UNAVOIDABLE TOPOLOGICAL MINORS OF INFINITE GRAPHS

CAROLYN CHUN AND GUOLI DING*

Abstract

A graph G is loosely-c-connected, or ℓ - c-connected, if there exists a number d depending on G such that the deletion of fewer than c vertices from G leaves precisely one infinite component and a graph containing at most d vertices. In this paper, we give the structure of a set of $\ell-c$-connected infinite graphs that form an unavoidable set among the topological minors of ℓ-c-connected infinite graphs. Corresponding results for minors and parallel minors are also obtained.

1. Introduction

In this paper, we explore unavoidable topological minors in ℓ - c-connected infinite graphs, building on König's Infinity Lemma for connected infinite graphs, which is stated as follows.

Lemma 1.1. If G is a connected infinite graph, then G contains a vertex of infinite degree or a oneway infinite path.

The purpose of this paper is to extend this result by identifying unavoidable structures in better connected infinite graphs. We prove a stronger form of an infinite graph result by Oporowski, Oxley, and Thomas from 1993 found in [2], which we state later as Theorem 1.2(b).

Since we only consider vertex connectivity in this paper, we restrict our attention to simple graphs. We say that a graph is connected if every pair of vertices is contained in a path in the graph. As stated in the abstract, an infinite graph G is loosely-c-connected, or ℓ-c-connected if there exists a number d depending on G such that the deletion of fewer than c vertices from G leaves precisely one infinite component and a graph containing at most d vertices. (We learned after the first draft of this paper that ℓ - c-connected graphs are called essentially c-connected in [2]. We continue to use our abbreviation since $e-c$-connectivity could be misunderstood as an edge connectivity.)

We now define some more terms and notation for use throughout this paper. All other graph terminology and notation are defined in [1]. For an edge e in a graph G, we may contract e in G, written G / e, by replacing the two ends of e with a single vertex adjacent to every vertex that is adjacent to either end of e in G. A subdivision of a graph M is any graph obtained from M by replacing some edges of M with finite paths. We say that a graph M is a topological minor, or

[^0]series minor, of a graph G, written $M \preceq_{t} G$, if G contains a subdivision of M as a subgraph. A graph N is a minor of a graph G, written $N \preceq G$, if N can be obtained by contracting a set Y of edges in a subgraph H of G, where N can be written H / Y. A graph P is a parallel minor of a graph G, written $P \preceq_{\|} G$, if P can be obtained from G by contracting edges. We note that parallel minor is the matroid dual operation of series minor. Parallel minor is related to induced minor, which is obtained from a graph by deleting vertices and contracting edges. Observe that a parallel minor is an induced minor, and an induced minor is a minor.

A ray is a oneway infinite path and a star is a vertex u and an infinite vertex set V together with edge set $\{u v: v \in V\}$. A fan is the graph of a vertex adjacent to each vertex in a ray. A ladder on two rays Y and Z is the graph consisting of the disjoint rays $Y=y_{1} y_{2} y_{3} \ldots$ and $Z=z_{1} z_{2} z_{3} \ldots$, and edges $y_{1} z_{1}, y_{2} z_{2}, y_{3} z_{3}, \ldots$ If the edges $y_{2} z_{1}, y_{3} z_{2}, \ldots$ are added to this ladder, we get a zigzag ladder on rays Y and Z. Note that in this zigzag ladder rays Y and Z are not symmetric, since Y contains a vertex of degree two and Z does not, but observe that after the contraction of the edge $y_{1} y_{2}$, ray Z contains a vertex of degree two and Y does not.

Next, we define the expansion of a finite tree T. A leaf is a vertex with degree one. If T has one vertex then the expansion of T is a ray. If T has two vertices then the expansion is a fan. These are the two special cases of expansion. If T has three or more vertices, then let $t_{1}, t_{2}, \ldots, t_{m}$ be its leaves and $t_{m+1}, t_{m+2}, \ldots, t_{n}$ be its internal vertices. Then the expansion of T is the graph consisting of vertices $s_{1}, s_{2}, \ldots, s_{m}$ and rays $R_{m+1}, R_{m+2}, \ldots, R_{n}$, with a ladder on rays R_{i} and R_{j} exactly when $t_{i} t_{j} \in E(T)$, and a fan on vertex s_{k} and ray R_{l} exactly when $t_{k} t_{l} \in E(T)$. We say that $s_{1}, s_{2}, \ldots, s_{m}$ are the stars of the expansion and $R_{m+1}, R_{m+2}, \ldots, R_{n}$ are the rays of the expansion. Though there are other rays in the expansion, when we refer to the rays of the expansion, we mean these particular rays. An example of expansion is given in Figure 1, where tree T in Figure 1a is expanded in Figure 1b.

FIGURE 1. (a) Tree T. (b) The expansion of T.

The graph $K_{c, \infty}$ is the infinite bipartite graph containing an independent set A with c vertices and an infinite independent set B, such that $A \cup B=V\left(K_{c, \infty}\right)$ and each vertex in A is adjacent to every vertex in B. Note that $K_{1, \infty}$ is a star. We add an edge between each pair of vertices in A to $K_{c, \infty}$ to obtain the graph $K_{c, \infty}^{\prime}$.

The countable version of part (b) of the following theorem is proved in [2]; part (a) is mentioned without proof.

Theorem 1.2. For each positive integer c, let \mathcal{M}_{c} be the set of graphs that consists of $K_{c, \infty}^{\prime}$ and expansions of c-vertex trees. Then the following hold.
(a) Every graph in \mathcal{M}_{c} is ℓ-c-connected.
(b) Every ℓ-c-connected graph has a minor that is isomorphic to a graph in \mathcal{M}_{c}.
(c) No graph in \mathcal{M}_{c} contains another graph in \mathcal{M}_{c} as a minor.

In the definition of expansion, we could use zigzag ladders instead of ladders. Since zigzag ladders are not symmetric with respect to their two poles, such an expansion would not be unique for a given tree. Parts (a) and (b) in the above theorem would still be true, but we would have to modify part (c). Let us call two graphs minor-equivalent if each one contains the other as a minor. It is not difficult to show that all such expansions of a single tree are minor-equivalent. If we use this modified definition, statement (c) would be "if a graph in \mathcal{M}_{c} contains another graph in \mathcal{M}_{c} as a minor then the two graphs are minor-equivalent," which would not be as clean as the current formulation. Thus we refrain from using the zigzag ladder in our definition of expansion.

Note that Theorem 1.2 completely characterizes all unavoidable (or minimal) minors of ℓ-c-connected graphs, and it generalizes König's Infinity Lemma. In this paper, we actually prove two stronger results of which Theorem 1.2(b) is a corollary.

FIGURE 2. (a) Tree T. (b) The series expansion of T.

To state our next result we first define the series expansion of (T, S), where T is a finite tree and S is a set of leaves of T and $S \neq V(T)$. Note that S may be empty. The series expansion is basically a subgraph of the expansion of T, except that leaves not in S correspond to rays. The reader may choose to skip the following detailed definition since the idea is clearly illustrated in Figure 2.

For the purpose of avoiding notation clutter, we first describe an intermediate graph G. Let $V(T)=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ with $S=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$. Let $R_{i}=r_{1}^{i} r_{2}^{i} \ldots$. be disjoint rays for $i=m+1, m+2, \ldots, n$. Then G is constructed from vertices $s_{1}, s_{2}, \ldots, s_{m}$, and rays $R_{m+1}, R_{m+2}, \ldots, R_{n}$ by adding edges $s_{i} r_{i}^{j}, s_{i} r_{i+n}^{j}, s_{i} r_{i+2 n}^{j}, \ldots$, for each $t_{i} t_{j} \in E(T)$ such that $i \leq m<j$, and edges $r_{j}^{i} r_{i}^{j}, r_{j+n}^{i} r_{i+n}^{j}, r_{j+2 n}^{i} r_{i+2 n}^{j}, \ldots$, for each $t_{i} t_{j} \in E(T)$ such that $i, j>m$. Notice that G may have many vertices of degree at most two, all of which are incident only with edges of the rays. The graph
obtained from G by contracting, one by one, the edges incident with a vertex of degree at most two is the cosimplification of G, which we call the series expansion of (T, S). Note that the resulting series expansion depends not only on T and S, but also on how vertices of T are labelled. It is straightforward to verify that all series expansions of the pair (T, S) are series-equivalent, meaning that any one contains the other as a topological minor. We will refer to vertices in S and $V(T)-S$ as star vertices and ray vertices, respectively. In our figures, star vertices are labelled with s and ray vertices are unlabelled.

In addition to series expansions of trees, we also need to define different versions of $K_{c, \infty}$. A tree is branching if it has no vertices of degree two. Let T be a finite branching tree with exactly $c \geq 3$ leaves, which are labeled $1,2, \ldots, c$. The duplication of T is obtained by taking infinitely many disjoint copies of T and identifying the leaves that have the same label. Note that the duplication of $K_{1, c}$ is exactly $K_{c, \infty}$. For $c=1,2$, we will also consider $K_{1, c}$ a branching tree with c leaves, and we define its duplication to be $K_{c, \infty}$. Each duplication of a branching tree with c leaves is a version of $K_{c, \infty}$.

For each positive integer c, let \mathcal{T}_{c} be the set of graphs that consists of duplications of branching trees with c leaves and series expansions of (T, S) with $|T|=c$. The following is the main result in this paper, which characterizes a complete set of unavoidable topological minors of ℓ - c-connected graphs.

Theorem 1.3. The following hold for every positive integer c.
(a) Every graph in \mathcal{T}_{c} is ℓ-c-connected.
(b) Every ℓ-c-connected graph has a topological minor that is isomorphic to a graph in \mathcal{T}_{c}.
(c) If $M, N \in \mathcal{T}_{c}$ and $N \preceq_{t} M$, then M and N are series-equivalent and are both congruent to a version of $K_{c, \infty}$ or are series expansions of a pair (T, S).

Note that $1.3(\mathrm{c})$ states that nonequivalent graphs in \mathcal{T}_{c} are not comparable, which means that, up to equivalence, there is no redundancy in \mathcal{T}_{c}. We could define \mathcal{T}_{c} by taking one representative from each equivalence class, which would give rise to a formulation similar to 1.2 (c). Since no natural representatives are available, we leave the formulation as it is.

