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Abstract

We investigate the effects of real oil prices and their uncertainty on the investment decision.

Making use of plant-level data, we estimate dynamic, discrete choice models that allow model-

ing investment inaction, under different assumptions related to initial conditions and unobserved

heterogeneity. We find that increases in real oil price changes and in real oil price uncertainty

significantly reduce the likelihood of investment action – in line with the predictions of irre-

versible investment theory. We also document that the investment decisions exhibit strong pure

state dependence and are also significantly affected by initial conditions.
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1 Introduction

Disaggregate investment decisions are largely characterized by persistent and non-smooth behavior,

i.e. prolonged periods during which investment is actually zero are followed by prolonged periods in

which investment is positive (Caballero et al. 1995; Doms and Dunne 1998; Nilsen and Schiantarelli

2003).1 Recent advances in the theoretical analysis of investment behavior have made substantial

progress in the last three decades, deviating from the frictionless neoclassical benchmark, towards

models that allow investment irreversibility, or, in general, non-convex adjustment costs.2 In such

models, the investment decision becomes a discrete choice between investing and staying put. For

instance, in the presence of non-convex adjustment costs in uncertain environments, delaying the

implementation of an investment project might emerge as an optimal choice, when the decision

maker prefers to wait until part of the uncertainty is resolved.

Conventional wisdom suggests that adjustments in investment spending by firms are expected to

be affected by energy price shocks. For instance, energy price shocks cause reductions in consumer

expenditure (Edelstein and Kilian 2009; Hamilton 2009; Kilian 2009b), subsequently lowering de-

mand for firms’ output, hence to lower investment spending. In addition, such shocks are thought to

lead to increases in the marginal cost of production, also resulting in lower investment spending –

although, with a few exceptions, this is not empirically verified (see Edelstein and Kilian, 2007, for

a discussion). On the other hand, changes in oil prices are thought to create uncertainty about future

oil prices, causing firms to postpone irreversible investment decisions (Bernanke 1983; Pindyck and

Rotemberg 1983; Pindyck 1991).

Do higher real oil prices significantly reduce the likelihood of investment? Does an increase in

real oil price uncertainty lead to postponing investment? In this paper, we focus on these two ques-

tions, by analyzing the dynamic behavior of investment decisions at a disaggregate level, utilizing

plant-level data for the Greek manufacturing sector. Drawing on prior empirical work on invest-

1The findings that (i) investment inaction is not rare; (ii) there is a substantial degree of irreversibility; and (iii) that

investment decisions show substantial persistence, have been documented for instance in Barnett and Sakellaris (1999),

Bontempi et al. (2004), Cooper and Haltiwanger (2006), Gelos and Isgut (2001), and Sakelaris (2004).
2One class of such models explicitly introduces fixed investment costs and (partial) irreversibility (e.g. Abel and

Eberly 1994, 1996; Caballero and Engel 1999). Another class of models, the so-called Real Options Theory, suggests

that a decision maker with an opportunity to invest possesses an option similar to a financial call option. If she proceeds

with the irreversible investment, the lost option value is an opportunity cost that must be reflected in the cost of investment

(e.g. McDonald and Siegel 1986; Pindyck 1988; Dixit and Pindyck 1994).
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ment, we separate investment decisions between activity (either positive or negative investment) and

inactivity (zero investment episodes).

Our analysis has a number of novel and distinct features. First, we make use of plant-level data

to analyze the effects of real oil prices on investment, whereas existing studies operate at a higher

level of aggregation.3 Second, we explicitly evaluate the existence and the direction of the effects

of real oil prices and real oil-price uncertainty on the dynamics of the investment decision process,

which – to the best of our knowledge – have not been explored before at such a disaggregate level.4

Third, we do so by using dynamic binary choice models of investment behavior that disentangle the

effect of real oil prices and their uncertainty from persistence due to unobserved heterogeneity or

state dependence.

Our findings show that increases in real oil price changes and real oil price uncertainty adversely

affect investment decisions of manufacturing plants. In some more detail, we find that rising real

oil prices significantly reduce the probability of investment action. This finding is robust across

different estimators employed. Additionally, we find that increases in real oil price uncertainty raise

significantly the probability of investment inaction. This finding is robust not only across estimators,

but also when employing different measures of uncertainty such as the one-sided ‘risk’ measures

suggested by Kilian and Manganelli (2007).

