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Abstract. Let M be a matroid. When M is 3-connected, Tutte’s Wheels-
and-Whirls Theorem proves that M has a 3-connected proper minor N with
|E(M) − E(N)| = 1 unless M is a wheel or a whirl. This paper establishes a
corresponding result for internally 4-connected binary matroids. In particular,
we prove that if M is such a matroid, then M has an internally 4-connected
proper minor N with |E(M) − E(N)| ≤ 3 unless M or its dual is the cycle
matroid of a planar or Möbius quartic ladder, or a 16-element variant of such
a planar ladder.

1. Introduction

When dealing with matroid connectivity, it is often useful in inductive arguments
to be able to remove a small set of elements from a matroid M to obtain a minor N
that maintains the connectivity of M . Results that guarantee the existence of such
removal sets are referred to as chain theorems. Tutte [16] proved that, when M is 2-
connected, if e ∈ E(M), then M\e or M/e is 2-connected. More significantly, when
M is 3-connected, Tutte [16] proved the following result, his Wheels-and-Whirls
Theorem.

Theorem 1.1. Let M be a 3-connected matroid. Then M has a proper 3-
connected minor N such that |E(M)| − |E(N)| = 1 unless r(M) ≥ 3 and M is
a wheel or a whirl.

This result has proved to be such a useful tool for 3-connected matroids that
it is natural to seek a corresponding result for 4-connected matroids. Since higher
connectivity for matroids may be unfamiliar, we now define it. Let M be a matroid
with ground set E and rank function r. The connectivity function λM of M is
defined on all subsets X of E by λM (X) = r(X)+ r(E−X)− r(M). For a positive
integer k, a subset X or a partition (X, E−X) of E is k-separating if λM (X) ≤ k−1.
A k-separating partition (X, E−X) is a k-separation if |X |, |E−X | ≥ k. A matroid
having no k-separations for all k < n is n-connected.

In an n × n grid graph with n large, identify the top and bottom sides and the
left and right sides of the grid to get a 4-connected graph embedded on the torus
in which every face is a 4-cycle and every vertex has degree 4. Using this graph,
it is not difficult to see that, for all positive integers m, there is a 4-connected
matroid M having no proper 4-connected minor N with |E(M)| − |E(N)| ≤ m.
Nevertheless, chain theorems have been proved for certain classes of 3-connected
matroids which are partially 4-connected. More precisely, instead of eliminat-
ing all 3-separations as one does in a 4-connected matroid, one can allow cer-
tain constrained 3-separations. Let k be an integer exceeding one. A matroid
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M is (4, k)-connected if M is 3-connected and, whenever (X, Y ) is a 3-separating
partition of E(M), either |X | ≤ k or |Y | ≤ k. Hall [6] called such a matroid
4-connected up to separators of size k. She proved a chain theorem for (4, 5)-
connected matroids. Matroids that are (4, 4)-connected have also been called weakly
4-connected. The next result is a chain theorem for such matroids proved by Geelen
and Zhou [4]. It identifies certain exceptional matroids. For n ≥ 3, a planar cu-
bic ladder is a graph with vertex set {u1, v1, u2, v2, . . . , un, vn} that consists of two
disjoint cycles, {u1u2, u2u3, . . . , unu1} and {v1v2, v2v3, . . . , vnv1}, and a matching
{u1v1, u2v2, . . . , unvn}; a Möbius cubic ladder has the same vertex set and consists
of a Hamiltonian cycle {u1u2, u2u3, . . . , un−1un, unv1, v1v2, v2v3, . . . , vn−1vn, vnu1}
and a matching {u1v1, u2v2, . . . , unvn}. In particular, the planar cubic ladder with
n = 4 coincides with the graph of the cube. Note that the planar dual of the cube
is the octahedron, K2,2,2. A trident is a 12-element rank-6 matroid whose ground
set is the union of three disjoint 4-element 3-separating sets of rank 3. We remark
that this is quite different from what is defined as a ‘trident’ in Oxley, Semple, and
Whittle [13].

Theorem 1.2. Let M be a weakly 4-connected matroid with |E(M)| ≥ 7. Then M
has a weakly 4-connected proper minor N with |E(M)| − |E(N)| ≤ 2 unless M is
the cycle matroid of a planar or Möbius cubic ladder, or M is a trident.

An internally 4-connected matroid is one that is (4, 3)-connected. Geelen and
Zhou [4, p.539] observed that:“For binary matroids, internal 4-connectivity is cer-
tainly the most natural variant of 4-connectivity and it would be particularly useful
to have an inductive construction for this class.” In a sequel to this paper, we give
such an inductive construction. Most of the work towards obtaining such a con-
struction appears in the current paper. Indeed, with a view to this sequel, several
results in this paper derive more structural details than are needed to prove the
main results of the current paper. These results involves quartic ladders. For
n ≥ 3, a planar quartic ladder is obtained from a planar cubic ladder by adding
another matching {u1vn, u2v1, . . . , unvn−1}; a Möbius quartic ladder consists of a
Hamiltonian cycle {v1v2, v2v3, . . . , v2n−2v2n−1, v2n−1v1} along with the set of edges
{vivi+n−1, vivi+n : 1 ≤ i ≤ n} where all subscripts are interpreted modulo 2n − 1.
In particular, for n = 3, the planar and Möbius quartic ladders coincide with the
octahedron and K5, respectively. A terrahawk is the graph T that is obtained from
the cube by adjoining one new vertex and adding edges from this vertex to each
of the four vertices that bound some fixed face of the cube (see Figure 1). Clearly
M∗(T ) ∼= M(T ) and T has both the cube and the octahedron as minors.

Theorem 1.3. Let M be an internally 4-connected binary matroid. Then M has
a proper internally 4-connected minor N with |E(M)| − |E(N)| ≤ 3 unless M or
its dual is the cycle matroid of a planar or Möbius quartic ladder, or a terrahawk.
In the exceptional cases, either M has an internally 4-connected minor N with
|E(M)| − |E(N)| = 4; or M is the cycle matroid of an octahedron or a cube, and
M has an M(K4)-minor but has no internally 4-connected proper minor N with
|E(M)| − |E(N)| < 6.

Because the proof of Theorem 1.3 is long, we outline its main steps in Section 3.
In the next section, we give some basic definitions and results that will be needed
in this proof.
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Figure 1. A terrahawk.

Although our concern here is for a chain theorem, we should note significant
related work involving splitter theorems. The aim of the latter results is to re-
move a small set of elements while retaining not only the connectivity but also
a copy of some fixed minor. For 3-connected matroids, Seymour [15] generalized
the Wheels-and-Whirls Theorem by proving that if N is a 3-connected minor of
a 3-connected matroid M such that if N is a wheel or a whirl, it is the largest
wheel or whirl minor of M , then there is a sequence M0, M1, . . . , Mk of 3-connected
matroids such that M0 = M and Mk = N , while each Mi+1 is a minor of Mi with
|E(Mi)−E(Mi+1)| = 1. Johnson and Thomas [7] considered the problem of trying
to find a splitter theorem for internally 4-connected graphs. There are immediate
difficulties with this since, for example, the cubic planar ladder with 2n vertices is
a minor of the quartic planar ladder with 2n vertices. Both these graphs are in-
ternally 4-connected, but there is no internally 4-connected graph that lies strictly
between them in the minor order. Hence, even for graphic matroids, we can be
forced to remove arbitrarily many elements to recover internal 4-connectivity while
maintaining a copy of a specified minor. By controlling the presence of ladders
and double wheels, Johnson and Thomas [7] were able to prove a theorem of this
type for internally 4-connected graphs. In their result, each intermediate graph is
obtained from its predecessor by removing, via deletion or contraction, at most two
edges, and each such intermediate graph is (4, 4)-connected satisfying some addi-
tional constraints. Geelen and Zhou [3, 5] proved two analogues of this theorem for
internally 4-connected binary matroids, the second strengthening the first.

The specialization of our main theorem to graphs is also new and we end this
section by stating this corollary. For n ≥ 2, a cubic planar biwheel is a planar
graph with vertex set {v1, v2, . . . , v2n, u, w} and edge set {v1v2, v2, v3, . . . , v2nv1} ∪
{uv2i−1, wv2i : 1 ≤ i ≤ n}. Its dual is a quartic planar ladder.

Corollary 1.4. Let G be an internally 4-connected graph. Then G has a proper in-
ternally 4-connected minor H with |E(G)|−|E(H)| ≤ 3 unless G is K5, a terrahawk,
a planar or Möbius quartic ladder, or a cubic planar biwheel. In the exceptional
cases, either G has an internally 4-connected minor H with |E(G)| − |E(H)| = 4;
or G is an octahedron or a cube, and G has a K4-minor but has no internally
4-connected proper minor G with |E(G)| − |E(H)| < 6.

2. Preliminaries

The matroid terminology used here will follow Oxley [10] except that the simpli-
fication and cosimplification of a matroid M will be denoted by si(M) and co(M),
respectively. A quad in a matroid is a 4-element set that is both a circuit and a
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cocircuit. The property that a circuit and a cocircuit in a matroid cannot have
exactly one common element will be referred to as orthogonality.

In a matroid M , a k-separating set X , or a k-separating partition (X, E − X),
or a k-separation (X, E−X) is exact if λM (X) = k−1. A k-separation (X, E−X)
is minimal if |X | = k or |E − X | = k. It is well known (see, for example, [10,
Corollary 8.1.11]) that if M is k-connected having (X, E − X) as a k-separation
with |X | = k, then X is a circuit or a cocircuit of M .

A set X in a matroid M is fully closed if it is closed in both M and M∗, that
is, cl(X) = X and cl∗(X) = X . Thus the full closure of X is the intersection of
all fully closed sets that contain X . One way to obtain fcl(X) is to take cl(X),
and then cl∗(cl(X)) and so on until neither the closure nor coclosure operator adds
any new elements of M . The full closure operator enables one to define a natural
equivalence on exactly 3-separating partitions as follows. Two exactly 3-separating
partitions (A1, B1) and (A2, B2) of a 3-connected matroid M are equivalent, written
(A1, B1) ∼= (A2, B2), if fcl(A1) = fcl(A2) and fcl(B1) = fcl(B2). If fcl(A1) = E(M),
then B1 has an ordering (b1, b2, . . . , bn) such that {b1, b2, . . . , bk} is 3-separating
for all k in {1, 2, . . . , n}. We call such an ordering a sequential ordering of B1 and
say that the set B1 is sequential. Similarly, A1 is sequential if fcl(B1) = E(M).
We say (A1, B1) is sequential if A1 or B1 is sequential. A sequentially 4-connected
matroid is a 3-connected matroid in which every 3-separation is sequential. A
3-connected matroid M is (4, k, S)-connected if M is both (4, k)-connected and
sequentially 4-connected.

The following elementary lemma [12, Lemma 3.1] will be in repeated use through-
out the paper.

Lemma 2.1. For a positive integer k, let (A, B) be an exactly k-separating partition
in a matroid M .

(i) For e in E(M), the partition (A ∪ e, B − e) is k-separating if and only if
e ∈ cl(A) or e ∈ cl∗(A).

(ii) For e in B, the partition (A ∪ e, B − e) is exactly k-separating if and only
if e is in exactly one of cl(A) ∩ cl(B − e) and cl∗(A) ∩ cl∗(B − e).

(iii) The elements of fcl(A) − A can be ordered b1, b2, . . . , bn so that A ∪
{b1, b2, . . . , bi} is k-separating for all i in {1, 2, . . . , n}.

Next we state a well-known lemma that specifies precisely when a single element
z of a matroid M blocks a k-separating partition of M\z from extending to a k-
separating partition of M . This result and its dual underlie numerous arguments
in this paper.

Lemma 2.2. In a matroid M with an element z, let (A, B) be a k-separating
partition of M\z. Then both λM (A ∪ z) and λM (B ∪ z) exceed k − 1 if and only if
z ∈ cl∗(A) ∩ cl∗(B).

A subset S of a 3-connected matroid M is a fan in M if |S| ≥ 3 and there is an
ordering (s1, s2, . . . , sn) of S such that {s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn}
alternate between triangles and triads beginning with either. We call (s1, s2, . . . , sn)
a fan ordering of S. If n ≥ 4, then s1 and sn, which are the only elements of S that
are not in both a triangle and a triad contained in S, are the ends of the fan.

The following basic property of maximal fans [11, Theorem 1.6] will be used
frequently in the paper without explicit reference.
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Lemma 2.3. Let M be a 3-connected matroid other than a wheel or a whirl. Let
F be a maximal fan in M having at least four elements. If x is an end of F that is
in a triangle of M , then M\x is 3-connected.

The connectivity function λM of a matroid M has a number of attractive prop-
erties. For example, λM (X) = λM (E − X). Moreover, the connectivity functions
of M and its dual M∗ are equal. To see this, it suffices to note the easily verified
fact that

λM (X) = r(X) + r∗(X) − |X |.

We shall often abbreviate λM as λ.
One of the most useful features of the connectivity function of M is that it is

submodular, that is, for all X, Y ⊆ E(M),

λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ).

This means that if X and Y are k-separating, and one of X ∩ Y or X ∪ Y is not
(k−1)-separating, then the other must be k-separating. The next lemma specializes
this fact.

Lemma 2.4. Let M be a 3-connected matroid, and let X and Y be 3-separating
subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.
(ii) If |E(M) − (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

The following elementary property of internally 4-connected matroids will be
used repeatedly. The first two parts are in [13, Lemma 6.1], while the third part
follows immediately from the first two.

Lemma 2.5. Let M be an internally 4-connected matroid with |E(M)| ≥ 8.

(i) If e is an element of M that is not in a triad, then M\e is 3-connected.
(ii) Every triad of M avoids every triangle of M .
(iii) If e is an element of M that is in a triangle, then M\e is 3-connected.

Geelen and Whittle [2, Theorem 1.2] proved a chain theorem for sequentially
4-connected matroids. They used the following result [2, Theorem 5.1] in the proof
of that theorem. We shall use here it to prove our main theorem when M is 4-
connected.

Theorem 2.6. Let M be a 4-connected matroid. Then M has an element x such
that M\x or M/x is sequentially 4-connected.

A 3-separation (X, Y ) of a 3-connected matroid M is a (4, 3)-violator if |X |, |Y | ≥
4. Evidently M is internally 4-connected if and only if it has no (4, 3)-violators.

Theorem 2.7. Let M be a binary 4-connected matroid. Then M has an element
x such that M\x or M/x is internally 4-connected.

Proof. By Theorem 2.6 and duality, we may assume that M has an element x such
that M\x is sequentially 4-connected. If M\x is not internally 4-connected, then it
has a 3-separation (X, Y ) with |X |, |Y | ≥ 4. Thus |E(M)| ≥ 9. Without loss of gen-
erality, X has a sequential ordering (x1, x2, . . . , xn). Since M is 4-connected, it has
no triangles. Thus {x1, x2, x3} is a triad of M\x. Since M is binary, {x1, x2, x3, x4}
is not a circuit of M\x and x4 6∈ cl∗M\x({x1, x2, x3}). Thus x4 is in neither the
closure nor the coclosure of {x1, x2, x3} in M\x; a contradiction. �
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The next two lemmas establish some basic properties of binary 3-connected ma-
troids.

Lemma 2.8. Let z be an element of a binary internally 4-connected matroid M
such that M\z is 3-connected. Let (X, Y ) be a (4, 3)-violator of M\z. If Y is
sequential, then Y contains a 4-element fan of M\z that is the union of a triangle
T and a triad T ∗. Moreover, T is a triangle of M and T ∗ ∪ z is a cocircuit of M .

Proof. Let (y1, y2, . . . , yn) be a sequential ordering of Y . Then (y1, y2, y3, y4) is a
sequential ordering of a 3-separating set of M\z, so {y1, y2, y3} is a triangle or a
triad of M\z. Since M is binary, we deduce that {y1, y2, y3, y4} is a fan of M\z.
As M is internally 4-connected, the lemma follows. �

Lemma 2.9. Let (X, Y ) be a 3-separation of a binary 3-connected matroid M . If
X is sequential and |X | ≤ 5, then X is a fan.

Proof. This is easily checked if |X | = 4. If |X | = 5, let (x1, x2, x3, x4, x5) be a
sequential ordering of X . Then {x1, x2, x3, x4} is a 4-element fan in M . Suppose
x5 ∈ cl({x1, x2, x3, x4}). Then, since M is binary, one easily checks that X is a
5-element fan. The lemma follows using duality. �

In [4], Geelen and Zhou introduced a structure in a matroid that they call a
rotor. In [5], they introduced a slight variant on this structure that is defined as
follows. Let M be an internally 4-connected matroid. A quasi rotor with central
triangle {a, b, c} is an 8-tuple (a, b, c, d, e, Ta, Tc, Z) such that the following hold:

(i) E(M) = {a, b, c, d, e} ∪ Ta ∪ Tc ∪ Z;
(ii) a, b, c, d, and e are distinct, and Ta, Tc, and {a, b, c} are disjoint triangles

with d in Ta and e in Tc;
(iii) Ta ∪ {b, e} and Tc ∪ {b, d} are 3-separating in M\a and M\c, respectively;

and
(iv) Ta and Tc are 2-separating in M\a, b and M\b, c, respectively.

If, in addition to (i)–(iv), there is a proper non-empty subset A of Z such that
Ta ∪ a∪A is 3-separating in M\b, then (a, b, c, d, e, Ta, Tc, A, Z −A) is a rotor with
central triangle {a, b, c}.

Because we are concerned here exclusively with internally 4-connected binary
matroids, when quasi rotors arise in such matroids, we can be more explicit about
their structure. The next lemma is obtained by a straightforward specialization of
[4, 3.7.1, 3.7.2]

Lemma 2.10. Let (a, b, c, d, e, Ta, Tc, Z) be a quasi rotor with central triangle
{a, b, c} in an internally 4-connected binary matroid M . Then

(i) {b, d, e} is a triangle of M ;
(ii) M has a 4-cocircuit containing {a, b, d} and one element of Ta − d; and
(iii) M has a 4-cocircuit containing {b, c, e} and one element of Tc − e.

Proof. As a is in a triangle of M , Lemma 2.5(iii) implies that M\a is 3-connected.
Since Ta is 2-separating in M\a, b, the set Ta ∪ b is 3-separating in M\a; so too is
Ta ∪ {b, e}. Thus e ∈ clM\a(Ta ∪ b) or e ∈ cl∗M\a(Ta ∪ b). But e is in the triangle
Tc, so e 6∈ cl∗M\a(Ta ∪ b). Hence e ∈ clM\a(Ta ∪ b). As M is binary, e 6∈ clM\a(Ta).
Thus b ∈ clM\a(Ta ∪ e). By symmetry, b ∈ clM\a(Tc ∪ d). Thus Ta ∪ {b, e} and
Tc∪{b, d} both have rank 3. Their union has rank at least four, so their intersection,
{b, d, e}, has rank at most 2. Thus {b, d, e} is a triangle of M .
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As M is binary and Ta is 2-separating in M\a, b, there is a 2-cocircuit C∗ of
M\a, b contained in Ta. Since M is internally 4-connected, C∗∪{a, b} is a cocircuit
of M . By orthogonality with the triangle {b, d, e} of M , we deduce that d ∈ C∗.
Hence M has a 4-cocircuit containing {a, b, d} and one element of Ta − d. By
symmetry, M has a 4-cocircuit containing {b, c, e} and one element of Tc − e. �

The last lemma established that we can associate an additional triangle and
two 4-cocircuits with a quasi rotor. The next lemma shows that, if we have four
triangles and two 4-cocircuits as in a quasi rotor, then we do indeed have a quasi
rotor.

Lemma 2.11. Let M be an internally 4-connected binary matroid. Let {1, 2, . . . , 9}
be a set of distinct elements of M such that {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and
{3, 5, 7} are triangles, while {2, 3, 4, 5} and {5, 6, 7, 8} are cocircuits. Then
(4, 5, 6, 3, 7, {1, 2, 3}, {7, 8, 9}, E(M)− {1, 2, . . . , 9}) is a quasi rotor in M .

Proof. In M\4, the set {1, 2, 3, 5, 7} is a 5-element fan, so it is 3-separating. By
symmetry, {7, 8, 9, 5, 3} is 3-separating in M\6. Also M\4, 5 has {2, 3} as a cocircuit
and so has {1, 2, 3} as a 2-separating set. By symmetry, M\5, 6 has {7, 8, 9} as a 2-
separating set. Thus (4, 5, 6, 3, 7, {1, 2, 3}, {7, 8, 9}, E(M)−{1, 2, . . . , 9}) is, indeed,
a quasi rotor in M . �

In view of the last two lemmas, we shall modify Geelen and Zhou’s terminology
slightly. From now on, in an internally 4-connected binary matroid M , we shall
call ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) a quasi rotor with
central triangle {4, 5, 6} if {1, 2, 3}, {4, 5, 6}, and {7, 8, 9} are disjoint triangles in M
such that {2, 3, 4, 5} and {5, 6, 7, 8} are cocircuits and {3, 5, 7} is a triangle.

3. Outline

The proof of Theorem 1.3 is long, occupying the rest of the paper. In this section,
we outline the strategy of the proof. Let M be an internally 4-connected binary
matroid. In Section 4, we prove the theorem in the case when |E(M)| ≤ 12. Hence
we may assume that |E(M)| ≥ 13. In Theorem 2.7, we proved that, when M is
4-connected, it has an internally 4-connected minor N with |E(M)| − |E(N)| = 1.
Thus we may assume that M is not 4-connected. Then, by switching to the dual if
necessary, we may assume that M has a triangle T . Theorem 5.1 proves that either
T is the central triangle of a rotor, or T contains an element e such that M\e is
(4, 4, S)-connected.

In Section 6, we prove that, when M contains a quasi rotor, and hence when M
contains a rotor, M has a proper internally 4-connected minor N with |E(M)| −
|E(N)| ≤ 3. This enables us to assume that every triangle of M contains an element
e for which M\e is (4, 4, S)-connected.

In Section 7, we show that if M has a restriction isomorphic to M(K4), then M
has an internally 4-connected proper minor that is obtained by removing at most
two elements from M . This means that, in addition to assuming that M contains
no quasi rotor, we may also assume that M has no M(K4)-restriction.

Next we consider a triangle T in M and an element e of T for which M\e is
(4, 4, S)-connected. Then M\e has a 4-element fan, {a, b, c, d} say, where {a, b, c}
is a triangle and {b, c, d} is a triad. As M has no 4-element fans, {b, c, d, e} is a
cocircuit of M . Moreover, by orthogonality, T − e contains an element of {b, c, d}.
By symmetry, there are two possibilities:
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Figure 2. A bowtie.

(i) T contains d;
(ii) T contains b.

In the first case, M contains a structure consisting of two disjoint triangles, T1

and T2, and a 4-cocircuit D∗ that is contained in their union. We call such a
structure a bowtie in M . By orthogonality, |T1∩D∗| = 2 = |T2∩D∗|. Although the
matroid M we are dealing with need not be graphic, it will be convenient to use
modified graph diagrams to keep track of some of the circuits and cocircuits in M .
For example, we represent the bowtie ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as in Figure 2.
By convention, the cycles in the graph correspond to circuits of the matroid while
a circled vertex indicates a known cocircuit of M .

In Section 8, we prove some general lemmas that enable us to build up additional
structure surrounding a bowtie or other similar submatroid of M . In Section 9, we
prove the main theorem in case (ii) above by showing that, in that case, if M
has no bowties and has no M(K4)-restriction, then M has a proper internally
4-connected minor N with |E(M)| − |E(N)| ≤ 2.

The results described above put us into the position where we may assume that
M has a bowtie but M contains no quasi rotor and no M(K4)-restriction. What
we attempt to do next is to build up interlocking bowties. Formally, a string
of bowties is a sequence T1, D

∗
1 , T2, D

∗
2 , . . . , D∗

n−1, Tn such that T1, T2, . . . , Tn are
pairwise disjoint triangles, each D∗

i is a 4-cocircuit contained in Ti ∪ Ti+1, and
|D∗

j ∩ D∗
j+1| = 1 for all j with 1 ≤ j ≤ n − 2.

In Section 10, we prove that if M has a bowtie (T1, T2, D
∗
1) that cannot be

extended to a string T0, D
∗
0 , T1, D

∗
1 , T2 of bowties, then M has a proper internally

4-connected minor N with |E(M)| − |E(N)| ≤ 3 unless M is isomorphic to the
cycle matroid of a terrahawk.

It remains for us to consider the case when M has a bowtie and, from every
bowtie, we can build a string of bowties where we can specify the direction of this
building. In Section 11, we prove, in this case, that M has a proper internally
4-connected minor N with |E(M)| − |E(N)| ≤ 3 unless M is the cycle matroid of
a planar or Möbius quartic ladder. That result essentially completes the proof of
the main theorem. All that is left to show is that, when |E(M)| ≥ 13 and M is
the cycle matroid of a terrahawk or a planar or Möbius quartic ladder, M has an
internally 4-connected minor N with |E(M)| − |E(N)| = 4.

Our initial hope had been to determine all internally 4-connected matroids M
having no internally 4-connected minor N with 1 ≤ |E(M) − E(N)| ≤ 2. To
solve this problem, we would need to add to the list of exceptional matroids in
Theorem 1.3, the cycle and bond matroids of the planar and Möbius cubic ladders.
In addition, as the next lemma shows, we would need to add the cycle and bond
matroids of the line graphs of these ladders.

Lemma 3.1. Let G be an internally 4-connected cubic graph. Then the line
graph, L(G), of G is internally 4-connected. Moreover, there is no internally 4-
connected proper minor N of M(L(G)) with |E(M(L(G))) − E(N)| < 3.
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Proof. If G ∼= K4, then L(G) is isomorphic to the octahedron, and the lemma holds.
Thus we may assume that G 6∼= K4. Then |E(G)| ≥ 8 and, as G is internally 4-
connected, it has no triangles. Clearly L(G) is simple and 3-connected. If M(L(G))
is not internally 4-connected, it is straightforward to show that it has a (4, 3)-
violator (X, Y ) such that the subgraphs of L(G) induced by X and Y are connected
and have exactly three common vertices. The edges of G corresponding to these
vertices must form a triad in M(G) but these edges do not meet at a common
vertex of G. This implies that G is not internally 4-connected; a contradiction. We
conclude that M(L(G)) is internally 4-connected.

Corresponding to every edge e of G, there is a bowtie in L(G) induced by the
vertices of L(G) that correspond to e and its incident edges in G. It follows that
every edge f of L(G) is in two bowties that overlap in a triangle containing f . Now
let N be an internally 4-connected proper minor of M(L(G)). We may assume
that N is a minor of M(L(G)))\f for some edge f , otherwise N is a minor of some
M(L(G))/g and the latter has parallel edges, at least one of which must be deleted
to produce N . Now M(L(G)))\f has two edge-disjoint 4-element fans, and no
single-element deletion or contraction of it will destroy both of these fans. Hence
|E(M(L(G))) − E(N)| ≥ 2. �

The last lemma suggests that determining all the matroids for which exactly
three elements need to be removed to recover internal 4-connectivity is likely to be
complicated.

4. Small Matroids

In this section, we prove the main theorem for matroids with at most twelve
elements.

Theorem 4.1. Let M be an internally 4-connected binary matroid with at most
twelve elements. Then M has a proper internally 4-connected minor N with
|E(M)| − |E(N)| ≤ 3 unless M or its dual is the cycle matroid of K5, the cube
or the octahedron. If M is isomorphic to M(K5) or M∗(K5), then M has an in-
ternally 4-connected minor N with |E(M)|− |E(N)| = 4. If M is the cycle matroid
of the cube or the octahedron, then M has an M(K4)-minor but has no internally
4-connected proper minor N with |E(M)| − |E(N)| < 6.

The proof of this theorem will use the following result of Qin and Zhou [14,
Theorem 1.3]. We could use results of Zhou [17] to give more details about the
minimum number of elements we need to remove from M to recover internal 4-
connectivity. But, since it is not needed for the proof of the theorem, we omit these
details.

Theorem 4.2. Let M be an internally 4-connected binary matroid with no minor
isomorphic to any of M(K3,3), M∗(K3,3), M(K5), or M∗(K5). Then either M is
isomorphic to the cycle matroid of a planar graph, or M is isomorphic to F7 or F ∗

7 .

Proof of Theorem 4.1. Suppose first that M has a minor M ′ isomorphic to one of
M(K3,3), M∗(K3,3), M(K5), or M∗(K5). If M ′ is a proper minor of M , then the
theorem holds since |E(M)| ≤ 12. If M ′ = M , then M has an M(K4)-minor and
again the theorem holds. We may now assume that M has no minor isomorphic to
any of M(K3,3), M∗(K3,3), M(K5), or M∗(K5). Then, it follows by Theorem 4.2
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that we may assume that M is isomorphic to the cycle matroid of a planar graph
G.

Suppose that M has no minor isomorphic to the cycle matroid of the 5-spoked
wheel, W5. Then, by a result of Oxley [9, p.297], G is isomorphic to the octahedron,
K2,2,2, or its dual, the cube. The result is easily checked in these cases. Hence
we may assume that M(G) has an M(W5)-minor. Since G is planar and W5 is
isomorphic to its dual, we may, by switching to the dual if necessary, assume that
M(G) has the unique planar 3-connected single-element extension, M1, of M(W5)
as a minor. This extension is not internally 4-connected, so we may assume that
M(G) is a single-element extension or coextension of M1. But every such extension
or coextension has a 4-element fan and hence is not internally 4-connected. �

5. A Triangle Theorem

In this section, we prove the following result.

Theorem 5.1. Let T be a triangle of an internally 4-connected binary matroid M
with |E(M)| ≥ 13. Then either

(i) T is the central triangle of a rotor;
(ii) T contains an element e such that M\e is (4, 4, S)-connected.

Our proof of this theorem will use the following theorem of Geelen and Zhou [4,
Corollary 5.4].

