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ABSTRACT 

Design of the mechanical components greatly depends on their expected structural 

performances. In modern design applications these performances are quantified by 

computer-based analysis and occasionally confirmed by experimental measurements or 

theoretical calculations. The dependency of the mechanical product to the structural 

analysis process is more significant under the product’s multi-functionality aspect that 

requires analyses for a variety of Variable Input Parameters, to obtain various structural 

responses and against more than one failure or design criterion. Structural analysis is 

known as the expert field, which requires an upfront investment and facilitation to be 

implemented in commercial design environment. 

On the other hand, the product design process is a systematic and sequential activity that 

put the designer in the central role of decision making. Lack of mutual understanding 

between these two disciplines reduces the efficiency of the structural analysis for 

design. 

This research aims to develop an integrated methodology to embed the structural 

analysis in the design process. The proposed methodology in this research combines the 

benefits of state-of-the-art approaches, early simulation and Validation and Verification 

practice, towards the specified aim.  Moreover the novelty of the proposed methodology 

is in creative implication of Quality Function Deployment method to include the 

product’s multi-functionality aspect. The QFD-Based Design Integrated Structural 

Analysis methodology produces a reliable platform to increase the efficiency of the 

structural analysis process for product design purpose. 

The application of this methodology is examined through an industrial case-study for 

the telescopic cantilever boom, as it appears in Access platforms, and Cranes products. 

Findings of the case-study create a reliable account for the structural performance in 

early stages of the design, and ensure the functionality of the proposed methodology. 
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1 Introduction 

1.1 Research aim and objectives 
This research aims to develop an integrated methodology to embed the structural 

analysis in the design process.  

Structural analysis is respected as a specialist field of knowledge. An effective 

communication and common understanding of the practice is not possible without 

knowing its aims and objectives. The science of applied stress analysis describes these 

objectives as quantifiable parameters, that provide a common ground between two 

disciplines to pursue the mutual goal. 

On the other hand the design process is recognised as a procedural and systematic 

approach developed over the last few decades. A successful product design process has 

to be built bearing this perspective in mind. The design of mechanical parts in particular 

is highly dependent on the quantification of the mechanical performance for the 

designated service condition. The role of structural analysis in the design process of a 

mechanical product can be even more significant considering the multi-functionality of 

the products, which require more exhaustive multi-objective analysis. 

Structural analysis is the central activity to design for mechanical performance, and 

therefore necessitates a systematic protocol.  

1.1.1 Motivations 

In the growing competitive business environment, more effective use of the resources is 

a must.  Investment in new technologies and development for enterprise has to be 

carefully assessed and justified. 

Modern structural design practice requires a heavy upfront investment in hardware, 

software, education, and skills development.  However, investment in these components 

is necessary but not sufficient to make analysis the predominant design tool for 

structural analysis.  An additional component, the systematic integration of analysis 

within design, is required to make the most of the investment. 

The motivation behind this research is to address this underlying issue in the product 

design environment.  
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1.1.2 Research question 

The following research question is investigated in this research: 

“How is it possible to increase the effectiveness of structural analysis by its 

interactive and systematic integration within the product design process?” 

The following objectives are identified to address this question.   

1.1.3 Objectives 

• Determine the structural analysis aims, objectives, quantifiable parameters, and 

acceptance criteria.  

• Explore available methods to achieve structural analysis goal. 

• Understand the product design environment and investigate the state-of-the-art 

methods to address product design requirements in structural analysis.  

• Assess the current state of knowledge with its strengths and weaknesses 

• Propose and establish a robust method to integrate structural analysis in the 

design process and address the identified shortages.  

• Validate the proposal by application on a real-case design scenario and 

collecting the target outcomes. 

1.2 Thesis structure 
The scope of this research is organised as follow. Chapter 2 describes structural analysis 

practice with its aims and objectives.  The objectives are further elaborated with their 

corresponding quantifiable parameters.  The available methods of achieving these 

outcomes are introduced with the focus on the most common industrial methods. 

Chapter 3 explains the design perspective to develop a mechanical product.  The 

mainstream approach in product design is introduced and the current state-of-the-art 

practices to accommodate structural analysis in design are further developed.  The 

available methods’ strengths and weaknesses are discussed.  The identified shortage is 

planned to be answered by the application of Quality Function Deployment (QFD) 

method.  The fundamentals and the opportunity for QFD to be integrated with structural 

analysis process is studied 

The proposed methodology for design integrated structural analysis process is described 

in Chapter 4.  The methodology, that starts with a multi-functional mechanical product 
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concept and ends with characterisation of the structural behaviour with variation of 

the input parameters, is detailed and the intermediate milestones are identified.  

Chapter 5 introduces a case-study structure to validate the proposed methodology.  The 

telescopic cantilever boom in the current industrial application is defined as the case-

study. The methodology presented in Chapter 4 is used to develop a list of required 

analyses and corresponding verification and validation scenarios that thoroughly and 

completely answer the stakeholders' requirements. 

The proposed studies of the previous chapter are conducted and the corresponding 

results to each of the stakeholders' requirements are packaged in chapter 6.  This chapter 

contains the conclusive remarks on each of the required structural performances. 

Chapter 7 contains the summary of the research followed with suggestions for future 

developments and conclusions.  The outline of this research is shown in Figure 1-1. 

 

Figure 1-1 Thesis structure 
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2 Principles of Applied Stress Analysis  
This chapter discusses the structural analysis process by identifying its aim and 

objectives.  The process can only be comprehended by its outcomes as quantifiable 

parameters.  

The knowledge of structural analysis in application is the key entry to the subject. 

Valuable heritage of theoretical material and classic methods has been incorporated in 

modern structural analysis. This collection of background knowledge, identified as 

fundamental for analyst-designer communication, is decoded in this chapter. 

The modern application of structural analysis for the design of complex structures, 

hugely benefits from developments in numerical methods.  This chapter continues with 

a brief introduction to the mainstream numerical methods with particular attention to 

Finite Element Methods (FEM) as the leader in industrial application. General 

procedural steps to set up a FE model are described in this chapter.  Whilst most of the 

stages for creating a FE model replicate a real-life scenario (e.g. load, boundary 

condition, interactions etc.) the geometry discretisation is exclusively a modelling 

approximation that converts a continuous medium into a discrete geometry. The process 

known as meshing and incorporated by assigning elements is recognised as the key 

transitional stage between 3D CAD models into FE models. This topic is discussed in 

more detail in this chapter.  

The chapter follows with the application of experimental measurements as the 

traditional method of analysing the structure. The role of experimental analysis to 

validate the simulation becomes more significant in the modern application. The 

practice is broadly classified as whole-field and point-by-point methods. Among the 

available techniques in each class, the commonly practiced methods of photoelastic 

measurement and strain gauge measurements are nominated for further discussion. 

2.1 Structural analysis in application, aims and objectives 
Engineers of all disciplines are often required to design structural components or 

machine parts which must support loads. The mission of structural design is to ensure 

structural integrity, defined as "the capacity of engineering components to withstand 

service loads, effectively and efficiently, during their service life" (Samuel and Weir, 

1999, p.3). To clarify the practice some basic definitions are provided (Samuel and 

Weir, 1999): 
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• The engineering component generally addresses any engineering structure that 

may be constructed from several interconnected parts into a single entity.  

• Service loads are those that the designer considers as credible to be imposed on 

the component during its service life  

• Effectiveness of the structure refers to its capacity to accept service loads 

without exceeding the specified criteria. 

• Efficiency of the structure concerns about the structures mass or cost. 

The objectives of structural design are highlighted (Ray, 1985, Sack,1984): 

• Determine the general layout and shape of the component. 

• Evaluate the component’s service load during its expected life. 

• Material selection against maximum allowable stress. 

• Expression of design criteria e.g. stress, in terms of the loads and dimensions.  

Figure 2-1 relates the specific factors that need to be considered in structural design. 

The shape of the component is decided by the required functions and the effect of 

applicable loads.  The response of the applied load is observed in the form of total stress 

and displacement which determines unit stresses and strains. The aim of the structural 

analysis is essentially coupled to the quantification of these two parameters. The 

variation of stress and strain and their statues in the worst-case operational scenario is 

the basis for decision on the size of the components (Ray, 1985).  

The design of the structure is inherently endangered by failure (Samuel and Weir, 

1999). Failure refers to any action resulting in inability of any part of the structure to 

function in a manner intended (Ugural, 1999). The component must be designed so that 

failure will not occur as a result of excessive distortion, cracking or rupture of the 

material etc. The failure criteria are critical information to define the design frame. This 

information may be set by standards, previous experience or field measurements. 

The state of stress and strain and their relationship as well as structural failure criteria 

are described in section 2.2. 
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Figure 2-1 Relationship between specific factors to structural design (Ray, 1985) 

2.2 Quantifiable parameters and failure criteria  
Theory of solid mechanics is one of the analytical methods that inform the structural 

design. The foundation of the solid mechanics is on the spring-like behaviour of the 

material that is known as theory of elasticity and described by Hook's law (Rees, 1997).  

Mechanics of materials and theory of elasticity deal with the internal behaviour of 

loaded solid bodies. The differences between these two approaches lie primarily in the 

extent to which strains are described and in the nature of simplifications used. Formulas 

of the mechanics of materials normally give average stresses at any section. 

Concentrated forces and abrupt changes in the cross section initiate irregular stresses 

(Peterson, 1974). Therefore only at distances close to the depth of the member from 

such disturbances stresses are in agreement with the mechanics of material theory 

(Ugural, 1999). 

There are three types of argument that can be deployed in solving any structural 

problems (NAFEMS, 1987): 

• Equilibrium: These arguments relate stress (σ) to applied forces, or more often 

stresses to other stresses. In the case of dynamic excitation, the inertia forces 

would also be considered.  
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• Compatibility: These are purely geometrical argument that relates strain (ε) to 

displacement. The compatibility equation depends on the definition of strain and 

the type of deformation and geometry of the particular structure.  

• Stress-strain law: These constitutive relationships are empirical and depend on 

experimental evidence. For most materials, within their useful working range, 

these laws may be taken as linear. 

Structural analysis can therefore be schematically summarised as Figure 2-2.  

 

Figure 2-2 Schematic illustration of structural analysis process (NAFEMS, 1987) 

While the compatibility and equilibrium arguments are highly interdependent (Gerstle, 

1974; Sack, 1984; Rees, 1997), stress-strain law, is an independent argument 

(NAFEMS, 1987). This argument depends on material property. Four fundamental 

elastic constants of Modulus of Elasticity (Young’s Modulus), Poisson’s Ratio, 

Modulus of Rigidity (Shear Modulus) and Bulk Modulus (Rees, 1997; Rees, 2003) are 

required to define an isotropic homogenous material. 

More rigorous understanding of the state of the stress and strain in three dimensions is 

required to comprehend the complex shapes and assemblies with considerable number 

of links and connections (Krishnakumar, n.d.). Sections 2.2.1, 2.2.2 and 2.2.3 expand on 

the stress and strain relationship in elastic material. 

2.2.1 Elastic Stress  
Stress definition: The stress definition is valid in a continuum problem that assumes 

the material contains sufficiently dense substances that every point of the region 
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occupied by the material. The theory of stress depends on Newton’s laws of motion, 

which are independent from the nature of continuous materials e.g. elastic, plastic etc. 

 

Figure 2-3 The state of a stress in a body in static equilibrium 

Figure 2-3 shows the state of stress on a body in static equilibrium under the action of 

the system of external forces F1, F2 ..., Fn. If the body is cut in half by an imaginary 

plane AB the forces along the particles in that plane tend to hold the body together. The 

force equilibrium condition on two halves represented by F21 and F12 retain the body in 

equilibrium (Singh, 1979). 

Eq. 2-1 

F21= -F12 

If the resultant internal force, ΔF, acting on an arbitrary element in the area ΔA as 

shown in Figure 2-4 such that: 

Eq. 2-2 

ΣΔA . ΔF = F21 

ΔF can be split to its component in normal direction of 𝑛� and the other two 

perpendiculars in plane direction in a Cartesian coordinate system. The normal 

component of load, ΔFn  produces the normal component of stress at point O as: 

Eq. 2-3 

𝜎 = lim
𝐴→0

∆𝐹𝑛
∆𝐴
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The other two perpendicular  load components in the plane of the section are ΔFs1 and 

ΔFs2 which produce the shear components of stress. These are: 

Eq. 2-4 

𝜏𝑠1 = lim
𝐴→0

∆𝐹𝑠1
∆𝐴

 

𝜏𝑠2 = lim
𝐴→0

∆𝐹𝑠2
∆𝐴

 

 

Figure 2-4 Resultant internal forces acting on an arbitrary element of area 

The definition above justifies the argument that declares stress as tensor quantity by 

showing the necessity of direction and a plane of reference in addition to magnitude. 

Stress tensor at a point: The state of the stress at a point in the Cartesian system is 

represented by the following nine components of stress known as the stress tensor 

(Pilkey, 1994). 

Eq. 2-5 

𝜏𝑖𝑗 = �
𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

� 

All the stress components have been shown on a parallelepiped in Figure 2-5 where the 

leading diagonal terms are normal stresses and off-diagonal terms are shear stresses 

(Timoshenko and Goodier, 1951). In the double subscription system used to represent 

the stress components, the first subscript denotes the plane normal direction, and the 

second subscript denotes the direction toward which the stress acts. The double 

subscription of normal stress can be simplified to a single subscription as σx, σy, σz.   

The shear stresses 𝜏𝑥𝑦 and 𝜏𝑦𝑥 are shown acting on their face perpendicular to the x and 
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y axis respectively. The concept of stress tensor symmetry and the reduction in the 

parameters can be explained by the moment equilibrium condition (Wang, 1953). 

Eq. 2-6 

𝜏𝑥𝑦 = 𝜏𝑦𝑥  ,   𝜏𝑥𝑧 = 𝜏𝑧𝑥 ,   𝜏𝑦𝑧 = 𝜏𝑧𝑦 

 

Figure 2-5 State of stress on a parallelepiped (Timoshenko and Goodier, 1951) 

Therefore the components of stress tensor in Cartesian coordinates reduce from 9 to 6 

independent components which means that the Eq. 2-5 can be rewritten as: 

Eq. 2-7 

𝜏𝑖𝑗 = �
𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

� 

The equilibrium of forces in 3 directions, using Newton second law of motion, on an 

infinitesimal parallelepiped as shown in Figure 2-6, can be written as: 

Eq. 2-8 

𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦
𝜕𝑦

+  
𝜕𝜏𝑥𝑧
𝜕𝑧

+  𝐵𝑥 = 𝜌𝑎𝑥��� 
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where Bx is components of the body force in x direction, expressed per unit volume, 

𝑎𝑥��� is acceleration in the x direction and ρ is density of material. In the absence of inertia 

and body force (Chandrupatla and Belegundu, 2002), Eq. 2-8 reduced to: 

Eq. 2-9 

𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦
𝜕𝑦

+  
𝜕𝜏𝑥𝑧
𝜕𝑧

= 0 

𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

+ 
𝜕𝜏𝑦𝑧
𝜕𝑧

= 0 

𝜕𝜏𝑥𝑧
𝜕𝑥

+  
𝜕𝜏𝑦𝑧
𝜕𝑦

+
𝜕𝜎𝑧
𝜕𝑧

= 0 

 

Figure 2-6 Force equilibrium on an infinitesimal parallelepiped (Singh, 1979) 

Stress invariants and maximum shearing stress: The combinations of stresses at a 

point which do not change with the orientation of the coordinate axes are called stress 

invariants (Pilkey, 1994). This concept, elaborated in Appendix I, leads to: 

Eq. 2-10 

𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 = 𝐼1 = First stress invariants 

𝜎𝑥𝜎𝑦 + 𝜎𝑦𝜎𝑧 + 𝜎𝑥𝜎𝑧 − 𝜏𝑥𝑦2 − 𝜏𝑦𝑧2 − 𝜏𝑥𝑧2 = 𝐼2 = Second stress invariant 

𝜎𝑥𝜎𝑦𝜎𝑧 − 𝜎𝑥𝜏𝑦𝑧2 − 𝜎𝑦𝜏𝑥𝑧2 − 𝜎𝑧𝜏𝑥𝑦2 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑥𝑧 = 𝐼3 = Third stress invariant 

Maximum shearing stress can be defined as:  
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Eq. 2-11 

𝜏𝑛𝑠(max) = ± �𝜎1−𝜎3
2

� ,   𝜏𝑛𝑠(max) = ± �𝜎1−𝜎2
2

�,  𝜏𝑛𝑠(max) = ± �𝜎2−𝜎3
2

� 

The direction cosines for planes of  𝜏𝑛𝑠(max) and 𝜏𝑛𝑠(min) are given in Table 2-1.The 

planes of maximum shear stress are shown in Figure 2-7. Appendix I and II details the 

derivation of Eq. 2-10 and Eq. 2-11. 

