

125 



PI = 
P2 = 
]13= 

ql = 
q2 = 
q3 = 
q4 = 

The associated local truncation error is 

or 

L[y(t); /] = yet + I) + q1/2y"(t + I) + q21"y(4)(t + I) + q3tJy(8)(t + I) 

+q4/8y(8)(t + I) 

- 2{y(t) + pt/2y" (t) + P2/4y(4)(t) + P3fy(8)(t)} 

+ {yet -I) + qt/2y"(t -I) + q2/4y(4)(t - I) + q3tJy(8)(t -I) 

+q4/Sy(8)( t - In ( 7. 32 ) 

L[y(t); I] - yet + I) + yet -I) 

+ qt/2{y"(t + I) + y"(t -I)} 

+ Q2 /4 {y(4)(t + I) + y(4)(t - In 

+ Q3tJ {y(6)( t + I) + y(6)( t - I)} 

+ Q4 /8 {y(S)(t + I) + y(8)(t - I)} 

- 2{y(t) + Pt/2y"(t) + P2/4 y(4)(t) + P3tJy(6)(t)} ( 7. 33 ) 

which may be expanded as a Taylor series about yet) to give 

L[y( t); I] 
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[2 14 
+ 2q316{y(6)(t) + "2 y(8) + 24 y(lO) + ... } 

12 + 2q4[8{y(8)(t) + "2y (lO) + ... } 

- 2{y(t) + Pl/2y"(t) + P2/4y(4)(t) + P3f1y(6)(t)} (7. 34 ) 

After simplification (7.34) becomes 

L[y(t); I] - (1 + 2ql - 2Ft )[2y" (t) 
1 

+ (12 + ql + 2q2 - 2P2)l"y{")(t) 

+ (_1_ + !!! + q2 + 2q3 - 2P3)fly{6)(t) 
360 12 

+ 0(/8
). ( 7. 35 ) 

Using the values of Pi and q, (i = 1,2,3) in (7.35) gives 

L[y( t)j I] 
149 5 13 2 2 2 

- {- 360 + 3'al - 4a2 + 2a3 - 12 a l - 3a2 - a J 

+ 13
4 

ala2 - 2ala3 + 4a2a3}fly(6)(t) + 0(18). ( 7. 36 ) 

7.S Development of Parallel Algorithm 

Suppose that r,( i = 1,2,3,4, r, :f: 0) are the distinct real zeros of Q( <p) defined 

by (7.28) then 

" ( I)-I exp(lB) + exp( -IB) = ~ Ci J - ri A ( 7. 37 ) 

where B2 = A and Ci (i = 1,2,3,4), the partial-fraction coefficients, arc 

defined by 

P(rd . 
Ci = ()' ,= 1,2,3,4 rr" . 1 - !L 

J = 1 r J 

( 7. 3S ) 

j =F i 
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in which 

i = 1,2,3,4. So, using (7.37) in (6.13) gives 

( 

4 ( 12) -1) U(t + I) = ~ ct 1- rj A U(t) - U(t -I), ( 7. 40 ) 

t = 1,2/,3/, . ... Now let 

( 12)-1 
Cj 1- rj A U(t) = Wi(t), i = 1,2,3,4 ( 7. 41 ) 

Then the systems of linear equations 

(I - ~:A) Wj(t) = £;U(t), i = 1,2,3,4 ( 7. 42 ) 

can be solved for wi(t)(i = 1,2,3,4) on four different processors simultane

ously, and finally 

4 

U(t + I) = LWi(t) - U(t -I) t = 1,2/,3/, .... ( 7. 43 ) 
i=l 

This algorithm is given in tabular form in Table 7.1. 

7.6 Numerical Examples 

As in Chapter 6, a representative of methods based on (7.21) will be USN!. 

SO, taking c = 0.1, al = ~, a2 = ~ and a3 = ~ as before gives 

rl = 0.879057959205939, r:z = 3.293208163041111, 

r3 = 4.000000000000405, r. = 5.109949525352754 
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as the real zeros of (7.28). Using these values in (7.38) gives 

Cl = -0.243656912725722D + 03, C2 = 0.506244897959209D + 03, 

C3 = -0.262087555440892D + 03, c.c = 0.149957020740562D + 01 

7.6.1 Example 1 

Considering the one dimensional problem {(7.1)-(7.4)} with X = 1, g(x) = 
~sin(1I'x) and f(x) = ° the model problem becomes 

82u 82u 
- c2 

8t2 - 8x2 ' 

subject to the initial conditions 

0< x < 1, t > 0 

u(x,O) = ~sin(1I'x), 0:5 x:5 1, 

8u(x,0) 
8t = 0, 0:5x:51, 

and the boundary conditions 

u(O,t) = u(1,t) = 0, t > O. 

This problem has theoretical solution 

u(x,t) = ~sin(1I'x)cos(crt). 

The theoretical solution at time t = 1.0 is depicted in Figure 6.1. 