Theorem 5.2. Let T be a triangle of an internally 4-connected binary matroid
with |E(M)| ≥ 13. Then either

(i) T is the central triangle of a rotor;
(ii) T contains an element e such that M\e is weakly 4-connected.

The proof of Theorem 5.1 has much in common with the proof of [13, Theorem
6.3]. A 3-separation (X, Y ) of a 3-connected matroid M is a (4, k, S)-violator if
either

(i) |X |, |Y | ≥ k + 1; or
(ii) (X, Y ) is non-sequential.

The next lemma [13, Lemma 2.11] simplifies the task of identifying a (4, 4, S)-
violator.

Lemma 5.3. Let N be a 3-connected matroid. Then (X, Y ) is a (4, 4, S)-violator
if and only if

(i) |X |, |Y | ≥ 5; or
(ii) X and Y are non-sequential and at least one is a quad.

Proof of Theorem 5.1. Let T = {x, y, z} and assume the theorem fails. If f ∈ T and
(F1, F2) is a (4, 4, S)-violator for M\f , then, as neither (F1 ∪f, F2) nor (F1, F2∪f)
is a 3-separation of M , we must have that T ∩ F1 6= ∅ 6= T ∩ F2. Let (Xy, Xz),
(Yx, Yz), and (Zx, Zy) be (4, 4, S)-violators for M\x, M\y, and M\z, respectively.
Then we may assume that y ∈ Xy and z ∈ Xz, that x ∈ Yx and z ∈ Yz, and that
x ∈ Zx and y ∈ Zy.

Lemma 5.4. If (Xy, Xz) ∼= (Xy ∪ f, Xz − f) for some element f of Xz, then
(Xy ∪ f, Xz − f) is a (4, 3, S)-violator of M\x.



INTERNALLY 4-CONNECTED BINARY MATROIDS 11

Proof. If (Xy, Xz) is non-sequential, then so is (Xy ∪ f, Xz − f). If (Xy, Xz) is
sequential, then |Xy|, |Xz| ≥ 5, so |Xy ∪ f |, |Xz − f | ≥ 4. �

Lemma 5.5. The element y is in cl(Xy − y).

Proof. Suppose y 6∈ cl(Xy−y). Then y is a coloop of (M\x)|Xy, so (Xy−y, Xz∪y) ∼=
(Xy, Xz). But Xz ∪ y ⊇ {y, z}, so (Xy − y, Xz ∪ y ∪ x) is a 3-separation of M . By
Lemma 5.4, (Xy − y, Xz ∪ y) is a (4, 3, S)-violator of M\x so |Xy − y|, |Xz ∪ y| ≥ 4.
Thus (Xy − y, Xz ∪ y ∪ x) is a (4, 3, S)-violator of M ; a contradiction. �

Lemma 5.6. Xz ∩ Yx 6= ∅

Proof. Suppose that Xz ∩ Yx = ∅. By Lemma 5.5 and symmetry, x ∈ cl(Yx − x).
But Yx − x ⊆ Xy, so x ∈ cl(Xy); a contradiction. �

Lemma 5.7. The element x is not in cl(Zy).

Proof. As y ∈ Zy, if x ∈ cl(Zy), then z ∈ cl(Zy); a contradiction. �

Lemma 5.8. Either

(i) |Xz ∩ Yx| ≥ 2; or
(ii) Yx is a 5-element fan of M\y and Xy ∩ Yx is a triangle.

Proof. Assume that |Xz ∩ Yx| < 2. Then, by Lemma 5.6, Xz ∩ Yx = {e} for some
element e. Suppose first that e ∈ cl(Xz ∩ Yz). Then e ∈ cl(Yz), so (Yx, Yz) ∼=
(Yx − e, Yz ∪ e). By Lemma 5.4, (Yx − e, Yz ∪ e) is a (4, 3, S)-violator for M\y.
Thus |Yx − e| ≥ 4. If x is not a coloop of M |(Yx − e), then x ∈ cl(Yx − e − x).
But Yx − e − x ⊆ Xy, so x ∈ cl(Xy); a contradiction. Hence x is a coloop of
M |(Yx − e). Thus (Yx, Yz) and (Yx − e− x, Yz ∪ e∪ x) are equivalent 3-separations
of M\y. Since x ∈ cl∗M\y(Yz ∪ e), we deduce that x ∈ cl∗M\y(Yx − e− x). Also, as
{x, z} ⊆ Yz ∪ e∪x, we have that y ∈ cl(Yz ∪ e∪x). Hence (Yx − e−x, Yz ∪ e∪x∪y)
is a 3-separation of M . Thus |Yx − e − x| ≤ 3. As |Yx − e| ≥ 4, we deduce that
|Yx| = 5 and Yx − e− x is a triangle or a triad of M . Since x ∈ cl∗M\y(Yx − e− x)
and M is binary, Yx − e− x is a triangle. Hence Yx is a 5-element sequential set in
M\y, and Yx − e − x, which equals Xy ∩ Yx, is a triangle. Since M\y is binary, it
follows that Yx is a 5-element fan of M\y. Thus (ii) holds when e ∈ cl(Xz ∩ Yz).

We may now assume that e 6∈ cl(Xz ∩ Yz). Then (Xy, Xz) ∼= (Xy ∪ e, Xz − e)
in M\x and, by Lemma 5.4, |Xz − e| ≥ 4. By Lemma 5.5, x ∈ cl(Yx − x), so
x ∈ cl(Xy ∪e). Thus (Xy ∪e∪x, Xz −e) is a 3-separation of M . Hence |Xz −e| ≤ 3;
a contradiction. �

Lemma 5.9. The set Xy is not a quad of M\x.

Proof. Suppose that Xy is a quad of M\x. We shall argue that this implies that
M\y or M\z is (4, 4, S)-connected; a contradiction. Using Lemma 5.8 and sym-
metry, we have, since Xy is not a 5-element fan of M\x, that |Xy ∩ Yz| ≥ 2. Now
Xy ∩ Yx 6= ∅ otherwise, since y ∈ cl(Xy − y), we have that y ∈ cl(Yz); a contra-
diction. Thus |Xy ∩ Yz | = 2 and |Xz ∩ Yx| ≥ 2. Now λM\y(Yx) = 2 = λM\x(Xz).
By Lemma 5.5, x ∈ cl(Yx − x) and y ∈ cl(Xy − y), so λM\x,y(Yx − x) = 2 =
λM\x,y(Xz). Thus λM\x,y((Yx − x) ∩ Xz) + λM\x,y((Yx − x) ∪ Xz) ≤ 4, that is,
λM\x,y(Yx ∩ Xz) + λM\x,y(Yz ∩ Xy) ≤ 4. But λM\x,y(Yx ∩ Xz) = λM (Yx ∩ Xz) as
z ∈ E(M)−{x, y}−(Yx∩Xz) and y ∈ cl(Xy−y), so x ∈ cl(E(M)−{x, y}−(Yx∩Xz)).
Similarly, λM\x,y(Yz ∩ Xy) = λM (Yz ∩ Xy). As |Yx ∩ Xz|, |Yz ∩ Xy| ≥ 2, we have
λM (Yx ∩ Xz) = 2 = λM (Yz ∩ Xy). Thus |Yx ∩ Xz| ≤ 3.
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Let Xy ∩Yx = {1} and Xy ∩Yz = {2, 3}. We shall show next that we may choose
Yx to be a quad of M\y. This is certainly true if |Yx ∩Xz| = 2, so we assume that
|Yx ∩ Xz| = 3. Then Yx ∩ Xz is a triangle or a triad of M , and |Yx| = 5. Suppose
that Yx is a sequential 3-separating set in M\y. Then Yx is a 5-element fan in M\y.
If Yx∩Xz is a triad of M , then there is a triangle contained in Yx meeting this triad,
so M has a 4-element fan; a contradiction. Hence Yx ∩ Xz is a triangle {4, 5, 6} of
M . Now x 6∈ cl(Yz) otherwise y ∈ cl(Yz). Moreover, by Lemma 5.5, x ∈ cl(Yx − x).
Thus we may assume that {4, 5, x} is a triad of M\y and {4, x, 1} is a triangle.
Then M has {4, 5, x, y} as a cocircuit. But {1, 2, 3, y} is a circuit. Thus we have
a contradiction to orthogonality. We may now assume that Yx is non-sequential.
Since |Yx| = 5, it follows that Yx contains a quad Y ′

x of M\y. Since z ∈ Yz , we
must have that x ∈ Y ′

x. Thus, by replacing (Yx, Yz) by (Y ′
x, E(M\y)−Y ′

x), we may
indeed assume that Yx is a quad of M\y.

Let Xz ∩ Yx = {4, 5}. Then M has {1, 2, 3, x, y}, {1, 4, 5, x, y}, and {2, 3, 4, 5} as
cocircuits, and {1, 2, 3, y} and {1, 4, 5, x} as circuits. By Lemma 5.6 and symmetry,
either |Xy ∩ Zx| ≥ 2, or |Xy ∩ Zx| = 1. In the latter case, by Lemma 5.8, Zx is a
5-element fan of M\z and Xz ∩ Zx is a triangle. Similarly, either |Yx ∩ Zy| ≥ 2, or
|Yx ∩ Zy| = 1 and Zy is a 5-element fan of M\z.

Suppose that |Xy ∩ Zx| = 1. Then |Zx| = 5. As |E(M)| ≥ 13, we deduce that
|Zy| 6= 5, so |Yx ∩ Zy| ≥ 2. Assume that the element, w, of Xy ∩ Zx is also in Yx,
that is, w = 1. As Xy is a circuit, 1 ∈ cl(Xy − 1), so 1 ∈ cl(Zy). As |Yx ∩ Zy| ≥ 2
and Yx is a circuit, we deduce that x ∈ cl(Zy); a contradiction to Lemma 5.7.
Hence we may assume that w ∈ Yz, so, without loss of generality, w = 2. Then
1 ∈ Zy. Consider Zx. It is a 5-element fan of M\z having Xz ∩ Zx as a triangle
avoiding {2, x}. As {1, 4, 5, x} is a cocircuit of M\y and {1, x} ∩ (Xz ∩ Zx) = ∅, it
follows, by orthogonality, that either {4, 5} ⊆ Xz ∩ Zx, or {4, 5} ∩ (Xz ∩ Zx) = ∅.
But |Yx ∩ Zy| ≥ 2, so {4, 5} ∩ Zy 6= ∅. Hence {4, 5} ⊆ Zy, so {1, 4, 5} ⊆ Zy and
x ∈ cl(Zy); a contradiction to Lemma 5.7.

We may now assume that |Xy ∩ Zx| ≥ 2. Since y 6∈ cl(Zx), we must have
|Xy ∩ Zx| = 2. Hence we need only consider the following cases:

(a) {2, 3} ⊆ Zx and 1 ∈ Zy; and
(b) {1, 3} ⊆ Zx and 2 ∈ Zy.

Consider case (a). If {4, 5} ⊆ Zx, then 1 ∈ cl(Zx), so y ∈ cl(Zx); a contradiction.
If {4, 5} ⊆ Zy, then x ∈ cl(Zy); a contradiction. Thus we may assume that 4 ∈ Zx

and 5 ∈ Zy. As {2, 3, 4, 5} is a cocircuit of M , it follows that (Zx, Zy) ∼= (Zx∪5, Zy−
5) in M\z. Now 1 ∈ cl(Zx∪5) and so y ∈ cl(Zx∪5). Thus (Zx∪5∪y∪z, Zy−5−y)
is a 3-separating partition of M . Hence |Zy − 5 − y| ≤ 3. We deduce that Zy is
sequential in M\z. Thus, by Lemma 5.3, |Zy| = 5, so Zy − 5 is a 4-element fan in
M\y. This is a contradiction since {1, y} ⊆ cl(Zx ∪ 5).

Consider case (b). If {4, 5} ⊆ Zy, then (Zx, Zy) ∼= (Zx − 3, Zy ∪ 3) in M\z.
But 1 ∈ cl(Zy ∪ 3), so x ∈ cl(Zy ∪ 3). Thus (Zx, Zy) ∼= (Zx − 3 − x, Zy ∪ 3 ∪ x).
Hence |Zx − 3 − x| ≤ 3 and Zx is sequential in M\z. Thus |Zx| = 5, so Zx − 3
is a 4-element fan in M\x. This is a contradiction since {1, x} ⊆ cl(Zy ∪ 3). If
{4, 5} ⊆ Zx, then Yx ∩ Zy = ∅; a contradiction. Thus we may assume that 4 ∈ Zx

and 5 ∈ Zy. Then |Yx ∩ Zy| = 1, so Zy is a 5-element fan in M\z and Yz ∩ Zy is
a triangle. But {1, 2, 3, x, y} is a cocircuit of M meeting the circuit Yz ∩ Zy in a
single element thereby contradicting orthogonality. �
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We are now ready to complete the proof of the theorem. As |E(M)| ≥ 13, by
Theorem 5.2, either T is the central triangle of a rotor, or T contains an element
e such that M\e is weakly 4-connected. Assume that T is not the central triangle
of a rotor. Then, without loss of generality, we may assume that M\x is weakly 4-
connected. But none of M\x, M\y, or M\z is (4, 4, S)-connected. Hence M\x has a
quad, which we may take to be Xy. Thus we have a contradiction to Lemma 5.9. �

6. The Quasi Rotor Case

The purpose of this section is to prove the following result.

Theorem 6.1. Let M be an internally 4-connected binary matroid having
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) as a quasi rotor. Sup-
pose that |E(M)| ≥ 13. Then either

(i) M\1, M\9, M\1/2, or M\9/8 is internally 4-connected; or
(ii) M has triangles {6, 8, 10} and {2, 4, 11} such that |{1, 2, . . . , 11}| = 11, and

M\3, 4/5 is internally 4-connected.

Lemma 6.3 below will be useful not only in the proof of the last theorem but
also elsewhere in the paper. We shall use the following preliminary result.

Lemma 6.2. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and ({1, 7, 8}, {4, 5, 6},
{5, 6, 7, 8}) be bowties in an internally 4-connected binary matroid M where
|{1, 2, . . . , 8}| = 8 and |E(M)| ≥ 13. Then M\1 is internally 4-connected.

Proof. Assume that M\1 is not internally 4-connected and let (X1, Y1) be a (4, 3)-
violator of it. By symmetry, we may assume that {2, 7} ⊆ X1 and {3, 8} ⊆ Y1.

Suppose first that {5, 6} ⊆ X1. Then, as (X1 ∪ 8, Y1 − 8) ∼= (X1, Y1) and
(X1∪8∪1, Y1−8) is a 3-separation of M , we deduce that Y1 is a 4-element fan of M\1
having a fan ordering (y1, y2, y3, 8) where {y2, y3, 8} is a triad. Then {y2, y3, 8, 1}
is a cocircuit of M . By orthogonality with the triangle {1, 2, 3}, we deduce that
3 ∈ {y2, y3}, so we may suppose that y3 = 3. The triangle {y1, y2, y3} and the
cocircuit {2, 3, 4, 5} imply that 4 ∈ {y1, y2}. If y2 = 4, then {4, 3, 8, 1} is a cocircuit
of M . Thus, for Z = {1, 2, . . . , 8}, we have λ(Z) = r(Z)+r∗(Z)−|Z| ≤ 5+5−8 = 2;
a contradiction since |E(M)| ≥ 13. If y1 = 4, then {4, y2, 3} is a triangle and
{y2, 3, 8, 1} is a cocircuit. Thus, for Z ′ = {1, 2, . . . , 8, y2}, we have λ(Z ′) ≤ 2; a
contradiction. We deduce that {5, 6} 6⊆ X1. By symmetry, {5, 6} 6⊆ Y1.

By symmetry again, we may now assume that 5 ∈ X1 and 6 ∈ Y1. Consider the
location of 4. Suppose first that 4 ∈ X1. Then {2, 7, 5, 4} ⊆ X1 and {3, 8, 6} ⊆ Y1.
Now (X1 ∪ 6, Y1 − 6) ∼= (X1, Y1) so we have reduced to the previous case unless Y1

is a 4-element fan of M\1 having (y1, y2, y3, 6) as a fan ordering where {y2, y3, 6}
is a triangle. Consider the exceptional case. Since 3 ∈ cl∗M\1(X1), we deduce that
y1 = 3, so, as 8 ∈ {y2, y3}, we may take y3 = 8. Then λ({1, 2, . . . , 8, y2}) ≤ 2; a
contradiction.

Finally, with 5 ∈ X1 and 6 ∈ Y1, we may assume that 4 ∈ Y1. Then (X1−5, Y1∪
5) ∼= (X1, Y1) and we have reduced to an earlier case unless X1 is a 4-element
fan having an ordering (x1, x2, x3, 5) where {x2, x3, 5} is a triangle of M . Thus
{x1, x2, x3, 1} is a cocircuit of M . The cocircuit {2, 3, 4, 5} implies that 2 ∈ {x2, x3}
so we may take 2 = x3. Now 7 ∈ {x1, x2}. If x2 = 7, then {7, 2, 5} is a triangle of
M and λ({1, 2, . . . , 8}) ≤ 2; a contradiction. If x1 = 7, then λ({1, 2, . . . , 8, x2}) ≤ 2;
a contradiction. We conclude that the lemma holds. �
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Lemma 6.3. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in an internally 4-
connected binary matroid M where |E(M)| ≥ 13. Assume that M\1 is not in-
ternally 4-connected. Then one of the following holds:

(i) M\6 is internally 4-connected;
(ii) M has a triangle {7, 8, 9} and a 4-cocircuit C∗ containing {6, 7, 8} where

{7, 8, 9} ∩ {1, 2, . . . , 6} = ∅ and |C∗ ∩ {4, 5}| = 1; or
(iii) M has a triangle {c, d, e} and a cocircuit {a, b, d, 6} where c, d, and e are

in {a, b}, {4, 5}, and {2, 3}, respectively, and |{1, 2, 3, 4, 5, 6, a, b}| = 8.

Moreover, M\6 is (4, 4, S)-connected unless {4, 5, 6} is the central triangle of a
quasi rotor whose other triangles are {1, 2, 3}, {x, y, 7}, and {7, 8, 9} and whose
cocircuits are {2, 3, 4, 5} and {y, 6, 7, 8}, for some x in {2, 3} and some y in {4, 5}.

Proof. Assume that M\6 is not internally 4-connected. Then M\6 has a (4, 3)-
violator (X6, Y6). If possible, choose (X6, Y6) to be a (4, 4, S)-violator. As M is
internally 4-connected, we may assume that 4 ∈ X6 and 5 ∈ Y6.

6.3.1. If X6 or Y6 contains {1, 2, 3}, then (ii) holds, min{|X6|, |Y6|} = 4, and
(X6, Y6) is sequential. Moreover, M\6 is (4, 4, S)-connected.

By symmetry, we may assume that {1, 2, 3} ⊆ X6. Then (X6 ∪ 5, Y6 − 5) ∼=
(X6, Y6) in M\6. Moreover, (X6 ∪ 5 ∪ 6, Y6 − 5) is a 3-separation of M . Thus
|Y6−5| ≤ 3 so |Y6| = 4. Hence, by Lemma 2.8, Y6 contains a triangle {7, 8, 9} of M
that is disjoint from {1, 2, . . . , 6}, and Y6 contains a triad T ∗ of M\6 that contains
5. We may assume that T ∗ meets {7, 8, 9} in {7, 8}. Then T ∗ ∪ 6 = {5, 6, 7, 8}
and so (ii) holds in this case. Observe also that min{|X6|, |Y6|} = 4 and (X6, Y6) is
sequential. Thus (X6, Y6) is not a (4, 4, S)-violator. Hence (6.3.1) holds.

Now let {x, y, z} = {1, 2, 3}. Without loss of generality, assume that {x, y} ⊆ X6

and z ∈ Y6. Then, as |Y6| ≥ 4, we have that (X6 ∪ z ∪ 5, Y6 − z − 5) ∼= (X6, Y6).
Thus (X6 ∪ z ∪ 5 ∪ 6, Y6 − z − 5) is an exactly 3-separating partition of M . Hence
|Y6 − z − 5| ≤ 3, so |Y6| = 4 or |Y6| = 5.

6.3.2. If Y6 = {a, b, 5, z}, then (iii) holds and M\6 is (4, 4, S)-connected.

The set Y6 is a fan of M\6 having an ordering of the form (y1, y2, y3, z) where
{y2, y3, z} is a triangle of M . Now {2, 3, 4, 5} is a cocircuit of M\6, so |{2, 3, 4, 5}∩
{y2, y3, z}| ∈ {0, 2}. Thus, by symmetry, either z = 2 and y3 = 5; or z = 1 and
y1 = 5. In the first case, (iii) holds. In the second case, {y2, y3, 1} is a triangle of
M that is disjoint from {2, 3, 4, 5, 6} while {5, y2, y3, 6} is a cocircuit of M . Hence
({1, y2, y3}, {5, 6, 4}, {y2, y3, 5, 6}) is a bowtie of M . Thus, by Lemma 6.2, M\1 is
internally 4-connected; a contradiction. We conclude that (6.3.2) holds.

We may now assume that |Y6| = 5. Then Y6 has a sequential ordering of the
form (9, 8, 7, 5, z). Thus Y6 is a 5-element fan in M\6 having {9, 8, 7} as a triangle
that avoids {1, 2, 3, 4, 5, 6}. We may also assume that {7, 5, z} is a triangle and
{8, 7, 5} is a triad of M\6. Thus {5, 6, 7, 8} is a cocircuit of M . By orthogonality
and symmetry, we may assume that z = 3. Thus M has {1, 2, 3}, {4, 5, 6}, {7, 8, 9},
and {3, 5, 7} as triangles, and {2, 3, 4, 5} and {5, 6, 7, 8} as cocircuits. We conclude
that {4, 5, 6} is the central triangle of a quasi rotor. �

Lemma 6.4. In an internally 4-connected binary matroid M , let
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) be a quasi rotor. If
|E(M)| ≥ 13, then
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(i) the only triangles containing 5 are {3, 5, 7} and {4, 5, 6}; and
(ii) the only cocircuits of M contained in {1, 2, . . . , 9} are {2, 3, 4, 5}, {5, 6, 7, 8},

and {2, 3, 4, 6, 7, 8}.

Proof. Let Z = {1, 2, . . . , 9}. Then the specified triangles and cocircuits imply that
r(Z) ≤ 5 and r∗(Z) ≤ 7. If Z contains a cocircuit other than the three specified
in (ii), then r∗(Z) ≤ 6, so λ(Z) ≤ 2. On the other hand, if 5 is in a triangle T
different from {4, 5, 6} or {3, 5, 7}, then the cocircuits {2, 3, 4, 5} and {5, 6, 7, 8} and
the other triangles imply that T = {2, 5, 8}. Thus r(Z) ≤ 4 and again λ(Z) ≤ 2.
We conclude that if (i) or (ii) fails, then λ(Z) ≤ 2. Thus, when |E(M)| ≥ 13, we
contradict the fact that M is internally 4-connected. �

Lemma 6.5. Let M be an internally 4-connected binary matroid having
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) as a quasi rotor. Sup-
pose that |E(M)| ≥ 13 and M\9 is not internally 4-connected. Then M has a
4-cocircuit C∗ that meets {1, 2, . . . , 9} in {8, 9}. Moreover, either

(i) M has a triangle that contains {6, 8} and an element of C∗ − {8, 9}; or
(ii) M has a triangle that contains C∗ − {8, 9} and an element e that avoids

{2, 3, . . . , 9}.

Proof. Consider the bowtie ({4, 5, 6}, {7, 8, 9}, {5, 6, 7, 8}) in M . By assumption,
M\9 is not internally 4-connected. Moreover, M\4 is not internally 4-connected.
Thus, by Lemmas 6.3 and 6.4, either

(a) M has a triangle {10, 11, 12} disjoint from {4, 5, 6, 7, 8, 9} and a 4-cocircuit
containing {9, 10, 11} and exactly one of 7 and 8; or

(b) M has a triangle {c, d, 6} and a cocircuit {a, b, d, 9} where c and d are in
{a, b} and {7, 8}, respectively, and {a, b} ∩ {4, 5, 6, 7, 8, 9} = ∅; or

(c) {7, 8, 9} is the central triangle of a quasi rotor
({4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {5, 6, 7, 8}, {y, 9, 10, 11}, {x, y, 10}) where
x ∈ {5, 6} and y ∈ {7, 8}.

In each case, we obtain a 4-cocircuit C∗ containing 9 and exactly one of 7 and 8.
Moreover, C∗ avoids {4, 5, 6}. Assume 7 ∈ C∗. Then, in each case, orthogonality
implies that 3 ∈ C∗, and 1 or 2 is in C∗. Thus C∗ ⊆ {9, 7, 3, 1, 2} and we have a
contradiction to Lemma 6.4. Hence 8 ∈ C∗. Moreover, C∗ meets {4, 5, 6, 7, 8, 9}
in {8, 9}. If C∗ meets {1, 2, 3}, then |C∗ ∩ {1, 2, 3}| = 2 and again we contradict
Lemma 6.4. Thus C∗ meets {1, 2, . . . , 9} in {8, 9}.

In cases (b) and (c), using Lemma 6.4, we get that the triangles {c, d, 6} and
{x, y, 10} contain {6, 8}, so (i) holds. In case (a), the triangle {10, 11, 12} satisfies
the condition in (ii) since the cocircuit {2, 3, 4, 5} implies that 12 6∈ {2, 3}. �

Lemma 6.6. In an internally 4-connected binary matroid M , let
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) be a quasi rotor.
Then

(i) M\1 is internally 4-connected; or
(ii) M\1/2 is internally 4-connected; or
(iii) M has a triangle containing {2, 4}.

Proof. Assume that neither (i) nor (iii) holds. Then, as {2, 3, 4, 5} is a cocircuit
and Lemma 6.4 implies that M has no triangle containing {2, 5}, it follows that
{1, 2, 3} is the only triangle of M containing 2. Moreover, by Lemma 6.5, M has a
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4-cocircuit {1, 2, a, b} and a triangle {a, b, c} where {a, b} avoids {1, 2, . . . , 9}. Since
3 is in a triangle, M\3 is 3-connected. Now (2, 4, 5, 6) is a fan ordering of a fan
in M\3. Since 2 is in no triangles of M\3, it is a fan end in M\3. Thus M\3/2
is 3-connected. But M/2 has {3, 1} as a circuit, so M/2\3 ∼= M/2\1. Hence
M/2\1 is 3-connected. Assume it is not internally 4-connected. Then it has a
(4, 3)-violator (X, Y ).

If X or Y , say X , contains {3, 4, 5}, then (X ∪ 2 ∪ 1, Y ) is a 3-separation of
M ; a contradiction. Hence we may assume that neither X nor Y contains
{3, 4, 5}. Without loss of generality, |X ∩ {3, 4, 5, 6, 7}| ≥ 3. Suppose first that
|X ∩ {3, 4, 5, 6, 7}| = 4. Then |X ∩ {3, 4, 5}| = 2. Let {y} = Y ∩ {3, 4, 5, 6, 7}. The
triangles {3, 5, 7} and {4, 5, 6} imply that (X, Y ) ∼= (X ∪ y, X − y) in M\1/2. If
|Y −y| ≥ 4, then, as X∪y ⊇ {3, 4, 5}, we obtain a contradiction. Hence |Y −y| = 3.
Now Y is a 4-element fan in M\1/2 containing a triangle {y2, y3, y} and a triad
{y1, y2, y3}. Moreover, {y1, y2, y3}∩{1, 2, . . . , 7} = ∅. Since {2, 3, 4, 5} is a cocircuit
of M and y ∈ {3, 4, 5}, orthogonality implies that {y2, y3, y, 2} is a circuit of M .
The triangle {1, 2, 3} of M avoids {y1, y2, y3}. Thus {y1, y2, y3, 1} is not a cocircuit
of M , so {y1, y2, y3} is a triad of M . Hence {y1, y2, y3} avoids {1, 2, . . . , 9}. Now M
has a cocircuit {1, 2, a, b} and a triangle {a, b, c} where {a, b} avoids {1, 2, . . . , 9}.
Then {a, b, c} avoids {y1, y2, y3}. But |{1, 2, a, b}∩ {y2, y3, y, 2}| = 1, so we contra-
dict orthogonality. We deduce that |X ∩ {3, 4, 5, 6, 7}| = 3.

Now either

(a) X spans {3, 4, 5, 6, 7}; or
(b) X ∩ {3, 4, 5, 6, 7} = {3, 5, 7}; or
(c) X ∩ {3, 4, 5, 6, 7} = {4, 5, 6}.

In case (a), let Y ∩ {3, 4, 5, 6, 7} = {y1, y2}. Then (X, Y ) ∼= (X ∪ y1, Y − y1). As
{y1, y2} ⊆ clM\1/2(X), we must have |Y | ≥ 5. Hence |Y − y1| ≥ 4. As |(X ∪ y1) ∩
{3, 4, 5, 6, 7}| = 4, we obtain a contradiction as in the previous paragraph.

Next consider case (b), that is, {3, 5, 7} ⊆ X and {4, 6} ⊆ Y . Suppose that
8 ∈ X . The cocircuit {5, 6, 7, 8} implies that (X ∪ 6, Y − 6) ∼= (X, Y ). Since
|(X ∪ 6)∩{3, 4, 5, 6, 7}| = 4, we again obtain a contradiction as above unless Y is a
4-element fan in M\1/2. In the exceptional case, Y contains a triad T ∗ of M\1/2
containing 6. As 6 is not in a triad of M , we have that T ∗ ∪ 1 is a cocircuit of
M meeting the triangle {1, 2, 3} in a single element; a contradiction. We may now
assume that 8 ∈ Y . In that case, we consider the location of 9 supposing first that
it is in X . Then X ⊇ {3, 5, 7, 9} and Y ⊇ {4, 6, 8}, so (X, Y ) ∼= (X ∪ 8, Y − 8).
Thus we have reduced to an earlier case unless Y is a 4-element fan of M\1/2
containing a triangle {y2, y3, 8} and a triad {y1, y2, y3}. This triad contains {4, 6},
so {y1, y2, y3, 1} is a cocircuit of M meeting the triangle {1, 2, 3} in a single element;
a contradiction.