Moreover, in one set of robustness experiments we allow for the effect of the unexpected real oil

price change (a ‘shock’) and find that it reduces significantly the probability of investment. That is

we find that there are significantly negative level effects from unexpected changes in real oil prices,

without making the adverse effects of increases in real oil price uncertainty less important. This

piece of evidence can be considered as complementary to those in Edelstein and Kilian (2007), who

show, however, that there is no empirical support for theoretical models of the effects of uncertainty

on business fixed investment expenditures.5 Our results show that there are indeed strong uncertainty

3The use of a micro-level panel dataset is essential to avoid the problem of aggregation over production units, which

results when investment decisions are observed at a higher aggregation level that masks investment discontinuity. The

use of such a dataset makes it more likely that zeros (investment inaction) will be observed.
4This relates our work – at least in spirit – to studies that examine the effects of aggregate uncertainty on disaggregate

investment decisions (e.g. Campa 1993, 1994; Campa and Goldberg 1995). The importance of aggregate uncertainty on

investment decisions is also studied in Pindyck (1993) who shows that, under identical technology and market conditions,

industry-wide uncertainty induces investment inaction.
5Of course our results are not directly comparable for two reasons. The first relates to the different time period

analyzed, and more importantly to our focus on the Greek manufacturing sector, rather than the US manufacturing sector.

The second relates to our use of crude oil prices rather than retail/firm energy prices.
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effects on investment dynamics, but they are discernible at a more disaggregate level of analysis.

Finally, as a by-product of our analysis, we document the existence of strong state-dependence

in investment. We find that estimates of state dependence in investment are affected, as expected,

by the assumptions made regarding initial conditions and the treatment of unobserved heterogene-

ity. Despite the sensitivity to these assumptions, we find that the likelihood of investment action

is significantly positively correlated with investment action in the last period, across all estimators

examined.

The rest of the paper is organized as follows. Section 2 describes our econometric methodology

for modeling the investment process and for measuring real oil price uncertainty. Section 3 gives a

brief overview of the data employed, discusses our core empirical findings as well as various exten-

sions and robustness experiments, while section 4 concludes.

2 Empirical Methodology

In our work we make use of dynamic random-effects models to model the probability of investment

action, which include the previous state to allow for state dependence. Special attention is paid to

the treatment of unobserved heterogeneity and initial conditions. The former relates to whether the

observed persistence of investment is the outcome of ‘pure’ or ‘spurious’ state dependence.6 The

initial conditions are important, as in short panels, like ours, they have an impact on the entire path

of outcomes.

The empirical specification for modeling the investment decision takes the form of a dynamic

binary choice model

yit = 1 {x′itβ+γyit−1 + ci + uit > 0} , i = 1, .., N ; t = 1, ..., Ti, (1)

where yit is an binary indicator variable for investment action by plant i = 1, ..., N in year t, the vec-

tor xit contains explanatory variables affecting the propensity to trigger investment, while ci denotes

a time-invariant component capturing plant-specific heterogeneity and uit is a well-behaved random

term.

The random-effects (RE) specifications we employ, require that the distributional properties of ci

and uit, as well as their relationship to the explanatory variables be specified, along with the initial

6Pure state dependence would imply that the probability of investment in year t depends on the outcome in year t−1,

after controlling for unobserved heterogeneity.
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conditions of the dynamic process. In what follows we assume that xit is strictly exogenous for uit

(conditional on ci), and more specifically that uit|X, c ∼ NIID(0, σ2
u).7 The standard random-effects

model assumes that ci|xi ∼ NIID(0, σ2
c). An alternative following Mundlak (1978) and Chamberlain

(1984) is to allow for correlation between ci and the observed characteristics, assuming a relationship

of the form ci = x̄′iξ+αi, with αi ∼ NIID(0, σ2
α) being independent of xit and uit for all i and t and

x̄i ≡ T−1
i

∑T
t=1 xit – the correlated random effects (CRE) model. In this instance, model (1) may be

written as

yit = 1 {x′itβ+γyit−1 + x̄′iξ + αi + uit > 0} , i = 1, .., N ; t = 1, ..., Ti. (2)

The random-effects specification (2) implies that the correlation between the composite error

vit = αi + uit in any two periods will be the same, namely ρ = corr(vit, vis) = σ2
α/(σ

2
α + σ2

u)

for t, s = 1, ..., Ti and t 6= s. Moreover, since y is binary, a convenient normalization is σ2
u = 1.

