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Abstract

The main contribution of this thesis is the introduction of Bayesian quantile regression for hidden

Markov models, especially when we have to deal with extreme quantile regression analysis, as there

is a limited research to inference conditional quantiles for hidden Markov models, under a Bayesian

approach.

The first objective is to compare Bayesian extreme quantile regression and the classical extreme

quantile regression, with the help of simulated data generated by three specific models, which only

differ in the error term’s distribution. It is also investigated if and how the error term’s distribution af-

fects Bayesian extreme quantile regression, in terms of parameter and confidence intervals estimation.

Bayesian extreme quantile regression is performed by implementing a Metropolis-Hastings algorithm

to update our parameters, while the classical extreme quantile regression is performed by using linear

programming.

Moreover, the same analysis and comparison is performed on a real data set. The results pro-

vide strong evidence that our method can be improved, by combining MCMC algorithms and linear

programming, in order to obtain better parameter and confidence intervals estimation.

After improving our method for Bayesian extreme quantile regression, we extend it by includ-

ing hidden Markov models. First, we assume a discrete time finite state-space hidden Markov model,

where the distribution associated with each hidden state is a) a Normal distribution and b) an asymmet-

ric Laplace distribution. Our aim is to explore the number of hidden states that describe the extreme

quantiles of our data sets and check whether a different distribution associated with each hidden state

can affect our estimation. Additionally, we also explore whether there are structural changes (break-

points), by using break-point hidden Markov models. In order to perform this analysis we implement

two new MCMC algorithms. The first one updates the parameters and the hidden states by using
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a Forward-Backward algorithm and Gibbs sampling (when a Normal distribution is assumed), and

the second one uses a Forward-Backward algorithm and a mixture of Gibbs and Metropolis-Hastings

sampling (when an asymmetric Laplace distribution is assumed).

Finally, we consider hidden Markov models, where the hidden state (latent variables) are contin-

uous. For this case of the discrete-time continuous state-space hidden Markov model we implement

a method that uses linear programming and the Kalman filter (and Kalman smoother).

Our methods are used in order to analyze real interest rates by assuming hidden states, which

represent different financial regimes. We show that our methods work very well in terms of parameter

estimation and also in hidden state and break-point estimation, which is very useful for the real life

applications of those methods.
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Chapter 1

Introduction

Time series data occur frequently in many applications. To analyze such data, it is of great practical

importance to select an appropriate model. Hidden Markov Models (HMMs) have been successfully

applied to various fields due to their ability to describe many processes in a mathematically tractable

way. The specification of a hidden Markov model assumes that an underlying sequence of states,

which follows a finite Markov chain, affects the distribution of the observed process of interest. Ad-

ditionally, it is also very important to select an appropriate regression method to analyze time series

data. Traditional mean regression developed for Gaussian models does not typically account for the

heterogeneity encountered in time series data, which usually consists of an often loose association of

different time series into one data set (Nuamah, 1986; Beck and Katz, 2007), whereas quantile regres-

sion can provide a broader statistical alternative to least squares in the real word of research. Quantile

regression offers the possibility of investigating how covariate effects influence the location, scale and

possibly the shape of the conditional response distribution. It has a random coefficient interpretation,

allowing for slope heterogeneity drawing from non-Gaussian distributions.

Quantile regression can be used to measure the effect of covariates not only in the centre of a

distribution, but also in the upper and lower tails. These tail measurements have many applications

(Yu et al, 2003). For example, risk management regulations require banks to estimate market risk

measures based on quantiles of loss distributions. Value at Risk (VaR) is to be calculated daily,

using a 99th or 95th percentile, one-tailed confidence interval by banks. Extreme quantile regression

has been proposed to model these tails of underlying distributions. Like mean regression models,

quantile regression models also involve parameter uncertainty, so Bayesian quantile regression have

1



CHAPTER 1. INTRODUCTION 2

attracted much interests in literature,especially during the past ten years, since Yu and Moyeed (2001).

However, most of the research on the topic focus on general quantile regression without specification

on extreme quantile regression, while the latter needs special treatment.

During recent years interest lied in estimating time-varying quantiles, which can be fitted to a se-

quence of observations by formulating a time series model for the corresponding population quantile

and iteratively applying a suitably modified state space signal extraction algorithm. Those quantiles

can provide information about dispersion, asymmetry, VaR and many other aspects of a time series.

De Rossi and Harvey (2006) noted that the criterion for choosing the estimated quantile so as to min-

imize the sum of absolute values around it, can be obtained from a model, where the observations are

generated by an asymmetric double exponential distribution. Their method was based on the Kalman

filter and smoother, in order to estimate the quantiles. De Rossi and Harvey (2009) used a model-

based approach, which enabled time-varying quantiles to be used for forecasting and they proved that

if the underlying time series model is a Wiener process, then the solution for quantiles is equivalent

to fitting a spline. Moreover, Gerlach et al. (2011) extended the CAViaR model for dynamic quantile

estimation to a fully nonlinear family. They performed Bayesian time-varying quantile forecasting

for VaR by employing Bayesian adaptive Markov Chain Monte Carlo (MCMC) methods, which are

based on the well-known link between the quantile criterion function and the asymmetric Laplace

distribution.

Generally, Bayesian inference for hidden Markov models (Castellano and Scaccia, 2007) and

quantile regression based on hidden Markov models (Farcomeni, 2010) have been used widely in

practice. However, this thesis combines both methodologies in order to model complicated structures

of real world applications. This combination produces a novel research, which takes into account both

conditional quantiles of the response variable and the hidden (latent) states of the underlying Markov

process.

In this thesis we use discrete-time finite state-space hidden Markov models and quantile regression

through a Bayesian approach, in order to model financial time series. First, we perform Bayesian

extreme quantile regression to three simulated data sets and one real data set using a Metropolis-

Hastings algorithm to update our parameters. Our aim is to see whether there is a fast convergence and

a good estimation of each parameter. Then we compare Bayesian extreme quantile regression with

the classical approach, which uses linear programming for parameter estimation. The fact that we use

simulated data sets enable us to compare the estimated parameters, for both Bayesian extreme quantile

regression and classical approach, with the true values of the parameters. Additionally, the fact that
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the difference between the simulated data sets is only the error term in the initial models enables us

to explore if and how the error term affects the parameter estimation, for various quantiles (especially

for the extreme quantiles). Finally, we can also check the similarities or differences between Bayesian

extreme quantile regression and classical approach in terms of different quantiles.

Inference for hidden Markov models belongs to the general class of missing data problems. Miss-

ing data either arise naturally (when data that have been observed are missing), or intentionally (ran-

dom variables that are not observable). Clearly, hidden Markov models is an example of the latter.

In missing data problems the likelihood function is not tractable due to the existence of some unob-

served data. In the Bayesian framework, such models are analyzed via MCMC utilizing the technique

of data augmentation. This technique introduces additional (latent) variables to the parameter space

so that the likelihood function becomes tractable.

We continue by using hidden Markov models and Bayesian extreme quantile regression, in order

to analyze two real financial data sets. The complexity of a hidden Markov model is related to sev-

eral aspects, such as the number of hidden states in the model and the connectivity of the states in the

transition matrix. A simple special case of hidden Markov models, which is widely used in the econo-

metrics literature, is the class of break-point models. These are used to model the occurrence of one

or multiple structural breaks (changes) in a time series. Treating the model parameters as unknown

variables leads to complex posterior distributions, or integrals that need to be calculated. Therefore,

approximation algorithms are introduced to address any computational intractability. MCMC meth-

ods can be applied in that case in order to enable us simulate from complex posterior distributions.

In this thesis we implement a Bayesian approach to inference for two different hidden Markov

models (Normal hidden Markov models and asymmetric Laplace distribution hidden Markov mod-

els), based on data augmentation for the extreme quantiles. The latent variables, in our case, consists

of a sequence of hidden states which are modeled by a finite state-space Markov chain. We construct

an MCMC algorithm which consists of updates of the hidden sequence of states and the model pa-

rameters. The hidden states are updated given the model parameters using the Forward-Backward

algorithm, while the model parameters are updated given the states via simple Gibbs steps (for the

Normal hidden Markov model) and via a mixture of Gibbs and Metropolis-Hastings steps (for the

asymmetric Laplace distribution hidden Markov model).

The data we consider concern the US ex-post real interest rates and the US treasury bill real

interest rates. We are interested in inferring the number of states, or the number of break-points, that
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describe the conditional quantiles of the data in the best possible way. For this purpose we consider

various hidden Markov models and break-point models for each data set, which we compare using

the deviance information criterion (DIC) in order to select the best model. Finally, it is of interest

to infer the dates of the structural changes in the series, since they represent shifts between different

economic regimes or changes in the economic environment. It is also important to check if there is

a fast convergence and a good estimation of our parameters, for both extreme quantiles, for the two

different hidden Markov models. Then, we compare our MCMC algorithms in terms of parameter

estimation, estimated number of hidden states and estimated number and dates of break-points.

1.1 Advantages of a Bayesian Approach

On a theoretical level, many classical and standard models (for example, Hayashi, 1982; Abel and

Eberly, 1994) explain and predict that the real interest rate should have a major impact on investment.

However, on a practical level, this influence is hard to be found and measured. Under a Bayesian ap-

proach for hidden Markov models, though, we can use hidden states to represent various factors, such

as price segmentation, segments of transactions, unobserved instantaneous volatility, jump intensity,

information flow and financial regimes. In this way we can tackle the complexity of the real world

financial applications.

During recent years, the development of new and advanced MCMC methods, combined with

the vast increase in computing power, has made Bayesian approaches to inference feasible, easier

and more attractive. Additionally, and most important, these techniques offer various significant

advantages compared to the classical methods.

First, they enable us to include certain model parameters into the economically sensible range

by defining their prior distributions. They also treat both model parameters and latent variables as

random variables, which have a joint distribution with the observed variables. Moreover, Bayesian

methods are more robust and reliable than the classical methods, particularly when we deal with the

evaluation of the likelihood of an observed time-series. Finally, Bayesian methods provide us with

exact confidence intervals for the parameters and, on some occasions, for functions of the parameters

as well.
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1.2 Literature Review :

HMMs in Financial Econometrics

Hidden Markov models have been used in many applications in financial econometrics. One of those

applications is modeling financial prices. Financial prices usually show non linear dynamics, which

are often due to the existence of two or more regimes within which returns and/or volatilities display

different behavior. Using these models, Rydén et al. (1998), reproduce most of the stylized facts

about daily series of returns while Rossi and Gallo (2006) provide accurate estimates of stochastic

volatility. Engel and Hamilton (1990) model segmented time-trends in the US dollar exchange rates

via HMMs. Robert et al. (2000) use HMMs to study daily returns of the S&P index, assuming the

existence of different regimes characterized by different levels of volatility.

Moreover, hidden Markov models have been successfully applied in modeling option pricing or

modeling defaults within a bond portfolio and prediction of financial time series can be achieved using

Hidden Markov models. The special case of break-point models have been even more widely applied

in the econometrics literature (for example, see Bai, J. and Perron, P. (2002)). In this thesis we give a

brief overview of the econometrics literature related to hidden Markov and break-point models.

The option pricing theory has been intensively studied since the works of Black and Scholes

(1973) and Merton (1973). In Black and Scholes model, the underlying asset price process is de-

scribed by geometric Brownian motion in which the drift and volatility are assumed to be determin-

istic. However, the volatility in asset price processes in the financial market would depend on the

past information. The phenomenon known as volatility smile occurs when the volatility, which is

obtained when the market price of European call option is equated with the Black and Scholes model,

is not constant but varying with respect to the time to maturity and strike price of option. Due to

this phenomenon, several models were introduced to characterize the volatility dynamics, such as

ARCH (Engle, 1982), GARCH (Bollerslev, 1986) and others introduced by Hull and White (1987)

and Heston (1993).

Ishijima and Kihara (2005) combined the above models and managed to derive an analytic for-

mula for pricing European call option, when asset price processes are subject to hidden Markov mod-

els, under the setting of an n-state hidden Markov model in discrete-time framework. Their hidden

Markov model was specified by a state equation with the time-homogeneous transition probability

matrix and an observation equation which describes asset prices by the log-normal model in which
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both drift and volatility parameters switch according to the state.

Apart from the previous formula, they also estimated their model by using the Baum-Welch al-

gorithm with scaling in computing Forward-Backward probabilities. They applied their model on the

Japanese financial market data in order to estimate the parameters of the model. They found that their

formula, compared to the existing option pricing models which characterize stochastic volatility in

asset prices, had mainly three advantages. It is an analytic formula with meanings easy to interpret

and it enables us to capture the persistence of volatility in the risky asset prices.

Interaction effects are an important component of portfolio credit risk, but finding a way to quan-

tify these effects is considered to be a controversial issue. Especially for large portfolios it is generally

unfeasible to model the default risk of each individual issuer and the correlation with other issuers, as

this leads to a high-dimensional model with a large number of parameters, which can not be reliably

estimated.

Several models which describe the previous interaction process in a more simple way have been

proposed. These models have a small number of parameters, but they can be described as static

models, in a way that they only concern the total number of defaults in a specific period. Furthermore,

for some applications, the timing of defaults is as important as their total number and a dynamic

model is needed. The enhanced model was defined by Davis and Lo (2001) as a dynamic version of

infectious defaults. According to that model, the portfolio is assumed to be in one of the following

states; normal risk or enhanced risk. It starts in normal risk and when a default occurs it moves to

enhanced risk. The portfolio stays in that state for an exponentially-distributed random time before

going back to normal risk.

Davis, Giamperi and Crowder (2005) considered a simplified enhanced model with two, not di-

rectly observed, states corresponding to normal and enhanced risk. They simply considered a hidden

Markov model, and they supposed that the hidden variable is a two-state Markov process in discrete

time and it is not depending on the default events. Within each time period defaults are supposed to

be binomially distributed, with higher mean in the enhanced risk state. They found that their model

has good explanatory power, despite the fact that it is very simple. They managed to obtain estimates

for the model parameters and reconstruct the most likely sequence of the risk state. Moreover, by

extending that model to include independent hidden risk sequences, they could disentangle the risk

associated with the business cycle from that specific to individual sector.

Zang (2001) applied a hidden Markov model, rather than a model based on regression equations,
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in order to analyze and predict financial time series. That model addressed two of the most important

challenges of financial time series modeling; non-stationarity and non-linearity. Zang (2004) extended

the hidden Markov model to include a novel exponentially weighted EM algorithm to handle these

challenges. He found that this extension enables us to model both sequence data and dynamic finan-

cial time series. Based on the exponentially weighted EM algorithm, he proposed a double weighted

EM algorithm which is able to adjust training sensitivity automatically and solves the drawback of the

previous EM algorithm caused by over-sensitivity. Additionally, he managed to show that both EM

algorithm can be written in a form of exponentially moving averages of the model variables of the

hidden Markov model. This allows us to take advantage of the existing technical analysis techniques.

The statistics and econometrics literature contain a vast amount of work concerning structural

changes, while most of them are designed to investigate the case of a single break-point. However,

there exist many studies which are related to hypothesis testing in the context of multiple changes in-

cluding Andrews, Lee and Ploberger (1996), Garcia and Perron (1996), Liu, Wu and Zidek (1997), Pe-

saran and Timmermann (1999), Lumsdaine and Papell (1997) and Morimune and Nakagawa (1997).

General discrete-time finite state-space hidden Markov models have been also used in econometric

applications.

Typically, the break-point model is specified through a hierarchical specification in which, for ev-

ery time point, the probability distribution of a break-point given the previous break-points is modeled

first. The next step is to process the parameters in the current regime, given the current break-points

and previous parameters. Finally, the data is generated, given the parameters and the break-points.

Chernoff and Zacks (1964) proposed a special case of this model in which there is a constant probabil-

ity of a break at each time point (not dependent on the history of break-points). Yao (1984) specified

the same model for the break-points, but assumed that the joint distribution of the parameters is ex-

changeable and independent of the break-points. Similar exchangeable models for the parameters

have been studied by Carlin et al. (1992) in the context of a single break-point and by Inclan (1993)

and by Stephens (1994) in the context of multiple break-points.

Chib (1998) showed, as an extension, that it is possible to fit models in which the probability of

a break-point is not a constant but depends on the regime. In this case, the probability distribution of

the break-points is characterized by a set of parameters and not by just one parameter. His approach

was based on a formulation of the break-point model in terms of an unobserved discrete state variable

that indicates the regime from which a particular observation has been drawn. This state variable

is specified to evolve according to a discrete-time discrete-state Markov process with the transition
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probabilities constrained so that the state variable can either stay at the current value or jump to the

next higher value. This parametrization exactly reproduces the break-point model and, additionally,

MCMC simulations of this model are straightforward and improve on existing approaches in terms of

computing time and speed of convergence.

1.3 Structure of the Thesis

Chapter 2 starts with describing quantile regression. Then, there is a brief comparison between quan-

tile regression and mean regression, in order to highlight their differences. This is followed by a

short reference and the definition of the extreme regression quantiles and also a short literature review

on Bayesian inference on quantile regression. The second, and most important, part of this chapter

describes Bayesian inference for extreme quantiles using a suitably chosen τ -quantile loss function.

It also explains how this Bayesian method corresponds to solving minimization problems and, as a

consequence, has a strong connection with linear programming. Chapter 2 continues with applying

Bayesian extreme quantile regression on three simulated data sets and one real data set and comparing

that method with the classical extreme quantile regression, which uses linear programming. Finally,

based on the comparison of those two methods, it introduces a way to perform Bayesian extreme

quantile regression, by combining MCMC methods and linear programming, in order to obtain better

and more accurate results.

Chapter 3 presents hidden Markov models’ history and applications, but focuses and describes

in a more specific way the discrete-time finite state-space hidden Markov model. Then, this chapter

makes a reference to some other types of hidden Markov models, but it focuses on the break-point

models. This is followed by a reference to the three basic problems, that appear when hidden Markov

models are used in real-world applications, and a short description of their solutions. The final part of

the chapter mentions the three useful algorithms used within those solutions and presents the Forward-

Backward algorithm for discrete-time finite state-space hidden Markov models, with application to

the m-state hidden Markov model.

Chapter 4 describes analytically Bayesian inference for extreme quantiles using hidden Markov

models. It focuses on the m-state Normal hidden Markov model (and the corresponding Normal

break-point hidden Markov model) and the m-state asymmetric Laplace distribution (ALD) hidden

Markov model (and the corresponding ALD break-point hidden Markov model). It explains in detail

how the distribution associated with the Markov chain is used within the Forward-Backward algo-
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rithm, in order to obtain the likelihood, as a sum of the forward variables (and not as a sum over all

the possible sets of states) and the hidden states at time t. This chapter also explains in detail how

to construct MCMC algorithms to update our parameters. It is clearly shown why and how Gibbs

sampling is used in the case of the Normal hidden Markov model (and the Normal break-point hidden

Markov model) and why and how a mixture of Gibbs sampling and Metropolis-Hastings sampling is

used in the case of the ALD hidden Markov model (and the ALD break-point hidden Markov model).

After every method there are applications on real data sets. These applications enable us to explore

how our method (Bayesian extreme quantile regression) is affected by using different hidden Markov

models, in terms of estimation (parameters, hidden states, number and dates of break-points) and

Markov chain convergence within the MCMC algorithm. Finally, chapter 4 refers to the deviance

information criterion (DIC), which is used in this thesis as a Bayesian model comparison criterion.

Chapter 5 starts with a brief description of a hidden Markov model, where the underlying hidden

state is continuous. Then, it describes analytically the Kalman filter, which is a very good and reli-

able method to perform extreme quantile regression, when the latent variables of the assumed hidden

Markov model are continuous. This chapter provides information about the computational origins

of the algorithm and, finally, it describes the Kalman smoothing algorithm, which improves the pa-

rameter estimation obtained by the Kalman filter. In the end there are applications on two real data

sets.

Chapter 6 presents the model comparison of our Bayesian extreme quantile regression methods for

hidden Markov models. It also describes various general algorithms, which helped us implementing

our methods.

Chapter 7 concludes this thesis by summarizing and discussing the main results in relation to

the objectives of this thesis. Additionally, it proposes recommendations for possible future research

directions.

Examples of the MCMC algorithms we used in this thesis and examples of density plots and

traceplots of the models’ parameters are included in the Appendix. There is also additional and useful

information, in order to help the understanding of various points of our methodology. This includes

information about linear programming (LP), properties of extreme quantile regression (enabling us

to compute approximate confidence intervals), Dirichlet distribution, Metropolis-Hastings algorithm,

Gibbs sampling and Kalman filter.



Chapter 2

Bayesian Extreme Quantile Regression

2.1 Quantile Regression

Let us consider the standard regression model:

yi = x′iβ + ui, (2.1)

for i = 1, 2, ..., n, where xi are the independent variables, yi are the values of the dependent variable

Y, ui is the error term with zero mean and β are the parameters to be estimated.

By performing regression analysis we can model the relationship between a response variable and

predictor variables. But, in real applications, the response variable cannot be predicted exactly from

the predictor variables. That is why we summarize the behavior of the response variable by using

measures of central tendency, like the mean (average value), the median (middle value) and the mode

(most likely value). Simple regression analysis is focused on the mean, which means that the rela-

tionship between the response variable and predictor variables is summarized by describing the mean

of the response, for each fixed value of the predictors, using a function (conditional mean function)

of the response. Models based on the previous analysis (conditional mean models) are capable of

providing a complete description of the relationship mentioned before, under ideal conditions. Those

models also lead to estimators (least-squares estimation) easy to calculate and interpret.

However, the mean regression methodology has some limitations, which make it very difficult

for researchers to study the properties of the whole distribution, due to the fact that this methodology

cannot be extended to noncentral locations. Most of the times, noncentral locations is where the

10
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interest of the analysis lies. For instance, sometimes we are not interested in mean returns, or we

may be interested in mean returns above which are 90% of our data. This happens because model

assumptions are not always met in real world applications and as a consequence, the conditions are not

ideal for obtaining a complete description of the response and the predictors. Additionally, this kind of

models are heavily influenced by outliers and in social phenomena heavy-tailed/skewed distributions

commonly occur and lead to outliers. For that reason, other regression methods were developed, in

order to overcome those problems. Quantile regression offers a more complete statistical approach

and now has widespread applications.

Quantile regression is a statistical technique for estimating and conducting inference about condi-

tional quantile functions. It models the relationship between a set of predictor variables and specific

quantiles of the response variable. This allows us to see and compare how some quantiles of the

response variable may be more affected by the predictor variables, than other quantiles (for instance,

we can check if large values of the response variable are more affected than the lower values). This

is what makes quantile regression models more robust to outliers, than the linear regression (mean

regression) models. Quantile regression, which is a natural extension of the linear regression, enables

us to see how the conditional mean of Y depend on the covariates at each quantile. As a result, we

have a more complete view, than in standard regression, of how the conditional distribution of Y ,

given X = x, depend on x. Also, with quantile regression we can explore potential effects on the

shape of the distribution and not only on the location or the scale of the distribution. Standard regres-

sion only models the average relationship between the response variable and the covariates, whereas

quantile regression describes that relationship for a range of values of τ (quantiles). In that way, an

approximation of the full response probability distribution can be produced.

There are various important applications of quantile regression, which involve the study of ex-

tremal phenomena. In econometrics, this kind of phenomena are the analysis of factors which con-

tribute to extremely low infant birth-weights (Abrevaya, 2001), the analysis of the highest bids in

auctions (Donald and Paarsch, 1993) and estimation of factors of high risk in finance (Tsay, 2002 and

Chernozhukov and Umantsev, 2001). In biostatistics and other areas our interest lies in the analysis of

survival at extreme durations (Koenker and Geling, 2001), the analysis of factors that impact the ap-

proximate boundaries of biological processes (Cade, 2003), image reconstruction and other problems

where conditional quantiles near maximum or minimum are of interest (Korostelev, Simar and Tsy-

bakov, 1995). Details of quantile regression applications could be also found in the paper ”Quantile

regression : applications and current research areas”, (Yu, Lu and Stander, 2003).
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Very often time series of financial asset values exhibit well known statistical features, such as

heavy tails. Additionally, in various applications (climate research, medicine, insurance and finance)

interest lies on estimating extremal risk measures, such as record values, return periods and high level

crossings. In these situations the usage of extreme quantiles is more sufficient than using 10% or 90%

quantiles.

In order to define extreme regression quantiles, let us re-consider the regression model:

yi = x′i β + ui, xi ∈ Rp, i = 1, ..., n, (2.2)

where ui
iid∼ f(u) and the first coordinate of xi is 1. We may assume, without loss of generality, that∑n

i=1 xij = 0, j = 2, ..., p, to simplify calculations. Then, we define the regression quantiles, β̂(τ),

for 0 < τ < 1, to satisfy the following optimization problem :

min
b∈Rp

n∑
i=1

ρτ (yi − x′iβ),

ρτ (u) = τ u I(0,∞)(u)− (1− τ) u I(−∞,0)(u) (lossfunction),

or

ρτ (u) = τ u+ − (1− τ) u−, u ∈ R,

with u+ and u− denoting the positive and negative parts of u. The extreme regression quantiles

correspond to the cases of τ = 0 and τ = 1, which means that ρ0(u) = −u− and ρ1(u) = u+,

u ∈ R. So, β̂(0) and β̂(1) are respective solutions of the following minimization problems :

min
b∈Rp
{−

n∑
i=1

(yi − x′iβ)−}

and

min
b∈Rp

n∑
i=1

(yi − x′iβ)+.