The following figure illustrates all pairs (T, S) for $c \leq 4$. These are finite descriptions of the unavoidable topological minors other than duplications of branching trees.

FIGURE 3. All possible pairs (T, S) for (a) $c=1$, (b) $c=2$, (c) $c=3$, and (d) $c=4$.

Our final result is a similar theorem on parallel minors. Since no vertex or edge deletions are allowed, the unavoidable structures will be expansions of general graphs, instead of trees. A spanning tree T of a finite graph is called leaf-maximal if the graph has no spanning tree such that its set of leaves properly contains the set of leaves of T.

We consider pairs (H, S), where H is a connected finite graph and $S \subset V(H)$. If H has one or two vertices, we require that $|S|=|H|-1$, and we define the expansion of (H, S) to be a ray or a fan, respectively. If H has three or more vertices, we require that $H-S$ is a tree, $H[S]$ is a clique, and H has a leafmaximal spanning tree with S as its set of leaves. Let $S=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ and $V(H)-S=\left\{t_{m+1}, t_{m+2}, \ldots, t_{n}\right\}$. The expansion of (H, S) is the graph consisting of vertices $s_{0}, s_{1}, s_{2}, \ldots, s_{m}$ and rays $R_{m+1}, R_{m+2}, \ldots, R_{n}$, with a zigzag ladder on rays R_{i} and R_{j} exactly when $t_{i} t_{j} \in E(H)$, a fan on vertex s_{k} and ray R_{l} exactly when $t_{k} t_{l} \in E(H)$, an edge between any two vertices of $\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$, and an edge between s_{0} and the first vertex of each ray R_{i}. Note that there are two ways to put a zigzag ladder onto a pair of rays, therefore there may be several different graphs that are expansions of a single pair. For any pair of graphs G and G^{\prime} in such a set, $G \cong G^{\prime} / Y$, where Y consists of initial segments of the rays, so we call the two graphs G and G^{\prime} parallel-equivalent.

FIGURE 4. (a) Tree T with leaves S. (b) Graph $H \supseteq T$. (c) The expansion of (H, S).
For each positive integer c, let \mathcal{P}_{c} be the set of graphs that consists of $K_{\infty}, K_{c, \infty}^{\prime}$, and expansions of (H, S), over all pairs as described in the last paragraph, such
that $|H|=c$. The following is our final result, a characterization of unavoidable parallel minors of $\ell-c$-connected graphs.

Theorem 1.4. The following hold for every positive integer c.
(a) Every graph in \mathcal{P}_{c} is ℓ-c-connected.
(b) Every ℓ-c-connected connected graph has a parallel minor that is isomorphic to a graph in \mathcal{P}_{c}.
(c) If $M, N \in \mathcal{P}_{c}$ and $N \preceq_{\|} M$, then M and N are parallel-equivalent and are congruent to $K_{c, \infty}^{\prime}$, congruent to K_{∞}, or expansions of a pair (H, S).
We point out that this result gives a characterization of the set of unavoidable induced minors of ℓ-c-connected graphs: besides K_{∞} and $K_{c, \infty}^{\prime}$, this set consists of members of $\mathcal{P}_{c}-\left\{K_{\infty}, K_{c, \infty}^{\prime}\right\}$ with s_{0} being deleted.

Figure 5 contains all possible graphs H for $c=3$ and $c=4$. Vertices in S are labelled by s. The darker edges indicate edges in a leaf-maximal spanning tree of H.

FIGURE 5. All possible pairs (H, S) for (a) $c=3$ and (b) $c=4$.
The rest of the paper is organized as follows. In Section 2, we prove parts (a) and (c) of our three theorems. In Section 3, we prove a result on augmenting path, which will be used in later analysis. In Section 4 and Section 5 we prove Theorem 1.3(b) and Theorem 1.4(b), respectively.

2. The qualification of unavoidable sets

We first prove that all the unavoidable graphs are $\ell-c$-connected. We then address nonredundancy.

Lemma 2.1. The series expansion of (T, \emptyset) is $\ell-c$-connected if T is a tree containing c vertices.

Proof. Let T be a tree with c vertices, let G be the series expansion of (T, \emptyset), and let Δ be the maximum degree of the vertices of T. Suppose that G is not $\ell-c$ connected. Then, for every integer d, there is a set of fewer than c vertices that divides G into a component and a graph with more than d vertices. We prove that G is ℓ-c-connected by showing that $d=c(\Delta c)^{c}$ satisfies the requirements. Take vertex set V^{\prime} of order at most $(c-1)$ such that $G \backslash V^{\prime}=X \cup H$, where X is a component and $|H| \geq d$.

Let $R_{1}, R_{2}, \ldots, R_{c}$ be the rays of the series expansion G. An average of $\frac{d}{c}$ vertices of H are in each ray. Therefore at least one ray, say R_{1}, contains at least $\frac{d}{c}=(\Delta c)^{c}$ vertices of H. Each component of $R_{1} \cap H$ is adjacent with one or two vertices in R_{1}, and each of these vertices is in V^{\prime}, thus the number of components
of $R_{1} \cap H$ is at most c. Ray R_{1} therefore contains a path P_{1} with order at least $\frac{(\Delta c)^{c}}{c}=\Delta^{c} c^{(c-1)}$. Fewer than Δ rays in G have neighbors in R_{1}, and each such ray neighboring R_{1} contains a path with over $\frac{\Delta^{c} c^{(c-1)}}{\Delta}=(\Delta c)^{(c-1)}$ vertices adjacent with P_{1}. These neighbors are in $V^{\prime} \cup H$, and since $\left|V^{\prime}\right|<c$, there is a path in each ray neighboring R_{1} of length at least $\frac{(\Delta c)^{(c-1)}}{c}=\Delta^{(c-1)} c^{(c-2)}$ in H.

Ray R_{1} contains a path in H with length at least $\Delta^{c} c^{(c-1)}$. Each ray neighboring R_{1} in G contains a path in H with length at least $\Delta^{(c-1)} c^{(c-2)}$. We apply the same argument to conclude that each ray adjacent to a ray neighboring R_{1} contains a path in H of length at least $\Delta^{(c-2)} c^{(c-3)}$. Continuing in this fashion, a ray in G that is a distance i from R_{1} contains a path in H with length at least $\Delta^{(c-i)} c^{(c-1-i)}$. Since G contains c rays, the greatest distance between R_{1} and any other ray in G is $(c-1)$, therefore every ray in G will contain a path in H with length at least Δ. The graph H therefore contains vertices in each of the c rays.

Since $|X| \geq d$, we may also conclude that X meets each ray in G. Between a vertex of X and a vertex of H in a ray, there must be a vertex of V^{\prime}, so we conclude that V^{\prime} meets every ray in G. This contradicts the fact that $\left|V^{\prime}\right|<c$.
Lemma 2.2. Every graph in $\mathcal{M}_{c} \cup \mathcal{T}_{c} \cup \mathcal{P}_{c}$ is ℓ-c-connected.
Proof. Clearly K_{∞} and every version of $K_{c, \infty}$ is $\ell-c$-connected. Since graphs in $\mathcal{M}_{c} \cup \mathcal{P}_{c}$ are obtained from graphs in \mathcal{T}_{c} by adding edges, it suffices to show that every graph in \mathcal{T}_{c} is ℓ-c-connected. Take a tree T with c vertices. Let G be a series expansion of (T, \emptyset). We apply Lemma 2.1 to conclude that G is ℓ - c-connected, so there is an integer d such that any cut set of G with fewer than c vertices separates the graph into a component and a graph with at most d vertices. Let R be a ray of the series expansion G that labels a leaf of T. The vertices $V(R)$ are adjacent with the vertex set of only one other ray of G. We will show that G / R is $\ell-c$-connected. Since contracting such a ray will not decrease the connectivity of the graph, we will conclude that every member of \mathcal{T}_{c} is $\ell-c$-connected, which will complete our proof.

Contract R to a vertex r and let $G^{\prime}=G / R$. Take $V^{\prime} \subset V\left(G^{\prime}\right)$, a cut set of G^{\prime} with fewer than c vertices. Let X be the infinite component of $G^{\prime} \backslash V^{\prime}$ and let $H=G^{\prime} \backslash\left(V^{\prime} \cup X\right)$.

If $r \notin V^{\prime}$, then $r \in V(X)$, since r is adjacent with infinitely many vertices. The cut set V^{\prime} is a cut set of G, and $G \backslash V^{\prime}$ consists of graph H and the infinite component with vertex set $V(X-r) \cup V(R)$. Therefore, $|H| \leq d$. Suppose $r \in V^{\prime}$. By Lemma 2.1, $G^{\prime}-r$ is $\ell-(c-1)$-connected, so any vertex cut set in G^{\prime} with fewer than c vertices that contains vertex r will separate G^{\prime} into a component and a graph with fewer than d^{\prime} vertices for some integer d^{\prime} depending on G^{\prime}.

The deletion of any set of fewer than c vertices from G^{\prime} results in a component and a graph with fewer than $\max \left\{d, d^{\prime}\right\}$ vertices, and we conclude that G^{\prime} is $\ell-c$ connected.

We say that a graph G is k-disconnected, for a positive integer k, if there is a set of finite graphs G_{1}, G_{2}, \ldots such that G is obtained by identifying V_{i}, a set of $a_{i} \leq k$ vertices of G_{i}, with a_{i} vertices of G_{i+1} for all positive integers i. Graph $G[H]$ is the graph that G induces on subgraph H, that is, $G[H]$ contains the edges
and vertices in H and also every edge of G with both ends in the vertices of H. We assume that the edges in $G_{i}\left[V_{i}\right]$ are identical to the edges in $G_{i+1}\left[V_{i}\right]$. Then G is the k-path-sum of $\left\{G_{i}\right\}_{i=1,2, \ldots}$. Since V_{i} is a cut set for $i=1,2, \ldots$, graph G is not ℓ-($k+1$)-connected. Observe that any minor G^{\prime} of G is the k-path-sum of some sequence $\left\{G_{i}^{\prime}\right\}_{i=1,2, \ldots}$ such that $G_{i}^{\prime} \preceq G_{i}$ for $i=1,2, \ldots$ We make the following observation.