Table 2-1 Direction cosine for plane of maximum and minimum shear stress 

(Timoshenko and Goodier, 1951) 

 𝝉𝒏𝒔(𝐦𝐚𝐱) 𝝉𝒏𝒔(𝐦𝐢𝐧) 
𝑎𝑛𝑥 ±

1
√2

 
0 ±

1
√2

 
0 0 ±1 

𝑎𝑛𝑦 ±
1
√2

 ±
1
√2

 
0 0 ±1 0 

𝑎𝑛𝑧 0 ±
1
√2

 ±
1
√2

 ±1 0 0 

 

 

Figure 2-7 Planes of maximum shearing stress direction 

2.2.2 Elastic Strain Analysis 
Deformation of a continuous medium: The deformation on a continuous medium can 

be described with a closed region of R that is deformed to be R΄, as shown in Figure 2-8  

that cause a particle  P (x, y, z) moves to the point P΄ (x΄, y΄, z΄) in a Cartesian 

coordinate system. The deformation of the medium is defined by equations: 

Eq. 2-12 

𝑥′ = 𝑥′(𝑥,𝑦, 𝑧) ,  𝑦′ = 𝑦′(𝑥,𝑦, 𝑧),  𝑧′ = 𝑧′(𝑥,𝑦, 𝑧) 
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Figure 2-8 Deformation of a continuous medium 

Assume that (x΄, y΄, z΄) are continuous and differentiable in the variable (x, y, z) and the 

points P and P΄ are so close to each other that displacement is infinitesimally small. The 

components of displacement can be written as: 

Eq. 2-13 

𝑢𝑥 = 𝑥′ − 𝑥,        𝑢𝑦 = 𝑦′ − 𝑦, 𝑢𝑧 = 𝑧′ − 𝑧 

The displacement components can be combined in the form of vector as: 

Eq. 2-14 

𝑢� = 𝚤̂𝑢𝑥 + 𝚥̂𝑢𝑦 + 𝑘�𝑢𝑧 

Where 𝚤̂, 𝚥̂,𝑘� are unit vectors along positive (x, y, z) axes respectively. The displacement 

vector will vary continuously from point to point and so it forms a vector field called 

displacement field. It is a function of coordinates of the unreformed geometry i.e. 

Eq. 2-15 

𝑢𝑥 = 𝑓1(𝑥, 𝑦, 𝑧), 𝑢𝑦 = 𝑓2(𝑥,𝑦, 𝑧),         𝑢𝑧 = 𝑓3(𝑥,𝑦, 𝑧) …  

A necessary condition for a deformation to be physically possible is for Jacobian D to 

be greater than zero (Chou and Pagano, 1967), where: 
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Eq. 2-16 

𝐷 =
�

�

𝜕𝑥′

𝜕𝑥
𝜕𝑥′

𝜕𝑦
𝜕𝑥′

𝜕𝑧
𝜕𝑦′

𝜕𝑥
𝜕𝑦′

𝜕𝑦
𝜕𝑦′

𝜕𝑧
𝜕𝑧′

𝜕𝑥
𝜕𝑧′

𝜕𝑦
𝜕𝑧′

𝜕𝑧

�

�
=
�

�
1 +

𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑥
𝜕𝑦

𝜕𝑢𝑥
𝜕𝑧

𝜕𝑢𝑦
𝜕𝑥

1 +
𝜕𝑢𝑦
𝜕𝑦

𝜕𝑢𝑦
𝜕𝑧

𝜕𝑢𝑧
𝜕𝑥

𝜕𝑢𝑧
𝜕𝑦

1 +
𝜕𝑢𝑧
𝜕𝑧

�

�
 

This condition ensures that the displacement possesses a single-valued continuous 

solution (Singh, 1979). D= 1 indicates the particles of a body are not displaced. 

The deformation of the continuous medium can be expanded for an infinitesimal line 

element PQ passes into the line element P΄Q΄ under deformation as shown Figure 2-9. 

In general it is expected that both length and direction of PQ will be changed.  

 

Figure 2-9 Deformation of an infinitesimal line element 

However this only concerns the change in the original length of 𝐴 to 𝐴′ given as: 

Eq. 2-17 

𝐴 = 𝐴𝑥𝚤̂ + 𝐴𝑦𝚥̂ + 𝐴𝑧𝑘�  , 𝐴′ = 𝐴𝑥′𝚤̂ + 𝐴𝑦′𝚥̂ + 𝐴𝑧′𝑘� 

Eq. 2-18 

𝜕𝐴���� = 𝐴′ −  𝐴  
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Or in the matrix format: 

Eq. 2-19 

�
𝛿𝐴𝑥
𝛿𝐴𝑦
𝛿𝐴𝑧

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑥
𝜕𝑦

𝜕𝑢𝑥
𝜕𝑧

𝜕𝑢𝑦
𝜕𝑥

𝜕𝑢𝑦
𝜕𝑦

𝜕𝑢𝑦
𝜕𝑧

𝜕𝑢𝑧
𝜕𝑥

𝜕𝑢𝑧
𝜕𝑦

𝜕𝑢𝑧
𝜕𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

�
𝐴𝑥
𝐴𝑦
𝐴𝑧
� 

𝛿𝐴���� = 𝛿𝐴𝑥𝚤̂ + 𝛿𝐴𝑦𝚥̂ +  𝛿𝐴𝑧𝑘� 

Therefore changed vector is: 

Eq. 2-20 

𝐴′ = (𝐴𝑥 + 𝛿𝐴𝑥)𝚤̂ + �𝐴𝑦 + 𝛿𝐴𝑦�𝚥̂ + (𝐴𝑧 + 𝛿𝐴𝑧)𝑘� 

For two different displacement fields, 𝑢𝑖
(1) and 𝑢𝑖

(2) , applied one after another the final 

length of the element A΄΄ in an arbitrary point can be determined as (Singh, 1979).: 

Eq. 2-21 

𝐴𝑖′′ = 𝐴𝑖 + �
𝜕𝑢𝑖

(1)

𝜕𝑥𝑗
+
𝜕𝑢𝑖

(2)

𝜕𝑥𝑗
�𝐴𝑗  

Therefore the following rules may be framed for determining successive deformation: 

• The total deformation is equal to the sum of the individual deformations, each 

computed separately from the original geometry. 

• The order of the application of the displacement field does not affect the total 

deformation. 

Displacement of a particle: Displacement of a particle is a vector quantity that is 

determined by its initial and final locations regardless of the path between them.  

If the displacements of all particles in a mechanical system are equal the system will 

undergo translation. A rotation of a mechanical system manifests by all its particles 

describe a circular arcs of the same angle with their planes perpendicular to that axis. A 

rotation is a rigid-body displacement. A rigid body would experience a plane 

displacement, if the displacement vectors of all its particles are parallel to the plane of 

displacement. Translations and rotations are plane displacement (Singh, 1979). 
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Rigid body displacement can be classified under translation or rotation of a medium. 

From displacement components at a single point, it is not possible to tell whether the 

displacement is due to distortion of the body or to rigid body displacement. Distortion 

or strain imply a change in displacement from one point to another and can be 

associated with derivatives of displacements with respect to xj, i.e., 𝜕𝑢𝑖
𝜕𝑥𝑗

. 

In order to eliminate the effect of rigid body rotation the change in displacement is 

written as: 

Eq. 2-22 

𝜕𝑢𝑖
𝜕𝑥𝑖

=
1
2
�
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

� +
1
2
�
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖

� = 𝜖𝑖𝑗 + 𝜔𝑖𝑗 

Where 𝜖𝑖𝑗 and 𝜔𝑖𝑗are strain and rotation matrix respectively (Singh, 1979). 

Homogeneous deformation: If the final position of the point P (x΄,y΄,z΄) is a linear 

function of its initial position (x,y,z) the six components of strain will be constant 

throughout the medium (Chandrupatla and Belegundu, 2002). Components of strain 

tensor will then become: 

Eq. 2-23 

𝜖𝑥𝑥 =
𝜕𝑢𝑥
𝜕𝑥

= 𝐶11, 𝜖𝑦𝑦 =
𝜕𝑢𝑦
𝜕𝑦

= 𝐶21, 𝜖𝑧𝑧 =
𝜕𝑢𝑧
𝜕𝑧

= 𝐶31 

2𝜖𝑥𝑦 = 𝐶12 + 𝐶21, 2𝜖𝑦𝑧 = 𝐶23 + 𝐶32, 2𝜖𝑥𝑧 = 𝐶13 + 𝐶31 

Where 𝐶𝑖𝑗, i=1,2,3 ; j=0, 1, 2, 3 are arbitrary constants . 

This type of deformation is called homogenous deformation.  Consequently the relative 

elongation of an infinitesimal line element depends only on its direction; it does not 

depend on its location in the body. Likewise the change in angle between two 

infinitesimal line elements does not depend on their location, but only on their initial 

directions. 

Physical interpretation of strain tensor: This section defines the diagonal and off-

diagonal terms of the strain matrix. This can be provided by a line element of PQ of 

length Δx along the x axis that passes to P΄Q΄ after deformation with the length of Δx΄ 

shown in Figure 2-10. The orthogonal projection of P΄Q΄ in the x direction is:  
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Eq. 2-24 

(∆𝑥′)𝑥 = ∆𝑥 + (𝑢𝑥)𝑄 − (𝑢𝑥)𝑝 

 

Figure 2-10 Physical interpretation of strain tensor normal component 

The strain component 𝜖𝑥𝑥 can be approximated, by expansion of (𝑢𝑥)𝑄 in the 

neighbourhood of point p, to be the elongation in the x-direction of infinitesimal line 

segment originally in the x-direction per unit of original length. The same interpretation 

may be given for the other diagonal terms of strain matrix. 

Eq. 2-25 

(𝜖𝑥𝑥)𝑃 = �
𝜕𝑢𝑥
𝜕𝑥

�
𝑃

 

If the line element of PQ with the length of Δx along x-direction and PR with the length 

of Δy along y-direction is considered, deformed state passes PQ to P΄Q΄ and PR to P΄R΄ 

as shown in Figure 2-11 (a). 

The change in the right angle of the pair in infinitesimal line segment at P is determined 

by projections of PQ and PR on the xy plane is given in Figure 2-11 (b) (Singh, 1979). 

The orthogonal projection of P΄R΄ along the x and y axis result in: 

Eq. 2-26 

tan 𝜃 = 𝜃 =
𝜕𝑢𝑥
𝜕𝑦

 

tan𝛽 = 𝛽 =
𝜕𝑢𝑦
𝜕𝑥
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(a)                                                                       (b) 

Figure 2-11 Physical interpretation of strain tensor shear component 

The subsequent decrease in the right angles at P is formulated as (Timoshenko and 

Goodier, 1951) : 

Eq. 2-27 

𝜃 + 𝛽 =
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦
𝜕𝑥

 = 𝛾𝑥𝑦 = 2𝜖𝑥𝑦 

Where 𝛾𝑥𝑦 is the shear angle and in general can be determined as 𝛾𝑖𝑗 = 2𝜖𝑖𝑗. Therefore 

the shearing angle is the decrease of the right angle between infinitesimal orthogonal 

line elements at appoint as a result of deformation. These shearing are the off-diagonal 

terms in the strain tensor. 

Principal strains: The determination of the principal strains is critical to computing the 

directions for which the strains have extreme values. The derivation detailed in 

Appendix III leads to the strain extreme values as: 

Eq. 2-28 

𝐽1 = 𝜖𝑥 + 𝜖𝑦 + 𝜖𝑧 = 𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 

𝐽2 = 𝜖𝑥𝜖𝑦 + 𝜖𝑦𝜖𝑧 + 𝜖𝑧𝜖𝑥 −
γxy2

4
−
γyz2

4
−
γxz2

4
= 𝑠𝑒𝑐𝑜𝑛𝑑 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 

𝐽3 =
�

�
𝜖𝑥

γxy
2

γxz
2

γxy
2

𝜖𝑦
γyz
2

γxz
2

γyz
2

𝜖𝑧
�

�
= 𝑡ℎ𝑖𝑟𝑑 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 
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2.2.3 Stress-strain relationships 
Hook’s law relates stress and strain in an elastic portion of the material behaviour: 

Eq. 2-29 

𝜎 = 𝐸𝜖 

Similarly, linear elasticity can be measured in a member subjected to shear loading: 

Eq. 2-30 

𝜏 = 𝐺𝛾 

where τ is a shear stress, γ is shear strain and G is the Shear Modulus. In the elastic 

range the relation of the lateral strain to the axial strain specified by Poisson’s ratio 

states (Pilkey, 1994): 

Eq. 2-31 

ν =  �
Lateral strain
Axial strain

� 

The most general linear relationship which connects stresses to strains is known as the 

generalised Hook’s law that can be expressed as: 

Eq. 2-32 

𝜖𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜏𝑘𝑙 

Solving for stress: 

Eq. 2-33 

𝜏𝑘𝑙 = �𝑐𝑖𝑗𝑘𝑙�
−1
𝜖𝑖𝑗 , 𝜏𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑖𝑗 

where 𝐶𝑖𝑗𝑘𝑙 is modulus of elasticity or elastic constants. These are 81 elastic constants 

for the most general cases. It can be proven that last two indices are interchangeable 

when the only non-zero strain components are 𝜖12 𝑎𝑛𝑑 𝜖21 (Wang, 1953). Elasticity 

tensor is also interchangeable for the first two indices when the state of strain indicates 

that the only non-zero strain component is 𝜖11. These symmetric properties of elastic 

constants reduce the number of independent elastic constants by 27 and 18 respectively, 

to a total of 36. Thus stress-strain relationship can be written as: 
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Eq. 2-34 
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The elasticity matrix shows another degree of symmetry under anisotropy condition 

when the variation of the body under deformation occurs isothermally or adiabatically. 

This reduces the number of independent constants to 21. In the isotropic materials that 

possess elastic properties independent of the orientation of the axis the matrix of 

elasticity reduces to: 

Eq. 2-35 

⎣
⎢
⎢
⎢
⎢
⎡
2𝐺 + 𝜆        𝜆            𝜆             0 0 0
              2𝐺 + 𝜆        𝜆            0  0 0
                              2𝐺 + 𝜆      0 0 0
                                               𝐺 0 0
                                                  𝐺 0
 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐                            𝐺 ⎦

⎥
⎥
⎥
⎥
⎤

 

Therefore there are only two independent constants that determine the stress-strain 

relationship which are shear modulus of elasticity, G, and Lam’s constant. Relationships 

between various elastic constants are shown in Table 2-2. Using these relations the 

strain components can be written as (Chandrupatla and Belegundu, 2002): 

Eq. 2-36 

𝜖𝑥 =
1
𝐸
�𝜎𝑥 − ν�𝜎𝑦 + 𝜎𝑧��,    𝜖𝑦 =

1
𝐸
�𝜎𝑦 − ν(𝜎𝑥 + 𝜎𝑧)�,    𝜖𝑧 =

1
𝐸
�𝜎𝑧 − ν�𝜎𝑦 + 𝜎𝑥�� 

γxy =
𝜏𝑥𝑦
G

, γyz =
𝜏𝑦𝑧
G

 , γxz =
𝜏𝑥𝑧
G
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Table 2-2 Elastic constants relationship 

 𝝀,𝑮 𝑲,𝑮 𝑮,𝝂 𝑬,𝝂 𝑬,𝑮 

λ= 
Lam’s modulus λ 𝐾 −

2𝐺
𝐸

 
2𝐺𝜈

1 − 2𝜈
 

𝜈𝐸
(1 + 𝜈)(1 − 2𝜈)

 
𝐺(𝐸 − 2𝐺)
(3𝐺 − 𝐸)

 

G= 
Shear Modulus G G G 

𝐸
2(1 + 𝜈)

 G 

K= 
Bulk modulus λ −

2𝐺
3

 K 
2𝐺(1 + 𝜈)
3(1 − 2𝜈)

 
𝐸

3(1 − 2𝜈)
 

𝐸𝐺
3(3𝐺 − 𝐸)

 

E= 
Young’s modulus 

𝐺(3λ + 2G)
(λ + G)

 
9𝐾𝐺

3𝐾 + 𝐺
 2𝐺(1 + 𝜈) E E 

ν= 
Poisson’s Ratio 

λ
2(λ + G)

 
3𝐾 − 2𝐺
𝐺𝐾 + 2𝐺

 ν ν 𝐸
2𝐺

− 1 

 

2.2.4 Failure criteria 
Quantification of the stress and strain parameters is only comprehensible by 

clarification of failure criteria. Mechanical failure is defined as any change in the size, 

shape or material properties of a structure or component that renders it incapable of 

performing its intended functions satisfactorily (Collins, 1993). The list of possible 

failure modes is presented in Appendix IV. There are two types of excessive elastic 

deformation which could result in structural failure (Pilkey, 1994): 

• Deformation satisfying the usual conditions of equilibrium, such as deflection of 

the beam or angle of twist of a shaft. The ability to resists such deformation is 

referred to as the stiffness of a member. 

• Inordinately large displacement under conditions of unstable equilibrium that 

may occur in a thin-plate when the in-plane forces exceed the critical load. This 

form of instability is referred to as buckling. 

This section elaborates on these two failure phenomena. 

2.2.4.1 Combined stress theories 

Predicting failure and establishing a geometry that will avert failure is a relatively 

simple matter in the case of static uniaxial stress. A few simple tension and compression 

experiments can produce a simple stress-strain relationship for a material of interest. 