( 7. 44 ) 

( 7. 45 ) 

( 7. 46 ) 

( 7. 47 ) 

( 7. 48 ) 

Using Algorithm 1 the model problem {(7.44)-(7.47)} is solved for I, h = 
112 , 2

1
4' 18' ~, using c = 110 at t= 1.0, 2.0 and 3.0. In these experiments 

the method behaves smoothly over the whole interval 0 :5 x :5 1 and gives 

maximum error at the centre of the region except (or h = Ill' The numerical 

solution for h, I = 112 at time t=1.0 is depicted in Figure 7.1. All othf"r 
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numerical solutions produce similar graphs. Maximum absolute error~ with 

positions are given in Table 7.2. It is clear from Table 7.2 that the new 

method is better than fourth order for larger values of h and I and it is 

fourth-order over all. Table 7.2 shows that with the passage of time the 

maximum absolute error grows slightly. 

7.6.2 Example 2 

Considering the one dimensional hyperbolic problem 

82u 1 82u 
8t2 = 161r2 8x2 ' 0 < x < 0.5, t > 0 

subject to the initial conditions 

u(x,O) - 0, 0 ~ x ~ 0.5 

8u(x,0) _ sin(41rx), 0 ~ x ~ 0.5 at 
and the boundary conditions 

u(O, t) = u(l, t) = 0, t > O. 

The theoretical solution of this problem 

u(x,t) = sin(41rx)sin(t) 

([6]) at time t = 0.5 is depicted in Figure 6.3. 

( 7. 49 ) 

( 7. 50 ) 

( 7. 51 ) 

( 7. 52 ) 

( 7. 53 ) 

Using again Algorithm 1 the model problem ({7.49)-(7.52)} is solved for 

1, h= 214' 4~' ie, 1!2 at t=0.5 and 1.0. In these experiments the method behaves 

smoothly over the whole interval 0 ~ x ~ 0.5. The numerical solution for 

h, 1=214 at time t=O.5 is depicted in Figure 7.2. All other numerical ~ollltions 

produce better graphs. Maximum absolute errors with positions are given 

in Table 7.3. It is clear from Table 7.3 that the method is fourth order but 

with the passage of time maximum absolute error grows slightly. 
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Table 7.1: Algorithm 1 

Steps Processor 1 Processor 2 Processor 3 Processor 4 

1 I, rl, Cl, l,r2,c2, I, rs, C3, l,r.,4, 
Input Uo,A Uo,A Uo,A Uo,A 

2 
Compute I -1.A I -1.A I -1.A I -1.A 

rl r2 r3 r, 

3 I -1.A I -1.A I -1.A I -.LA 
rl r2 r3 r, 

Decompose = Ll UI = L2U2 = LsUs = L .. U. 

4 
Find Solution at the first time step 

5 L1U1W l(t) L2U2W 2(t) L3U3W 3(t) L.U .. w .. (t) 
Solve = Cl U(t) = c2U(t) = C3U(t) = c .. U(t) 

6 U(t + I) = Wl(t) + W2(t) + ws(t) + w.(t) - U(t -I) 

7 GO TO Step 5 for next time step 
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Table 7.2: Maximum absolute errors for Example 1. 

I ~,l II 
11 23 47 95 
J.. 
12 

.1 
24 

.1 
4A 

t=1.0 0.52028D-6 0.19602D-7 0.12301D-8 O.92815D-1O 
Positions 1,11 12 24 50 

t=2.0 O.13930D-5 O.74557D-7 O.46802D-8 0.35069D-9 
Positions 1,11 12 24 48 

t=3.0 0.24834D-5 O.15392D-6 0.96614D-8 0.72430D-9 
Positions 3,9 12 24 48 

Po.ilion. a.re .bOWD by .pace "'p" 

Table 7.3: Maximum absolute errors for Example 2. 

N 11 23 47 95 
h,l -i4 1a ~ ski 

t = 0.5 0.23782D-4 0.16556D-5 O.65911D-7 OA1566D-8 
Positions 1,11 1,23 12,36 72 

t = 1.0 0.16556D-3 0.77784D-5 0.488780-6 0.30810D-7 
Positions 1,11 6,18 12,36 24,72 
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Figure 7.1 
0.12r-------,--------r------~~------._------._------~ 

0.1 

0.08 

~0.06 

0.04 

0.02 

O~------~-------L------~------~~------~------~ o 2 4 6 
Space Steps 

8 10 

Figure 7.1: Numerical solution of example 1 for h, 1= 1~ at time t=l.O 
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Figure 7.2 
0.5r-------~------~------_.------~r_------._------1 
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-0.1 
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-0.5 
0 2 4 6 8 10 12 

Space Steps 

Figure 7.2: Numerical solution of example 1 for h, I = .} .. at time t=O.5 
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Chapter 8 

Summary and Conclusions 

8.1 Summary 

The main theme of this thesis was to find some new numerical methods which 

are stable, require only real arithmetic and are third- or fourth-order accurate 

in space and time for parabolic/ hyperbolic partial differential equations and 

to develop parallel algorithms for their implementation. 