Lemma 2.3. Every minor of a k-disconnected graph is k-disconnected.

If a graph contains $k+1$ pairwise disjoint rays in one end, then there is some V_{j} that meets all of them, which contradicts our assumption that $\left|V_{j}\right| \leq k$. We conclude with the following observation.

Lemma 2.4. If a graph is k-disconnected, then it does not have $(k+1)$ pairwise disjoint rays.

Let S be the set of vertices in G that are in infinitely many graphs G_{i} in the k-path-sum. Let $m=k-|S|$. We make the following observation.

Lemma 2.5. Graph $G \backslash S$ is m-disconnected.
We say that two rays R and R^{\prime} are equivalent if $R \backslash P=R^{\prime} \backslash P^{\prime}$ for some finite paths P and P^{\prime}. Two sets of rays $\left\{R_{1}, \ldots, R_{m}\right\}$ and $\left\{R_{1}^{\prime}, \ldots, R_{m}^{\prime}\right\}$ are equivalent if there is a permutation σ such that R_{i} is equivalent with $R_{\sigma(i)}^{\prime}$ for all i. The following observation is another consequence of our structure.
Lemma 2.6. If $\left|V_{i}\right|=k$ for all positive integers i and each graph G_{i} contains a unique set of pairwise disjoint paths from the vertices in V_{i} to the vertices in V_{i+1}, then let $R_{1}, R_{2}, \ldots, R_{m}$ be a set of m pairwise disjoint rays in G. If $R_{1}^{\prime}, R_{2}^{\prime}, \ldots$, R_{m}^{\prime} are pairwise disjoint rays of M, then $\left\{R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{m}^{\prime}\right\}$ and $\left\{R_{1}, R_{2}, \ldots, R_{m}\right\}$ are equivalent.

Suppose that G has k unique pairwise disjoint rays and consider $G \backslash X$. Suppose $X \cap R$ is infinite for a ray R. Then $G \backslash X$ has at most $k-1$ pairwise disjoint rays, hence $G \backslash X$ is $(k-1)$-disconnected. We conclude the following.

Lemma 2.7. If G has k unique pairwise disjoint rays, then the deletion of infinitely many edges from any of the k rays results in a $(k-1)$-disconnected graph.

Take a set of m pairwise disjoint rays: $R_{1}, R_{2}, \ldots, R_{m}$, and let S be the set of vertices in infinitely many different graphs G_{i}. Let Q be the set of edges in $G\left[V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup \cdots \cup V\left(R_{m}\right) \cup S\right]$ that are not in $E\left(R_{1}\right) \cup E\left(R_{2}\right) \cup \cdots \cup E\left(R_{m}\right)$.

Lemma 2.8. If set $Y \cap Q$ is infinite then G / Y is $(c-1)$-disconnected.
Suppose not. If Y contains infinitely many edges between R_{1} and R_{2}, then R_{1} is not disjoint from R_{2} in G / Y. If instead Y contains infinitely many edges between R_{1} and a vertex s in S, then R_{1} is not a ray in G / Y. Since any other set of m rays in G is equivalent to $\left\{R_{1}, R_{2}, \ldots, R_{m}\right\}$, we conclude that G / Y contains only $m-1$ pairwise disjoint rays, hence it is $(k-1)$-disconnected. We apply Lemma 2.3 and conclude that N is not ℓ - c-connected, a contradiction.

Let G_{Y} be the subgraph of G with no isolated vertices and with edge set exactly equal to Y. If any component of G_{Y} contains two or more vertices in S, then G / Y
contains fewer than $|S|$ vertices that are in infinitely many graphs G_{i}, hence G / Y is $(k-1)$-disconnected. We make the following observation.
Lemma 2.9. If any component of G_{Y} contains two or more star vertices, then G / Y is $(k-1)$-disconnected.

The following proof shows nonredundancy among the members of \mathcal{M}_{c}.
Proof of Theorem 1.2(c). Observe that since $K_{c, \infty}$ does not contain any ray, none of its minors contains a ray. Therefore, $K_{c, \infty}$ does not contain any other graph in \mathcal{M}_{c} as a minor.

Take M in $\mathcal{M}_{c}-\left\{K_{c, \infty}\right\}$ and tree T such that M is the expansion of T. Let k be the minimal number such that M is k-disconnected and M is the k-path-sum of $\left\{M_{i}\right\}_{i=1,2, \ldots}$. Note that M contains infinitely many copies of T, each of which has a vertex set that is a separating set of M and which we may order into sets V_{1}, V_{2}, \ldots, thus $k \leq c$. Since M is $\ell-c$-connected, we conclude that $k=c$. Let G be the c-path-sum of G_{1}, G_{2}, \ldots over V_{1}, V_{2}, \ldots Observe that each graph G_{i} contains a unique set of pairwise disjoint paths from the c vertices in V_{i} to the c vertices in V_{i+1}. Let R be the set of edges contained in the rays of M labelling the internal vertices of T. Let $Q=E(M \backslash R)$. For every edge $e=t_{i} t_{j}$ of T, let Q_{e} be the set of edges of M that are between R_{i} or s_{i} and R_{j} or s_{j}, where $R_{i}, R_{j}, s_{i}, s_{j}, t_{i}$, and t_{j} are as specified in the definition of expansion. Let S be the set of star vertices of the expansion M. We apply Lemma 2.6 to G_{1}, G_{2}, \ldots and conclude that every set of $c-|S|$ pairwise disjoint rays in G are equivalent to the rays of R.

Let $N=M \backslash X / Y$ for some N in \mathcal{M}_{c}. We apply part (a) of Theorem 1.2 to conclude that N is ℓ-c-connected. We apply Lemma 2.7 to conclude that $X \cap E(R)$ is finite, or else $M \backslash X$ is ℓ - $(c-1)$-disconnected, hence N is not ℓ-c-connected by Lemma 2.3, a contradiction.

Suppose, for some ray R_{i}, the set $E\left(R_{i}\right) \backslash Y$ is finite. If t_{i} is adjacent to a leaf of T, then $M /\left\{Y \cap E\left(R_{i}\right)\right\}$ is $(c-1)$-disconnected, and by Lemma $2.3 N$ is not $\ell-c$ connected. If e is not adjacent to a leaf of T, then $M /\left\{Y \cap E\left(R_{i}\right)\right\}$ contains two ends, each with at least one ray, so $M /\left\{Y \cap E\left(R_{i}\right)\right\}$ is at most $(c-1)$-disconnected, and by Lemma $2.3 N$ is not ℓ - c-connected. In either case, we contradict our assumption and make the following observation.
Lemma 2.10. For each ray R_{i}, the set $E\left(R_{i}\right) \backslash Y$ is infinite.
This together with Lemma 2.7 implies that N is not isomorphic to $K_{c, \infty}$. Lemma 2.10 and Lemma 2.7 also imply that, for each ray R of the expansion M, there is a ray R^{\prime} of the expansion N such that a subray of R^{\prime} consists entirely of edges in R. That is, R^{\prime} contains a subray of R except that some of the edges in R are in Y, hence they are contracted in N.

Suppose $Q_{e} \backslash X$ is finite for some edge $e \in E(T)$. If e is incident with a leaf of T, then $M \backslash X$ is $(c-1)$-disconnected, and by Lemma $2.3 N$ is not ℓ-c-connected. If e is not incident with a leaf of T, then $M \backslash\left\{Q_{e} \cap X\right\}$ contains two ends, each with at least one ray, so $M \backslash\left\{Q_{e} \cap X\right\}$ is at most ($c-1$)-disconnected, and by Lemma 2.3 N is not ℓ - c-connected. In either case, we contradict our assumption and make the following observation.
Lemma 2.11. The set $Q_{e} \backslash X$ is infinite for all edges $e \in E(T)$.

Lemma 2.7, Lemma 2.11, Lemma 2.10, and Lemma 2.8 together imply that N has m pairwise disjoint rays. Furthermore, Lemma 2.10, Lemma 2.8, and Lemma 2.9 together imply that every component of $G[Y]$ is finite, though $G[Y]$ may contain infinitely many components. Thus, N has precisely $|S|$ vertices of infinite degree.

If we contract all of the edges in the m pairwise disjoint rays of N then the result is a graph with finitely many vertices. Let Z be its subgraph formed by edges from infinite parallel families. The simplification of Z must be isomorphic to T. Graph N is therefore not the expansion of any tree other than T.

We now prove part (c) of Theorem 1.3.
Proof of Theorem 1.3(c). Take positive integer c, and take $M, N \in \mathcal{T}_{c}$ such that $N \preceq_{t} M$.

Observe that no version of $K_{c, \infty}$ contains a ray, so if M is a version of $K_{c, \infty}$, then so is N. Also, observe that the number of vertices of infinite degree in a graph does not increase under the operation of topological minor, therefore if N is a version of $K_{c, \infty}$, then so is M. Thus we assume that M and N are the expansions of $\left(T_{M}, S_{M}\right)$ and $\left(T_{N}, S_{N}\right)$, respectively. Since $N \prec_{t} M, N=M \backslash X / Y$, where each edge $e \in Y$ is a series edge, that is e is incident with a vertex of degree two, in $M \backslash X /\{Y-e\}$. Since N is cosimple, it is exactly the cosimplification of $M \backslash X$.

Observe that M contains infinitely many copies of tree T_{M}, and the vertex set of each copy of T_{M} is a cut set of M. Let T_{1} be a copy of T_{M} such that $M \backslash T_{1}$ is connected. Let T_{i} be a copy of T_{M} such that T_{i} is in the finite component of $M \backslash T_{j}$ for all $j>i$ and $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset$ if $i \neq j$. Let G be the c-path-sum of G_{1}, G_{2}, \ldots, over $V\left(T_{1}\right), V\left(T_{2}\right), \ldots$ Since M is ℓ - c-connected, we conclude that $k=c$. Observe that each graph G_{i} contains a unique set of pairwise disjoint paths from the c vertices in V_{i} to the c vertices in V_{i+1}. Let R be the set of edges contained in the rays of M labelling the internal vertices of T_{M}. Let $Q=E(M \backslash R)$. For every edge $e=t_{i} t_{j}$ of T_{M}, let Q_{e} be the set of edges of M that are between R_{i} or s_{i} and R_{j} or s_{j}, where $R_{i}, R_{j}, s_{i}, s_{j}, t_{i}$, and t_{j} are as specified in the definition of series expansion. Let S be the set of star vertices of the expansion M and let $m=c-|S|$. We apply Lemma 2.6 to G_{1}, G_{2}, \ldots and conclude that every set of m pairwise disjoint rays in G are equivalent to the rays of M labelling the vertices in $V(T) \backslash S$.