Failure is normally predicted to occur when the maximum normal stress reaches the 

yield point that is determined from the experimental stress-strain relationship (Collins, 

1993). 
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In reality when the component is subject to a biaxial or a triaxial state of stress, the  

procedure above is unable to predict failure. There is an attempt to solve this problem 

by developing a theory that relates the behaviour of the complex situation to simpler 

behaviour which can be evaluated through tests of a number of characteristic moduli. 

The predominant theories are shortlisted in  

Table 2-3 along with mathematical expressions and their shortages (Pilkey, 1994; 

Collins, 1993). The principal stresses are denoted as 𝜎1 > 𝜎2 > 𝜎3 and yield stress in 

tension or compression as  𝜎𝑓 .  

Figure 2-12 shows comparative graphical representation of the failure theories in biaxial 

stress scenario. It is accepted that Von-Mises and Tresca are the most representative 

criteria of initial yield behaviour in metallic materials (Rees, 2003). The regions 

represent the boundary of incipient failure. All state of stress that lies outside the 

regions would be predicted to result in failure. If the tensile strength 𝜎𝑡 , is equal to 

compressive strength, 𝜎𝑐 , the regions are symmetrical about the coordinate origin. If the 

tensile and compressive failure strength differs, the failure boundaries are displaced so 

that the centre of the region no longer coincides with the  𝜎1 − 𝜎2 coordinate origin. 

 

Figure 2-12 Comparison of failure theories in biaxial state of stress (Collins, 1993) 

 



 

Table 2-3 Failure criteria (Collins, 1993) 

Failure theory Criterion Theory statement Mathematical expression Application Weakness 

Rankine Normal 

stresses theory 

Yield occurs when one of the 

principal stresses at a point in 

the structure subjected to the 

combined stresses reaches the 

yield strength in simple tension 

or compression of the material. 

𝜎1 = 𝜎𝑓  

|𝜎3| = 𝜎𝑓   

 

For brittle materials the 

maximum normal stress 

theory is the best available 

failure theory, though it 

may yield conservative 

results for some states of 

the stress. 

Predict failure in the case of hydrostatic 

stress (compression or tension) when the 

magnitude of the principal stress 

𝜎 = 𝜎1 = 𝜎2 = 𝜎3 becomes equal to the 

simple tensile yield point that is 

experimentally invalid. 

Poor to predict onset of yielding and 

should not be used for ductile materials. 

Tresca-Guest  Maximum 

shearing stress 

Failure is predicted to occur in 

the multiaxial state of stress 

when the maximum shearing 

stress magnitude becomes equal 

to or exceeds the maximum 

shearing stress magnitude at the 

time of failure in a simple 

uniaxial stress test using a 

specimen of the same material. 

|𝜏1| ≥ �𝜏𝑓� 

|𝜏2| ≥ �𝜏𝑓� 

|𝜏3| ≥ �𝜏𝑓� 
or 

�𝜎1 − 𝜎2 ≥ �𝜎𝑓�� 

�𝜎2 − 𝜎3 ≥ �𝜎𝑓�� 

�𝜎3 − 𝜎1 ≥ �𝜎𝑓�� 

Predicting the hydrostatic 

stress as failure is 

eliminated in this theorem.  

It has been observed that only one other 

theory, the distortion energy theory, 

gives better agreement with experimental 

data for ductile behaviour under 

multiaxial states of stress. 
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Failure theory Criterion Theory statement Mathematical expression Application Weakness 

St. Venant 

 

Maximum 

normal strain 

“Failure is predicted to occur in 

the multiaxial state of stress 

when the maximum principal 

normal strain become equal to 

or exceeds the maximum 

normal strain  at the time of 

failure in a simple uniaxial 

stress test using a specimen of 

the same material.” 

𝜎1 − 𝜈(𝜎2 + 𝜎3) ≥ 𝜎𝑓 

𝜎2 − 𝜈(𝜎1 + 𝜎3) ≥ 𝜎𝑓 

𝜎3 − 𝜈(𝜎1 + 𝜎2) ≥ 𝜎𝑓 

𝜎1 − 𝜈(𝜎2 + 𝜎3) ≥ −𝜎𝑓 

𝜎2 − 𝜈(𝜎1 + 𝜎3) ≥ −𝜎𝑓 

𝜎3 − 𝜈(𝜎1 + 𝜎2) ≥ −𝜎𝑓 

 The same shortage as Rankin’s theorem 

to predict failure in the case of 

hydrostatic stress is also applicable to St. 

Venant theory. Further the theory is been 

found inadequate for brittle material 

failure as well. 

 

Von Mises  Maximum 

distortion 

energy theory 

Failure is predicted to occur in 

the multiaxial state of stress 

when the distortion energy per 

unit volume becomes equal to or 

exceeds the distortion energy 

per unit volume at the time of 

failure in a simple uniaxial 

stress test using a specimen of 

the same material 

1
2
�

(𝜎1 − 𝜎2)2

+(𝜎2 − 𝜎3)2

+(𝜎1 − 𝜎3)2
� ≥ 𝜎𝑓 

 

Widely accepted as the 

comprehensive failure 

criteria in structural design  

 



 

2.2.4.2 Buckling failure 

The simplest model of the structural behaviour under static loads, assumes that the 

equilibrium path is linear so all deformations are proportional to the magnitude of the 

load set acting on the structure. This model, known as inelastic behaviour, requires the 

material to have a linear relationship between stress and strain. 

The stability of this model determines a risk of form failure, as the structure may not be 

able to maintain its original geometry due to the applied load (Iyengar,1988). The 

failure in the inelastic stability is expressed as geometrical non-linear behaviour and 

characterise by the divergence in the equilibrium curve as shown in Figure 2-13. A 

critical point in the state of equilibrium where the two paths intersect is known as the 

Bifurcation Point and is associated with classical buckling (Falzon, Hitchings, 2006). 

This is regarded as the limit of the elastic non-linear behaviour. In elastic buckling, the 

primary or pre-buckling response is in a different direction to the buckling response. 

Thus the buckling response remains zero until the buckling load is reached. Buckling 

therefore is described as the behaviour in which a structure suddenly deforms in a plane 

different to the original plane of loading and response. The buckling phenomenon can 

be classified in terms of the buckling mode as shown in Table 2-4 (Trahair, 1993). 

 

Figure 2-13 Types of load-displacement behaviour (Trahair, 1993) 
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Table 2-4 Modes of buckling classification (Trahair, 1993) 

Mode Description Visualisation 

Flexural  It may involve transverse displacement of the 

member cross-section and is resisted by the 

flexural rigidity of the member. It occurs when 

the second-order moment caused by the product 

of the axial compression forces with the 

displacements are equal to the internal bending 

resistance at any point in the structure.  

 

Torsional This involves twist of the member cross-section, 

and is resisted by the tensional rigidity and the 

warping rigidity. It occurs when second-order 

torque caused by the axial compression force and 

the twist are equal to the sum of the internal 

torsion resistances at any point in the structure. 

 

Flexural-torsional This involves the mixture of two above 

phenomena and therefore resisted by the 

combination of the bending resistance and the 

torsional resistance. 

 

 

Local This mode involves deflection of a thin plate out 

of its original plane. This mode occurs when the 

second-order actions caused by the in-plane 

compressions and the out of plane deflections are 

equal to the internal resistances of the plate 

elements to bend and twist at any point in the 

structure.  

 

Distortional This is an intermediate mode between local and 

member buckling. It often involves web flexure 

and corresponding rotations of the flanges which 

vary slowly along the member length. 
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After the buckling load is reached, the post-buckling load-displacement curve may 

remain constant, or may rise or fall due to the changes in the member stiffness that 

occur during buckling, which may lead to redistribution of the actions through the 

structure.  The types of load deflection behaviours discussed above are shown in Figure 

2-13. 

2.3 Numerical method in structural design 
Section 2.2 described the objectives of the structural analysis process in terms of its 

quantifiable parameters and the assessment criteria. In this section the most 

predominant methods in industry to achieve these objectives are explained. 

For simple components with no critical pre-condition, the structural analysis would be 

simply satisfied with ready-to-use handbook formulae and relationships. The actual 

stress- strain relationship in a machine component is invariably complex and not always 

agreeable with straight forward mathematical solutions (Parameswaran, 2004). In this 

case the numerical methods are employed to solve complex mathematical models 

(Kurowski, 2004). 

The use of numerical methods to overcome complexities and arbitrariness in analysis 

has been significantly improved by the advent of the computers in engineering. 

Development of softwares that assist designers to model and analyse complicated 

geometries and assemblies leads to yet the most exact prediction of stress and strain 

distribution in the components (Parameswaran, 2004).  

In brief, the mainstreams of numerical methods to solve partial differential equations 

throughout a three dimensional domain (Mottram, 1996) are: 

• The Finite Element Method (FEM) 

• The Finite Difference Method (FDM) 

• The Boundary Element Method (BEM) 

FEM has become the most commercially available when solving structure problems in 

both industry and academia (Mottram, 1996). 

National Agency for Finite Element Methods and Standards (NAFEMS) defines Finite 

Element Method as "an approximate method for calculating the behaviour of a real 

structure by performing an algebraic solution of a set of equations describing an ideal 

model structure with  a finite number of variables" (Mair, 1984, Section 0.2-1). 

http://www.refworks.com.v-ezproxy.brunel.ac.uk:2048/Refworks/~0~
http://www.refworks.com.v-ezproxy.brunel.ac.uk:2048/Refworks/~0~
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FEM representes the real structure by a set of elements bounded by a mesh or grid of 

lines and surfaces. Each element is defined by its boundary geometry, its material 

property and a few basic parameters such as thickness and cross section area. The loads 

and displacements that are nominally defined at the nodes of the geometrical mesh (or 

any other convenient points in the boundary) describe the elements behaviour in relation 

to adjoining elements. The behaviour of the complete structure is the aggregate 

behaviour of its elements.  Any FEA is only as good as: 

• the model of the structure (geometry mesh and elements) 

• the assumptions embedded in the properties used for each element 

• the representation of the external loads and constraints in terms of the discrete 

boundary variables. 

2.3.1 FEA Procedure 
In summary the steps to Finite Element Method are (Huebner et al., 2001): 

• Discretise the continuum 

• Select interpolation function 

• Find the element properties 

• Assemble the element properties to obtain the system equation 

• Impose the boundary condition 

• Solve the system equation 

• Make additional computations if desired 

The general procedure to set up a computational model in Abaqus software is laid out in 

Figure 2-14 (Dassault Systèmes, 2009, a). Among these stages special attention is paid 

to the choice of element.  

2.3.2 Meshing and element properties 
FEA offers a way to solve a complex continuum problem by subdividing it into a series 

of simpler interrelated problems. The complex problem is in the form of assemblage of 

discrete parts or finite element. The degree to which the assemblage represents the 

whole depends on the number, size and type of elements. There are only special cases 

that this assemblage leads to an exact representation, and most often the choice of 

element is a matter of engineering judgement based on the industry’s accumulated 

experience (Huebner et al., 2001). 
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Figure 2-14 General FE model set up in Abaqus 

In order to choose an effective combination of assembly, element characteristics have to 

be identified. Elements can be characterised with their five aspects (Dassault Systèmes, 

2007, b): 

• Family: This is the geometry type as shown in Figure 2-15. In general terms the 

elements family can be categorised as Continuum or Structural type.  
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• Degree of freedom: This is the fundamental variable calculated during the 

analysis. For a stress/displacement simulation the degrees of freedom are the 

translations and for structural elements, these are the rotations at each node. The 

conventions on the nodal degrees of freedom is described in Appendix V 

(Dassault Systèmes, 2007, b). 

• Number of nodes: The degrees of freedom are calculated at the node of the 

element, the examples are shown in Figure 2-16. The calculated displacement is 

then interpolated from the nodal displacement.  

• Formulation: This describes the mathematical theory used to define the 

element’s behaviour. 

• Integration: FEA software uses numerical techniques to integrate various 

quantities over the volume of each element, thus allowing complete generality in 

material behaviour. 

 

Figure 2-15 Commonly used elements families (Dassault Systèmes, 2007, b) 

 

(a)                                        (b)                                         (c) 

Figure 2-16 (a) Linear elements (b) Quadratic elements (c) Modifies second-order 

element (Dassault Systèmes, 2007, b) 

 

From the modelling perspective the element family, that determines the type of 

geometry, is the fundamental decision to make. The other element characteristics are 

available under each type of element family and therefore can follow when the family is 
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determined. Sections 2.3.2.1and 2.3.2.2 elaborates on the element family with the 

focus on the elements' geometrical aspects. 

2.3.2.1 Continuum elements 

Continuum or Solid elements are used for a range of linear and nonlinear analysis 

containing contact, plasticity, and large deformation (Bathe, 1996). The solid elements 

are available in different shapes e.g. triangular/tetrahedral and bricks/quadrilaterals. 

Triangular elements are geometrically versatile and are used in many automatic 

meshing algorithms. It is very convenient to mesh a complex shape with triangles and 

second order and modified triangular are suitable for general usage. 

However the good mesh of hexahedral elements usually provides a solution of 

equivalent accuracy.  Quadrilaterals and hexahedral have a better rate of convergence 

than triangles and tetrahedral. Furthermore, sensitivity to mesh orientation in regular 

meshes is not an issue.  First order triangles and tetrahedrals are usually overly stiff 

which means that extremely fine meshes are required to obtain accurate results 

(Dassault Systèmes, 2010). 

First order triangular and tetrahedral elements should be avoided as much as possible in 

stress analysis problems as they are overly stiff and exhibit slow convergence with mesh 

refinement.  Second-order elements provide higher accuracy than first order elements, 

in smooth problems that do not involve complex contact conditions, impact, or severe 

element distortions.  They capture stress concentrations more effectively and can 

produce a curved geometry with fewer elements. Finally they are very effective in 

bending dominated problems. 

Reduced integration that uses a lower-order integration to form the element stiffness, 

are also available in Solid genre.  Reduced integration reduces running time, especially 

in three dimensions.  Combination of second-order and reduced-integration elements 

generally yields more accurate results than the corresponding fully integration elements. 

However for the first-order elements the accuracy with reduced integration is largely 

dependent on the nature of the problem.  

This combination is also subjected to the risk of Hourglassing.  In cases where element 

contains only one integration point, it is possible that a mode of distortion with zero 

strain occurs within an element.  This in turn leads to uncontrolled distortion of the 
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mesh, shown in Figure 2-17. The hourglass control option in first-order elements can 

be used only with a fine mesh (Dassault Systèmes, 2010).  

 

(a)                                                                  (b) 

Figure 2-17 (a) Hourglass mode shapes of a 4 node-reduced-integration element (b) 

Hourglass mode propagation (Dassault Systèmes, 2010) 

Fully integrated elements are not subject to hourglass but may suffer from ‘Locking’ 

behaviour in the form of shear or volumetric locking.  Shear locking is a type of 

malfunction in first-order fully integrated elements that are subject to bending. The 

numerical formulation gives rise to so-called parasitic shear strain , a type of shear 

strain that does not exist, and causes over stiffness performance by the element. As it is 

shown in Figure 2-18 (a), the second order elements edges can assume a curved shape 

that maintain the angle between isoperimetric lines as 90⁰. In contrast the first order 

element, Figure 2-18 (b), requires the element edges remain straight and therefore 

impose a artificial change in the isoperimetric lines angle. The element formulation 

make them inadequate for application in the presence of shear forces. 

Volumetric locking is more likely to happen in the case of incompressible material. 

Spurious pressure stresses develop at the integration point, causing an element to 

behave stiffly for deformation that should cause no volume changes.  If materials are 

almost incompressible second order fully integrated will start developing volumetric 

locking when the plastic strains are on the order of the elastic strain.  Volumetric 

locking in this scenario happens after a significant strain, and is often accompanied by a 

mode that looks like Hourglassing.  Frequently this problem can be avoided by refining 

the mesh in regions of large plastic strain. 



 

 

48 

 

Figure 2-18 Shear locking (a) second order element that allow for the shear forces 

by allowing curvature in element edges, (b) first order element that restrict the 

edges to bend and give raise to shear stress (Dassault Systèmes, 2010) 

Incompatible mode elements are first-order elements that are enhanced by incompatible 

modes to improve their bending behaviour. In addition to the standard displacement 

degree of freedom, incompatible deformation modes are added internally to the 

elements. In addition, these degrees of freedom eliminate artificial stiffening due to 

Poisson's effect in bending. In regular displacement elements the linear variation of the 

axial stress due to bending is accompanied by a linear variation of the stress 

perpendicular to the bending direction, which leads to incorrect stresses and an 

overestimation of the stiffness.  The incompatible modes prevent such a stress from 

occurring.  The incompatible mode elements perform almost as well as second order 

elements in many situations if the elements have an approximately rectangular shape. 

The performance reduced considerably if the elements have an approximately 

rectangular or a parallelogram shape. 

2.3.2.2 Shell element 

Shell elements, part of the Structural Family of elements, are another form of 3D 

geometrical discretisation methods.  

For three dimensional thin structures, shell elements are capable to model in 

topologically two dimensions. The reduction in dimensionality is achieved by 
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incorporating thin plate-bending theorem that is normally applicable to the thickness 

no greater than one-tenth of the other two in-plane dimensions (Reddy, 2006). 