We may now assume that 9 ∈ Y , so X ⊇ {3, 5, 7} and Y ⊇ {4, 6, 8, 9}. Then
(X, Y ) ∼= (X − 7, Y ∪ 7). As Y ∪ 7 spans {3, 4, 5, 6, 7}, we have reduced to case (a),
unless |X − 7| = 3. I the exceptional case, X − 7 is a triad of M\1/2 containing
{3, 5}. Hence (X − 7)∪ 1 is a 4-cocircuit of M containing {1, 3, 5} but meeting the
circuit {4, 5, 6} in a single element; a contradiction. This completes the elimination
of case (b).

Now consider case (c), that is, X ⊇ {4, 5, 6} and Y ⊇ {3, 7}. Then (X, Y ) ∼=
(X − 5, Y ∪ 5), so we have reduced to a case that is symmetric to case (b) unless
X − 5 is a triad of M\1/2. In the exceptional case, as X − 5 contains {4, 6}, it
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follows that (X − 5) ∪ 1 is a cocircuit of M . But this cocircuit meets the triangle
{1, 2, 3} in a single element; a contradiction. We conclude that M\1/2 is internally
4-connected. �

We are now ready to prove that, when M contains a quasi rotor, it has a proper
internally 4-connected minor N such that |E(M)| − |E(N)| ≤ 3.

Proof of Theorem 6.1. Assume that none of M\1, M\9, M\1/2, or M\9/8 is in-
ternally 4-connected. By Lemma 6.6 and symmetry, M has triangles {6, 8, 10} and
{2, 4, 11}. Let Z = {1, 2, . . . , 9}. As |E(M)| ≥ 13, we must have λM (Z) ≥ 3. But
r(Z) ≤ 5 and r∗(Z) ≤ 7, so equality must hold in the last three inequalities. The
elements 10 and 11 are distinct, otherwise {2, 4, 6, 8} is a circuit of M and r(Z) ≤ 4;
a contradiction. Similarly, neither 10 nor 11 is in {1, 2, . . . , 9}, otherwise r(Z) ≤ 4.

Next we observe that

6.7.1. M has no 4-cocircuit containing {10, 11}.

Assume the contrary. Then the triangles of M imply, by orthogonality, that
{4, 6, 10, 11} is a cocircuit of M . Let Z ′ = {2, 3, 4, 5, 6, 7, 8, 10, 11}. Then r∗(Z ′) ≤ 6
and r(Z ′) ≤ 5, so λM (Z ′) ≤ 2; a contradiction since |E(M)| ≥ 13. Hence (6.7.1)
holds.

Now, since 3 is in a triangle of M , the matroid M\3 is 3-connected. This matroid
has {2, 4, 5, 6} as a fan. Moreover, 6 is a fan end unless M\3 has a triad containing
6 and one of 4 and 5. In the exceptional case, M has a 4-cocircuit containing {3, 6}
and 4 or 5. By orthogonality, this cocircuit also contains 1 or 2, so we contradict
Lemma 6.4. We deduce that 6 is a fan end in M\3, so M\3, 6 is 3-connected. The
last matroid has {5, 7, 8, 9} as a fan. Since M has {3, 5, 7} and {4, 5, 6} as its only
triangles containing 5, it follows that 5 is a fan end in M\3, 6, so M\3, 6/5 is 3-
connected. As M/5 has 4 and 6 in parallel, we deduce that M\3, 4/5 is 3-connected.

Suppose that M\3, 4/5 is not internally 4-connected. Then this matroid has a
(4, 3)-violator (X, Y ). Thus M/5 has (X ′, Y ′) as a 3-separation where we adjoin 3
to whichever of X and Y contains 7, and 4 to whichever of X and Y contains 6.
Then r(X ′ ∪ 5) + r(Y ′ ∪ 5) = r(M) + 3. If X ′ or Y ′, say X ′, contains {6, 7, 8} or
{2, 3, 4}, then (X ′ ∪ 5, Y ′) is a 3-separation of M ; a contradiction. Thus, as M/5
has {3, 7} and {4, 6} as circuits, we may assume that neither X nor Y contains
{6, 7, 8} or {2, 6, 7}.

Suppose next that |X ∩ {2, 6, 7, 8}| = 3 and let Y ∩ {2, 6, 7, 8} = {y}. Then
y ∈ {6, 7} and, as (X, Y ) ∼= (X ∪ y, Y − y), we reduce to the case treated in
the last paragraph unless Y is a 4-element fan in M\3, 4/5 having {y2, y3, y} as
a triad and {y1, y2, y3} as a triangle. If y = 6, then, since Y avoids {2, 8}, we
deduce, by orthogonality with the triangles {2, 6, 11} and {6, 8, 10} of M\3, 4/5,
that {y2, y3} = {10, 11}. It follows that M has {4, 6, 10, 11} as a cocircuit; a
contradiction to (6.7.1). Hence y 6= 6, so y = 7. Then orthogonality with the
triangles {1, 2, 7} and {7, 8, 9} of M\3, 4/5 implies that {y2, y3} = {1, 9}. It follows
that {3, 1, 7, 9} is a cocircuit of M ; a contradiction to Lemma 6.4.

We may now assume that |X ∩ {2, 6, 7, 8}| = 2 = |Y ∩ {2, 6, 7, 8}|. Then, by
symmetry, we may suppose that either

(a) X ⊇ {6, 7} and Y ⊇ {2, 8}; or
(b) X ⊇ {7, 8} and Y ⊇ {2, 6}.
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Consider case (a) and suppose first that 9 ∈ X . Then (X, Y ) ∼= (X ∪ 8, Y − 8),
so we have reduced to an earlier case unless Y is a 4-element fan of M\3, 4/5
having {y1, y2, y3} as a triad and {y2, y3, 8} as a triangle. Since this triangle avoids
{5, 6, 7}, orthogonality with the cocircuits {5, 6, 7, 8} and {2, 3, 4, 5} of M implies
that {y2, y3, 8, 5} is a circuit of M and 2 ∈ {y2, y3}. As {y1, y2, y3} is a triad of
M\3, 4/5, we deduce from the triangles {1, 2, 7} and {2, 6, 11} of M\3, 4/5 that
{y1, y2, y3} = {1, 2, 11}. The triangles {1, 2, 3} and {2, 4, 11} of M imply that
{1, 2, 11} is a triad of M ; a contradiction.

Still in case (a), we may now assume that 9 ∈ Y and, by symmetry, that 1 ∈ Y .
Then (X − 7, Y ∪ 7) ∼= (X, Y ) and we reduce to an earlier case unless X is a 4-
element fan of M\3, 4/5. In the exceptional case, X contains a triangle {x2, x3, 7}
and a triad {x1, x2, x3}. Thus {x2, x3, 7} is a triangle of M , otherwise {x2, x3, 7, 5}
is a circuit of M having a single common element with the cocircuit {2, 3, 4, 5}. By
orthogonality with the cocircuit {5, 6, 7, 8} of M , we deduce that 6 ∈ {x2, x3}, so
we can take x3 = 6. Then {x1, x2, 6} is a triad of M\3, 4/5 avoiding {2, 8}. Hence
{x1, x2} = {10, 11}, so {4, 6, 10, 11} is a cocircuit of M , contradicting (6.7.1).

Finally, consider case (b). Suppose first that 1 ∈ X . Then X ⊇ {7, 8, 1} and
Y ⊇ {2, 6}, so (X ∪ 2, Y − 2) ∼= (X, Y ). Hence we reduce to an earlier case unless
Y is a 4-element fan of M\3, 4/5 containing {y2, y3, 2} as a triangle and {y1, y2, y3}
as a triad. Moreover, 6 ∈ {y1, y2, y3}. Then the triangles {2, 6, 11} and {6, 8, 10}
of M\3, 4/5 imply that {6, 10, 11} is a cocircuit of M\3, 4. Hence {4, 6, 10, 11} is a
cocircuit of M ; a contradiction to (6.7.1). We may now assume that 1 ∈ Y . Then
(X, Y ) ∼= (X −7, Y ∪7) and we have reduced to an earlier case unless M\3, 4/5 has
X−7 as a triad. In the exceptional case, X−7 contains 8 but avoids 6 and 7. Thus
X − 7 contains 9 and 10. Hence {8, 9, 10} is a triad of M\3, 4/5. By orthogonality,
this set is also a triad of M ; a contradiction. We are now able to conclude that
M\3, 4/5 is internally 4-connected. �

7. An M(K4)-restriction

In this section, we shall prove the main result when M has an M(K4)-restriction
but no triangle of M is the central triangle of a quasi rotor.

Theorem 7.1. Let M be a binary internally 4-connected matroid having at least 13
elements. Assume that no triangle of M is the central triangle of a quasi rotor and
that M has a restriction isomorphic to M(K4). Then M has a proper internally
4-connected minor M ′ with |E(M)| − |E(M ′)| ≤ 2.

Proof. We may assume that no single-element deletion of M is internally 4-
connected. Let N be a restriction of M that is isomorphic to M(K4).

Lemma 7.2. No cocircuit of M is contained in E(N).

Proof. We know rM (E(N)) = 3. If E(N) contains a cocircuit of M , then
r∗M (E(N)) ≤ 5, so λM (E(N)) ≤ 2. Hence |E(M)| ≤ 9; a contradiction. �

We now label N so that its triangles are {1, 2, 3}, {1, 5, 6}, {2, 4, 6}, and {3, 4, 5}.
By Theorem 5.1, since no triangle of M is the central triangle of a quasi rotor, each
triangle contains an element e such that M\e is (4, 4, S)-connected.

Lemma 7.3. If M\1 is (4, 4, S)-connected, then M has a 4-cocircuit that meets
E(N) in either {1, 3, 5} or {1, 2, 6}. Moreover, M\1 has at most two 4-element fans,
including at most one containing {3, 4, 5} and at most one containing {2, 4, 6}.
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Proof. Clearly M\1 has a 4-element fan {e1, e2, e3, e4} where {e1, e2, e3} is a triangle
and {e2, e3, e4} is a triad. As M is internally 4-connected, {e2, e3, e4, 1} is a cocircuit
of M . By orthogonality with the circuits {1, 5, 6} and {1, 2, 3} of M , it follows that
{e2, e3, e4} contains exactly one of 5 and 6 and contains exactly one of 2 and 3.
If {e2, e3, e4} contains {2, 5}, then it must contain 4. Hence M has {1, 2, 4, 5} as
a cocircuit contradicting Lemma 7.2. By symmetry, we deduce that {e2, e3, e4}
contains either {2, 6} or {3, 5}. Moreover, by Lemma 7.2 again, {e2, e3, e4, 1} is not
contained in E(N). �

Lemma 7.4. Either

(i) N has a triangle T such that M\e is (4, 4, S)-connected for each e in T and
T can be labelled {a, b, c} so that M has 4-element cocircuits that contain
{a, c} and {b, c}; or

(ii) N has a matching {a, b} and another element c such that M\e is (4, 4, S)-
connected for each e in {a, b} and M has 4-element cocircuits that contain
{a, c} and {b, c}.

Proof. Let S be the set of elements s of E(N) for which M\s is (4, 4, S)-connected.
Since every triangle of N contains a member of S, either

(a) S includes the edges of a triangle of N ; or
(b) S includes the edges of a matching in (the graph associated with) N .

Then, by repeatedly applying Lemma 7.3, we deduce that (i) or (ii) holds. �

By the last lemma and symmetry, we may assume that:

7.5. Either

(A) M\1 and M\4 are (4, 4, S)-connected; or
(B) M\1, M\2, and M\3 are (4, 4, S)-connected.

Moreover, M has 4-cocircuits {1, 3, 5, 7} and {2, 3, 4, 8} where |{1, 2, . . . , 8}| = 8.

Lemma 7.6. Let (X1, Y1) be a (4, 3)-violator of M\1. Then, after a possible per-
mutation of X1 and Y1,

(i) {2, 6} ⊆ X1 and {3, 5} ⊆ Y1; and
(ii) either X1 is a 4-element fan of M\1 containing {2, 4, 6} and M has a 4-

cocircuit containing {1, 2, 6}; or Y1 is a 4-element fan of M\1 containing
{3, 4, 5} and M has a 4-cocircuit containing {1, 3, 5}.

Proof. As M has {1, 3, 5, 7} as a cocircuit, M\1 has {4, 3, 5, 7} as a fan which, since
M\1 is (4, 4, S)-connected, must be maximal. Hence M has no triangle containing
{3, 7} or {5, 7}. Thus, by orthogonality with the cocircuit {1, 3, 5, 7}, the only
triangles of M containing 3 or 5 are {1, 2, 3}, {3, 4, 5}, and {1, 5, 6}. As M\1 is
(4, 4, S)-connected, it has X1 or Y1 as a 4-element fan. Without loss of generality,
2 ∈ X1 and 3 ∈ Y1. Moreover, either

(a) 5 ∈ X1 and 6 ∈ Y1; or
(b) 6 ∈ X1 and 5 ∈ Y1.

Suppose that (a) occurs. Then M\1 has a 4-element fan F such that either (I)
{2, 5} ⊆ F and {1, 3, 6} ∩ F = ∅; or (II) {3, 6} ⊆ F and {1, 2, 5} ∩ F = ∅. Now F
contains a triangle of M . But this triangle cannot contain 5 or 3. In case (I), F
has (f1, f2, f3, 5) as a fan ordering where {f2, f3, 5} is a triad of M\1. The triangle
{3, 4, 5} of M\1 implies that 4 ∈ {f2, f3}. Since 2 ∈ {f1, f2, f3}, we deduce that the
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triangle {f1, f2, f3} must be {2, 4, 6} as M has a unique triangle containing {2, 4}.
Since 6 /∈ F , this is a contradiction. We deduce that (II) holds, that is, {3, 6} ⊆ F
and {1, 2, 5} ∩ F = ∅. Then F has (f1, f2, f3, 3) as a fan ordering where {f2, f3, 3}
is a triad. Thus 4 ∈ {f2, f3} and, as 6 ∈ {f1, f2, f3}, we get the contradiction that
{f1, f2, f3} = {2, 4, 6}. We conclude that (a) cannot occur, so (b) holds; that is,
{2, 6} ⊆ X1 and {3, 5} ⊆ Y1.

If Y1 is a 4-element fan of M\1, then, as {4, 7} ⊆ fclM\1(Y1) and M\1 is (4, 4, S)-
connected, it follows that Y1 = {3, 4, 5, 7}. Hence, (ii) holds when Y1 is a 4-element
fan.

If X1 is a 4-element fan of M\1, then, since 4 ∈ cl(X1) and M\1 is (4, 4, S)-
connected, X1 ⊇ {2, 4, 6}. The triad T ∗ of M\1 that X1 contains includes 2 or
6. In the latter case, T ∗ contains {2, 6}, {2, 4}, or {4, 6}. But if T ∗ contains 4, it
also contains 3 or 5; a contradiction. Thus T ∗ ⊇ {2, 6}, so T ∗ = {2, 6, 9} for some
element 9. Hence {1, 2, 6, 9} is a cocircuit of M and (ii) holds. �

Recall, by (7.5), that M has {1, 3, 5, 7} and {2, 3, 4, 8} as cocircuits.

Lemma 7.7. One of the following holds:

(i) M\5 is (4, 4, S)-connected;
(ii) M has a triangle {y1, y2, 6} and a cocircuit {y2, 6, 4, 5} where {y1, y2} ∩

{1, 2, . . .8} = ∅, and M\4 is not (4, 4, S)-connected; or
(iii) M has a triangle containing {1, 7} and avoiding {2, 3, 4, 5, 6, 8} and M\3

is not (4, 4, S)-connected.

Proof. Suppose that M\5 is not (4, 4, S)-connected and let (X5, Y5) be a (4, 4, S)-
violator for M\5. Then, without loss of generality, 1 ∈ X5 and 6 ∈ Y5. Moreover,
either

(a) 3 ∈ X5 and 4 ∈ Y5; or
(b) 4 ∈ X5 and 3 ∈ Y5.

Assume that (b) holds. If 7 ∈ X5, then (X5∪3, Y5−3) ∼= (X5, Y5) and, as (X5, Y5)
is a (4, 4, S)-violator, |Y5 − 3| ≥ 4. Hence (X5 ∪ 3∪ 5, Y5 − 3) is a 3-separator of M ,
a contradiction. Thus we may assume that 7 ∈ Y5. Then (X5−1, Y5∪1) ∼= (X5, Y5)
and again we get the contradiction that M is not internally 4-connected. Hence (b)
does not hold.

We may now assume that {1, 3} ⊆ X5 and {4, 6} ⊆ Y5. Consider the location
of the elements 2 and 8. Suppose {2, 8} ⊆ Y5. Then (X5 − 3, Y5 ∪ 3) ∼= (X5, Y5).
But 5 ∈ cl(Y5 ∪ 3), so M is not internally 4-connected; a contradiction. Similarly,
if {2, 8} ⊆ X5, then (X5 ∪ 4, Y5 − 4) ∼= (X5, Y5) and, as 5 ∈ cl(X5 ∪ 4), we again get
a contradiction.

Now suppose that 8 ∈ X5 and 2 ∈ Y5. Then (X5, Y5) ∼= (X5 ∪ 2, Y5 − 2) ∼=
(X5 ∪ 2 ∪ 4, Y5 − 2 − 4). As M is internally 4-connected, it follows that Y5 − 2
is a 4-element fan of M\5 having (y1, y2, y3, 4) as a fan ordering where {y2, y3, 4}
is a triad. By orthogonality, y3 = 6. Hence {y2, 6, 4, 5} is a cocircuit of M and
{y1, y2, 6} is a triangle of M . Thus M\4 has {y1, y2, 6, 5, 1} as a fan, so M\4 is not
(4, 4, S)-connected, and (ii) holds.

Finally, suppose that 2 ∈ X5 and 8 ∈ Y5. Then (X5, Y5) ∼= (X5 − 2, Y5 ∪ 2) ∼=
(X5 − 2 − 3, Y5 ∪ 2 ∪ 3), so, by Lemma 5.3, X5 − 2 is a 4-element fan of M\5
having (x1, x2, x3, 3) as an ordering where {x2, x3, 3} is a triad. Hence x3 = 1 and
{x2, 1, 3, 5} is a cocircuit of M , so x2 = 7. Thus M has {x1, 1, 7} as a triangle
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avoiding {2, 3, 4, 5, 6} and hence avoiding 8. Therefore M\3 has {x1, 1, 7, 5, 6} as a
fan so M\3 is not (4, 4, S)-connected, and (iii) holds. �

In (7.5), we distinguished two cases. The next two lemmas complete the proof
of Theorem 7.1 in case (A).

Lemma 7.8. Suppose M\1 and M\4 are (4, 4, S)-connected. Then either

(i) M\1, 4 is internally 4-connected; or
(ii) M has a triangle {6, y1, y2} and a cocircuit {1, 3, 4, 6, y2} where {y1, y2}

avoids {1, 2, . . . , 8}.

Proof. Consider M\1, 4. As M\1 has {3, 4, 5, 7} as a maximal fan and this fan has
4 as an end, M\1, 4 is 3-connected. Assume it is not internally 4-connected. Then
it has a (4, 3)-violator (X14, Y14).

7.8.1. Neither X14 nor Y14 contains {3, 5} or {2, 6}.

Assume X14 contains {3, 5} or {2, 6}. Then (X14 ∪ 4, Y14) is a 3-separation of
M\1 with |X14∪4| ≥ 5 and |Y14| ≥ 4. But neither X14∪4 nor Y14 is a 4-element fan
containing {2, 4, 6} or {3, 4, 5}. This contradicts Lemma 7.6. Thus (7.8.1) holds.

By (7.8.1) and symmetry, we have

(a) {2, 3} ⊆ X14 and {5, 6} ⊆ Y14; or
(b) {6, 3} ⊆ X14 and {5, 2} ⊆ Y14.

In the former case, (X14 ∪ 1, Y14) and (X14, Y14 ∪ 1) are 3-separations of M\4.
Since |X14| or |Y14| is at least 5, we contradict the fact that M\4 is (4, 4, S)-
connected. We deduce that {6, 3} ⊆ X14 and {5, 2} ⊆ Y14, that is, (b) holds. Next,
we consider the location of 7 and 8.

Suppose 7 ∈ X14 and 8 ∈ Y14. Then the cocircuits {3, 5, 7} and {2, 3, 8} imply
that (X14, Y14) ∼= ((X14 ∪ 5) − 3, (Y14 − 5) ∪ 3). But {5, 6} ⊆ (X14 ∪ 5) − 3 and
{2, 3} ⊆ (Y14−5)∪3, so we have returned to case (a) and thereby get a contradiction.

If 7 ∈ Y14 and 8 ∈ X14, then (X14, Y14) ∼= ((X14 ∪ 2) − 3, (Y14 − 2) ∪ 3). But
{2, 6} ⊆ (X14 ∪ 2) − 3, so we get a contradiction by (7.8.1).

Suppose {7, 8} ⊆ X14. Then both 2 and 5 are in cl∗M\1,4(X14). Hence |Y14| ≥ 5.

Thus (X14∪5∪1∪4, Y14−5) is a 3-separation of M with |Y14−5| ≥ 4; a contradiction.
Finally, suppose {7, 8} ⊆ Y14. Then (X14 − 3, Y14 ∪ 3) ∼= (X14, Y14). As {1, 4} ⊆

cl(Y14 ∪ 3), we deduce that |X14| = 4 otherwise M is not internally 4-connected.
Thus X14 is a 4-element fan of M\1, 4 containing a triangle {y1, y2, y3} avoiding
{1, 2, 3, 4, 5, 7, 8} and a triad {y2, y3, 3}. The circuit {2, 3, 5, 6} of M\1, 4 implies
that 6 ∈ {y2, y3}, say 6 = y3. Since {1, 2, . . . , 6} does not contain a cocircuit of M ,
the element y2 is not in {1, 2, . . . , 6}. The circuits {3, 4, 5} and {1, 6, 5} imply that
{y2, 6, 3, 4, 1} is a cocircuit of M . Thus (ii) holds. �

Lemma 7.9. Suppose M\1 and M\4 are (4, 4, S)-connected. Then M\1, 4 or
M\2, 5 is internally 4-connected.

Proof. Assume that M\1, 4 is not internally 4-connected. Then, by Lemma 7.8,
M has a triangle {6, y1, y2} and a cocircuit {1, 3, 4, 6, y2} where {y1, y2} avoids
{1, 2, . . . , 8}. Suppose (iii) of Lemma 7.7 holds. Then M has a triangle {1, 7, a}
that avoids {2, 3, 4, 5, 6, 8}. By orthogonality with the cocircuit {1, 3, 4, 6, y2}, we
deduce that a = y2. Consider Z = {1, 2, 3, 4, 5, 6, 7, y2}. Then r(Z) ≤ 4 and
r∗(Z) ≤ 6, so λ(Z) ≤ 2; a contradiction to the fact that |E(M)| ≥ 13. Thus
(iii) of Lemma 7.7 does not hold. Moreover, (ii) of Lemma 7.7 does not hold as
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M\4 is (4, 4, S)-connected. Hence (i) of Lemma 7.7 holds, that is, M\5 is (4, 4, S)-
connected.

Now, by applying the permutation (7, 8)(2, 5)(1, 4)(3)(6) of {1, 2, . . . , 8} to
Lemma 7.7, we deduce that either M\2 is (4, 4, S)-connected, or M has a tri-
angle containing {4, 8} and avoiding {1, 2, 3, 5, 6, 7}. In the latter case, the tri-
angle {4, 8, b} and the cocircuit {1, 3, 4, 6, y2} imply that y2 = b. Then, for
Z = {1, 2, 3, 4, 5, 6, 8, y2}, we have λ(Z) ≤ 2; a contradiction. We conclude that
M\2 is (4, 4, S)-connected.

Since both M\2 and M\5 are (4, 4, S)-connected, by applying the permutation
(1, 2)(4, 5)(3)(6)(7, 8) to {1, 2, . . . , 8}, we deduce from Lemma 7.8 that M\2, 5 is
internally 4-connected, or M has a cocircuit {2, 3, 5, 6, z2} and a triangle {6, z1, z2}
where {z1, z2} ∩ {1, 2, . . . , 8} = ∅. We may assume that M\2, 5 is not internally
4-connected. Then the symmetric difference of the cocircuits {1, 3, 5, 7}, {2, 3, 4, 8},
{1, 3, 4, 6, y2}, and {2, 3, 5, 6, z2} is the disjoint union of a set of cocircuits of M .
This symmetric difference is {7, 8} ∪ ({y2} △ {z2}), so it equals {7, 8, y2, z2}, a
cocircuit of M . By orthogonality with the triangle {6, z1, z2}, we deduce that
z1 = y2. Similarly, z2 = y1.

Now M\y1 and M\y2 have {2, 3, 5, 6} and {1, 3, 4, 6}, respectively, as quads.
Thus neither M\y1 nor M\y2 is (4, 4, S)-connected. Hence, as {y1, y2, 6} is
not the central triangle of a quasi rotor, M\6 is (4, 4, S)-connected. Thus
M has a 4-cocircuit containing {4, 5, 6} or {1, 2, 6}. Under the permutation
(7, 8)(2, 5)(1, 4)(3)(6) of {1, 2, . . . , 8}, these two possibilities are symmetric. Thus
we let this cocircuit be {4, 5, 6, x}. Then the symmetric difference of {1, 3, 4, 6, y2},
{4, 5, 6, x}, and {1, 3, 5, 7} is {y2} △ {x} △ {7} and so equals {y2, x, 7}, a triad of
M . But {6, y1, y2} is a triangle of M , so y2 is in a 4-element fan of M ; a contra-
diction. �

The next lemma completes the proof of Theorem 7.1 in case (B).

Lemma 7.10. Suppose that each of M\1, M\2, and M\3 is (4, 4, S)-connected.
Then M\1, 4 or M\2, 5 or M\6, 3 is internally 4-connected.

Proof. By Lemma 7.9 and symmetry, if M\5 is (4, 4, S)-connected, the lemma holds.
Hence we may assume that M\5 is not (4, 4, S)-connected. Then, by Lemma 7.7, M
has a triangle {y1, y2, 6} and a cocircuit {y2, 6, 4, 5} where {y1, y2}∩{1, 2, . . . , 8} =
∅.

Now M\3 has {7, 1, 5, 6} as a maximal fan with 6 as an end, so M\3, 6 is
3-connected. Moreover, by Lemma 7.3, M\3 has exactly two 4-element fans,
{1, 5, 6, 7} and {2, 4, 6, 8}. Suppose M\3, 6 is not internally 4-connected and let
(X36, Y36) be a (4, 3)-violator of it. If {1, 5} or {2, 4} or {y1, y2} is contained in
X36, then (X36 ∪ 6, Y36) is a 3-separation of M\3 but neither X36 ∪ 6 nor Y36 is
{1, 5, 6, 7} or {2, 4, 6, 8}. Hence we may assume that exactly one of y1 and y2 is in
each of X36 and Y36, and either

(i) {1, 4} ⊆ X36 and {2, 5} ⊆ Y36; or
(ii) {1, 2} ⊆ X36 and {4, 5} ⊆ Y36.

Assume (i) holds and suppose y2 ∈ Y36. Then (X36 − 4, Y36 ∪ 4) ∼= (X36, Y36)
so (X36 − 4, Y36 ∪ 4 ∪ 6) is a 3-separation of M\3 with {1, y1} ⊆ X36 − 4. Then
neither X36 − 4 nor Y36 ∪ 4 ∪ 6 is {1, 5, 6, 7} or {2, 4, 6, 8} so |X36 − 4| = 3. Then
X36 is a 4-element fan of M\3, 6 having a fan ordering of the form (g1, g2, g3, 4)
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Figure 3. The initial configuration in Lemma 8.1.

where {g1, g2, g3} is a triangle of M containing 1. This triangle is not {1, 5, 6} or
{1, 2, 3} so it contains {1, 7}. Then M\3 has a 5-element fan; a contradiction.

Now suppose (i) holds but y2 ∈ X36. Then (X36 ∪ 5, Y36 − 5) ∼= (X36, Y36) and
{2, y1} ⊆ Y36 − 5. Then, as in the last paragraph, we get that M has a triangle
containing 2 that is different from {2, 3, 1} and {2, 4, 6}. Hence this triangle contains
{2, 8} and so M\3 is not (4, 4, S)-connected.

We may now assume that (ii) holds. Suppose 7 ∈ Y36. Then (X36 − 1, Y36∪ 1) ∼=
(X36, Y36). Again M has a triangle containing 2 and y1 or y2, so this triangle
contains 8 and M\3 is not (4, 4, S)-connected. If 7 ∈ X36, then (X36 ∪5, Y36 −5) ∼=
(X36, Y36). This time, M has a triangle containing 4 and y1 or y2. This triangle
must also contain 8 and again M\3 is not (4, 4, S)-connected. �

In (7.5), we noted that (A) or (B) may be assumed to occur. The last two lemmas
establish that Theorem 7.1 holds in these two cases, so the theorem is proved. �

8. Building Structure

In this section, we establish a number of lemmas that are basic tools for building
structure in a binary internally 4-connected matroid. The first of these begins with
the structure shown in Figure 3.

Lemma 8.1. In a binary internally 4-connected matroid M , assume that {1, 2, 3}
and {3, 4, 5} are triangles, and {2, 3, 4, 6} and {1, 3, 5, 7} are cocircuits. Suppose
|E(M)| ≥ 11. Then

(i) M has a triangle containing 6 and exactly one of 2 and 4, but avoiding 3;
or

(ii) M/6 is internally 4-connected; or
(iii) M has a circuit {y2, y3, 4, 6} and a triad {y1, y2, y3} where

y1, y2, y3, 1, 2, . . . , 7 are distinct except that, possibly, y1 = 7; or
(iv) M has a circuit {3, 6, 7, y2} and a triad {7, y2, y1} where

|{1, 2, . . . , 7, y1, y2}| = 9; or
(v) M has a circuit {x2, x3, 2, 6} and a triad {x1, x2, x3} where

x1, x2, x3, 1, 2, . . . , 7 are distinct except that, possibly, x1 = 7.