We apply Lemma 2.7 to G and conclude that $X \cap R$ must be finite. Suppose $Q_{e} \backslash X$ is finite for some edge $e \in E(T)$. If e is incident with a vertex in S, then $M \backslash X$ is $(c-1)$-disconnected, and by Lemma $2.3 N$ is not $\ell-c$-connected. If e is not incident with a vertex in S, then $M \backslash\left\{Q_{e} \cap X\right\}$ contains two ends, each with at least one ray, so $M \backslash\left\{Q_{e} \cap X\right\}$ is at most $(c-1)$-disconnected, and by Lemma 2.3 N is not ℓ - c-connected. In either case, we contradict our assumption and make the following observation.

Lemma 2.12. The set $Q_{e} \backslash X$ is infinite for all edges $e \in E(T)$.
We apply Lemma 2.7 to $M \backslash X$ and conclude that $M \backslash X$ contains a subray R_{i}^{\prime} of each ray R_{i} of M, and we apply Lemma 2.6 to conclude that the set $\left\{R_{1}, R_{2}, \ldots, R_{m}\right\}$ and $\left\{R_{1}^{\prime}, R_{2}^{\prime}, \ldots, R_{m}^{\prime}\right\}$ are equivalent. We apply Lemma 2.12 to $M \backslash X$ and conclude that there is a permutation σ such that R_{i} has vertices adjacent
with R_{j} if and only if $R_{\sigma(i)}^{\prime}$ has vertices adjacent with $R_{\sigma(j)}^{\prime}$ and each vertex that is a star of M has infinitely many neighbors in N. Since N is the cosimplification of $M \backslash X$, no edge between a star and a ray R_{i}^{\prime} is in Y and no edge between two rays R_{i}^{\prime} and R_{j}^{\prime} is in Y. Furthermore, if we contract all of the edges in the m pairwise disjoint rays of N then the result is a graph with finitely many vertices. Let Z be its subgraph formed by edges from infinite parallel families. The simplification of Z must be isomorphic to T_{M} and the vertices labelling rays of N must be the set S_{M}. Therefore M and N are both expansions of $\left(T_{M}, S_{M}\right)$.

In the remainder of this section, we prove part (c) of Theorem 1.4.
Proof of Theorem 1.4(c). Take positive integer c. Take M and N in \mathcal{P}_{c} that are expansions of $\left(H_{M}, S_{M}\right)$ and $\left(H_{N}, S_{N}\right)$, respectively, such that $N \preceq_{\|} M$. Let T_{M} and T_{N} be leaf-maximal spanning trees of H_{M} and H_{N} with leaf sets S_{M} and S_{N}, respectively. Take Y such that $N=M / Y$. Observe that M contains infinitely many copies of H_{M} such that the vertex set of each copy is a cut set of M. Furthermore, these cut sets may be ordered V_{1}, V_{2}, \ldots, such that M is the c-path-sum of an infinite sequence of graphs G_{1}, G_{2}, \ldots and $V_{i}=V\left(G_{i}\right) \cap V\left(G_{i+1}\right)$. Vertex s_{0} occurs in some graph, say G_{1}, and each graph G_{i} contains a copy of H_{M} plus some edges and vertices from the zigzag ladders in M. Graph M is c disconnected. Let $m=c-|S|$. Since G_{i} contains m unique pairwise disjoint paths from V_{i} to V_{i+1} for each positive integer i, we apply Lemma 2.6 and conclude that any set of m rays is equivalent to $\left\{R_{1}, R_{2}, \ldots, R_{m}\right\}$. We will show that $H_{M} \cong H_{N}$ by showing that they have exactly the same edges.

We apply Lemma 2.5 to $M \backslash S_{M}$ and conclude that M has exactly m pairwise disjoint rays. Let R be the set of edges in the rays of M. Suppose $E\left(R_{i}\right) \backslash Y$ is finite for some ray R_{i}. Since N is infinite, it must be the case that M has a ray other than R_{i}. By Lemma 2.3, M / Y is not $(c-1)$-disconnected, so each vertex in S_{M} with neighbors in $V\left(R_{i}\right)$ must also have neighbors in another ray of M. Clearly R_{i} is not adjacent with two other rays of M. Since the stars of M adjacent with $V\left(R_{i}\right)$ are also adjacent with other rays, and R_{i} is adjacent with at most one, hence exactly one, other ray R_{j} of M, we may delete all of the edges in T_{M} incident with t_{i} except $t_{i} t_{j}$ to obtain a spanning tree of T_{M}^{\prime} of H_{M} with more leaves than T_{M}. This contradicts the fact that T_{M} is leaf-maximal, and we conclude with the following observation.

Lemma 2.13. For each ray R_{i}, the set $E\left(R_{i}\right) \backslash Y$ is infinite.
We apply Lemma 2.10 to conclude that $E\left(R_{i}\right) \backslash Y$ is infinite for each ray and apply Lemma 2.8 to conclude that $Y \backslash R$ is finite. Thus the m rays in N are contractions of rays contained in M and we apply Lemma 2.6 to conclude that these sets of m rays are equivalent.

We then apply Lemma 2.9 and conclude that if star vertex $s_{j} \in S_{M}$ has infinitely many neighbors in R_{i}, then star vertex $s_{j}^{\prime} \in S_{N}$ has infinitely many neighbors in R_{i}^{\prime}. Furthermore, for every star $s_{k} \in S_{M}$ nonadjacent with all of the vertices of a subray of R_{i}, star $s_{k}^{\prime} \in S_{N}$ is nonadjacent with all the vertices of a subray of R_{i}^{\prime}. Thus, $R_{i} s_{k} \in E\left(H_{M}\right)$ if and only if $R_{i}^{\prime} s_{k}^{\prime} \in E\left(H_{N}\right)$. Another consequence of Lemma 2.9 is that $s_{j} s_{k} \in E\left(H_{M}\right)$ if and only if $s_{j}^{\prime} s_{k}^{\prime} \in E\left(H_{N}\right)$.

Let R_{i}^{\prime} be the ray of N that contains a subray of R_{i} in M. We see that if M contains a zigzag ladder on $R_{i} R_{j}$, then N contains a zigzag ladder on $R_{i}^{\prime} R_{j}^{\prime}$, thus $R_{i} R_{j} \in E\left(H_{M}\right)$, implies that $R_{i}^{\prime} R_{j}^{\prime} \in E\left(H_{N}\right)$. On the other hand, if $R_{i}^{\prime} R_{j}^{\prime} \in$ $E\left(H_{N}\right)$, then there is a zigzag ladder on subrays of R_{i} and R_{j} in M, thus $R_{i} R_{j} \in$ $E\left(H_{M}\right)$. We conclude that $E\left(H_{M}\right) \cong E\left(H_{N}\right)$, thus $H_{M} \cong H_{N}$.

3. Unavoidable End Behavior in Locally Finite Infinite Graphs

In this section we prove a result for augmenting paths, which will be essential for finding the unavoidable topological minors in locally finite $\ell-c$-connected graphs. We begin with a stronger form of König's Infinity Lemma.

Lemma 3.1. If G is a connected, locally finite infinite graph, then G contains an induced ray.

Proof. Let G be a connected, locally finite infinite graph. Since G is locally finite, we apply Lemma 1.1 and conclude that G has a ray $v_{1} v_{2} \ldots$. In addition, for each positive integer i, there exists the largest integer $n(i)>i$ such that v_{i} is adjacent to $v_{n(i)}$. It follows that $v_{1} v_{n(1)} v_{n(n(1))} \ldots$ is an induced ray of G.

A comb is a ray, called the spine of the comb, combined with an infinite set of pairwise disjoint, finite paths, each containing exactly one vertex in the spine, as shown in Figure 6. These finite paths are called teeth. Note that a path is a comb, and all its vertices are teeth. The following theorem is proved in [1].

FIGURE 6. Example of a comb graph.
Theorem 3.2. If X_{1}, X_{2}, \ldots are pairwises disjoint non-empty sets of vertices in a connected graph G, then G has either a comb with a tooth in each of infinitely many of these sets or a subdivided star with a leaf in infinitely many of these sets.

We define an end in a graph, not to be confused with the endpoints of an edge, as it is defined in [1]: An end of a graph G is an equivalence class of rays in G, where two rays are considered equivalent if, for every finite set $S \subset V(G)$, both have an infinite subray in the same component of $G \backslash S$. Note that two rays are joined by infinitely many disjoint paths if and only if they are equivalent.

We now state and prove the following small lemma, which we use in the proof of the theorem later in this section.

Lemma 3.3. If P and Q are disjoint rays in graph G joined by an infinite set Π of pairwise disjoint paths, then G contains a subdivision of a ladder with poles contained in $P \cup Q$, with an infinite subset of Π forming the rungs.
Proof. In graph G, let P and Q be disjoint rays $p_{1} p_{2} \ldots$ and $q_{1} q_{2} \ldots$, respectively. Let P and Q be joined by an infinite set Π of pairwise disjoint paths, $\left\{P_{1}, P_{2}, \ldots\right\}$,
where P_{i} has ends $p_{m_{i}}$ and $q_{n_{i}}$. The sequence n_{1}, n_{2}, \ldots takes infinitely many values, so it contains an infinite subsequence that is strictly increasing. Take such a subsequence, $n_{\alpha}, n_{\beta}, \ldots$ The sequence $m_{\alpha}, m_{\beta}, \ldots$ takes on infinitely many values, hence it contains a strictly increasing sequence: let S be the set of the indices in this sequence. Let $\Pi^{\prime}=\left\{P_{i}: i \in S\right\}$. The set $\Pi^{\prime} \subseteq \Pi$ contains the rungs of a subdivision of a ladder with poles contained in $P \cup Q$.