Geometrically, plate problem is similar to plane stress problems, except that plates are 

also subject to transverse loads that cause bending about axes in the plane of the plate 

(Reddy, 2006).  The general rules of classical plate bending theory (Huebner et al, 

2001), also known as Kirchhoff hypotheses, are applicable only if: 

• The deflection of the centre plane is small compared to the thickness. 

• The centre plane has no strain during bending. 

• The stress components normal to the centre plane 𝜎𝑧 is small. 

• Normal to the centre plane remains normal during bending. 

According to the above assumptions: 

Eq. 2-37 

𝜖𝑧 = γxz = γyz = 𝜎𝑧 = 0 

And the in-plane displacements are related to the deflection: 

Eq. 2-38 

𝑢𝑥 = −𝑧
𝜕𝑤
𝜕𝑥

 , 𝑢𝑦 = −𝑧
𝜕𝑤
𝜕𝑦

 

The Kirchhoff hypotheses result in decreasing the complexity of a three dimensional 

plate problem to two dimensions and in effect reduce the problem to finding only w(x,y) 

(Ugural, 1999).  Conventional strain-displacement relations for non-zero strain 

parameters are identified by Eq. 2-23. Substitution Eq. 2-38 into the conventional 

relationship results in: 

Eq. 2-39 

𝜖𝑥 = −𝑧
𝜕2𝑤
𝜕𝑥2

 , 𝜖𝑦 = −𝑧
𝜕2𝑤
𝜕𝑦2

 , 𝛾𝑥𝑦 = −2𝑧
𝜕2𝑤
𝜕𝑦𝜕𝑥

 

Eq. 2-39 provides the strains at any point in the plate. Considering the Kirchhoff 

assumptions stated in Eq. 2-37, the three dimensional Hook’s stress strain relation is 

reduced to: 
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Eq. 2-40 
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Substitution with Eq. 2-39 and expressing G with respect to E and ν Gives: 

Eq. 2-41 
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From Eq. 2-41 it is observed that the stress is vanished in mid-surface, where z=0 and 

vary linearly over the thickness of the plate. This variation over the thickness causes 

bending moments, twisting moments, and vertical shear forces. 

Eq. 2-42 
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Where Mxy=Myx and: 

Eq. 2-43 
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Eq. 2-43 shows despite neglecting effects of shear strain components of γxz and γyz , 

vertical forces Qx and Qy are not negligible.  

Using shell elements, when applicable, provides a more economical solution than solid 

elements. In stress/displacement problems containing contact surfaces there are two 

types of shell elements: 

• Conventional shell elements, that discretise a reference surface by defining the 

element's planar dimensions, its surface normal, and its initial curvature  

• Continuum shell elements, resemble three-dimensional solid elements in that 

they discretise an entire three-dimensional body 

Conventional shell element's behaviour satisfies Kirchhoff-Love constraints 

formulations. Like Solid elements the reduced integration for the stiffness matrix is 
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possible in conventional shell elements. Reduced integration typically provides more 

accurate results with more efficient time frame in three dimensional problems. In first 

order elements it is required to check the likelihood of hourglassing, and mitigating the 

risk with hourglass control. 

The initial geometry of the conventional shell can be defined by creating a planar 

geometry of the body. This reference surface is typically coincident with the shell's mid-

surface. However, many situations arise in which it is more convenient to define the 

reference surface as offset from the shell's mid-surface.  

Continuum shell elements are similar to continuum solids from a modelling point of 

view. However they should be correctly oriented, since these elements contain  

thickness direction information. In comparison continuum elements provides a more 

accurate solution for contact type of problem, since they employ two sided contact 

which consider thickness variation. However it is important to note that a conventional 

shell provides superior performance.  

2.4 Experimental analysis 
Section 2.3 discussed the numerical solution of FEM and its considerations to obtain the 

structural analysis objectives. Another mainstream method of obtaining these objectives 

in application is known as experimental stress analysis. Experimental methods for stress 

analysis can be classified as (Singh 1979): 

• Whole-field methods: those which give information about stress or strain 

distribution in the whole-field e.g. photoelasticity, photoelastic coating, brittle 

lacquers, grid method, Moire method, holography and interferometers etc. 

• Point-by point methods: those which provide information at selected points only 

e.g. electrical resistance strain gauges, mechanical extensometers, optical 

extensometers and variable capacitance transducers etc. 

These methods may be further classified as static or dynamic methods and destructive 

and non-destructive methods (Singh 1979). The most implicational candidates of each 

class are shortlisted for further discussion in sections 2.4.1 and 2.4.2 . 

2.4.1 Photoelestic measurement 
The photoelastic method depends on the property of certain transparent solids by which 

they become doubly refractive under the action of stress, magnitude of the optical effect 
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bearing a definite relation to that of the stress (Singh, 2011). In applying this method 

to analyse the stresses in any body subjected to given loads, a scale model of the body is 

first made out of a stress- optically sensitive or more commonly known as photoelastic 

material. The model is subjected to loads similar to those applied to the prototype, and 

the optical effects are measured. The material of model having been calibrated, these 

observations lead directly to numerical values of stress-differences and with the help of 

theory of elasticity produce the complete determination of the state of stress at all points 

of the model (Singh, 1997). 

Stress-optic law in a transparent isotropic model in which the stresses are two 

dimensional and within the elastic limit states that the angular phase difference between 

the two rectangular wave components travelling through the model is directly 

proportional to the difference of principal stresses. 

Eq. 2-44 

𝛼 ∝ (𝜎1 − 𝜎2) 
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where 𝑓𝜎  equal to �𝜆
𝐶
� is material fringe value in terms of stress and has the unit 

kg/cm2/fringe/cm and 𝑛  equal to � 𝛼
2𝜋
�  𝑖𝑠 𝑡ℎ𝑒 relative retardation in terms of a complete 

cycle of retardation and is called the fringe order. h is model thickness in cm , and 

𝐹 = 𝑓𝜎
ℎ

 is  model fringe value. Rearranging  Eq. 2-40 Gives: 

Eq. 2-45 

𝜀1 − 𝜀2 =
(1 + 𝜈)
𝐸

(𝜎1 − 𝜎2) = 𝑓𝜀
𝑛
ℎ

 

𝑓𝜀 = �(1+𝜈)
𝐸
� 𝑓𝜎= material fringe value in terms of strain and has the units cm/fringe. 

Thus photoelastic effect law can be summarised as: 

• The light on passing through the stressed model becomes polarised in the 

direction of the principal stress axis and is transmitted only on the planes of 

principal stress. 
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• The velocity of transmission in each principal plane is dependent on the 

intensity of the principal stress in these planes. 

The points of equal phase difference due to temporary double refraction is called fringe. 

These are also the points of equal brightness or darkness. 

2.4.2 Strain analysis using strain gauge 
Strain gauge method is one of the oldest and currently the most commonly used method. 

Wide range of technologies is deployed in the strain gauge design field, e.g. mechanical, 

optical electrical gauges to name but a few (Singh,1997). Amongst the available 

techniques the electrical resistance strain gauges are the most important one that will be 

discussed in this section (Vishay, 2010, b). 

 “A strain gauge rosette is an arrangement of two or more closely positioned gauge 

grids, separately oriented to measure the normal strains along different directions in 

the underlying surface of the test part.” (Vishay, 2010, a, pp151). Three basic types of 

strain gage rosettes are shown in Figure 2-19: 

• Tee: two mutually perpendicular grids. 

• 45°-Rectangular: three grids, with the second and third grids angularly displaced 

from the first grid by 45° and 90°, respectively. 

• 60°-Delta: three grids, with the second and third grids 60° and 120° away, 

respectively, from the first grid. 

 

Figure 2-19 Variation in rosettes from left to right: Tee, Rectangular and Delta 

(Vishay, 2010, a) 

The tee rosette is only appropriate for the predictable principal strain directions. Where 

the directions of the principal strains are unknown, a three-element rectangular or delta 

rosette is appropriate; In this case the rosette can be installed in any required orientation 

(Potma, 1967).  In order to develop the conversion equations, a consistent sequential 

numbering system is required to identify the rosette elements. The convention for 

rectangular rosette numbering is to assign grid numbers 1 and 3 to two perpendicular 
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grids therefore the axis of Grid 2  is 45° away. The principal strains can be derived 

from three directional measurements from Mohr’s circle, as shown in Figure 2-20. The 

normal strain at any angle θ from the major principal axis is (Vishay, 2010, a): 

Eq. 2-46 
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Assuming a rectangular rosette mounted on a surface in an arbitrary angle of θ the three 

directional measurements yield to the principal strains using the Mohr’s circle as it is 

shown in Figure 2-20 and  Eq. 2-46is re-written as (Vishay, 2010, a): 

Eq. 2-47 
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Eq. 2-48 
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Figure 2-20 Strain transformation from principal to a random direction in Mohr's 

circle (Vishay, 2010, a) 

Eq. 2-47 can readily identify the value for principal strains. Eq. 2-48 gives the angle θ 

represents the acute angle from the principal axis to the reference grid of the rosette. For 

the purpose of experimental measurement it is more convenient to translate from 

reference grid to principal axis as  detailed in Appendix VI.  
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To calculate the stress for a homogeneous isotropic elastic material, Hook’s law can 

be used as described in section 2.2.3 and formulised in Eq. 2-40. The principal stresses 

can be calculated directly from grid measurement as (Vishay, 2010, a): 

Eq. 2-49 
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Consequently von-mises stress can be calculated as (Vishay, 2010, a): 

Eq. 2-50 
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2.5 Chapter summary 
The mission of structural analysis, the structural integrity, is described with the 

objectives of the general layout and shape determination, service load and expected life 

determination, material selection and design criteria expression. 

 The structural integrity is achieved by determining the capability of the part to perform 

the required structural functions during its service life. These functions are explained  

by a number of parameters quantifiable via three types of argument, namely 

equilibrium, compatibility and stress-strain relationship.  

• Stress: The equilibrium conditions used to define the state of the stress in a 

point. The stress tensor and its components are defined. The conversion of the 

stress components to the stress invariants, the one independent of directions is 

also identified. 

• Strain: The compatibility condition is used to define the strain on the continuous 

medium that undergoes deformation. The strain definition in a point in the form 

of strain tensor is described in the same fashion as stress. The strain invariants 

on the isotropic homogeneous body. 

• Stress-strain relationship: The governing equations to relate stress and strain 

components are defined using the generalised hook law in three dimensions. The 

Stiffness matrix and its symmetric nature is described and elaborated using 
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material elastic constants. The material constants relationship is summarised 

for further use during the study. 

The quantifiable parameters are only comprehensible with knowing the Failure criteria. 

In order to quantify the product safety the structural performance e.g. stress and 

displacement have to be compared against failure criteria. Two forms of elastic failure, 

material yield and geometrical instability are elaborated. 

The most applicable industrial methods to achieve these objectives are also explained in 

this chapter. Numerical methods in particular FEM are one of the industrial and 

commercial predominant CAE methods. The practice is developed based on the 

procedural steps to convert a 3D CAD model to FE model.  Among the steps within 

FEM procedure, the element selection is identified as the key transformation point. This 

stage includes a degree of approximation that has to be carefully understood and 

selected to avoid discrepancy in the results. Elements vary in terms of the family type, 

degrees of freedom, number of integration points, number of nodes and formulations. 

The most distinguishable family types, structural and solid elements are discussed along 

with the criteria to choose and their application and their common type of malfunctions. 

Experimental methods of structural analysis are perhaps the oldest method of the 

performance quantification. These methods have a significant role in modern analysis as 

simulation validation method. The techniques are broadly classified as the whole field 

and point-to-point methods.  

• Photoelastic measurement: The most common whole-field method works based 

on the stress- optically sensitive or more commonly known as photoelastic 

material.  

• Strain gauge analysis: electrical resistance strain gauges are discussed as one the 

industry leader point-to-point measurement method. The gauges variations are 

demonstrated with a particular attention to the formulation of rosette gauges. 

In conclusion for a successful structural analysis project it is fundamental to identify: 

• What is the performance that has to be analysed? 

• What are the corresponding quantifiable parameters? 

• What are the assessment criteria? 

• How can one quantify the required parameters? 
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3 Structural Analysis in Product Development  
In Chapter 2 structural analysis practice and modern practical methods to perform it 

were discussed.  These fundamentals provide the background knowledge for the 

engineer to generate a successful simulation study and interpret the outcomes.  However 

the efficiency of the practice relies heavily on the integration of the structural analysis in 

the product design process.  This chapter aims to clarify the necessity of systematic 

approach for engineering product design in view of the influential design methodology 

developers.  

The importance of developing a systematic analysis synthesis is understandable within 

the context of the new mechanical product design environment. The turning point from 

a successful single analysis project to an embedded- progressive method is in the 

implementation approach within the design process.  This chapter elaborates on the 

product design requirements, and focuses on the state-of-the-art systematic practices to 

implement structural analysis within the design process.  The comparative assessment 

of the current practices is provided in this section.  This section concludes with the 

shortage of product multi-functionality perspective in the discussed methods and 

requirement for a more design oriented method to produce a descriptive form of reality 

of interest in product design. 

According to a previous study of comprehensive assessment of the design tools by 

Cross and Sivaloganathan (2005), Quality Function Deployment (QFD) method is 

identified as a potential candidate to establish the reality of interest with respect to 

product's multi-functionality aspect.  The capabilities and possibilities of QFD are 

further described in this chapter. 

3.1 Product design perspective 

The product design process, in general, is widely accepted as a systematic sequence of 

activities that are formulated to encompass a product from market needs to sale 

(Ostrofsky, 1977). The need for a systematic approach is raised by the complexity in the 

process that involves number of disciplinary and interdisciplinary specialities.  Almost 

all products are heavily dependent on the inputs from a number of engineering and non-

engineering fields, in a mix that is unique to the product specifications. In order to 



 

 

58 

conceive such a product, it is essential to coordinate the inputs in a systematic manner 

(Pugh, 1991).  

 

Figure 3-1 Design process work flow (Pahl et al., 2006) 
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The classic systematic design approaches were established to create visible 

operational structure to enhance the integration of technological and non-technological 

subject materials in an effective and efficient manner (Pugh, 1991). Most mainstream 

design methodologies agree on granting the central responsibility for the technical and 

economical properties of the product to the designer. More engineering oriented 

approaches, as shown in Figure 3-1, view the design methodology as a "concrete course 

of action for the design of the technical system that derives its knowledge from design 

science and cognitive psychology, and from practical experience in different domains" 

(Pahl et al. 2006, p.9).  

The term design science is more elaborated with its elements as scientific methods to 

analyse the technical systems and their relationship with the environment (Pahl et al. 

2006). The body of product specific design methodology in technical terms, consists of 

a combination of scientific methods that are arranged in a particular order to suite a 

particular products.  These scientific methods can be classified briefly as shown in 

Figure 3-2.  

 

Figure 3-2 Position of analysis in the context of systematic design methodology  

In most traditional commercial environments, the dominant approach to implement a 

systematic design process is known as Decide-Commit-Validate (DCV). In this 

approach most design decisions, are accepted and implemented before final validation 

of the collection of decisions that comprise the ultimate design (Adams, 2006). Despite 

its high take-up among traditionally established organisations, the risk of propagating 
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mistakes, made in early stages and their consequences are high. The risk is more 

visible in light of the identified gap between product understanding and resource 

commitments schematically shown in Figure 3-3. The greater the gap between product 

understanding and the resource committed, the greater the risk delay and expenditure 

due to negative variance between actual and anticipated performance (Adams, 2006). 

This potential shortage of the risk associated with DCV approach is mitigated with the 

allocated time at the end of the project schedule called "rework" or "redesign". 

 

Figure 3-3 The Knowledge gap in product development (Adams, 2006) 

3.2 Implementing Structural analysis in the design process 

Although structural analysis has been used for several decades, its impact is becoming 

increasingly important, as SMEs are migrating from experimental testing to simulation-

based design. The influence of structural analysis in design is more significant where 

the primary purpose of design is to carry a load. For most components, design 

evaluation and improvements based on the results of structural analysis, are integrated 

parts of the design process (Dolsak and Novak, 2011).  

The technological portion of the needs determines the types of analyses required to 

adequately model product’s parts or systems. Understanding the requirements and 

limitation of each type of analysis is critical when evaluating tools and the engineer’s 

ability to use them (Adam, 2006). 

As highlighted in Chapter 2, among the available methods for structural analysis the 

application of simulation with Computer Aided Engineering (CAE) softwares have been 

more widely used in academic research due to its extensive application in design 

process. The position of CAE within the design process has been previously mapped 

Concept Detailed Design Prototype Verification 

Resource 
Committed 

Production 

Product 
Understanding  



 

 

61 

broadly into Conceptual, Embodiment and Detailed Design (Cross and 

Sivaloganathan, 2004).  

However the systematic nature of design process requires an integrated structural 

analysis methodology to complement the technology and gain competitive advantage 

for the enterprise. The implementation plan needs a clear understanding of expected 

benefits and goals which address stakeholder’s needs both economic and technological 

(Adam, 2006). 