Bayesian inference on quantile regression has attracted much interest recently. A few of the

different models and sampling algorithms for Bayesian quantile regression include MCMC (Markov

chain Monte Carlo) or RJMCMC (Reversible Jump Markov Chain Monte Carlo) methods via an

asymmetric Laplace (AL) distribution for the likelihood function (Yu and Moyeed, 2001; Yu and

Stander, 2007; Chen and Yu, 2008; Tsionas, 2003; Geraci and Bottai, 2007; Liu and Bottai, 2009),

Dirichlet process mixing based nonparametric zero median distribution for the regression model error

(Kottas and Gelfand, 2001), an MCMC algorithm using Jeffrey’s (Jeffrey, 1961) substitution posterior
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for the median (Dunson and Taylor, 2005), the expectation-maximizing (EM) algorithm using the

AL distribution (Geraci and Bottai, 2007), the empirical likelihood based algorithm (Lancaster and

Jun, 2008), the mixture distribution algorithm (Reich, Bondell and Wang, 2010) and Gibbs sampling

(Tsionas, 2003; Kozumi and Kobayashi, 2009; Reed and Yu, 2009). Li, Xi and Lin (2010) even study

regularization in quantile regressions from a Bayesian perspective, Reed, Dunson and Yu (2010)

discuss Bayesian variable selection for quantile regression and Reich, Fuentes, and Dunson (2010)

proposes Bayesian spatial quantile regression. However, there is no research on Bayesian inference

for extreme quantiles.

2.2 Bayesian Inference for Extreme Quantiles

A random variable U follows the asymmetric Laplace distribution, when its probability density is

given by

fτ (u) = τ(1− τ) exp {−pτ (u)} ,

where pτ (u) is the loss function and 0 < τ < 1.

The τ th conditional quantile of yi, given xi, is denoted as qτ (yi|xi) = x′iβ(τ), where β(τ) is a

vector of coefficients dependent on τ . When we are interested in qτ (yi|xi), we can assume that : (i)

f(y;µi) is asymmetric Laplace distribution (ALD) and (ii) g(µi) = x′iβ(τ) = qτ (yi|xi), 0 < τ < 1.

Given the observations y = (y1, y2, ..., yn), then the posterior distribution of β is given by

π(β|y) ∝ L(y|β)π(β),

where π(β) is the prior distribution of β and L(y|β) is the likelihood function, given by

L(y|β) = τn(1− τ)n exp

{
−

n∑
i=1

pτ (yi − x′iβ)

}
, (2.3)

where pτ (z) is the loss function (as defined in the previous section). It is important to say that

we can use any prior distribution, π(β), but when there is not any realistic information we can use

improper uniform prior distributions for β, because the joint posterior distribution will be proper

(Yu and Moyeed, 2001). This form of likelihood is very useful because the minimization of the loss

function is equivalent to the maximization of that likelihood function, which is formed by combining

independently distributed asymmetric Laplace densities. So, the estimation of qτ of a random variable

Y is equivalent to the estimation of the location parameter µ of an asymmetric Laplace distribution,
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with density

fτ (y) = τ(1− τ)exp {−pτ (y − µ)} .

So, the likelihood function we described before (equation 2.3), is a combination of n independently

distributed asymmetric Laplace distributions with a location parameter µi = x′iβ.

Bayesian methods can be also used in order to estimate the parameters in extreme quantile re-

gression. This means estimating the parameters β(τ), when τ → 0, or τ → 1. In Bayesian extreme

quantile regression, our interest lies on β̂(0) and β̂(1), and as we said in a previous section, they are

respective solutions of the following minimization problems:

min
b∈Rp
{−

n∑
i=1

(yi − x′iβ)−}

and

min
b∈Rp

n∑
i=1

(yi − x′iβ)+,

where

ρ1(ui) = ρ1(yi − x′iβ) = (yi − x′iβ)+ = |yi − x′iβ| · I(yi ≥ x′iβ),

ρ0(ui) = ρ0(yi − x′iβ) = −(yi − x′iβ)− = |yi − x′iβ| · I(yi ≤ x′iβ).

As a consequence, β̂(1) is given by

min
b∈Rp

n∑
i=1

(yi − x′iβ)+ =

= max
b∈Rp

exp

{
−

n∑
i=1

(yi − x′iβ)+

}
.

Therefore, the likelihood function L(y|β) for Bayesian inference for β(1) is given by

L1(y|β) = e−
∑n
i=1 ui I(ui≥0).

In the same way, β̂(0) is given by

min
b∈Rp
{−

n∑
i=1

(yi − x′iβ)−} =

= max
b∈Rp

exp

{
n∑
i=1

(yi − x′iβ)−

}
.

The likelihood function L(y|β) for Bayesian inference for β(0) is given by

L2(y|β) = e
∑n
i=1 ui I(ui≤0).
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2.2.1 Prior selection

In order to perform Bayesian extreme quantile regression via MCMC algorithms, we have to choose

the appropriate prior distribution for our parameters. In the following sections we will deal with three

simulated data sets and one real data set and we decide to use uninformative prior distributions for

our parameters β(τ), where τ → 0, or τ → 1 (in our MCMC algorithm we use τ = 0.001 and

τ = 0.999, in order to approximate 0 and 1, respectively).

Based on our results, in terms of estimation and Markov chain convergence, we do not have any

evidence of needing to use informative prior distributions. Additionally, our aim is not to see how the

estimation is affected by using different kinds of prior distributions, but to see if and how different

error distributions of our model affect the estimation of the parameters. However, in other cases,

using priors which do not contain much information leads to bad results or a slow convergence of the

Markov chain. That means that priors which contain some kind of information must be used. But

how can we obtain informative prior distributions without having any prior knowledge / information?

We suggest that this kind of informative prior distributions can be obtained and used in a MCMC

algorithm in the following way: we first use a MCMC algorithm, which assumes improper uniform

priors for the parameters, in order to estimate a large number of simulated values ofβ(τ) and obtain its

posterior distributions pr(β(τ)|y). Then, these posterior distributions are used as prior distributions

in a new MCMC algorithm, which will have better results and faster convergence. However, the

posterior distributions of β(τ) or the pr(β(τ)|y) may not follow a simple parametric distribution,

but our much empirical experience found that a mixture of normal distributions fits it well. Actually,

the following eight mixture of normal distributions, which have different properties, cover most of

posterior distributions well for our purpose. Plots of these densities are in the Appendix E, figure 7.1.

• Gaussian (Gau): N
(
0, 12

)
,

• Skewed (Skew): 1
5N
(
0, 12

)
+ 1

5N
(
1
2 , (

3
2)2
)

+ 3
5N
(
13
12 , (

5
9)2
)
,

• Kurtotic (Kur): 2
3N
(
0, 12

)
+ 1

3N
(
0, ( 1

10)2
)
,

• Outlier (Outl): 1
10N

(
0, 12

)
+ 9

10N
(
0, ( 1

10)2
)
,

• Bimodal (Bim): 1
2N
(
−1, (23)2

)
+ 1

2N
(
1, (23)2

)
,

• Bimodal, separate modes (Sepa): 1
2N
(
−3

2 , (
1
2)2
)

+ 1
2N
(
3
2 , (

1
2)2
)
,
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• Skewed bimodal (Skeb): 3
4N
(
0, 12

)
+ 1

4N
(
3
2 , (

1
3)2
)
,

• Trimodal (Tri): 9
20N

(
−6

5 , (
3
5)2
)

+ 9
20N

(
6
5 , (

3
5)2
)

+ 1
10N

(
0, (14)2

)
.

Whichever prior distribution is assumed will be proper as a mixture of normal distributions. There-

fore, the posterior distribution pr(β(τ)|y), under extreme quantile regression, is proper. In a situation

where we need to use informative prior distributions we perform a model fit, given the data we have,

in order to choose the most appropriate distribution (of those mentioned above) and also choose the

appropriate parameters for those priors.

To sum up, the method we mentioned above is not necessary in this thesis, as we have very

good results by using improper priors. So, in the following sections we will use only improper prior

distributions for our parameters. However, there are situations where improper prior distributions do

not lead to good estimations. In those cases it would be very useful to use that method.

2.2.2 Computation

For the model given by the equation 2.2, we consider an exponential probability density based likeli-

hood of the form:

L1(y|β) = e−
∑n
i=1 ui I(ui≥0).

Then, obtaining β̂(1) is equivalent to obtaining the maximum likelihood estimator (MLE) of the

previous likelihood function. Note that

L1(y|β) = lim
τ→1−

e−
∑n
i=1 ρτ (ui).

Following the same method, considering the following likelihood function

L2(y|β) = e
∑n
i=1 ui I(ui≤0),

we can obtain β̂(0) as the MLE of that likelihood function. Note that

L2(y|β) = lim
τ→0+

e−
∑n
i=1 ρτ (ui),

where ρτ (ui) is the loss function described in section 2.1.

Independent improper uniform priors for all the components of β are used in the following exam-

ples and by performing a Metropolis-Hastings algorithm, each of the parameters was updated based

on a Gaussian proposal density centered at the current state of the chain. The asymmetric Laplace
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distribution was used, in order to model the Bayesian extreme quantile regression parameters and

there is a fast convergence of the Markov chains in all the examples.

2.2.3 Simulated Data

We apply Bayesian extreme quantile regression on three simulated data sets, which differ in the

distribution of the error term εt, t = 1, ..., n. The distributions we use are : Uniform, Beta and

Weibull.

The Metropolis-Hastings algorithm, mentioned in the previous section, is used and a burn-in

period of 2000 iterations was excluded, so a sample of 8000 values from the posterior distribution of

each of the elements of β was collected, in order to get our results. Then we compare our parameter

estimations with the true values of the parameters. The true values are given by :

β0(τ) = 1 + F−1(τ),

β1(τ) = 1,

where F−1(τ) is the quantile function (inverse cumulative distribution function) of our distributions.

For more details see Appendix A.

We will simulate observations from the model

yt = βx′t + εt, t = 1, 2, ..., n

or

yt = β0 + β1x1t + εt, t = 1, 2, ..., n

assuming that xt ∼ Beta(3, 3), t = 1, 2, ..., n and β = (β0, β1) = (1, 1). For the error term εt we

have three different options (distributions), so as to have three different models.

• εt ∼ Uniform(0, 1), t = 1, 2, ..., n (model 1)

• εt ∼ Beta(1, 1), t = 1, 2, ..., n (model 2)

• εt ∼Weibull(2, 1), t = 1, 2, ..., n (model 3)

For each model we simulate 1000 data sets, each one consisting of n data, and we will present the

results based on the average of the data sets, for each model.
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We have

qτ (yt|xt) = β0(τ) + β1(τ)x1t

and we are interested in the extreme quantiles, τ = 0 and τ = 1. However, the asymmetric Laplace

distribution used within our MCMC algorithm needs 0 < τ < 1. Therefore, we can approximate

these extreme quantiles by using τ = 0.001 and τ = 0.999. In this way, we can have a very good

estimation of β(0) = (β0(0), β1(0)) and β(1) = (β0(1), β1(1)), because β̂(0.001) ≈ β̂(0) and

β̂(0.999) ≈ β̂(1).

Our aim is to estimate the model parameters under Bayesian extreme quantile regression. The

number of simulated data, n, does not affect the true values of the parameters, because we know

the model that generates these data. In other words, we are interested in estimating the parameters

of three specific models and not the parameters that describe three specific data sets. Therefore, we

can simulate as many data we want. We simulated 100, 500, 1000 and 10000 observations from our

models and we saw that as n gets larger the estimation gets slightly better and the convergence of the

Markov chain becomes faster.

Here we will show the results for n = 500. Table 2.1 shows the true values, the estimated mean

and median of the model parameters, as well as the 95% confidence intervals, based on the different

types of the error term’s distribution. Figures 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7, show the convergence

of the parameters of our model, for the different types of the error term’s distribution, as well as the

posterior density of those parameters, based on simulations using our MCMC algorithm.

In order to compare Bayesian extreme quantile regression and the classical approach, we can

obtain the smallest and largest extreme regression quantiles, as we said in a previous section, by

solving the next two linear programming problems :

max
b∈Rp

n∑
i=1

x′iβ, subject to yi ≥ x′iβ, i = 1, ..., n, (2.4)

in order to obtain β̂(0), and

min
b∈Rp

n∑
i=1

x′iβ, subject to yi ≤ x′iβ, i = 1, ..., n,

which is equivalent to :

max
b∈Rp

−
n∑
i=1

x′iβ, subject to − yi ≥ −x′iβ, i = 1, ..., n, (2.5)
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in order to obtain β̂(1).

The classical approach provides good results, even if we simulate n = 100 observations from

our models. However, linear programming cannot provide the confidence intervals for the model

parameters, because what we obtain is the optimal solution, but we can work out the approximate

confidence intervals, by using the asymptotic results described in Appendix A. Table 2.2 shows the

estimated and true values of our model parameters, as well as the 95% confidence intervals, based on

the different types of the error term’s distribution, using linear programming, for n = 100.

Another way to construct the confidence intervals for the model parameters could be a bootstrap-

ping method. However, bootstrapping belongs to the general class of resampling methods, which

cannot be considered as a classical approach. This is why we preferred to use the method described

in Appendix A.

Type Parameter True Value Mean Median Lower Limit Upper Limit

Uniform β0(0) 1 0.92 0.94 0.61 1.09

β1(0) 1 1.03 1.04 0.59 1.44

β0(1) 2 2.08 2.06 1.89 2.42

β1(1) 1 0.97 0.96 0.61 1.39

Beta β0(0) 1 0.91 0.94 0.64 1.13

β1(0) 1 0.98 0.97 0.58 1.38

β0(1) 2 2.08 2.06 1.91 2.32

β1(1) 1 1.02 0.99 0.64 1.39

Weibull β0(0) 1 0.96 0.98 0.65 1.22

β1(0) 1 1.03 1.06 0.51 1.49

Table 2.1: True values, estimated (posterior) mean, estimated (posterior) median and 95% confidence

intervals of the model parameters, based on the different types of the error term’s distribution, using

Bayesian extreme quantile regression (MCMC algorithm).

2.2.4 Real Data Set

This data set consists of the US ex-post real interest rates, which was considered by Garcia and Perron

(1996). The series represents the three-month treasury bill rate deflated by the CPI inflation rate taken
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Type Parameter True Value Mean Median Lower Limit Upper Limit

Uniform β0(0) 1 1.02 1.01 0.17 1.91

β1(0) 1 1 1 0.19 1.98

β0(1) 2 1.98 1.99 1.31 4.17

β1(1) 1 1.02 1 0.12 1.94

Beta β0(0) 1 1.02 1.01 0.28 1.93

β1(0) 1 1 1 0.21 1.81

β0(1) 2 1.98 1.99 1.35 4.32

β1(1) 1 1.02 1 0.22 1.96

Weibull β0(0) 1 1.01 1.01 0.19 1.78

β1(0) 1 1 1 0.17 1.87

Table 2.2: True values, estimated mean, estimated median and approximate 95% confidence intervals

of the model parameters, based on the different types of the error term’s distribution, using linear

programming and classical extreme quantile regression approach.

from the Citibase data bank. Bai and Perron (2003) were interested in the presence of abrupt structural

changes in the mean of this series, so they applied a linear regression model estimated by least squares,

in order to estimate the multiple break-point model. They achieved that using dynamic programming

by implementing an efficient algorithm to obtain global minimisers of the sum of squared residuals.

Methodology

This time we do not have a specific model, like in section 2.2.3, but a specific data set. Our aim is

to model the extreme quantiles of the US ex-post real interest rates under Bayesian extreme quantile

regression and compare it with the classical approach. Again, the extreme quantiles τ → 0 and

τ → 1 will be approximated by τ = 0.001 and τ = 0.999 for the Bayesian extreme quantile

regression (using the same MCMC algorithm as in the previous section). For the classical approach,

though, using linear programming (equations of linear programs 2.4 and 2.5) ensures that τ = 0, for

the lowest extreme quantile and τ = 1, for the highest extreme quantile.

Even if our aim is to explore the extreme quantiles of the data set, we also decide to check whether

those methods have similarities, or differences, for other, non-extreme, values of τ . Therefore, using
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the same MCMC algorithm, but this time for τ equal to 0.1, 0.5 and 0.9, we perform Bayesian quantile

regression. For the classical approach, obviously, we are not able to use the linear programming

problems we used before, as they only correspond to τ equal to 0 and 1. In that case, we will use the

”rq” function (R statistical package), which uses a very similar methodology, for τ equal to 0.1, 0.5

and 0.9.

We can briefly point out that the ”rq” function computes an estimate on the τth conditional quantile

function of the response, given the covariates. It presumes a linear specification for the quantile

regression model. In other words, it uses a model which is linear in parameters. Then, it minimizes a

weighted sum of absolute residuals that can be formulated as a linear programming problem.

Table 2.3 summarizes our methodology for the real data set.

Extreme Quantiles

Bayesian extreme quantile regression

MCMC for τ = 0.001 and τ = 0.999

Extreme quantile regression

Linear Programming for τ = 0 and τ = 1

Non-Extreme Quantiles

Bayesian quantile regression

MCMC for τ = 0.1, τ = 0.5 and τ = 0.9

Quantile regression

”rq” function for τ = 0.1, τ = 0.5 and τ = 0.9

Table 2.3: Methodology for analyzing the real data set.

In section 2.2.3 it was shown that Bayesian extreme quantile regression works very well when we

need to estimate the parameters of a given (or assumed) model. Therefore, our methodology for the

real data set starts by assuming a model which describes the extreme quantiles of the data as good

as possible and then we will try to estimate the parameters of the assumed model, under Bayesian

extreme quantile regression and under the classical approach.

Linear model fitting

The US ex-post real interest rates data set consists of 103 observations. Following Smith (1994), we

define xi = i − 52, i = 1, 2, ..., 103, where i is the number of the observation. With this method we
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avoid using large numbers within our calculations and algorithms, especially when we need to obtain

x2i (quadratic model) and x3i (cubic model).

First, we use a linear model of the following form:

yi = β0 + β1 xi + εi, i = 1, 2, ..., 103.

Using our MCMC algorithm, for τ = 0.001, we obtain

ŷi = −6.63− 0.04 xi, i = 1, 2, ..., 103

and for τ = 0.999, we have

ŷi = 9.20 + 0.09 xi, i = 1, 2, ..., 103.

Using linear programming, for τ = 0, we obtain

ŷi = −6.31 + 0.02 xi, i = 1, 2, ..., 103

and for τ = 1, we have

ŷi = 8.45 + 0.11 xi, i = 1, 2, ..., 103.

However, it is useful to compare those two methods not only for the extreme quantiles, but also for

other values, when τ is equal to 0.1, 0.5 and 0.9. From figure 2.1 it is obvious that the two methods

are similar for the previous values of τ , but not for the extreme quantiles. Additionally, it is clear that

the fitting is not good, as it does not follow the shape of the series. So, a quadratic fit should be more

appropriate for our modeling.

Quadratic model fitting

Assuming a quadratic fitting means having a model of the following form :

yi = β0 + β1 xi + β2 x
2
i + εi, i = 1, 2, ..., 103.

Using our MCMC algorithm, for τ = 0.001, we obtain

ŷi = −7.6− 0.02 xi + 0.001 x2i , i = 1, 2, ..., 103,

and for τ = 0.999, we obtain

ŷi = 6.02 + 0.11 xi + 0.003 x2i , i = 1, 2, ..., 103.
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Figure 2.1: Fitting lines for all values of τ , using MCMC algorithm (straight line) and linear pro-

gramming (dashed line).

Using linear programming, for τ = 0, we obtain

ŷi = −6.31− 0.02 xi + 0.002 x2i , i = 1, 2, ..., 103,

and for τ = 1, we obtain

ŷi = 5.9 + 0.13 xi + 0.002 x2i , i = 1, 2, ..., 103.

Clearly, this fit is much better than the linear one, as we can see in figure 2.2. We must say that

the two methods are similar when modeling non-extreme quantiles. For instance, when τ is equal to

0.1, 0.5 and 0.9, it is obvious that the two methods are almost the same. Figures 7.8 and 7.9 show the

convergence of our quadratic model parameters, based on the extreme quantiles.
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Figure 2.2: Quadratic model fit for all values of τ , using MCMC algorithm (straight line) and linear

programming (dashed line).

Cubic model fitting

The quadratic model fits the shape of the data very well. However, it would be useful to check whether

a cubic model is more appropriate. This means assuming a model of the following form:

yi = β0 + β1 xi + β2 x
2
i + β3 x

3
i + εi, i = 1, 2, ..., 103.

Using our MCMC algorithm, for τ = 0.001, we get

ŷi = −7.1− 0.1 xi + 0.002 x2i + 0.00004 x3i , i = 1, 2, ..., 103,

and for τ = 0.999, we get

ŷi = 4.5 + 0.05 xi + 0.006 x2i + 0.00005 x3i , i = 1, 2, ..., 103.
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Using linear programming, for τ = 0, we get

ŷi = −6.5− 0.081 xi + 0.003 x2i + 0.000045 x3i , i = 1, 2, ..., 103,

and for τ = 1, we get

ŷi = 3.3 + 0.058 xi + 0.0049 x2i + 0.000073 x3i , i = 1, 2, ..., 103.

Obviously, as we can see from figures 2.3 and 2.4 this fit is better than the quadratic fit and as a

consequence better than the linear fit as well. If the cubic fit was similar to the quadratic fit, we would

have chosen the quadratic one, as it has one less parameter to estimate (the cubic model has an extra

parameter, β3). However, the cubic model fits the extreme quantiles in a better way and models more

accurately the shape of the data. We have to say that, again, like in the previous assumed models

(linear and quadratic), Bayesian extreme quantile regression and the classical approach are similar

when modeling non-extreme quantiles (when τ is equal to 0, 1, 0.5 and 0.9).

By using the MCMC algorithm we can get values from the posterior density of our model pa-

rameters, β0, β1, β2 and β3. If we simulate 5000 values for each parameter we can obtain the mean,

the median and the confidence intervals of every parameter (Table 2.4). Using the classical extreme

quantile regression estimation we can get the mean and the approximate confidence intervals (Table

2.5).

Parameters 2.5 % Quantile 97.5 % Quantile Mean Median

β0(0.001) -11.82 -4.86 -7.10 -7.14

β1(0.001) -0.22 0.08 -0.10 -0.10

β2(0.001) -0.005 0.006 0.002 0.002

β3(0.001) 0.00002 0.00006 0.00004 0.00004

β0(0.999) 1.76 7.88 4.50 4.47

β1(0.999) -0.01 0.18 0.05 0.046

β2(0.999) 0.001 0.021 0.006 0.006

β3(0.999) 0.00001 0.00007 0.00005 0.00005

Table 2.4: Estimated (posterior) mean, estimated (posterior) median and 95% confidence intervals

of the parameters, using Bayesian extreme quantile regression (MCMC algorithm), when assuming a

cubic model.
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Parameters Lower Upper Mean

β0(0) -16.21 3.44 -6.50

β1(0) -3.67 4.18 -0.081

β2(0) -2.89 3.16 0.003

β3(0) -1.76 2.11 0.000045

β0(1) -4.81 11.06 3.30

β1(1) -3.91 4.12 0.058

β2(1) -2.72 3.11 0.0049

β3(1) -1.91 2.88 0.000073

Table 2.5: Estimated mean and approximate 95% confidence intervals of the parameters, using linear

programming and classical extreme quantile regression approach, when assuming a cubic model.
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Figure 2.3: Cubic model fit for all values of τ , using MCMC algorithm (straight line) and linear

programming (dashed line).
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Figure 2.4: Comparison of linear, quadratic and cubic models, for all values of τ and for both meth-

ods; MCMC algorithm (straight line) and linear programming (dashed line).
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2.3 Comparison of the two methods

Extreme quantile regression is an approach that requires methods to extrapolate information beyond

the observed values of the dependent variable. In this chapter two methods were used in order to do

that. We used Bayesian extreme quantile regression via a MCMC algorithm and we also used the

classical extreme quantile regression via linear programming. After our analysis, we can conclude

that Bayesian extreme quantile regression is an appropriate method, with a fast convergence and a

good estimation of the model parameters and their confidence intervals. However, it is interesting and

useful to compare the two methods.

Based on the simulated data set, we are certain that both methods have very good and similar

results, concerning the parameter estimation, for all the different models (for all different types of the

error term’s distribution), because we know the true values of the parameters. However, the classical

approach estimation needs a smaller number of data in order to estimate the parameters, than the

Bayesian extreme quantile regression method. On the other hand, the confidence intervals obtained

by Bayesian extreme quantile regression method are much better than those obtained by the classical

approach.

For the real data set we used three different models to fit the extreme quantiles. A linear, a

quadratic and a cubic model were used in order to obtain the best possible fitting. When we deal with

non-extreme quantiles (τ is between 0.1 and 0.9) the estimation of the parameters is similar for both

methods, for all three models. For the extreme quantiles, though, the parameter estimation obtained

by the classical approach was better than the estimation obtained by the Bayesian extreme quantile

regression. We concluded that cubic model fits the data in the best possible way and as a result we

decided to obtain the confidence intervals of the parameters as well. This time, the results obtained by

the Bayesian extreme quantile regression were much better than the results obtained by the classical

approach.

To sum up, concerning the extreme quantiles, we are able to conclude that based on simulated data

sets and a real data set, the Bayesian extreme quantile regression provides much better confidence

intervals for the parameters than the classical approach (using the method in Appendix A - Properties

of Quantile Regression), but the parameter estimation is better when we use the classical approach

(using linear programming).
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2.4 Combination of Linear Programming and MCMC algorithm

We showed that Bayesian extreme quantile regression and the classical quantile regression have sim-

ilarities and differences as well. Concerning the extreme quantiles, it was shown that the classical ap-

proach provides better parameter estimation, but Bayesian extreme quantile regression provides better

confidence intervals. This happens probably because the classical approach is based on approximated

and asymptotic results. This means that this method requires large values of n (n→ +∞, where n is

the number of data). So, even if the classical approach can provide a very good parameter estimation,

for a small value of n, it will not be able to provide good confidence intervals for the parameters.

Additionally, Bayesian extreme quantile regression will always provide better confidence intervals,

but not better parameter estimation.

For these reasons we thought of a similar approach, which will combine linear programming and

an MCMC algorithm, in order to perform Bayesian extreme quantile regression. The idea behind that

is that linear programming will ensure a very good parameter estimation and the MCMC algorithm

will ensure a very good estimation of the confidence intervals.

That new approach first assumes a model, to fit the extreme quantiles, exactly as we did in the

previous sections, and then uses linear programming in order to estimate the parameters of the model.

Based on that model we simulate new data, which, as a consequence, correspond to the extreme

quantiles. We apply our MCMC algorithm to these new data and we re-estimate the model parameters

and obtain their confidence intervals as well.