We now state and prove the main result of this section, an essential theorem concerning the locally finite case of ℓ - c-connected infinite graphs. We will use this theorem in the proof of our main result.

Theorem 3.4. Suppose G is a locally finite, ℓ-c-connected graph, for some positive integer c. If G contains an end with $c-1$ pairwise disjoint rays, then G contains c pairwise disjoint rays in that end such that infinitely many vertices from each original ray are contained in the set of c rays.

Proof. Observe that Lemma 1.1 implies the result when $c=1$.
Let c be an integer greater than one. Let G be a locally finite, ℓ-c-connected infinite graph with an end containing $c-1$ pairwise disjoint rays, $R_{1}, R_{2}, \ldots, R_{c-1}$, where $R_{i}=r_{1}^{i} r_{2}^{i} \ldots$, for $i=1,2, \ldots, c-1$. Take integer d such that any separating set of order $(c-1)$ divides G into an infinite component and a graph containing at most d vertices. Let $H=R_{1} \cup R_{2} \cup \cdots \cup R_{c-1}$. We say that vertex v precedes vertex w in H if the two vertices are in the same path of H and vertex v has index less than that of w.

Now consider the parts of G that are not among the $c-1$ paths. We will call each component of $G \backslash V(H)$, together with all edges incident with it in G, a bridge. Also, we will call each edge in G that is not in H but has both vertices in H a bridge. For a bridge B, we will let the neighborhood $N(B)$, also called the attachments of B, be the set of vertices in H incident with B.

Suppose there is a bridge B that contains infinitely many neighbors in H. Then, B has infinitely many neighbors in some ray. Without loss of generality we suppose it is R_{1}. Let S be the set of vertices in $B \backslash N(B)$ adjacent to vertices in R_{1}. Since G contains no vertices of infinite degree, $B-N(B)$ is connected, and we apply Theorem 3.2 to obtain a comb, C, with each tooth containing one vertex in S. Let the spine of the comb be $R_{c}=r_{1}^{c} r_{2}^{c} \ldots$. The teeth of the comb are an infinite set of pairwise disjoint paths between R_{1} and R_{c}, so R_{1} and R_{c} are in the same end of G. Thus, G meets the criteria of the lemma.

Therefore, assume that there is no bridge with infinitely many neighbors in H. A vertex pair $\{y, z\}$ crosses a vertex pair $\{w, x\}$ if y or z, say y, is in a finite component of $H \backslash\{w, x\}$, and z is in an infinite component, unless y precedes w, x, and z. We say that vertex set V_{1} crosses vertex set V_{2} if V_{1} has a vertex pair that crosses a vertex pair in V_{2}. We say that bridge B_{1} crosses bridge B_{2} if vertex set $N\left(B_{1}\right)$ crosses $N\left(B_{2}\right)$. Observe that bridge B_{1} may cross bridge B_{2} such that B_{2} does not cross B_{1}. We define the crossing graph of H in G, a simple graph, written $\chi_{G}(H)$, to have vertex set equal to the set of bridges, with directed edge set $\left\{\left(B_{k}, B_{l}\right): B_{l}\right.$ crosses $\left.B_{k}\right\}$.

We will now show that $\chi_{G}(H)$ contains an infinite directed induced path.

If S is a set of vertices in H, then $X(S)$ is the set of vertices of highest index from each of the $c-1$ rays that are in S. The following observation can be easily verified, and the proof is omitted.
3.4.1. If y and z are in an infinite component and a finite component of $H \backslash X(S)$, respectively, then vertex set $\{y, z\}$ crosses S unless z precedes every vertex of $S-\{z\}$.

We will now prove the following.
3.4.2. There exists a sequence of bridges B_{1}, B_{2}, \ldots such that $N\left(B_{i}\right)$ crosses $\left\{N\left(B_{1}\right) \cup N\left(B_{2}\right) \cup \cdots \cup N\left(B_{i-1}\right)\right\}$ for each positive integer i.

We may assume that r_{1}^{1} is not a cut vertex since, if it is, we may reassign the indices such that r_{d+2}^{1} is the first vertex in the ray and path $r_{1}^{1} r_{2}^{1} \ldots r_{d+1}^{1}$ is in a bridge. The new initial vertex will not be a cut vertex, since it would divide G into a component and a graph with $d+1$ vertices, a contradiction.

If $c=2$, then take vertex v in R_{1} that is the neighbor of a bridge of R_{1} and precedes every other vertex in R_{1} that is the neighbor of a bridge. Take vertex w in the neighborhood of a bridge that has v as a neighbor, such that every other vertex in the neighborhood of a bridge with neighbor v precedes w. Let B_{1} be the bridge with neighbors v and w.

Since w is not a cut vertex of G, there is some bridge B_{2} with neighbors in both components of $R_{1}-w$. By our selection of B_{1}, no neighbor of B_{2} precedes v, so B_{2} crosses B_{1}, by 3.4.1. Take vertex $z \in N\left(B_{2}\right)$ with highest index in R_{1}. Since z is not a cut vertex of G, there is a bridge B_{3} with neighbors in both components of $R_{1}-z$. Observe that the vertices in $N\left(B_{3}\right)$ cross $\left\{N\left(B_{1}\right) \cup N\left(B_{2}\right)\right\}$. We may continue in this way to obtain a set of bridges $\left\{B_{1}, B_{2}, \ldots\right\}$ where each set $N\left(B_{i}\right)$ crosses $\left\{N\left(B_{1}\right) \cup N\left(B_{2}\right) \cup \cdots \cup N\left(B_{i-1}\right)\right\}$. The case $c=2$ for 3.4.2 is complete. We now consider $c>2$.

Since our rays are in the same end of G, if $c>2$, then there is a bridge, B_{1}, with neighbors in rays R_{1} and R_{2} Let $S_{1}=X\left(N\left(B_{1}\right)\right)$. Note that $\left|S_{1}\right| \leq c-1$. Since S_{1} is not a cut set of G, there is a bridge B_{2} that has a neighbor in a finite component of $H \backslash S_{1}$, and a neighbor in an infinite component of $H \backslash S_{1}$. Observe that B_{2} crosses B_{1}. Let S_{2} be the set of vertices in $N\left(B_{1}\right) \cup N\left(B_{2}\right)$ with highest index in each of the $c-1$ rays of H. There is a bridge B_{3} that meets a finite component and an infinite component of $H \backslash S_{2}$. Bridge B_{3} must cross either B_{1} or B_{2}. Let $S_{i}=X\left(N\left(B_{1}\right) \cup N\left(B_{2}\right) \cup \cdots \cup N\left(B_{i}\right)\right)$. Choose B_{i+1}, a bridge with neighbors in a finite component and an infinite component of $H \backslash S_{i}$. This completes the proof of 3.4.2. We claim the following.
3.4.3. Bridge B_{i+1} crosses B_{1}, B_{2}, \ldots, or B_{i}.

By the choice of B_{i} for $c \geq 2$, there are y and z in $N\left(B_{i}\right)$ that belong to an infinite component and a finite component of $H \backslash X\left(N\left(B_{1}\right) \cup N\left(B_{2}\right) \cup \cdots \cup N\left(B_{i-1}\right)\right)$. Let j be the smallest index such that z belongs to a finite component of $H \backslash X\left(N\left(B_{1}\right) \cup\right.$ $\left.N\left(B_{2}\right) \cup \cdots \cup N\left(B_{j}\right)\right)$. Clearly, $j<i$. We claim that $\{y, z\}$ crosses $N\left(B_{j}\right)$. By the minimality of j, vertex z belongs to a finite component of $H \backslash X\left(N\left(B_{j}\right)\right)$. If our claim is false, then, by 3.4.1, z precedes all vertices in $N\left(B_{j}\right)-\{z\}$. Let P be the minimal path in H that contains all of the vertices in $N\left(B_{j}\right)$. By our choice of B_{1}, we conclude that $j \neq 1$. By induction, B_{j} crosses some B_{k} with $k<j$. It
follows that some vertex v in $N\left(B_{k}\right)$ belongs to the interior of P, which implies that z precedes v, and thus z belongs to a finite component of $H \backslash X\left(N\left(B_{k}\right)\right)$, contradicting the minimality of j. This completes our proof of 3.4.3.

3.4.4. Each vertex of $\chi_{G}(H)$ has finitely many outflowing edges.

Suppose 3.4.4 is not true, and vertex $B \in V\left(\chi_{G}(H)\right)$ has infinitely many outflowing edges. Then bridge B in G is crossed by infinitely many bridges. These bridges each have an attachment in a finite component of $H \backslash N(B)$, thus a vertex in a finite component of $H \backslash N(B)$ has infinite degree in G. This contradicts our assumption that G is locally finite.

A dipath is a directed path. We now prove the following statement, which states that $\chi_{G}(H)$ has an infinite dipath.
3.4.5. The sequence B_{1}, B_{2}, \ldots contains a subsequence $B_{n_{1}}, B_{n_{2}}, \ldots$ such that, for each $i>1$, the set $N\left(B_{n_{i}}\right)$ has two vertices y_{i} and z_{i} such that $N\left(B_{n_{i+1}}\right)$ crosses $\left\{y_{i}, z_{i}\right\}$, and $\left\{y_{i}, z_{i}\right\}$ crosses $N\left(B_{n_{i-1}}\right)$.

There are outflowing edges from B_{1}, such as the edge $\left(B_{1}, B_{2}\right)$. Consider the subgraph χ^{\prime} of $\chi_{G}(H)$ that consists of vertices $\left\{B_{i}\right\}$ and, for each $i>1$, all edges $\left(B_{i}, B_{j}\right)$ in $E\left(\chi_{G}(H)\right.$ such that $j>i$. Note that χ^{\prime} is a tree with all edges directed away from B_{1}. We apply 3.4.4 and conclude that the tree is locally finite. We now apply Lemma 1.1 to conclude that χ^{\prime} contains the dipath $B_{n_{1}}, B_{n_{2}}, \ldots$ we are looking for.