If γ = 0, model (2) involves only a single integral, by conditioning on the individual effect and

integrating it out, so parameters can be estimated by Maximum Likelihood (ML) using Gaussian–

Hermite quadrature (Butler and Moffitt 1982).

In order to estimate the model when γ 6= 0, it is necessary to make an assumption about the

relationship between the initial observation, yi0, and the individual-specific effect. One possibility is

to assume that yi0 is exogenous, i.e. a nonrandom starting position for each i. In this case, likelihood

can be decomposed into two independent factors and the joint probability for t = 1, ..., Ti, and can

be maximized without reference to that for t = 0. However, if the initial conditions are correlated

with αi, this method of estimation overstates state dependence (Chay and Hyslop 2000).

In our work we explore two alternative approaches that treat the initial observations as endoge-

nous following Heckman (1981) and Wooldridge (2005) respectively.8 Heckman (1981) suggests

specifying a linearized reduced-form equation for the initial value:

yi0 = 1 {z′i0λ+ θαi + ui0 > 0} (3)

where zi0 = (x′i0, x̄
′
i)
′ and ui0 is assumed to be independent of αi, with the former satisfying the

same distributional assumptions as uit for t ≥ 1. A test of θ = 0 provides a test of exogeneity of the

7Here c = (c1, ..., cN )′, and X = (x′1, ...,x
′
N )′ with xi = (xi1, ...,xiTi)

′.
8There is yet another approach due to Orme (2001). A comparison of these three approaches is discussed in Arulam-

palam and Stewart (2009). See also Stewart (2007) for a discussion of the approaches of Heckman (1981) and Wooldridge

(2005). We discuss results from all three approaches in an online Supplement.

4



initial condition in this model.

Equations (2) and (3) together specify a complete model for a random sample (y0, y1, ..., yT ). One

can then marginalize the likelihood with respect to αi, obtaining the appropriate likelihood function

for the maximization. For instance, the contribution to the likelihood for plant i in the model is given

by

Li =

∫ {
Φ [(z′i0λ+ θαi) (2yi0 − 1)]

Ti∏
t=1

Φ [(x′itβ+γyit−1 + x̄′iξ + αi) (2yit − 1)]

}
dΦ(αi), (4)

where Φ is the standard normal cumulative distribution function. As αi is normally distributed, the

above integral can be evaluated using Gaussian–Hermite quadrature (Butler and Moffitt 1982).

A different approach to the initial conditions problem is proposed by Wooldridge (2005), who

suggests a Conditional Maximum Likelihood (CML) estimator, considering the distribution condi-

tional on the initial period value and exogenous covariates. More specifically, instead of specifying a

model for yi0 given xi and αi, a model is specified for αi given xi and yi0. In particular it is assumed

that

αi = δ0 + δ1yi0 + ai, (5)

as the Mundlak specification above already includes x̄i. Substituting into (2) gives

yit = 1 {x′itβ+γyit−1 + δ0 + δ1yi0 + x̄′iξ + ai + uit > 0} , i = 1, .., N ; t = 1, ..., Ti. (6)

In this model, the contribution to the likelihood function for individual i is given by

Li =

∫ { Ti∏
t=1

Φ [(x′itβ+γyit−1 + δ0 + δ1yi0 + x̄′iξ + ai) (2yit − 1)]

}
dΦ∗(ai), (7)

where Φ∗ is the normal distribution function of the new unobservable individual-specific heterogene-

ity ai given in (5). So (6) is again a one factor probit model that can be easily estimated my ML using

Gaussian quadrature procedures. In Wooldridge’s method, the exogeneity of the initial condition is

tested by the significance of the coefficient on yi0.

In all specifications above, uit is assumed IID. In a recent contribution Hsiao et al. (2012) follow-

ing Pesaran (2004) propose a simple test statistic to assess the null of cross-sectional independence.

In particular, they suggest using:

CD =

√
2

N (N − 1)

(
N∑
i=1

N−1∑
j=i+1

√
Tij r̂ij

)
, (8)
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where Tij is the number of common time series observations available for any pair of plants i and

j, and r̂ij is the correlation coefficient computed using the generalized residuals estimated under the

null hypothesis. They show that under the null hypothesis of cross-sectional independence, CD
d→

N(0, 1) for N, T → ∞ and that the CD statistic has exactly mean at zero for fixed values of N and

T , under a wide range of panel data models, including heterogeneous models, non-stationary and

dynamic panels.