As a standard technique for evaluating the mechanical performance of structural system 

(Turkiyyah and Fenves, 1996), FEA has been used by many researchers in many 

different disciplines to be systematically implemented within a design process. These 

studies are mostly inspired by shortages in specific industries and therefore are domain 

specific. The common trends, repeatedly addressed in recent researches, are discussed in 

section 3.3. 

3.3 Systematic Structural Analysis  

3.3.1 Early simulation  
Table 3-1 shows the stages in which simulation is typically integrated into the design 

process. Among the different level of simulation integrity into design process the 

Conceptual Verification is considered as complimentary action by taking the final step 

of inserting simulation into decision making process.  In most cases the design error that 

causes failure occurs not just prior to testing, but also in the initial steps. This risk has 

been addressed by pointing out the importance of analytical support for the design 

process in early phases of design since the early developments of simulation and FEA in 

design research in the 1980’s and has been a point of concern until now (Sadd and 

Rolph, 1987).  The Conceptual Verification aims to point out the cause of the problem 

in the conceptual stage, before it propagates through various design commitments 

(Adams, 2008). 
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Table 3-1 Stages of integrating simulation in design 

Design stage Application Impact on design process 

Failure Verification A forensic action to realise the reason 

for part failure, observed in practice 

and find out the solution. 

Low 

Design Verification Concerns about predictability of the 

structures behaviour during service in 

a virtual environment and decides on 

corrections if necessary. 

An additional task between the design and 

prototype stage. The design has 

progressed using the same tools, 

techniques and insights as it would have 

prior to the availability of simulation. 

Concept Verification This supports any decision before 

committing to subsequent decisions. 

This level of integrity of simulation 

within the design process leads to a 

significant re-arrangement in the design 

process. 

 

The DCV approach, mentioned earlier as the dominant design approach in conventional 

environments, has been altered to validation before commitment, and transformed to 

Design-Validate-Commitment, DVC (Adams, 2008). This is essentially a cultural shift 

in the design process that prompt the designer to consider structural integrity through 

the wider range of design process.  DVC approach enhances the position of simulation 

from design tool to an ongoing process within the design. In most cases this subtle 

change will help avoid significant cost and delay when the starting geometry proves to 

be a problem. Table 3-2 shows the benefits and limitations of early simulation in the 

design process. 
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Table 3-2 Benefits and limitations of early simulation (Adams, 2008) 

Benefits Limitations 

Reduced product development time: 

Simulation as concept tends to converge to a working solution 

considerably quicker due to less complexity in the CAD 

model. The decisions also can be made before cascading 

dependencies are implemented, thus they improve the rework 

time later on in the project. 

Problem solving capabilities: 

Once the extent of the problem exceed the problem solving 

capability of the system, whether it would be knowledge, 

experience or available tools, the risk begins to accumulate. This 

is in contradiction with the mission of simulation as a risk 

mitigating tool. 

Increased innovation: 

Simulation is given a chance to investigate new materials, 

manufacturing methods or components interactions that 

challenge accepted design practices in conceptual level. 

Garbage in – Garbage out: 

The simulation tools doesn’t have any additional insight to the 

problem other than the one supplied by the user. They simply 

process the input data to provide solutions with the premise that 

the user knows what they are doing. 

Reduced product cost: 

Using simulation in early stages of decision making in the 

Concept Verification mode, provides the best opportunity for 

the technology to impact final product cost. 

Precise answer to imprecise questions: 

The exact answer supplied by simulation is a product of the users’ 

best estimation of the inputs. Variations and inaccuracy in the 

loads, geometry etc. can lead into misleading design solutions 

Reduced development cost: 

Reduction in the cost of prototyping and test has always been 

an inspiration for virtual modelling and simulation. 

Simulation in Conceptual Verification can narrow down the 

number of alternatives that might have otherwise required 

testing to explore.   

Discretization error: 

The nature of FEA is to break continuum into sub-parts called 

elements, to provide the solution. Improper use of element may 

end in far off the mark solution 

Improved product quality: 

The design and failure verification may address inherent 

quality deficiencies but they don’t necessarily improve quality 

on their own. Decisions that most affect the final product 

performance and quality are made in earliest stages of design 

and therefore the value of concept verification simulation is 

more appreciated for this purpose. 
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3.3.2 Benchmark 
Benchmark analysis attempts to assess the appropriateness, accuracy and efficiency of 

proposed simulation procedures. In this sense, software developers use a number of 

standard, well-established problems, e.g. the NAFEMS benchmark criteria, to verify 

their solver codes (Abaqus, 2011; NAFEMS, 1990).  

However the application of benchmark is not limited to software developers and 

standard practices. Benchmark has been extensively used for verification of specific 

simulation techniques and analysis methodologies. This development in the use of 

benchmark put the practice in pivotal position for developing a product or industry 

specific simulation methodology. These types of benchmarks represent simplified 

version of the structural system, of interest, by retaining its salient features. Therefore 

the typical benchmark experiments’ results not only provide an assessment of the 

method but also characterise the initial performance of the system under study.  

The contribution of benchmark in procedural structural modelling and simulation is 

very well established in the analytical domain; however benchmark role in-line with the 

design requirement for early simulation has been conveniently overlooked. 

Oberkampf et al. (2004) introduced the Strong Sense Benchmarks (SSBs) with the 

following four characteristics:  

• the purpose of the benchmark  

• the definition and description of the benchmark  

• specific requirements for results comparisons and 

• acceptance criteria  

The application of the benchmark in structural analysis can be related to the conceptual 

design part of the process and contribute towards the early stage simulation concept that 

was discussed in Section 3.3.1. 

3.3.3 Expert System and Knowledge Base Engineering 

Artificial Intelligence (AI) methods have been applied to FEA for over 20 years to 

support the decision making process. In principle AI is a sub-section of computer 

science concerned with developing programs that in some way imitate human intelligent 

behaviour (Beerel, 1987). The ultimate goal of developing such systems in engineering 
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design is to introduce an automated procedure to support the iterative cycle of 

decision making, required by structural analysis for design verification.  

Expert System (ES) is a sub-branch of AI and refers to a particular computer 

programme that encapsulates facts, expert knowledge and reasoning techniques, and 

simulate the reasoning process to provide expertise (Labrie et al, 1994). The knowledge 

used by the expert systems is made up of either rules or experiences on the behaviour of 

the elements of a particular subject domain.  The architecture of the typical ES is shown 

is Figure 3-4 (Martin and Oxman, 1988): 

Among the components of ES, Knowledge-base is the fundamental element as the 

system starts with experts’ Knowledge acquisition.  The Knowledge-base holds the 

expert knowledge about the domain. This knowledge is obtained from human experts 

and is stored in a knowledge-representational form that is inherent to the expert system 

design. The process of building ES is known as Knowledge Base Engineering (KBE) 

(Forsyth, 1989). The focus of KBE is to provide an informationally complete 

description or representation of a design as well as access to external databases. The 

knowledge based engineering environment is therefore a framework for capturing and 

defining the process of design creation.  

 

Figure 3-4 Schematic architecture of ES (Labrie et al, 1994) 
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The position of intelligent support is magnified considering actual structural analysis 

cycle practice. From a practical standpoint, FEA follows an step-by-step process which, 

from user perspective, is translated into three basic steps of pre-processing, 

computational analysis and post-processing. As shown in Figure 3-5, it is a familiar 

practice for FEA-based design iteration loop to be performed over several cycles, in 

which the appropriateness of the design candidate is evaluated (Novak and Dolsak, 

2008).  

In current applications, ES either partially facilitates the various steps of analysis or 

supports the overall process in more holistic approach. Dolsak and Novak (2011) 

identified the shortages of FEA in pre-processing and post-processing. This is because 

they hold a significant role in the quality of performance and still mostly depends on the 

user’s knowledge, experience and even  rule of thumbs. 

 

Figure 3-5 Design and analysis iterative cycle (Novak, Dolsak 2008) 

The initial motivation of implementing ES on FEA was to support the pre-processing 

phase, and reduce the amount of repetition due to design iterations (Novak and Dolsak, 

2008).  These advancements were proposed due to the complexity of mathematical 

models associated with practical problems in the mechanical design process, which 

limited the number of models that can be analyzed via closed-form analytical 

techniques. The inputs to the KBE model contain geometric and non-geometric 

attributes which can include design specifications, design practices, engineers’ 

expertise, material properties and the boundary conditions. When given a set of inputs, 

the KBE model can use the knowledge and rules to create an instance of a design which 
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provides a significant increase in engineering productivity (Pinfold and Chapman, 

2001). 

In generating KB modules a major effort has been attracted to automate the mesh 

generation.  Kang and Haghighi (1995) proposed a knowledge-based, automatic finite 

element mesh generator for two-dimensional linear elasticity problems. This involves 

the decomposition of the original structure into substructures. Dolsak (2002) presents a 

consultative ruled-base expert system for mesh design aiming to propose the appropriate 

type of mesh and resolution.  

In a recent development, a framework for controlled cost and quality of assumptions in 

FEA in the field of consultative KB is presented. This framework, assisting users in 

performing physical modelling and control mesh discretization error,  is based on the 

use of the design of experiments (DOE) method (Bellenger et al., 2009). 

Although advancements in pre-processing procedures improve the efficiency of the 

analysis process and provide reliable control over its specific steps, they do not ensure 

reliability of the entire analysis.  Shephard and Wentorf (1994) attempted to introduce a 

thorough framework to support the use of existing software as well as the introduction 

of new techniques without requiring extensive reprogramming efforts. This study 

presents a framework, shown in Figure 3-6 for analysis idealization control by all 

possible techniques within a general feedback structure. The framework also supports 

continual expansion for new analysis goals and strategies. 

 

Figure 3-6 An architectural view of the strategy for the existing commercial 

software components (Shephard and Wentorf, 1994) 

 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DBellenger,%2520E.%26authorID%3D6601965447%26md5%3D4542d76191969d5530719dc4b5eab29d&_acct=C000027918&_version=1&_userid=545641&md5=a9eac11bc54425329864c1207eb348e0
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Turkiyyah and Fenves (1996) argued this aim as improving the FEM from a low level 

that is limited to numerical techniques, to a high level that integrates tighter with 

physical model and CAD model.  The proposed framework, illustrated in Figure 3-7 

consist of main features of the explicit representation and use of functional descriptions, 

the explicit representation and use of modelling assumptions, and a hierarchical 

planning paradigm for driving the modelling task.  

 

Figure 3-7 Overall architecture of the modelling integration framework 

(Turkiyyah and Fenves, 1996) 

Application of KBE techniques for the automation of the FE model creation was 

investigated by Pinfold and Chapman (2001). Their proposed method increases the 

productivity of FEA practice by reducing the repetitions from the process of modelling 

structure geometry, model simplification and mesh generation. 

Dolšak and Novak (2011) present an intelligent environment to address the identified 

bottlenecks within FEA as 

• selection of the most suitable simulation tools, 

• selection of the most appropriate, effective, and accurate finite elements, 

• determination of a mesh model that will produce acceptable results 

• selection of the most effective and accurate solver, 

• correct interpretation of the analyses results, 

• selection of consequent design actions to improve the structure being analysed, 

• coordination, communication, and data exchange. 
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The proposed intelligent environment consists of four knowledge-based modules, one 

to support the initial decisions before analysis, two to support the development of a 

correct and efficient idealised model and the last one for results’ interpretation after the 

analysis process. Figure 3-8 shows the idea on how intelligent analytical KB modules 

should be integrated into the FEA-based design cycle in order to fill those gaps between 

the FEA package and geometric modeller to support the designer in decision-making 

process. 

There are also a large number of the focused AI applications that are related to a 

specific problem (Abbod et al., 2004; Lin and Lo, 2005; Li et al., 2006; Abd El-Ghany 

and Farag, 2000; Ratchev, 2007).  

 

 

Figure 3-8 Intelligent support for the FEA- Based design improvement process 

3.3.4 Validation and Verification approach 

In the product design process the outcomes of numerical solution is not considered as an 

end on itself but rather an aid to design and manufacturing (Reddy, 2005). When 

strategic planning and decision making process in a design environment grants a more 

central role for computer simulation, the credibility of the computational results 

becomes critical. The standard practices require the simulation process to be extended 
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beyond the virtual modelling into two major routs of Verification and Validation 

(V&V) (MacLeod, 2005; Mair, 1984).   

V&V approach, as it is advocated by American Society of Mechanical Engineers 

(ASME) and National Agency for Finite Element Methods and Standards (NAFEMS), 

is motivated by a managerial perspective which seeks to assure that a sound procedure 

is followed in developing the model and documenting the numerous physical and 

numerical parameters required for a structural analysis project. The V&V process also 

assists on how evidences are collected, and documented which will help establish 

confidence in the results of complex numerical simulations (ASME, 2006). 

Figure 3-9 demonstrates the steps through V&V process (NAFEMS, 2006). This 

process begins with a Reality of Interest i.e. what is the physical system to be analysed. 

The modelling logic flows in three stages, from the most general Conceptual, to 

Mathematical, and more specific Computational Model (ASME, 2006). 

The conceptual model is defined with material behaviour, loading and constraints, etc. 

Analytical description of physical phenomena and processes are called mathematical 

models (Reddy, 2005). This is created using the conceptual model information, and 

following the FE model set up procedure in Figure 2-14.  

The final model in the sequence, the Computational Model, incorporates the means of 

achieving a solution (MacLeod, 2005) and consists of the numerical implementation of 

the mathematical model, in the form of numerical discretization, solution algorithm, and 

convergence criteria. This stage of modelling contains the particulars of the model that 

software (code) interprets as the input file (ASME, 2006). 

Once the analysis is executed the results should be treated as suspect and the errors 

should be monitored (MacLeod, 2005). Verification is the process of determining that a 

computational model accurately represents the underlying mathematical model. 

Verification process can be conducted in two stages of Code Verification and 

Calculation Verification, as specified in Figure 3-9 . 

Code Verification ensures the mathematical model and solution algorithms are working 

correctly. Despite the practice is being conducted by software developers mostly, 

software users would also share the responsibility for Code Verification. Among the 

available techniques, the most popular method is to compare code outputs with an 

analytical solution. However, the complexity of most available analytical solutions is a 
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prohibitive factor towards their implication even in a rather routine application of 

most commercial software. The Code Verification method with the potential to expand 

the number and complexity of analytical solutions is termed as a manufactured solution 

(NAFEMS, 2006). 

 
Figure 3-9 V&V procedure (ASME, 2006) 

The Calculation Verification, is focused on the accuracy of the discrete solution. 

Discretisation error is most often estimated by variation of mesh resolution and output 

comparison. The process that is also known as, mesh convergence, requires a curve of a 

critical result parameter in a specific location, to be plotted against a measure of mesh 

density, shown in Figure 3-10. At least three convergence runs are required to establish 
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convergence with optimised mesh density. However if two runs of different mesh 

density give the same results, convergence has been most likely achieved (Chillery, 

2010, b).  

 

Figure 3-10 A four point convergence curve (Chillery, 2010, b) 

The ultimate intention for developing a computational model is to predict the structural 

behaviour in the absence of experimental data. Neither parts of the above process can 

address the question of adequacy of the selected models for representing the reality of 

interest. If the model could adequately predict some related, and simpler instances of the 

intended use where experimental data would be obtained then the model would be 

validated to make predictions beyond experimental data (ASME, 2006). 

The key components of the Validation process are the: 

• Validation experiments that is performed to validate the model. 

• Accuracy assessment that ensures adequacy of outcomes. 

A comparable set of data can only be achieved if the experimental and mathematical 

models are in close agreement. This includes features such as geometry, loading and its 

distributions, supports and constraints conditions, adjoining structure/rig, material 

properties, environmental condition and measurement/ calculation points (Mair, 1984).  

Once the experimental and simulation outcomes are obtained, the accuracy assessment 

phase begins. Validation metric describes the comparison of Validation experiment and 

simulation outcomes. A Validation metric is a mathematical operator that requires two 

inputs: the experimental measurements of the System Required Quantities (SRQs) of 

interest and the corresponding values from analysis. Figure 2.9  illustrates a flowchart 

for computing a Validation metric (Roy, 2011).  
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Figure 3-11 Process flowchart for computing metric process (Roy, 2011) 

Among recent researchers in application of V&V, the field specific Validation and 

Verification benchmarks attracted  major attention. The code developers such as Abaqus 

have over 270 formal Verification test cases that focus on engineering accuracy of the 

code and quantifying the numerical error in the solution (Dassault Systèmes, 2010). 

Oberkampf et al. (2004) applied their previously described strong sense benchmarks 

(SSBs), section 3.3.2, in V&V. Oberkampf also discussed recommendations for 

constructing and using V&V benchmarks and results comparison. Particular attention 

has also been paid to the field related computation of nondeterministic results to 

determine the uncertainty of System Response Quantities (SRQs). Uncertainty can 

occur due to uncertainties in input quantities, the computation of Validation metrics to 

quantitatively measure the difference between experimental and computational results, 

the minimization of model calibration in comparisons with Validation benchmarks, and 

the constructive role of global sensitivity analyses in Validation experiments 

(Oberkampf, 2008). 

Oberkampf and Barone developed Validation metric features based on the concept of 

statistical confidence intervals in accordance with ASME Standards (2006).  