By the choice of the bridges, $\left(B_{n_{i+1}}\right)$ has a vertex z_{i+1} that belongs to an infinite component of $H \backslash\left\{X\left(N\left(B_{n_{1}}\right)\right) \cup \cdots \cup X\left(N\left(B_{n_{i}}\right)\right)\right\}$. Clearly, z_{i+1} also belongs to an infinite component of $H \backslash X\left(N\left(B_{n_{i}}\right)\right)$. Since $B_{n_{i+1}}$ crosses $B_{n_{i}}$, there is a vertex y_{i+1} of $N\left(B_{n_{i+1}}\right)$ that belongs to a finite component of $H \backslash X\left(N\left(B_{n_{i}}\right)\right)$. Take $z_{i} \in$ $X\left(N\left(B_{n_{i}}\right)\right)$ such that y_{i+1} precedes z_{i}. Since $B_{n_{i+1}}$ has no vertex v that precedes all vertices in $X\left(N\left(B_{n_{1}}\right) \cup \cdots \cup N\left(B_{n_{i-2}}\right)\right)$, vertex z_{i} must belong to an infinite component of $H \backslash X\left(N\left(B_{n_{1}}\right) \cup \cdots \cup N\left(B_{n_{i-1}}\right)\right)$. Repeating this argument, we can find $y_{i} \in N\left(B_{n_{i}}\right)$ that precedes a vertex $z_{i-1} \in X\left(N\left(B_{n_{i-1}}\right)\right)$. This completes the proof of 3.4.5.

Statement 3.4.5 implies that we may assume that each $B_{n_{i}}$ is a path, although since obtaining the paths may require some deletions, we sacrifice our assumption that G is $\ell-c$-connected as we will not need it for the rest of the proof. For the rest of the proof we assume each bridge to be a path, and relabel the vertices of R to be $P_{1} P_{2} \ldots$ Let y_{j} be the neighbor of P_{j} in a finite component of $H \backslash N\left(P_{j-1}\right)$, and let z_{j} be the remaining neighbor of P_{j}. We show that this sequence of crossing paths and the rays in H together contain c pairwise disjoint rays. The explanation is quite technical, and the reader may see Figure 7 below for the general idea when $c=3$.

Let k be the number of rays in H that are adjacent to vertices in the set of bridges $\left\{P_{1}, P_{2}, \ldots\right\}$ in G. Without loss of generality, assume these rays to be R_{1}, R_{2}, \ldots, R_{k}, and assume that the sequence of bridges P_{1}, P_{2}, \ldots meets them in order, that is, if bridge P_{i} meets ray R_{j}, then bridges with indices at most i meet
rays $R_{1}, R_{2}, \ldots, R_{j-1}$. Let ϕ be a function such that $P_{\phi(l)}$ is the bridge with lowest index that has a neighbor in R_{l}.

We will now show that there are c pairwise disjoint rays, Q_{1}, Q_{2}, \ldots, and Q_{c}, and that these rays are in the same end of H. Let q_{1}^{i} be the vertex $r_{\phi(i)}^{i}$ for $i=1,2, \ldots, k$, and let Q_{i} be ray R_{i} for $i=k+1, k+2, \ldots, c-1$. Let q_{1}^{c} be $y_{\phi(k+1)}$. Observe that $z_{\phi(k+1)}$ is in an infinite component of $H \backslash\left\{r_{\phi(1)}^{1}, r_{\phi(2)}^{2}, \ldots, r_{\phi(k)}^{k}, r_{1}^{k+1}, r_{1}^{k+2}, \ldots, r_{1}^{c-1}\right\}$. Vertex $y_{\phi(k+2)}$ is in the same ray of H as $y_{\phi(k+1)}$ or $z_{\phi(k+1)}$. If $y_{\phi(k+2)}$ is not in the ray of H with $z_{\phi(k+1)}$, then it is in ray R_{k} with $y_{\phi(k+1)}$, so $P_{\phi(k+2)}$ crosses a bridge with index lower than that of $P_{\phi(k+1)}$, which contradicts our assumption. Vertex $y_{\phi(k+2)}$ is therefore in the finite component of $H-z_{\phi(k+1)}$, thus $y_{\phi(k+2)}$ precedes $z_{\phi(k+1)}$. Vertex $y_{\phi(k+2)}$ precedes $z_{\phi(k+1)}$, and is proceded by q_{1}^{m} for some $i \in\{1,2, \ldots, k\}$. For the same reason, for integer $i>\phi(k+1)$, vertex y_{i+1} will precede z_{i}, and y_{i+1} will not precede y_{i}. Furthermore, y_{i+1} will precede no vertex in $\left\{z_{i-1}, z_{i-2}, \ldots, z_{\phi(k)}\right\}$. Let $Q_{i}=R_{i}$ for $i=k+1, k+2, \ldots, c-1$. Path Q_{i} will obey the following rules for $i=1,2, \ldots, k, c$. Vertex q_{1}^{i} has degree one in Q_{i}. For any vertex q_{m}^{i}, the vertex it immediately precedes is q_{m+1}^{i} unless $q_{m}^{i}=y_{j}$ for some integer $j>\phi(k)$, in which case the entire path $q_{m+1}^{i} q_{m+2}^{i} \ldots q_{n}^{i}$ in P_{j} follows q_{m}^{i}, and $q_{n+1}^{i}=z_{j}$. Rays $Q_{1}, Q_{2}, \ldots, Q_{c}$ in G are pairwise disjoint and this set of rays contains infinitely many vertices from each ray in $R_{1}, R_{2}, \ldots, R_{c-1}$. This completes the inductive argument of our proof.

To sum up, of the original rays in H, at least $(c-1)-k$ are contained in H. A very rough sketch of the remaining $k+1$ rays is as follows. Ray Q_{c} includes bridge $P_{\phi(k+1)}$ and vertex $z_{\phi(k+1)}$, which is in a ray R_{a} of H, but the ray containing first vertex q_{1}^{a} includes the bridge that crosses $P_{\phi(k+1)}$, namely $P_{\phi(k+2)}$, and $z_{\phi(k+2)}$ in ray R_{b} of H. The new ray Q_{b} that was traveling along R_{b} includes the bridge $P_{\phi(k+3)}$, so it does not meet Q_{a}, and so on. This situation may resemble the diagram in Figure 7 if $c=3$, in which one ray is dotted, one dashed, and the third dashed and dotted.

FIGURE 7. Continuation of three pairwise disjoint rays in G.
For $c=2$, we give a rough illustration in Figure 8, in which one ray is dashed and one ray is dotted.

FIGURE 8. Example showing $L_{\infty} \preceq_{t} R_{1} \cup\left\{P_{1}, P_{2}, \ldots\right\}$.
This completes our proof.

4. Unavoidable Topological Minors of c-connected Infinite Graphs

For a graph G that is a subdivision of a member H of \mathcal{T}_{c}, we will say that a graph is a direct augmentation of G, written G^{\oplus}, if it contains a subdivision of a subgraph of H that is isomorphic to a subdivision of G and G^{\oplus} is a subdivision of a member of \mathcal{T}_{c+1}.

We now prove the following theorem, which implies Theorem 1.3(b).
Theorem 4.1. For integer c at least two, let G be a ℓ-c-connected infinite graph, and D a subdivision of a graph in \mathcal{T}_{c-1} with the maximal number of star vertices among the subgraphs of G. One of the following occurs:
(1) D contains a star vertex and G contains a graph D^{\oplus}; or
(2) D is locally finite and G contains a graph Y that is a subdivision of a member of \mathcal{T}_{c}, such that Y contains infinitely many vertices from each ray of D.

Proof. We will prove this theorem by induction on c.
Let $c=2$, and let G be a ℓ - c-connected infinite graph. Suppose G contains a vertex v adjacent to an infinite set S of vertices. Let D be the graph with vertex set $S \cup\{v\}$ and edge set $\{v w\}_{w \in S}$. If $G-v$ contains a subdivision of a star with all of its leaves in S, then observe that G contains a subdivision of $K_{2, \infty}$, which itself contains an infinite subgraph of D and is a direct augmentation of D. Suppose not. We apply Theorem 3.2 to $N(v)$ in $G-v$ to obtain a comb C with infinitely many teeth that meet S. Observe that $D \cup C$ contains a subdivision of a fan, which is a direct augmentation of D. If G has no vertex of infinite degree, then G is locally finite. We apply Lemma 1.1 to obtain D, a ray. We then apply Theorem 3.4 to D in G to obtain R_{1} and R_{2}, vertex disjoint rays in the same end of G that contain infinitely many vertices in $V(D)$. We apply Lemma 3.3 to R_{1} and R_{2} and the set of paths between them to obtain a subdivision of a ladder with poles contained in $R_{1} \cup R_{2}$. We conclude that the theorem is true if $c=2$. This completes the initial step of the proof by induction.

We now assume the theorem holds if $c=n$ for some integer n at least two. Let $c=n+1$, and let G be a $\ell-c$-connected infinite graph. Take D, a subdivision of a member of \mathcal{T}_{c-1} with the maximal number of star vertices such that $D \subseteq G$. As an example, observe that any member of T_{c} that contains $k<c$ star vertices contains a subdivision of a member of T_{c-1} with k stars. We will now consider two cases.
(1) D contains a vertex of infinite degree.
(2) D is locally finite.

We introduce a bit of notation before addressing these cases. For any subdivision of a member of \mathcal{T}_{i}, the bag graphs are the components of the graph after the deletion of the star vertices and the edges in each ray. If the member contains a ray, then the bag graphs are ordered by the indices of that ray. If it contains no ray, then the bag graphs are ordered arbitrarily. The bags are the vertex sets of the bag graphs.

Suppose case (1) occurs. Graph D contains a star vertex v. We will show that we may augment a subgraph of $D-v$ that will form part of a direct augmentation of D. Let G_{v} be vertex v together with the paths from v to the rest of D. That is, let G_{v} be the subdivided star in G containing v such that each leaf has degree at least three in G and each interior vertex of G_{v} has degree two in G. Let D^{\prime} be D after the deletion of the interior vertices of G_{v}. Observe that D^{\prime} is a subdivision of a member of \mathcal{T}_{c-2} and D^{\prime} has the maximal number of star vertices of all such subgraphs of $G-v$. Since graph $G-v$ is $\ell-(c-1)$-connected, we apply the induction assumption and conclude that $G-v$ contains a graph $D^{\prime \oplus}$ or $G-v$ contains Y, a subdivision of a member of \mathcal{T}_{c-1} such that Y contains infinitely many vertices from each ray of D^{\prime}. Thus $G-v$ contains a graph Y such that Y is a subdivision of a member of \mathcal{T}_{c-1} and Y contains vertices from infinitely many bags of D^{\prime}. We may delete the edge sets of each bag graph that contains no vertex of Y, so without loss of generality, we assume that each bag meets Y.