3 Data and Empirical Findings

3.1 Data and Benchmark Measure of Real Oil-Price Uncertainty

The data used in this paper come from the Annual Industrial Survey (AIS) for Greece, which surveys

plants belonging to all firms with more than 10 employees across 21 manufacturing industries. The

sample constitutes an unbalanced panel of plants, built from data collected in the 12 AIS’s for the

period 1994 to 2005 (51881 plant-year observations). The investment indicator (yit), is constructed

on the basis of the difference between (gross) values for capital acquisitions and disposals by plant,

reported by the AIS. The vector of explanatory variables (xit) we use includes plant-specific char-

acteristics such as sales, cash-flow, equity, and loans as ratios to value added and (log) employment,

all lagged one period to avoid simultaneity. In addition, it includes the percentage change in real oil

prices and a measure of real oil-price uncertainty. The former is obtained by using annual data on

Brent, quoted in US dollars, converted into Euros and then deflated by the producer price index of

manufacturing goods.9

To obtain our uncertainty metric, we estimate a GARCH(1,1) model using the same data on the

percentage change of real oil prices, on a monthly frequency. In particular the conditional mean

is chosen to be a restricted AR(10), to ensure that no autocorrelation is present in the residuals.

The model is estimated recursively, in each case utilizing monthly observations up to December of

year t − 1. Using these estimates, we forecast the conditional standard deviation for the twelve

months in year t and then use the average predicted volatility in year t as our benchmark measure of

real oil-price uncertainty. Note that this uncertainty measure, albeit backward looking, reflects that

economic agents, upon deciding, have to make forecasts about the uncertainty they will be facing,

9As discussed in Edelstein and Kilian (2007), there is a subtle difference between firm energy prices and crude oil

prices, we employ here. As the former are unavailable, we employ the latter in our analysis as a proxy.
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and in addition it is a measure known at the beginning of year t.

3.2 Empirical Results

In all specifications the set of explanatory variables includes industry and year dummies, while

the CRE estimators also include time-averages of each plant-specific (time-varying) characteristic

included in xit. Table 1 reports the estimated marginal effect of each covariate for all dynamic

random-effects probit models, holding all other covariates at their respective sample means – with

industry and time effects also evaluated at their mean values. The second column reports estimates

from the standard random effects model; the third column estimates from correlated random-effects

(CRE) model and the last two columns report estimates from the CRE estimators of Heckman and

Wooldridge.10

[Insert Table 1 About Here.]

The signs of the control variables suggest that larger plants (higher employment) show higher

probability of investment. Similar results hold for higher level of equity financing, higher sales and

higher operating profits (cash flow), which are also associated with higher probability of investment

action – although the estimates from the Heckman estimator indicate that their effects are insignif-

icant. A higher loan to value-added ratio, on the other hand, is found to increase the probability of

investment only when employing the simple random effects probit estimators.

Furthermore, time-averaged variables – representing fixed underlying differences between plants

in the CRE specifications – play a key role in the model, accounting for the potential correlation

between the unobserved individual-specific heterogeneity and observable characteristics. Most of

their marginal effects are individually statistically significant, suggesting that the CRE specifications

are more appropriate. In addition, these estimates carry the same sign with the marginal effects of

the corresponding year-specific variables. Two notable differences are average employment – being

significant only in the Heckman specification – and average loan to value-added – an increase in

which results in a significantly higher probability of investment action in all three CRE estimators.

10The initial period in the Heckman estimator is modeled as a function of sales, cash flow and employment and time

averages of all covariates included in the model. The rest of the covariates as well as industry dummies had to be dropped

for identification purposes.
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Moreover, we find strong evidence of endogeneity of the initial conditions, which turn out to be

strong determinants of the subsequent investment decision process. In particular, looking at the re-

sults from both the Heckman and Wooldridge estimators, we reject the null hypothesis of exogeneity

of initial conditions – as θ for the former and the marginal effect of yi,0 for the latter are strongly

significant.

Examining the issue of state dependence, across all four specifications the lagged investment ac-

tivity variable is highly significant, reflecting strong persistence. We find that the size of the relevant

estimated marginal effect decreases somewhat when we take into account heterogeneity and espe-

cially when initial conditions are treated as endogenous. In addition, there are a number of ways in

which the partial effect of yit−1 on Pr(yit = 1) may be assessed in models like the ones considered

here. The approach we take is based on estimates of counterfactual outcome probabilities taking yit−1

as fixed at 0 and at 1, and evaluated at xit = x̄ (with industry and time effects also evaluated at their

averages). That is, we calculate p̃0 and p̃1, which stand for the predicted probabilities of investment

action in year t, given investment inaction or action in t − 1, respectively. Then, the magnitude of

the effect of past investment activity can be assessed using the concepts of the Average Partial Effect

(APE) defined as (p̃1 − p̃0), and the Predicted Probability Ratio (PPR) defined as (p̃1/p̃0).