Proof. First observe that, since M has no 4-element fans, none of 1, 2, 3, 4, 5 is in
a triad. Suppose that M has a triangle T containing 6. Then |{2, 3, 4} ∩ T | = 1.
If 3 ∈ T , then 7 ∈ T , and λ({1, 2, . . . , 7}) ≤ 2; a contradiction since |E(M)| ≥ 11.
Thus T contains 2 or 4, and, since M is binary, |T ∩ {2, 4}| = 1.
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Figure 4. The initial configuration in Lemma 8.2.

Assume next that M has no triangles containing 6. Now M\2 has {3, 4, 5, 6} as
a fan, and 6 is an end of this fan because 6 is in no triangles. Thus M\2/6 is 3-
connected. Hence so is M/6. Assume that M/6 is not internally 4-connected letting
(X, Y ) be a (4, 3)-violator of it. Then neither X nor Y contains {2, 3, 4}. Thus we
have the following three cases to consider:

(a) {2, 3} ⊆ X and 4 ∈ Y ;
(b) {2, 4} ⊆ X and 3 ∈ Y ;
(c) {3, 4} ⊆ X and 2 ∈ Y .

Consider case (a). Suppose first that 5 ∈ X . Then (X, Y ) ∼= (X∪4, Y −4). Thus
we may assume that Y is a 4-element fan of M/6 containing a triangle {y2, y3, 4}
and a triad {y1, y2, y3}. Then {y2, y3, 4, 6} is a circuit of M and {y1, y2, y3} is
a triad. We know that {y1, y2, y3} ∩ {1, 2, 3, 4, 5} = ∅, and 6 6∈ {y1, y2, y3}. By
orthogonality, 7 6∈ {y2, y3}, but possibly y1 = 7. Thus (iii) holds.

We may now assume, in case (a), that 5 ∈ Y . If 1 ∈ Y , then (X ∪ 1, Y − 1) ∼=
(X, Y ). If |Y − 1| = 3, then M/6, and hence M , has a triad meeting {4, 5}; a
contradiction. Thus |Y − 1| ≥ 4, so we may assume that 1 ∈ X . Suppose 7 ∈ X .
Then (X, Y ) ∼= (X ∪ 5, Y − 5) and we have reduced to a previous case unless
|Y − 5| = 3. In the exceptional case, by the dual of Lemma 2.8, the element 5 is in
a triad of M ; a contradiction. We may now assume that 7 ∈ Y . Then X ⊇ {2, 3, 1}
and Y ⊇ {4, 5, 7}. Hence (X, Y ) ∼= (X − 3, Y ∪ 3) ∼= (X − 3 − 1, Y ∪ 3 ∪ 1). As
1 ∈ cl∗M/6(Y ∪ 3), it follows by Lemmas 2.9 and 2.8 that |X − 3| ≥ 6 otherwise 1
is in a triad of M . Hence (X, Y ) ∼= (X − 3 − 1 − 2, Y ∪ 3 ∪ 1 ∪ 2); a contradiction.
This completes the proof of case (a).

Consider case (b), that is, {2, 4} ⊆ X and 3 ∈ Y . If 1 or 5 is in X , then (X, Y ) ∼=
(X∪3, Y −3), so Y is a 4-element fan of M/6 containing a triangle {y2, y3, 3} and a
triad {y1, y2, y3}. Now {y1, y2, y3} avoids {1, 2, 3, 4, 5} and {y2, y3, 3, 6} is a circuit
of M . Hence, by orthogonality, 7 ∈ {y2, y3}, so we may take y3 = 7. Then (iv)
holds. We may now assume that Y ⊇ {1, 5}. Hence {2, 4} ⊆ X and {1, 3, 5} ⊆ Y .
Then {2, 4} ⊆ clM/6(Y ). Hence |X | ≥ 5 and, as (X, Y ) ∼= (X − 2, Y ∪ 2), we have
reduced to a case symmetric to case (a).

Finally, assume that case (c) occurs, that is, {3, 4} ⊆ X and 2 ∈ Y . Then, by
symmetry with case (a), we deduce that (v) holds. �

In the next lemma, we begin with the structure in Figure 4.

Lemma 8.2. In a binary internally 4-connected matroid M , assume that
({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) is a bowtie, and that {2, 5, 7} is a triangle and
{1, 2, 7, 8} and {5, 6, 7, 9} are cocircuits. Assume that M has no M(K4)-restriction
and |E(M)| ≥ 13. Then |{1, 2, . . . , 9}| = 9. Moreover,

(i) M has a triangle containing {1, 8}; or
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(ii) M/8 is internally 4-connected; or
(iii) M has a circuit {y2, 9, 7, 8} and a triad {y1, y2, 9} where

|{1, 2, . . . , 9, y1, y2}| = 11; or
(iv) M has a circuit {x2, x3, 1, 8} and a triad {x1, x2, x3} where

x1, x2, x3, 1, 2, . . . , 9 are distinct except that, possibly, x1 = 9.

Proof. Clearly |{1, 2, . . . , 6}| = 6. Moreover, {7, 8, 9} ∩ {1, 2, . . . , 6} = ∅ by or-
thogonality. Thus |{1, 2, . . . , 9}| = 9 otherwise 8 = 9 and λ({1, 2, . . . , 8}) ≤ 2; a
contradiction. We now apply the preceding lemma to the triangles {1, 2, 3} and
{2, 5, 7} and the cocircuits {1, 2, 7, 8} and {2, 3, 4, 5}. If (i) of that lemma holds,
then M has a triangle T containing 8. If T contains 7, then it contains 5, 6,
or 9, so λ({1, 2, . . . , 9}) ≤ 2; a contradiction. Hence T must contain 1, so (i)
holds. If (ii) of the last lemma holds, then (ii) of this lemma holds. If (iii) of the
last lemma holds, then M has a circuit {y2, y3, 7, 8} and a triad {y1, y2, y3} where
y1, y2, y3, 1, 2, 3, 4, 5, 7, 8 are distinct since y1 6= 4. The triangle {4, 5, 6} implies
that 6 6∈ {y1, y2, y3}. The cocircuit {5, 6, 7, 9} and circuit {y2, y3, 7, 8} imply that
9 ∈ {y2, y3}. Thus we may take 9 = y3. Then |{y1, y2, 1, 2, . . . , 9}| = 11 and (iii)
holds.

If part (iv) of the last lemma holds, then 4 is in a triad of M , which is not
so. If part (v) of the last lemma holds, then M has a circuit {x2, x3, 1, 8} and
a triad {x1, x2, x3} where x1, x2, x3, 1, 2, 3, 4, 5, 7, 8 are distinct as x1 6= 4. Also
6 6∈ {x1, x2, x3}. The cocircuit {5, 6, 7, 9} and circuit {x2, x3, 1, 8} imply that 9 6∈
{x2, x3} but possibly 9 = x1. Hence (iv) holds. �

Lemma 8.3. Assume that |E(M)| ≥ 13. Let M have, as triangles, {a, b, c},
{1, 2, 3}, {4, 5, 6}, and {7, 8, 9} and, as cocircuits, {1, 2, a, b}, {4, 5, b, c}, and
{7, 8, a, c}. Assume that a, b, c, 1, 2, 3, 4, 5, 6, 7, 8, 9 are distinct except that, possi-
bly, 3 = 9 or 3 = 6 or 6 = 9. Then either

(i) {a, b, c} is the central triangle of a quasi rotor; or
(ii) M/a, b, c is internally 4-connected.

Proof. Assume that {a, b, c} is not the central triangle of a quasi rotor. The triangle
{a, b, c} has an element e such that M\e is (4, 4, S)-connected. By symmetry, we
may assume that e is a.

8.3.1. M/a, b, c is 3-connected.

Assume that M/a, b, c is not 3-connected. Now M\a is (4, 4, S)-connected having
{b, 1, 2, 3} as a maximal fan. Since b is a fan end, M\a/b is 3-connected. Now
M\a/b has {c, 7, 8, 9} as a fan and M\a/b/c = M/a, b, c. As the last matroid is
not 3-connected, it follows, by Tutte’s Triangle Lemma, that c is in a triangle T of
M\a/b. It follows by orthogonality with the cocircuit {c, 7, 8} that T contains 7 or
8. By symmetry, we may assume that T = {c, 7, x} for some element x.

Suppose that {c, 7, x} is a circuit of M . Then x ∈ {4, 5} by orthogonality with
the cocircuit {4, 5, b, c}. This implies that 6 = 9 otherwise {a, b, c} is the central
triangle of a quasi rotor. Let X = {a, b, c, 4, 5, 6, 7, 8}. Then X contains at least two
cocircuits of M , so r∗(X) ≤ 6. Moreover, X is spanned by {a, 5, 6, 7}, so r(X) ≤ 4.
Hence λ(X) ≤ 2, so |E(M)| ≤ 11; a contradiction.

We may now assume that {c, 7, x, b} is a circuit of M . Then {c, 7, x, b}△{a, b, c},
which equals {a, 7, x}, is a circuit of M . Using symmetry with the argument in the
last paragraph, we conclude that (8.3.1) holds.
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Suppose M/a, b, c has a (4, 3)-violator (X, Y ). Then rM/a,b,c(X)+rM/a,b,c(Y ) =
r(M/a, b, c) + 2. Thus

8.3.2. r(X ∪ {a, b, c}) + r(Y ∪ {a, b, c})− 2 = r(M) + 2.

Next we show that:

8.3.3. Neither X nor Y contains {1, 2, 4, 5}, {1, 2, 7, 8}, or {4, 5, 7, 8}.

Assume X contains {1, 2, 4, 5}. Then each of {a, b} and {b, c} is a cocircuit of
M\{1, 2, 4, 5}, so {a, b, c} is a component of M\{1, 2, 4, 5}. Hence r(Y ∪{a, b, c}) =
r(Y )+2 and (8.3.2) implies the contradiction that (X∪{a, b, c}, Y ) is a 3-separation
of M . Thus (8.3.3) holds.

Now, by symmetry, we may assume that X contains at least two elements of each
of {1, 2, 3} and {4, 5, 6}. Suppose first that {1, 2} ⊆ X . Then, since X does not
contain {1, 2, 4, 5}, it follows that {5, 6} ⊆ X and 4 ∈ Y . We get the contradiction
that (X ∪ 4, Y − 4) is a 3-separation of M/a, b, c unless |Y | = 4. In the exceptional
case, Y is a fan of M/a, b, c with ordering (y1, y2, y3, 4) where {y2, y3, 4} is a triangle.
Then {y1, y2, y3} is a triad of M so it avoids {a, b, c, 1, 2, . . . , 9} since M is internally
4-connected. Now M/a, b, c = M\b/a, c. Thus M has a circuit C that contains
{y2, y3, 4} and is contained in {y2, y3, 4, a, c}. By orthogonality with the cocircuits
{b, c, 4, 5} and {a, c, 7, 8}, we deduce that C = {y2, y3, 4, a, c}. This contradicts
orthogonality with the cocircuit {1, 2, a, b}.

We conclude that {1, 2} * X . By symmetry, this eliminates the case in which
{1, 3} ⊆ X and {4, 5} ⊆ X . It remains to consider the case when {1, 3} ⊆ X and
{4, 6} ⊆ X . Then {2, 5} ⊆ Y . Now (X ∪ 2, Y − 2) ∼= (X, Y ). If |Y − 2| ≥ 4,
then we have reduced to the case in which X contains {1, 2}. If |Y − 2| = 3, then
Y − 2 is a triad of M/a, b, c and hence of M . Since this triad contains 5, we have
a contradiction. �

Lemma 8.4. Let M be an internally 4-connected binary matroid having {1, 2, 3},
{a, b, c}, and {4, 5, 6} as circuits, and {2, 3, a, b} and {4, 5, b, c} as cocircuits where
|{a, b, c, 1, 2, 3, 4, 5, 6}| = 9. Then

(i) M/a, b, c is internally 4-connected; or
(ii) {a, b, c} is the central triangle of a quasi rotor; or
(iii) M/b\a is internally 4-connected; or
(iv) M has a cocircuit {a, c, z1, z2} and a triangle containing exactly one of z1

and z2 and either
(a) a and exactly one of 2 and 3; or
(b) c and exactly one of 4 and 5.
Moreover, {z1, z2} avoids {2, 3, 4, 5} and hence avoids {1, 2, 3, 4, 5, 6}.

Proof. Assume that neither (i) nor (ii) holds. By Lemma 2.5, as a is not in a triad
of M , the matroid M\a is 3-connected. This matroid has {b, 1, 2, 3} as a fan with b
as an end. Thus M\a/b is 3-connected unless b is in a triangle other than {a, b, c}.
In the exceptional case, if T is such a triangle, then T = {b, x, y} where x ∈ {2, 3}
and y ∈ {4, 5}. Thus {a, b, c} is the central triangle of a quasi rotor, which is not
so. We conclude that M\a/b is 3-connected.

Now assume that M\a/b is not internally 4-connected. Then M\a/b has a (4, 3)-
violator (X, Y ). Without loss of generality, c ∈ X . As {a, c} is a circuit of M/b, it
follows that M/b\c has ((X−c)∪a, Y ) as a (4, 3)-violator. Thus we have symmetry
in M between (1, {2, 3}, c) and (6, {4, 5}, a).
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Now X or Y contains at least two elements of {1, 2, 3}, and X or Y contains
at least two elements of {4, 5, 6}. Hence, by symmetry, we need only consider the
following cases:

(a) {2, 3} ⊆ X ;
(b) {1, 2} ⊆ X and 3 ∈ Y ;
(c) {2, 3, 4, 5} ⊆ Y ;
(d) {2, 3, 5, 6} ⊆ Y and 4 ∈ X ; and
(e) {1, 2, 5, 6} ⊆ Y and {3, 4} ⊆ X .

In case (a), as c ∈ X and {a, c} is a circuit of M/b, we have (X ∪ a, Y ) as a
3-separation of M/b. But {2, 3, a, b} is a cocircuit of M , so (X ∪ a ∪ b, Y ) is a
3-separation of M ; a contradiction.

In case (b), (X ∪ 3, Y − 3) ∼= (X, Y ) so we reduce to case (a) unless Y − 3 is a
triad of M\a/b. Consider the exceptional case. Then 4 or 5, say 4, is in Y otherwise
we have reduced to a case symmetric to (a). Then Y − 3 is not a cocircuit of M .
Thus M has a cocircuit {4, a, y1, y2}. But {y1, y2} avoids {b, c} so we contradict
orthogonality.

Next consider case (c), that is, {2, 3, 4, 5} ⊆ Y . As {2, 3, 4, 5, c} is a cocircuit
of M/b\a, we have (X − c, Y ∪ c) ∼= (X, Y ). Thus |X − c| = 3, otherwise we
have reduced to a case symmetric to case (a). Therefore X is a fan of M/b\a
having an ordering of the form (x1, x2, x3, c) where {x2, x3, c} is a triad. Thus,
by orthogonality, {x2, x3, c, a} is a cocircuit of M . As {2, 3, a, b} is a cocircuit of
M that avoids {x1, x2, x3}, we deduce that {x1, x2, x3} is a circuit of M . Then
x1, x2, x3, 1, 2, 3, a, b, c, 4, 5, and 6 are distinct, or x1 ∈ {1, 6}. In each case, it
follows, by Lemma 8.3, that M/a, b, c is internally 4-connected.

Now consider case (d), that is, {2, 3, 5, 6} ⊆ Y and 4 ∈ X . Then (X−4, Y ∪4) ∼=
(X, Y ) and we have reduced to case (c) unless X is a 4-element fan in M/b\a
having a fan ordering (x1, x2, x3, 4) where {x1, x2, x3} is a triad. Consider the
exceptional case. As c ∈ {x1, x2, x3}, it follows that {x1, x2, x3, a} is a cocircuit
of M containing {a, c} but avoiding {4, 5}. Moreover, orthogonality between the
cocircuit {2, 3, 4, 5, c} and the triangle {x2, x3, 4} of M/b\a implies that c ∈ {x2, x3}
so we may take c = x3. The cocircuit {b, c, 4, 5} of M implies that {x2, c, 4} is a
circuit of M . We conclude that (iv) of the lemma holds.

Finally, consider case (e), that is, {1, 2, 5, 6} ⊆ Y and {3, 4} ⊆ X . As {3, 4} ⊆
clM/b\a(Y ) and |X | ≥ 4, it follows that |X | ≥ 5. Thus |X − 3| ≥ 4. As (X − 3, Y ∪
3) ∼= (X, Y ), we have reduced to case (d). �

9. The Non-bowtie Case

The purpose of this section is to prove the following result.

Theorem 9.1. Let M be an internally 4-connected binary matroid having at least
13 elements. Suppose that M has no bowties and has no M(K4)-restriction. As-
sume that M has triangles {1, 2, 3} and {3, 4, 5} and a cocircuit {2, 3, 4, 6}, and that
M\4 is (4, 4, S)-connected. Then M\1, M\3, or M\1, 4 is internally 4-connected.

To prove this theorem, we shall establish a sequence of lemmas. All are subject
to the same hypotheses as the theorem.

Lemma 9.2. Suppose M\1 is not internally 4-connected. Then

(i) every (4, 3)-violator (X1, Y1) of M\1 has {2, 6} ⊆ U1 and {3, 4} ⊆ V1 where
{U1, V1} = {X1, Y1}; and
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(ii) if (X1, Y1) is a (4, 3)-violator of M\1 and {2, 6} ⊆ X1 and {3, 4} ⊆ Y1, then
either 5 ∈ Y1; or 5 ∈ X1 and |X1| ≥ 5 and (X1−5, Y1∪5) is a 3-separation
of M\1.

Proof. Let (X1, Y1) be a (4, 3)-violator of M\1. Then we may assume that 2 ∈ X1

and 3 ∈ Y1. We shall consider the location of 4 and 6.
Suppose {4, 6} ⊆ X1. Then (X1 ∪ 3, Y1 − 3) ∼= (X1, Y1). Thus Y1 is a 4-element

fan otherwise we obtain a contradiction. Hence Y1 contains a triad {y2, y3, 3}
of M\1. Thus {y2, y3, 3, 1} is a cocircuit of M . By orthogonality with the tri-
angle {3, 4, 5}, we deduce that 5 ∈ {y2, y3} so we may take y3 = 5. Then
({y1, y2, 5}, {1, 2, 3}, {y2, 5, 3, 1}) is a bowtie of M ; a contradiction.

Next, suppose that {4, 6} ⊆ Y1. Since (X1 − 2, Y1 ∪ 2) ∼= (X1, Y1), we obtain a
contradiction unless X1 is a 4-element fan of M\1 containing a triangle {x1, x2, x3}
and a triad {x2, x3, 2}. In the exceptional case, ({x1, x2, x3}, {1, 2, 3}, {x2, x3, 2, 1})
is a bowtie of M ; a contradiction.

Now suppose that 4 ∈ X1 and 6 ∈ Y1. Assume first that 5 ∈ X1. Then 3 ∈ cl(X1)
so (X1, Y1) ∼= (X1 ∪ 3, Y1 − 3) and we must have that Y1 is a 4-element fan of M\1
containing a triangle {y2, y3, 3} and a triad {y1, y2, y3}. Hence {y1, y2, y3, 1} is a
cocircuit of M that meets the triangle {1, 2, 3} in a single element; a contradiction.
We conclude that 5 ∈ Y1. Then (X1, Y1) ∼= (X1 − 4, Y1 ∪ 4). Thus we have reduced
to an earlier case unless X1 is a 4-element fan having an ordering of the form
(x1, x2, x3, 4) where {x2, x3, 4} is a triangle of M . Consider the exceptional case.
As {2, 3, 4, 6} is a cocircuit of M , we deduce that 2 ∈ {x2, x3}. Thus M has a
triangle containing {2, 4}, so M has an M(K4)-restriction using {1, 2, 3, 4, 5} and
one other element; a contradiction. Since we have eliminated every other possibility,
we conclude that 6 ∈ X1 and 4 ∈ Y1; that is, (i) holds.

For (ii), suppose (X1, Y1) is a (4, 3)-violator of M\1 with {2, 6, 5} ⊆ X1 and
{3, 4} ⊆ Y1. Then (X1 − 5, Y1 ∪ 5) ∼= (X1, Y1). Suppose |X1| = 4. Then X1 has a
fan ordering of the form (x1, x2, x3, 5) where {x2, x3, 5} is a circuit of M avoiding
{3, 4} and meeting {2, 6}. By orthogonality with the cocircuit {2, 3, 4, 6}, we deduce
that {x2, x3} = {2, 6}. Then {2, 6, 5}△{3, 4, 5}, which equals {2, 3, 4, 6}, is a circuit
of M , and so is a quad of M ; a contradiction. We conclude that (ii) holds. �

Lemma 9.3. Suppose that M\3 is not internally 4-connected. Then

(i) every (4, 3)-violator (X3, Y3) of M\3 has {1, 5} ⊆ U3 and {2, 4} ⊆ V3 where
{U3, V3} = {X3, Y3}; and

(ii) if (X3, Y3) is a (4, 3)-violator of M\3 and {1, 5} ⊆ X3 and {2, 4} ⊆ Y3, then
either 6 ∈ Y3; or 6 ∈ X3 and |X3| ≥ 5 and (X3−6, Y3∪6) is a 3-separation
of M\3.

Proof. Let (X3, Y3) be a (4, 3)-violator of M\3. Then, without loss of generality, we
may assume that 1 ∈ X3 and 2 ∈ Y3. Moreover, each of X3 and Y3 contains one of
4 and 5. Suppose first that 4 ∈ X3 and 5 ∈ Y3. Consider the location of 6. Suppose
6 ∈ X3. Since (X3, Y3) ∼= (X3∪2, Y3−2), it follows that Y3 is a 4-element fan in M\3
having (y1, y2, y3, 2) as a fan ordering where {y2, y3, 2} is a triad. Then {y2, y3, 2, 3}
is a cocircuit of M which, by orthogonality, must contain 5. Hence we may assume
y3 = 5. Also, {y1, y2, 5} is a triangle of M , so ({y1, y2, 5}, {1, 2, 3}, {y2, 5, 2, 3})
is a bowtie; a contradiction. We conclude that 6 /∈ X3. A symmetric argument
establishes that 6 /∈ Y3. Therefore we must have that 4 ∈ Y3 and 5 ∈ X3; that is,
(i) holds.
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Now let (X3, Y3) be a (4, 3)-violator of M\3 and suppose that {1, 5, 6} ⊆ X3 and
{2, 4} ⊆ Y3. Then (X3 − 6, Y3 ∪ 6) ∼= (X3, Y3). If |X3| = 4, then X3 is a fan having
an ordering of the form (x1, x2, x3, 6) where {x1, x2, x3} is a triangle containing
{1, 5}. We conclude that M has an M(K4)-restriction; a contradiction. Hence (ii)
holds. �

Lemma 9.4. If neither M\1 nor M\3 is internally 4-connected, then either

(i) M\1, 3 is 3-connected; or
(ii) M\1, 3 has a unique 2-separation ({5, a}, E(M\1, 3)−{5, a}) and {1, 3, 5, a}

is a cocircuit of M .

Proof. Let (J, K) be a 2-separation of M\1, 3. Assume that |J | ≥ |K| ≥ 3. As
|E(M)| ≥ 13, we have |J | ≥ 4. Now (J, K ∪ 1) and (J, K ∪ 3) are 3-separations of
M\3 and M\1, respectively. Then, by Lemmas 9.2 and 9.3, {1, 5} ⊆ K ∪ 1 and
{2, 4} ⊆ J , while {2, 6} ⊆ J and {3, 4} ⊆ K ∪ 3. Hence 4 ∈ J ∩K; a contradiction.
We deduce that (J, K) is a minimal 2-separation of M\1, 3. Thus M\1, 3 has a
2-cocircuit, {a, b}. Hence {1, 3, a, b} is a cocircuit of M . By orthogonality, we may
assume that b ∈ {4, 5}. If b = 4, then M\4 has {1, 3, a} as a triad, so M\4 has
{a, 1, 3, 2, 6} as a fan, contradicting the fact that M\4 is (4, 4, S)-connected. Thus
b = 5 and M has {1, 3, 5, a} as a cocircuit. �

Lemma 9.5. Assume that neither M\1 nor M\3 is internally 4-connected. Then
M has a 4-element cocircuit that contains {1, 3, 5} and some element 7 not in
{1, 2, . . . , 6}.

Proof. Suppose M has a 4-cocircuit containing {1, 3, 5}. Then the fourth element
of this cocircuit is not in {1, 2, . . . , 6} otherwise r({1, 2, . . . , 6})+ r∗({1, 2, . . . , 6})−
|{1, 2, . . . , 6}| ≤ 4+4−6 = 2, that is, λM ({1, 2, . . . , 6}) ≤ 2. This is a contradiction
since |E(M)| ≥ 13. We may now assume that M has no 4-cocircuit containing
{1, 3, 5}. Then, by the last lemma, M\1, 3 is 3-connected. Let (X1, Y1) and (X3, Y3)
be (4, 3)-violators of M\1 and M\3, respectively. Then, by Lemmas 9.2 and 9.3,
we may assume that X1 ⊇ {2, 6} and Y1 ⊇ {3, 4, 5}, while X3 ⊇ {1, 5} and Y3 ⊇
{2, 4, 6}. Observe that, as M\1, 3 is 3-connected, λM\1(X1) = 2 = λM\1,3(X1).
Moreover, λM\3(X3) = 2 ≥ λM\3,1(X3 − 1) ≥ 2. Thus r(X3 − 1) = r(X3), that is,

9.5.1. 1 ∈ cl(X3 − 1).

We show next that

9.5.2. |X3 ∩ Y1| ≥ 2.

Assume that |X3 ∩ Y1| < 2. Then X3 ∩ Y1 = {5}. Thus |X1 ∩ X3| ≥ 2 and
|Y1 ∩ Y3| ≥ 2. As M\1, 3 is 3-connected, we deduce that λM\1,3(X1 ∩ X3) ≥ 2
and λM\1,3(Y1 ∩ Y3) ≥ 2. But λM\1,3(X1) = 2 = λM\1,3(X3 − 1). Thus, by
the submodularity of λ and its invariance under taking complements, we have
λM\1,3(X1∩X3) = 2 = λM\1,3(Y1∩Y3). Now 1 ∈ cl(X3−1), so 3 ∈ cl((X3−1)∪X1).
Hence λM (Y1 ∩ Y3) = 2. Thus |Y1 ∩ Y3| ≤ 3. If |Y1 ∩ Y3| = 3, then Y1 ∩ Y3 is a
triangle or a triad of M . As 4 ∈ Y1 ∩ Y3 and 4 is in a triangle of M , the set
Y1 ∩ Y3 is not a triad. Hence it is a triangle having a single element in common
with the cocircuit {2, 3, 4, 6}; a contradiction. We deduce that |Y1∩Y3| ≤ 2. Hence
|Y1| = 4. As Y1 contains a triangle of M\1, there is also a triad of M\1 contained
in Y1. Thus M has a 4-cocircuit C∗ contained in {1, 3, 4, 5, y} and containing 1
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where Y1 ∩ Y3 = {4, y}. By orthogonality, C∗ contains 3 and exactly one of 4 and
5. If C∗ contains 4, then M\4 is not (4, 4, S)-connected. Hence C∗ is {1, 3, 5, y}; a
contradiction. We conclude that (9.5.2) holds.

As M\1, 3 is 3-connected, (9.5.2) implies that λM\1,3(X3∩Y1) ≥ 2. As |X1∩Y3| ≥
2, we also have λM\1,3(X1 ∩ Y3) ≥ 2. Since λM\1,3(X1) = 2 = λM\1,3(Y3), it
follows by submodularity that λM\1,3(X3 ∩ Y1) = 2 = λM\1,3(X1 ∩ Y3). Thus,
by (9.5.1), λM (X1 ∩ Y3) = 2, so |X1 ∩ Y3| ≤ 3. If |X1 ∩ Y3| = 3, then X1 ∩ Y3

is a triangle or a triad of M containing {2, 6}. But 2 is not in a triad of M ,
and {2, 6} is not in a triangle otherwise M\4 is not (4, 4, S)-connected. Thus
|X1 ∩ Y3| < 3 so |X1 ∩ Y3| = 2. Hence |X1 ∩ X3| ≥ 2 and |Y1 ∩ Y3| ≥ 2. It follows,
by the submodularity of λ, that λM\1,3(Y1 ∩ Y3) = 2 = λM\1,3(X1 ∩ X3). Thus
λM (Y1 ∩ Y3) = 2 since 1 ∈ cl(X3 − 1) by (9.5.1), and 3 ∈ cl((X3 − 1) ∪ X1). Hence
|Y1∩Y3| ≤ 3. If |Y1∩Y3| = 3, then Y1∩Y3 is a triad of M containing 4, or Y1∩Y3 is a
triangle of M meeting the cocircuit {2, 3, 4, 6} in a single element. Both possibilities
lead to contradictions. Thus |Y1 ∩ Y3| ≤ 2. Hence |Y1 ∩ Y3| = 2, so |Y3| = 4. Thus
Y3 = {2, 4, 6, y} where Y1 ∩ Y3 = {4, y}. Now M\3 has {2, 4, 6} as a cocircuit, so
Y3 contains a triangle T containing y and two elements of {2, 4, 6}. But M\4 is
(4, 4, S)-connected and M has no M(K4)-restriction, so T contains neither {2, 6}
nor {2, 4}. Thus T contains {4, 6}. Hence (X1, Y1) ∼= (X1 − 6, Y1 ∪ 6) in M\1.
This gives a contradiction unless X1 is a 4-element fan containing a triangle T ′ of
M where 6 ∈ T ′. It follows by orthogonality with the cocircuit {2, 3, 4, 6} that T ′

contains 2. Thus M has a triangle containing {2, 6}, a contradiction. �

Lemma 9.6. The only triangles of M meeting {1, 2, . . . , 7} are {1, 2, 3} and
{3, 4, 5}.