We will now show that G contains a graph Y^{\oplus} in $Y \cup G_{v}$.
Observe that $\left\{V\left(G_{v}\right) \cap V\left(D^{\prime}\right)\right\}$ is infinite, therefore G_{v} meets infinitely many bags of D^{\prime}. Since we may delete some paths in G_{v} and the edge sets of some bag graphs in D^{\prime}, we assume without loss of generality that each leaf of G_{v} is contained in exactly one bag of D^{\prime}. Let $G_{v Y}$ be the extension of the subdivided star G_{v} through the bag graphs such that $G_{v Y} \cap Y$ is exactly the set of leaves of $G_{v Y}$. If $G_{v Y}$ contains infinitely many leaves in a ray R_{i} of Y, then observe that $G_{v Y} \cup Y$ contains a direct augmentation of Y that is also a direct augmentation of D, as desired. Suppose not. Let $Q_{t_{i} t_{j}}$ be the set of paths between star s_{i} or ray R_{i} and star s_{j} or ray R_{j}. Graph $G_{v Y}$ must contain infinitely many leaves in $Q_{t_{i} t_{j}}$ for some integers i and j. Observe that $G_{v Y} \cup Y$ contains a direct augmentation of Y that is also a direct augmentation of D, as desired.

By the preceding argument, we have shown that the theorem holds if D contains a vertex of infinite degree. Suppose this is not the case. Then case (2) occurs and D is locally finite.

It follows that G is locally finite, and we apply Lemma 3.4 to obtain c rays, R_{1}, R_{2}, \ldots, R_{c}, in G, which contain infinitely many vertices from each ray of D. We conclude this proof with the following lemma.

Lemma 4.2. The series expansion of (T, \emptyset), for some c-vertex tree T, is contained in G and has rays contained in $\left\{R_{1} \cup R_{2} \cup \cdots \cup R_{c}\right\}$.

Proof. Between each pair of rays are infinitely many pairwise disjoint paths, since they are in the same end. Observe that some pair of rays, say R_{1} and R_{2}, is joined by infinitely many pairwise disjoint paths that meet none of the other rays. Let H_{1} be the subgraph of G containing R_{1}, R_{2}, and an infinite set Π_{1} of pairwise disjoint paths that join them but meet none of the other rays. There is a ray, say R_{3}, such that G contains infinitely many pairwise disjoint paths between R_{3} and H_{1} that meet none of the remaining rays. Let H_{2} be the union of R_{3}, H_{1}, and an infinite set Π_{2} of pairwise disjoint paths that join them but meet none of the other rays. We may continue in this way all the way through, finally adding R_{c} to H_{c-1} with an infinite set Π_{c-1} of pairwise disjoint paths that join them.

We apply Lemma 3.3 to R_{1}, R_{2}, and Π_{1} to obtain a subdivided ladder L_{1} in their union, with poles contained in $R_{1} \cup R_{2}$ and rungs contained in Π_{1}. For simplicity, we will assume Π_{1} to be the set of rungs of L_{1}, and let the paths be labelled $\left\{P_{1}^{1}, P_{2}^{1}, \ldots\right\}$ such that, for positive integers i and j, the vertex in $R_{1} \cap P_{i}^{1}$ precedes $R_{1} \cap P_{j}^{1}$ in R_{1} if $i<j$. Observe that an infinite subset of the paths in Π_{2} from R_{3} to H_{1} either meet L_{1} or may be extended through the members of Π_{1} that are not in L_{1} to meet L_{1} in R_{1} or R_{2}. We therefore assume for simplicity that each member of Π_{2} meets L_{1}. If infinitely many members of Π_{2} meet L_{1} in a pole $R_{i_{1}}$, then we apply Lemma 3.3 to $R_{3}, R_{i_{1}}$, and Π_{2} to obtain a ladder L_{2} with poles in $R_{3} \cup R_{i_{1}}$ and rungs in Π_{2}. We again assume, for simplicity, that each member of $\Pi_{2}=\left\{P_{1}^{2}, P_{2}^{2}, \ldots\right\}$ is a rung in L_{2}. Since we may delete some of the rungs to ensure that the rungs that meet $R_{i_{1}}$ alternate from L_{1} to L_{2}, that is, $P_{1}^{1} \cap R_{i_{1}}$ precedes $P_{1}^{2} \cap R_{i_{1}}$, which precedes $P_{2}^{1} \cap R_{i_{1}}$, which precedes $P_{2}^{2} \cap R_{i_{1}}$, and so on; we assume that the rungs of L_{1} and L_{2} alternate in this way.

If, instead, infinitely many members of Π_{2} meet L_{1} in the paths in Π_{1}, then we may assume that the members of Π_{2} meet each path in Π_{1} exactly once. We may remove $P_{2 i}^{1}$ from L_{1} for $i \in \mathbb{N}$ and extend the members of Π_{2} that meet them along the paths $P_{2 i}^{1}$ to R_{1}. We may also remove each member of Π_{2} that meets a path $P_{2 j-1}^{1}$ for $j \in \mathbb{N}$, and obtain an infinite set of pairwise disjoint paths from R_{3} to R_{1} in an infinite subladder of L_{1}. In this case, we may apply Lemma 3.3 as before.

By repeating this argument $c-3$ more times, we can attach each ray R_{k} onto the growing infinite graph to ultimately obtain an infinite graph H with an ∞ representation that is a tree with c ray vertices. Furthermore, the rays of H are contained in $\left\{R_{1} \cup R_{2} \cup \cdots \cup R_{c}\right\}$, which contain infinitely many vertices from each ray of D, so H contains infinitely many vertices from each ray of D.

This concludes our proof.

5. Unavoidable Parallel Minors of ℓ - c-connected Infinite Graphs

For the proof in this section, we will need the following lemma, which is one application of "Ramsey's Theorem A" from Reference [3], stated and proved therein.

Lemma 5.1. If G is an infinite graph, then G has an induced subgraph isomorphic to K_{∞} or $\overline{K_{\infty}}$.

In the remainder of this paper, we prove Theorem 1.4(b).
Proof of Theorem 1.4. Take positive integer c. Let G be a ℓ - c-connected infinite graph that contains no minor isomorphic to K_{∞}. Graph G contains an infinite component, so we may ignore the finite components of G and assume that G is connected. We apply Theorem $1.2(\mathrm{~b})$ to obtain a minor of G in \mathcal{M}_{c}. Let M be the minor of G in \mathcal{M}_{c} containing the most star vertices and let $M=G \backslash X / Y$, where M spans G / Y.

If $M \cong K_{c, \infty}$, then we may add some edges to Y to obtain Y^{\prime} such that $G \backslash X / Y^{\prime}=M^{\prime} \cong K_{c, \infty}^{\prime}$. Since K_{∞} is not a minor of G, K_{∞} is not a subgraph of G / Y^{\prime}, thus we apply Lemma 5.1 to obtain an infinite independent set $A \subset V\left(G / Y^{\prime}\right)$. Let S be the set of star vertices in M^{\prime}. Take $s \in S$. We contract
the edges in G / Y^{\prime} between s and each vertex in $V\left(M^{\prime}\right) \backslash\{S \cup A\}$ to obtain a parallel minor of G isomorphic to $K_{c, \infty}^{\prime}$.

Suppose then that M is not isomorphic to $K_{c, \infty}$. Then M is the expansion of some tree T. Let S be the set of leaves of T. It is simple to add edges to Y to obtain Y^{\prime} such that M / Y^{\prime} is the expansion of (T, S). That is, $G \backslash X / Y^{\prime}$ is isomorphic to M with a complete graph on the star vertices, a vertex s_{0} that is adjacent with each star and the first vertex of each ray, and a zigzag ladder between each pair of ladder poles in M. Now, let $M^{\prime}=G \backslash X / Y^{\prime}$. Take H, S, and T such that M^{\prime} is the expansion of (H, S) and T is a leaf-maximal spanning tree of H with leaf set S. Consider the edges X in G / Y^{\prime}.

For each vertex pair $\left\{t_{i}, t_{j}\right\}$ of $V(T)$, let $Q_{t_{i} t_{j}}$ be the set of edges in G / Y^{\prime} between R_{i} or s_{i} and R_{j} or s_{j}. We say that each edge in $Q_{t_{i} t_{j}}$ is between the vertex pair t_{i} and t_{j}. Let n be the number of vertex pairs of $V(H)$ that are not edges of H such that X contains edges between the vertex pair. We prove the theorem by induction on n. If $n=0$, then $X=\emptyset$ and the expansion of (H, S) is a parallel minor of G and the theorem holds. Suppose the theorem holds for $(n-1)$.

Suppose that G / Y^{\prime} contains edges between n vertex pairs of $V(H)$ that are not edges of H. Take one such vertex pair $\left\{t_{i}, t_{j}\right\}$.

If $Q_{t_{i} t_{j}}$ is finite, then take a vertex r_{l}^{k} from a ray R_{k} incident with an edge in $Q_{t_{i} t_{j}}$ such that no edge in $Q_{t_{i} t_{j}}$ is incident with a vertex r_{b}^{a} such that $b>l$. Take star vertex s of M^{\prime}. For each ray R_{a}, we contract the path $s r_{1}^{a} r_{2}^{a} \ldots r_{l}^{a}$ to vertex s to eliminate the edges in $Q_{t_{i} t_{j}}$ and obtain a graph that contains M^{\prime} and has edges between at most $(n-1)$ vertex pairs of $V(H)$ that are not edges of H. We apply the inductive hypothesis and conclude that the theorem holds.

Suppose then that $Q_{t_{i} t_{j}}$ is infinite. The following three cases are exhaustive:
(1) $t_{i}=R_{i}=t_{j}$;
(2) $t_{i}=R_{i}$ and $t_{j}=s_{j}$; or
(3) $t_{i}=R_{i} \neq t_{j}=R_{j}$.