The fact that linear programming enable us to obtain data which correspond to the extreme quan-

tiles is very useful and important, because we can use our MCMC algorithm for τ = 0.5 (median)

and not for τ → 0 or τ → 1. And we know from a previous section that our MCMC algorithm

provides a very good estimation (exactly similar to the linear programming estimation) when we deal

with non-extreme quantiles. Alternatively, we are able to use a different MCMC algorithm, which

will model the mean of the new data.

To be more specific, we will show: a) how that new method, which combines linear programming

and MCMC methods, provides a very good estimation of the model parameters and their confidence

intervals, and b) why the two MCMC algorithms (for modeling the median and the mean of the new

data) have similar results.
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2.4.1 Real Data Set Application

We will analyze again the US ex-post real interest rates, from section 2.2.4. As we saw in that section,

the most appropriate model to fit the extreme quantiles of the series is a cubic model. First, we use

linear programming to estimate the model parameters and we obtain:

ŷi = −6.5− 0.081 xi + 0.003 x2i + 0.000045 x3i , i = 1, 2, ..., 103, (for τ = 0)

and

ŷi = 3.3 + 0.058 xi + 0.0049 x2i + 0.000073 x3i , i = 1, 2, ..., 103, (for τ = 1),

exactly as in section 2.2.4.

Then, we simulate new data which correspond to the extreme quantiles in the following way:

We simulate new data, for τ = 0, from

ỹi = −6.5− 0.081 xi + 0.003 x2i + 0.000045 x3i + εi, i = 1, 2, ..., 103

and we simulate new data, for τ = 1, from

ỹi = 3.3 + 0.058 xi + 0.0049 x2i + 0.000073 x3i + εi, i = 1, 2, ..., 103,

where εi ∼ N(0, σ2). In this application we will use σ = 1, but it works equally well for other values

of σ as well.

The usage of the Normal error distribution enables us to use smaller or larger values of σ, without

having any difference in modeling the mean (or the median) of the series, due to the fact that the new

data points will be equally distributed around the mean (or median). However, it is reasonable to use

a value of σ, in order to obtain new data, which will not have a larger variance than our initial data.

It is very important to point out that the Normal error distribution enables us to use MCMC

algorithms which can model the mean and the median of the two new data sets, ỹi, for both extreme

quantiles, and provide similar results. This happens because for a Normal distribution the mean is

equal to the median. If we had chosen a different error distribution, where the mean is not equal to

the variance, the results would not have been similar.

Modeling the Median

We have two simulated data sets. One corresponds to τ = 0 and the other one corresponds to τ = 1.

We apply our MCMC algorithm (described in section 2.2.3; details in Appendix A), for τ = 0.5, on
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both data sets (we use the simulated data ỹ and not the initial data y) and we obtain the results shown

in table 2.6. This is very convenient as we do not need to construct a new MCMC algorithm, but use

the same algorithm we used for Bayesian extreme quantile regression before. However, this time we

will use it for τ = 0.5 and not for τ → 0 and τ → 1, because we know that the new simulated data

correspond to the extreme quantiles.

Parameters 2.5 % Quantile 97.5 % Quantile Mean Median

β0(0) -9.23 -3.46 -6.51 -6.50

β1(0) -0.21 0.09 -0.08 -0.082

β2(0) -0.003 0.006 0.003 0.0031

β3(0) 0.00002 0.00006 0.000046 0.000045

β0(1) 0.18 6.77 3.31 3.30

β1(1) -0.01 0.19 0.058 0.057

β2(1) 0.002 0.018 0.0048 0.0049

β3(1) 0.00004 0.00009 0.000073 0.000074

Table 2.6: Estimated (posterior) mean, estimated (posterior) median and 95% confidence intervals of

the parameters, using Bayesian extreme quantile regression (combination of linear programming and

MCMC algorithm), when assuming a cubic model.

Modeling the mean

An alternative way is to model the mean of the two simulated data sets, which correspond to the

extreme quantiles. We construct a new MCMC algorithm without using the asymmetric Laplace

distribution, but the Normal distribution of the error term. We know that the error term follows a

Normal distribution, because we simulated the new data sets. Therefore, the likelihood is of the

following form:

L(ỹ|β) =
1√
2π
exp

{
−1

2

n∑
i=1

(
ỹi − β0 − β1xi − β2x2i − β3x3i

)2}
.

The posterior distributions of the parameters, given the data, will be obtained from:

π(β|ỹ) ∝ L(ỹ|β)π(β).
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We assume independent improper priors, π(β), for all the components of β and we get the following

posterior distributions:

β1 ∼ N

(∑n
i=1

[
xi(ỹi − β0 − β2x2i − β3x3i )

]∑n
i=1 x

2
i

,
1∑n
i=1 x

2
i

)

β2 ∼ N
(∑n

i=1[x
2
i (ỹi − β0 − β1xi − β3x3i )]∑n

i=1 x
4
i

,
1∑n
i=1 x

4
i

)
β3 ∼ N

(∑n
i=1[x

3
i (ỹi − β0 − β1xi − β2x2i )]∑n

i=1 x
6
i

,
1∑n
i=1 x

6
i

)
β0 ∼ N

(∑n
i=1(ỹi − β1xi − β2x2i − β3x3i )

n
,

1

n

)
.

For more details see Appendix A.

We use Gibbs sampling in order to update each of the parameters at each step, because it is

simple to simulate values from the exact posterior distributions. We have a very fast convergence of

the Markov chain. A burn-in period of 2000 iterations was excluded and a sample of 8000 values

from the posterior distribution of each parameter was collected, in order to get our results, which are

shown in table 2.7.

Parameters 2.5 % Quantile 97.5 % Quantile Mean Median

β0(0) -9.20 -3.44 -6.50 -6.50

β1(0) -0.22 0.09 -0.081 -0.08

β2(0) -0.001 0.007 0.0031 0.0031

β3(0) 0.00002 0.00006 0.000044 0.000045

β0(1) 0.16 6.71 3.30 3.31

β1(1) -0.03 0.16 0.059 0.058

β2(1) 0.004 0.022 0.0049 0.0049

β3(1) 0.00003 0.00009 0.000074 0.000074

Table 2.7: Estimated (posterior) mean, estimated (posterior) median and 95% confidence intervals of

the parameters, using Bayesian extreme quantile regression (combination of linear programming and

MCMC algorithm), when assuming a cubic model.
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The algorithm of the new approach

The new general algorithm of the method which combines linear programming and MCMC algo-

rithms is the following:

1. Use linear programming to estimate the parameters β, which model the data, for τ = 0 and

τ = 1.

2. Use the estimated parameters β̂ to simulate new data ỹ, which correspond to τ = 0 and τ = 1.

3. Use MCMC algorithm to re-estimate β and obtain their confidence intervals, given ỹ (by mod-

eling the mean or the median of the data ỹ).

Obviously, by comparing the tables 2.4, 2.5, 2.6 and 2.7 we can see that the new method of

Bayesian extreme quantile regression, which combines linear programming and an MCMC algorithm,

provides better results than the method which uses linear programming or MCMC algorithms alone.

It is very interesting that a problem of extreme quantile regression of a data set y can be transformed

into an equivalent problem of modeling the mean or the median of another data set ỹ. Additionally,

this method provides results for τ = 0 and τ = 1, where the Bayesian extreme quantile regression in

sections 2.2.4 and 2.2.3 provided results for τ = 0.001 and τ = 0.999.

This is the method we are going to use in one of the following chapters, in order to perform

Bayesian extreme quantile regression for hidden Markov models. However, we are not going to use

MCMC algorithms to re-estimate the parameters, as in step 3 of the general algorithm, but estimate

new parameters, which describe the hidden state of the data.



Chapter 3

Hidden Markov Models (HMMs)

Hidden Markov modeling was initially introduced in the second half of the 1960s and early 1970s

but, in the last several years, statistical methods for estimating hidden Markov models have become

increasingly popular. Mainly, there are two reasons why this happened. First, this kind of models have

a very rich mathematical structure and as a consequence they can form a strong theoretical basis in

order to support a wide range of applications. Second, for these applications, hidden Markov models

work very well in practice, when they are applied properly.

Hidden Markov models are best known for their use in speech recognition (Rabiner 1989; Fox

et al. 2009), as evidenced by the number of published papers and talks at major speech conferences.

Some other areas, which hidden Markov models have been successfully applied to and led to ad-

vances, are signal processing (Juang and Rabiner 1991; Andrieu and Doucet 1999), biology (Fredkin

and Rice 1992; Leroux and Putterman 1992), genetics (Churchill 1989; Liu, Newland and Lawrence

1999), ecology (Guttorp 1995), image analysis (Romberg, Choi and Baraniuk 1999), economics

(Hamilton 1989, 1990; Albert and Chib 1993), network security (Scott 1999, 2001), handwriting

recognition (Koschinski, Winkler, Lang 1995; Conelli 1998, 2000), pattern recognition (Smyth 1994;

Bishop 1995), fault-detection (Smyth 1994), natural language processing (Manning and Schuetze

1999), information retrieval (Teh et al. 2006), molecular dynamics (Horenko and Schütte 2008) and

biochemistry (McKinney et al. 2006; Gopich and Szabo 2009).

The basic theory of hidden Markov models was published, between 1960s and 1970s, in a series

of classic papers by Baum and his colleagues (Baum, Petrie, Soules and Weiss 1970). Then, it was

-initially- implemented for speech processing applications at IBM (International Business Machines)

35
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in the 1970s. However, the basic theory of hidden Markov models was published in mathemati-

cal journals and as a consequence they were not generally read by engineers working on problems

concerning speech processing. Moreover, most readers were not able to apply the theory of hidden

Markov models to their own research, because they couldn’t understand it. This happened due to

the fact that the original applications of that theory to speech processing did not provide sufficient

tutorial material for the readers. In order to overcome the previous problems and difficulties, several

tutorial papers were written, which provided a sufficient level of detail for a number of researchers

or research labs to begin work using hidden Markov models in individual speech processing applica-

tions. That is why widespread understanding and application of the theory of hidden Markov models

to speech processing has occurred only within the 1980s and not right after 1970s, when that theory

was initially introduced.

A general hidden Markov model is a model where an underlying and unobserved sequence of

states follows a finite state-space Markov chain and the probability distribution of the observation

at any time is determined only by the current state of that Markov chain. More specifically, when

we need to describe a stochastic process for which observations are made at discrete times and the

observed values depend on an unobserved Markovian underlying process, we use discrete-time hidden

Markov models. Such a probabilistic model includes a model for the underlying process, as well

as a model for the observed process, which assumes dependence on the unobserved values of the

underlying sequence of states.

3.1 Discrete-time finite state-space HMM

Let {Xt} be a homogeneous discrete-time Markov chain on a finite state-space S = {1, ...,m}. This

chain has the Markov property which states that, given the value of Xt, the values Xh , h > t, do not

depend on the values Xs , s < t. That is

Pr(Xh|Xt, Xt−1, ...) = Pr(Xh|Xt).

Let P = [pij ] be the transition probability matrix of the chain with stationary distribution π =

(π1, π2, ...πm). The general form of the matrix is



CHAPTER 3. HIDDEN MARKOV MODELS (HMMS) 37

P =


p11 p12 ... p1m

p21 p22 ... p2m
...

...
. . .

...

pm1 pm2 ... pmm

,

where the elements of P are given by

pij = Pr(Xt = j|Xt−1 = i), i, j = 1, 2, ...,m, (3.1)

i.e they are the one-step transition probabilities of the Markov chain. Therefore, pij , which is the ith

row jth column element of P , gives the probability that, if the chain is at state i at time t− 1, it will

move to state j at time t (next step). Here, it is assumed that the next state is dependent only upon the

current state (the Markov assumption). It is obvious that each row of the matrix P sums to one

m∑
j=1

pij = 1,

for all i, and that pij ≥ 0 for every (i, j), since they represent probabilities. The probabilities of

the chain remaining at the current state, denoted by pii, are the diagonal elements of the matrix

P . Additionally, the state transition probabilities pij are independent of the actual time at which a

transition takes place (the stationarity assumption)

pij = Pr(Xt1 = j|Xt1−1 = i) = Pr(Xt2 = j|Xt2−1 = i) , 1 ≤ t1, t2 ≤ T.

Now, let {Yt} be the random process we are interested in and for which observations are made at

discrete times t = 1, 2, ...T . In order to formulate a hidden Markov model for the random process

{Yt}, we assume that the distribution of Yt depends, through a function h of known form, on the

unobserved value of Xt,

Yt = h(Xt) + et , t = 1, 2, ..., T ,

where et are additive noise terms whose distribution may depend on the value of Xt. Therefore, the

variables X1, X2, ..., XT represent the hidden states of a mechanism/process that has generated the

observed data y1, y2, ..., yT .

Let yT = (y1, y2, ...yT ) be a realization of the observation sequence and xT = (x1, x2, ..., xT )

be a realization of the state sequence. The unobserved values of the state sequence xt, depend on
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x1 −−−→ x2 −−−→ ... −−−→ xt−1 −−−→ xt −−−→ xt+1 −−−→ ... −−−→ xTy y y y y y
y1 y2 ... yt−1 yt yt+1 ... yT

Figure 3.1: Independence structure of a discrete-time finite state-space HMM

each other through the transition matrix P , of a discrete-time Markov chain. Then, the value of the

observation yt, at time t, depends only on the state of the chain at time t. Conditionally on xT and

the model parameters, denoted by θ the observations y1, y2, ..., yT are independent of each other.

The conditional independence structure of a discrete-time finite state-space hidden Markov model is

depicted in figure 3.1. Due to the conditional independence property of the hidden Markov model the

likelihood of the observed data yT given the hidden states xT is given by

Pr
(
yT |xT , θ

)
=

T∏
t=1

Pr(yt|xt, θ).

There exist hidden Markov models of different orders. For example a model of order 0 assumes that

Pr(Xt1 = i) = Pr(Xt2 = i) , i = 1, 2, ...,m,

for all t1, t2. A hidden Markov model of order 1 is every model that follows the Markov assumption

and it is defined by a transition probability matrix with elements of the form (3.1). This is the class

of hidden Markov models that we will use in our analysis. Generally, in a hidden Markov model of

order k the next state depends on the previous k states. Despite the fact that a higher order hidden

Markov model will have a higher complexity, it is possible to obtain a kth-order model by defining

the transition probabilities as

pi1,i2,...,ik,j = Pr(Xt = j|Xt−1 = i1, Xt−2 = i2, ..., Xt−k = ik) , 1 ≤ i1, i2, ...ik, j ≤ m.

However, hidden Markov models are usually taken to be of order 1, because every kth-order hidden

Markov model can be converted into an equivalent first-order hidden Markov model.

3.2 Types of HMMs

There are two basic types of hidden Markov models; ergodic and left-right models. In an ergodic

model (Levinson 1986) every state can be reached from any other state in a finite number of steps.
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In other words, there is a probability that we can pass from a state i of the model to a state j (figure

3.2). A special case of ergodic hidden Markov models is the one where every state of the model can

be reached from every other state in a single step. This kind of model is alternatively called fully

connected hidden Markov model. This special case of models has been useful in applications to some

speech-modeling tasks and it has the property that every coefficient of its transition matrix is positive,

pij > 0, for i, j = 1, 2, ...,m.

Figure 3.2: Example of a 4-state ergodic HMM.

The left-right or Bakis models (Bakis, 1976) allow the hidden Markov state either to pass from

a given state to a state with larger index, or remain at the same state. In other words, no transition

is allowed to a state with lower index than the current state’s at any step (figure 3.3). Therefore, we

have the property

pij = 0, for j < i.

Clearly, those models are defined through upper triangular transition matrices. For a model with m

states the transition coefficient pmm = 1, as there is no other state with higher index than m and the

chain must remain at the mth state. Hence, the transition matrix of this model has the form
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P=


p11 p12 ... p1m

0 p22 ... p2m
...

...
. . .

...

0 0 ... 1

.

Furthermore, the state sequence must begin in state 1 and end in state m. Usually, in left-right hidden

Markov models large jumps in state indices are not allowed. In such constrained left-right hidden

Markov models there are some constraints of the form pij = 0, j > i + δ, where δ is the largest

number of jumps allowed in the model.

Figure 3.3: Example of a 4-state left-right HMM.

3.2.1 A special case : Break-point Models

The constraint left-right hidden Markov models, where only one jump is allowed (δ = 1), are known

in the literature as the class of break-point models. In these models, when the chain is leaving the

current state, say a state indexed by i, then transition is made to the state indexed by i + 1, for

1 ≤ i < m. The transition matrix for such a model has the form

P=



p11 p12 0 0 ... 0 0

0 p22 p23 0 ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... pm−1,m−1 pm−1,m

0 0 0 0 ... 0 1


.

Therefore, the chain starts at state 1 and when leaving the ith state it always moves to the state (i+1),

until it eventually reaches the mth state. Again we have
∑m

j=1 pij = 1 , for all i = 1, 2, ...,m, which
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is simplified to

pii + pii+1 = 1 , i = 1, 2, ...,m− 1.

Break-point models are considered as a special case of hidden Markov models that are widely

used in financial econometric applications. The breaks usually correspond to important changes in

the economic structure. They are used to model economic processes where one or more multiple

structural changes (breaks) appear at discrete time points due to exogenous reasons, such as financial

crises (Jeanne and Masson, 2000; Cerra, 2005; Hamilton, 2005) or abrupt changes in government

policy (Hamilton, 1988; Sims and Zha, 2004, Davig, 2004). A break-point model, expressed as

a special case of a HMM was used by Chib (1998) to model data on the number of coal-mining

disasters by year in Britain over the period 1851-1962 (Jarrett, 1979). Break-point models have been

also used to model the log-run trend in GNP (Hamilton, 1989), the behavior of foreign exchange

rates and real interest rates (Garcia and Perron, 1996; Bai and Perron, 2003) and the evolution of

shock returns (Kim et al., 1998), among many others. In those cases, the hidden underlying process

may reflect changes in monetary policies, exchange rates regimes, financial market regulation or any

change in the economic environment. For instance, Garcia and Perron (1996) and later Bai and Perron

(2003) considered the US ex-post real interest rate and they were interested in the presence of abrupt

structural changes in the mean of the series.

When analyzing financial time-series under break-point models, it is of particular interest to infer

the times of the breaks as they represent the times of structural changes in the studied economic

process. Note that for a m-state break-point model the times of the breaks t1, t2, ..., tm−1 are the

time-points at which transitions occur in the Markovian underlying process. Therefore, inferring the

times of those breaks is equivalent to inferring the hidden state sequence.

3.3 HMMs and three basic problems

In order to produce hidden Markov models useful in real-world applications there are three basic

problems, which need to be solved.

• 1st problem - evaluation problem :

Supposing we have an observation sequence and a specific model, how do we efficiently compute the

probability of the observation sequence, given that model? (In other words, what is the probability
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that this observation sequence was produced by that model?)

• 2nd problem - decoding problem :

Supposing, again, we have an observation sequence and a specific model, how do we deduce from

the observation sequence the most likely state sequence in a meaningful manner? (For instance, how

do we find a corresponding state sequence that best ”explains” the observations?)

• 3rd problem - estimation problem :

How do we adjust the parameters of our model in order to maximize the probability of the observation

sequence, given the model?

3.3.1 Solutions to the three basic problems of HMMs

In this section our aim is to briefly describe the solutions to the above problems and make the con-

nections with some algorithms (Viterbi, Baum-Welch, Forward-Backward), rather than present the

solutions in great detail.

The first problem (evaluation problem) can be also viewed in a different but extremely useful

way; that of how well a given model matches a given observation sequence. Therefore, if we are

in a situation in which we want to choose the model which best matches the observations, among

several competing models, the only thing we have to do is to solve the evaluation problem. The most

straightforward way of solving this problem, is to enumerate every possible state sequence of length

equal to the number of observations. It is obvious that for a large number of observations or states this

calculation is computationally infeasible. In fact, even for small values, the number of calculations

is very large. However, there is a more efficient procedure to solve this problem which is called

Forward-Backward algorithm (Baum 1972).

The second problem (decoding problem) is a way of uncovering the hidden part of the model.

Finding the most likely state sequence is not always needed, because the probability measure of an

hidden Markov model does not explicitly involve the state sequence. However, in many applications

it is important and useful to uncover that sequence. This problem can be solved in several possible

ways. One way is to maximize the probability of being in state i, at time t, given the observed

sequence yT and the model parameters θ ,

γt(i) = Pr(Xt = i|yT , θ).
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In order to solve this problem one can use dynamic programming methods such as the Viterbi algo-

rithm (Forney 1973).

The third problem (estimation problem) concerns methods of optimizing the model parameters

and it is the most difficult one, as there is no known way of solving it analytically. Usually, the

maximum likelihood method is followed, in order to find parameters that maximize the probability of

the observation sequence yT , given the state sequence xT ,

Pr(yT |xT , θ).

This maximization can be accomplished via the Baum-Welch algorithm (Baum, Petrie, Soules and

Weiss 1970).

Alternatively, one may use Bayesian inference to estimate the parameters of the hidden Markov

model via Markov chain Monte Carlo methods.

Forward-Backward algorithm

The Forward-Backward algorithm (FB; Baum et al. 1970) is a set of filtering recursions that are

used to calculate the likelihood and to simulate realizations of the underlying process of a hidden

Markov model given the values of the model parameters. Usually it is used within more general

recursive schemes, where the parameters need to be estimated. In particular, the Forward-Backward

algorithm can be used to evaluate the likelihood within the steps of an expectation-maximization (EM)

algorithm for ML estimation, or to simulate realizations of the hidden chain in an MCMC algorithm

for Bayesian estimation. This algorithm will be used in applications in this dissertation and, therefore,

we present it in detail in the following section.

Viterbi algorithm

This algorithm was generated by Andrew Viterbi as an error-correction scheme for noisy digital com-

munication links. Nowadays, it is commonly used in speech recognition, keyword spotting, computa-

tional linguistics and bio-informatics. It is a dynamic programming algorithm, which finds the most

likely state sequence to have generated a sequence of observations. For example, a possible observed

sequence could be an acoustic signal and a string of text could be the -hidden- state sequence that

caused the observations. The algorithm is based on several assumptions. Both observed and hidden

events must be in a sequence, which often corresponds to time. These two sequences need to be
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ranged, while an observation has to correspond to exactly one hidden event. Moreover, computing

the most likely -hidden- state sequence up to a certain point tmust depend only on the observed event

at point t, and the most likely sequence at point t− 1. A transition from a previous state to a new one

is marked by an incremental metric (number), which depends on the transition probability from the

old to the new state. The aim of the algorithm is to keep a number for each state, so, when an event

occurs, the Viterbi algorithm examines the new possible states and chooses the best one using these

metrics.

Baum-Welch algorithm

The Baum-Welch algorithm was developed by Leonard E. Baum and his co-workers in a series of

papers published between 1966 and 1972 (Baum and Petrie 1966; Baum and Egon 1967; Baum and

Sell 1968; Baum, Petrie, Soules and Weiss 1970; Baum 1972). The name of Welch appears only

as joint author -with Baum- of a paper listed by Baum, Petrie, Soules and Weiss (1970) as submit-

ted for publication. It is an example of an algorithm of the Estimation-Maximization (EM) type.

The Baum-Welch algorithm updates the model parameters until convergence, usually following the

Forward-Backward algorithm, due to its interpretation as an extension of the forward induction pro-

cedure to the evaluation problem.

In this thesis we implement an MCMC algorithm for inference about discrete-time finite state-

space hidden Markov models using the Forward-Backward algorithm. This algorithm consists of

updates of the hidden sequence of states given the model parameters. Then, it updates the values of

the parameters from their conditional distributions and repeats this procedure until convergence.

The reason why we use the Forward-Backward algorithm and not any of the other two (Viterbi

or Baum-Welch) is that the Forward-Backward algorithm is more appropriate given our model con-

struction (we need to calculate the likelihood and simulate realizations of the latent variables given

the model parameters).

3.4 Forward-Backward algorithm

There are some problems we need to solve, in order to produce hidden Markov models useful in

real-world applications. One of them is known as ”evaluation problem”. Supposing we have an
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observation sequence and a specific model, how do we efficiently compute the probability of the

observation sequence, given that model? (In other words, which is the probability that this observation

sequence was produced by that model?). This problem can be also viewed in an alternative way; that

of how well a given model matches a given observation sequence. Therefore, if we are in a situation

in which we want to choose the model which best matches the observations, among several competing

models, the only thing we have to do is to solve the evaluation problem. The most straightforward

way of solving this problem, is to enumerate every possible state sequence of length equal to the

number of observations. It is obvious that for a large number of observations or states this calculation

is computationally infeasible. In fact, even for small values, the number of calculations is very large.

However, there is a more efficient procedure to solve this problem which is called Forward-Backward

algorithm (FB).

The Forward-Backward algorithm (Baum et al. 1970; Baum 1972; Rabiner 1989; Cappé et al.

2005) is an inference algorithm for hidden Markov models, which computes the posterior marginal

distributions of all hidden state variables, given a sequence of observations. Principles of dynamic

programming are used by this algorithm, in order to compute the values that are necessary for obtain-

ing the posterior marginal distributions mentioned before. As we will show analytically in the fol-

lowing paragraph, the Forward-Backward algorithm first computes a set of forward variables, which

enable us to obtain the probability of ending up in any particular state of the Markov chain, given

the previous observations in the sequence. After that, the algorithm computes a set of backward vari-

ables, which enable us to obtain the probability of observing the remaining observations, given any

starting point. Finally, the algorithm combines those sets of forward and backward variables, in order

to provide the distribution over any states, at any specific time point, given the entire observation

sequence.

Let Yt = (Y1, Y2, ..., Yt) be the history of the observation process and Xt = (X1, X2, ..., Xt) be

the sequence of states, up to time t. Let fi denote the distribution of Yt|Xt = i, i = 1, ...,m, which

is parameterized by θi. The joint probability of a realization (YT ,XT ) is given by

L(yT , xT |θ) = πx1fx1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT ), (3.2)

where θ = (θ1, θ2, ..., θm, P ) is the vector of all unknown parameters in the model and π = (π1, π2, ..., πm)

is the stationary distribution of the matrix P .