Proof. The cocircuits {1, 3, 5, 7} and {2, 3, 4, 6} mean that a triangle T meeting
{1, 2, . . . , 7} must contain at least two elements of this set. In this proof, we will
not use the fact that M\4 is (4, 4, S)-connected, so we have symmetry between the
cocircuits {1, 3, 5, 7} and {2, 3, 4, 6}. Hence we may assume that T meets {1, 3, 5, 7}.
If T contains 3 and is not {1, 3, 5} or {3, 4, 5}, then, by orthogonality, it meets
{2, 4, 6} and {1, 5, 7}, so it is contained in {1, 2, . . . , 7}. Thus r({1, 2, . . . , 7}) ≤ 4,
so λ({1, 2, . . . , 7}) ≤ 2; a contradiction since |E(M)| ≥ 13. Hence we may assume
that 3 /∈ T . If T contains {1, 5}, then M has an M(K4) restriction. If T contains
{1, 7}, then M has (T, {3, 4, 5}, {1, 3, 5, 7}) as a bowtie. Similarly, if T contains
{5, 7}, then M has a bowtie. �

Lemma 9.7. Let (X4, Y4) be a (4, 3)-violator of M\4. Then X4 or Y4 is {1, 2, 3, 6}.

Proof. Since M\4 is (4, 4, S)-connected, either X4 or Y4, say X4, is a 4-element fan
of M\4. Thus X4 contains a triad T ∗ and a triangle T of M\4. Hence T ∗ ∪ 4 is a
cocircuit of M . By orthogonality with the triangle {3, 4, 5}, we deduce that exactly
one of 3 and 5 is in T ∗.

Suppose that 3 ∈ T ∗. Then, by orthogonality, 1 or 2 is in T ∗. If 1 ∈ T ∗,
then T ∗ ∪ 4 = {1, 3, 4, y} for some element y. Thus M\4 has a 5-element fan,
{1, 2, 3, 6, y}; a contradiction to the fact that M\4 is (4, 4, S)-connected. Hence we
may assume that 2 ∈ T ∗. Then T ∗ ∪ 4 ⊇ {2, 3, 4}, so T ∗ ∪ 4 = {2, 3, 4, 6} and
therefore X4 = {1, 2, 3, 6}.

We may now assume that 3 /∈ T ∗, so 5 ∈ T ∗. By Lemma 9.6, if the triangle T in
X4 is not {3, 4, 5} or {1, 2, 3}, then it avoids {1, 2, . . . , 7}. Thus (T, {3, 4, 5}, T ∗∪4)
is a bowtie in M ; a contradiction. Clearly X4 does not contain {3, 4, 5}. Hence
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we may assume that X4 ⊇ {1, 2, 3}. Thus X4 = {1, 2, 3, 5} so X4 ∪ 4 contains a
cocircuit of M containing 4. Hence r∗({1, 2, . . . , 6}) ≤ 4, so λ({1, 2, . . . , 6}) ≤ 2; a
contradiction. �

Lemma 9.8. If M\1 is not internally 4-connected, then M\1, 4 is internally
4-connected unless M has a triangle {a, b, c} and a cocircuit {1, 3, 4, a, b} where
{a, b, c} is disjoint from {1, 2, . . . , 7}.

Proof. As M\4 is (4, 4, S)-connected having {1, 2, 3, 6} as a maximal fan with 1 as
an end, M\4\1 is 3-connected. Suppose that M\1, 4 is not internally 4-connected
and let (X14, Y14) be a (4, 3)-violator of it. If X14 ⊇ {2, 3}, then (X14 ∪ 1, Y14)
is a 3-separation of M\4 contradicting Lemma 9.7. Hence we may assume that
2 ∈ X14 and 3 ∈ Y14. If Y14 ⊇ {3, 5}, then (X14, Y14 ∪ 4) is a 3-separation of M\1
so, by Lemma 9.2, {2, 6} ⊆ X14. Now (X14 ∪ 3, Y14 − 3) ∼= (X14, Y14) in M\1, 4,
so we get a contradiction as above unless Y14 is a 4-element fan of M\1, 4 having
(y1, y2, y3, 3) as a fan ordering where {y1, y2, y3} is a triangle. In the exceptional
case, {y1, y2, y3} contains 5 but is not {3, 4, 5}; a contradiction to Lemma 9.6. We
deduce that {2, 5} ⊆ X14 and 3 ∈ Y14.

Suppose 6 ∈ Y14. Then (X14 −2, Y14∪2) ∼= (X14, Y14) in M\1, 4. Hence we have
a contradiction unless X14 is a 4-element fan in M\1, 4 having (x1, x2, x3, 2) as a
fan ordering and {x1, x2, x3} as a triangle. Since this triangle contains 6, we have
a contradiction to Lemma 9.6.

We may now assume that 6 ∈ X14. Then (X14∪3, Y14−3) ∼= (X14, Y14) in M\1, 4.
Thus we have a contradiction unless Y14 is a fan of M\1, 4 having {y1, y2, y3} as
a triangle, and {y2, y3, 3} as a triad. Then, by Lemma 9.6, {y1, y2, y3} avoids
{1, 2, . . . , 7}. By orthogonality, {y2, y3, 3, 1, 4} is a cocircuit of M . Thus the lemma
is proved. �

Lemma 9.9. If neither M\1 nor M\1, 4 is internally 4-connected, then M\3 is
internally 4-connected.

Proof. By the last lemma, M has a cocircuit {1, 3, 4, a, b} and a triangle {a, b, c}
where {a, b, c} avoids {1, 2, . . . , 7}. Suppose that M\3 has a (4, 3)-violator (X3, Y3).
Then, by Lemma 9.3, we may assume that X3 ⊇ {1, 5} and Y3 ⊇ {2, 4, 6}. If 7 ∈ Y3,
then (X3 ∪ 7, Y3 − 7) ∼= (X3, Y3) in M\3. Suppose |Y3| = 4. Then Y3 = {2, 4, 6, 7}
and Y3 has {2, 4, 6} as a triangle; a contradiction. Thus we may assume that
X3 ⊇ {1, 5, 7} and Y3 ⊇ {2, 4, 6}.

Now M has {1, 3, 4, a, b} as a cocircuit, so M\3 has {1, 4, a, b} as a cocircuit. If
{a, b} ⊆ X3, then (X3 ∪ 4, Y3 − 4) ∼= (X3, Y3) in M\3, so we have a contradiction
otherwise Y3 is a 4-element fan containing a triangle containing {2, 6}, which does
not happen. If {a, b} ⊆ Y3, then (X3 − 1, Y3 ∪ 1) ∼= (X3, Y3) in M\3, so we have a
contradiction otherwise X3 contains a triangle containing {5, 7}. We deduce that
we may assume that a ∈ X3 and b ∈ Y3.

Consider the location of c. Either X3 or Y3 contains c, so we can move b or a,
respectively, to obtain an equivalent 3-separation in which {a, b} is contained in the
same set. This move reduces us to an earlier case unless it leaves a set with fewer
than four elements. In the exceptional case, there is a triangle of M\3 containing
c and some element of {1, 5, 7} or {2, 4, 6}, a contradiction to Lemma 9.6. �

Proof of Theorem 9.1. This theorem follows immediately by combining the preced-
ing lemmas. �
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10. Bowties

The purpose of this section is to prove the following result.

Theorem 10.1. Let M be a binary internally 4-connected matroid with |E(M)| ≥
13. Assume that

(i) no triangle of M is the central triangle of a quasi rotor; and
(ii) no restriction of M is isomorphic to M(K4); and
(iii) M has a bowtie (T1, T2, C

∗) but has no bowtie of the form (T1, T3, D
∗) where

T1 ∩ C∗ 6= T1 ∩ D∗.

Then M has a proper internally 4-connected minor N with |E(M) − E(N)| ≤ 4.
Moreover, equality is attained in this bound if and only if M is isomorphic to the
cycle matroid of a terrahawk.

The proof of this theorem is a long case analysis and we now give a brief outline
of it. Assume that the hypotheses of the theorem hold and that M has no proper
internally 4-connected minor N with |E(M)−E(N)| ≤ 3. We begin with a bowtie
({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}). By Theorem 5.1 and Lemma 6.3, as no triangle of M
is the central triangle of a quasi rotor, M\1 is (4, 4, S)-connected. We distinguish
the cases when M\1 has a unique 4-element fan, and when M\1 has more than one
such fan. In Figures 5 and 6, we indicate, for these two cases, the lemmas that take
us to the structure in Figure 7(a). In Lemma 10.13, we show that the structure in
Figure 7(a) forces the structure in Figure 7(b). Finally, Lemma 10.15 shows that
if the last structure arises, then M is the cycle matroid of a terrahawk. A more
formal description of the proof is given at the end of the section.

Lemma 10.2. Let M be an internally 4-connected binary matroid in which no
single-element deletion is internally 4-connected. Suppose |E(M)| ≥ 13 and let
({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and ({1, 2, 3}, {7, 8, 9}, {1, 2, 7, 8}) be bowties. Then
|{1, 2, . . . , 9}| = 9.

Proof. Certainly |{1, 2, 3, 4, 5, 6}| = 6 = |{1, 2, 3, 7, 8, 9}|. If {4, 5, 6} = {7, 8, 9},
then λ({1, 2, . . . , 6}) ≤ 2; a contradiction. If {4, 5, 6} △ {7, 8, 9} is a circuit of
M , then it is a 4-circuit and λ({1, 2, . . . , 9}) = r({1, 2, . . . , 9}) + r∗({1, 2, . . . , 9})−
|{1, 2, . . . , 9}| ≤ 4+6−8 = 2; a contradiction. We conclude that {4, 5, 6}∩{7, 8, 9} =
∅, as required. �

For the remainder of this section, we shall assume that no triangle of M is the
central triangle of a quasi rotor, and that M has no M(K4)-minor.

Lemma 10.3. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a bowtie and
has {2, 5, 7} as a triangle and {1, 2, 7, 8} as a cocircuit where |{1, 2, . . . , 8}| = 8.
Assume that M\1 has a unique 4-element fan and that M\6 is not internally 4-
connected. Then either

(i) M has a cocircuit {5, 6, 7, 9} where 9 /∈ {1, 2, . . . , 8}; or
(ii) M/4\6 is internally 4-connected; or
(iii) M has a triangle {3, 4, 9} and a cocircuit {4, 6, 9, 10} where

|{1, 2, . . . , 10}| = 10.

Proof. By Lemma 6.3, M has a 4-cocircuit C∗ containing {5, 6} or {4, 6}. If C∗ ⊆
{1, 2, . . . , 8}, then λ({1, 2, ..., 8}) ≤ 2; a contradiction. Thus, by orthogonality, C∗ =
{5, 6, 7, 9} or C∗ = {4, 6, 9, 10}, where 9 /∈ {1, 2, . . . , 8} and 10 /∈ {1, 2, 3, 4, 5, 6, 7, 9}.
In particular, if M has a 4-cocircuit containing {5, 6}, then (i) holds.
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Lemma 10.3

1

or

Lemma 10.6

1

Lemma 10.9

1

1

Lemma 10.8

1- or 2- element move

1

Lemma 10.11

1

Figure 5. The steps when M\1 has a unique 4-element fan.

We may now assume that C∗ = {4, 6, 9, 10}. Either (ii) or (iii) of Lemma 6.3
holds. Assume (iii) holds. Then M has a triangle {9, 4, e} where e ∈ {2, 3}. As M
has no M(K4)-restriction, e 6= 2, so e = 3. Hence (iii) of the lemma holds because
10 6= 8 otherwise λM ({1, 2, . . . , 9}) ≤ 2. Next we assume that (ii) of Lemma 6.3
holds. Then M has a triangle {9, 10, 11} that is disjoint from {1, 2, 3, 4, 5, 6}.
Thus we have ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and ({4, 5, 6}, {9, 10, 11}, {4, 6, 9, 10})
as bowties. Thus, by Lemma 8.4, since M/4, 5, 6 is not 3-connected and {4, 5, 6} is
not the central triangle of a quasi rotor, either M/4\6 is internally 4-connected and
so (ii) holds, or M has a 4-cocircuit containing {5, 6}, and (i) holds. �

Lemma 10.4. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a bowtie and
that M has {2, 5, 7} as a triangle and {1, 2, 7, 8} and {5, 6, 7, 9} as cocircuits. Then
{2, 5, 7} is the only triangle of M containing 7.

Proof. Suppose that M has a triangle T containing 7 but different from {2, 5, 7}. By
orthogonality, T ⊆ {1, 2, 5, 6, 7, 8, 9}, so λM ({1, 2, . . . , 9}) ≤ 2; a contradiction. �

Lemma 10.5. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in a binary internally
4-connected matroid M . Let {2, 5, 7} be a circuit and {1, 2, 7, 8} be a cocircuit. Sup-
pose M\1 has a unique 4-element fan and that M\6 is not internally 4-connected.



34 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

1

Lemma 10.7

1

Lemma 10.9

1

Figure 6. When M\1 has more than one 4-element fan.

Then M\1/8 is 3-connected. Let (X18, Y18) be a (4, 3)-violator of M\1/8. Then
each of X18 and Y18 meets {2, 7}.

(i) If {2} ⊆ X18 and {5, 7} ⊆ Y18, then M has a triangle {1, 8, 9} and a
cocircuit {1, 3, 9, 10} where |{1, 2, . . . , 10}| = 10.

(ii) If {2, 5} ⊆ X18 and {7} ⊆ Y18, then Y18 is a 4-element fan of M\1/8 having
(y1, y2, y3, 7) as a fan ordering where {y2, y3} ∩ {1, 2, . . . , 8} = ∅; and M
has a circuit {y2, y3, 7, 8}; and either {3, y2, y3, 1} is a cocircuit of M , or
{y1, y2, y3} is a cocircuit of M and y1 /∈ {1, 2, . . . , 8}.

Proof. By Lemma 6.3, M\1 is (4, 4, S)-connected. Since M\1 has {8, 2, 7, 5} as
its unique 4-element fan and this fan has 8 as an end; M\1/8 is 3-connected. Let
(X18, Y18) be a (4, 3)-violator of M\1/8. Since M\1 has {2, 7, 8} as a cocircuit, if
{2, 7} ⊆ X18, then (X18 ∪ 8, Y18) is a 3-separation of M\1. But neither X18 ∪ 8
nor Y18 equals {8, 2, 7, 5}, so we have a contradiction. Thus we may assume that
2 ∈ X18 and 7 ∈ Y18. Consider the location of 5.

Suppose first that 5 ∈ Y18. Then {2} ⊆ X18 and {5, 7} ⊆ Y18, and (X18, Y18) ∼=
(X18−2, Y18∪2) in M\1/8. Thus we get a contradiction unless X18 is a 4-element fan

(a) (b)

Figure 7



INTERNALLY 4-CONNECTED BINARY MATROIDS 35

in M\1/8 containing a triangle {x2, x3, 2} and a triad {x1, x2, x3}. Consider the ex-
ceptional case. Orthogonality with the cocircuit {1, 2, 7, 8} implies that {x2, x3, 2, 8}
is a circuit of M . The cocircuit {2, 3, 4, 5} of M implies that |{3, 4}∩{x2, x3}| = 1.
Thus {x1, x2, x3, 1} is a cocircuit of M , so 3 ∈ {x1, x2, x3} by orthogonality with
the circuit {1, 2, 3}. If {4, 6}∩ {x1, x2, x3} 6= ∅, then orthogonality with the circuit
{4, 5, 6} implies that {x1, x2, x3, 1} = {1, 3, 4, 6}. Then λM ({1, 2, . . . , 6}) ≤ 2; a
contradiction. We deduce that {4, 6}∩ {x1, x2, x3} = ∅. Thus we may assume that
3 = x3. Then M has {x1, x2, 3, 1} as a cocircuit and {x2, 3, 2, 8} as a circuit. But
{1, 2, 3} is also a circuit, so {1, 8, x2} is a circuit. Now let x2 = 9 and x1 = 10.
Then 9 /∈ {1, 2, . . .8} otherwise λM ({1, 2, . . . , 8}) ≤ 2. If 10 ∈ {1, 2, . . . , 9}, then
10 /∈ {1, 3, 8, 9}. Orthogonality with known triangles implies that 10 /∈ {2, 4, 5, 6, 7}.
We conclude that (i) holds.

Suppose next that 5 ∈ X18. Then (X18 ∪ 7, Y18 − 7) ∼= (X18, Y18) in M\1/8.
Thus Y18 is a 4-element fan of M\1/8 having (y1, y2, y3, 7) as a fan ordering where
{y2, y3, 7} is a triangle of M\1/8 and hence of M/8, while {y1, y2, y3} is a triad of
M\1. Orthogonality with the cocircuit {1, 2, 7, 8} of M implies that {y2, y3, 7, 8} is a
circuit of M . Now either {y1, y2, y3} or {y1, y2, y3, 1} is a cocircuit of M . Since M is
internally 4-connected, the first possibility implies that {y1, y2, y3}∩{1, 2, . . . , 8} =
∅, so (ii) holds. Consider the second possibility. From it, we deduce that 3 ∈
{y1, y2, y3}. If 3 ∈ {y2, y3}, then the cocircuit {2, 3, 4, 5} implies that 4 ∈ {y2, y3}.
Hence {3, 4, 7, 8} is a circuit of M , and λM ({1, 2, . . . , 8}) ≤ 2; a contradiction. Thus
3 = y1. Evidently, {y2, y3} ∩ {1, 2, 3, 5, 7, 8} = ∅. Moreover, {y2, y3} avoids {4, 6}
otherwise, by orthogonality, {y2, y3} = {4, 6} and λM ({1, 2, . . . , 6}) ≤ 2. Hence
{y2, y3} ∩ {1, 2, . . . , 8} = ∅ and (ii) holds. �

Lemma 10.6. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a bowtie and
that M has {2, 5, 7} as a triangle and {1, 2, 7, 8} and {5, 6, 7, 9} as cocircuits. If
M\1 has a unique 4-element fan, then either

(i) M\1, 5 or M\1/8 is internally 4-connected; or
(ii) M has a triangle containing {3, 4}; or
(iii) (a) M has a triangle containing {6, 9} and an element 10 not in

{1, 2, . . . , 9}; and
(b) M has a triangle {1, 8, 11} and a cocircuit {1, 3, 11, 12} where

|{1, 2, . . . , 12}| = 12.

Proof. By assumption, {1, 2, 3} is not the central triangle of a quasi rotor. Assume
also that M has no triangle containing {3, 4}. By Lemma 6.3, M\1 is (4, 4, S)-
connected. Now {8, 2, 7, 5} is the unique 4-element fan of M\1 and it has 5 as an
end, so M\1, 5 is 3-connected. Assume that M\1, 5 is not internally 4-connected let-
ting (X15, Y15) be a (4, 3)-violator of it.

If {4, 6} or {2, 7} is contained in X15, then (X15 ∪ 5, Y15) is a 3-separation of
M\1 with |X15 ∪ 5| ≥ 5 and |Y15| ≥ 4, so neither X15 ∪ 5 nor Y15 is {8, 2, 7, 5}; a
contradiction. Hence we may assume that 4 ∈ X15 and 6 ∈ Y15. Also, exactly one
of 2 and 7 is in X15. Thus we have two cases to consider:

(I) {4, 7} ⊆ X15 and {6, 2} ⊆ Y15; or
(II) {4, 2} ⊆ X15 and {6, 7} ⊆ Y15.

Consider case (I). Suppose first that 3 ∈ X15. Then (X15∪2, Y15−2) ∼= (X15, Y15)
in M\1, 5, so Y15 is a 4-element fan in M\1, 5 otherwise we have a contradiction.
Now Y15 has (y1, y2, y3, 2) as a fan ordering where {y1, y2, y3} is a triangle containing
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6, and {y2, y3, 2} is a triad of M\1, 5. The circuit {2, 4, 6, 7} of M\1, 5 implies that
6 ∈ {y2, y3}, so 6 = y3, say. The cocircuit {6, 7, 9} of M\1, 5 implies that 9 ∈
{y1, y2}. But {2, 6, 9} is not a cocircuit of M\1, 5, so 9 = y1. Now y2 /∈ {1, 2, . . . , 9},
otherwise λM ({1, 2, . . . , 9}) ≤ 2. Taking y2 = 10, we have that (iii)(a) holds.

Next in case (I), assume that 3 ∈ Y15. Then (X15, Y15) ∼= (X15 − 4, Y15 ∪ 4)
in M\1, 5 and we have a contradiction unless X15 is a 4-element fan in M\1, 5
containing a triangle that contains 7 but is different from {2, 5, 7}. The exceptional
case contradicts Lemma 10.4.

Now consider case (II) and look at the location of 8. Suppose 8 ∈ X15. Then
(X15 ∪ 7, Y15 − 7) ∼= (X15, Y15) in M\1, 5. Thus Y15 is a 4-element fan in M\1, 5
otherwise we obtain a contradiction. We have (y1, y2, y3, 7) as a fan ordering of Y15

where {y1, y2, y3} is a triangle and {y2, y3, 7} is a triad. The circuit {2, 4, 6, 7} of
M\1, 5 implies that 6 ∈ {y2, y3}. Since {6, 7, 9} is a cocircuit of M\1, 5, we deduce
that {y2, y3} = {6, 9}. By orthogonality, y1 is not in {1, 2, . . . , 9}, so (iii)(a) holds
with 10 = y1.

Finally, in case (II), suppose that 8 ∈ Y15. Then (X15, Y15) ∼= (X15 − 2, Y15 ∪ 2)
in M\1, 5. Therefore X15 is a 4-element fan of M\1, 5 having (x1, x2, x3, 2) as a fan
ordering with {x1, x2, x3} as a triangle containing 4. It follows, by orthogonality
with the cocircuit {2, 3, 4} of M\1, 5, that the triangle {x1, x2, x3} contains 3 and
so is {1, 2, 3}; a contradiction.

To complete the proof, we need to show that when (iii)(a) holds, so does (iii)(b).
To establish this, assume that (iii)(a) holds and consider M\1/8. By Lemma 10.5,
it is 3-connected. Moreover, if (X18, Y18) is a (4, 3)-violator of it, then we may
assume 2 ∈ X18 and 7 ∈ Y18.

Suppose that 5 ∈ X18. Then, by Lemma 10.5, Y18 is a 4-element fan of
M\1/8 having (y1, y2, y3, 7) as a fan ordering where {y2, y3} ∩ {1, 2, . . . , 8} = ∅;
and {y2, y3, 7, 8} is a circuit of M , while {3, y2, y3, 1} or {y1, y2, y3} is a cocircuit of
M . The cocircuit {5, 6, 7, 9} of M implies that 9 ∈ {y2, y3}. But 9 is in a triangle
of M . Hence {y1, y2, y3} is not a cocircuit of M , so {3, y2, y3, 1} is. Moreover,
since 9 ∈ {y2, y3}, the triangle {6, 9, 10} implies that {y2, y3} = {9, 10}. Therefore
{3, 9, 10, 1} is a cocircuit of M , so λM ({1, 2, . . . , 10}) ≤ 2, a contradiction.

We may now assume that 5 ∈ Y18. Then, by Lemma 10.5, M has a trian-
gle {1, 8, 11} and a cocircuit {1, 3, 11, 12} where |{1, 2, . . . , 8, 11, 12}| = 10. Thus
|{1, 2, . . . , 12}| = 12 provided {9, 10}∩{11, 12} = ∅. The triangle {6, 9, 10} and the
cocircuit {1, 3, 11, 12} imply that |{9, 10} ∩ {11, 12}| is 0 or 2. In the latter case,
λM ({1, 2, . . . , 7, 9, 10}) ≤ 2; a contradiction. �

Lemma 10.7. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in M . Suppose that
no single-element deletion of M is internally 4-connected and that M\1 has at least
two 4-element fans. Then

(i) for {a, b} = {4, 5}, there are distinct elements x12, x2a, x13 and x3b not
in {1, 2, . . . , 6} such that {2, a, x2a} and {3, b, x3b} are circuits of M , and
{1, 2, x12, x2a} and {1, 3, x13, x3b} are cocircuits of M ; or

(ii) M has a triangle {7, 8, 9} disjoint from {1, 2, . . . , 6} such that
({1, 2, 3}, {7, 8, 9}, C∗) is a bowtie and C∗ contains 1.

Proof. By Lemma 6.3, M\1 is (4, 4, S)-connected. Let (y1, y2, y3, y4) be a fan order-
ing of a fan in M\1 where {y2, y3, y4} is a triad. Then {y2, y3, y4, 1} is a cocircuit of
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M , so |{y2, y3, y4}∩{2, 3}| = 1. By symmetry, we may suppose that 2 ∈ {y2, y3, y4}
and indeed that 2 ∈ {y3, y4}.

First we show:

10.7.1. If 2 = y3, then M has {y1, y2, 2} as a triangle and {y2, 2, y4, 1} as a cocir-
cuit where y1 ∈ {4, 5}, and {y2, y4} avoids {1, 2, . . . , 6}.

Since M is binary, |{y1, y2} ∩ {4, 5}| = 1. If 4 or 5 is y2, then {4, 5} = {y2, y4},
so {y2, 2, y4, 1} ⊆ {1, 2, . . . , 6}. Thus r∗({1, 2, . . . , 6}) ≤ 4, so λ({1, 2, . . . , 6}) ≤ 2;
a contradiction. Hence y1 is 4 or 5. Certainly {y2, y4} avoids {1, 2, 3}. If {y2, y4}
meets {4, 5, 6} then {y2, y4} ⊆ {4, 5, 6} and again we get the contradiction that
λ({1, 2, . . . , 6}) ≤ 2. Thus (10.7.1) holds.

10.7.2. If 2 = y4, then ({1, 2, 3}, {y1, y2, y3}, {1, 2, y2, y3}) is a bowtie and
|{1, 2, . . . , 6, y1, y2, y3}| = 9.

Certainly ({1, 2, 3}, {y1, y2, y3}, {1, 2, y2, y3}) is a bowtie. The fact that
|{1, 2, . . . , 6, y1, y2, y3}| = 9 follows immediately from Lemma 10.2.

We now assume that (ii) of the lemma does not hold. Then, by (10.7.2) and
symmetry, we get that if (y1, y2, y3, y4) is a fan ordering of a fan in M\1 hav-
ing {y1, y2, y3} as a triangle, then y4 /∈ {2, 3}. Suppose M\1 has two distinct
4-element fans having fan orderings (y1, y2, 2, y4) and (z1, z2, 2, z4) where {y1, y2, 2}
and {z1, z2, 2} are triangles. Then, by (10.7.1), each of y1 and z1 is in {4, 5}. If
y1 = z1, then y2 = z2, so y4 = z4, and the fans are equal. Thus we may assume
that y1 6= z1. Then, without loss of generality, y1 = 4 and z1 = 5. It follows that
M |{2, 4, 5, 6, y2, z2} ∼= M(K4); a contradiction.

It remains to consider when M\1 has fans with fan orderings (y1, y2, 2, y4) and
(z1, z2, 3, z4) where {y1, y2, 2} and {z1, z2, 3} are triangles. If yi = zi for some i in
{1, 2}, then we get an M(K4)-restriction of M containing {1, 2, 3, yi}. Hence we
may assume that y1 6= z1 and y2 6= z2. Thus, by (10.7.1), we may suppose that
y1 = 5 and z1 = 4.

We show next that |{1, 2, . . . , 6, y2, y4, z2, z4}| = 10. If y2 = z4, then the triangle
{5, y2, 2} and triad {z2, 3, y2} of M\1 imply that z2 ∈ {2, 5}, which does not occur.
Thus y2 6= z4 and, by symmetry, y4 6= z2. Finally, suppose y4 = z4. Then let
Z = {1, 2, 3, 4, 5, y2, z2, y4}. We have r(Z) ≤ 5 and r∗(Z) ≤ 5, so λ(Z) ≤ 2; a
contradiction. We conclude that |{1, 2, . . . , 6, y2, y4, z2, z4}| = 10. Hence (i) holds.

�

Lemma 10.8. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a bowtie and
that {2, 5, 7}, {6, 9, 10}, and {1, 8, 11} are triangles while {1, 2, 7, 8}, {5, 6, 7, 9},
and {1, 3, 11, 12} are cocircuits, where |{1, 2, . . . , 12}| = 12. Assume that M\1 has
a unique 4-element fan. Then M\11/12 or M/12 is internally 4-connected.

Proof. The matroid M has ({1, 8, 11}, {2, 5, 7}, {1, 2, 7, 8}) as a bowtie and has
{1, 2, 3} as a triangle and {1, 3, 11, 12} and {2, 3, 4, 5} as cocircuits. Suppose M\11
has a unique 4-element fan. Then, by Lemma 10.6, M\11, 2 or M\11/12 is in-
ternally 4-connected; or M has a triangle containing {7, 8}; or M has a triangle
containing {11, 12}. Since M\11, 2 has a 4-element fan while the lemma holds if
M\11/12 is internally 4-connected, we may assume that one of the last two possi-
bilities occurs. The second last possibility contradicts Lemma 10.4, while the last
contradicts the fact that M\1 has a unique 4-element fan.
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We may now assume that M\11 has more than one 4-element fan. Then, by
Lemma 10.7 applied to the bowtie ({1, 8, 11}, {2, 5, 7}, {1, 2, 7, 8}), either

(a) M has triangles containing {1, 7} and {2, 8}; or
(b) M has a triangle containing {7, 8}; or
(c) M has a triangle {13, 14, 15} disjoint from {1, 8, 11, 2, 5, 7}, and M has a

bowtie ({1, 8, 11}, {13, 14, 15}, C∗) where C∗ contains {11, 13, 14}.