For the rest of the proof, it will be convenient to let $E\left(r_{l} r_{l+1}\right)$ denote the edge set $\left\{r_{l}^{k} r_{l+1}^{k}: R_{k}\right.$ is a ray of $\left.M^{\prime}\right\}$.

Suppose Case (1) occurs. Let R^{\prime} be the graph that $Q_{t_{i} t_{j}}$ induces on $V\left(R_{i}\right)$. If R^{\prime} contains a vertex r of infinite degree, then we contract the edge sets $E\left(r_{l} r_{l+1}\right)$ if and only if $r_{l}^{i} \notin N(r)$, where $N(r)$ is the neighborhood of vertex r. Observe that r is a star of the resulting graph, thus G contains a minor in \mathcal{M}_{c} with more star vertices than M, a contradiction. We make the following observation, where S is the set of stars of M^{\prime}.
5.1.1. The graph that edge set $Q_{t_{i} t_{j}}$ induces in $M^{\prime} \backslash S$ is locally finite.

If R^{\prime} is locally finite, then let $r_{1}^{i}=r_{n_{1}}$. Let $r_{n_{2}}$ be the vertex with highest index among the neighbors of $r_{n_{1}}$ in R^{\prime}. Let $r_{n_{i}}$ be the vertex with highest index that is a neighbor of a vertex in the path $r_{n_{i-2}} r_{n_{i-2}+1} \ldots r_{n_{i-1}}$. We contract the edge set $E\left(r_{l} r_{l+1}\right)$ if and only if $l \notin\left\{n_{1}, n_{2}, \ldots\right\}$. Observe that by these contractions in R^{\prime}, we contract each edge of $Q_{t_{i} t_{j}}$ to a single vertex. In this way, we obtain a parallel
minor of G that contains a copy of M^{\prime} and has edges between at most $(n-1)$ vertex pairs of $V(H)$ that are not edges of H. We apply the inductive hypothesis and conclude that the theorem holds. We therefore assume that Case (1) does not occur.

Suppose Case (2) occurs: $t_{i}=R_{i}$ and $t_{j}=s_{j}$. We contract the edge set $E\left(r_{l} r_{l+1}\right)$ if and only if $l \notin N\left(s_{j}\right)$ to obtain the expansion of $\left(H \cup t_{i} t_{j}, S\right)$. Tree T is a leaf maximal spanning tree, and we obtain a parallel minor of G that contains a copy of M^{\prime} and has edges between at most $(n-1)$ vertex pairs of $V(H)$ not in $E\left(H \cup\left\{t_{i} t_{j}\right\}\right)$. We apply the inductive hypothesis and conclude that the theorem holds. We also make the following observation.
5.1.2. If a star s is adjacent with infinitely many vertices in a ray R_{i} in Z, then we may assume s to be adjacent with every vertex in R_{i}.

We therefore assume that Case (2) does not occur.
Suppose Case (3) occurs: $t_{i}=R_{i} \neq t_{j}=R_{j}$. We apply 5.1.1 and conclude that $Q_{t_{i} t_{j}}$ contains no infinite set of edges adjacent with a single vertex, thus $Q_{t_{i} t_{j}}$ contains an infinite set Π of pairwise non-adjacent edges.

The following argument is technical and amounts to obtaining a zigzag ladder on R_{i} and R_{j}. We break up the edge set $E\left(r_{l} r_{l+1}\right)$ into two sets. Edge $t_{i} t_{j}$ is a cut edge of tree T and divides the graph into a component containing t_{i} and a component containing t_{j}. Let $E_{i}\left(r_{l} r_{l+1}\right)$ be the set of edges corresponding to the edges in $E\left(r_{l} r_{l+1}\right)$ that are in the rays labelling vertices in the component of $T \backslash t_{i} t_{j}$ containing t_{i}. Let $E_{j}\left(r_{l} r_{l+1}\right)$ be the set of edges $E\left(r_{l} r_{l+1}\right) \backslash E_{i}\left(r_{l} r_{l+1}\right)$. We apply Lemma 3.3 to obtain L, a subdivided ladder with poles in R_{i} and R_{j} and with rung set ρ in Π. This allows us to assume that, for every integer $k>0$, we may find a rung in ρ with ends in the infinite components of $R_{i}-r_{k}^{i}$ and $R_{j}-r_{k}^{j}$. Let $i_{1}=1$. Let j_{1} be the lowest index such that $r_{1}^{j} r_{2}^{j} \ldots r_{j_{1}}^{j}$ has a neighbor in $R_{i}-r_{1}^{i}$ and $j_{1} \geq m$ for each vertex r_{m}^{j} adjacent with $r_{i_{1}}^{i}$. For $n=2,3, \ldots$, let i_{n} be the lowest index such that $i_{n}>m$ for each vertex r_{m}^{i} adjacent with a vertex in $r_{1}^{j} r_{2}^{j} \ldots r_{j_{n-1}}^{j}$ and $r_{i_{n-1}+1}^{i} r_{i_{n-1}+2}^{i} \ldots r_{i_{n}}^{i}$ has a neighbor in the infinite component of $R_{j}-r_{n-1}^{j}$; and let j_{n} be the lowest index such that $j_{n} \geq m$ for each vertex r_{m}^{j} adjacent with a vertex in $r_{1}^{i} r_{2}^{i} \ldots r_{i_{n}}^{i}$ and $r_{j_{n-1}+1}^{j} r_{j_{n-1}+2}^{j} \ldots r_{j_{n}}^{j}$ has a neighbor in the infinite component of $R_{i}-r_{n}^{i}$. Contract edge set $E_{i}\left(r_{l} r_{l+1}\right)$ if and only if $l \notin\left\{i_{1}, i_{2}, \ldots\right\}$ and contract edge set $E_{j}\left(r_{l} r_{l+1}\right)$ if and only if $l \notin\left\{j_{1}, j_{2}, \ldots\right\}$ to obtain a zigzag ladder on R_{i} and R_{j}. Let Z be the resulting graph. Observe that the graph that Z induces on rays R_{i} and R_{j} is a zigzag ladder.

$$
\text { If } t_{i} t_{j} \in E(T) \text {, then } Z \text { is the expansion of }(H, S) \text {, and the theorem holds. }
$$

If $t_{i} t_{j} \notin E(T)$, then $T \cup R_{i} R_{j}$ contains a cycle $C=R_{k_{1}} R_{k_{2}} \ldots R_{k_{l}}$ of interior vertices, where $k_{1}=i$ and $k_{2}=j$. Observe that T is not leaf-maximal in $H \cup t_{i} t_{j}$. We will show that G contains a member of \mathcal{M}_{c} with more star vertices than M and obtain a contradiction. We begin by identifying a set of l rays in Z each of which contains infinitely many vertices of each ray in this cycle. Since there are two different ways of expressing a zigzag ladder between two rays, we will have to be careful with this construction. Let $\phi(a)$ be equal to one if $r_{1}^{k_{a}} r_{2}^{k_{a+1}} \in E(Z)$, where
we say that $l+1=1$, otherwise $\phi(a)=0$. Let $\Sigma(a)=1+\sum_{m=1}^{a} \phi(m)$. Let ray R_{1}^{\prime} be $r_{1}^{k_{1}} r_{\Sigma(1)}^{k_{2}} r_{\Sigma(2)}^{k_{3}} r_{\Sigma(3)}^{k_{4}} \ldots$. For $m=2,3, \ldots, l$, let

$$
R_{m}^{\prime}=r_{1}^{k_{m}} r_{\Sigma(m)}^{k_{m+1}} r_{\Sigma(m+1)}^{k_{m+2}} r_{\Sigma(m+2)}^{k_{m+3}} \cdots
$$

Observe that these l rays are pairwise disjoint and each contains infinitely many vertices of each of the l original rays of Z. The graph that Z induces on each pair of rays R_{m}^{\prime} and R_{m+1}^{\prime}, where $l+1=1$, is a zigzag ladder. We also conclude the following.
5.1.3. Every ray and star labelling a vertex of H with infinitely many neighbors in R_{1}^{\prime} contains infinitely many neighbors in R_{m}^{\prime} for $m=2,3, \ldots, l$.

We will now show that Z / R_{1}^{\prime} is $\ell-c$-connected. We will deduce that G contains a minor in \mathcal{M}_{c} with more star vertices than M, a contradiction that will conclude our proof.

Let S_{Z} be the star set of Z. We will show that R_{1}^{\prime} is not a cut set of $Z \backslash S_{Z}$ and that no star has infinitely many neighbors only in R_{1}^{\prime} and conclude that we may contract R_{1}^{\prime} without losing ℓ - c-connectivity. Let R be a ray containing infinitely many vertices adjacent with R_{1}^{\prime}. Apply 5.1 .3 and conclude that R has infinitely many neighbors in R_{2}^{\prime}. We apply Lemma 3.3 and conclude that the graph that Z induces on $R \cup R_{1}^{\prime}$ contains a subdivision of a ladder. Let s be a star with infinitely many neighbors in R_{1}^{\prime}. We apply 5.1.3 and conclude that s is adjacent to an infinite subset of vertices in R_{2}^{\prime}, and we may apply 5.1.2 to this pair and assume that s is adjacent to each vertex in R_{1}^{\prime}. We contract ray R_{1}^{\prime} in Z to obtain an ℓ - c-connected graph that contains a member of \mathcal{M}_{c} with more star vertices than M, a contradiction. We may assume that Case (3) does not occur. This concludes our proof.

References

[1] Diestel, R., Graph Theory, Third Edition, Springer-Verlag, New York, 2006.
[2] B. Oporowski, J. Oxley, and R. Thomas, Typical Subgraphs of 3- and 4-Connected Graphs, J. Combin. Theory Ser. B, 57 (1993), 239-257.
[3] Ramsey, F. P., On a Problem of Formal Logic, Proc. London Math. Soc. Ser. 2, 30 (1930), 264-86.

Mathematics Department, Louisiana State University, Baton Rouge, Louisiana
E-mail address: \{chchchun,ding\}@math.lsu.edu

[^0]: Date: September 19, 2008.
 1991 Mathematics Subject Classification. 05C15.

 * Supported in part by NSF grants DMS-0556091 and ITR-0326387.