One possible way to derive the likelihood of the observed data, L(yT |θ), since xT is not observed,

is by summation of the equation (3.2) over all the mT possible sets of states. It is obvious that as T
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increases, even for small values of m, it is infeasible to evaluate the likelihood function. Clearly, we

need some other way of calculating the likelihood in order to overcome this difficulty. This can be

done by evaluating the likelihood sequentially, using the Forward-Backward algorithm. In this way,

L(yT |θ) is calculated, given the value of θ, in a sequential manner.

The terminology ”forward” refers to the calculation of the likelihood function via a forward recur-

sion, while ”backward” refers to simulating realizations from the distribution of the hidden underlying

sequence XT = (X1, X2, ..., XT ) via a backward recursion. We define the forward variables as

at(i) = Pr(yt, Xt = i|θ) = Pr(Xt = i)Pr(yt|Xt = i, θ) , t = 1, 2, ..., T ,

with a1(i) = πifi(y1). The forward variable at time t is the joint probability of the data (observation

sequence) up to time t and the state of the hidden process at time t, given the model parameters. The

forward variables for t = 2, 3, ..., T can be calculated recursively by

at(i) =
m∑
j=1

Pr(yt, Xt−1 = j,Xt = i|θ) =

 m∑
j=1

at−1(j)pji

 fi(yt).
At the final step of the recursion we calculate

aT (i) = Pr(yT , XT = i|θ),

for i = 1, 2, ...m. Then, the likelihood can be obtained as

L(yT |θ) =
m∑
i=1

aT (i).

This calculation involves O(m2T ) steps instead of the O(mT ) needed for direct evaluation of the

likelihood. Going backwards, we are able to simulate a realization (x1, x2, ..., xT ) from the joint

distribution of the hidden state variables (X1, X2, ...XT ). The Markov property allows us to write

the joint distribution of the hidden states as a product

Pr(xT |yT , θ) = Pr(xT |yT , θ)...P r(xt|yT , xt+1, θ)...P r(x1|yT , x2, θ).

Then, we can simulate the state at time T from

Pr(XT = i|yT , θ) =
Pr(yT , XT = i|θ)

L(yT |θ)
=

aT (i)∑m
j=1 aT (j)

,

for i = 1, 2, ...m. Calculating backwards, for t = T − 1, T − 2, ...1, the state at time t given the state

at time t+ 1 can be simulated from the distribution

Pr(Xt = i|yT , xt+1, θ) =
Pr(Xt = i|yt, θ)Pr(xt+1|Xt = i)∑m
j=1 Pr(Xt = j|yt, θ)Pr(xt+1|Xt = j)
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=
at(i)pi,xt+1∑m
j=1 at(j)pj,xt+1

,

for i = 1, 2, ...,m. Note that the variables at(i) have been calculated during the forward step of the

algorithm.

Recursive schemes based on the Forward-Backward algorithm can be used to implement the EM

algorithm or to propose realizations of the underlying Markov process within an MCMC scheme

(Scott 2002).



Chapter 4

Bayesian Extreme Quantile Inference for

HMMs

In this chapter we use quantile regression, Bayesian inference and hidden Markov modeling in order

to analyze the highest and lowest extreme quantile of two financial time series. The data sets are

the US ex-post real interest rates and the US treasury bill real interest rates. For the analysis of

these data sets we use discrete-time m-state hidden Markov models and multiple break-point models.

Additionally, we choose two different ways of performing our analysis. One way using the m-state

Normal HMM and another one using the m-state asymmetric Laplace distribution (ALD) HMM.

The special case of break-point models can be more parsimonious than the general case of hid-

den Markov models, especially for modeling time series for which each state when left is almost

never revisited. This phenomenon is common in financial econometrics time series, where the breaks

correspond to permanent changes in the structure of the economy.

Generally, for each data set, we consider a problem of model choice first; namely we are interested

in inferring the number of states m which best describe the data. In the context of break-point models

this amounts to examining whether or not there exist structural changes (break-points) in our data

sets and inferring their number. In the context of hidden Markov models we examine how many

states the model must have to describe the data best in terms of model fit and model complexity. In

order to achieve this we analyze the data under different models using linear programming and Gibbs

sampling with data augmentation (in the case of the Normal HMM) and a combination of Gibbs and

Metropolis-Hastings sampling (in the case of the ALD HMM). Then, for each model we compute the

48
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associated value of the DIC based on the MCMC output. The best model is the one with the smallest

value of the DIC.

Basically, for the analysis of the data, we run our MCMC algorithm for a number of Normal

(or ALD) hidden Markov models, each one assuming a different number of states or break-points.

The construction of the MCMC algorithm is the same for all these models, apart from a few changes

concerning the prior distribution of the parameters.

4.1 The m-state Normal HMM

Let yT = (y1, y2, ...yT ) be a sample of observations from an m-state Normal hidden Markov model.

We assume that {Xt} (the hidden underlying process) is a m-state Markov chain taking the values

1, 2, 3, ...m, with transition matrix P and stationary distribution π = (π1, π2, ...πm). The distribution

associated with the ith state of this Markov chain is

fi(y) = fN
(
y|µi, κ−1i

)
,

where fN (y|µ, σ2) denotes the probability distribution function of a Normal random variable with

mean µ and variance σ2. Therefore,

fi(y) =

√
κi√
2π
exp

{
−κi(y − µi)

2

2

}
.

Since xT is a sequence of states, which is unknown, the likelihood of the observed data yT can be

obtained as

L(yT |θ) =
∑
xT

πx1fx1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT ), (4.1)

where θ = (µ, κ, P ) is the totality of unknown parameters and µ = (µ1, µ2, ..., µm), κ = (κ1, κ2, ..., κm).

Instead of summing over all the possible sets of states, we can evaluate L(yT |θ) efficiently using the

Forward-Backward algorithm as following. The forward variables at(i), i = 1, 2, ...,m can be calcu-

lated as

a1(i) = πifN
(
y1|µi, κ−1i

)
, (4.2)

and for t = 2, 3, ..., T using the recursion

at(i) = [at−1(1)p1i + at−1(2)p2i + ...+ at−1(m)pmi] fN
(
yt|µi, κ−1i

)
. (4.3)

Then the likelihood of yT is obtained as

L(yT |θ) = aT (1) + aT (2) + ...+ aT (m), (4.4)
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and the state at time T can be simulated from

Pr(XT = i|yT , θ) =
aT (i)

aT (1) + aT (2) + ...+ aT (m)
=

aT (i)

L(yT |θ)
(4.5)

for i = 1, 2, ...,m. For t = T − 1, T − 2, ..., 1 the state at time t, given the state at time t+ 1 can be

simulated from

Pr(Xt = i|yT , xt+1, θ) =
at(i)pi,xt+1

at(1)p1,xt+1 + at(2)p2,xt+1 + ...+ at(m)pm,xt+1

(4.6)

for i = 1, 2, ...,m.

4.1.1 Gibbs sampling for Normal HMMs

Let us consider again the m-state Normal hidden Markov model. Suppose we have observed data

yT = (y1, y2, ..., yT ), where yT is a sample of T consecutive observations from a time series of

interest, modeled by a Normal discrete-time m-state hidden Markov model. As mentioned above,

Bayesian inference for a hidden Markov model is an example of inference for missing data problems

using data augmentation. In our setting of the Normal hidden Markov model we can construct a Gibbs

sampler which, at each iteration, first updates the latent data xT of the hidden Markov model given the

model parameters θ = (µ, κ, P ), and then updates θ given xT . Realizations of the hidden sequence of

states xT given θ are simulated using the Forward-Backward algorithm of section 4.1 (more specifi-

cally, equations 4.5 and 4.6). Then the parameters µ1, µ2, ..., µm, κ1, κ2, ..., κm, p11, p12, ..., pmm can

be simulated from their full conditional posterior distributions via Gibbs steps.

Under the Bayesian approach, first we need to specify priors for the parameters θ = (µ, κ, P ).

We begin from the matrix P and denote as pi. the ith row of the matrix, for i = 1, 2, ...,m. It is

assumed that each row pi. follows a Dirichlet distribution with parameter ω = (ω1, ω2, ..., ωm).

pi. ∼ Dir(w) , i = 1, 2, ...,m.

Then, we assume a conjugate Normal prior distribution for each mean µi with mean ξ and variance

λ−1, that is

µi ∼ N(ξ, λ−1) , i = 1, 2, ...,m,

and a Gamma prior for each precision κi with parameters a and b, that is
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κi ∼ Gamma(a, b) , i = 1, 2, ...,m.

We have chosen to parameterize the Normal distribution in terms of the precision rather than in terms

of the variance in order to make the calculations simpler. Therefore, for i = 1, 2, ...,m we have

π(pi.) =
1

B(ω)

m∏
j=1

p
ωj−1
ij ∝

m∏
j=1

p
ωj−1
ij (4.7)

π(µi) =

√
λ√
2π
exp

{
−λ

2
(µi − ξ)2

}
∝ exp

{
−λ

2
(µi − ξ)2

}

π(κi) =
ba

Γ(a)
κa−1i exp {−bκi} ∝ κa−1i exp {−bκi}

where the normalizing constant B(ω) is the multinomial Beta function, which is expressed in terms

of the Gamma function, as

B(ω) =

∏m
i=1 Γ(ωi)

Γ (
∑m

i=1 ωi)
.

The likelihood of the observed data yT given the hidden sequence of states xT , under an m-state

Normal hidden Markov model is given by

L(yT |xT , µ, σ2, P ) = π(x1)fx1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT )

= π(x1)

m∏
i=1

m∏
j=1

p
nij
ij︸ ︷︷ ︸

A

m∏
i=1

∏
t:xt=i

fi(yt)︸ ︷︷ ︸
B

, (4.8)

where fi(yt), i = 1, 2, ...,m, is the probability distribution function of the Normal distribution asso-

ciated with the ith state and nij is the number of times the chain passes from state i to state j:

nij =

T∑
t=1

I(xt = i, xt+1 = j).

Clearly, the above formula is written as a product of two terms, each involving a subset of the model

parameters. From factor A we can make inference about the parameters (elements) of the matrix P ,

while from B we can make inference about the Normal parameters µ and κi.

The joint posterior distribution of the model parameters given the observed and the unobserved

data of the hidden Markov model is given by

f(µ, κ, P |yT , xT ) ∝ L(yT |xT , µ, κ, P )π(P )π(µ)π(κ)
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∝
m∏
i=1

m∏
j=1

p
nij
ij

m∏
i=1

∏
t:xt=i

√
κiexp

{
−κi

2
(yt − µi)2

}
×

m∏
i=1

m∏
j=1

p
ωj−1
ij ×

exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}
×

m∏
i=1

κa−1i exp {−bκi} .

Then, we are able to obtain the full conditional posterior distributions of the parameters pi., µi and

κi, each being proportional to f(µ, κ, P |yT , xT ) regarded as a function of the respective parameter

only. All of the full conditionals are of known form.

The full conditional of pi., the ith row of the matrix P , i = 1, 2, ...,m, is a Dirichlet distribution

with parameters (ni. + ω) = (ni1 + ω1, ni2 + ω2, ..., nim + ωm) where ni. = (ni1, ni2, ..., nim):

π(pi.|yT , xT , µ, κ) ≡ Dir(ni. + ω). (4.9)

The full conditional of µi, i = 1, 2, ...,m, is a Normal distribution with mean ξ2 =
κi

∑
t:xt=i

yt+λξ

niκi+λ

and variance λ−12 = 1
niκi+λ

:

π(µi|yT , xT , P, κ) ≡ N
(
κi
∑

t:xt=i
yt + λξ

niκi + λ
,

1

niκi + λ

)
,

where ni =
∑T

t=1 I(xt = i). Finally, the full conditional of κi, i = 1, 2, ...,m, is a Gamma distribu-

tion with parameters a2 = a+ ni
2 and b2 = b+

∑
t:xt=i

(yt−µi)2
2 ,

π(κi|yT , xT , P, µ) ≡ Gamma

(
a+

n

2
, b+

∑
t:xt=i

(yt − µi)2

2

)
.

Details for the MCMC algorithm and the posterior distribution calculations, for the Normal HMM,

can be found in Appendix B.

4.1.2 Prior Specification

The parameters of the prior distributions in the MCMC algorithm for an m-state Normal hidden

Markov model are a = 0.1, b = 0.1, which are the parameters of a Gamma prior distribution of each

precision κi, i = 1, 2, ...,m; ξ = 0, λ = 0.1, which are the parameters of a Normal prior distribution

for each mean µi, i = 1, 2, ...,m; ω = (1, ..., 1), a vector of 1s with length m (the specified number

of states), which is the parameter of a Dirichlet prior distribution for each line pi. of the model’s

transition matrix P .

Therefore, the parameters of the m-state Normal hidden Markov model and their priors are
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pi. ∼ Dir((1, ..., 1)) , i = 1, 2, ...,m,

µi ∼ N(0, 10) , i = 1, 2, ...,m,

κi ∼ Gamma(0.1, 0.1) , i = 1, 2, ...,m.

4.2 US ex-post real interest rates

The US ex-post real interest rates data set was considered by Garcia and Perron (1996). The series

represents the three-month treasury bill rate deflated by the CPI inflation rate taken from the Citibase

data bank. In this chapter we are interested in inferring the number of states in the Normal HMM

(section 4.2.1 and 4.2.2) and the ALD HMM (section 4.5.3), for the highest and lowest extreme

quantiles of the series (τ = 1 and τ = 0, respectively). We model these extreme quantiles of

the series in three different ways. We consider a Normal HMM with a quadratic model fit of the

extreme quantiles, then a Normal HMM with a cubic model fit of the extreme quantiles and an ALD

HMM. Note that it is known from section 2.2.4 that a cubic model fits the extreme quantiles of the

series in a better way than the quadratic model. However, we are interested in exploring how a

different assumption on the extreme quantile model fit can affect the estimation of the hidden state,

via HMMs. Finally, in a following chapter, we also consider a continuous state-space HMM for this

data set (section 5.3.1).

4.2.1 Normal HMM with a quadratic model fit of the extreme quantiles

Let us start by considering a Normal HMM as described in section 4.1. Based on the shape of our

data, we assume that those quantiles can be described by a quadratic model of the form:

yi = β0 + β1xi + β2x
2
i + εi,

i = 1, 2, ..., n = 103, where yi are the observations, xi are the times of the observations and εi

is the error term. We define xi = i − 52, where i is the number of the observation. Using linear

programming we estimate the values of βj , j = 0, 1, 2, and we obtain the two following models, as

in section 2.2.4:

ỹi = −6.31− 0.02xi + 0.002x2i + εi,

ỹi = 5.9 + 0.13xi + 0.002x2i + εi,
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i = 1, 2, ..., n, for the lowest (τ = 0) and highest (τ = 1) extreme quantile, respectively. We choose

εi ∼ N(0, 1). Based on the first model, we simulate data which, obviously, correspond to the lowest

extreme quantile of our data set and then we apply our MCMC algorithm, as described in section

4.1.1. We follow the same method for the second model (highest extreme quantile).

We run our MCMC algorithm assuming 2,3,4 and 5 hidden states for both extreme quantiles and

we choose the best model based on the DIC. Table 4.1 shows that the best model is a 4-state Normal

HMM for the highest extreme quantile and a 3-state Normal HMM for the lowest extreme quantile

(figure 4.1). That means that we need one more state, or two more parameters (µ4 and κ4), in order

to model the highest extreme quantile, compared to the lowest extreme quantile.

Models DIC

2-states HMM 5.07

3-states HMM 4.81

4-states HMM 4.24

5-states HMM 4.76

2-states HMM 5.32

3-states HMM 4.34

4-states HMM 4.97

5-states HMM 4.92

Table 4.1: Values of DIC for different Normal HMMs for the US ex-post real interest rates, for the

highest and lowest extreme quantiles, respectively. A quadratic model was used to fit the extreme

quantiles. The best models are indicated with bold characters.

The estimated Normal parameters (mean µ and precision κ) for the best models are shown in table

4.2.

4.2.2 Normal HMM with a cubic model fit of the extreme quantiles

Let us now consider again a Normal HMM, but this time assume that the extreme quantiles of the

series are described by a cubic model of the form:

yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi,
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Figure 4.1: Model fit of the Normal HMMs for the US ex-post real interest rates, when using a

quadratic model fit for the extreme quantiles. The red lines correspond to the highest extreme quantile

(4-state Normal HMM) and the blue lines correspond to the lowest extreme quantile (3-state Normal

HMM). The smooth lines represent the extreme quantile model fit and the stepwise lines represent

the hidden states.

i = 1, 2, ..., n, where yi are the observations, xi are the times of the observations and εi is the error

term. We define xi = i−52, where i is the number of the observation. Using linear programming we

estimate the values of βj , j = 0, 1, 2, 3, and we obtain the two following models, as in sections 2.2.4

and 2.4.1:

ỹi = −6.5− 0.081xi + 0.003x2i + 0.000045x3i + εi,

ỹi = 3.3 + 0.058xi + 0.0049x2i + 0.000073x3i + εi,
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4-state Normal HMM

Highest extreme quantile

µ1 κ1 µ2 κ2 µ3 κ3 µ4 κ4

3.44 4.20 5.31 1.01 8.26 0.54 14.01 0.20

3-state Normal HMM

Lowest extreme quantile

µ1 κ1 µ2 κ2 µ3 κ3

-6.25 1.04 -4.67 1.63 -1.01 1.05

Table 4.2: Normal parameter estimates for US ex-post real interest rates, using a quadratic model fit

for the extreme quantiles.

i = 1, 2, ..., n, for the lowest (τ = 0) and highest (τ = 1) extreme quantile, respectively. We choose

εi ∼ N(0, 1). Based on the first model, we simulate data which, obviously, correspond to the lowest

extreme quantile of our data set and then we apply our MCMC algorithm. We follow the same method

for the second model (highest extreme quantile).

We run our MCMC algorithm assuming 2,3,4 and 5 hidden states for both extreme quantiles and

we choose the best model based on the DIC. Table 4.3 shows that the best model is a 2-state Normal

HMM for the highest extreme quantile and a 3-state Normal HMM for the lowest extreme quantile

(figure 4.2). That means that we need one more state, or two more parameters (µ3 and κ3), in order

to model the lowest extreme quantile, compared to the highest extreme quantile.

The estimated Normal parameters (mean µ and precision κ) for the best models are shown in table

4.4.
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Figure 4.2: Model fit of the Normal HMMs for the US ex-post real interest rates, when using a cubic

model fit for the extreme quantiles. The red line corresponds to the highest extreme quantile (2-state

Normal HMM) and the blue line corresponds to the lowest extreme quantile (3-state Normal HMM).

The smooth lines represent the extreme quantile model fit and the stepwise lines represent the hidden

states.
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Models DIC

2-states HMM 4.09

3-states HMM 4.92

4-states HMM 5.04

5-states HMM 4.88

2-states HMM 5.02

3-states HMM 4.29

4-states HMM 4.81

5-states HMM 5.06

Table 4.3: Values of DIC for different Normal HMMs for the US ex-post real interest rates, for

the highest and lowest extreme quantiles, respectively. A cubic model was used to fit the extreme

quantiles. The best models are indicated with bold characters.

2-state Normal HMM

Highest extreme quantile

µ1 κ1 µ2 κ2

3.82 0.71 13.41 0.02

3-state Normal HMM

Lowest extreme quantile

µ1 κ1 µ2 κ2 µ3 κ3

-5.75 0.55 -1.77 0.74 1.95 0.41

Table 4.4: Normal HMM parameter estimates for US ex-post real interest rates, using a cubic model

fit for the extreme quantiles
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4.3 US treasury bill real interest rates

The US real interest rates data set consists of monthly observations from 1959 to 1998 that represent

the US Treasury constant maturity interest rates. In this chapter we are interested in inferring the

number of the states in the Normal HMM (sections 4.3.1, 4.3.2 and 4.3.3) and ALD HMM (section

4.5.4), for the extreme quantiles of the series (highest and lowest). In our analysis we consider up to 7

hidden states and, again, we use the best model based on DIC. We are also interested in exploring how

a different assumption on the extreme quantile model fit can affect the estimation of the hidden state,

via HMMs. First, we consider a Normal HMM with a quadratic model fit of the extreme quantiles.

We observe that we do not have a very good fit for the highest extreme quantile (τ = 1). Therefore,

we use a cubic model fit for that quantile, in order to investigate whether we can obtain a better fit. The

results clearly show that this model has a very bad fitting for half of the data points. However, it gives

us the idea of modeling the highest extreme quantile by using two different quadratic models for our

Normal HMM. Then we use an ALD HMM and, finally, we also consider a continuous state-space

HMM, in a following chapter (section 5.3.2).

4.3.1 Normal HMM with a quadratic model fit of the extreme quantiles

We start by considering a Normal HMM as described in section 4.1. Based on the shape of our data,

we assume that a very good idea is to fit the extreme quantiles by using a quadratic model of the form:

yi = β0 + β1xi + β2x
2
i + εi,

i = 1, 2, ..., n = 527, where yi are the observations, xi are the times of the observations and εi is the

error term. This data set consists of 527 observations. We define xi = i− 263, where i is the number

of the observation. As we mentioned in a previous chapter, this method enable us to avoid using large

numbers for our calculations, especially when we need to obtain x2i and x3i .

Using linear programming we estimate the values of βj , j = 0, 1, 2, and we obtain the two

following models :

ỹi = 3.52− 0.00029xi − 0.000032x2i + εi,

ỹi = 16.19 + 0.0014xi − 0.00018x2i + εi,

i = 1, 2, ..., n, for the lowest (τ = 0) and highest (τ = 1) extreme quantile, respectively. We choose

εi ∼ N(0, 1). Based on the first model, we simulate data which, obviously, correspond to the lowest
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extreme quantile of our data set and then we apply our MCMC algorithm, as described in section

4.1.1. We follow the same method for the second model (highest extreme quantile).

We run our MCMC algorithm assuming 2, 3, 4, 5, 6 and 7 hidden states for both extreme quantiles

and we choose the best model based on the DIC. Table 4.5 shows that the best model is a 3-state

Normal HMM for the both extreme quantiles (figure 4.3).
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Figure 4.3: Model fit of the 3-state Normal HMM for the US real interest rates. The red lines corre-

spond to the highest extreme quantile and the blue lines correspond to the lowest extreme quantile.

The smooth lines represent the extreme quantile model fit and the stepwise lines represent the hidden

states.

The estimated Normal parameters (mean µ and precision κ) for the best models (3-state Normal

HMM) are shown in table 4.6. The HMM fitting for the lowest extreme quantile of the series looks

very good. However, the HMM fitting for the highest extreme quantile does not look so good, because
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Models DIC

2 states 8.22

3 states 7.17

4 states 8.38

5 states 7.98

6 states 8.13

7 states 7.86

2 states 8.33

3 states 7.28

4 states 8.31

5 states 7.87

6 states 7.98

7 states 7.77

Table 4.5: Values of DIC for different Normal HMMs for the US real interest rates, for the highest

and lowest extreme quantiles, respectively. The best models are indicated with bold characters.

the fitting lines of the hidden states of the HMM are not very close to the data. This suggests that

maybe a different model could fit the highest extreme quantile of the series in a more appropriate way.

3-state Normal HMM

Highest extreme quantile

µ1 κ1 µ2 κ2 µ3 κ3

7.02 0.28 12.46 0.58 15.06 2.59

Lowest extreme quantile

µ1 κ1 µ2 κ2 µ3 κ3

1.59 4.47 2.56 5.25 3.25 5.67

Table 4.6: Normal parameter estimates for US real interest rates.
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Figure 4.4: The cubic model fit for the highest extreme quantile of the US real interest rates.

4.3.2 Normal HMM with a cubic model fit of the highest extreme quantile

We are looking for a different model to fit the highest extreme quantile of the series. After the

quadratic model of the previous section, our next choice is a cubic model of the form:

yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi,

i = 1, 2, ..., n = 527, where yi are the observations, xi are the times of the observations and εi is

the error term. We define xi = i − 263, where i is the number of the observation. Using linear

programming, for the highest extreme quantile (τ = 1), we estimate the values of βj , j = 0, 1, 2, 3,

and we obtain the following model :

ŷi = 15.89 + 0.051xi − 0.00018x2i − 0.00000083x3i ,
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i = 1, 2, ..., n. From figure 4.4, it is clear that the fit is not appropriate. However, we can see that this

model is very good for the first 269 months. After the 269th month (maximum observation) the fit is

very bad. In spite of being a not appropriate fit, this gives us the idea of modeling the highest extreme

quantile by using two different models; one model for the first 269 months and another model for the

rest of the months.

4.3.3 Normal HMM with two quadratic model fits of the highest extreme quantile
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Figure 4.5: The two quadratic model fit (red curves) and the 5-state Normal HMM for the highest

extreme quantile of the US real interest rates. The smooth line represents the extreme quantile model

fit and the stepwise line represents the hidden states.

We think that it would be a good idea to model the US real interest rates by using two quadratic

models to fit the highest extreme quantile. The first one will be for months 1 − 269 and the second
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one for months 270 − 527. We are able to use this technique, as we are not interested in obtaining a

model which fits the highest extreme quantile, but we are interested in obtaining new simulated data

that represent the highest extreme quantile of the series. If we can achieve the best representation by

using more than one model to fit the highest extreme quantile, then those are the models we should

use.

Using linear programming, for the highest extreme quantile (τ = 1), we estimate the parameters

of the quadratic model, and we obtain the following models :

ỹi = 15.9 + 0.078xi + 0.00013x2i + εi, i = 1, 2, ..., 269,

ỹi = 16.82− 0.106xi + 0.00026x2i + εi, i = 270, 271, ..., 527.

In figure 4.5 we can see the red curves, as a proof that the above quadratic models fit the highest

extreme quantile very well. Based on these two models we simulate new data, which represent the

highest extreme quantile of the series and then we apply our MCMC algorithm, for 2, 3, 4, 5, 6 and 7

hidden states. Then, we choose the best model based on the DIC. Table 4.7 shows that the best HMM

for the highest extreme quantile of the series is a 5-state Normal HMM (figure 4.5).