In the first case, M has an M(K4)-restriction, which is not so. The second case
is excluded by Lemma 10.4. Hence the third case occurs. Then C∗ contains {1, 11}
or {8, 11}. Suppose {1, 11} ⊆ C∗. The circuit {1, 2, 3} implies that 3 ∈ C∗. Thus
C∗ ⊇ {1, 3, 11}, so C∗ = {1, 3, 11, 12} and {13, 14} = {3, 12}. Hence 12 is in a
triangle of M\1, which contradicts the fact that M\1 has a unique 4-element fan.
Thus C∗ contains {8, 11}.

The matroid M\3 is 3-connected and has {1, 8, 11, 12} as a fan. Now 12 is not
in a triangle of M otherwise M has an M(K4)-restriction or M\1 does not have a
unique 4-element fan. Thus 12 is a fan end in M\3. Hence M\3/12 is 3-connected.
It follows that M/12 is 3-connected since 12 is not in a triangle of M . Assume that
M/12 is not internally 4-connected. Let (X12, Y12) be a (4, 3)-violator of M/12.
Then neither X12 nor Y12 contains {1, 3, 11}. Thus we may assume that one of the
following possibilities occurs:

(I) {1, 11} ⊆ X12 and 3 ∈ Y12; or
(II) {3, 11} ⊆ X12 and 1 ∈ Y12; or

(III) {1, 3} ⊆ X12 and 11 ∈ Y12.

Consider case (I). Suppose first that 2 ∈ X12. Then (X12 ∪ 3, Y12 − 3) ∼=
(X12, Y12). Thus we may assume that Y12 is a 4-element fan in M/12 hav-
ing (y1, y2, y3, 3) as a fan ordering where {y2, y3, 3} is a triangle. As M/12 has
{2, 3, 4, 5} as a cocircuit, the triad {y1, y2, y3} meets {2, 4, 5}; a contradiction.
Hence we may assume that 2 ∈ Y12. Next consider the location of 8. Suppose
8 ∈ Y12. Then {1, 11} ⊆ clM/12(Y12). Thus (X12, Y12) ∼= (X12 − 11, Y12 ∪ 11) ∼=
(X12−11−1, Y12∪11∪1). Hence |X12−11−1| = 3 otherwise we get a contradiction.
Thus X12 − 11− 1 is a triad {x1, x2, x3} of M/12, and X12 − 11 is a 4-element fan
having (x1, x2, x3, 1) as a fan ordering. The triangle {x2, x3, 1} of M/12 implies
that {2, 7, 8} meets the triad {x1, x2, x3}; a contradiction.

We may now assume that 8 ∈ X12, so X12 ⊇ {1, 11, 8} and Y12 ⊇ {2, 3}. If
7 ∈ X12, then (X12 ∪ 2, Y12 − 2) ∼= (X12, Y12) so we get a contradiction unless Y12

is a 4-element fan in M/12. In the exceptional case, (y1, y2, y3, 2) is a fan ordering
of Y12 with {y2, y3, 2} as a triad; a contradiction. We deduce that 7 ∈ Y12. Then
(X12, Y12) ∼= (X12−1, Y12∪1) ∼= (X12−1−8, Y12∪1∪8) ∼= (X12−1−8−11, Y12∪1∪
8∪ 11). Hence we get a contradiction if |X12| ≥ 7. If |X12| ≤ 6, then |X12 − 1| ≤ 5
so X12 − 1 is a fan of M/12. Since 8 ∈ cl∗M/12(Y12 ∪ 1), it follows that 8 is in a
triad of M ; a contradiction. We conclude that case (I) does not occur.

Next consider case (II). Suppose first that 2 ∈ X12, so X12 ⊇ {2, 3, 11} and
Y12 ⊇ {1}. Then, as (X12 ∪ 1, Y12 − 1) ∼= (X12, Y12), we must have that Y12 is a
4-element fan of M/12 having (y1, y2, y3, 1) as a fan ordering where {y2, y3, 1} is
a triangle of M/12. The cocircuit {1, 2, 7, 8} implies that {y2, y3} meets {2, 7, 8}.
Thus the triad {y1, y2, y3} meets {2, 7, 8}; a contradiction. Hence we may assume
that 2 ∈ Y12. Then (X12 − 3, Y12 ∪ 3) ∼= (X12, Y12) and we have reduced to case (I)
unless X12 is a 4-element fan of M/12 having a fan ordering (x1, x2, x3, 3) where
{x1, x2, x3} is a triad. In the exceptional case, the triangle {x2, x3, 3} and cocircuit
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{2, 3, 4, 5} of M/12 imply that the triad {x1, x2, x3} meets {2, 4, 5}; a contradiction.
We conclude that case (II) does not occur.

Finally, consider case (III). Suppose first that 8 ∈ X12. Then X12 ⊇ {1, 3, 8}
and Y12 ⊇ {11}. As (X12 ∪ 11, Y12 − 11) ∼= (X12, Y12), we deduce that M/12
has (y1, y2, y3, 11) as a fan ordering of Y12 having {y2, y3, 11} as a triangle. Then
the triad {y1, y2, y3} meets {8, 13, 14}; a contradiction. We may now suppose that
8 ∈ Y12. Then (X12, Y12) ∼= (X12 − 1, Y12 ∪ 1) and we get a contradiction unless
X12 − 1 is a triad of M/12. But X12 − 1 contains 3 so it cannot be a triad. �

Lemma 10.9. Suppose M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a bowtie and that
M has {2, 5, 7} and {3, 4, 10} as circuits and {1, 2, 7, 8} and {1, 3, 9, 10} as cocircuits
where |{1, 2, . . . , 10}| = 10. If neither M\1 nor M\6 is internally 4-connected, then
M has a 4-element cocircuit that contains {4, 6, 10} or {5, 6, 7} and has its fourth
element outside of {1, 2, . . . , 10}.

Proof. Either (ii) or (iii) of Lemma 6.3 holds. Assume the former. If M
has a triangle {11, 12, 13} disjoint from {1, 2, . . . , 6} and a cocircuit C∗ contain-
ing {6, 11, 12} and one of 4 and 5, then, by symmetry, we may assume that
5 ∈ C∗. Then 2 or 7 is in C∗, so 7 ∈ {11, 12}. Thus 7 = 11, without loss
of generality, and |{11, 12, 13} ∩ {1, 2, 7, 8}| = 2, so {7, 8} ⊆ {11, 12, 13}. If
{7, 8} = {11, 12}, then {5, 6, 11, 12} △ {1, 2, 7, 8}, which equals {1, 2, 5, 6}, is a
cocircuit of M , so λM ({1, 2, . . . , 6}) ≤ 2; a contradiction. Thus 8 = 13. Hence
λ({1, 2, 3, 4, 5, 6, 7, 8, 12})≤ 2; a contradiction. We conclude that (ii) of Lemma 6.3
does not occur.

We may now assume that (iii) of Lemma 6.3 occurs. Then M has a 4-cocircuit
{a, b, d, 6} and a triangle {c, d, e} where |{1, 2, . . . , 6, a, b}| = 8 and c ∈ {a, b},
d ∈ {4, 5}, and e ∈ {2, 3}. Without loss of generality, assume that d = 5. Then,
since {2, 5} is contained in a triangle but M has no M(K4)-restriction, M has no
triangle containing {3, 5}, so e = 2, and c = 7. Thus, without loss of generality,
M has {a, 5, 6, 7} as a cocircuit. Then a /∈ {1, 2, 3, 4, 5, 6, 7, 10} by orthogonal-
ity. If a = 8, then λ({1, 2, 3, 4, 5, 6, 7, 8}) ≤ 2; a contradiction. If a = 9, then
λ({1, 2, 3, 4, 5, 6, 7, 9, 10})≤ 2; a contradiction. �

Lemma 10.10. Suppose that M has bowties ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and
({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}), and M has cocircuits {1, 2, 7, 8} and {4, 6, 10, 11}.
Then each of M\1, M\6, M\7, and M\11 is (4, 4, S)-connected, and each of 1, 6,
7, and 11 is in a unique triangle of M . Moreover,

(i) M has a 4-cocircuit containing {5, 6, 7}; or
(ii) M\6 has a unique 4-element fan, and

(a) M\3, 6, 7 is internally 4-connected; or
(b) M has a triangle {g1, g2, g3} and a cocircuit {5, 6, 7, g2, g3} where

{g1, g2, g3} ∩ {1, 2, 3, 4, 5, 6, 7, 8, 10, 11} = ∅.

Proof. By Lemma 6.3, for each e in {1, 6, 7, 11}, the matroid M\e is (4, 4, S)-
connected. Thus each of 1, 6, 7, and 11 is in a unique triangle of M . Now assume
that M has no 4-cocircuit containing {5, 6, 7}. First we show:

10.10.1. If (X6, Y6) is a (4, 3)-violator for M\6, then X6 or Y6 is {3, 4, 10, 11}.

This assertion is equivalent to the assertion that M\6 has {3, 4, 10, 11} as its
unique 4-element fan. Suppose the latter fails. Then, by Lemma 10.7, since M has
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no M(K4)-restriction and has no 4-cocircuit containing {5, 6, 7}, there is a triangle
{a1, a2, a3} and a 4-cocircuit C∗ that is {4, 6, a2, a3} or {5, 6, a2, a3}. Suppose C∗

contains {4, 6, a2, a3}. Then, the triangle {3, 4, 11} implies that C∗ contains 11 or 3.
In the first case, {a2, a3} = {10, 11}. Then M\6 is not (4, 4, S)-connected; a contra-
diction. On the other hand, if 3 ∈ C∗, then 1 or 2 is in C∗ and λ({1, 2, . . . , 6}) ≤ 2;
a contradiction. Hence we may suppose that C∗ is {5, 6, a2, a3}. Then {a2, a3}
meets {2, 7}. But 2 /∈ C∗ otherwise C∗ ⊆ {1, 2, . . . , 6} and λ({1, 2, . . . , 6}) ≤ 2.
Moreover, 7 /∈ {a2, a3} otherwise C∗ contains {5, 6, 7}. Thus (10.10.1) holds.

Next we show that

10.10.2. M\7\3\6 is 3-connected.

Certainly M\7 is 3-connected having {8, 1, 2, 3} as a maximal fan. As 3 is an
end of this fan, M\7\3 is 3-connected and has {2, 4, 5, 6} as a fan. The element 6
is an end of a maximal fan unless M\7\3 has a triad T ∗ avoiding 2 but containing
{4, 6} or {5, 6}. Suppose T ∗ ⊇ {4, 6}. Then either T ∗ = {4, 6, 11}; or T ∗ avoids
11 and T ∗ ∪ 3 is a cocircuit of M\7. In the first case, {4, 6, 11} is a triad of M\7.
But {4, 6, 11, 10} is a cocircuit of M , so we have a contradiction. Thus T ∗ ∪ 3 is
a cocircuit of M\7. Then 1 or 2 is in T ∗. Hence T ∗ is {4, 6, 1} or {4, 6, 2}, so
M has {4, 6, 1, 3} or {4, 6, 2, 3, 7} as a cocircuit. The first possibility implies that
λM ({1, 2, . . . , 6}) ≤ 2. The second implies that {4, 6, 2, 3, 7} △ {2, 3, 4, 5}, that is,
{5, 6, 7} is a cocircuit of M ; a contradiction.

Now suppose that {5, 6} ⊆ T ∗. As 2 /∈ T ∗, it follows that T ∗ ∪ 7 is a cocircuit
of M\3 containing {5, 6, 7}. Since M has no 4-cocircuit containing {5, 6, 7}, we
deduce that T ∗ ∪ 7 ∪ 3 is a cocircuit of M , which must equal {1, 5, 6, 7, 3}. Then
λM ({1, 2, . . . , 7}) ≤ 2; a contradiction. We conclude that 6 is indeed an end of a
maximal fan in M\7\3, so M\7\3\6 is 3-connected.

Clearly M\3 is not internally 4-connected. A (4, 3)-violator (X3, Y3) of M\3
must have exactly one of 1 and 2 in X3, and exactly one of 4 and 11 in X3.
Assume that M\3, 6, 7 is not internally 4-connected and let (X367, Y367) be a (4, 3)-
violator of it. Suppose {2, 4, 5} ⊆ X367. Then (X367 ∪ 6∪ 7, Y367) is a 3-separation
of M\3. Then Y367 ⊇ {1, 11}.

Consider the location of 10. Suppose first that 10 ∈ X367. Then (X367 ∪
11, Y367 − 11) ∼= (X367, Y367) in M\3, 6, 7, and (X367 ∪ 11 ∪ {3, 6, 7}, Y367 − 11)
is a 3-separation of M . Hence we may assume that Y367 is a 4-element fan in
M\3, 6, 7 containing a triad {g2, g3, 11} and a triangle {g1, g2, g3} where the latter
contains 1. By orthogonality, 8 ∈ {g1, g2, g3}. But M\7 has no triangle containing
{1, 8} since it is (4, 4, S)-connected. This contradiction implies that 10 ∈ Y367.

We now have {2, 4, 5} ⊆ X367 and {1, 11, 10} ⊆ Y367. Then (X367−4, Y367∪4) ∼=
(X367, Y367) in M\3, 6, 7. This means that ((X367 − 4) ∪ 7, (Y367 ∪ 4) ∪ 3) is a 3-
separation of M\6 in which each side has at least four elements and neither side is
{3, 4, 10, 11} contradicting (10.10.1).

We now know that neither X367 nor Y367 contains {2, 4, 5}. Let {2, 4, 5} =
{α, β, γ} and assume that {α, β} ⊆ X367 and γ ∈ Y367. If |Y367| > 4, then (X367 ∪
γ, Y367 − γ) has {2, 4, 5} in X367 ∪ γ and has |Y367 − γ| ≥ 4, so we have reduced to
the previous case. Thus we may assume that Y367 is a 4-element fan in M\3, 6, 7
containing a triangle {g1, g2, g3} and a triad {g2, g3, γ}. Hence {g1, g2, g3} avoids
{2, 3, 4, 5, 6, 7}. As M has {1, 2, 4, 11} as a circuit, if γ ∈ {2, 4}, then {g2, g3}
meets {1, 11}. But {g1, g2, g3} is not {1, 2, 3} or {3, 4, 11}, the only triangles of M
containing 1 and 11, respectively. Hence γ /∈ {2, 4}, so γ = 5. Thus {g2, g3, 5} is
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a triad of M\3, 6, 7. As {g2, g3} ∩ {2, 4} = ∅, we deduce that {g2, g3, 5, 6, 7} is a
cocircuit of M\3, by orthogonality. Hence {g2, g3, 5, 6, 7} is a cocircuit of M . We
know {g1, g2, g3} avoids {2, 3, 4, 5, 6, 7}. It also avoids {1, 11} since each of 1 and
11 is in a unique triangle. Finally, {g1, g2, g3} avoids {8, 10} by orthogonality. We
conclude that (ii)(b) holds. �

Lemma 10.11. Suppose that M has bowties ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and
({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}) and cocircuits {1, 2, 7, 8} and {4, 6, 10, 11}. Then
|{1, 2, . . . , 8, 10, 11}| = 10. Moreover,

(i) M has a 4-cocircuit containing {1, 3, 11} or {5, 6, 7}; or
(ii) M\3, 6, 7 is internally 4-connected; or
(iii) M\1/8 is internally 4-connected.

Proof. One easily checks that |{1, 2, 3, 4, 5, 6, 7, 8, 10, 11}| = 10. Suppose that (i)
does not hold. Then, by Lemma 10.10 and symmetry, each of M\1, M\6, M\7,
and M\11 has a unique 4-element fan. Suppose that M\1/8 is not internally 4-
connected, letting (X18, Y18) be a (4, 3)-violator of it. Then, by Lemma 10.5, we
may assume that 2 ∈ X18 and 7 ∈ Y18. Moreover, if 5 ∈ Y18, then M has a triangle
{1, 8, 12}. This is a contradiction since, by Lemma 10.10, there is a unique triangle
containing 1.

We may now assume that 5 ∈ X18. In that case, Lemma 10.5 implies that
{7, 8, y2, y3} is a circuit of M ; and {3, y2, y3, 1} or {y1, y2, y3} is a cocircuit of M
where {y1, y2, y3} ∩ {1, 2, . . . , 8} = ∅. If {3, y2, y3, 1} is a cocircuit of M , then the
circuit {3, 4, 11} implies, since {1, 3, 4, 6} is not a cocircuit, that 11 ∈ {y2, y3}, so
(i) holds. We deduce that {y1, y2, y3} is a cocircuit of M . This cocircuit avoids
{1, 2, 3, 4, 5, 6, 7, 8, 11}. If 10 ∈ {y1, y2, y3}, then orthogonality implies that 10 = y1.
Hence 1, 2, . . . , 8, 10, 11, y1, y2, y3 are distinct except that, possibly, 10 = y1.

Now assume that M\3, 6, 7 is not internally 4-connected. Then, by Lemma 10.10,
M has a triangle {g1, g2, g3} and a cocircuit {5, 6, 7, g2, g3} where {g1, g2, g3} ∩
{1, 2, . . . , 8, 10, 11} = ∅. Now {2, 5, 8, y2, y3} is a circuit of M\3, 6, 7. Thus {g2, g3}
meets {y2, y3}. But {y1, y2, y3} is a triad of M so it avoids {g1, g2, g3}; a contra-
diction. �

Lemma 10.12. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and
({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}) as bowties, and has {1, 2, 7, 8}, {5, 6, 7, 9}, and
{4, 6, 10, 11} as cocircuits. Then

(i) M/9 is internally 4-connected; or
(ii) M has a 4-circuit {7, 8, 9, e2} and a triad {8, e1, e2}; or
(iii) M has a 4-circuit {6, 9, 10, f2} and a triad {10, f1, f2}.

Proof. We apply Lemma 10.10. Since M\6 is (4, 4, S)-connected having 9 in a
triad at the end of a 4-element fan, M\6/9 is 3-connected. But M has no triangle
containing 9, so M/9 is 3-connected. Assume it is not internally 4-connected. Then
it has a (4, 3)-violator (X9, Y9). Clearly neither X9 nor Y9 contains {5, 6, 7}. Thus
we may assume that one of the following holds:

(a) {5, 6} ⊆ X9 and 7 ∈ Y9;
(b) {5, 7} ⊆ X9 and 6 ∈ Y9;
(c) 5 ∈ X9 and {6, 7} ⊆ Y9.

Consider case (a). If 4 ∈ Y9, then (X9 ∪ 4, Y9 − 4) ∼= (X9, Y9) and |Y9 − 4| ≥ 4
unless Y9 − 4 is a triad of M/9, and hence of M , containing 7. Since this does not



42 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

arise, we may assume that 4 ∈ X9. Now assume that 2 ∈ X9. Then (X9∪7, Y9−7) ∼=
(X9, Y9). Hence Y9 is a 4-element fan in M/9 having (y1, y2, y3, 7) as a fan ordering
where {y2, y3, 7} is a triangle. By Lemma 10.4, {2, 5, 7} is the unique triangle of M
containing 7. Thus {y2, y3, 7, 9} is a circuit of M . By orthogonality, 8 ∈ {y2, y3}, so
we may take 8 = y3. Thus {y2, 7, 8, 9} is a circuit of M and {8, y2, y1} is a cocircuit
of M . Hence, when 2 ∈ X9, part (ii) of the lemma holds.

We may now suppose that 2 ∈ Y9. If 3 ∈ X9, then (X9 ∪ 2, Y9 − 2) ∼= (X9, Y9),
so we may assume that Y9 is a 4-element fan of M/9 having a triad containing
2; a contradiction. Thus 3 ∈ Y9. Hence X9 ⊇ {5, 6, 4} and Y9 ⊇ {7, 2, 3}. Now
(X9, Y9) ∼= (X9 − 5, Y9 ∪ 5) ∼= (X9 − 5 − 4, Y9 ∪ 5 ∪ 4). Since we move 5 by closure
and 4 by coclosure, but 4 is not in a triad of M , the set X9 − 5 has at least six
elements. But (X9 −5−4−6, Y9∪5∪4∪6) ∼= (X9, Y9) and |X9−5−4−6| ≥ 4, so
we have a contradiction. We deduce that if case (a) arises, then (ii) of the lemma
holds. By symmetry, if case (b) arises, then (iii) of the lemma holds.

Finally, consider case (c). If 4 ∈ X9, then (X9 ∪ 6, Y9 − 6) ∼= (X9, Y9) so we
reduce to case (a) unless Y9 − 6 is a triad containing 7, which is not so. Thus we
may assume that 4 ∈ Y9. Then (X9 − 5, Y9 ∪ 5) ∼= (X9, Y9) so we may assume that
X9 is a 4-element fan of M/9 having 5 in a triangle. This triangle must contain 2,
3, or 4, so one of these elements is in a triad of M , a contradiction. �

Lemma 10.13. Suppose that M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and
({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}) as bowties, and has {1, 2, 7, 8}, {5, 6, 7, 9}, and
{4, 6, 10, 11} as cocircuits. Then |{1, 2, . . . , 11}| = 11. Moreover, either

(i) M/9 is internally 4-connected; or
(ii) M\1/8 or M\11/10 is internally 4-connected; or
(iii) M\1, 11, 5 is internally 4-connected; or
(iv) M has a 4-cocircuit containing {1, 3, 11}.

Proof. First observe that one easily checks that

10.13.1. |{1, 2, . . . , 11}| = 11.

Assume that none of (i)-(iv) holds. Then M has no 4-cocircuit contain-
ing {1, 3, 11} so, by orthogonality, M has no 4-cocircuit containing {1, 3}. By
Lemma 10.10, M\1, M\7, M\6 and M\11 are all (4, 4, S)-connected and M has
no triangles containing 1, 7, 6, or 11 beyond those in the bowties listed. As M\1 has
a unique 4-element fan and M\1/8 is not internally 4-connected, Lemma 10.5 im-
plies that M has a circuit {y2, y3, 7, 8} and a cocircuit {y1, y2, y3} where {y1, y2, y3}
avoids {1, 2, 3, 4, 5, 6, 7, 8}. The cocircuit {5, 6, 7, 9} implies that 9 ∈ {y2, y3} so we
may take 9 = y3, without loss of generality. Hence we have {7, 8, 9, y2} as a circuit
and {y1, y2, 9} as a triad. Moreover,

10.13.2. |{1, 2, . . . , 9, y1, y2}| = 11.

By symmetry, M has a circuit {6, 9, 10, z2} and a triad {z1, z2, 9}, and
|{1, 2, . . . , 8, 10, z1, z2}| = 11. Now |{z1, z2, 9} ∩ {7, 8, 9, y2}| = 2. But {7, 8} ∩
{z1, z2} = ∅, so

{z1, z2, 9} = {y1, y2, 9}.

By Lemma 10.10 and symmetry, since M\1, 11, 5 is not internally 4-connected,
M has a triangle {g1, g2, g3} and a cocircuit {1, 3, 11, g2, g3} where {g1, g2, g3} ∩
{1, 2, 3, 4, 5, 6, 7, 8, 10, 11} = ∅. Thus, by (10.13.2) and orthogonality,
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Figure 8. A labelled wheel.

10.13.3. |{1, 2, . . . , 9, y1, y2, g1, g2, g3, 11}| = 15.

Also 10 /∈ {1, 2, . . . , 9, 11, g1, g2, g3}. By symmetry,

|{1, 2, . . . , 7, 9, 10, z1, z2, g1, g2, g3, 11}| = 15.

Suppose y2 = z2. The circuits {7, 8, 9, y2} and {6, 9, 10, z2} imply that
{6, 7, 8, 10} is a circuit. Then λ({1, 2, . . . , 11}) ≤ 2, so we have a contradiction
since |E(M)| ≥ 15. Thus (y2, z2) = (z1, y1). Then, by Lemma 10.12 and sym-
metry, we may assume that M has 4-circuit {7, 8, 9, e2} and a triad {8, e1, e2}. As
{7, 8, 9, y2} is a circuit, we must have that e2 = y2. Thus the cocircuits of M include
{8, e1, y2} and {9, y1, y2}, while the circuits include {7, 8, 9, y2} and {6, 9, 10, y1}.
Next we observe that

10.13.4. |{1, 2, . . . , 11, y1, y2, g1, g2, g3}| = 16.

By (10.13.3), if this fails, then 10 ∈ {y1, y2}. But 10 6= y1 as {6, 9, 10, y1} is
a 4-circuit; and 10 6= y2 otherwise the triad {9, y1, y2} is contained in the circuit
{6, 9, 10, y1}.

Now e1 /∈ {1, 2, . . . , 7, 11, g1, g2, g3} since M has no 4-element fans. By con-
struction, e1 /∈ {8, y2} and, by orthogonality between {8, e1, y2} and {6, 9, 10, y1},
we have e1 /∈ {9, 10, y1}. Thus |{1, 2, . . . , 11, y1, y2, g1, g2, g3, e1}| ≥ 17. As
λM ({1, 2, . . . , 11, y1, y2}) ≤ 7 + 8 − 13 = 2, this gives a contradiction. �

The next lemma will be used in the proof of the subsequent lemma.

Lemma 10.14. Let (X, Y ) be a 3-separation of M(Wk) for some k ≥ 3. Then X
and Y are fans.

Proof. This is certainly true if k = 3, so assume that k ≥ 4. Then the set of spokes
of Wk is uniquely defined and neither X nor Y contains this set of spokes. Let Wk

be labelled as in Figure 8. We show first that:

10.14.1. If s1 and s2 are in X, then w1 ∈ X.

Suppose w1 6∈ X . Then, since (X ∪ w1, Y − w1) ∼= (X, Y ), we must have that
w1 ∈ cl(Y − w1). Thus wn and w2 are in Y . If Y contains {w1, w2, . . . , wk},
then, as X does not contain the set of spokes, r(Y ) = k and r(X) = |X |, so
r(X)+r(Y ) 6= r(M)+2; a contradiction. Thus Y does not contain {w1, w2, . . . , wk}.
Hence Y contains si+1, wi+1, . . . , wk, w1, . . . , wj , sj+1 for some i > j. Then s1 is a
coloop of M |X . But s1 ∈ cl(Y ). Thus (X − s1, Y ∪ s1) is a 2-separation of M ; a
contradiction.
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By (10.14.1) and duality, if two consecutive rim elements are in X , then so is
the spoke element that forms a triad with these two rim elements. Hence if X is a
fan, so is Y . Assume that X is not a fan. Then we can partition the spokes of W
into maximal consecutive sets that are contained entirely in X or entirely in Y . As
there must be at least four such sets, it follows easily that r(X)+ r(Y ) ≥ r(M)+4;
a contradiction. �

Lemma 10.15. Suppose M has bowties ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and
({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}), and M has cocircuits {1, 2, 7, 8}, {5, 6, 7, 9},
{4, 6, 11, 10}, and {1, 3, 11, 12}. If |E(M)| ≥ 13, then M.{1, 2, . . . , 12} is isomor-
phic to the cycle matroid of the octahedron. Moreover,

(i) M has a proper internally 4-connected minor N with |E(M)|− |E(N)| ≤ 2;
or

(ii) after a possible symmetric relabelling, M has a 4-circuit {7, 8, 9, y2} and
has triads {z1, y2, 8} and {y1, y2, 9} where |{1, 2, . . . , 12, y2, z1, y1}| = 15,
and M/8, 9\y2 is internally 4-connected; or

(iii) M is isomorphic to the cycle matroid of a terrahawk.

Proof. Let Z = {1, 2, . . . , 12}, R = E(M) − Z, and S = {1, 2, . . . , 7, 11}. By
Lemma 10.10, |Z| = 12. The symmetric difference of the cocircuits {2, 3, 4, 5},
{1, 2, 7, 8}, {5, 6, 7, 9}, {4, 6, 11, 10}, and {1, 3, 11, 12} is {8, 9, 10, 12}, which must be
a cocircuit of M . Consider M\{8, 9, 10, 12}. We have λM\{8,9,10,12}(S) = 0. Hence
M\{8, 9, 10, 12} = (M |S) ⊕ (M |R). Thus M\{8, 9, 10, 12}/R = M |S ∼= M(W4).
Since M/R has {8, 9, 10, 12} as a cocircuit, we deduce that M/R has rank 5.

Observe that rM/R({8, 9, 10, 12}) = 4 otherwise M has a circuit C containing
some non-empty subset X of {8, 9, 10, 12} such that C ⊆ R∪X . But the cocircuits
of M contained in Z prevent the existence of such a circuit. As {2, 3, 4, 5} is a
cocircuit of M/R, it follows that M/R\{2, 3, 4, 5} has {8, 9, 10, 12} as a basis. By
orthogonality, the fundamental circuit of 7 with respect to this basis avoids {10, 12}
and contains {8, 9}. Hence it is {7, 8, 9}. Likewise, M/R has {6, 9, 10}, {11, 10, 12},
and {1, 8, 12} as circuits. We deduce, since M is binary, that M/R is isomorphic
to the cycle matroid of the octahedron.

We now know that if 13 ≤ |E(M)| ≤ 14, then M has a proper internally 4-
connected minor N such that |E(M)| − |E(N)| ≤ 2. Hence we may assume that
|E(M)| ≥ 15 and that M has no proper internally 4-connected minor N with
|E(M)| − |E(N)| ≤ 2.

By Lemma 10.10, each of M\1, M\7, M\6, and M\11 is (4, 4, S)-connected,
and M has no triangles containing any of 1, 7, 6, or 11 except for those in the
two specified bowties. Since no triangle is the central triangle of a quasi ro-
tor and {1, 3, 11, 12} is a cocircuit, it follows by Lemma 8.2 and symmetry that
we may assume that M has a 4-circuit {y2, 9, 7, 8} and a triad {y1, y2, 9} where
|{1, 2, . . . , 9, y1, y2, 11}| = 12.

Now apply Lemma 8.2 again, this time focussed on the element 9. We get that
M has either

(a) a 4-circuit {7, 8, 9, z2} and a triad {z1, z2, 8}; or
(b) a 4-circuit {6, 9, 10, z2} and a triad {z1, z2, 10} where z2 6∈ {1, 2, . . . , 10}.