The estimated probabilities are reported in the bottom panel of Table 1, along with the APEs

and the PPRs, for each model. The predicted probability of being active in investment at year t,

conditional on being active in year t − 1 is estimated to be in the range between 92% (RE probit)

and 95% (Heckman estimator), while the predicted probability of being active in investment in year t,

conditional on being inactive in t−1 ranges between 37% (Wooldridge estimator) and 42% (Heckman

estimator). Hence the APE is between 51 and 57 percentage points, while the PPR between 2.24

and 2.56. Thus, on average, and controlling for heterogeneity, past investment action is associated

with a difference in the probability of current investment action by more than 50 percentage points,

or put differently, the probability of investment action is at least some 2.2 times higher if there has

been some investment action during last period.

We next turn to the two oil-related variables of interest in our specifications: the percentage

change in real oil prices and real oil price uncertainty. First, we find that – in our models where the

percentage change of oil prices enters linearly – an increase in real oil prices reduces significantly

the probability of investment action, a finding which holds across all estimators employed. For

8



instance, focusing on the last column of Table 1, we find that an increase of real oil prices by one

percentage point reduces the probability of investment action by 0.07 percent. Second, we also find

that an increase in real oil price uncertainty, reduces significantly the probability of investment action,

irrespectively of the estimator employed. For example, focusing again on the last column of Table

1, we find that an increase in our measure of real oil price uncertainty by 0.01 (roughly 11% relative

to its average value) reduces the probability of investment action by 0.46 percent.11 Moreover, even

when allowing for unobserved heterogeneity to be correlated with observable characteristics, as well

as explicitly modeling initial conditions, increases in real oil prices and real oil price uncertainty

retain their negative effect on the probability of investment activity. More importantly, though, we

see that the estimated magnitude of these effects is robust across all estimators employed.

Finally, we evaluate the extent to which the assumption of cross-sectional independence of the

error term is valid, by means of the CD-test. For all four estimators, we find that the null is strongly

rejected. In addition, the estimated average cross-sectional correlation of the generalized residuals

is above 0.34. However, there is no well-established technique that allows us to correct for this

deviation from the IID assumption.12 To this end, our results should be interpreted, keeping this

caveat in mind.

3.3 Extensions and Sensitivity Analysis

In this subsection we examine various extensions, such as using different measures of real oil–price

uncertainty, assessing the existence of asymmetry of oil–related effects, and expanding the set of

controls to include plant-specific uncertainty, the business–cycle and industry–wide uncertainty.13

3.3.1 Alternative Measures of Real Oil Price Uncertainty

Thus far, we have employed a measure of real oil–price uncertainty that is derived from a GARCH

model of conditional volatility, which despite being based on out-of-sample forecasts over a one–year

horizon, might not fully capture the ‘risk’ a decision maker is facing. On the one hand, this measure

converges quickly to the unconditional volatility of real oil prices (Kilian and Vigfusson 2011), and

11To understand better the magnitude of these effects, note that an increase of sales by 1% of value added increases

the probability of investment action by 0.15%!
12We have already included time-effects as the least possible remedy for the existence of cross-sectional dependence.
13We briefly discuss results when using alternative measures of uncertainty/risk. The rest of our estimation results are

available in an online supplement.
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on the other hand, in the context of investment decisions, the risk of real oil price increases rather

than a simple increase in variance of real oil prices, is probably more relevant.

In deriving such one–sided ‘risk’ measures we have two options. The first is to follow Kilian and

Manganelli (2007) and define the ‘risk’ of excessive real oil price increase h periods from date τ ,

above a specific threshold value, π̄, as

EIRζτ (π̄) =

∫ +∞

π̄

(πτ+h − π̄)ζ dF (πτ+h) , (9)

where F (·) is the probability distribution function of future real oil–price change outcomes (πτ+h),

estimated by the empirical distribution of real oil–price changes forecasts. Note that this class of

risk measures is defined in terms of percentage increases in real oil prices, which squares well with

standard financial planning models and practice (Ross et al. 2005). In such models, one usually

employs forecasts of the growth rates of all the relevant variables (such as sales, cost etc.) as inputs,

so risk measures like (9) seem more appropriate. The second, which is more conventional in the

economics literature, is to define the risk measures in terms of the real oil price (the relative price of

oil) as this would show up in many standard profit maximization problems. In this instance, we may

define the ‘upside risk’ that real oil prices h periods from date τ , Rτ+h, will be above a threshold

value, R̄, as

URζτ (R̄) =

∫ +∞

R̄

(
Rτ+h−R̄

)ζ
dF
∗
(Rτ+h) , (10)

where F ∗(·) is the predictive distribution of real oil prices. As both these classes of risk measures are

useful in different contexts, we report results for both.