Models DIC

2 states 9.03

3 states 8.92

4 states 8.11

5 states 7.82

6 states 8.18

7 states 8.66

Table 4.7: Values of DIC for different Normal HMMs for the US real interest rates, for the highest

extreme quantile. The best model is indicated with bold characters.

The estimated Normal parameters (mean µ and precision κ) for the best model (5-state Normal

HMM) are shown in table 4.8.
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5-state Normal HMM

Highest extreme quantile

µ1 µ2 µ3 µ4 µ5

4.78 6.52 8.64 11.05 15.40

κ1 κ2 κ3 κ4 κ5

1.76 2.18 0.93 3.02 1.84

Table 4.8: Normal parameter estimates for US real interest rates.

4.4 The Normal Break-Point HMM

For the special case of the break-point models only a few changes are needed. Recall that a model

with m − 1 structural breaks can be expressed as an m-state hidden Markov model with transition

matrix P given in section 3.2.1. The Forward-Backward algorithm of section 4.1 can still be used

in order to simulate realizations of the hidden sequence of states. However, here the chain always

starts at state 1 and the specific form of the transition matrix P makes calculations easier. We remind

that here only one jump is allowed (by the definition of the break-point model) so, in each row of

the transition matrix P there are only two non-zero probabilities, pii and pii+1, for i = 1, 2, ...,m.

Additionally, these two probabilities sum to one for all i which means that for each i, there is a single

unknown parameter pii, while pii+1 = 1 − pii. For pii we assume a Beta prior distribution with

parameters p and q, that is

pii ∼ Beta(p, q) , i = 1, 2, ...,m,

with probability distribution function

π(pii) =
Γ(a+ b)

Γ(a) + Γ(b)
pp−1ii (1− pii)q−1 ∝ pp−1ii (1− pii)q−1.

The assumptions concerning the prior distributions of the other parameters remain the same. There-

fore, we have

π(µ) =

m∏
i=1

π(µi) ∝ exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}

π(κ) =

m∏
i=1

π(κi) ∝
m∏
i=1

κa−1i exp {−bκi}
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Moreover, the form of the conditional likelihood of yT given xT slightly changes since, under the

break-point model, the chain starts at state 1 with probability 1. Therefore,

L(yT |xT , µ, σ2, P ) = f1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT ) (4.10)

=
m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

fi(yt),

where nii is the number of times the chain remains at the same state i. Note that the chain moves

from state i to state i+ 1 just once. The joint posterior distribution of the model parameters is given

by

f(µ, κ, P |yT , xT ) ∝ L(yT |xT , µ, κ, P )π(P )π(µ)π(κ)

∝
m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

√
κiexp

{
−κi

2
(yt − µi)2

} m∏
i=1

pp−1ii (1− pii)q−1×

×exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}

m∏
i=1

m∏
i=1

κa−1i exp {−bκi} .

The full conditionals of the Normal parameters are obtained as before. For pii we now have a Beta

full conditional posterior distribution with parameters p2 = p+ nii and q2 = q + 1:

π(pii|yT , xT , µ, κ) ≡ Beta(p+ nii, q + 1) , i = 1, 2, ...,m.

Note that, in the case of a break-point model, it is of particular interest to infer the times when the

structural breaks occurred. Having simulated realizations of the hidden sequence of states xT this is

straightforward, since we just need to record the times when the transitions from state i to state i+ 1

occurred.

Details for the MCMC algorithm and the posterior distribution calculations, for the Normal break-

point HMM, can be found in Appendix B.

4.4.1 Prior Specification

For the Normal break-point hidden Markov model the prior specification of the model parameters is

similar to section 4.1.2. The only change is the prior distribution of each line of the matrix P . Here we

have 2 elements in each line and as a consequence we need to assume a prior distribution only for one

of them as they sum to 1. The prior we choose in this case is Beta with parameters p = 0.5, q = 0.1.

Therefore, we have

pii ∼ Beta(0.5, 0.1) , i = 1, 2, ...,m.
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4.4.2 Normal Break-Point HMM with a cubic model fit of the extreme quantiles

Let us consider a Normal break-point HMM, as described in section 4.4, and assume a cubic model

fit for the extreme quantiles. We work exactly as in section 4.2.2 and by using linear programming

we obtain an estimation of the parameters of the cubic model. Obviously, we get the same models as

in section 4.2.2 :

ỹi = −6.5− 0.081xi + 0.003x2i + 0.000045x3i + εi,

ỹi = 3.3 + 0.058xi + 0.0049x2i + 0.000073x3i + εi,

i = 1, 2, ..., n, for the lowest (τ = 0) and highest (τ = 1) extreme quantile, respectively. We choose

εi ∼ N(0, 1). Based on the first model, we simulate data which, obviously, correspond to the lowest

extreme quantile of our data set and then we apply our MCMC algorithm. We follow the same method

for the second model (highest extreme quantile).

We run our MCMC algorithm, as described in section 4.4, for 0, 1, 2 and 3 structural breaks (these

breaks correspond to 1, 2, 3 and 4 hidden states, respectively). This happens because we are more

interested in finding the date and the number of those structural breaks, rather than the number of

the hidden states. We choose the best model based on the DIC (table 4.9). It is found that a single

break-point Normal HMM models better the highest extreme quantile and a 2 break-point Normal

HMM models better the lowest extreme quantile.

In figure 4.6 we can see the estimated dates of the break-points (for both extreme quantiles) and

their histograms, based on our simulated sample values of the break-points. Additionally, we can see

that both extreme quantiles are affected by a structural break, which is around 1980. The estimated

parameters for the best break-point HMMs, for both extreme quantiles, are shown in table 4.10.
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Models DIC

0 break-points 2.45

1 break-point 2.07

2 break-points 2.55

3 break-points 3.22

0 break-points 2.71

1 break-point 2.66

2 break-points 1.88

3 break-points 2.92

Table 4.9: Values of DIC for different Normal break-point HMMs for the US ex-post real interest

rates, for the highest and lowest extreme quantile, respectively. The best modes are indicated with

bold characters.

1 break-point Normal HMM

Highest extreme quantile

µ1 κ1 µ2 κ2

4.03 1.61 13.17 1.18

2 break-points Normal HMM

Lowest extreme quantile

µ1 κ1 µ2 κ2 µ3 κ3

-6.22 1.31 -1.87 0.91 0.26 0.55

Table 4.10: Normal break-point HMM parameter estimates for US ex-post real interest rates, using a

cubic model fit for the extreme quantiles.
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Figure 4.6: Dates and histograms of the break points of the US ex-post real interest rates (for the

Normal break-point HMMs). The blue line corresponds to the break-points of the lowest extreme

quantile and the red line corresponds to the break-point of the highest extreme quantile.
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4.5 The m-state ALD hidden Markov model

Another way to perform Bayesian extreme quantile regression on hidden Markov models is by using

the asymmetric Laplace distribution (ALD) instead of the Normal distribution. Let yT = (y1, y2, ...yT )

be a sample of observations from an m-state ALD hidden Markov model. We assume that {Xt} (the

hidden underlying process) is a m-state Markov chain taking the values 1, 2, 3, ...m, with transition

matrix P and stationary distribution π = (π1, π2, ...πm). The distribution associated with the ith state

of this Markov chain is the asymmetric Laplace distribution

fi(y) = fL(y|µi).

Therefore,

fi(y) = τ(1− τ)exp{pτ (y − µi)},

where τ is the quantile. Following the same procedures as in the Normal hidden Markov model, we

can obtain the likelihood of the observed data yT from 4.1 and we can also implement the Forward-

Backward algorithm, by using fL instead of fN . The forward variables are given by 4.2 and 4.3. The

likelihood within the Forward-Backward algorithm is given by 4.4 and the state at time t is given

by 4.5 and 4.6. However, in this case we have less parameters to estimate, because by using fL our

parameters are θ = (P, µ) and not θ = (P, µ, κ) like before.

4.5.1 Gibbs and Metropolis-Hastings sampling for ALD HMMs

In the case of the ALD hidden Markov model we can construct another algorithm, which, at each iter-

ation, updates the latent data xT of the hidden Markov model given the model parameters θ = (µ, P )

and then updates θ given xT . Again, realizations of the hidden sequence of states xT given θ are simu-

lated using the Forward-Backward algorithm of section 4.1 (using fL instead of fN ). However, there

is a small change in updating the model parameters. This time only P is updated via Gibbs sampling.

The parameter µ is updated via Metropolis-Hastings sampling, because its posterior distribution is of

unknown form.

We start from the prior specification for the parameters θ = (µ, P ), as we did with the Normal

HMM. We begin from the matrix P and denote as pi. the ith row of the matrix, for i = 1, 2, ...,m. It

is assumed that each row pi. follows a Dirichlet distribution with parameter ω = (ω1, ω2, ..., ωm).

pi. ∼ Dir(w) , i = 1, 2, ...,m.
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Then, we assume a conjugate Normal prior distribution for each mean µi with mean ξ and variance

λ−1, that is

µi ∼ N(ξ, λ−1) , i = 1, 2, ...,m.

Therefore, for i = 1, 2, ...,m we have

π(pi.) =
1

B(ω)

m∏
j=1

p
ωj−1
ij ∝

m∏
j=1

p
ωj−1
ij , (4.11)

π(µi) =

√
λ√
2π
exp

{
−λ

2
(µi − ξ)2

}
∝ exp

{
−λ

2
(µi − ξ)2

}
.

The likelihood of the observed data yT given the hidden sequence of states xT , under anm-state ALD

hidden Markov model is given by

L(yT |xT , µ, P ) = π(x1)fx1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT )

= π(x1)
m∏
i=1

m∏
j=1

p
nij
ij︸ ︷︷ ︸

A

m∏
i=1

∏
t:xt=i

fi(yt)︸ ︷︷ ︸
B

, (4.12)

where fi(yt), i = 1, 2, ...,m, is the probability distribution function of the asymmetric Laplace dis-

tribution associated with the ith state and nij is the number of times the chain passes from state i to

state j:

nij =

T∑
t=1

I(xt = i, xt+1 = j).

Again, the likelihood is written as a product of two terms, each involving a subset of the model

parameters. From factor A we can make inference about the parameters (elements) of the matrix P ,

while from B we can make inference about the parameter µ of the ALD.

The joint posterior distribution of the model parameters given the observed and the unobserved

data of the hidden Markov model is given by

f(µ, P |yT , xT ) ∝ L(yT |xT , µ, P )π(P )π(µ)

∝
m∏
i=1

m∏
j=1

p
nij
ij

m∏
i=1

∏
t:xt=i

exp {−pτ (yt − µi)}×

×
m∏
i=1

m∏
j=1

p
ωj−1
ij exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}
.
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Then, we are able to obtain the full conditional posterior distributions of the parameters pi. and µi ,

each being proportional to f(µ, P |yT , xT ) regarded as a function of the respective parameter only.

Similarly, the full conditional of pi., the ith row of the matrix P , i = 1, 2, ...,m, is a Dirichlet

distribution with parameters (ni. + ω), where ni. = (ni1, ni2, ..., nim):

π(pi.|yT , xT , µ) ≡ Dir(ni. + ω). (4.13)

The full conditional of µi, i = 1, 2, ...,m, is given by the following formula

π(µi|yT , xT , P ) ∝ exp

{∑
t:xt=i

[
(yt − µi)(τ − I(−∞,0)(yt − µi))

]
+
λ

2
(µi − ξ)2

}
.

This posterior distribution is clearly of unknown form. Therefore, Metropolis-Hastings sampling is

used for the parameter µ.

Details for the MCMC algorithm and the posterior distribution calculations, for the ALD HMM,

can be found in Appendix C.

4.5.2 Prior Specification

In the case of the ALD hidden Markov model the prior distributions for pi., µi are exactly the same

with the case of the Normal hidden Markov model (section 4.1.2). However, this time we do not have

to estimate the precision κi.

4.5.3 ALD HMM for the US ex-post real interest rates

Now, let us consider an ALD hidden Markov model as described in section 4.5. In this case, there is

no need of using linear programming to fit the extreme quantiles of the series, because we can specify

the quantile we are interested in, within the MCMC algorithm, by fixing τ , the parameter of the ALD.

However, τ has to be between 0 and 1, as defined in the asymmetric Laplace distribution. Therefore,

we can approximate the extreme quantiles by using τ = 0.001 ≈ 0 and τ = 0.999 ≈ 1. Again, we

run our MCMC algorithm, as described in section 4.5.1, assuming 2,3,4 and 5 states for both extreme

quantiles and the best model is chosen based on the DIC. Table 4.11 shows that the best model is a

3-state ALD hidden Markov model (figure 4.7) for both quantiles.

The estimated parameters of the ALD, for the best models (3-state ALD HMM, for both quantiles)

are shown in table 4.12.
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Models DIC

2-states HMM 5.45

3-states HMM 4.09

4-states HMM 4.88

5-states HMM 5.04

2-states HMM 5.81

3-states HMM 4.22

4-states HMM 5.12

5-states HMM 5.67

Table 4.11: Values of DIC for different ALD HMMs for the US ex-post real interest rates, for the

highest and lowest extreme quantiles, respectively. The best models are indicated with bold charac-

ters.

3-state ALD HMM

Highest extreme quantile

µ1 µ2 µ3

6.96 10.12 14.93

Lowest extreme quantile

µ1 µ2 µ3

-7.25 -4.34 -0.87

Table 4.12: ALD parameter estimates for US ex-post real interest rates.

4.5.4 ALD HMM for the US real interest rates

Let us consider an ALD hidden Markov model. We need to specify the extreme quantiles of the series,

by fixing the parameter τ of the asymmetric Laplace distribution. The distribution needs 0 < τ < 1,

so we choose τ = 0.001 for the lowest extreme quantile and τ = 0.999 for the highest extreme

quantile. We consider up to 7 hidden states and we use the DIC to determine which model is the

best. Table 4.13 shows that for both extreme quantiles, the series is better described by a 4-state ALD

hidden Markov model (figure 4.8).

The estimated ALD parameters for the best models (4-state ALD HMM) are shown in table 4.14.
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Figure 4.7: Model fit of the 3-state ALD HMM for the US ex-post real interest rates, for both extreme

quantiles. The red line corresponds to the highest extreme quantile and the blue line corresponds to

the lowest extreme quantile.
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Figure 4.8: Model fit of the 4-state ALD HMM for the US real interest rates. The red line corresponds

to the highest extreme quantile and the blue line corresponds to the lowest extreme quantile.
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Models DIC

2 states 8.54

3 states 8.16

4 states 8.02

5 states 8.23

6 states 8.87

7 states 9.22

2 states 8.89

3 states 8.41

4 states 8.34

5 states 9.12

6 states 9.05

7 states 8.97

Table 4.13: Values of DIC for different ALD HMMs for the US real interest rates, for the highest and

lowest extreme quantiles, respectively. The best models are indicated with bold characters.

4-state ALD HMM

Highest extreme quantile

µ1 µ2 µ3 µ4

6.71 11.12 14.12 17.43

Lowest extreme quantile

µ1 µ2 µ3 µ4

0.62 0.92 1.71 2.42

Table 4.14: ALD parameter estimates for US real interest rates.



CHAPTER 4. BAYESIAN EXTREME QUANTILE INFERENCE FOR HMMS 77

4.6 The ALD Break-Point HMM

Again, we work similarly to the Normal break-point hidden Markov model and for pii we assume a

Beta prior distribution with parameters p and q. That is

pii ∼ Beta(p, q) , i = 1, 2, ...,m,

and for µ we assume a Normal distribution with parameters τ and ξ. That is

µi ∼ N
(
ξ, λ−1

)
, i = 1, 2, ...,m.

Therefore, we have

π(pii) =
Γ(a+ b)

Γ(a) + Γ(b)
pp−1ii (1− pii)q−1 ∝ pp−1ii (1− pii)q−1,

π(µi) ∝ exp
{
−λ

2
(µi − ξ)2

}
.

The likelihood is obtained from

L(yT |xT , µ, P ) = f1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT ) (4.14)

=
m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

fi(yt),

where nii is the number of times the chain remains at the same state i. Note that the chain moves

from state i to state i+ 1 just once.

The joint posterior distribution of the model parameters is given by

f(µ, P |yT , xT ) ∝ L(yT |xT , µ, κ, P )π(P )π(µ)

∝
m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

exp {pτ (yt − µi)}×

×
m∏
i=1

pp−1ii (1− pii)q−1exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}
.

For the full conditional of pii we have

pii ∼ Beta(p+ nii, q + 1),
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and the full conditional of µi is given by

π(µi|yT , xT , P ) ∝ exp

{∑
t:xt=i

[
(yt − µi)(τ − I(−∞,0)(yt − µi))

]
+
λ

2
(µi − ξ)2

}
.

Clearly, like in the previous section, Gibbs and Metropolis-Hastings sampling are required for updat-

ing P and µ, respectively.

Details for the MCMC algorithm and the posterior distribution calculations, for the ALD break-

point HMM, can be found in Appendix C.

4.6.1 Prior Specification

In the case of the ALD break-point hidden Markov model, the prior distributions for the parameters

are exactly the same with the ones described in section 4.4.1. However, we do not need to estimate

the precision κi.

4.6.2 ALD Break-Point HMM for the US ex-post real interest rates

Let us consider an ALD break-point HMM, as described in section 4.6. This time we do not have to

model the extreme quantiles, as we can fix τ , the parameter of the asymmetric Laplace distribution,

within our MCMC algorithm. However, we are not able to work for τ = 0 and τ = 1, because the

asymmetric Laplace distribution needs 0 < τ < 1. Therefore, we try to approximate those (extreme)

values by using τ = 0.001 ≈ 0 and τ = 0.999 ≈ 1. We run our MCMC algorithm, for both extreme

quantiles, for 0, 1, 2 and 3 structural breaks. We choose the best break-point model based on the DIC

(table 4.15). The most appropriate models are: a single break-point ALD HMM for τ = 0.999 and a

2 break-point ALD HMM for τ = 0.001.

Figure 4.9 shows the estimated dates of those break-points (for both extreme quantiles) and their

histograms, based on our simulated sample values of the break-points. Additionally, we can see that

both extreme quantiles are affected by a structural break, which is probably the same. Our evidence

for this assumption is that the dates of that structural break are very close. The estimated date using a

single break-point ALD HMM, for the highest extreme quantile, is 1979 and the estimated date using

a 2 break-point ALD HMM, for the lowest extreme quantile, is 1981. The estimated parameters for

the best models, for both extreme quantiles, are shown in table 4.16.
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Models DIC

0 break-points 3.21

1 break-point 2.13

2 break-points 2.72

3 break-points 3.01

0 break-points 2.87

1 break-point 2.98

2 break-points 1.93

3 break-points 3.11

Table 4.15: Values of DIC for different ALD break-point HMMs for the US ex-post real interest

rates, for the highest and lowest extreme quantile, respectively. The best modes are indicated with

bold characters.

1 break-point ALD HMM

Highest extreme quantile

µ1 µ2

6.76 10.08

2 break-points ALD HMM

Lowest extreme quantile

µ1 µ2 µ3

-7.36 -3.59 -0.21

Table 4.16: ALD break-point HMM parameter estimates for US ex-post real interest rates.
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Figure 4.9: Dates and histograms of the break points of the US ex-post real interest rates (for the ALD

break-point HMMs). The blue line corresponds to the break-points of the lowest extreme quantile and

the red line corresponds to the break-point of the highest extreme quantile.
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4.7 Deviance Information Criterion

The deviance information criterion (DIC) was introduced by Spiegelhalter et al. (2002) as a Bayesian

model comparison criterion and it is directly inspired by linear and generalized linear models. How-

ever, it can be extended to models like mixtures of distributions, even if, in these cases, there are some

inconsistencies in the definition of DIC, which were described by Delorio and Robert (2002). It is

a hierarchical modeling generalization of the AIC (Akaike information criterion) and BIC (Bayesian

information criterion) and it is an asymptotic approximation as the sample size becomes large. Ad-

ditionally, it is particularly useful in Bayesian model selection problems where the posterior distribu-

tions of the model parameters have been obtained by Markov chain Monte Carlo (MCMC) simula-

tions.

First let us define the deviance of the likelihood of the data y given the parameters θ as

D(θ) = −2logL(y|θ). (4.15)

Note that the likelihood L(y|θ) includes all the normalizing constants. Then, the mean deviance is

D̄ = D(θ) = Eθ|y(D) = E(D(θ)|y).

The mean deviance can be regarded as a Bayesian measure of fit. Then, we define the effective

dimension (or effective number of parameters) pD as

pD = D(θ)−D(θ̃),

where θ̃ is an estimate of θ depending on the data y. The posterior mean θ̄ is often a natural choice

for θ̃ so,

θ̃ = θ̄ = E(θ|y),

but the posterior mode or median can also be justified as an alternative choice. DIC takes into account

the fit of the data to the model and the complexity of the model. The fit is measured by the mean

deviance ¯D(θ) and the complexity is measured by the effective dimension pD. Therefore, DIC takes

the form

DIC = D(θ) + pD = 2D(θ)−D(θ̄).

Clearly, using the equation (4.15) we have

D(θ) = −2logL(y|θ),
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D(θ̄) = −2logL(y|θ̄).

Models with smaller DIC are better supported by the data.

In complicated models, where the expectations required for the calculation of the DIC are not

available in closed form, it is possible to compute its value using the output of an MCMC algorithm

for the estimation of the model parameters (see Spiegelhalter et al. 2002). In this thesis we use DIC to

justify the choice of the best models. In the MCMC algorithms we used to analyze the data, we have

simulated values forD(θ) and θ. As a consequence, the mean devianceD(θ) was easily approximated

by taking the sample mean of the simulated values of D(θ) and D(θ̄) was approximated by plugging

in the sample mean of the simulated values of θ.



Chapter 5

Kalman Filter for Continuous

State-Space HMMs

5.1 Hidden Markov models with continuous latent variables

In a previous chapter we showed how to deal with discrete-time finite (discrete) state-space hidden

Markov models. In other words, hidden Markov models where the latent variables are discrete. Now,

let us consider the case of a discrete-time continuous state-space hidden Markov model. This means

that for this hidden Markov model the latent variables are continuous. We assume that the state of

the chain can be described at any time by a m-vector of state variables x, which cannot be observed

directly and at each time step a n-vector of observations y is produced by the system. Additionally,

the hidden state is assumed to change according to a Markov chain of order 1. That means that a state

at a time point t depends only on the state at a time point t − 1, exactly as we described in the case

of a discrete-time finite state-space hidden Markov model. In other words, the Markov model has a

memory of size 1. The observed vector yT = (y1, y2, ..., yT ) is generated from the current state by a

simple linear observation process.

We can write:

xt+1 = Axt + wt, (5.1)

yt = Cxt + vt, (5.2)

for t = 1, 2, ..., T , where wt and vt are random variables, which represent the process and measure-

ment noise, respectively. They are assumed to be independent of each other and of the values of x and

83
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y. Both of them are assumed to be white (uncorrelated from time step to time step) and spatially gaus-

sian distributed with zero mean and covariance matrices, which are denoted as Q and R, respectively.

A is the m×m state transition matrix, which relates the state at the previous time t to the current step

t + 1. B is the n×m observation (generative) matrix, which relates the state at the current time step

t to the measurement yt.

Notes on model assumptions

Despite the fact that the random variablesw and v are indexed with t, they do not have any knowledge

of the time index. Xt is considered to be a Gauss-Markov random process of order 1, since the process

noise is Gaussian and its dynamics are linear.

The noise processes wt and vt are very important and essential elements of the model because: a)

withoutwt, the state xt would always either converge exponentially to zero, or converge exponentially

in the direction of the leading eigenvector of the matrixA. b) without vt the state would not be hidden.

All of the structure in matrixQ can be moved into the matricesA andC, which means that we can

work with models where Q is the identity matrix, without loss of generality. In other words, for any

model where Q is not the identity matrix, we can generate an exactly equivalent model, such that the

new covariance matrix is the identity matrix. This happens due to the fact thatQ is symmetric positive

semi-definite, since it is a covariate matrix, and can be diagonalized to the form PDP T (where P is

a rotation matrix of eigenvectors and D is a diagonal matrix of eigenvalues).

The components of the state vector can be arbitrarily reordered just by swapping the columns of

the matrices C and A. An ordering choice based on the norms of the columns of the matrix C can

resolve the existing degeneracy of the model.

The matrices A and C and the covariance matrices Q and R might change with each time step

measurement. However, we assume they are constant.

The main idea of the model described in this section is that the hidden state sequence should

be an informative explanation of the observation sequence. Using dynamical and noise models, the

states should summarize the underlying causes of the data in a more clear way than the observations

themselves. For this reason, state dimensions much smaller than the number of observations are

preferred to work with.
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5.2 Kalman filter

The Kalman filter is a mathematical method that provides an efficient computational means to esti-

mate the state of a process, in a way that minimizes the mean of the squared errors. Specifically,

the state of a process has to be estimated even though it cannot be directly measured. Instead, the

available measurements (observations) are used in order to achieve this estimation. Obviously, the

Kalman filter is used when we deal with models described in the previous section (equations 5.1 and

5.2).

There are two basic requirements when using this method. First, we want the average value of

our state estimate to be equal to the average value of the time state. And second, we want a state

estimate which varies from the true state as little as possible. Mathematically, we can rephrase these

requirements as follows: we want the expected value of the estimate to be equal to the expected value

of the state and we also want to find an estimator with the smallest possible error variance.

We can also describe the Kalman filter as an algorithm for efficiently performing exact inference

in Bayesian models, like hidden Markov models, where the state space of the hidden states (latent

variables) is continuous and where both latent and observed variables have a Gaussian distribution.