Understanding of the sources of the uncertainty provides a guidance on how to manage 

it in the simulation in the most efficient and cost-effective manner. This inspired a 
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recent study for a higher level of accuracy by classification and quantification of the 

uncertainties that can propagate into physical and mathematical model and distract 

output quantities. Figure 3-12 shows the outlines of this approach (Roy and Oberkampf, 

2011). 

The necessity of integration between V&V and ES was stated by Culbert and Riley 

(1989). Their proposed methodology can provide the requirements for continual 

verification aiming for an effective use of V&V in a traceable and testable format. 

 

Figure 3-12 Propagation of input uncertainties to output (Roy, 2011) 

3.3.5 Design of Experiment (DOE) 
As discussed in section 2.2 FEA achieves its aims by quantification of the structures 

variable responses, such as maximum Von-Mises stress, minimum nodal displacement 

etc. These responses are expected to vary with respect to input parameters which could 

be classified as: 

• Design parameters e.g. geometry, material, load set etc.  

• Modelling and analysis parameters e.g. simplifications, choice of element, 

meshing, loading and boundary conditions 

• Uncertainty parameters e.g. ambient conditions, variation between physical and 

mathematical model etc. 

Design of Experiment addresses analysis of parameters in a systematic manner aiming 

for an optimal combination. DOE is a series of steps which must follow a certain 

sequence for the experiment to yield an improved understanding of performance. In 

general, DOE consists of three phases of planning, conducting and analysis. The 

purpose of experimentation is to understand the effect of parameters variation on 

product’s performance. The loss function quantifies which input parameter influences 
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the average and variation of performance characteristics of the product. The approach 

is based on the use of orthogonal arrays (Taguchi) to conduct small highly fractional 

factorial experiments up to larger full-factorial experiments. Orthogonal array is only 

one way of planning for DOE, yet the most flexible to conduct and easy for non-

statistically oriented engineers to execute in practice (Ross, 1996). 

The Taguchi method incorporates the effect of input parameters as assigned discrete 

values, called levels that divide each factor to equal increments. The Taguchi approach 

is not restricted to continuous response variables but can also be used on categorical 

variables. By choosing a simple factorial design, e.g. one with just two levels or limited 

interactions, it is possible to filter out the less significant parameters. The shortlisted 

parameters can be investigated in more complex factorial designs to explore non-linear 

effects and interactions between parameters ( Dar et al. , 2002). 

The combined use of FEA and the Taguchi method identifies the relative contributions 

of design input factors to structural analysis quantifiable parameters. Lin et al. (2009) 

used this combination to determine the relative contribution of design factors in various 

performance responses of the biomechanical response of a premolar adhesive (Lin, et 

all, 2009). A new method of designing quartz crystal microbalance by FEM software is 

developed by employing Taguchi method ( Wu et al. , 2003). The effects of quartz 

crystal microbalance’s resonant frequency influenced by the variation of the deposited 

mass is investigated in this research using Taguchi method to create the signal to noise 

ratio to quantify the present variation. The best combination of design parameters is also 

decided by incorporating Analysis of Mean (ANOM) ( Wu et al., 2003). Carino (2006) 

used orthogonal array (OA) based simulation to assess the effect of uncontrollable 

factors on complex structural systems. The proposed methodology attempts to produce 

the maximum information from a predetermined and limited number of numerical 

simulations, in view of structural layout definition as well as the sensitivity analysis and 

the consequent optimal layout selection ( Carino,2006). 

In the field of biomechanics Taguchi's parameter design is used to determine how to 

vary the parameters in a series of FE models, and provides information on the 

sensitivity of a model to input parameters ( Dar et al. , 2002). Taguchi methods are also 

incorporated to develop the procedural KB Framework, to control cost and quality of 

assumptions in FEA (Bellengar et al. , 2011): 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DDar,%2520Fazilat%2520H.%26authorID%3D7004031732%26md5%3D2f8b9e881401a1e3e5e617a8d363e4da&_acct=C000027918&_version=1&_userid=545641&md5=665d0f6ae0134ba7f53a86e9af7d8a0d
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3.3.6 Comparative assessment  
Table 3-3 lists the key strengths and weaknesses of the discussed methods in view of 

their potential to integrate with design process.  

Expert system and knowledge-base engineering main concerns are to assist structural 

analysis by improving the process bottlenecks as well as reusability of the information. 

The proposed methods in this field are mostly focused on either fully or partially 

automate numerical methods, using the accumulated analysis knowledge that is boosted 

by experts input. Although the topic of process automation is beyond the scope of this 

research, the concept of reusability of the knowledge can be related to the design 

process requirement for iteration (Costa and Sobek, 2003). The reusability of the 

structural analysis data assists the design activity to progresses through conceptual 

levels towards the desired final state (Adams and Atman, 1999), more effectively. 

V&V as the most design oriented approach starts with the reality of interest that can be 

related to each structural performance. Furthermore V&V is committed to create a fully 

representative account for the structural analysis for the specific function. The verified 

and validated analysis method should be adequate for further use with variation of the 

input parameters. 

Benchmark practice is a method to incorporate the values of early simulation in design. 

The structural performance can be effectively characterised in early stages of the design 

through the use of salient benchmark. The amount of information obtained with 

benchmark practice besides its time and cost efficiency makes it viable for the use in 

design integrated structural analysis methodology. 

Finally the application of the Design of Experiment method produces an economic 

solution for analysis when an excessive number of design input variations are 

considered to affect the structural performance. DOE can accurately screen the 

parameters impact for specific objective.  

The first observation from the comparative study is that the available methods consider 

the process mostly from structural analysis perspective. The fact that almost every 

product requires to satisfy more than one type of structural performance, product multi-

functionality aspect, is not attended in the proceeding methods. 
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Table 3-3 Comparative assessment of available methods to implement structural 

analysis in design 

Method Strength Weakness 

Early simulation • Time effective 
• Prevent error propagation 
• Suitable for design based on 

Structural performance 

• Concentrate on computer 
simulation 

• The benefit is not apparent for 
enterprise 

• No methodical approach is 
available 

Benchmark • Early understanding of 
performance 

• Produce production solution for 
understudy structure and 
performance 

• Produce specialist knowledge for 
structural analysis  

• Time and cost effective practice 

• Concentrate on computer 
simulation as the main medium 
of structural analysis 

• Can be theoretical and not be 
useful for industry 

• The amount of effort maybe 
beyond commercial time 
constraints 

• Product multi-functionality has 
not been observed 

Knowledge base • Make structural analysis available 
for designers 

• Provide repeatability and 
functionality for commercial 
environment 

• The most comprehensive method 
available 

• Use significant resources to 
produce production solution 

• The current practices are only 
computer simulation oriented 

• The proposed methods are 
oriented around the specific type 
of analysis and product’s multi 
functionality is not observed 

•  

V&V • Provides reliability and credibility 
for analysis results 

• Merge all three components of 
structural analysis 

• Produce a solid knowledge 
ground 

• Resource hungry 
• Exhaustive practice to close the 

loop 
• Requires heavy involvement 

from expert knowledge 
• Verification may not be always 

possible for complex problem 
• Validation may not be always 

possible for high consequence 
products, e.g. nuclear reactor 

• Products multi functionality has 
not been observed 

• The process is subject to error in 
correlation that needs to be 
quantified and evaluated 

DOE • Produce a structured method of 
investigation on the most 
effective parameters in design of 
the structure 

• Can be useful both in computer 
simulation and experimental 
practice 

• Easy to understand and 
implement in design 

• Specific to a type of analysis and 
not considering product’s multi-
functionality 

• Reduce the impact of structural 
simulation as design optimisation 
tool and not consider its central 
role in product development 
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V&V is the only practice that starts the process with the reality of interest. However 

further clarification on the reality of interest is required to complete the scope and 

objectives of the structural analysis practice with respect to product multi-functionality.  

A summary of the available design tools and methods along with their opportunities and 

threats are shortlisted in an comprehensive investigation on developing the company-

specific design process model (Cross, Sivaloganathan, 2005). Among the hundred 

design methods, Quality Function Deployment is capable of adding the missing multi-

functionality consideration by mapping the design and stakeholder requirements 

thoroughly and rating product features accordingly (Cohen, 1995). Capabilities and 

opportunities of incorporating the QFD into the structural analysis integrated 

methodology is further discussed in section 3.4. 

3.4 Quality Function Deployment (QFD)  
QFD is a customer-driven methodology for product design and development that 

underpins quality systems and has found extensive applications in industry via the 

development of a multiplicity of tools and systems that aid an enterprise in 

understanding the voice of the customer (Ramanathan and Yunfeng, 2009). The QFD 

by definition is “the converting of the customers’ demands into ‘Quality 

Characteristics’ and developing a design quality for the finished product by 

systematically deploying the relationships between the demands and characteristics, 

starting with the quality of each functional component and extending the deployment to 

the quality of each part and process” (Akao, 1990, p.5). 

As shown in Figure 3-13 a generic QFD process consists of four phases; relating the 

voice of the customer to product design requirements (phase 1), translating these into 

parts characteristics (phase 2), manufacturing operations (phase 3), and production 

requirements (phase 4). During early design, the first and second phases of the four 

QFD phases are implemented and part characteristics are defined (Chen and Ko, 2009). 

An early review of QFD (Sivaloganathan and Evbuomwan, 1995) concludes that QFD 

is a powerful tool in the hands of designers to ensure that a specific product is designed 

to meet the customers’ requirements and the principle of deployment used in QFD is a 

powerful way of ensuring the delivery of the ultimate product characteristics through 

the design of subsystems, parts and manufacturing. Prasad (1998) identifies several 

trials of the deployment technique in various areas such as, Total Quality Management, 
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concept for product alternative selection, multi attribute design optimization etc. This 

trend of using the principle of deployment continued to expand with time. Chan and Wu 

(2002) in their review identify this in addition to product development, quality 

management and customer need analysis as the principal functional domains at the 

beginning and expand the list to include design, planning, decision making, engineering, 

management, team work, timing and costing. They also provide a nine step 

methodology to build the traditional ‘House of Quality’ together with an illustrative 

example (Chan and Wu, 2005).  

In a conclusive remark of a QFD literature survey, Carnevalli and Miguel (2008) stated 

the opportunity for QFD adaptation for specific application in conjunction with other 

techniques such as design of experiments. Jeang et.al (2009) following along these 

observations report how a hot-bar’s soldering process parameters were used to optimize 

quality characteristics identified using QFD. Lo, Tseng and Chu (2010) describe a QFD 

based morphological charts to generate concepts for variant or next generation designs. 

Thus the general trend is to expand on the deployment process for different 

applications.  

 

Figure 3-13 Four-phases process planning by QFD (Chen and Ko, 2009). 

Products are inherently designed and developed to solve the need of its potential 

customers.  Griffin and Page (1993) identified that the success of a new product should 

be measured by how well the product is accepted by its customers. Spreng et al (1996) 

concluded that the customer evaluation of product performance contributes to their 
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evaluations of satisfaction.  Likewise, Cooper and Kleinschmidt (1987) demonstrated 

that product superiority in terms of product performance, features, and innovativeness 

was a key factor in differentiating product winners from losers.  It is thus evident that 

product performance measurement is a vital component within the design and 

development process of a product and furthermore, that these measures should be 

related to the requirements of its customers/stakeholders. Craig and Hart (2003) stated 

that measuring product performance has been problematic.  They identified that one of 

the major problems for this was due to the multidimensionality of product development 

outcomes and whether or not single or multiple metrics were required to measure the 

performance of the product.  If multiple metrics were required, it was further unclear  

how these metrics could be related to each other.   

In summary, QFD function is to collect customer requirements and deploy them during 

the product realisation process. This function is critical for design validation as in effect, 

it translates customer needs into part characteristics and production controls that can 

then be used for design verification, by forming the set of criteria against which product 

and process compliance can be assessed.  This prioritisation of customer needs creates a 

set of criteria that is used for validating the final product (Maropoulos and Ceglarek, 

2010). 

3.5 Chapter summary 
Chapter 3 is focused on the systematic implication of structural analysis in the design 

process.  

Perspectives of product design in accordance to the mainstream schools of thinking 

indicate the process as a systematic procedure that develops a product from an abstract 

to the desired final state. The position of structural analysis within the process of 

mechanical component design is discussed in view of its function in different stages of 

mechanical product design. The traditional commercial practice of Design Commitment 

Validation (DCV) is assessed against a more modern and logical way of product 

development process, Design Validation Commitment (DVC).  

Systematic nature of the design plus time consuming nature of structural analysis 

requires a structured approach to make the most advantage of the integration practice. 

A collection of most practiced approaches throughout academia and industry has been 

introduced and assessed by their implication. The potentials of outlined methods for 
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implementation in the design integrated structural analysis methodology are 

highlighted. However the common lack of product multi-functionality perspective is 

identified as the key missing component of the available methods. 

From a recent comprehensive research and assessment on design tool, Quality Function 

Deployment is identified as the potential to descriptively develop the reality of interest 

for the multi-functional product. The customer-driven tool for product design and 

development is introduced and discussed with the focus on the opportunity to address its 

expected function. 

Chapter 4 will proposed a design integrated structural analysis methodology based on 

the creative combination of discussed methods in this chapter enhanced by the 

application of QFD tool.  
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4 QFD-Based Design Integrated Structural Analysis 
Methodology 

This chapter proposes a methodology for integration of structural analysis in the product 

design process. The aim of this methodology is to define and plan a required number of 

analyses and outputs to answer a set of pre-defined stakeholders’ structure related 

requirements. The function of the proposed methodology is to: 

• Embed in the product design process progressively from early concept to the 

finalised state  

• Completely satisfy stakeholders’ requirements by systematically designing their 

needs into the analysis 

• Cover the multi-functionality aspect of the product and explores their possible 

overlaps  

• Ensure the reliability of the process by adding the benefits of verification and 

validation 

The introduction to this chapter presents an abstract diagram of the methodology.  Each 

stage of the diagram is then explained in subsequent sections.  The complete picture of 

the methodology is presented at the end of this chapter showing the relationships 

between the parts of the proposed methodology and contributing sections of this 

document. 

4.1 General Provision  

4.1.1 The common practice 

The structural analysis is a part of a product qualification process within the product 

design as described in Chapter 3. The multi-functionality aspect requires an uncertain 

number of structural analyses with number of parameter variations. An unorganised 

approach leads to a random number of case studies based on the previous design 

experiences and engineering knowledge. Despite its convenience and flexibility, the 

efficiency of the process is low because:  

• Undefined scenarios lead to the negligence of a certain structural functions and 

over-analysis of some other functions 
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• Variations in product input design parameters lead to the exhausting analysis 

process  

• Unstructured analysis process makes the design progress hard to visualise 

4.1.2 Proposed Methodology in abstract 

The layout and key components of the proposed structural analysis process model is 

presented in Figure 4-1. 

The values of early simulation and the benefits of understanding the structure’s 

performance, before commitment to a finalised solution, are discussed in Chapter 3. 

This concept is incorporated in the proposed methodology via a conceptual 

representation of the actual structure of interest. 

As discussed in Chapter 3, QFD is a design tool to collect stakeholder’s requirements 

and deploy them during the product realisation process. In the context of the proposed 

methodology, the product of interest is structural analysis performance and the 

customers are the internal stakeholders of the analysis results i.e. product designer, 

project manager etc. In this application, stakeholders’ requirements are translated into 

Measurable Performance Characteristics (MPCs) using the knowledge of structural 

analysis in the form of its quantifiable objectives and failure criteria, detailed in Chapter 

2. The influential design parameters are also identified at the beginning of the practice, 

as the Design Input Variables. QFD binds this information to establish relationship 

matrices, that leads to the exact number of required analyses. This extent of application 

of QFD assists the analyst to identify the reality of interest in a descriptive format as 

well as understand their overlaps and further expansions. This procedure produces the 

required predecessors, as a descriptive reality of interest for the V&V process.  

The V&V framework, Figure 3-9, is also enhanced by introduction of the instant of 

reality. The proposed studies are only verified and validated on an instant of reality that 

can represent the other analyses within the study. In this context the instant of reality 

replaces the verification and validation of full range of analysis of interests, determined 

by QFD procedure. Once the simulation results are confirmed, the process continues 

with conducting the list of required studies. The results and outcomes are arranged in to 

the stakeholders’ initial requirements format to facilitate the communication. The 

abstract methodology, Figure 4-1, is elaborated in the following sections. 



 

 

84 

 

Figure 4-1 Abstract of the proposed structure analysis methodology 

4.2 Methodology process model  

4.2.1 Process start point 

The process starts with a multi-functional mechanical product in the conceptual stage. 

The fixed input information about the structure such as assembly layout, key 

components and choice of material, nature of interaction, the boundary conditions and 

the nature of the applied load is required in order to define the structure. The nature of 
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the input parameter as constant or variable with their values and range of variation 

should be defined in this stage. 

Based on this information, the proposed concept can be embodied in a 3D model 

followed by a physical prototype.  The techniques to design a salient benchmark, 

discussed in Table 3-3, facilitate to capture the structure in a simplistic form and reduce 

the complexity of the full-scale product.  

After creating the representative benchmark the reality of interest has to be established 

with application of the QFD method.   