In case (a), we see immediately that z2 = y2.
Next we show the following:
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10.15.1. If {6, 9, 10, z2} is a circuit and z2 is in a triad of M where z2 6∈
{1, 2, . . . , 10}, then z2 = y1.

Observe that {9, y1, y2} meets {6, 9, 10, z2} in exactly two elements and
6 /∈ {y1, y2}. Thus |{y1, y2} ∩ {10, z2}| = 1. Suppose first that z2 =
y2. Then {7, 8, 9, y2} △ {6, 9, 10, y2} = {6, 7, 8, 10}, a circuit of M . Thus
λ({1, 2, 3, 4, 5, 6, 7, 8, 10, 11}) ≤ 5 + 7 − 10 = 2, so we have a contradiction since
|E(M)| ≥ 15.

Next observe that y2 6= 10 otherwise the circuit {y2, 9, 7, 8} and the cocircuit
{8, 9, 10, 12} have three common elements; a contradiction. Now suppose that
10 = y1. Then M has {y2, 9, 7, 8} as a circuit and {9, 10, y2} as a cocircuit. Thus
λM ({1, 2, . . . , 11, y2}) ≤ 7 + 7 − 12 = 2, so |E(M)| ≤ 15. Hence |E(M)| = 15, so
E(M)−{1, 2, . . . , 11, y2} is a triangle or a triad of M . But E(M)−{1, 2, . . . , 11, y2}
contains z2, which is in a triad of M , so E(M) − {1, 2, . . . , 11, y2} is a triad of M .
This triad meets the circuit {6, 9, 10, z2} in a single element; a contradiction. We
conclude that we must have z2 = y1, that is, (10.15.1) holds.

Note that if {6, 9, 10, y1} is a circuit and {z1, y1, 10} is a cocircuit, then, as
{y1, y2, 9} is also a cocircuit, we have, by symmetry, a special case of case (a).
Hence we may suppose that case (a) occurs. Then z2 = y2, so

10.15.2. M has a 4-circuit {7, 8, 9, y2} and has triads {z1, y2, 8} and {y1, y2, 9}.

By orthogonality, y2 /∈ {10, 12}. Thus |{1, 2, . . . , 12, y2}| = 13. Moreover,
{z1, y1} ∩ {1, 2, . . . , 7, 8, 9, 11} = ∅. The symmetric difference of the cocircuits
{8, 9, 10, 12}, {8, z1, y2}, and {9, y1, y2} is {10, 12} △ {z1} △ {y1}. Thus either
|{1, 2, . . . , 12, y2, z1, y1}| = 15, or {z1, y1} = {10, 12}.

10.15.3. {z1, y1} 6= {10, 12} and |{1, 2, . . . , 12, y2, z1, y1}| = 15.

Assume the contrary. Then the symmetric difference of {8, y2, z1} with whichever
of {1, 3, 11, 12} and {4, 6, 10, 11} contains z1 implies that either {8, y2, 1, 3, 11}
or {8, y2, 4, 6, 11} is a cocircuit of M . Hence r∗({1, 2, . . . , 9, 11, y2}) ≤ 8 and
r({1, 2, . . . , 9, 11, y2}) ≤ 6, so λ({1, 2, . . . , 9, 11, y2}) ≤ 2; a contradiction since
|E(M)| ≥ 15. Thus (10.15.3) holds.

Now apply Lemma 8.2 focussing on the element 10. Then M has either

(I) a 4-circuit {6, 9, 10, u2} and a cocircuit {u1, u2, 9}; or
(II) a 4-circuit {10, 11, 12, u2} and a cocircuit {u1, u2, 12}.

Next we show the following:

10.15.4. If M has a circuit {6, 9, 10, u2}, then M is isomorphic to the cycle matroid
of a terrahawk.

First, observe, by (10.15.1), that u2 = y1. Then λ({1, 2, . . . , 11, y1, y2}) ≤ 2,
so we get a contradiction if |E(M)| ≥ 17. But |E(M)| ≥ 15. Suppose
|E(M)| = 15. Then, as M is spanned by {2, 3, 4, 5, 8, 9, 10} and cospanned by
{1, 2, 3, 4, 6, 8, 10, y2}, we deduce that r(M) = 7. But r(M.{1, 2, . . . , 12}) = 5.
Hence r({y2, z1, y1}) = 2, so y2 is in both a triangle and a triad; a contradiction.
We deduce that |E(M)| = 16.

Now M is 3-connected. Let Z ′ = {1, 2, . . . , 11, y1, y2}. Then

λ(Z ′) ≤ r(Z ′) + r∗(Z ′) − |Z ′| ≤ 7 + 8 − 13 = 2.

Since |E(M)| = 16, we must have that equality holds throughout the last chain
of inequalities. Let w1 be the element of M not in {1, 2, . . . , 12, y1, y2, z1}. Then
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{12, w1, z1} is a triangle or a triad. The fact that z1 is in a triad implies that
{12, w1, z1} is a triad of M . As r({1, 2, . . . , 11, y1, y2}) = 7, it follows that r(M) = 8.
As {8, 9, 10, 12} is a cocircuit of M , we have r(M\{8, 9, 10, 12}) = 7. But, in the
notation from the start of the proof of the lemma, M\{8, 9, 10, 12} = (M |S) ⊕
M |{y1, y2, z1, w1}. As r(M |S) = 4, it follows that r({y1, y2, z1, w1}) = 3. Since
none of y1, y2, or z1 is in a triangle, we deduce that {y1, y2, z1, w1} is a circuit of
M .

Now M has {2, 3, 4, 5, 8, 9, 10, 12} as a basis B since this set spans
{1, 7, 6, 11, y2, y1}, and M is 3-connected having 16 elements. Clearly the funda-
mental circuit of y2 with respect to B is {y2, 8, 2, 5, 9}. By orthogonality, C(z1, B),
the fundamental circuit of z1 with respect to B, is {z1, 8, 2, 3, 12}. The fun-
damental circuits of y1 and w1 contain {9, 5} and {12, 3}. Moreover, C(y1, B)
contains exactly one of {2, 8}, {3, 12}, and {4, 10}, and avoids the other two
sets. As C(y2, B) = {y2, 8, 2, 5, 9}, it follows that {2, 8} * C(y1, B). Thus
C(y1, B) contains exactly one of {3, 12} and {4, 10}. If {3, 12} ⊆ C(y1, B), then
C(y1, B)△C(z1, B)△C(y2, B) = {y1, z1, y2}. But the last set is not a circuit of M ,
so C(y1, B) = {y1, 9, 5, 4, 10}. Then the symmetric difference of C(y1, B), C(z1, B),
C(y2, B), and {y1, y2, z1, w1} is {w1, 12, 3, 10, 4}, which must be the fundamental
circuit of w1. We conclude that M is, indeed, the cycle matroid of a terrahawk.
This completes the proof of (10.15.4).

By the last result and symmetry, we may now assume that

10.15.5. M has no 4-circuit containing {6, 9, 10} or {12, 1, 8}.

We deduce from the above that (II) holds, that is, M has a circuit {10, 11, 12, u2}
and a cocircuit {u1, u2, 12}. By applying Lemma 8.2 relative to the element 12, we
get that M has a cocircuit {v1, u2, 10}.

Since 8 is in a triad, M/8 is 3-connected. This matroid has {7, 9, y2, y1} as a
fan having 7 as an end that is in a triangle. Thus M/8\7 is 3-connected. It has
{9, 5, 6, 4} as a fan. Suppose this fan is not contained in a maximal fan having 9
as an end. Then M/8\7 has a triangle T containing 9 and one of 5 and 6. Then
T ∪ 8 is a 4-circuit of M containing {8, 9, 5} or {8, 9, 6}. By orthogonality, this is
impossible. Hence M/8\7/9 is 3-connected. As y2 and 7 are parallel in M/8, 9, we
deduce that M/8, 9\y2 is 3-connected.

To complete the proof of the lemma, we establish the following.

10.15.6. M/8, 9\y2 is internally 4-connected.

Assume this assertion fails and let (X, Y ) be a (4, 3)-violator of M/8, 9\y2.
Now M |S ∼= M(W4) and M |(S ∪ {8, 9, 10, 12}) has 8, 9, 10, 12 as coloops. Thus
(M |(S∪{8, 9, 10, 12})/{8, 9}\{10, 12}= M |S. We deduce that M |S is a restriction
of M/8, 9\y2.

Since the only 3-separations of M(W4) have a fan on each side, it follows that
|X ∩ S| ≤ 2 or X ∩ S is a fan in M |S, and |Y ∩ S| ≤ 2 or Y ∩ S is a fan in M |S.
Observe that

10.15.7. Neither X nor Y contains {1, 2, 7, 5, 6}.

If X contains {1, 2, 7, 5, 6}, then (X ∪ {8, 9, y2}, Y ) is a 3-separation of M ; a
contradiction.

10.15.8. Both |X ∩ S| and |Y ∩ S| exceed two, so both X ∩ S and Y ∩ S are fans
in M |S.
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Assume that |Y ∩ S| ≤ 2. Then X spans S. Hence (X, Y ) ∼= (X ∪ S, Y − S).
But X ∪ S ⊇ {1, 2, 7, 5, 6}, so |Y − S| ≤ 3. If |Y ∩ S| = 2, then, as both elements
of Y ∩ S are in the closure of X , we deduce that |Y − S| = 3. In that case,
(X, Y ) ∼= (X ∪ s1, Y − s1) where Y ∩ S = {s1, s2} and |Y − s1| ≥ 4. Thus to
complete the proof of (10.15.8), it suffices to eliminate the case when |Y ∩ S| = 1
and Y is a 4-element fan of M/8, 9\y2 that contains a triangle T where T ∩S = {σ}.
By orthogonality, σ /∈ {2, 3, 4, 5} so σ ∈ {1, 7, 6, 11}. Now T , T∪8, T∪9, or T∪{8, 9}
is a circuit C of M . But M has no triangle containing 1, 7, 6, or 11 except for
those contained in S. Thus C 6= T . By orthogonality between C and the cocircuits
{1, 2, 7, 8} and {5, 6, 7, 9}, we deduce that either 7 = σ and {8, 9} ⊆ C, or 7 6= σ and
|C ∩ {8, 9}| = 1. In the first case, C △{7, 8, 9, y2} is a triangle of M containing y2;
a contradiction. In the second case, by symmetry, we may assume that 8 ∈ C. The
cocircuit {2, 3, 4, 5} implies that σ = 1. Then orthogonality implies that 12 ∈ C.
Hence C is a 4-circuit containing {12, 1, 8}; a contradiction to (10.15.5). We deduce
that (10.15.8) holds.

It follows immediately from (10.15.8) that neither X nor Y contains {2, 3, 4, 5}.
Suppose that X contains exactly three members of {2, 3, 4, 5}. Then, as (X ∪
{2, 3, 4, 5}, Y − {2, 3, 4, 5}) ∼= (X, Y ), we deduce that Y is a 4-element fan of
M/8, 9\y2. We know that Y ∩ S is a fan of M |S having at least three elements.
Since X contains three elements of {2, 3, 4, 5}, by symmetry, Y contains either
{1, 2, 7} or {4, 6, 11}. Moreover, Y has a fan ordering (h1, h2, h3, α) in M/8, 9\y2

where α is 2 or 4, and {h2, h3, α} is a triad of M\y2 containing 1, 7, 6, or 11, so
{h2, h3, α, y2} is a cocircuit of M . Since this cocircuit avoids {8, 9}, it must contain
7, so it contains 2. Thus it also contains 1, so {y2, 7, 2, 1} is a cocircuit. This is a
contradiction since {8, 7, 2, 1} is a cocircuit.

We may now assume that each of X and Y contain exactly two elements of
{2, 3, 4, 5}. Moreover, in each of X ∩ {2, 3, 4, 5} and Y ∩ {2, 3, 4, 5}, the elements
must be consecutive in the cyclic order (2, 3, 4, 5). Suppose that {2, 3} ⊆ X and
{4, 5} ⊆ Y . Then, as X∩S and Y ∩S are both fans of M |S, it follows that 1 ∈ X and
6 ∈ Y . By symmetry, we may assume that 7 ∈ X . Then (X ∪ 5, Y − 5) ∼= (X, Y )
so we reduce to an earlier case unless Y is a fan of M/8, 9\7 with an ordering
(h1, h2, h3, 5) where {h2, h3, 5} is a triangle. In the exceptional case, as Y contains
{4, 5, 6}, the unique triangle of M containing 6, we have {h2, h3, 5} = {4, 6, 5}.
Thus {h1, h2, h3, 7} is a cocircuit of M containing {4, 6, 7} but avoiding 2, so we
contradict orthogonality.

Finally, suppose that {2, 5} ⊆ X and {3, 4} ⊆ Y . Then 7 ∈ X and 11 ∈ Y . If
1 ∈ X , then (X ∪ 3, Y − 3) ∼= (X, Y ) and we have reduced to an earlier case unless
Y is a 4-element fan of M/8, 9\y2 having (h1, h2, h3, 3) as a fan ordering where
{h2, h3, 3} is a triangle. In the exceptional case, {h2, h3, 3} = {4, 11, 3}. Thus
{4, 11, y2} is contained in a 4-cocircuit of M that avoids {7, 8, 9}; a contradiction to
orthogonality.

We may now assume that 1 ∈ Y . By symmetry, 6 ∈ Y . Then (X − 2, Y ∪ 2) ∼=
(X, Y ) and we have reduced to an earlier case unless X is a 4-element fan in
M/8, 9\y2 having a fan ordering (h1, h2, h3, 2) where {h1, h2, h3} is a triad. In the
exceptional case, since {5, 7} ⊆ {h1, h2, h3}, we deduce that M has a 4-cocircuit
containing {5, 7, y2}. This cocircuit avoids {4, 6} so we have a contradiction. This
completes the proof of (10.15.6) and thereby finishes the proof of the lemma. �
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Proof of Theorem 10.1. Assume that M has no proper internally 4-connected minor
N with |E(M)| − |E(N)| ≤ 3. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in M
such that there is no bowtie ({1, 2, 3}, T, C∗) with {1, 2, 3} ∩ C∗ 6= {2, 3}. We now
apply Lemma 6.3. As {1, 2, 3} is not the central triangle of a quasi rotor, M\1 is
(4, 4, S)-connected. Moreover, by symmetry, we may assume that M has a triangle
{2, 5, 7} and a cocircuit {1, 2, 7, 8} where |{1, 2, . . . , 8}| = 8; that is, M contains the
structure in Figure 9(a).

Assume that M\1 has a unique 4-element fan. Then, by Lemma 10.3, M contains
either the structure in Figure 9(b) or that in Figure 9(c). Suppose first that M
contains the structure in Figure 9(b). Then, by Lemma 10.6, M contains either the
structure in Figure 10(a) or that in Figure 10(b). In the latter case, by Lemma 10.8,
M\11/12 or M/12 is internally 4-connected. We deduce that we may assume
that if M contains the structure in Figure 9(b), then it contains the structure in
Figure 10(a).

Now assume that M contains the structure in Figure 9(c). Then, by
Lemma 10.11, as M\1 has a unique 4-element fan, M contains the structure in
Figure 7(a). We deduce that if M\1 has a unique 4-element fan, then M contains
either the structure in Figure 10(a) or the structure in Figure 7(a). On the other
hand, if M\1 has more than one 4-element fan, then, by Lemma 10.7, M contains
the structure in Figure 10(a) with 1 taking the place of 7.

We conclude that we may assume that M contains the structure in Figure 7(a)
since, by Lemma 10.9, it contains this structure if it contains the structure in
Figure 10(a). Now Lemma 10.13 establishes that, since M contains the structure
in Figure 7(a), it contains the structure in Figure 7(b). Then, by Lemma 10.15, M
is the cycle matroid of a terrahawk so the theorem holds. �

11. Rings of Bowties

Theorem 10.1 deals with the case when we have a bowtie (T1, T2, D
∗
1) that cannot

be incorporated into a string T0, D
∗
0 , T1, D

∗
1 , T2 of bowties. In this section, we deal

with the complementary case, proving the following result.
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Theorem 11.1. Let M be an internally 4-connected binary matroid with |E(M)| ≥
13. Assume that

(i) no triangle of M is the central triangle of a quasi rotor;
(ii) no restriction of M is isomorphic to M(K4);
(iii) M has a bowtie and every bowtie (T1, T2, D

∗
1) belongs to a string

T0, D
∗
0 , T1, D

∗
1 , T2 of bowties.

Then M has a proper internally 4-connected minor N with |E(M)| − |E(N)| ≤ 3
unless M is isomorphic to the cycle matroid of a quartic ladder or a quartic Möbius
ladder. In the exceptional case, M has a proper internally 4-connected minor N
with |E(M)| − |E(N)| = 4.

Before beginning the proof of this theorem, we prove two lemmas which we shall
use in the proof of the theorem.

Lemma 11.2. Let T1, D
∗
1 , T2, D

∗
2 , T3 be a string of bowties in an internally 4-

connected binary matroid M . If no triangle of M is the central triangle of a quasi
rotor, then M has no triangle that meets each of T1, T2, and T3.

Proof. Assume that M has a triangle T that meets each of T1, T2, and T3. By
orthogonality, T must contain the element of D∗

1 ∩ D∗
2 together with one element

of T1 ∩ D∗
1 and one element of T3 ∩ D∗

2 . Then, by Lemma 2.11, T2 is the central
triangle of a quasi rotor. �

Lemma 11.3. Let M be an internally 4-connected binary ma-
troid having {12, 10, 11}, {10, 11, 1, 3}, {1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6} and
{1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6}, {4, 6, 13, 14}, {13, 14, 15} as strings of bowties.
Assume also that M has {2, 5, 7} as a triangle and {1, 2, 7, 8} and {5, 6, 7, 9} as
cocircuits where {7, 8, 9}∩ [{1, 2, . . . , 6}∪ {10, 11, . . . , 15}] = ∅. Assume that M has
no M(K4)-restriction and that no triangle is the central triangle of a quasi rotor.
Then

(i) M/8 or M/9 is internally 4-connected; or
(ii) M has a 4-circuit {7, 8, 9, y2} and triads {z1, y2, 8} and {y1, y2, 9} where

{y1, y2, z2} ∩ {1, 2, . . . , 15} = ∅, and M/8, 9\7 is internally 4-connected; or
(iii) M has triangles {1, 8, a} and {6, 9, b} where a and b are distinct elements

that are in {10, 11} and {13, 14}, respectively.

Proof. Suppose that neither M/8 nor M/9 is internally 4-connected. We apply
Lemma 8.2, supposing first that (iv) of that lemma holds; that is, M has a cir-
cuit {x2, x3, 1, 8} and a triad {x1, x2, x3}. The cocircuit {1, 3, 10, 11} implies that
{x2, x3} meets {3, 10, 11}; a contradiction since {x1, x2, x3} is a triad. Next assume
that (i) of Lemma 8.2 holds, that is, M has a triangle T containing {1, 8}. Then,
by orthogonality with {1, 3, 10, 11}, we may assume that T = {1, 8, 10}.

Now apply Lemma 8.2 relative to the element 9, rather than relative to 8. From
above, (iv) of that lemma does not hold. Moreover, (iii) of Lemma 8.2 does not
hold, otherwise 8 is in a triad. Hence (i) of Lemma 8.2 holds, that is, M has a
triangle T ′ containing {6, 9}. The cocircuit {4, 6, 13, 14} implies that T ′ contains
13 or 14. Hence (iii) of Lemma 11.3 holds.

We may now assume that (iii) of Lemma 8.2 holds relative to the element 8 and
also relative to 9. Then M has circuits {y2, 7, 8, 9} and {z2, 7, 8, 9}, and M has
triads {y1, y2, 9} and {z1, z2, 8} where {y1, y2, z1, z2} ∩ {1, 2, . . . , 9} = ∅. Evidently
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z2 = y2. Moreover, as M is internally 4-connected, none of z1, y1, or y2 is in
{1, 2, . . . , 15}.

In M/8, 9, the elements y2 and 7 are parallel, so M/8, 9\7 ∼= M/8, 9\y2. Thus,
to complete the proof of the lemma, it suffices to show that M/8, 9\y2 is internally
4-connected. Assume that it is not, letting (X, Y ) be a (4, 3)-violator of M/8, 9\y2.
Then rM (X ∪ {8, 9}) + rM (Y ∪ {8, 9}) = r(M) + 4. Without loss of generality, we
may assume that 7 ∈ X . If {z1, y1} ⊆ X , then r(Y ∪ {8, 9}) = r(Y ) + 2 and so
(X ∪ {8, 9, y2}, Y ) is a 3-separation of M ; a contradiction. We deduce that

11.3.1. {z1, y1} ∩ Y 6= ∅.

Next we observe that if {1, 2, 5, 6, 7} ⊆ X , then (X ∪ {8, 9, y2}, Y ) is a 3-
separation of M . Thus

11.3.2. {1, 2, 5, 6, 7} 6⊆ X.

Now suppose that {2, 7, 5} ⊆ X . Assume also that 1 ∈ X . Then, by (11.3.2),
6 ∈ Y . Suppose that 4 ∈ X . As (X ∪ 6, Y − 6) ∼= (X, Y ), we have that Y is a
4-element fan of M/8, 9\y2 containing a triangle {g2, g3, 6} and a triad {g1, g2, g3}.
Then, since {y1, 7, 5, 6} is a cocircuit of M/8, 9\y2, it follows that y1 ∈ {g1, g2},
so we may assume that y1 = g3. Now {g1, g2, y1} or {g1, g2, y1, y2} is a cocircuit
of M . As {7, 8, 9, y2} is a circuit of M and {g1, g2, y1} ∩ {7, 8, 9} = ∅, we deduce
by orthogonality that {g1, g2, y1} is a cocircuit of M . Now {g2, y1, 6} is a triangle
of M/8, 9. It follows that {g2, y1, 6, 9} is a circuit of M . By orthogonality with
the cocircuit {4, 6, 13, 14}, we obtain a contradiction since neither g2 nor y1 is in a
triangle of M .

We may now assume that 4 ∈ Y . We show first that we may suppose that
3 ∈ X . If 3 ∈ Y , then, as (X ∪ 3, Y − 3) ∼= (X, Y ), we can replace (X, Y ) by
(X ∪ 3, Y − 3) unless Y − 3 is a triad of M\y2 containing {6, 4}. In the exceptional
case, (Y − 3) ∪ y2 is a cocircuit of M that meets the circuit {7, 8, 9, y2} in one
element; a contradiction. We conclude that we may indeed suppose that 3 ∈ X .
Then (X ∪ 4, Y − 4) ∼= (X, Y ). Thus we have reduced to the case in the previous
paragraph unless |Y | = 4 and Y contains a triad T ∗ of M\y2 containing 4. Then
T ∗ ∪ y2 is a cocircuit of M meeting {7, 8, 9, y2} in one element; a contradiction.

We have now eliminated the case when {2, 7, 5} ⊆ X and 1 ∈ X . We assume
next that {2, 7, 5} ⊆ X and 1 ∈ Y . By symmetry, we may also suppose that 6 ∈ Y .
Assume that 3 ∈ X . Then (X, Y ) ∼= (X ∪ 1, Y − 1) and we have reduced to an
earlier case unless Y − 1 is a triad of M\y2 containing 6. Since neither Y − 1 nor
(Y − 1) ∪ y2 is a cocircuit of M , we conclude that 3 ∈ Y . By symmetry, 4 ∈ Y .
Then {2, 5, 7} ⊆ clM/8,9\y2

(Y ), so |X | ≥ 6. Then (X − 2, Y ∪ 2) ∼= (X, Y ). But
5 ∈ cl∗M/8,9\y2

(Y ∪ 2) and so (X − 2− 5, Y ∪ 2∪ 5) is a 2-separation of M/8, 9\y2;
a contradiction.

We may now assume that X does not contain {2, 7, 5}. Suppose that {2, 7} ⊆ X
and 5 ∈ Y . Then (X ∪ 5, Y − 5) ∼= (X, Y ) and we reduce to an earlier case unless
Y is a 4-element fan in M/8, 9\y2 containing a triangle {g2, g3, 5}. Consider the
exceptional case. As {2, 3, 4, 5} is a cocircuit of M/8, 9\y2, we deduce that {g2, g3}
meets {3, 4}. Thus {g1, g2, g3, y2} is a cocircuit of M meeting {7, 8, 9, y2} in a single
element; a contradiction. This eliminates the case when {2, 7} ⊆ X and 5 ∈ Y .
By symmetry, this means that we may assume that 7 ∈ X and {2, 5} ⊆ Y . Then
(X, Y ) ∼= (X−7, Y ∪7) and, again, we have reduced to an earlier case unless X is a
4-element fan of M/8, 9\y2 containing a triangle {g2, g3, 7} and a triad {g1, g2, g3}.
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a1

b1

c1 a2

b2

c2 a3

b3

c3 a4

b4

c4

z2

Figure 11. The initial configuration in Lemma 11.5.

Now M/8, 9\y2 has {5, 6, 7, y1} and {1, 2, 7, z1} as cocircuits. Hence {g2, g3} meets
both {5, 6, y1} and {1, 2, z1}. If {g2, g3} meets {1, 2, 5, 6}, then {g1, g2, g3, y2} is a
cocircuit meeting {7, 8, 9, y2} in just one element. Thus {g2, g3} = {z1, y1}. Hence
{z1, y1, 7, 8, 9} is a circuit of M . But so is {7, 8, 9, y2}. Thus {y2, z1, y1} is a triangle
of M ; a contradiction. �

We are now ready to begin the proof of the main result of this section.

Proof of Theorem 11.1. Assume that the hypotheses of the theorem hold. We show
first that we can build a string of bowties that wraps around on itself.

Lemma 11.4. For some n ≥ 3, the matroid M has a string
T1, D

∗
1 , T2, D

∗
2 , . . . , D

∗
n−1, Tn of bowties and either

(i) M has a 4-cocircuit D∗
n contained in Tn ∪ T1 such that |D∗

n−1 ∩ D∗
n| = 1 =

|D∗
n ∩ D∗

1 |; or
(ii) M has a triangle Tn+1 and a 4-cocircuit D∗

n contained in Tn ∪ Tn+1 such
that |D∗

n−1 ∩ D∗
n| = 1 and Tn+1 ∩ (T1 ∪ T2 ∪ · · · ∪ Tn) consists of a single

element that is in T1 but not in either D∗
1 or D∗

n.

Proof. Take a maximum-length string T1, D
∗
1 , T2, D

∗
2 , . . . , D

∗
n−1, Tn of bowties

in M . By the hypothesis of the theorem, n ≥ 3. Moreover, the bowtie
(Tn−1, Tn, D∗

n−1) belongs to a string Tn−1, D
∗
n−1, Tn, D∗

n, Tn+1 of bowties. Because
T1, D

∗
1 , T2, D

∗
2 , . . . , D

∗
n−1, Tn has maximum length, it follows that Tn+1 meets at

least one of T1, T2, . . . , Tn−2.
For all i, let Ti = {ai, bi, ci} and D∗

i = {bi, ci, bi+1, ai+1}. Let j be the largest
integer in {1, 2, . . . , n− 2} such that Tn+1 ∩Tj 6= ∅. If Tj meets {an+1, bn+1}, then,
by orthogonality, Tj contains {an+1, bn+1}, so Tj = Tn+1. If Tn+1 meets {bj, cj},
then Tn+1 contains {bj, cj}, so Tj = Tn+1. Thus either

(a) Tj = Tn+1; or
(b) Tj ∩ Tn+1 = {aj} = {cn+1}.

In the latter case, suppose that j > 1. Then Tn+1 meets D∗
j−1, so Tn+1 meets

{bj−1, cj−1}. Hence an+1 or bn+1 is in Tj−1, that is, D∗
n meets Tj−1. But Tn ∩

Tj−1 = ∅, so {an+1, bn+1} ⊆ Tj−1. Thus Tn+1 = Tj−1. Hence Tn+1 ∩ Tj = ∅; a
contradiction. We deduce that if (b) holds, then j = 1 and (ii) of the lemma holds.

We may now assume that (a) holds, that is, Tj = Tn+1. If {aj, bj}
or {aj, cj} is contained in D∗

n, then (i) of the lemma holds for the string
Tj, D

∗
j , Tj+1, D

∗
j+1, . . . , D

∗
n−1, Tn of bowties and the cocircuit D∗

n. The remain-

ing possibility is that {bj, cj} is contained in D∗
n. Then D∗

n △ D∗
j is a cocir-

cuit of M contained in Tn ∪ Tj+1. If j = n − 2, then λ(Tn−1 ∪ Tn) ≤ 2; a
contradiction. Hence j ≤ n − 3. Then (i) of the lemma holds for the string
Tj+1, D

∗
j+1, Tj+2, D

∗
j+2, . . . , D

∗
n−1, Tn of bowties and the cocircuit D∗

n △ D∗
j since

(D∗
n △ D∗

j ) ∩ D∗
j+1 = D∗

j ∩ D∗
j+1 and (D∗

n △ D∗
j ) ∩ D∗

n−1 = D∗
n ∩ D∗

n−1. �
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Lemma 11.5. For each j in {1, 2}, let Tj , D
∗
j , Tj+1, D

∗
j+1, Tj+2 be a string of

bowties. For all i, let Ti = {ai, bi, ci} and D∗
i = {bi, ci, bi+1, ai+1}. Suppose that M

has a triangle {c2, z2, a3}. Then either

(i) M has cocircuits {z1, a2, c2, z2} and {z2, a3, c3, z3} and triangles {e1, a2, z1}
and {c3, z3, e4} where e1 ∈ {b1, c1} and e4 ∈ {a4, b4}, and z1, z2, and z3 are
distinct elements that avoid T1 ∪ T2 ∪ T3 ∪ T4; or

(ii) M has a proper internally 4-connected minor N such that |E(M)| −
|E(N)| ≤ 3.