Practically, the Kalman filter produces estimates of the true values of the measurements and their as-

sociated calculated values by predicting a value, estimating its uncertainty and computing a weighted

average of the predicted value and the measured value. The value with the least uncertainty is given

the most weight. The weights are calculated from the covariance, which is a measure of the estimated

uncertainty of the prediction of the system’s state. The weighted average results to a new state esti-

mate that lies in between the predicted and the measured state, and has a better estimated uncertainty

than either of those alone. This process is repeatedly performed in each time step, when the new

estimate and its covariance ”informs” the prediction used in the following iteration. This shows that

the Kalman filter is a recursive algorithm and does not require the entire history of the system’s states,

but only the last estimate, in order to calculate a new state at a specific time step. This method pro-

duces estimates which tend to be closer to the true values than the original measurements, because the

weighted average has a better estimated uncertainty than either of the values included in the weighted

average.

The Kalman filter is also theoretically attractive, because it is the one, of all possible filters,

that minimizes the variance of the estimation error. It is named after Rudolf E. Kalman, when he

described a recursive solution to the discrete-data linear filtering problem in 1960, despite the fact that



CHAPTER 5. KALMAN FILTER FOR CONTINUOUS STATE-SPACE HMMS 86

Peter Swerling (1958) had developed a very similar algorithm. Sorenson (1970) and Maybeck (1979)

provide us with an introduction to this method. Also, Gelb (1974), Grewal (1993), Lewis (1986),

Brown (1992) and Jacobs (1993) provide us with useful information. In spite of having its roots on

Karl Gauss’s method of least squares (1795), Kalman filter was developed to solve the problem of

spacecraft navigation for the Apollo space program. Kalman filter has found applications in space

and military technology, including all forms of navigation (aerospace, land and marine), nuclear

power plant instrumentation, demographic modeling, manufacturing, the detection of underground

radioactivity and fuzzy logic and network training.

5.2.1 Computing the Kalman Filter

Let us start by using a hidden Markov model given by the equations 5.1 and 5.2. We define ˆ̃xt as our

a priori estimate of the state xt, at time t, which takes into consideration all observations until yt−1

(all observations without yt). Then, we define x̂t as our a posteriori estimate of the state xt, at time t,

which takes into consideration the observation yt as well (all observations until yt). The a priori state

estimate ˆ̃xt is given by:
ˆ̃xt = Ax̂t−1. (5.3)

We can then define

ẽt = xt − ˆ̃xt (a priori estimate error)

et = xt − x̂t (a posteriori estimate error)

and

P̃t = E[ẽtẽ
T
t ] (a priori estimate error covariance) (5.4)

Pt = E[ete
T
t ] (a posteriori estimate error covariance). (5.5)

The quantity that describes the discrepancy between the actual measurement and the predicted

measurement is called residual and it is given by:

Residual = yt − ŷt = yt − C ˆ̃xt.

We need to find a way to obtain the a posteriori state estimate as a linear combination of the a

priori state estimate and the residual. This is a way to correct our a priori state estimate and is given

by:

x̂t = ˆ̃xt +Kt(yt − C ˆ̃xt). (5.6)
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The matrix Kt is chosen in a way that minimizes the a posteriori error covariance. So, let us start

by its definition:

Pt = E[(xt − x̂t)(xt − x̂t)T ]

= E(xtx̂
T
t − xtxTt − x̂tx̂Tt − x̂txTt )

= E[(xt − (ˆ̃xt +Kt(Cxt + vt − C ˆ̃xt)))(xt − (ˆ̃xt +Kt(Cxt + vt − C ˆ̃xt)))
T ].

We expand the quantity inside E[.] and we have

Pt = E[((xt − ˆ̃xt)(I −KtC)−Ktvt)((xt − ˆ̃xt)
T (I −KtC)T − vTt KT

t )].

The measurement noise vt is uncorrelated to the hidden state xt, therefore uncorrelated to its transpose

xTt , so we have E(xtvt) = E(xTt vt) = 0. Using this property we have

Pt = (I −KtC)E[(xt − ˆ̃xt)(xt − ˆ̃xt)
T ](I −KtC)T +KtE(vtv

T
t )KT

t

= (I −KtC)P̃t(I −KtC)T +KtRK
T
t

= P̃t −KtCP̃t − P̃tCTKT
t +Kt(CP̃tC

T +R)KT
t . (5.7)

Now, we need to minimize the a posteriori estimate covariance Pt. This is equivalent to minimizing

the trace of Pt.

tr(Pt) = tr(P̃t)− 2tr(KtCP̃t) + tr(Kt(CP̃tC
T +R)KT

t ).

We take the derivative of tr(Pt) with respect to Kt and set it equal to zero.

0 =
∂tr(Pt)

∂Kt
= −2(CP̃t)

T + 2Kt(CP̃tC
T +R)⇒

⇒ Kt = P̃tC
T (CP̃tC

T +R)−1 (5.8)

We multiply with (CP̃tC
T+R)KT

t both left and right part of the above equation and we get:

Kt(CP̃tC
T +R)KT

t = P̃tC
TKT

t .

We replace the above equation to equation 5.7 and we get a simpler form for Pt:

Pt = P̃t −KtCP̃t = (I −KtC)P̃t. (5.9)

Now, we will try to find a form to express P̃t, starting by its definition:

P̃t = E[(xt − ˆ̃xt)(xt − ˆ̃xt)
T ]
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= E[(xt −Ax̂t−1)(xt −Ax̂t−1)T ]

= E[(Axt−1 + wt−1 −Ax̂t−1)(Axt−1 + wt−1 −Ax̂t−1)T ].

We expand the quantity inside E[.] and we use the fact that the process noise wt is uncorrelated to the

state xt and its transpose. That is E(xtwt) = E(xTt wt) = 0. Therefore, we have:

P̃t = E[A(xt−1 − x̂t−1)(xt−1 − x̂t−1)TAT + wt−1w
T
t−1]

= AE[(xt−1 − x̂t−1)(xt−1 − x̂t−1)T ]AT + E(wt−1w
T
t−1)

= APt−1A
T +Q. (5.10)

The equations 5.3, 5.6, 5.8, 5.9, and 5.10 are used for creating the algorithm. The computational

origins of the Kalman filter can be found in Appendix D.

The Kalman filter estimates the hidden state by using a form of a predictor-corrector algorithm.

First, it uses (time update) equations in order to project forward in time the current state estimate to

obtain the a priori estimates (for hidden state and covariance) for the next time step. Then, it uses

(estimation update) equations in order to combine the new observation and the a priori estimates to

obtain the a posteriori estimates (for hidden state and covariance).

Prediction (Time Update)

ˆ̃xt = A x̂t−1

P̃t= A Pt−1 A
T + Q

Kalman Gain

Kt = P̃tC
T (CP̃tC

T +R)−1

Correction (Estimation Update)

x̂t= ˆ̃xt+ Kt (yt-C ˆ̃xt)

Pt= (I-Kt C) P̃t

Table 5.1: Kalman filter equations used to create a predictor-corrector algorithm.
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Figure 5.1 shows how the Kalman filter performs the parameter update, for each time step t, by

using the above formulas. The actual steps can be found in Appendix D.

x̂0, P0 −−−→ ˆ̃x1, P̃1 −−−→ K1, y1 −−−→ x̂1, P1 −−−→ ...

−−−→ ˆ̃xt, Pt −−−→ ˆ̃xt+1, P̃t+1 −−−→ Kt+1, yt+1 −−−→ x̂t+1, Pt+1

Figure 5.1: Kalman filter parameter update.

5.2.2 Kalman Smoothing

After applying the Kalman filter there is also another procedure, which enables us improve our esti-

mates of the state variables xt and the estimates of the covariance Pt. This is the Kalman smoothing

and it takes all the measurements yT = (y1, y2, ..., yT ) into consideration to improve the estimates,

at each time step t. After Kalman smoothing the parameter estimates are less noisy (smoother) than

before (after the Kalman filter). Kalman filtering and Kalman smoothing can be considered to be a

kind of Forward-Backward algorithm. The equations used for Kalman filtering are the forward es-

timation equations and the equations of Kalman smoothing are the backward estimations equations.

Those equations are:

x̂′t = x̂t + (PtA
T P̃−1t+1)(x̂

′
t+1 −Ax̂t)

P ′t = Pt + (PtA
T P̃−1t+1)(P

′
t+1 − P̃t+1)(PtA

T P̃−1t+1)
T ,

for t = T, T − 1, ..., 1, where x̂′t is the smoothed state estimate at time t, using all observations and

not only the observations until time t. Similarly, P ′t is the smoothed covariance estimate at time t,

using all observations and not only the observations until time t. Kalman smoothing needs (initial)

values for x̂′t+1 and P ′t+1. So, it uses the values of x̂t and Pt, respectively, which were computed at

the last time step T of the Kalman filter. Table 5.2 shows how the equations of Kalman filter and

Kalman smoothing can be combined in order to create a Forward-Backward algorithm.
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Forward Estimation

Prediction (Time Update)

ˆ̃xt = Ax̂t−1

P̃t = APt−1A
T +Q

Kalman Gain

Kt = P̃tC
T (CP̃tC

T +R)−1

Correction (Estimation Update)

x̂t = ˆ̃xt +Kt(yt − C ˆ̃xt)

Pt = (I −KtC)P̃t

Backward Estimation

Parameter Smoothing

x̂′t = x̂t + (PtA
T P̃−1t+1)(x̂

′
t+1 −Ax̂t)

P ′t = Pt + (PtA
T P̃−1t+1)(P

′
t+1 − P̃t+1)(PtA

T P̃−1t+1)
T

Table 5.2: Forward-Backward algorithm created by combining Kalman filtering and Kalman smooth-

ing.

5.3 Applications

We also want to model these two data sets assuming a continuous state-space hidden Markov model.

In order to do that we use Kalman filtering for the parameter estimations and then Kalman smoothing

to improve those estimations.

Our observation sequence, yT = (y1, y2, ...yT ), represents the observed real interest rates. The

hidden underlying process {Xt} is a m-state Markov chain taking the values 1, 2, 3, ...m, with transi-

tion matrixP and stationary distribution π = (π1, π2, ...πm). The latent variables, xT = (x1, x2, ...xT ),

represent the financial regimes in the following way :

An observed real interest rate yt (1 ≤ t ≤ T ) belongs to the financial segmentm1 (1 ≤ m1 ≤ m),

if the hidden state xt = m1 occurs and yt was generated according to the distribution associated with
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the state xt.

5.3.1 Discrete-time Continuous state-space HMM for the US ex-post real interest rates

In this section we model the US ex-post real interest rates by considering a discrete-time continuous

state-space HMM. We create a new algorithm, which combines linear programming and Kalman

filtering (and smoothing). As in sections 4.2.2 and 4.4.2, we model the extreme quantiles of the series

using a cubic model. Using linear programming we obtain the parameters of the cubic model, for

both extreme quantiles (τ = 0 and τ = 1). As a result, we get the following models:

ỹi = −6.5− 0.081xi + 0.003x2i + 0.000045x3i + εi,

ỹi = 3.3 + 0.058xi + 0.0049x2i + 0.000073x3i + εi,

i = 1, 2, ..., n, for the lowest (τ = 0) and highest (τ = 1) extreme quantile, respectively. We choose

εi ∼ N(0, 1).

Based on the first model, we simulate data which, obviously, correspond to the lowest extreme

quantile of our data set and then we apply the Kalman filtering algorithm. We obtain estimates for

the continuous hidden state and its variance and, then, we apply the Kalman smoothing algorithm, in

order to improve our estimations. We follow the same method for the second model (highest extreme

quantile). In figure 5.2 we can see this fitting.

5.3.2 Discrete-time Continuous state-space HMM for the US real interest rates

Now let us model the extreme quantiles of the US treasury bill real interest rates by considering

a discrete-time continuous state space HMM. First, we need to obtain new simulated data, which

correspond to the extreme quantiles, using a quadratic model fit. Using linear programming, as in

section 4.3.1, we obtain the following quadratic models:

ỹi = 3.52− 0.00029xi − 0.000032x2i + εi,

ỹi = 16.19 + 0.0014xi − 0.00018x2i + εi,

i = 1, 2, ..., n, for the lowest (τ = 0) and highest (τ = 1) extreme quantile, respectively. We choose

εi ∼ N(0, 1). Then we apply Kalman filtering and Kalman smoothing to the new simulated data. In

figure 5.3 we can see this fitting.
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Figure 5.2: Model fit using Kalman filter (dashed line) and Kalman smoothing (solid line) for the

lowest (blue lines) and highest (red lines) extreme quantiles, for the US ex-post real interest rates.

As in previous sections, we see that our model fits the lowest extreme quantile in a very good way,

but it fails to model the shape of the highest extreme quantile. Therefore, we can follow the method

we used in section 4.3.3 and simulate new data which correspond to the highest extreme quantile, by

using two quadratic models. Using linear programming we obtain the following quadratic models:

ỹi = 15.9 + 0.078xi + 0.00013x2i + εi, i = 1, 2, ..., 269,

ỹi = 16.82− 0.106xi + 0.00026x2i + εi, i = 270, 271, ..., 527.

We simulate new data based on these models and we apply Kalman filtering and Kalman smoothing.

This fitting is much better, as we can see in figure 5.4.



CHAPTER 5. KALMAN FILTER FOR CONTINUOUS STATE-SPACE HMMS 93

0 100 200 300 400 500

5
10

15

month

U
S

 r
ea

l i
nt

er
es

t r
at

es

Figure 5.3: Model fit using Kalman filter (dashed line) and Kalman smoother (solid line) for the

lowest (blue lines) and highest (red lines) extreme quantiles, for the US real interest rates. A quadratic

model fit was assumed for both extreme quantiles.
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Figure 5.4: Model fit using Kalman filter (dashed line) and Kalman smoother (solid line) for the

highest extreme quantile, for the US real interest rates. Two quadratic models were used to fit the

highest extreme quantile.



Chapter 6

Comparison of the Proposed Methods for

HMMs

In this chapter we present the findings of the different methods we applied on our data sets and we also

make a comparison between those methods. Specifically, we present differences and similarities in

terms of estimating the number of hidden states, the number and location of the break-points and the

total number of parameters of the models. We also describe the general algorithms we used in order to

implement Bayesian extreme quantile regression using Normal HMMs, Normal break-point HMMs

and discrete-time continuous state-space HMMs. The reason why we concentrate in those methods

is because their algorithms are more complex, due to the fact that they combine linear programming

and MCMC methods.

6.1 Comparison of the HMM methods for the US ex-post real interest

rates

For the analysis of the US ex-post real interest rates we used the following three models:

a) Normal HMM with a quadratic extreme quantile fit.

b) Normal HMM with a cubic extreme quantile fit.

c) Asymmetric Laplace Distribution (ALD) HMM.

For all models we have a good and fast convergence of the Markov chain. As an example of this

convergence see traceplots 7.10 and 7.11, in Appendix F. All models can describe the lowest extreme
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quantile of the data set by using 3 states. However, those states are different for every model. The

highest extreme quantile of the data set is described by a different number of states, depending on the

model. The Normal HMM with a quadratic extreme quantile fit uses 4 states, the Normal HMM with

a cubic extreme quantile fit uses 2 states and the ALD HMM uses 3 states. Figure 6.1 shows that the

Normal HMM with a cubic extreme quantile fit models the extreme quantiles of the series in the best

way, because the fitting lines (hidden states) are closer to the data. However, we have to say that the

first 25 data points for the lowest extreme quantiles and the first 45 data points for the highest extreme

quantile are modeled in a better way by the Normal HMM with a quadratic extreme quantile fit. The

ALD HMM is not as good as the other two models, but we have to point out that it has less parameters

for estimation, as it does not contain the precision κ, which is contained in the Normal HMMs.

The fact that we need to obtain new simulated data, when we use Normal HMMs, instead of using

the initial data, in the case of ALD HMMs, does not allow us to use the DIC criterion, because we use

different kinds of data in order to calculate the likelihood. However, we can check the DIC only in

order to compare the Normal HMM with a quadratic extreme quatile fit and the Normal HMM with

a cubic extreme quantile fit. Comparing tables 4.1 and 4.3 we see that a cubic extreme quantile fit is

more appropriate for our data set.

We have to point out, again, that a Normal HMM works for τ = 0 and τ = 1 as the lowest and

highest extreme quantiles, respectively, when an ALD HMM works for the approximations τ = 0.001

and τ = 0.999.

The general algorithm for the Normal HMMs, which combines linear programming and MCMC

methods, is the following:

1. Use linear programming to estimate the parameters β, which model the data, for τ = 0 and

τ = 1.

2. Use the estimated parameters β̂ to simulate new data ỹ, which correspond to τ = 0 and τ = 1.

3. Use MCMC algorithm to estimate (µ, κ, P), given ỹ; (Appendix B).

The MCMC algorithm for the ALD HMM is described in Appendix C.
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Figure 6.1: Model comparison for the US ex-post real interest rates. The red lines represent the

Normal HMM with a cubic extreme quantile fit. The blue lines represent the Normal HMM with a

quadratic extreme quantile fit. The green lines represent the ALD HMM.

6.2 Comparison of the Break-Point HMM methods

We considered two break-point HMMs for the US ex-post real interest rates, in order to estimate the

number of possible structural changes and their dates. We started with a Normal break-point HMM

(with a cubic model fit of the extreme quantiles) and then we used an ALD break-point HMM. The

Normal break-point HMM enables us to work for τ = 0 and τ = 1, due to the cubic model fit of the

extreme quantiles, using linear programming. On the other hand, the ALD break-point HMM works

for 0 < τ < 1, due to the asymmetric Laplace distribution. As a consequence, we approximated

the extreme quantiles using τ = 0.001 ≈ 0 and τ = 0.999 ≈ 1. All HMMs have a good and fast
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convergence of the Markov chain and as an example see traceplots 7.12 and 7.13, in Appendix F.

Both break-point HMMs were found to have 1 break-point for the highest extreme quantile and 2

break-points for the lowest extreme quantile. Additionally, the dates of those break-points were very

close (graphs 4.6 and 4.9). However, it is very important, especially for computational reasons, to say

that the ALD break-point HMM has less parameters for estimation compared to the Normal break-

point HMM. Specifically, the ALD break-point HMM estimates (µ1, µ2) for the highest extreme

quantile and (µ1, µ2, µ3) for the lowest extreme quantile. On the other hand, the Normal break-point

HMM estimates (µ1, µ2, κ1, κ2) for the highest extreme quantile and (µ1, µ2, µ3, κ1, κ2, κ3) for the

lowest extreme quantile.

Again, in the case of the Normal break-point HMM the likelihood was calculated using new

simulated data (which correspond to the highest and lowest extreme quantiles), obtained via linear

programming, where as in the case of the ALD break-point HMM the likelihood was calculated using

the initial data. As a consequence, we cannot perform a model choice based on the DIC criterion.

Given that both methods provide us with similar results, it would be reasonable to say that the ALD

break-point HMM is preferred to the Normal break-point HMM as it needs a less number of parame-

ters to be estimated.

The general algorithm for the Normal break-points HMMs, which combines linear programming

and MCMC methods, is the following:

1. Use linear programming to estimate the parameters β, which model the data, for τ = 0 and

τ = 1.

2. Use the estimated parameters β̂ to simulate new data ỹ, which correspond to τ = 0 and τ = 1.

3. Use MCMC algorithm to estimate (µ, κ, P), given ỹ; (Appendix B).

The MCMC algorithm for the ALD break-point HMM is described in Appendix C.

6.2.1 Discrete-time Continuous state-space HMM

We also analyzed both US ex-post real interest rates and US real interest rates using discrete-time

continuous state-space HMMs. The general algorithm for these models, which combines linear pro-

gramming and Kalman filtering (and smoothing) methods, is the following:
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1. Use linear programming to estimate the parameters β, which model the data, for τ = 0 and

τ = 1.

2. Use the estimated parameters β̂ to simulate new data ỹ, which correspond to τ = 0 and τ = 1.

3. Use Kalman filter to estimate the values of the continuous hidden state and its covariance, (xt,

Pt), for the new data ỹ.

4. Use Kalman smoother to correct (improve) the previous estimations.

The Kalman filtering and smoothing algorithm for the discrete-time continuous state-space HMM

is described in Appendix D.

6.2.2 Comparison of the HMM methods for the US real interest rates

In order to analyze the extreme quantiles of the US treasury bill real interest rates we used the follow-

ing models:

a) Normal HMM with a quadratic extreme quantile fit.

b) Normal HMM with two quadratic highest extreme quantile fit.

c) ALD HMM.

For all HMMs we have a very good and fast convergence of the Markov chain. As an example of

this convergence see traceplots 7.14, 7.15, 7.16 and 7.17, in Appendix F. Both extreme quantiles of

the series are described by a different number of hidden states, depending on the model. The Normal

HMM with a quadratic extreme quantile fit uses 3 states for both extreme quantiles, but the ALD

HMM uses 4 states for both extreme quantiles. This means that the ALD HMM needs one more state,

but it has only 4 parameters for estimation, (µ1, µ2, µ3, µ4), for each extreme quantile, when the Nor-

mal HMM needs to estimate 6 parameters, (µ1, µ2, µ3, κ1, κ2, κ3), for each extreme quantile. The

Normal HMM with two quadratic highest extreme quantile fit uses 5 states. That means estimating

10 parameters, (µ and κ, for 5 states), but it fits the highest extreme quantile of the series in the best

possible way, compared to all the other HMMs (figure 4.5).

We also tried to model the highest extreme quantile of the data by a cubic model fit (figure 4.4),

but that fit was very bad, as it could not model the shape of the data.

We have to point out, again, that a Normal HMM works for τ = 0 and τ = 1 as the lowest and

highest extreme quantiles, respectively, when an ALD HMM works for the approximations τ = 0.001
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and τ = 0.999.

The general algorithm which combines linear programming and MCMC methods, used for this

data set, is similar to the algorithm of section 6.1.



Chapter 7

Discussion and Conclusion

In the first part of this thesis we performed Bayesian extreme quantile regression, in order to analyze

various data sets. Particularly, we wanted to model the extreme quantiles of the data sets. Then, we

were interested in comparing our method with the classical quantile regression approach, which uses

linear programming. What makes this comparison even more interesting, is the fact that when the

asymmetric Laplace distribution is used, in order to perform Bayesian extreme quantile regression,

this corresponds to solving some minimization problems. And one of the most common and easy

ways to do that is linear programming.

In the beginning we used three simulated data sets, which were obtained from three different

models. Those models differ in the distribution of the error term. We assumed Uniform, Beta and

Weibull distributions. Therefore, apart from comparing Bayesian extreme quantile regression and the

classical approach, we were interested in finding out how those error terms’ distributions affect our

estimation, for both methods and for both extreme quantiles. For these simulated data sets Bayesian

extreme quantile regression was performed via a MCMC algorithm, which uses independent improper

uniform priors and a Metropolis-Hastings sampling step for all parameters.

After that, we used one real data set, which was considered by Garcia and Perron (1996) and

consists of the US ex-post real interest rates. In order to perform Bayesian extreme quantile regression

we used, again, a MCMC algorithm which assumes independent improper uniform prior distributions.

The classical quantile regression was performed by using linear programming. We assumed a linear,

a quadratic and a cubic model to fit the extreme quantiles of the data. We found very interesting to

use our methods in order to model non-extreme quantiles as well and check possible similarities, or
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differences, in our approaches. From the results we got evidence that a possible combination of linear

programming and MCMC methods would lead to better results. As a consequence, we managed to

create an algorithm, which combines linear programming and MCMC methods, in order to perform a

more accurate Bayesian extreme quantile regression, in terms of parameter estimation and confidence

intervals estimation.

Then, our aim was to analyze some financial data sets using Bayesian extreme quantile regression

and hidden Markov models. Specifically, we wanted to estimate the number of the underlying hidden

states and possible structural changes (break points) of our data sets, for both extreme quantiles. The

data we used were the US ex-post real interest rates and the US treasury bill real interest rates. For

the analysis of these data sets we used discrete-time m-state hidden Markov models and break-point

hidden Markov models. Two different kinds of hidden Markov models were used. Those which

associate the hidden state with a Normal distribution (Normal HMMs) and those which associate

the hidden state with an asymmetric Laplace distribution (ALD HMMs). Bayesian extreme quantile

regression was performed via MCMC algorithms, using Gibbs sampling (in the case of the Normal

HMM) and a mixture of Gibbs and Metropolis-Hastings sampling (in the case of the ALD HMM).

In order to estimate the number of the hidden states and the number of break-points, we considered a

problem of model choice, which was performed based on the DIC value of every model.

7.1 Simulated Data

Our aim, first, was to see how the distribution of the error term affects the parameter estimation via

a Bayesian extreme quantile regression approach and, second, to compare this approach with the

classical quantile regression method. We found that we have a good parameter estimation under the

Bayesian extreme quantile regression approach, for both quantiles, no matter what the error term’s

distribution is. However, the parameter estimation provided by the classical extreme quantile re-

gression method was slightly better. Additionally, the classical method works very well for a small

number of simulated data as well, but the Bayesian extreme quantile regression provides better results

as the number of the simulated data gets larger. However, the confidence intervals for the parameters

obtained by Bayesian extreme quantile regression were better than those obtained by the classical

approach.
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7.2 Real Data Set

Our aim was to model the extreme quantiles of the series via a Bayesian extreme quantile regression

and the classical quantile regression approach and then compare these methods. We assumed a linear,

a quadratic and a cubic model to fit those quantiles. In order to estimate the parameters of those mod-

els we used Bayesian extreme quantile regression (via an MCMC algorithm) and the classical extreme

quantile regression (via linear programming). We found that the linear model fails to model the shape

of the data and that the cubic model is better than the quadratic one, therefore it provides the best

possible fit for the extreme quantiles. Concerning the parameter estimation, the classical approach is

slightly better, but Bayesian extreme quantile regression provides better confidence intervals for the

estimated parameters. However, the parameter estimation, and as a consequence the quantile fitting,

is the same for both methods, when we deal with non-extreme quantiles. Finally, a new algorithm,

which combines MCMC methods and linear programming, was used in order to perform Bayesian

extreme quantile regression and it was found to provide a very good parameter estimation and very

good confidence intervals for those parameters.

7.3 Real Data Sets and Hidden Markov Models

Our aim was to explore the underlying hidden states of the highest and lowest extreme quantiles of

our financial data sets, by using two different HMMs (Normal HMM and ALD HMM). Additionally,

we wanted to check if and how the two different HMMs we assumed affect the extreme quantile

modeling. Then, we applied two different break-point HMMs to the first real data set, in order to

check the existence of any structural changes in our financial series.