Before proceeding note that for ζ = 1 both (9) and (10) reduce to tail conditional expectations,

multiplied by the corresponding tail probabilities: EIR1τ (π̄) = E (πτ+h−π̄|πτ+h> π̄) Pr (πτ+h> π̄)

and UR1τ

(
R̄
)

= E
(
Rτ+h−R̄

∣∣Rτ+h> R̄
)

Pr
(
Rτ+h> R̄

)
; while for ζ = 2 these reduce to the (one-

sided) variance about the target again multiplied by the corresponding tail probability: EIR2τ (π̄) =

E [(πτ+h−π̄)2|πτ+h> π̄] Pr (πτ+h> π̄) and UR2τ

(
R̄
)

= E[(Rτ+h−R̄)
2|Rτ+h> R̄] Pr

(
Rτ+h> R̄

)
.

The excessive increase risk measures (EIR) can be computed as in Kilian and Manganelli (2007),

and the upside risk measures (UR) can be calculated as discussed in Alquist et al. (2011), for differ-

ent values of ζ . In calculating such risk measures we have chosen π̄ to be 20% and R̄ to be 50 euros

(in constant 2005 prices) – our results not being sensitive to this choice – and focus at a four-years

ahead horizon. Albeit limited in nature, as many business fixed investment projects tend to have
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lifetimes well beyond four years, this choice is intended to capture – to the extent that is possible –

that the relevant measure of risk should reflect the life-time of the investment project.

Table 2 summarizes the estimated marginal effects from employing the dynamic CRE estimators

of Heckman and Wooldridge and these one-sided risk measures, leaving the rest of the controls the

same. When examining real oil prices, we see that their estimated marginal effects are closely in-

line with those reported in Table 1 and significant. One exception is when we employ the Heckman

estimator and the UR measures of one-sided risk: In this case increases in real oil prices do not

influence insignificantly the probability of investment.14

[Insert Table 2 About Here.]

On the other hand, when we employ the EIR1 or the EIR2 measures, we find that any increase

in these translates in a significantly lower probability of investment action. Instead, when we employ

the UR measures, we again find that the probability of investment is lowered, but not in a significant

manner. Note however that the estimated marginal effects of EIR and UR are closely aligned.

Focusing on the estimator of Wooldridge, an increase of EIR1 by 0.01 (about 8.19% above its mean)

reduces the probability of investment action by 0.22%, while an equiproportional increase in UR1

(relative to its mean) leads to a reduction of the probability of investment by 0.15%. Similarly, an

increase in EIR2 by 0.01 (about 17% above its mean) reduces the probability of investment action

by 0.74%, while an equiproportional increase of UR2 (relative to its mean) reduces the probability

by 0.5%.

3.3.2 Other Robustness Experiments

Our findings thus far are robust to a number of different extensions. First, in line with the empirical

macroeconomics literature which aims at identifying the unpredictable component in real oil prices

(‘shocks’) as the relevant measure that affects spending decisions (Edelstein and Kilian 2007, 2009),

we isolate the unpredictable component of the four-year percentage change in real oil prices, as the

residual from a first-order autoregression.15 Our findings are almost identical to those reported in

Table 2, showing that there is a strong negative effect of oil price ‘surprises’ to the probability of

14The marginal effects of the other covariates are similar in terms of magnitude and statistical significance to those

discussed in Table 1.
15The alternative is to obtain such ‘shocks’ from a VAR model, as in Kilian (2008, 2009a) but this is beyond the scope

of our analysis.
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investment. These findings can be considered to be complementary to those in Edelstein and Kilian

(2007), as we provide evidence that oil price ‘shocks’ are important determinants of investment

decisions at the plant level.