Proof. First we show that

11.5.1. M has cocircuits {z1, a2, c2, z2} and {z2, a3, c3, z3} where {z1, z2, z3}∩(T1∪
T2 ∪ T3 ∪ T4) = ∅.

By Lemma 8.4. M has a 4-cocircuit {a2, c2, v1, v2} where {v1, v2} avoids T1 ∪
T2∪T3. By orthogonality with the circuit {c2, z2, a3}, we deduce that z2 ∈ {v1, v2},
so we let (z1, z2) = (v1, v2). By symmetry, M has a 4-cocircuit {a3, c3, z2, z3}
and {z2, z3} ∩ (T2 ∪ T3 ∪ T4) = ∅. If {z1, z2} meets T4, then, by orthogonality,
T4 ⊇ {z1, z2}; a contradiction. It follows that {z1, z2, z3} ∩ (T1 ∪ T2 ∪ T3 ∪ T4) = ∅.
Thus (11.5.1) holds.

The lemma now follows immediately by Lemma 11.3. �

If the situation in (i) of Lemma 11.4 arises, we shall say that
T1, D

∗
1 , T2, D

∗
2 , . . . , D

∗
n−1, Tn, D∗

n is a ring of bowties. The next lemma completes
the proof of Theorem 11.1 when M has such a ring.

Lemma 11.6. Let T1, D
∗
1 , T2, D

∗
2 , . . . , D

∗
n−1, Tn, D∗

n be a ring of bowties in M .
Then either

(i) M has a proper internally 4-connected minor N such that |E(M)| −
|E(N)| ≤ 3; or

(ii) M is isomorphic to the cycle matroid of a quartic ladder.

Proof. For all i, let Ti = {ai, bi, ci} and D∗
i = {bi, ci, bi+1, ai+1} where all subscripts

are interpreted modulo n. Assume that (i) fails. By Lemma 8.4 and symmetry,
we may assume that M has a triangle {c2, a3, z2}. Then, by Lemma 11.5, M has
cocircuits {z1, a2, c2, z2} and {z2, a3, c3, z3} and triangles {e1, a2, z1} and {c3, z3, e4}
where e1 ∈ {b1, c1} and e4 ∈ {a4, b4}, and z1, z2, and z3 are distinct elements that
avoid T1 ∪ T2 ∪ T3 ∪ T4. By orthogonality between {e1, a2, z1} and D∗

0 , and using
Lemma 11.2, we deduce that e1 = c1. Likewise, e4 = a4. By repeating this
argument, we get that, for all i in {1, 2, . . . , n}, the matroid M has {ci, zi, ai+1}
as a triangle and has {zi−1, ai, ci, zi} as a cocircuit. Moreover, using orthogonality
and induction, we get that z1, z2, . . . , zn are distinct and avoid T1 ∪ T2 ∪ · · · ∪ Tn.

Now let A = T1 ∪ T2 ∪ · · · ∪ Tn ∪ {z1, z2, . . . , zn}. Then |A| = 4n. Moreover,
A is spanned by {a1, c1, a2, c2, . . . , an, cn}, so r(A) ≤ 2n. Also A contains 2n
cocircuits of M of one of the forms {bi, ci, bi+1, ai+1} or {zi−1, ai, ci, zi}. Since the
symmetric difference of any proper collection of these cocircuits is non-empty, we
deduce that r∗(A) ≤ |A| − (2n − 1) = 2n + 1. Thus λ(A) = r(A) + r∗(A) − |A| ≤
2n + (2n + 1) − 4n = 1. Hence λ(A) = |E(M) − A| ∈ {0, 1}. In the event that
E(M)−A is non-empty, we denote its unique member by α. By orthogonality with
the known 4-cocircuits in M , we deduce that {a1, c1, a2, c2, . . . , an, cn} is either a
basis or a spanning circuit of M .
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b1 z1 b2 z2 · · · bn−1 zn−1 cn bn zn

a1 1 0 0 0 · · · 0 0 1 1 0
c1 1 1 0 0 · · · 0 0 1 1 1
a2 0 1 1 0 · · · 0 0 1 1 1
c2 0 0 1 1 · · · 0 0 1 1 1
...

...
...

...
...

. . .
...

...
...

...
...

an−1 0 0 0 0 · · · 1 0 1 1 1
cn−1 0 0 0 0 · · · 1 1 1 1 1
an 0 0 0 0 · · · 0 1 1 0 1



























Figure 12. The matrix D.

Suppose first that {a1, c1, a2, c2, . . . , an, cn} is a spanning circuit. Then r(A) =
2n − 1 and α does not exist. The known triangles give that M is represented by
the matrix [I2n−1|D] where D is as shown in Figure 12.

One easily checks that M [I2n−1|D] is the cycle matroid of a quartic ladder la-
belled as in Figure 13.

bn b1

b2

zn−1 zn

z1

an cn a1

c1

Figure 13. A labelled quartic ladder.

We may now suppose that {a1, c1, a2, c2, . . . , an, cn} is a basis of M . Then M |A
is represented by the matrix [I2n|D′] where D′ is as shown in Figure 14. Thus
M |A ∼= M(W2n). But the last matroid is not internally 4-connected. Hence, in
this case, α exists. Moreover, to prevent M from having any 4-element fans, the
column corresponding to α must consist entirely of ones. Now adjoin this column
to [I2n|D′] and then pivot on the entry in the top right corner of the resulting
matrix. After deleting the first row and last column of the resulting matrix and
performing a suitable column permutation, we obtain a matrix of the same form as
in Figure 12. We deduce that M/α is isomorphic to the cycle matroid of a quartic
ladder. Hence M/α is internally 4-connected and the lemma holds. �

The last lemma treated outcome (i) of Lemma 11.4. Next we deal with outcome
(ii).

Lemma 11.7. Suppose that, for some n ≥ 3, the matroid M has a string
T1, D

∗
1 , T2, D

∗
2 , . . . , D

∗
n−1, Tn of bowties. Assume, in addition, that M has a tri-

angle Tn+1 and a 4-cocircuit D∗
n contained in Tn ∪Tn+1 such that |D∗

n−1 ∩D∗
n| = 1
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b1 z1 b2 z2 · · · zn−1 bn zn

a1 1 0 0 0 · · · 0 0 1
c1 1 1 0 0 · · · 0 0 0
a2 0 1 1 0 · · · 0 0 0
c2 0 0 1 1 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

cn−1 0 0 0 0 · · · 1 0 0
an 0 0 0 0 · · · 1 1 0
cn 0 0 0 0 · · · 0 1 1



























.

Figure 14. The matrix D′.

and Tn+1 ∩ (T1 ∪ T2 ∪ · · · ∪ Tn) is a single element that is in T1 but not in either
D∗

1 or D∗
n. Then either

(i) M has a proper internally 4-connected minor N such that |E(M)| −
|E(N)| ≤ 3; or

(ii) M is isomorphic to the cycle matroid of a quartic Möbius ladder.

Proof. Assume that (i) does not hold. For all i, let Ti = {ai, bi, ci} and D∗
i =

{bi, ci, bi+1, ai+1}. Then cn+1 = a1. Now the bowtie (T1, T2, D
∗
1) can be extended

to a string Sn, E∗
n, T1, D

∗
1 , T2 of bowties. We may assume that E∗

n ∩ T1 = {a1, c1}.
Then E∗

n meets Tn+1, so we may suppose that an+1 ∈ E∗
n. Thus an+1 ∈ Sn. Since

bn+1 6∈ Sn, it follows that cn or bn is in Sn. Now {cn−1, bn−1, an, bn} is a cocircuit.
Suppose bn is in Sn. Then Sn contains cn−1 or bn−1. Thus Sn meets Tn+1, Tn, and
Tn−1, so we have a contradiction to Lemma 11.2.

a n
−
1

c
n
−
1 a n

c
n

a n
+
1 a

1 b 1

b
2 c 2

b
3

bn−1 bn bn+1

zn c1 a2

a3

Figure 15

We may now assume that cn ∈ Sn (see Figure 15). By orthogonality with
D∗

1 , D
∗
2 , . . . , D

∗
n−1, we deduce that the element zn of Sn − {an+1, cn} is not in

T1 ∪ T2 ∪ · · · ∪ Tn+1. Moreover, E∗
n contains zn, so E∗

n = {zn, an+1, a1, c1}. Next
we extend the bowtie (Sn, T1, E

∗
n) to a string Sn−1, E

∗
n−1, Sn, E∗

n, T1. Now E∗
n−1 ∩

Sn 6= E∗
n ∩ Sn. Thus cn ∈ E∗

n−1, so an or bn is in E∗
n−1. If bn ∈ E∗

n−1, then
the cocircuits D∗

n and D∗
n−1 imply that Sn−1 contains bn+1 and either bn−1 or

cn−1. This contradicts Lemma 11.2. Hence an ∈ E∗
n−1. Thus an ∈ Sn−1, so

bn−1 or cn−1 is in Sn−1. But bn−1 6∈ Sn−1 otherwise Sn−1 meets Tn−2, Tn−1, and
Tn contradicting Lemma 11.2. Thus cn−1 ∈ Sn−1. Let zn−1 be the element of
Sn−1 − {an, cn−1}. Then, by orthogonality, zn−1 6∈ T1 ∪ T2 ∪ · · · ∪ Tn+1 ∪ zn, and
E∗

n−1 = {zn−1, an, cn, zn}.
Next we apply Lemma 11.5 to Tn+1, D

∗
n, Tn, D∗

n−1, Tn−1 and
Tn, D∗

n−1, Tn−1, D
∗
n−2, Tn−2 to get a cocircuit {zn−1, cn−1, an−1, zn−2} and a

triangle {an−1, zn−2, en−2} where en−2 ∈ {bn−2, cn−2}. Provided n − 2 ≥ 2, the
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cocircuit D∗
n−3 implies that en−2 = cn−2. By repeating this argument, we obtain,

for all i in {3, 4, . . . , n}, a cocircuit E∗
i−1, which equals {zi, ci, ai, zi−1}, and a

triangle {ai, zi−1, ci−1}. Moreover, using orthogonality and induction, we get that
z2, z3, . . . , zn are distinct and avoid T1 ∪ T2 ∪ · · · ∪ Tn+1.

Now the bowtie (Tn, Tn+1, D
∗
n) extends to a string Tn, D∗

n, Tn+1, E
∗
0 , S1 of

bowties. If {zn, c1} ⊆ S1, then the 4-cocircuits meeting {zn, c1} give a contra-
diction. Thus

11.7.1. {zn, c1} 6⊆ S1.

Since Tn+1 ∩ E∗
0 6= Tn+1 ∩ D∗

n, we have a1 ∈ E∗
0 , so an+1 or bn+1 is in E∗

0 . We
show next that

11.7.2. an+1 6∈ E∗
0 .

Suppose an+1 ∈ E∗
0 . Then, as cn 6∈ E∗

0 , it follows that E∗
0 contains {a1, an+1, zn},

which is contained in E∗
n. Thus E∗

0 = E∗
n, so S1 contains {zn, c1}, contradicting

(11.7.1).
We now know that bn+1 ∈ E∗

0 . Since a1 ∈ E∗
0 , either b1 or c1 is in E∗

0 . If
c1 ∈ E∗

0 , then c1 ∈ S1, so, by orthogonality with E∗
n, we deduce that zn ∈ S1 and

we contradict (11.7.1). Thus b1 ∈ E∗
0 , so b1 ∈ S1. Thus b2 or a2 is in S1. If b2 ∈ S1,

then it follows that S1 meets T3, T2, and T1; a contradiction to Lemma 11.2. Thus
a2 ∈ S1. Let z1 be the element of S1 − {b1, a2}. Then E∗

0 = {bn+1, a1, b1, z1}.
By Lemma 8.4, M has a 4-cocircuit E∗

1 containing {a2, c2} but otherwise avoiding
T1 ∪ T2 ∪ T3. Orthogonality implies that E∗

1 = {z1, a2, c2, z2}.
Now let Z = {a1, a2, . . . , an+1} ∪ {b1, b2, . . . , bn+1} ∪ {c1, c2, . . . , cn} ∪

{z1, z2, . . . , zn}. Then |Z| = 4n + 2. Let S = {a1, c1, a2, c2, . . . , an, cn, bn+1}. Then
S spans Z, so r(Z) ≤ 2n + 1. The cocircuits D∗

1 , D∗
2 , . . . , D

∗
n and E∗

0 , E∗
1 , . . . , E∗

n,
which are all contained in Z and have symmetric difference equal to the empty set,
imply that r∗(Z) ≤ |Z|− ((2n+1)−1) = 2n+2. Thus λ(Z) = |E(M)−Z| ∈ {0, 1}.
When E(M) − Z is non-empty, we let its unique element be ζ.

The known 4-cocircuits of M imply that S is either a basis or a spanning circuit.
Suppose first that S is a spanning circuit. Then r(Z) = 2n and ζ does not exist. As
in the proof of the previous lemma, the known triangles determine a representation
[I2n|D′] for M , where D′ is shown in Figure 17. One easily checks that M is the
cycle matroid of a quartic Möbius ladder labelled as in Figure 18.

Now suppose that S is a basis for M . Then M |S has a representation of the form
[I2n+1|D] where D is as shown in Figure 16. Since n ≥ 3 and M |S has many 4-
element fans, we deduce that ζ must exist. Indeed, since every row of the indicated
matrix, except the first, has two ones, the column corresponding to ζ must have ones
in all rows except possibly the first. The first row implies that {a1, b1, z1, zn, an+1}
or {a1, b1, z1, zn, an+1, ζ} is a cocircuit C∗ of M . By taking the symmetric dif-
ference of C∗ with the cocircuits {a1, c1, an+1, zn} and {a1, b1, bn+1, z1}, we get
{a1, c1, bn+1, ζ} or {a1, c1, bn+1} depending on whether ζ is or is not in C∗. As a1

is not in a triad, we deduce that ζ ∈ C∗, so the column corresponding to ζ consists
of all ones. By adjoining this column to [I2n+1|D] and then pivoting on the entry
in the top right corner, we get that M/ζ is represented by [I2n|D

′] where D′ is as
shown in Figure 17. Thus M/ζ is the cycle matroid of a quartic Möbius ladder la-
belled as in Figure 18. As the cycle matroid of a quartic Möbius ladder is internally
4-connected, the lemma holds in this case and hence the proof is completed. �
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b1 z1 b2 z2 b3 · · · bn−1 zn−1 bn zn an+1

a1 1 1 0 0 0 · · · 0 0 0 1 1
c1 1 1 0 0 0 · · · 0 0 0 0 0
a2 0 1 1 0 0 · · · 0 0 0 0 0
c2 0 0 1 1 0 · · · 0 0 0 0 0
a3 0 0 0 1 1 · · · 0 0 0 0 0
c3 0 0 0 0 1 · · · 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
an−1 0 0 0 0 0 · · · 1 0 0 0 0
cn−1 0 0 0 0 0 · · · 1 1 0 0 0
an 0 0 0 0 0 · · · 0 1 1 0 0
cn 0 0 0 0 0 · · · 0 0 1 1 0
bn+1 0 0 0 0 0 · · · 0 0 0 1 1











































.

Figure 16. The matrix D.

For the reader familiar with the paper of Mayhew, Royle, and Whittle [8], we
observe that, at the end of the last proof, the matroid M for which M/ζ is a quartic
Möbius ladder is actually the dual of a triadic Möbius matroid.

All but the last sentence of Theorem 11.1 follows immediately by combining
Lemmas 11.4, 11.6, and 11.7. With |E(M)| ≥ 13, if M is the cycle matroid of a
quartic ladder or a quartic Möbius ladder, then M has as a minor the next smallest
quartic ladder or the next smallest quartic Möbius ladder, so M has an internally
4-connected minor N with |E(M)| − |E(N)| = 4. Moreover, it is straightforward
to check that M has no proper internally 4-connected minor N ′ with |E(M)| −
|E(N ′)| < 4. �

12. Constructions

Lemma 12.1. Let N be an internally 4-connected matroid and M be a simple
single-element binary extension of N by the element e with r(M) = r(N). Then M







































b1 z1 b2 z2 b3 · · · bn−1 zn−1 bn zn an+1 a1

c1 0 0 0 0 0 · · · 0 0 0 1 1 1
a2 1 0 1 0 0 · · · 0 0 0 1 1 1
c2 1 1 1 1 0 · · · 0 0 0 1 1 1
a3 1 1 0 1 1 · · · 0 0 0 1 1 1
c3 1 1 0 0 1 · · · 0 0 0 1 1 1
...

...
...

...
...

...
. . .

...
...

...
...

...
...

an−1 1 1 0 0 0 · · · 1 0 0 1 1 1
cn−1 1 1 0 0 0 · · · 1 1 0 1 1 1
an 1 1 0 0 0 · · · 0 1 1 1 1 1
cn 1 1 0 0 0 · · · 0 0 1 0 1 1
bn+1 1 1 0 0 0 · · · 0 0 0 0 0 1







































Figure 17. The matrix D′.
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Figure 18. A labelled quartic Möbius ladder.

is internally 4-connected unless N has a triad T ∗ such that T ∗ ∪ e is a 4-element
fan or a quad of M .

Proof. Certainly M is 3-connected since M is simple having the same rank as N .
Suppose that M has a (4, 3)-violator (X, Y ) where e ∈ X . Then (X − e, Y ) is a
3-separation of N , so X−e is a triangle or a triad of M\e. As e ∈ cl(X −e) and M
is binary, the first possibility does not occur. Thus X−e is a triad T ∗ of N . Again,
since M is binary, it follows that T ∗ ∪ e is a 4-element fan or a quad of M . �

Lemma 12.2. Let N be a binary internally 4-connected matroid having a 4-
cocircuit {x1, x2, x3, x4} and triangles {x1, x2, y1}, {x2, x3, y2}, {x3, x4, y3}, and
{x4, x1, y4}. Let M be the binary matroid that is formed by adding z4 in series
with x4 and then adding z3 and z1 so that {x3, z4, z3} and {x1, z4, z1} are circuits.
Then M is internally 4-connected.

Proof. The construction of M ensures that it is connected. Moreover, M has
{x1, x2, x3, z4} and {z1, z3, z4, y4} as cocircuits and has {z3, y3, x4} and {z1, y4, x4}
as circuits. We show next that M is 3-connected. Evidently M/z4 is obtained
from N by adding z3 and z1 in parallel with x3 and x1, respectively. Thus M/z4 is
vertically 3-connected.

Let (X, Y ) be a 2-separation of M with z4 in X . If |X | = 2, then z4 is in a
2-circuit or a 2-cocircuit of M and one easily checks that this gives a contradiction.
Hence |X | ≥ 3 and (X − z4, Y ) is a 2-separation of M/z4. But M/z4 has no
vertical 2-separations. Thus X − z4 or Y is {x3, z3} or {x1, z1}. By symmetry, we
may assume that {z4, x3, z3} is a 2-separating set of M . As M is binary, it follows
that {x3, z3} is a cocircuit of M ; a contradiction to orthogonality. We conclude
that M is 3-connected.

To complete the proof, we need to show that M has no (4, 3)-violators. Assume
that M does have a (4, 3)-violator (X, Y ). We show next that

12.2.1. If |{x3, z3, z4}∩X | ≥ 2, then (X ∪ {x3, z3, z4}, Y −{x3, z3, z4}) is a (4, 3)-
violator.

Clearly (X ∪ {x3, z3, z4}, Y − {x3, z3, z4}) ∼= (X, Y ). Thus (12.2.1) holds unless
Y is a 4-element fan. Consider the exceptional case. Then Y has a fan ordering
(g1, g2, g3, e) where {g2, g3, e} is a triangle and e is x3, z3, or z4. Suppose e = x3.
Then the cocircuit {x1, x2, x3, z4} implies that {g2, g3} meets {x1, x2}. Thus the
triad {g1, g2, g3} meets {x1, x2} but avoids z4. Hence x1 or x2 is in a triad of N ,
so N has a 4-element fan; a contradiction. We deduce that e 6= x3. Suppose e is
z3 or z4. Then the cocircuit {z1, z3, z4, x4} implies that {g1, g2, g3} meets {z1, x4}
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and avoids {z3, z4}. Thus either N has a 2-cocircuit, or N has a triad containing
x4. Neither is possible. Hence e 6∈ {z3, z4}. We conclude that (12.2.1) holds.

We show next that

12.2.2. M has no (4, 3)-violator (X, Y ) with {x1, z1, x3, z3, z4} ⊆ X.

Suppose M does have such a (4, 3)-violator. Then (X ∪ x2, Y − x2) ∼= (X, Y ),
so we may assume that x2 ∈ X unless Y is a 4-element fan containing a triad
T ∗ containing x2. In the exceptional case, as z4 ∈ X , it follows that x2 is in
both a triangle and a triad of N ; a contradiction. Thus we may indeed assume
that x2 ∈ X . Then X ⊇ {x1, x2, x3, z1, z3, z4}. Thus (X − {z1, z3, z4}, Y ) is a
3-separationof N . As {x1, x2, x3} is neither a triangle nor a triad of N , it follows
that |X − {z1, z3, z4}| ≥ 4. Hence we have a (4, 3)-violator of N ; a contradiction.
Therefore (12.2.2) holds.

By (12.2.1), we may assume that M has a (4, 3)-violator (X, Y ) with
{x3, z3, z4} ⊆ X . By (12.2.1) and symmetry, we may assume that either {x1, z1} ⊆
X , or {x1, z1} ⊆ Y . By (12.2.2), the first possibility does not occur. Hence
{x1, z1} ⊆ Y .

Suppose x4 ∈ X . Then (X ∪z1, Y −z1) ∼= (X, Y ) and using (12.2.1) and (12.2.2)
we get a contradiction unless z1 is in a triad contained in Y . This exceptional case
does not arise, so x4 ∈ Y .

Now (X, Y ) ∼= (X − z4, Y ∪ z4) ∼= (X − z4 − z3, Y ∪ z4 ∪ z3). As M has no
triad containing z3 but avoiding z4, it follows that both (X − z4, Y ∪ z4) and
(X − z4 − z3, Y ∪ z4 ∪ z3) are (4, 3)-violators of M . Using (12.2.1) and (12.2.2), we
now get a contradiction. We conclude that M is internally 4-connected. �

Lemma 12.3. Let N be a binary internally 4-connected matroid. Let
{x11, x12, x13}, {x21, x22, x23}, and {x31, x32, x33} be triads of N and
{x11, x12, x21, x22, x31, x32} be a 6-circuit. Suppose that

(i) for each i in {1, 2, 3} and each j in {1, 2, 3} − i, there is no 4-circuit of N
containing {xi1, xi2, xj3}; and

(ii) there is no triad {y1, y2, y3} of N such that each of
{y1, y2, x11, x12}, {y1, y3, x21, x23}, and {y2, y3, x31, x32} is a circuit.

Let M be the binary matroid that is obtained from N by adjoining a new element a as
a coloop and then adding elements b and c so that {a, b, x31, x32} and {a, c, x21, x22}
are circuits. Then M is internally 4-connected.

Proof. The construction of M guarantees that it is simple, connected and has
{a, b, c} as a cocircuit. Observe that {b, c, x11, x12} is a circuit of M since it is
the symmetric difference of the circuits {x11, x12, x21, x22, x31, x32}, {a, b, x31, x32},
and {a, c, x21, x22}.

Because M\a, b, c is 3-connected and M has {a, b, c} as a cocircuit, M has no
2-cocircuits. We show next that M is 3-connected. Let (X, Y ) be a 2-separation
of M . Then (X, Y ) is non-minimal. Without loss of generality, |X ∩ {a, b, c}| ≥ 2.
Thus (X ∪ {a, b, c}, Y − {a, b, c}) is a non-minimal 2-separation of M . Hence we
may assume that {a, b, c} ⊆ X . Now r(X) + r∗(X) − |X | = 1. Moreover, |X | ≤ 4
otherwise (X − {a, b, c}, Y ) is a 2-separation of M\a, b, c. If |X | = 3, then {a, b, c}
is a circuit of M contradicting the fact that M is binary. Thus |X | = 4 and X has
rank or corank 2, again contradicting the fact that M is binary. We conclude that
M is 3-connected.
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Now assume that (X, Y ) is a (4, 3)-violator of M . Assume first that |X ∩
{a, b, c}| = 2. Then (X ∪ {a, b, c}, Y − {a, b, c}) is a 3-separation of M . If
|Y − {a, b, c}| = 3, then Y is a 4-element fan of M and Y − {a, b, c} is a trian-
gle. Thus Y contains a triad of M meeting {a, b, c} in a single element. Hence
M\a, b, c has a 2-cocircuit; a contradiction. We conclude that |Y − {a, b, c}| ≥ 4.
Thus we may suppose that X ⊇ {a, b, c}.

If |X | ≥ 7, then (X − {a, b, c}, Y ) is a (4, 3)-violator for N ; a contradiction.
Hence |X | ≤ 6. We show next that

12.3.1. M has no triangle T with |T ∩ {a, b, c}| ≥ 2.

Assume that M has such a triangle. Since {a, b, c} is a cocircuit of M and M is 3-
connected, {a, b, c} is not a triangle. By symmetry, we may assume that T contains
{a, b}. Then T △ {a, b, x31, x32} is a triangle of M and hence of N . Thus triangle
meets the triad {x31, x32, x33} of N , so N has a 4-element fan; a contradiction.
Thus (12.3.1) holds.

Suppose |X | ∈ {4, 5}. Then X is a fan in M having {a, b, c} as a triad. Thus
X contains a triangle containing exactly two of a, b, and c; a contradiction to
(12.3.1). We conclude that |X | = 6. Then r(X) + r∗(X) = 8. If r(X) = 3, then
M |X ∼= M(K4) and so M has a triangle containing at least two elements of {a, b, c};
a contradiction to (12.3.1). We deduce that r(X) ≥ 4. We show next that

12.3.2. r(X) = 4

If not, then r(X) = 5, so r∗(X) = 3. Then M∗|X ∼= M(K4), so M.X ∼= M(K4)
and M.X has {a, b, c} as a triad. Since r(X) = 5, the set X contains a unique
circuit C of M . As M is binary, C is a disjoint union of circuits of M.X . Thus
C is a 3-circuit or a 4-circuit of M.X . Since {a, b, x31, x32}, {a, c, x21, x22}, and
{b, c, x11, x12} are circuits of M , each contains a circuit of M.X . As M.X ∼= M(K4),
and {a, b, c} is a triad of M.X , it follows that the triangles of M.X are {a, b, x3i},
{a, c, x2j}, {b, c, x1k} and {x3i, x2j , x1k} for some i, j, and k in {1, 2}.

Now |C| 6= 3 otherwise C is a proper subset of a circuit of M . Thus |C| = 4 so,
by symmetry, we may assume that C = {a, b, x2j, x1k}. But {a, b, x31, x32} is also a
circuit of M . Thus the symmetric difference of the last two sets, {x31, x32, x2j , x1k},
is a disjoint union of circuits of M . But the last set is a proper subset of a 6-circuit
of M ; a contradiction. We conclude that (12.3.2) holds.

Let X − {a, b, c} = {x, y, z}. Next we show that

12.3.3. {x, y, z} is a triad of M\a, b, c.

As ({x, y, z}, Y ) is a 3-separation of M\a, b, c, it follows that {x, y, z} is a triangle
or a triad of M\a, b, c. Assume the former. As r(X) = 4, there is a circuit C of
M |X other than {x, y, z}. By orthogonality, |C ∩ {a, b, c}| = 2. Thus, by (12.3.1),
|C| = 4, so |C ∩{x, y, z}| = 2. Then C △{x, y, z} is a triangle of M containing two
of a, b, and c; a contradiction to (12.3.1). We conclude that (12.3.3) holds.

Since {a, b, c} is a triad of M and {x, y, z} is a triad of M\a, b, c, by symmetry
and using symmetric difference, we may assume that either {x, y, z} or {x, y, z, a}
is a cocircuit of M .

12.3.4. {x, y, z} is a cocircuit of M .

Assume not. Then {x, y, z, a} is a cocircuit of M . As r(X) = 4, the matroid
M |X has at least two circuits C1 and C2. Clearly |Ci ∩ {a, b, c}| = 2 for each i.



60 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

If C1 ∩ {a, b, c} = C2 ∩ {a, b, c}, then C1 △ C2 ⊆ {x, y, z}; a contradiction. Thus
C1 ∩ {a, b, c} 6= C2 ∩ {a, b, c}. Now |C1 △ C2| ≤ 5, so C1 △ C2 is a circuit of
M |X . Moreover, |(C1 △ C2) ∩ {a, b, c}| = 2. The circuits C1, C2, and C1 △ C2

imply that M |X has circuits Dab and Dac meeting {a, b, c} in {a, b} and {a, c},
respectively. Each of these circuits has even intersection with {x, y, z, a}. Since
|Dab △ Dac| ≥ 3, it follows that |Dab| or |Dac| is 3. By symmetry, assume that
Dab = {a, b, x}. Then Dab△{a, b, x31, x32} is a 3-circuit of M , namely {x, x31, x32}.
But {x, y, z} is a cocircuit of M\{a, b, c}. Hence the last matroid has a 4-element
fan; a contradiction. We conclude that (12.3.4) holds.

Since {a, b, c} and {x, y, z} are triads of M and r(X) = 4, after a possible
relabelling, we deduce that {a, b, x, y}, {a, c, x, z}, and {b, c, y, z} are circuits of M .
We also know that {a, b, x31, x32} is a circuit of M . Thus either {x, y} = {x31, x32}
or {x, y} ∩ {x31, x32} = ∅. In the first case, since {x, y, z} and {x31, x32, x33}
are triads of M , we deduce that {x, y, z} = {x31, x32, x33} and z = x33. Then
{a, c, x21, x22}△{a, c, x, z}, which equals {x21, x22, x, x33} is a circuit of M\{a, b, c};
a contradiction to (i). We deduce that {x, y}∩{x31, x32} = ∅. By symmetry, {x, z}∩
{x21, x22} = ∅ and {y, z} ∩ {x11, x12} = ∅. Thus {x, y, x31, x32}, {x, z, x21, x22},
and {y, z, x11, x12} are circuits of N and (ii) holds with (z, y, x) = (y1, y2, y3); a
contradiction. �
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