7.3.1 US ex-post Real Interest Rates

Using a Normal HMM which assumes a quadratic fit for both extreme quantiles of the series, we

found that the highest extreme quantile can be modeled by 4 hidden states and the lowest extreme

quantile can be modeled by 3 hidden states. If we use an ALD HMM we need 3 hidden states for

both extreme quantiles. However, the best fit is provided by a Normal HMM which assumes a cubic

fit for both extreme quantiles. This model uses 2 hidden states for the highest extreme quantile and 3

hidden states for the lowest extreme quantile.
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Then, we applied a break-point Normal HMM, which assumes a cubic fit for both extreme quan-

tiles and a break-point ALD HMM. Our results showed that both HMMs estimate 1 break-point for

the highest extreme quantile and 2 break-points for the lowest extreme quantile. Additionally, they

provided similar dates for those break-points.

Finally, we used a continuous state space HMM, which assumes a cubic fit for both extreme

quantiles and we saw that we had a very good extreme quantile fit.

7.3.2 US Treasury Bill Real Interest Rates

Using an ALD HMM we found that both extreme quantiles of the series can be modeled by 4 hidden

states. A slightly better fit was obtained by a Normal HMM, which assumes a quadratic fit for both

extreme quantiles. This model uses 3 hidden states for both extreme quantiles. However, an even

better fit for the highest extreme quantile of the series was obtained by another Normal HMM, which

assumes two quadratic model fits for that quantile and estimates 5 hidden states. On the other hand, a

cubic model fit for the highest extreme quantile was found to be a very bad choice.

After that, we modeled both extreme quantiles of the series by using continuous state space

HMMs. The lowest extreme quantile was modeled very well by a continuous state space HMM,

which assumes a quadratic fit of the extreme quantile. However, the highest extreme quantile was

modeled very well by a continuous state space HMM, which assumes two quadratic model fits of the

extreme quantile.

7.4 General Comments

We managed to perform Bayesian extreme quantile regression using Normal HMMs and ALD HMMs.

Both methods provided us with very good estimations. However, in some cases they slightly differ on

the number of hidden states. Using ALD HMMs we have a more straight-forward estimation as we

can define the quantile of interest, where as by using Normal HMMs we need to perform a quantile

fit first and simulate new data, which correspond to the quantiles of interest. This is why we cannot

compare those methods using the DIC criterion. The first method computes the likelihood using the

initial data and the second one uses new simulated data. However, we have evidence, from various

graphs and plots, that a Normal HMM tends to better model the shape of the series, than a ALD

HMM.
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Moreover, if someone is interested in estimating the possible break-points, rather than the hidden

states, it is more appropriate to use break-point HMMs. In that case we found that both Normal and

ALD HMMs provide us with very good and similar results.

Finally, the fact that we used both discrete and continuous state-space HMMs enable us, based on

our experience, to choose which one to use in order to have the most appropriate construction of our

model and the most appropriate assumption for the hidden states of the model.

7.5 Further Research

We can extend our research by employing recent advance MCMC methods, as in Yu et al. (2011).

It would be possible to use a Mixture of Dirichlet Process (MDP) model for the likelihood and a

computationally efficient data augmentation scheme to aid inference. Like Yu et al. (2011), we can

perform Bayesian semi-parametric time-series analysis and use MCMC methods, which combine

recent retrospective sampling techniques with the use of slice sampler variables.

We can also extend our research by developing HMMs for Bayesian spatial quantile regression.

Following Reich et al. (2010), we can perform a Bayesian spatial quantile regression method using

a non-Gaussian response. This allows for complicated relationships between the response and the

covariates. Additionally, by modeling the conditional distribution as a spatial process, our model will

account for spatial variability.

Moreover, following Hughes et al. (1999), we can use non-homogeneous HMMs for precipitation

occurences. We can also investigate whether a possible combination of the classical extreme quantile

regression (for parameter estimation) and bootstrapping methods (for confidence intervals estimation)

could be an alternative method for extreme quantile regression modeling that can be compared to our

proposed methodology.



Appendix A

Linear Programming (LP)

Linear programming, known also as linear optimization, is a specific case of mathematical pro-

gramming (mathematical optimization). It is a method for determining a way to obtain the best

outcome (such as maximum profit or minimum cost), in a given mathematical model, under some

conditions represented as linear relationships.

It deals with problems, which can be expressed in the following form (canonical form):

maximize cT x

subject to Ax ≤ b, x ≥ 0

where x represents the vector of variables to be determined, c and b are vectors of known coefficients.

They are also called decision variables and their values are unknown in the beginning of the problem.

They usually represent things that can be controlled or adjusted. cT x is called the objective function

and it is the expression to be maximized. The equations Ax ≤ b are the constraints, which specify

the area over which the objective function is to be optimized, by combining the variables to express

limits on the possible solutions. The objective function is defined on its feasible region, which is a

convex polyhedron. This convex polyhedron is a set defined as the intersection of the spaces, which

are created by the linear inequalities.

The general process for solving linear programming exercises is to form the feasible region by

graphing the inequalities (constraints). Then, we can get the coordinates of the corners of our feasible

region and check which gives the optimal (highest or lowest) value through our objective function.

However, when there are many variables, graphing the inequalities is impossible due to the fact that

we need to work in high-dimensional regions. This is why there are various algorithms, which enable

us to tackle this problem, such as simplex method (Wood and Dantzig, 1949) and polynomial time

algorithm (Khachian, 1979; Karmarkar, 1984).

Notes on the assumptions of LP

The usage of linear relationships and linear models in order to describe real applications has
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certain limitations. The most obvious one is that those applications can be poorly modeled by lines.

This problem is addressed by using nonlinear relationships like curves or step-functions. Therefore,

a technique, different than LP, should be used.

The usage of cross-product terms, such as the product x1x2, where x1 and x2 are two different

variables, is not permitted in LP.

LP assumes that the variables are real valued (they can take on fractional values). Sometimes,

though, fractional values are not appropriate, such as determining the number of people that have to

work in a company. In that case the variable that describes this number must take on an integer value.

Therefore, the usage of integer programming is needed. Treating those kind of problems as linear

problems and then round the results to the closest integer is not acceptable, as it may lead to very bad

results. This happens because the optimal solution in integer programming can be very different from

the approximate solution (round the optimal solution of LP to the closest integer) obtained by LP.

All mathematical programming (and therefore LP) have a common weakness, which is the as-

sumption of the accuracy of the input data. This is the assumption that the objective function coef-

ficients and the constraint coefficients are all correct. In fact, these values are seldom known with

accuracy in real world. Therefore, companies use data to estimate those values. For example, they

use the average price paid for the materials used, the average worker wages and the average selling

prices, in order to estimate the profit per product sold.

Sometimes we do not know how useful the optimal solution is, especially when the input data is

of poor quality, because quite different result can be obtained by a slight change in the input parame-

ters. That means that if our estimation of the input parameters is poor, the optimal solution is not the

best for our real life problem. Therefore, sensitivity analysis is applied, which explores how sensitive

the optimal solution is to slight changes in the values of the input parameters, by using various tests.

Properties of Extreme Quantile Regression

Following Portnoy and Jureckova (1999), we consider the model (1) of the previous section and

we assume that the error term follows a Weibull-like distribution. Let β̂ = β̂(1) be the maximal

extreme regression quantile. Then, the joint density for that extreme quantile is

fβ̂(1) =
∑
h∈H

d(h, x̄)
∏
i∈h

f(x′i(b− β))
∏
i/∈h

F (x′i(b− β)),
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where H is the set of all p-element subsets of the indices {1, 2, ..., n} and d(h, x̄) ≡ det( ((xi)) : i ∈

h) I(u ∈ co(h)), where co(h) denotes the convex hull of vectors {xi : i ∈ h}.

Following Smith (1994), and based on the same procedures for the minimal extreme regression

quantile β̂ = β̂(0), we can obtain its joint density from

fβ̂(0) =
∑
h∈H

d(h, x̄)
∏
i∈h

f(x′i(b− β))
∏
i/∈h

[
1− F (x′i(b− β))

]
,

For the initial model (1), the distribution of the quantity

Vn = a(logn)
a−1
a

[
(β̂ − β)− (logn)1/ae

]
,

where e = (1, 0, ..., 0), converges to the density function

f∗(v) = (p!)−1g2(v; a)e−g1(v),

as n→∞. We can calculate g1(v) and g2(v; a) from

g1(v) = E[e−x′iv]

or
1

n

n∑
i=1

e−x′iv → g1(v)

and

g2(v; a) = E[d({1, ..., p})]
p∏
i=1

I(x′iv ≥ 0)exp

{
−

p∑
i=1

x′iv

}
or

(np )−1
∑
h∈H

d(h, x̄)

{∏
i∈h

I(x′iv ≥ εn)

(
1 +

(a− 1)x′iv
a logn

+ εn

)
exp

{
−
∑
i∈h

x′iv

}}
→ g2(v; a).

Then, we can obtain F ∗−1(a/2) and F ∗−1(1− a/2) from∫ F ∗−1(a/2)

−∞
f∗(v) dv = a/2

and ∫ F ∗−1(1−a/2)

−∞
f∗(v) dv = 1− a/2.

We know that

1− a = Pr
[
F ∗−1(a/2) ≤ Vn ≤ F ∗−1(1− a/2)

]
,
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where F ∗−1(p), 0 ≤ p ≤ 1, is the inverse cumulative distribution function of f∗(v). So,

1− a =

Pr
[
F ∗−1(a/2) ≤ a(logn)

a−1
a

[
(β̂ − β)− (logn)1/ae

]
≤ F ∗−1(1− a/2)

]
=

Pr

[
β̂ − F ∗−1(1− a/2)

(logn)−(
a−1
a

)

a
− (logn)1/a e ≤ β ≤ β̂ − F ∗−1(a/2)

(logn)−(
a−1
a

)

a
− (logn)1/a e

]
.

Using the last equation we can approximately obtain the confidence intervals for the parameters β.

Calculations of the true values of the parameters, for all distributions of the error term.

For Uniform distribution : F−1(τ ; a, b) = (b− a)τ + a.

So, for Uniform(0,1) we have :

β0(0) = 1 + 0 = 1

β0(1) = 1 + 1 = 2.

For Beta distribution : F−1(τ ; a, b) = τ1/a, b > 0.

So, for Beta(1,1) we have :

β0(0) = 1 + 0 = 1

β0(1) = 1 + 1 = 2.

For Weibull distribution : F−1(τ ;λ, κ) = λ κ

√
ln
(

1
1−τ

)
.

So, for Weibull(2,1) we have :

β0(0) = 1 +
√
ln(1) = 1

β0(1) = 1 +
√
ln(1/0) = +∞.

Metropolis-Hastings Algorithm (for real data set and quadratic model fit)

1. Start the chain at some value β(0) =
(
β
(0)
0 , β

(0)
1 , β

(0)
2

)
.

2. Given that the chain is currently at β(j) =
(
β
(j)
0 , β

(j)
1 , β

(j)
2

)
:
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Propose a candidate value βcan0 ∼ N
(
β
(j)
0 , v0

)
, for some suitably chosen variance v0. Take as

new value of the chain

β
(j+1)
0 =

 βcan0 , with probability p

β
(j)
0 , with probability 1-p

where

p = min

1,
exp

{
−
∑n
i=1

(
yi − βcan0 − β

(j)
1 x1i − β

(j)
2 x2i

)
I
(
yi − βcan0 − β

(j)
1 x1i − β

(j)
2 x2i < 0

)}
exp

{
−
∑n
i=1

(
yi − β

(j)
0 − β

(j)
1 x1i − β

(j)
2 x2i

)
I
(
yi − β

(j)
0 − β

(j)
1 x1i − β

(j)
2 x2i < 0

)}
 .

(This is implemented by drawing q ∼ Uniform(0, 1) and taking β(j+1)
0 = βcan0 if and only if

q < p).

Propose a candidate value βcan1 ∼ N
(
β
(j)
1 , v1

)
, for some suitably chosen variance v1. Take as

new value of the chain

β
(j+1)
1 =

 βcan1 , with probability p

β
(j)
1 , with probability 1-p

where

p = min

1,
exp

{
−
∑n
i=1

(
yi − β

(j+1)
0 − βcan1 x1i − β

(j)
2 x2i

)
I
(
yi − β

(j+1)
0 − βcan1 x1i − β

(j)
2 x2i < 0

)}
exp

{
−
∑n
i=1

(
yi − β

(j+1)
0 − β

(j)
1 x1i − β

(j)
2 x2i

)
I
(
yi − β

(j+1)
0 − β

(j)
1 x1i − β

(j)
2 x2i < 0

)}
 .

(This is implemented by drawing q ∼ Uniform (0, 1) and taking β(j+1)
1 = βcan1 if and only if

q < p).

Propose a candidate value βcan2 ∼ N
(
β
(j)
2 , v2

)
, for some suitably chosen variance v2. Take as

new value of the chain

β
(j+1)
2 =

 βcan2 , with probability p

β
(j)
2 , with probability 1-p

where

p = min

1,
exp

{
−
∑n
i=1

(
yi − β

(j+1)
0 − β

(j+1)
1 x1i − βcan2 x2i

)
I
(
yi − β

(j+1)
0 − β

(j+1)
1 x1i − βcan2 x2i < 0

)}
exp

{
−
∑n
i=1

(
yi − β

(j+1)
0 − β

(j+1)
1 x1i − β

(j)
2 x2i

)
I
(
yi − β

(j+1)
0 − β

(j+1)
1 x1i − β

(j)
2 x2i < 0

)}
 .

(This is implemented by drawing q ∼ Uniform(0, 1) and taking β(j+1)
2 = βcan2 if and only if

q < p).
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3. Iterate step 2 a large number of times. Discard an initial number of draws and base inference

on subsequent draws.

Note that: a) for the cubic model fit we follow the same procedure, by adding one extra param-

eter β3; b) for the simulated data set we follow the same procedure, however, in step 2 we have

β(j) = (β
(j)
0 , β

(j)
1 ).

Calculations of the MCMC algorithm, for simulating the mean of the new data set.

Our model is

yi = β0 + β1 xi + β2 x
2
i + β3 x

3
i , i = 1, 2, ..., n,

with εi ∼ N(0, 1). Therefore, we have

f(εi) = f(yi − β0 − β1 xi − β2 x2i − β3 x3i )

and

f(ε) = L(y|β) =
1√
2π
exp

{
−1

2

n∑
i=1

(yi − β0 − β1 xi − β2 x2i − β3 x3i )2
}
.

We can obtain the posterior distributions of the parameters from

π(β|y) ∝ L(y|β)π(β).

For β1 we have

π(β1|y) ∝ L(y|β)π(β1).

∝ exp

{
−1

2

n∑
i=1

[
(β1xi)

2 − 2(yi − β0 − β2x2i − β3x3i )(β1xi) + (yi − β0 − β2x2i − β3x3i )2
]}

= exp

{
−1

2

[
β21

n∑
i=1

x2i − 2β1

n∑
i=1

[
xi(yi − β0 − β2x2i − β3x3i )

]
+

n∑
i=1

(yi − β0 − β2x2i − β3x3i )2
]}

∝ exp

{
−
∑n

i=1 x
2
i

2

[
β21 −

−2β1
∑n

i=1

[
xi(yi − β0 − β2x2i − β3x3i )

]∑n
i=1 x

2
i

]}

∝ exp

−
∑n

i=1 x
2
1i

2

[
β1 −

∑n
i=1

[
xi(yi − β0 − β2x2i − β3x3i )

]∑n
i=1 x

2
i

]2
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Therefore, we get

β1 ∼N

(∑n
i=1

[
xi(yi − β0 − β2x2i − β3x3i )

]∑n
i=1 x

2
i

,
1∑n
i=1 x

2
i

)
.

In a similar way, we get

β2 ∼N

(∑n
i=1

[
x2i (yi − β0 − β1xi − β3x3i )

]∑n
i=1 x

4
i

,
1∑n
i=1 x

4
i

)
,

β3 ∼N

(∑n
i=1

[
x3i (yi − β0 − β1xi − β2x2i )

]∑n
i=1 x

6
i

,
1∑n
i=1 x

6
i

)
and

β0 ∼N

(∑n
i=1

[
(yi − β1xi − β2x2i − β3x3i )

]
n

,
1

n

)
.
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Appendix B

A. Calculation of the Full Conditional Posterior Distributions

Calculations for Normal HMM

Priors

π(P ) =
m∏
i=1

π(pi.) ∝
m∏
i=1

m∏
j=1

p
ωj−1
ij

π(µ) =

m∏
i=1

π(µi) ∝
m∏
i=1

exp

{
−λ

2
(µi − ξ)2

}
= exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}

π(κ) =

m∏
i=1

π(κi) ∝
m∏
i=1

κa−1i exp {−bκi}

Likelihood

L(yT |xT , µ, σ2, P ) = πx1fx1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT )

= π(x1)px1,x2 ...pxT−1,xT fx1(y1)...fxT (yT )

= π(x1)
m∏
i=1

m∏
j=1

p
nij
ij

m∏
i=1

∏
t:xt=i

fi(yt)

= π(x1)
m∏
i=1

m∏
j=1

p
nij
ij

m∏
i=1

∏
t:xt=i

√
κi
2π
exp

{
−κi

2
(yt − µi)2

}
Joint posterior

f(µ, κ, P |yT , xT ) ∝
m∏
i=1

m∏
j=1

p
nij
ij

m∏
i=1

∏
t:xt=i

√
κiexp

{
−κi

2
(yt − µi)2

}

×
m∏
i=1

m∏
j=1

p
ωj−1
ij exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}
×

m∏
i=1

κa−1i exp {−bκi}

Calculation of full conditionals

π(pi.|yT , xT µ, κ) ∝
m∏
j=1

p
nij
ij

m∏
j=1

p
ωj−1
ij ∝

m∏
j=1

p
nij+ωj−1
ij

≡ Dir(ni. + ω)

π(κi|yT , xT µ, P ) ∝ κa−1i exp {−bκi}
∏
t:xt=i

√
κiexp

{
−κi

2
(yt − µi)2

}

= κa−1i exp {−bκi}κni/2i exp

{
−κi

2

∑
t:xt=i

(yt − µi)2
}
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= κ
a+ni/2−1
i exp

{
−κi

(
b+

∑
t:xt=i

(yt − µi)2

2

)}

≡ Gamma

(
a+

ni
2
, b+

∑
t:xt=i

(yt − µi)2

2

)

π(µi|yT , xT κ, P ) ∝
∏
t:xt=i

exp
{
−κi

2
(yt − µi)2

}
exp

{
−λ

2
(µi − ξ)2

}

= exp

{
−κi

2

∑
t:xt=i

(yt − µi)2
}
exp

{
−λ

2
(µi − ξ)2

}

= exp

{
−κi

2

∑
t:xt=i

(yt − µi)2 −
λ

2
(µi − ξ)2

}

= exp

{
−κi

2

∑
t:xt=i

(
y2t − 2ytµi + µ2i

)
− λ

2

(
µ2i − 2ξµi + ξ2

)}

= exp

{
−κi

2

(∑
t:xt=i

y2t − 2µi
∑
t:xt=i

yt + niµ
2
i

)
− λ

2

(
µ2i − 2ξµi + ξ2

)}

= exp

{
−1

2

(
(κini + λ)µ2i − 2

(
κi
∑
t:xt=i

yt + λξ

)
µi +

(
κi
∑
t:xt=i

y2t + λξ

))}

∝ exp

{
−κini + λ

2

[
µ2i − 2

κi
∑

t:xt=i
yt + λξ

κini + λ
µi +

(
κi
∑

t:xt=i
yt + λξ

κini + λ

)2
]}

= exp

{
−κini + λ

2

(
µi −

κi
∑

t:xt=i
yt + λξ

κini + λ

)2
}

≡ Normal
(
κi
∑

t:xt=i
yt + λξ

niκi + λ
,

1

niκi + λ

)
Calculation for Normal Break-point HMM

Priors

π(P ) =
m∏
i=1

π(pii) ∝
m∏
i=1

pp−1ii (1− pii)q−1

π(µ) =
m∏
i=1

π(µi) ∝
m∏
i=1

exp

{
−λ

2
(µi − ξ)2

}
= exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}

π(κ) =
m∏
i=1

π(κi) ∝
m∏
i=1

κa−1i exp {−bκi}
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Likelihood

L(yT |xT , µ, σ2, P ) = π(x1)× fx1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT )

= 1× px1,x2 ...pxT−1,xT fx1(y1)...fxT (yT )

=

m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

fi(yt)

=
m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

√
κi
2π
exp

{
−κi

2
(yt − µi)2

}
Joint posterior

f(µ, κ, P |yT , xT ) ∝
m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

√
κiexp

{
−κi

2
(yt − µi)2

}

×
m∏
i=1

pp−1ii (1− pii)q−1exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}
×

m∏
i=1

κa−1i exp {−bκi}

Calculation of conditionals

π(pii|yT , xT µ, κ) ∝ pniiii (1− pii)pp−1ii (1− pii)q−1

= pp+nii−1ii (1− pii)q

≡ Beta(p+ nii, q + 1)

(using the same calculations as in the Normal HMM we obtain the next two conditionals)

π(µi|yT , xT κ, P ) ≡ Normal
(
κi
∑

t:xt=i
yt + λξ

niκi + λ
,

1

niκi + λ

)

π(κi|yT , xT µ, P ) ≡ Gamma

(
a+

ni
2
, b+

∑
t:xt=i

(yt − µi)2

2

)

Dirichlet distribution

The Dirichlet distribution (after Johann Peter Gustav Lejeune Dirichlet) is a family of continuous

multivariate probability distributions. It is parameterized by the vector w of nonnegative reals and

denoted as Dir(w). It is the multivariate generalization of the Beta distribution and conjugate prior of

the parameters of the multinomial distribution.
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The probability density of the Dirichlet distribution for variables p = (p1, p2, ..., pm), with pa-

rameters w = (w1, w2, ..., wm) is defined by

π(p) = Dir(p; w) =
1

B(w)

m∏
i=1

pwi−1i ,

where wi > 0, pi ≥ 0, i = 1, 2, ...,m and
∑m

i=1 pi = 1. The normalizing constant B(w) is the

multinomial Beta function, which is expressed in terms of the Gamma function

B(w) =

∏m
i=1 Γ(wi)

Γ (
∑m

i=1wi)
.

The mean and the variance of the Dirichlet distribution are

E(pi) =
wi
w0
,

V ar(pi) =
wi(w0 − wi)
w2
0(w0 + 1)

,

where w0 =
∑m

i=1wi.

B. MCMC algorithms

(Gibbs Sampling with Data Augmentation)

Normal HMM

1. Initialize with θ(0) =
(
µ(0), κ(0), P (0)

)
from their priors.

2. Augment the data by simulating latent variables x(1), using Forward-Backward algorithm, given

θ(0).

3. For i = 1, ...,m, simulate µ(1) from its full conditional posterior distribution π
(
µi|κ(0), P (0), x(0)

)
.

4. For i = 1, ...,m, simulate κ(1) from its full conditional posterior distribution π
(
κi|µ(1), P (0), x(0)

)
.

5. For i = 1, ...,m, simulate the ith row of the transition matrix p(1)i. from its full conditional

posterior distribution π
(
pi.|µ(1), κ(1), x(0)

)
.

6. Iterate this procedure.

In order to avoid label switching problems, when implementing the above MCMC algorithm, we

have labeled the hidden states using the constraint µ1 < µ2 < ... < µm.
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Normal Break-point HMM

1. Initialize with θ(0) =
(
µ(0), κ(0), P (0)

)
from their priors.

2. Augment the data by simulating latent variables x(0), using Forward-Backward algorithm, given

θ(0).

3. For i = 1, ...,m, simulate µ(1) from its full conditional posterior distribution π
(
µi|κ(0), P (0), x(0)

)
.

4. For i = 1, ...,m, simulate κ(1) from its full conditional posterior distribution π
(
κi|µ(1), P (0), x(0)

)
.

5. For i = 1, ...,m, simulate the element of the transition matrix p(1)ii from its full conditional

posterior distribution π
(
pii|µ(1), κ(1), x(0)

)
.

6. Check for break-points based on x(0).

7. Iterate this procedure.

Note that the simulated times of the breaks can be obtained from the draws of x.
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Appendix C

A. Calculation of the Full Conditional Posterior Distributions

Calculations for ALD HMM

Priors

π(P ) =
m∏
i=1

π(pi.) ∝
m∏
i=1

m∏
j=1

p
ωj−1
ij

π(µ) =
m∏
i=1

π(µi) ∝
m∏
i=1

exp

{
−λ

2
(µi − ξ)2

}
= exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}

Likelihood

L(yT |xT , µ, P ) = πx1fx1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT )

= π(x1)px1,x2 ...pxT−1,xT fx1(y1)...fxT (yT )

= π(x1)

m∏
i=1

m∏
j=1

p
nij
ij

m∏
i=1

∏
t:xt=i

fi(yt)

= π(x1)
m∏
i=1

m∏
j=1

p
nij
ij

m∏
i=1

∏
t:xt=i

exp {−pτ (yt − µi)}

Joint posterior

f
(
µ, P |yT , xT

)
∝

m∏
i=1

m∏
j=1

p
nij
ij

m∏
i=1

∏
t:xt=i

exp{−pq(yt − µi)}

×
m∏
i=1

m∏
j=1

p
ωj−1
ij exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}

Calculation of full conditionals

π(pi.|yT , xT µ) ∝
m∏
j=1

p
nij
ij

m∏
j=1

p
ωj−1
ij ∝

m∏
j=1

p
nij+ωj−1
ij

≡ Dir(ni. + ω)

π(µi|yT , xT , P ) ∝
∏
t:xt=i

exp{−pτ (yt − µi)}exp
{
−λ

2
(µi − ξ)2

}

∝ exp

{∑
t:xt=i

[
(yt − µi)(τ − I(−∞,0)(yt − µi))

]
+
λ

2
(µi − ξ)2

}
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Calculation for ALD Break-point HMM

Priors

π(P ) =
m∏
i=1

π(pii) ∝
m∏
i=1

pp−1ii (1− pii)q−1

π(µ) =
m∏
i=1

π(µi) ∝
m∏
i=1

exp

{
−λ

2
(µi − ξ)2

}
= exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}

Likelihood

L(yT |xT , µ, P ) = π(x1)× fx1(y1)px1,x2fx2(y2)...pxT−1,xT fxT (yT )

= 1× px1,x2 ...pxT−1,xT fx1(y1)...fxT (yT )

=

m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

fi(yt)

=

m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

exp {pτ (yt − µi)}

Joint posterior

f(µ, P |yT , xT ) ∝
m∏
i=1

pniiii (1− pii)
m∏
i=1

∏
t:xt=i

exp {pτ (yt − µi)}

×
m∏
i=1

pp−1ii (1− pii)q−1exp

{
−λ

2

m∑
i=1

(µi − ξ)2
}

Calculation of conditionals

π(pii|yT , xT µ) ∝ pniiii (1− pii)pp−1ii (1− pii)q−1

= pp+nii−1ii (1− pii)q

≡ Beta(p+ nii, q + 1)

(using the same calculations as in the Normal HMM we obtain the following)

π(µi|yT , xT P ) ∝ exp

{∑
t:xt=i

[
(yt − µi)(τ − I(−∞,0)(yt − µi))

]
+
λ

2
(µi − ξ)2

}
.