Second, we explore the possibility of asymmetric effects of real oil prices and real oil price

uncertainty on plant-level investment, along two dimensions, namely size (Campa 1994; Ghosal and

Loungani 2000) and oil intensity in production. Here we proxy size by the level of employment,

classifying a plant as small (large) if its number of employees is below (above) the median. In

assessing the importance of oil intensity one should focus on the indirect energy share (Lee and Ni

2002), which however has been shown not to be a key factor by Kilian and Park (2009). As data

on the indirect energy share are unavailable, we proxy (direct) oil intensity by the share of plant

petrol expenditures to total energy expenditures. As far as real oil prices are concerned, we find no

differential effect on either small or highly oil-dependent plants, in line with the evidence in Kilian

and Park (2009). Similarly, we find that rising real oil price uncertainty does not have a differential

effect on plants that are highly-dependent on oil. We do find, however, that smaller plants are indeed

influenced more severely by rising real oil-price uncertainty, documenting the differential effect of

uncertainty on the investment decisions of smaller production units.

Third, in order to assess whether plant-specific uncertainty makes any difference to our results,

we obtain measures of plant-specific uncertainty, by estimating a (pooled) AR(1) process for profits,

allowing for time-varying conditional volatility by means of a Pooled-Panel GARCH (PP-GARCH)

in the spirit of Cermeno and Grier (2006).16 Based on this, we produce one-year-ahead predictions of

conditional standard deviation of profits, which we use as an extra control in our analysis. Moreover,

to account for the fact that both the real oil price volatility and the profit volatility may vary with the

business cycle, we also include the economy-wide output gap as a control in our analysis.17 We find

that the inclusion of plant-specific uncertainty and the output gap does not affect our previous results

in any substantial manner. In addition, increases in plant-specific uncertainty do not reduce signif-

icantly the probability of investment action. Moreover, when output is above trend, the probability

of investment action increases significantly: in other words, the probability of investment action in-

16As the data we use are confidential, we are unable to match plants with specific firms, and hence the use of uncertainty

measures based on stock return volatility (see e.g. Leahy and Whited 1996; Bloom et al. 2007) is not possible. See also

Ghosal and Loungani (2000) for an application using industry profits. These authors obtain their uncertainty variable, by

modeling the profit rate as a (panel) AR(2) process.
17Output gap is defined as the ratio of actual to potential real GDP for the whole economy.
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creases when output rises above trend-output (the economy is in a boom), whereas it is less likely

that investment will take place when output is cyclically below trend (in a recession).

Finally, we evaluate whether the inclusion of industry-wide uncertainty in our controls, makes a

significant difference to our results. To measure industry uncertainty we follow Bloom et al. (2007)

and use the unconditional standard deviation of daily stock returns from the Industrials Price Index,

in year t – which is a forward looking indicator incorporating the impact of different sources of

uncertainty on the whole manufacturing sector. As this measure may partly reflect noise unrelated

to fundamentals, we also consider a measure that normalizes the daily industry returns by the return

on all shares to eliminate the effect of any aggregate stock market bubbles. Utilizing both these

measures, we find that increasing industry-wide uncertainty reduces significantly the probability of

investment action. In both cases, however, our conclusions regarding real oil price changes and real

oil price uncertainty remain unaffected.

4 Conclusions

The goal of this paper has been to investigate the effects of real oil prices and real oil-price uncertainty

on the dynamic behavior of investment decisions at a disaggregate level, using plant-level data for the

Greek manufacturing sector. We find that increases in both these variables reduce significantly the

probability of investment. The finding that rising real oil-price uncertainty increases the likelihood

of investment inaction is in line with the predictions of irreversible investment theory. We have

assessed the sensitivity of these effects to a number of modeling assumptions such as the modeling of

unobserved heterogeneity and the endogeneity of initial conditions, and found that these are robustly

estimated as being negative and significant in all cases.

Moreover, the negative effects of increasing real oil prices and real oil-price uncertainty are also

robust across different measures of real oil-price uncertainty, including one-sided risk measures,

which capture the risk of real oil-price increases a decision maker is facing. These findings are also

robust across a number of extensions, including taking into account industry-wide uncertainty, con-

trolling for the business cycle and for plant-specific uncertainty. In addition, our analysis provides

evidence that the effect of rising real oil price uncertainty is non-uniformly distributed across deci-

sions makers, since the resulting reduction of the probability of investment action is amplified for
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smaller plants, whereas no such evidence is found for real oil prices.