4.2.2 Stage 1 QFD process 

The QFD method in principles relates: 

a) the requirements by stakeholders  

b) the Measurable Performance Characteristics (MPCS) that truly and completely 

represent and satisfy the requirements  

c) the Independent Variable Parameters that have effects on Measurable 

Performance Characteristics (MPCs) and  

d) the effects of varying an Independent Parameter on the relevant MPCs.  In this 

context the MPCs are considered as variables response. 

In an individual analysis scenario the stakeholders’ requirement is deployed by a 

Measurable Performance Characteristic, y. It is known that the characteristic, y, depends 

on Independent Variable Parameter, x: 

Eq. 4-1 

y=F(x) 

The analysis is designed with provisions to vary parameter, x, over a given range and 

record the MPC response, y. The concept for a single analysis can be described by 

Function Means Tree as shown in Figure 4-2 (Andreassen, 1998).  

The multi-functionality of a product adds another dimension to function means tree by 

taking each of the requirements separately, schematically shown in Figure 4-3. A 



 

 

86 

considerable amount of overlap between these Function Means Trees encourages the 

construction of an integrated analysis plan to combines individual analysis. 

 

Figure 4-2 Function Means Tree of a single analysis 

 

Figure 4-3 Testing in an Integrated test plan 

In order to achieve the objective of integrated test plan for structural analysis, QFD 

procedure can be best described by the process model shown in Figure 4-4. The 

following sections elaborate the block diagram. 
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Figure 4-4 Process model of the methodology 

4.2.2.1 Stakeholder’s requirement 

QFD as a customer oriented method starts with collecting stakeholder requirements. By 

definition, the stakeholder is anyone who is affected by the product or service (Cohen, 

1995). The list of stakeholders may include individuals, departments, organisations or 

groups of the general population. Each stakeholder will normally desire particular 

performances of the design and their requirements will reflect them. This is a 

completely product related information and can be collected by meeting, interviewing or 

from Product Design Specification (PDS) and standard or approval criteria.   

In the context of structural analysis, similar to other technical aspects of the product, it 

is rare that the customers or end users are being actively involved or have a particular 

interest. However it is customary that the technical performance and safety of the 

product controlled and accredited by the industry related standard body and against the 
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industry specific code of conduct.  Therefore in this context, it is an accepted 

argument to consider the product standard, as the customer requirement. 

Similar to the external stakeholders’ requirement, there are a wide range of internal 

stakeholders whose requirements have to be satisfied. It is expected that Product Design 

Specification (PDS) document encapsulate the requirements of internal stakeholders. 

However considering the PDS as a progressive working document, the internal 

requirements can be a drifting goal post, and require more direct communications with 

product's stakeholders. 

At the end of this stage a common ground of the engineering knowledge and experience 

regarding the structural performance of the specified structure is collated.  

4.2.2.2 Measurable performance characteristics 

The list of MPCs are established based on the stakeholders requirements. This stage is 

the key transitional stage from abstract statements of needs, to a quantifiable parameter. 

This task needs an intense knowledge of mechanical and structural analysis as well as 

the simulation and experimental analysis expertise, discussed in Chapter 2. The 

accuracy and clarity in MPCs is crucial to ensure the process capability of addressing 

the outstanding requirements.  

The example of MPCs in the field of structural analysis can be Von Mises stress, 

displacement, natural frequency and buckling critical load. This stage determines the 

required type of analysis and the expected type of output as well. 

4.2.2.3 Independent Parameters 

Independent Variable Parameters refer to the ones that have not been defined as the 

constant in the structure’s conceptual definition, at the start point, but considered as 

effective on the MPCs response. The Independent Variable Parameters in this context 

refer to those that are of interest for stakeholders and have to be collected according to 

their knowledge and expertise in the field as well as standard criteria and PDS. The 

Independent Variable Parameters should be defined with their: 

• Variables value: This includes the range of variations, the number of increments 

and value at each increment.  
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• Assigned value: Whether the variable parameter is required to be fixed for a 

certain MPC or throughout the experiment and its constant value has to be 

specified. 

4.2.2.4 QFD Chart 1 

QFD chart 1 is effectively a preliminary step to link stakeholders’ requirements to the 

MPCs and selected Independent Variable Parameters in a relationship matrix.  

 

Figure 4-5 QFD chart 1 

QFD Chart 1, illustrated in Figure 4-5, typically consists of five blocks of information: 

• Block 1 – Stakeholders’ requirements: As described in Section 4.2.2.1. They 

have to be structured so that all requirements are similar in content. 

• Block 2 – Measurable Performance Characteristics: As defined in Section 

4.2.2.2. 

• Block 3 – Relationship Matrix: The relationships between the requirements and 

the MPCs are determined here. This only aims to show whether a relationship 

exists or not.  

• Block 4 – Remarks on Requirements: This is an optional window to elaborate on 

the requirements.  

• Block 5 –Independent Parameters: As described in Section 4.2.2.3. Each MPC 

can be responsive to one or more Independent Parameters. This is the 

compilation of a list of Independent Parameters that have to be considered 

during the design of the programme. 
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4.2.2.5 QFD Chart 2 

The QFD chart 2 accommodates Independent Variable Parameters in the columns and 

MPCs in the rows. The relationship matrix identifies links between MPCs and 

Independent Variable Parameter. Each cell will then show a MPC related to an 

experiment based on varying the corresponding variable. Figure 4-6 illustrates a 

schematic QFD chart 2. The five blocks of information are arranged as: 

• Block 1 – List of MPCs transferred from the Stage 1 Chart 

• Block 2 – Independent Parameters from Stage 1 Chart 

• Block 3 – Relationship matrix: The link between MPCs and Variable Parameter 

are identified by star and Fixed Parameters by the empty cells.  

• Block 4 – Ranges of the Independent Parameters: These are the ranges which 

analyses have to be conducted for 

• Block 5 – Remarks on the MPCs: This provides more details of the MPCs.  

 

Figure 4-6 QFD Chart 2 

As a result, each row entry of the relationship matrix defines analyses that completely 

address each MPC. By completing the studies for all the designated Independent 

Variable Parameters a complete picture of required MPC’s is expected to achieve. This 

procedure provides a built-in guarantee that the tests carried out will capture the 

stakeholder requirements.  

4.2.2.6 Plan for integrated studies 

The rows of QFD Chart 2 show the list of expected studies with respect to the 

Independent Variable Parameters. Table 4-1 illustrates transition from QFD Chart 2 to a 

list of required studies. Each study of Table 4-1 aims for a certain MPC under the 
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variation of several parameters of interest, whilst the rest of the input variables are 

remained at their fixed values.  

Table 4-1 Study plan based on MPC 

 Analysis condition 

Study 
No MPC Variable 

parameter 
Range of 
variation Increments value Assigned Parameters 

1 y1 

x1 

x4 

a1<x1 <a5 

d1<x4 <d3 

a1,a2,a3,a4,a5 

d1, d2, d3 

x2 = b , x3 = c , x4 = e, x5=e 

x1 = a , x2 = b , x3 = c , x5=e 

2 y2 

x2 

x3 

b1<x2 <b4 

c1<x3 <c4 

b1, b2, b3, b4 

c1, c2, c3, c4 

x1 = a , x3 =c , x4 =d, x5=e 

x1 = a , x2 =b , x4 =d, x5=e 

3 y3 x5 e1<x5<e2 e1, e2 x1 = a , x2 =b, x3 =b, x4 =d 

4 y4 

x1 

x5 

a1<x1 <a5 

e1<x5<e2 

a1,a2,a3,a4,a5 

e1, e2 

x2 = b , x3 = c , x4 = e, x5=e 

x1 = a , x2 =b, x3 =b, x4 =d 

 

Possibility of integration: The nature of the MPC whether it is a stress or natural 

frequency etc. determines the type of the required analysis. The possibility of study 

integration emerges when a few MPCs are achievable with one analysis and the variable 

parameters of interest are in common. For instance the values of stress and strain tensor 

under similar load magnitude variations are possible to obtain with only one static 

analysis. 

Another possibility of integration emerges when an excessive number of Independent 

Variable Parameters are of interest of a certain MPC(s). In this case it is possible to plan 

for a set of design of experiment practice using Taguchi’s orthogonal array concept to 

reduce the number of analysis cases. 

Possibility of expansion: On the other hand due to the nature of the Independent 

Variable Parameters one analysis may not be able to accommodate the range variation 

and produce to the set of required results. The variation in geometry is typically requires 

remodelling. In this occasion further expansion within the proposed study is required 

It should be noted that the objective of this stage is not to reduce the number of analysis, 

but to propose the necessary and sufficient number of analysis that completely satisfy 
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stakeholders’ requirements as they initially identified. The practice will be more 

elaborated through its application on the case-study in Chapters 5 and 6. 

4.2.3 V&V on the instants of reality 

Following the further developments of Table 4-1 and clarification on the actual reality 

of interest, the required V&V cases can be determined. 

The V&V process, in principle, follows exactly as the frameworks proposed by 

NAFEMS, shown in Figure 3-9. However it is sensible to conduct V&V only on the 

select number of analysis that can represent the others within the studies. These cases 

are termed as instants of reality and referred to the analysis conditions that can be 

calculated or experimentally measured. 

Following understanding the instants of realities each line of study is independently 

verified and validated. The ascertained simulation is taken forward to conduct the rest of 

the analysis in the list. The successful performance of this stage solely depends on the 

analyst knowledge and expertise in quantifiable parameters (MPCs), FEA procedural 

step and experimental measurement practice all detailed in Chapter 2.   

4.2.4 Results report and iteration 

The results collection and report follows the same order as the studies. The related 

MPCs to each stakeholder’s requirement are packaged to create a complete account for 

the area of interests. 

From the design perspective, as an iterative process, it is expected that the delivery of 

the first outputs, follows by the next round of structural analysis to assist the next level 

of product development. Base on the findings of the previous round, the iteration 

process is planned by adjustment to the stakeholders’ requirements and the design input 

variable, towards a more targetful process. The iteration allows the methodology to 

support the design process all the way toward the product finalisation. The use of 

benchmark may be limited only to the first iteration; however more verification and 

validation may be expected in the iteration process. The engineering justification along 

with the analysis expertise is required to ascertain the existing solutions or specify 

further V&V process. 
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4.3 Methodology framework  
The procedural framework demonstrated in abstract in Figure 4-1 is developed in Figure 

4-7. The iterative nature of the methodology enhances the position of the structural 

analysis in design process, by supporting it from conceptual to the finalisation level. 

The efficiency of the model comes from early understanding of the structural 

behavioural pattern that improves the design understanding of the parameters influence, 

sensitivities and errors.  

The product’s multi-functionality impact on structural performance is captured by 

incorporating the QFD procedure in the methodology. The verified and validated 

benchmark increase the level of confidence to the simulation outputs in a timely 

manner, and conclude many of the basic features in simulation in early iterations. 

Therefore the structural design frame is expected to be established earlier in the design 

process and lead to a more definitive answer by considering the combination of 

structural functions. 



 

 

Figure 4-7 Structural analysis proposed methodology 

 

 

 

 

 

 

 

 

 



 

4.4 Chapter summary 
The proposed methodology for structural design synthesis and integration in design 

process is elaborated in this chapter. The proposed methodology starts with salient 

benchmark to integrate with design in conceptual stage. 

The reality of interest as the start point of verification and validation process is 

descriptively defined by the adaptation of the QFD method. During the QFD process the 

initial requirements and influential design parameters are obtained through 

stakeholders’ statement of requirements product design specifications and standard 

criteria. These informations are translated to the structural analysis quantifiable 

objectives and the relationship between them and the input variable parameters are 

established. The list of required studies are then extracted and the possibilites of further 

expansion or integration is identified. 

The process is followed with the standrad method of V&V as proposed by NAFEMS. 

The only note on this method is to select a nominated instants of reality to be verified 

and validated.  

The results collection are followed the same order  as the studies. The relevant MPCs 

are packaged together to satisfy each one of stakeholders’ requirements. The 

methodology can be regarded as an iterative process if the next level of design is 

planned as a result of structural analysis.  
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5 Case Study- Telescopic Cantilever Boom  

In Chapter 4 the integrated structural analysis methodology is described. This chapter 

focuses on the application of the proposed methodology on a nominated structure. The 

purpose of this case study is to validate the proposed methodology on a real-life 

industrial structure design scenario. 

The subject structure is reduced to a concept in order to take advantage of the use of 

salient benchmark. The following sections introduce the structure and its industrial 

application that leads to its multi-functional structural aspect. The application of the 

proposed methodology leads to the list of required analysis, and corresponding V&V 

cases that satisfy stakeholders’ requirements.  

The proposed methodology is only applied to the conceptual structure, expecting that 

the iteration route develop the concept into a later product design stage.  

5.1 Telescopic cantilever boom 
This case study is inspired by the application of the multi-staged telescopic booms as 

appear in industrial off-road vehicles e.g. Cranes, Access Platforms, and Tele-Handlers, 

Figure 5-1. The light weight and compact nature of the telescopic structure besides its 

adjustable range of working envelope put it among the popular design concepts in the 

application of load handling in elevation. The commercial products are designed in 

various shapes, sizes and number of nested sections. Despite the variation in appearance 

the commonality in the function creates a similar key components and general structural 

layout.  

Figure 5-2 shows typical telescopic sub-assembly in isolation subject to carry a load on 

its free end (Niftylift, 2010). The telescopic function is created by the means of 

hydraulic cylinder to extend the assembly to its full working length. The structure is 

also subject to a rotational function around the fixed end, via a hydraulic cylinder 

arrangement.  



 

 

97 

 

 

Figure 5-1 Multi-staged telescopic sections in industrial off-road vehicles 

The sub-assembly consists of a few internal sliding sections that interacts through a 

low-friction wear pads components. The wear pads always remain in the overlap region 

of the sections. The load and stress from consecutive sections are transferred to the 

fixed end through these interacting surfaces. The adjustable length between the wear 

pads, known as the overlap zone, supports the reaction from overhanging weights and 

applied loads. The structure is subject to symmetric as well as asymmetric load due to a 

rotational function at the free end. 



 

 

98 

Providing the safe reliable load handling solution is the ultimate design aim for this 

product. The stakeholders’ requirements are collected based on the design review 

meetings, product design specification, and industry related engineering standards. 

 

Figure 5-2 Multi-staged telescopic assembly (Niftylift, 2010) 

 

(a) 

 

(b) 

Figure 5-3 Sliding sections and arrangement of low-friction components in 

telescopic assembly (Niftylift, 2010) 
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5.2 Benchmark construction 
The benchmark of the full-scale structure including the key components of the assembly 

is produced. The benchmark model consists of two nested rectangular beams as laid out 

as Figure 5-4 (a). The beams are interacting through four low-friction wear pads located 

in the front bottom and rear top of the overlapped area as shown in Figure 5-4 (b). 

Another two pairs of wear pads on the front and rear side-walls are mounted to control 

unintended side way movements. 

The understudy components are assembled on a rigid test rig as shown in Figure 5-5. 

 

(a) 

 

(b) 

Figure 5-4 Benchmark model of the telescopic cantilever beam 
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(a) 

 

(b) 

Figure 5-5 Test rig assembly 
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Total benchmark prototype is completed by assembling the telescope and test rig 

and the load hanger pieces as shown in Figure 5-6. The detail dimensions of the 

components are available in Appendix VII. 

The physical prototype is produced accordingly as shown in Figure 5-7 and detailed in 

Figure 5-8 (a) and (b).  

 

Figure 5-6 Total test rig assembly 

 

Figure 5-7 The physical test rig 
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(a) 

 

(b) 

Figure 5-8 (a) The detail components of the inner section (b) The detail 

components of the outer section 
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5.3 Stakeholder’s requirements 

5.3.1 Stress at contact region 

The product standard defines a safe level of stress both locally and globally (BSI, 2001). 

As it is shown in free body diagram of Figure 5-9 the applied load is reacted at wear-

pads and transferred to the next external sections. The assembly at its maximum 

outreach is expected to experience the highest reaction forces at the wear-pads 

interacting surfaces. Apart from the stress quantification, its pattern helps to characterise 

the nature of the structure behaviour. 

5.3.2 Total displacement 

The assembly experience a total displacement due to self-weight and pay load at the free 

end. The displacement of the compound cantilever in a constant overlap length behaves 

linearly with the applied tip load similar to a simple cantilever (Abraham and 

Sivaloganathan, 2011). The gradient of the load-displacement graph known as 

structure’s rigidity is a characteristic of the structure that is specified by the 

stakeholders.  This information is useful to control the full-scale products displacement 

range with respect to Product Design Specification (PDS). 

5.3.3 Vibration 

The interruption in the function due to sudden stop of operation or drive over potholes 

etc. induces a factor of vibration to sub-assembly. The importance of this factor, 

specifically in the access platform products, comes from user comfort. Within a range of 

vibration on overall body, the user can experience a motion-sickness type of 

uncomforting. In response to these phenomenon designers need to study and quantify 

the natural frequencies behaviour of the structure. 

5.3.4 Buckling behaviour 

As it is shown in the cross sectional view of Figure 5-3 (b), the construction of each 

individual sections are out of thin steel sheets. Design of the long slender components 

that experience compression inherently associated with buckling failure (Vinson, 1989). 