Chapter 1 was written for introductory purposes and covers some general 

topics. For example, a basic introduction is given in Section 1.1, an intro

duction to the method of lines, very important in solving time-dependent 

partial differential equations, is given in Section 1.2, important notations are 

mentioned in Section 1.3, rational approximations to exp(t) are mentioned 

in Section 1.4 and some mathematical properties of finite-difference meth

ods, for example, error analysis, consistency, stability and convergence, are 

outlined in Section 1.5. 

In Chapter 2 a family of third-order numerical methods for the advec

tion equation with constant coefficients was developed. In Section 2.2. thf' 
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model problem is outlined and third-order accuracy in the space component 

is achieved at all points of the space discretization in Section 2.3 and a new 

governing matrix was obtained. The third-order accuracy in the comple

mentary component is also obtained using a rational approximation to the 

matrix exponential function, which can be resolved imto partial fractions, 

in Section 2.3. Since efficiency is also an important object of this thesis, a 

parallel algorithm which is implementable on an architecture consisting of 

three processors is developed in Section 2.4. This chapter is concluded by 

numerical examples which show that the methods are very effective. Picto

rial evidence is also appended for support. This method is also modified for 

a non-linear problem in Section 2.6 and tested on a numerical example. 

In Chapter 3 a family of fourth-order numerical methods for the advection 

equation, with constant coefficients, subject to some boundary conditions, is 

introduced. Fourth-order accuracy in the space component at all points of the 

space discretization is derived in Section 3.1 and a new matrix is obtained. 

A rational approximation, involving three parameters, is used to achieve 

fourth-order accuracy in the time variable. A parallel algorithm which is 

implementable on an architecture consisting of four processors is developed 

in Section 3.2. At the end of this chapter the same numerical example!'!, 

which are given in Chapter 2, are considered and it is found that numerica.l 

results are very accurate. Two numerical results are compared with latest 

research and depicted for pictorial evidence. 

A family of third-order numerical methods is developed for the linear 

advection-diffusion equation in Chapter 4. Derivation of the methods is out

lined in Section 4.2 in which the matrix exponential function is approxima.ted 

by the rational approximation introduced in Section 1.3 of Chapter 1. Since 
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most of the mathematics needed in this section is concerned in solving a 

system of linear equations so it was not presented in detail. In Section 4.3, a 

parallel algorithm was developed and presented in tabular form in Table 4.1. 

This algorithm is suitable for an architecture consisting of three processors. 

In Section 4.4 a representative of these methods is used to find numerical 

solution of a problem. The analytical and numerical solutions are depicted 

at the end of the chapter. 

Considering again the model problem, discussed in Section 4.1, a family 

of fourth-order numerical methods is developed in Chapter 5. Derivation of 

the methods is outlined in Section 5.1 in which the matrix exponential func

tion is approximated by the rational approximation introduced in Section 1.3. 

Once again only essential steps are presented in this section. In Section 5.2 a 

parallel algorithm was developed and presented in tabular form in Table 5.1. 

This algorithm is suitable for an architecture consisting of four processors. 

In Section 5.3 a representative of these methods is used to find numerical s0-

lutions of the problem given in Chapter 4. The numerical solution is graphed 

and appended at the end of this chapter. 

A family of third-order numerical methods is developed for the linear, 

second-order wave equation in Chapter 6. The model problem is outlined 

in Section 6.1 and the method is derived in Section 6.3 in which the matrix 

exponential function is approximated again by the rational approximation 

introduced in Section 1.3 of Chapter 1. In Section 6.6, a parallel algorithm 

was developed and presented in tabular form in Table 6.1. This algorithm is 

suitable for an architecture consisting of at least three processors. In Section 

6.7 a representative of these methods is used to find numerical solutions of 

two different problems. The analytical and some numerical solutions are 

137 



depicted at the end of the chapter. 

Considering again the model problem, discussed in Section 6.1, a family of 

fourth-order numerical methods is developed in Chapter 7. Derivation of the 

methods is outlined in Section 7.1 in which the matrix exponential function 

is approximated by the rational approximation introduced in Section 1.3. In 

Section 7.4 accuracy is shown to be fourth-order and in Section 7.5 a parallel 

algorithm is developed and presented in tabular form in Table 7.1. This 

algorithm suitable for an architecture consisting of at least four processors 

needs the solution at first time-step in different way which is outlined in 

Section 7.2. In Section 7.6 a representative of these methods is used to 

find numerical solutions of the problems given in Chapter 6. Two numerical 

solutions are graphed and appended at the end of the chapter. 

It has been shown that all the numerical methods developed for all the 

problems discussed have a number of advantages over existing methods. The 

development of each method ensures that the high-order accuracy is main

tained at mesh points adjacent to the boundaries of the region of integration. 

To overcome the resulting increase in bandwidth of the governing matrix, a 

pre-elimination routine can be used. The other main advantage of the meth

ods is that they require the use of only real arithmetic, compared to the need 

of competing methods to use complex arithmetic in their implementation 

[4,5). 

8.2 Conclusions 

Up-to-now there has been no numerical method which achieves higher-order 

accuracy in time and the space variable. So the work considered in this thesis 
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regarded as a first attempt in this direction. I believe that this work is a 

major contribution to the existing research. 
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