B. MCMC algorithms

(Gibbs and Metropolis-Hastings Sampling with Data Augmentation)

ALD HMM
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1. Initialize with θ(0) =
(
µ(0), P (0)

)
from their priors.

2. Given that the chain is currently at θ(j) =
(
µ(j), P (j)

)
:

Augment the data by simulating latent variables x(j), using Forward-Backward algorithm, given

θ(j).

3. For i = 1, ...,m, propose a candidate value µcani ∼ N
(
µ
(j)
i , v0

)
, for some suitably chosen

variance v0. Take as new value of the chain

µ
(j+1)
i =

 µcani , with probability p

µ
(j)
i , with probability 1-p

where

p = min

1,
exp

{∑
t:xt=i

(yt − µcani ) (q − I(yt − µcani < 0)) + τ
2 (µcani − ξ)2

}
exp

{∑
t:xt=i

(
yt − µ(j)i

)(
q − I

(
yt − µ(j)i < 0

))
+ τ

2 (µ
(j)
i − ξ)2

}
 .

(This is implemented by drawing z ∼ Uniform(0, 1) and taking µ(j+1)
i = µcani , if and only if

z < p).

4. For i = 1, ...,m, simulate the ith row of the transition matrix p(j+1)
i. from its full conditional

posterior distribution π
(
p
(j)
i. |µ(j+1), x(j)

)
.

5. Iterate this procedure.

In order to avoid label switching problems, when implementing the above MCMC algorithm, we

have labeled the hidden states using the constraint µ1 < µ2 < ... < µm.

ALD Break-point HMM

1. Initialize with θ(0) =
(
µ(0), P (0)

)
from their priors.

2. Given that the chain is currently at θ(j) =
(
µ(j), P (j)

)
:

Augment the data by simulating latent variables x(j), using Forward-Backward algorithm, given

θ(j).
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3. For i = 1, ...,m, propose a candidate value µcani ∼ N
(
µ
(j)
i , v0

)
, for some suitably chosen

variance v0. Take as new value of the chain

µ
(j+1)
i =

 µcani , with probability p

µ
(j)
i , with probability 1-p

where

p = min

1,
exp

{∑
t:xt=i

(yt − µcani )(q − I(yt − µcani < 0)) + τ
2 (µcani − ξ)2

}
exp

{∑
t:xt=i

(
yt − µ(j)i

)(
q − I

(
yt − µ(j)i < 0

))
+ τ

2 (µ
(j)
i − ξ)2

}
 .

(This is implemented by drawing z ∼ Uniform(0, 1) and taking µ(j+1)
i = µcani , if and only if

z < p).

4. For i = 1, ...,m, simulate the element of the transition matrix p(j+1)
ii from its full conditional

posterior distribution π
(
p
(j)
ii |µ(j+1), x(j)

)
.

5. Check for break-points based on x(j).

6. Iterate this procedure.

Note that the times of the breaks can be obtained from the draws of x.
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The Metropolis-Hastings Algorithm

This algorithm is a Markov chain Monte Carlo (MCMC) method, for obtaining a sequence of

random samples from a probability distribution, which is difficult to sample from. The algorithm

was named after Nicholas Metropolis, who first proposed the algorithm for the specific case of the

Boltzmann distribution in the paper Equation of State Calculations by Fast Computing Machines in

1953, and W. Keith Hastings, who extended it to the more general case in 1970.

Suppose that the current state of our Markov chain is θ(j)1 , ..., θ
(j)
d and that we want to simulate

θ
(j+1)
1 , which is the next value of θ1. In other words, we need to update θ(j)1 to θ(j+1)

1 , based on the

conditional distribution π(θ1|θ(j)2 , ..., θ
(j)
d ). This is performed as follows:

1. Propose a candidate value θcan1 , which is a draw from an arbitrary distribution with density

q(θcan1 |θ
(j)
1 , θ

(j)
2 , ..., θ

(j)
d ).

2. Take as the next value of θ1 in the chain

θ
(j+1)
1 =

 θcan1 , with probability p

θ
(j)
1 , with probability 1-p

where

p = min

{
1,
π(θcan1 |θ

(j)
2 , ..., θ

(j)
d )

π(θj1|θ
(j)
2 , ..., θ

(j)
d )

q(θj1|θcan1 , θ
(j)
2 , ..., θ

(j)
d )

q(θcan1 |θ
j
1, θ

(j)
2 , ..., θ

(j)
d )

}
, (7.1)

with π(θcan1 |θ
(j)
2 , ..., θ

(j)
d ) denoting the density corresponding to the conditional posterior dis-

tribution of θ1, evaluated at θ1 = θcan1 and similarly for π(θj1|θ
(j)
2 , ..., θ

(j)
d ).

Comments:

• In practice, the way to implement the second part of the Metropolis-Hastings algorithm

described above is by drawing a value u from a Uniform(0,1) distribution and taking

θ
(j+1)
1 = θcan1 if u < p and θ(j+1)

1 = θj1 otherwise.

• It is not necessary to be able to simulate from all the conditional posterior distributions,

but only from the candidate generator q(.), which can be chosen arbitrarily. Moreover,

we only need to know the conditional posterior densities up to proportionality, since any

constants of proportionality cancel in the numerator and denominator of the calculation

of p in 7.1. However, if q(.) is poorly chosen, then the number of rejections can be high,

so the efficiency of the procedure can be very low.
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• Another common choice of the candidate generator is to take q(θcan1 |θ
j
1, θ

(j)
2 , ..., θ

(j)
d ) to be

the density of Normal distribution for θcan1 , with mean θj1 and a suitably chosen variance v.

This is known as ”Random Walk Metropolis algorithm with Normal increments” and it is

very popular due to its simplicity. Therefore, the terms involving q(.) cancel in equation

7.1, due to the symmetry of the candidate generator, so the acceptance probability is

simplified to

p = min

{
1,
π(θcan1 |θ

(j)
2 , ..., θ

(j)
d )

π(θj1|θ
(j)
2 , ..., θ

(j)
d )

}
. (7.2)

Gibbs sampling

This is an algorithm used to generate a sequence of samples from the joint posterior distribution

(this is often called the target distribution). The algorithm is named after the physicist J. W. Gibbs, in

reference to an analogy between the sampling algorithm and statistical physics. It was described by

brothers Stuart and Donald Geman (1984).

Gibbs sampling is a special case of the Metropolis-Hastings algorithm and it is applicable when

the joint distribution is not known explicitly or is difficult to sample from directly, but the conditional

distribution of each variable is known and is easy to sample from. It obtains a sample from the

multivariate distribution π(θ1, ..., θd) by successively and repeatedly simulating from the conditional

distributions of each component, given the other components. This is done as follows:

1. Initialize with θ = (θ
(0)
1 , ..., θ

(0)
d ).

2. Simulate θ(1)1 from the conditional distribution π(θ1|θ(0)2 , θ
(0)
3 , ..., θ

(0)
d ).

3. Simulate θ(1)2 from the conditional distribution π(θ2|θ(1)1 , θ
(0)
3 , ..., θ

(0)
d ).

4. ...

5. Simulate θ(1)d from the conditional distribution π(θd|θ
(1)
1 , θ

(1)
2 , ..., θ

(1)
d−1).

6. Iterate this procedure.

Comments:

• Under conditional conjugacy, the simulation step is usually straightforward.
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• Under mild regularity conditions, convergence of the Markov chain to the stationary distribu-

tion π(θ1, ..., θd) is guaranteed. Therefore, after a burn-in period, the subsequent draws can be

regarded as realizations from this distribution.
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Appendix D

Computational Origins of the Kalman Filter

Based on the model described in section 5.2, we can construct a simpler model as follows:

xt = axt−1 + wt−1

yt = cxt + vt.

We can get an estimate of xt, which is called x̂t, by reproducing the system. However, if the quantities

a, c or the initial value x0 are unknown the estimate x̂t is unable to track the exact value of xt.

Additionally, we do not balance the addition of w and v. Therefore, we follow a slightly different

procedure.

First, we define the a priori estimate of xt as:

ˆ̃xt = ax̂t−1.

Then, we use ˆ̃xt to predict an estimate for the observed value yt, which we call ŷt, from:

ŷt = cˆ̃xt.

Second, we define the residual as the difference between the actual and the estimated observed value:

Residual = yt − ŷt = yt − cˆ̃xt.

There is a good estimate for yt is the residual is small. Finally, we define the a posteriori estimate of

xt as:

x̂t = ˆ̃xt + κ(yt − cˆ̃xt). (7.3)

Clearly, this means that if the residual is small (or large) there is a small (or large) correction to our

estimate. However, it is needed to find a way to work out the quantity κ (Kalman gain), which enables

us to refine our estimate.

Initially, we have to define the errors of our estimates. These are the differences between the true

value of xt and the two estimates (a priori state estimate and a posteriori state estimate). Therefore,

we have:

ẽt = xt − ˆ̃xt (a priori error) (7.4)
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et = xt − x̂t (a posteriori error). (7.5)

We have the following covariances (mean squared errors) associated with the previous errors:

p̃t = E{(ẽt)2} (a priori covariance) (7.6)

pt = E{(et)2} (a posteriori covariance). (7.7)

The Kalman filter chooses suitably the value of κ, so as to minimize the a posteriori covariance pt.

Combining the equations 7.5, 7.7 and 7.3 we have:

pt = E{(xt − x̂t)2} = E{(xt − ˆ̃xt + κ(yt − cˆ̃xt))2}. (7.8)

Then, we differentiate this expression with respect to κ and set this derivative to zero, in order to find

the value of κ that minimizes the a posteriori covariance.

0 =
∂pt
∂k

=
∂E{(xt − ˆ̃xt + κ(yt − cˆ̃xt))2}

∂k

= 2E{(xt − ˆ̃xt + κ(yt − cˆ̃xt))(yt − cˆ̃xt)}

= 2E{xtyt − ˆ̃xtyt − κy2t + κcˆ̃xtyt − cxt ˆ̃xt + (ˆ̃xt)
2 + κcyt ˆ̃xt − κc2(ˆ̃xt)

2}

= 2E{xtyt − ˆ̃xtyt − cxt ˆ̃xt + (ˆ̃xt)
2} − 2κE{y2t − 2cˆ̃xtyt + c2(ˆ̃xt)

2}.

Therefore, we have:

κ =
E{xtyt − ˆ̃xtyt − cxt ˆ̃xt + c(ˆ̃xt)

2}
E{y2t − 2cˆ̃xtyt + c2(ˆ̃xt)2}

. (7.9)

Let us now consider the numerator and the denominator of the previous quantity separately, in order

to simplify it.

Numerator = E{xtyt − ˆ̃xtyt − cxt ˆ̃xt + c(ˆ̃xt)
2}

= E{xt(cxt + vt)− ˆ̃xt(cxt + vt)− cxt ˆ̃xt + c(ˆ̃xt)
2}

= E{cx2t − xtvt − cˆ̃xtxt − ˆ̃xtvt − cxt ˆ̃xt + c(ˆ̃xt)
2}

= E{cx2t − 2cˆ̃xtxt + c(ˆ̃xt)
2 + (xt − ˆ̃xt)vt}.

One of our model’s assumptions was that the measurement noise vt is uncorrelated to the hidden state

xt and as a consequence uncorrelated to the a priori estimate of xt. Therefore we have:

E{(xt − ˆ̃xt)vt} = E(xtvt)− E(ˆ̃xtvt) = 0 (7.10)
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Using this the numerator becomes:

Numerator = E{cx2t − 2cˆ̃xtxt + c(ˆ̃xt)
2}

= cE{(xt − ˆ̃xt)
2} = cE{(ẽt)2} = cp̃t. (7.11)

Now, let us consider the denominator:

Denominator = E{y2t − 2cˆ̃xtyt + c2(ˆ̃xt)
2}

= E{(cxt + vt)
2 − 2cˆ̃xt(cxt + vt) + c2(ˆ̃xt)

2}

= E{c2x2t + 2cxtvt + v2t − 2c2 ˆ̃xtxt − 2cˆ̃xtvt + c2(ˆ̃xt)
2}

= E{(cxt)2 − 2c2 ˆ̃xtxt + c2(ˆ̃xt)
2 + v2t + 2c(xt − ˆ̃xt)vt}.

Again by using equation 7.10 the last term is set to zero and the denominator becomes simpler:

Denominator = E{(cxt)2 − 2c2 ˆ̃xtxt + c2(ˆ̃xt)
2 + v2t }

= c2E{x2t − 2ˆ̃xtxt + (ˆ̃xt)
2}+ E{v2t }

= c2E{(xt − ˆ̃xt)
2}+R

= c2E{(ẽt)2}+R = c2p̃t +R. (7.12)

Therefore, by using the equations 7.11 and 7.12 for the numerator and denominator we have the

following simple expression of κ:

κ =
cp̃t

c2p̃t +R
. (7.13)

This expression needs a value for the a priori covariance p̃t, which we will try to find by using its

definition given in the equation 7.6.

p̃t = E{(ẽt)2} = E{(xt − ˆ̃xt)
2}

= E{(axt−1 + wt − ax̂t−1)2}

= E{a2(xt − x̂t−1)2 + 2awt(xt − x̂t−1) + w2
t }.

The process noise wt is uncorrelated to the hidden state xt and as a consequence uncorrelated to the

a priori estimate of xt. Therefore, we have:

E{wt(xt − x̂t−1)} = E(wtxt−1)− E(wtx̂t−1) = 0. (7.14)
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So, the a priori covariance becomes:

p̃t = E{a2(xt − x̂t−1)2 + w2
t } = a2E{(xt − x̂t−1)2}+ E{w2

t }

= a2E{(et−1)2}+Q = a2pt−1 +Q. (7.15)

Now, this expression needs a value for the a posteriori covariance pt−1. Again, we start from its

definition and we have:

pt = E{(et)2} = E{(xt − x̂t)2} =

= E{[xt − (ˆ̃xt + κ(yt − cˆ̃xt))]2}

= E{[xt − (ˆ̃xt − κcˆ̃xt + κ(cxt + vt))]
2}

= E{(xt − ˆ̃xt + κcˆ̃xt − κcxt − κvt)2}

= E{[(1− κc)(xt − ˆ̃xt)− κvt]2}

= E{(1− κc)2(xt − ˆ̃xt)
2 − 2κvt(1− κc)(xt − ˆ̃xt) + (κvt)

2}.

Using equation 7.10 the a posteriori covariance becomes:

pt = E{(1− κc)2(xt − ˆ̃xt)
2 + (κvt)

2}

= (1− κc)2E{(xt − ˆ̃xt)
2}+ κ2E{(vt)2}

= (1− κc)2E{(ẽt)2}+ κ2R

= (1− κc)2p̃t + κ2R (7.16)

Using equations 7.13 and 7.16 we have:

κ =
cp̃t

c2p̃t +R

⇒ κ(c2p̃t +R) = cp̃t

⇒ R =
cp̃t
κ
− c2p̃t =

cp̃t(1− cκ)

κ
. (7.17)

Using equations 7.16 and 7.17 we have:

pt = (1− κc)2p̃t + κ2
cp̃t(1− cκ)

κ

= p̃t(1− 2κc+ κ2c2κc− κ2c2)

= p̃t(1− κc). (7.18)
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Summary

To sum up, we start with a system described as

xt = axt−1 + wt−1

yt = cxt + vt,

where wt ∼ N(0, R) and vt ∼ N(0, Q).

We calculate the a priori state estimate based on the previous state estimate:

ˆ̃xt = ax̂t−1.

We calculate the a priori covariance:

p̃t = a2pt−1 +Q.

Then, we calculate the Kalman gain κ using:

κ =
cp̃t

c2p̃t +R
.

Then, we correct the a priori estimates (state and covariance) to obtain the a posteriori state estimate

and the a posteriori covariance as follows:

x̂t = ˆ̃xt + κ(yt − cˆ̃xt)

pt = p̃t(1− cκ).
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Kalman Filter algorithm

1. Choose initial values x̂0 and P0 (state and covariance estimates).

2. Given that the chain is at step t, our parameters are x̂t and Pt. We compute ˆ̃xt+1 and P̂t+1

from:
ˆ̃xt+1 = Ax̂t

P̂t+1 = APtA
T +Q

3. We compute the Kalman gain Kt+1 from:

Kt+1 = P̃t+1C
T (CP̃t+1C

T +R)−1

We obtain new measurement (observation) yt+1 from:

yt+1 = C ˆ̃xt+1

4. We correct our estimates:

x̂t+1 = ˆ̃xt+1 +Kt+1(yt+1 − C ˆ̃xt+1)

Pt+1 = (I −Kt+1C)P̃t+1

5. We iterate this procedure.
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Appendix E
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Figure 7.1: Mixtures of Normal distributions.
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Figure 7.2: Convergence of model 1 parameters.
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Figure 7.3: Density plot of model 1 parameters.
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Figure 7.4: Convergence of model 2 parameters.
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Figure 7.5: Density plot of model 2 parameters.
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Figure 7.6: Convergence of model 3 parameters.
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Figure 7.7: Density plot of model 3 parameters.
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Figure 7.8: Convergence of the quadratic model parameters, for p = 0.001.
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Figure 7.9: Convergence of the quadratic model parameters, for p = 0.999.

138



Appendix F

Traceplots of Model Parameters
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Figure 7.10: Traceplots of the estimates of the Normal parameters for the US ex-post real interest

rates, for the 2-state Normal HMM, for the highest extreme quantile. The first two correspond to the

means µi and the other two correspond to the precisions κi, i = 1, 2.
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Figure 7.11: Traceplots of the estimates of the ALD parameters for the US ex-post real interest rates,

for the 3-state ALD HMM, for the lowest extreme quantile. They represent the location parameters

µi, i = 1, 2, 3.
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Figure 7.12: Traceplots of the estimates of the Normal parameters for the US ex-post real interest

rates, for the single break-point Normal HMM, for the highest extreme quantile. They represent the

means µi, and the precisions κi, i = 1, 2.
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Figure 7.13: Traceplots of the estimates of the ALD parameters for the US ex-post real interest

rates, for the 2 break-point ALD HMM, for the lowest extreme quantile. They represent the location

parameters µi, i = 1, 2, 3.
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Figure 7.14: Traceplots of the estimates of the Normal parameters for the US real interest rates, for

the 3-state Normal HMM, for the lowest extreme quantile. The first three correspond to the means µi

and the other three correspond to the precisions κi, i = 1, 2, 3.
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Figure 7.15: Traceplots of the estimates of the Normal parameters for the US real interest rates, for

the 3-state Normal HMM, for the highest extreme quantile. The first three correspond to the means

µi and the other three correspond to the precisions κi, i = 1, 2, 3.
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Figure 7.16: Traceplots of the estimates of the ALD parameters for the US real interest rates, for

the 4-state ALD HMM, for the lowest extreme quantile. They represent the location parameters µi,

i = 1, 2, 3, 4.

145



0 1000 2000 3000 4000

6.
0

6.
5

7.
0

Index

m
u1

0 1000 2000 3000 4000
10

.5
11

.0
11

.5
12

.0
Index

m
u2

0 1000 2000 3000 4000

13
.5

14
.0

14
.5

15
.0

Index

m
u3

0 1000 2000 3000 4000

16
.5

17
.0

17
.5

18
.0

Index

m
u4

Figure 7.17: Traceplots of the estimates of the ALD parameters for the US real interest rates, for

the 4-state ALD HMM, for the highest extreme quantile. They represent the location parameters µi,

i = 1, 2, 3, 4.
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16. Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. New

York: Springer.

17. Castellano, R. and Scaccia, L. (2007). Bayesian inference for Hidden Markov Models. Work-

ing Papers 43-2007, Macerata University, Department of Finance and Economic Sciences, re-

vised Oct 2008.

18. Cerra, V. and Saxena, S. C. (2005). Did Output Recover from the Asian Crisis?. IMF Staff

Papers. 52, 1-23.

19. Chamberlain, G. (1994). Quantile regression, censoring, and the structure of wages. Advances

in Econometrics, Sixth World Congress, Vol. 1, 171-209.

20. Chay, K. Y., Honore, B. E. (1998). Estimation of semiparametric censored regression models:

an application to changes in black-white earnings inequality during the 1960s. Journal of

Human Resources. 33, 4-38.

21. Chernozhukov, V. (2005). Extremal Quantile Regression. The Annals of Statistics. 33, No. 2,

806-839.

148



22. Chib, S. (1998). Estimation and comparison of multiple change-point models. Journal of

Econometrics. 86, 221-241.

23. Churchill, G. A. (1989). Stochastic models for heterogeneous DNA sequences. Bulletin of

Mathematical Biology. 51, 79-94.

24. Cole, T. J., Green, P. J. (1992). Smoothing Reference Centile Curves: The LMS Method and

Penalized Likelihood. Statistics in Medicine. 11, 1305-1319.

25. Davig, T. (2004). Regime-Switching Debt and Taxation. Journal of Monetary Economics. 51,

837-859.

26. Delorio , M. and Robert, C. P. (2002). Discussion on the paper by Spiegelhalter, Best, Carlin

and van der Linde (2002). Journal Royal Statistics, Series B. 64, 629-630.

27. De Rossi, G. and Harvey, A. C. (2006). Time-Varying Quantiles. CWPE 0649, University of

Cambridge.

28. De Rossi, G., Harvey, A. (2009). Quantiles, expectiles and splines. Journal of Econometrics.

doi:10.1016/j.jeconom.2009.01.001

29. Eide, E., Showalter, M. (1999). Factors Affecting the Transmission of Earnings Across Gener-

ations: A Quantile Regression Approach. Journal of Human Resources. 34(2), 253-267.

30. Eide, E., Showalter, M., Sims, D. P. (2002). The Effects of Secondary School Quality on the

Distribution of Earnings. Contemporary Economic Policy. 20, 160-170.

31. Engel, C. and Hamilton, J. D. (1990). Long swings in the dollar: are they in the data and do

markets know it?.American Economic Review. 80, 689-713.

32. Farcomeni, A. (2010). Quantile regression for longitudinal data based on latent Markov subject-

specific parameters. Statistics and Computing. 1-12. doi:10.1007/s11222-010-9213-0.

33. Fortin, N. M., Lemieux, T. (1998). Rank Regressions, Wage Distributions and the Gender Gap.

Journal of Human Resources. 33(3), 610-643.

34. Fox, E., Sudderth, E., Jordan, M. and Willsky, A. (2009). The sticky HDP-HMM: Bayesian

nonparametric hidden Markov models with persistent states.

149



35. Fredkin , D. R. and Rice, J. A. (1992a). Bayesian restoration of single-channel patch clamp

recordings. Biometrics. 48, 427-448.

36. Fredkin , D. R. and Rice, J. A. (1992b). Maximum likelihood estimation and identification

directly from single-channel recordings. Proceedings of the Royal Society of London B. 249,

125-132.

37. Garcia, R. and Perron, P. (1996). An Analysis of the Real Interest Rate Under Regime Shifts,

The Review of Economics and Statistics. 78, 111-125.

38. Gelb, A. (1974). Applied Optimal Estimation, MIT Press, Cambridge, MA.

39. Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 6(6),

721741.

40. Geraci, M. and Bottai, M. (2007). Quantile regression for longitudinal data using the asymmet-

ric Laplace distribution. Biostatistics. 8, 140154.

41. Gerlach, R. H., Chen, C. W. S., Chan, N. Y. C. (2011). Bayesian Time-Varying Quantile Fore-

casting for Value-at-Risk in Financial Markets. Journal of Business and Economic Statistics.

29 (4), 481-492.

42. Gopich, I. V. and Szabo, A. (2009). Decoding the pattern of photon colors in single-molecule

FRET. J. Phys. Chem. B. 113, 10965-10973.

43. Grewal, M. S. and Andrews, A. P. (1993). Kalman Filtering Theory and Practice. Upper Saddle

River, NJ USA, Prentice Hall.

44. Guttorp, P. (1995). Stochastic Modeling of Scientific Data. Chapman and Hall. London.

45. Hamilton, J. D. (1988). Rational-Expectations Econometric Analysis of Changes in Regime:

An Investigation of the Term Structure of Interest Rates. Journal of Economic Dynamics and

Control. 12, 385-423.

46. Hamilton, J. D. (1989). A New Approach to the Economic Analysis of Nonstationary Time

Series and the Business Cycle, Econometrica. 57, 357-384.

47. Hamilton, J. D. (1990). Analysis of time series subject to changes in regime. Journal of

Econometrics. 45, 39-70.

150



48. Hamilton, J. D. (2005). Whats Real About the Business Cycle?. Federal Reserve Bank of St.

Louis Review, forthcoming.

49. Hayashi, F. (1982). Tobins marginal q and average q: A neoclassical interpretation. Economet-

rica. 50 (1), 213224.
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