Finally, we document the existence of strong state-dependence in investment. We find that esti-

mates of state dependence in investment are affected by the assumption made regarding initial con-

ditions and the treatment of unobserved heterogeneity. Despite the sensitivity to these assumptions,

we find that likelihood of triggering investment is significantly positively correlated with investment

action in the last period, suggesting that its presence significantly affects the time trajectory of in-

vestment decisions.
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Table 1: Dynamic Models of Investment Activity

Dynamic RE Dynamic CRE Dynamic CRE

(Exogenous Initial (Exogenous Initial (Endogenous Initial

Conditions) Conditions) Conditions)

Covariate Heckman Wooldridge

yi,t−1 0.330*** 0.314*** 0.194*** 0.275***

[35.611] [33.796] [23.509] [30.902]

σ̂oilt|t−1 -0.749*** -0.500*** -0.454*** -0.460***

[-5.591] [-3.843] [-3.160] [-3.537]

πoilt -0.106*** -0.072*** -0.071*** -0.070***

[-4.916] [-3.425] [-3.087] [-3.353]

SLi,t−1 0.037*** 0.015*** 0.013 0.015***

[7.012] [2.230] [1.492] [2.293]

CFi,t−1 0.019*** 0.008* 0.007 0.008*

[5.180] [1.702] [1.263] [1.713]

EMPi,t−1 0.114*** 0.090*** 0.083*** 0.092***

[33.831] [12.866] [9.993] [13.194]

EQi,t−1 0.035*** 0.007** 0.005 0.007**

[13.521] [2.717] [1.522] [2.456]

LOi,t−1 0.037*** -0.013 -0.001 -0.012

[3.001] [-0.981] [-0.051] [-0.936]

Time Averaged Plant Characteristics (Observed Heterogeneity)

SLi 0.027*** 0.036*** 0.020**

[2.725] [2.600] [2.017]

CFi 0.031*** 0.029** 0.033***

[4.097] [2.545] [4.320]

EMPi 0.008 0.027*** -0.007

[1.079] [2.873] [-0.937]

EQi 0.101*** 0.123*** 0.095***

[19.209] [16.625] [18.133]

LOi 0.278*** 0.314*** 0.267***

[8.736] [7.033] [8.545]

Initial Conditions

θ 1.019***

[13.210]

yi,0 0.136***

[17.841]
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Table 1 Continued

Dynamic RE Dynamic CRE Dynamic CRE

(Exogenous Initial (Exogenous Initial (Endogenous Initial

Conditions) Conditions) Conditions)

Heckman Wooldridge

Diagnostics

ρ 0.282*** 0.256*** 0.318*** 0.259***

[20.589] [19.102] [19.892] [20.505]

logL -15812.196 -15478.078 -12717.619 -15275.266

N.Obs 42794 42794 47997 42794

CD-Test 612.352*** 766.229*** 797.184*** 762.235***

r̄ 0.342 0.358 0.363 0.359

Predicted probabilities

Pred. Prob. p̃0 0.412 0.386 0.419 0.366

Pred. Prob. p̃1 0.925 0.934 0.947 0.938

APE = p̃1 − p̃0 0.512 0.547 0.528 0.572

PPR = p̃1/p̃0 2.242 2.416 2.259 2.562

Notes for Table 1: The oil price uncertainty metric, σ̂oilt|t−1, is constructed as a twelve month average of the

predicted one-year-ahead monthly real oil price volatility. πoilt denotes the percentage change of the real oil

price in year t relative to year t − 1. The set of controls also includes industry and time dummies. In the

first two specifications the initial condition is taken to be exogenous, while yi,0 denotes the initial condition,

as in Wooldridge (2005). In the Heckman (1981) estimator, the initial period is modeled as a function of

SLi,−1, CFi,−1, EMPi,−1 and all time-averaged plant-specific characteristics. logL in the Heckman (1981)

estimator is for the joint model for all periods (1994-2005), whereas in all other models it corresponds to pe-

riod 1995-2005, which also explains the difference in the number of observations. CD-test denotes the test of

cross-sectional independence proposed by Hsiao et al. (2012), and r̄ indicates the average pair-wise correlation

coefficients of the generalized residuals. p̃0 denotes the average predicted probability for investment action in

year t, given inaction in the previous year; p̃1 denotes the average predicted probability for investment action in

year t, given action in the previous year; APR stands for Average Partial Effect and PPR stands for Predicted

Probability Ratio. The numbers in square brackets denote z-scores, while one, two, and three asterisks indicate

statistical significance at the 10, 5, and 1 percent level.
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