As it is described in Chapter 2, this mode of failure acts independently from material 

failure criteria and governed by geometry. The design of the commercial product 
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requires analyses to quantify the likelihood of this mode of failure and comply with 

standard criteria. 

 

 

 

Figure 5-9 Reaction forces at wear pads generated by self-weight and pay-load 

5.4 Measurable performance characteristics 
The required measurable performance characteristics are derived from stakeholders’ 

requirements. Nevertheless some of stakeholders’ requirements e.g. stress and 

displacement are measurable on their own right, more accuracy is needed to characterise 

them in mechanical terms. Definitions of stress and strain, discussed in Chapter 2, are 

incorporated to clarify these parameters.  Table 5-1 summarise this part of the process. 

Table 5-1 Measurable Performance Characteristics (MPCs) 

Stakeholders’ 

requirement 

MPC Notations Reference 

Stress at contact region Maximum von-mises stress 

Directional stress components 

Directional strain components 

σvm 

σxx σzz τxz 

εxx εzz γxz 

 Section 2.2.2 

Section 2.2.3 

Section 2.2.6 

Displacement 

 

Total vertical displacement 

Local vertical displacement 
(Uy)tot 

(Uy)n 

 

Section 2.2.3 

Vibration Natural frequency (fn)tot  

Buckling performance Buckling load factor 

Buckling mode and location 

BLF 

Qualitative parameter 

Section 2.2.6 

 

FPL W R1 

R2 
DOL 
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5.5 Independent parameter 
The influential parameters on the listed MPCs are extracted from the PDS and product 

application as well as stakeholders’ interest, are presented in this section. 

Element selection (P1): Chapter 2 indicates the discretisation method as an effective 

variable on the accuracy of simulation. The stress-displacement simulation can be 

distracted by the inadequate choice of element. On the other hand there might be more 

than one solution to provide adequate simulation results. For instance in the case of 

thin-walled structure both shell and solid element predict the stress-displacement 

performance accurately (Dassault Systèmes, 2010), however the shell element produces 

more time efficient solution in three dimensional application and therefore be a 

preferable option. Despite this is neither specified by stakeholders, PDS nor standard, 

the element verification is an inevitable part of achieving realistic analysis. 

Load magnitude (P2): The load case can be split to two classes of self-weight and 

payload. Self-weight is the fixed portion of the load which is the function of gravity and 

structure mass. The applied load is decided by stakeholders in PDS and indicates the 

products load handling specification. The variation in the load magnitude changes the 

structures stress displacement performance which in turn influences the buckling 

probability in the compressive regions. 

Load type (P3): Type of applied load is a direct input from the PDS (Niftylift, 2010) 

that is subject to symmetric as well as asymmetric loads. These will indicate the payload 

is applied either as concentrated force only, or a combination of concentrated force and 

moment. The variation affects structure’s stress-displacement performance.  

Overlap (P4): The integrity of the structure is maintained by the reserved length of 

nested sections. Ideally the minimum overlap length is desirable in order to achieve a 

maximum benefit of working length. However reduction in the overlap length 

significantly increases the reaction forces at wear pad regions which in turn affect the 

stress- displacement and buckling performance. Also the change in the overlap length 

will influence the overall length of the assembly which affect the vibration behaviour. 

5.6 QFD chart 1 
Referring to Figure 4-6 the QFD chart 1 is constructed as shown in Figure 5-10. The 

corresponding MPCs to each stakeholder’s requirement and the list of influential Input 

Variable Parameters are represented in the matrix format.  
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Figure 5-10 QFD Chart 1 for the telescopic cantilever boom structural analysis 

5.7 QFD Chart 2 
The QFD Chart 2 is a developed version of Chart 1 that establishes relationship matrix 

between MPCs and Variable Input Parameters, as shown in Figure 5-11.  The matrix not 

only considers the mechanical relation between MPC and variable parameter but also 

stakeholders interests in a response due to an input variation i.e. despite type of load can 

affect natural frequency performance it is not indicated by stakeholders as a concern. 

 

Figure 5-11 QFD Chart 2 for the telescopic cantilever boom structural analysis 
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5.8 Plan for individual studies 
In compliance with Section 4.2.2.6 the list of individual studies are proposed in Figure 

5-11.  The proposed list, based on the MPCs, specifies the required type of analysis. 

The concept of analysis integration and expansion is introduced in section 4.2.2.6 is 

applied in Table 5-2. The stakeholder requirement for the stress at contact region and 

displacement behaviour is already combined in one study because of the commonality 

of required type of analysis and Input Variable Parameters. For instance, the variation in 

the type of element can produce both corresponding MPCs to displacement and stress 

behaviour at contact vicinity. 

Another opportunity for combination is available within the first study. Since the 

analysis is inherently conducted under the incremental loading, it is possible to conduct 

the element variation study with the fixed load increment as specified for load 

magnitude variation experiment in Table 5-2. Therefore the results of the most 

satisfying elements can be used for the load magnitude variation experiment toward 

stress and displacement characterisation. The same set of results also can satisfy the 

load type variation experiment in the case of symmetric loading, and overlap variation 

experiment for the maximum overlap length.  

In the case of more time consuming analysis condition it is possible to consider the 

reusability of analysis as the base-state of the other analysis. For instance it is possible 

to reuse the static results of the overlap variation as the base state of the linear 

perturbation for the vibration study or buckling procedure when the variation of the 

same parameter is of interest. The technique known as restart modelling, is worth 

considering in detailed design stage or when the excessive number of parameters 

variation is required. In the case that the analysis results obtained quickly there is still a 

chance to only reuse the model for other MPCs toward various stakeholders’ 

requirements. 

The requirement for expansion of the studies is apparent from the type of Input Variable 

Parameters. All the experiments concerning the type of elements, load type and overlap 

variation required to be remodelled and reanalysed to accommodate these variation.  

The application of this discussion translates Table 5-2 to Table 5-3, the plan for 

integrated analysis. 



 

Table 5-2 Plan for individual studies 

Study 
Stakeholders’ 

requirement 

Corresponding 

MPC 
Type of analysis Fixed Parameter Variable Parameter Variation 

1 

Stress behaviour at vicinity 

of contact area 

 

Von Mises stress 

Stress tensor 

Strain tensor 
Quasi Static 

P2= Symmetric, P3= Max, P4= Max Element (P1) Shell/Solid 

P1=Verified option, P3= Symmetric, P4= Max Load Magnitude (P2) Min<(Increments)n< Max 

P1=Verified option, P2= Max, P4= Max Load Type (P3) Symmetric/Asymmetric 

Displacement behaviour 

Total displacement 

Local deflection 

P1=Verified option, P2= Max , P3= Symmetric Overlap Length (P4) Min<(Increments)n< Max 

2 Vibration performance Natural frequency 

Quasi Static followed 

by linear perturbation 

(frequency) 

P1=Verified option, P2= Max, P4= Max Load Magnitude (P2) Min<(Increments)n< Max 

P1=Verified option, P2= Max, P4= Max Overlap Length (P4) Min<(Increments)n< Max 

3 Buckling behaviour 

Buckling load factor 

Buckling mode 

Buckling analysis 

procedure 

P1=Verified option, P2= Max, P4= Max Load Type (P3) Symmetric/Asymmetric 

P1=Verified option, P2= Max, P4= Max Overlap Length (P4) Min<(Increments)n< Max 
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Table 5-3 Plan for procedural integrated analysis  

No 
Type of 

analysis 
Study condition 

Stakeholders 

requirement 
MPC 

1 Quasi static 

FEA with Solid elements, 
with fixed incremental  
symmetric load until 
maximum pay load in 
maximum overlap condition 

Stress behaviour near 
contact area 

Displacement behaviour 

Von Mises stress 
Stress tensor 
Strain tensor 
Total displacement 
Local deflection 

2 Quasi static 

FEA with Shell elements, 
with fixed incremental  
symmetric load until 
maximum pay load in 
maximum overlap condition 

Stress behaviour near 
contact area 

Displacement behaviour 

Von Mises stress 
Stress tensor 
Strain tensor 
Total displacement 
Local deflection 

3 Quasi static 

Study with verified element 
from Study 1 and 2, with fixed 
incremental  asymmetric load 
until maximum pay load in 
maximum overlap condition 

Stress behaviour near 
contact area 
 

Von Mises stress 
Stress tensor 
Strain tensor 
Total displacement 
Local deflection 
 

4-8 Quasi static 

Study with verified mesh 
under the maximum 
symmetric load for variation 
of overlap 

Stress behaviour near 
contact area 

 

Von Mises stress 
Stress tensor 
Strain tensor 

9-13 

Quasi static 
followed by 
linear 
perturbation 
frequency 

Study with verified mesh and 
max overlap, for each 
number of load increments  

Stress behaviour near 
contact area 

Displacement behaviour 

Vibration performance 

Von Mises stress 
Stress tensor 
Strain tensor 
Total displacement 
Natural frequency 

14-18 

Quasi static 
followed by 
linear 
perturbation 
frequency 

Study with verified mesh 
under the maximum 
symmetric load for variation 
of overlap 

Vibration performance Natural frequency 

19 Buckling 
procedure 

Study with verified mesh and 
max symmetric load, for  
max overlap 

Buckling behaviour 
Buckling Load 
Factor 

Buckling mode 

20 Buckling 
procedure 

Study with verified mesh and 
max asymmetric load, for  
max overlap 

Buckling behaviour 
Buckling Load 
Factor 

Buckling mode 

21-24 Buckling 
procedure 

Study with verified mesh and 
max symmetric load, for  
variation of overlap 

Buckling behaviour 
Buckling Load 
Factor 

Buckling mode 
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5.9 V&V on the instant of reality 
Using the outlines of the required analysis from Table 5-3, the plan for verification and 

validation is drafted. Since the element variation in the first two analyses only has 

simulation implication they both can be verified and validated with one set of 

experimental measurement. The instant of reality for this case can be similar as the 

analysis condition; variation of the load magnitude with all other parameters to be fixed. 

The third set of analysis, for the application of the asymmetric load is verified and 

validated independently since the variation in the load type is expected to induce shear 

stress/strain components and vary the corresponding MPCs in an unknown fashion. 

These two V&V cases are assessed as sufficient for the variation of the overlap length 

since by this stage the stress-displacement performance of the simulation is approved.  

The stress response in vicinity of contact area, to variation of the overlap length, 

analysis 4-8, are not different in nature from the ones that has already been planned for 

and therefore the behaviour characterisation only relies on the simulation outcomes. 

Natural frequency performance of the structure is planned through analysis 9-13 and 14-

18. These two sets of analysis are verified and validated independently. The instant of 

reality is chosen similar to the prescribed analysis condition. 

The last three rows of studies, 19, 20 and 21-24 are focused on the buckling 

performance under various parameters variation. The buckling performance is a 

probabilistic analysis and there is a likelihood that it does not occur on a proposed 

prototype. Also in the instance of occurrence, the test is associated with a failure mode 

that may lead to a structure collapse. Due to these reasons it is not possible to propose a 

validation test within the capacity of this research. The above discussion is summarised 

in Table 5-4. 
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Table 5-4 Verification and Validation plan 

No 
Stakeholders’ 

requirement 
MPCs 

Variable 

parameters 
Proposed instant of reality 

1 
Stress behaviour near 
contact area 
Displacement behaviour 

Von Mises stress 

Stress tensor 

Strain tensor 

Total displacement 

Local deflection 

Load magnitude 

A telescopic cantilever in the 
horizontal configuration capable 
to accommodate incremental 
loading applied  in-line with the 
axis of symmetry 

2 Stress behaviour near 
contact area 

Von Mises stress 

Stress tensor 

Strain tensor 

Load type 

A telescopic cantilever in the 
horizontal configuration capable 
to accommodate incremental 
loading applied  offset from  the 
axis of symmetry 

3 Vibration  response Natural frequency Load magnitude 

A telescopic cantilever in the 
horizontal configuration capable 
to accommodate incremental 
loading applied  in line with the 
axis of symmetry 

4 Vibration  response Natural frequency Overlap length 

A telescopic cantilever in the 
horizontal configuration loaded  
in line with the axis of symmetry 
capable to be extended to cover 
overlap length variation 

 

5.10 Chapter summary 
This chapter discussed the application of proposed structural analysis methodology on a 

nominated structure of telescopic cantilever boom.  A simplified representation of the 

full-scale structure is designed as the benchmark. The areas of stakeholders’ interests 

are summarised and the influential Input Variable Parameters are identified.  

Following the methodology flowchart of Figure 4-7 plan for individual analyses is 

drafted. Using the structural analysis knowledge and software expertise further 

possibilities for integration and expansions are explored. A total number of 24 analyses 

are specified to completely satisfy the predefined requirements in conceptual level. 

Total numbers of four V&V cases are specified to complement the structural analysis 

practice. 
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6 Analysis and Results 

6.0 Introduction 
In Chapter 5 a list of required analysis, Table 5-3, that has to be accompanied with 

nominated instants of realities, Table 5-4, are produced in accordance to stakeholders’ 

requirements. In this chapter the stakeholders' requirements are answered by conducting 

the relevant analysis and V&V cases. The report for each stakeholder’s requirements is 

organised as parameter variation analyses along with corresponding instant of realities 

for verification and validation. Each section is concluded with the behavioural 

characterisation remarks for further consideration toward the product design process. 

6.1 General condition of the analysis 
The numerical analyses are conducted in Abaqus 6.10EF, using the procedural steps of 

Table 6-1. More details of surfaces interactions, boundary conditions and point of load 

application are shown in Figure 6-1. 

 

           (a)                                                                                     (b) 

 

(c) 
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                                 (d)                                                                (e) 

 

(f) 

 

(g) 

Figure 6-1 (a) Beam sections in solid (b) Beam section in 3D planar (c) Telescopic 

assembly in global coordinate system (d) example of Tie pairs (e) example of 

Contact pairs (f) Coupling pairs (g) Loading point and Boundary Condition region 
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Table 6-1 General simulation set up condition in Abaqus 

Step Description Illustration 

Parts • First set of beam sections are created out of solid. 

• Second set of beam are created out of 3D planar 

geometry.  

• The rest of the components are all created out of 

3D solid geometry. 

Figure 6-1 (a) 

Figure 6-1 (b) 

 

Figure 6-1 (a) & (b) 

Mesh and element Subject to investigation in this section  

Material Property Steel:  

E= 210000MPa ρ=7.85e-9 tonnes/ mm3 ν=0.33 

Nylon: 

E= 4000MPa ρ= 1.85e-9 tonnes/mm3 ν=0.33 

Step (alternative) General static followed by second General static 

General static followed by linear perturbation frequency 

Buckling procedure 

 

Assembly • The assembly placed in a coordinate system 

where x is along the length of the telescope, y is 

the height direction, and z is in the width 

direction. 

• Components are added to the assembly as 

required  

Figure 6-1(c) 

Interactions 

 

• Tie interactions in places where no relative 

motions or sliding is predicted e.g. wear pads glue 

to beam sections. 

• Contact interaction where the components are 

free to slide or detach e.g. sliding surfaces 

between sections and beam. Coefficient of 

friction is set as 0.1 

• Coupling interaction to connect the load 

application point to the structure. 

Figure 6-1(d) 

 

 

Figure 6-1(e) 

 

 

 
Figure 6-1(f) 

Loads and BCs 

 

• A 100 mm at the fixed end of the assembly is 

encastered. 

• Gravity applied in the first general static step.  

• The pay load is applied as a concentrated force at 

the tip end in the second general static step in a 

fixed incremental fashion.  

Figure 6-1(g) 

 

 

Figure 6-1(g) 

Job Jobs are created and submitted as required  
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6.2 Stress behaviour at vicinity of contact area 
This section aims to assess the stress behaviour in contact vicinity due to variation of 

independent parameters. Stress behaviour is explored in accordance with study 1 of 

Table 5-2. The required analysis of 1, 2, 3, 4-8 from Table 5-3 satisfies this objective by 

producing results for corresponding MPCs.  The first and second instant of realities as 

outlined in Table 5-4 are conducted in order to verify and validate the simulation for the 

stress-displacement analysis.  

6.2.1 Element variation 

The analyses conditions, taken from analyses 1 and 2 of Table 5-3, are elaborated in 

Table 6-2. The mission of this study is to quantify the impact of the element variation 

on the stress at vicinity of contact, with the corresponding MPCs.  

Table 6-2 Stress study condition, dependency on the choice of element 

Stakeholders’ 

requirement 
MPCs Fixed Parameter Variable Parameter 

Stress behaviour near 
contact area 

Von Mises stress 

Stress tensor 

Strain tensor 

Analysis running time 

Overlap = 500 mm 

Load type: symmetric 

Load magnitude= 50kg 

 

Element type: 

Shell, Solid 

6.2.2 Element performance and verification 

The independent FE models are created to accommodate the use of shell and solid 

elements. Under these two classes of elements a number of variations are examined as 

listed in Table 6-3. 

Table 6-3 Choice of elements for the telescopic cantilever study (Dassault 

Systèmes, 2007, b) 

Class Name Description 

Solid 

C3D8 linear 8 node, fully integrated 

C3D8I Linear 8 node, incompatible 

C3D20 Quadratic 20 node fully integrated 

Shell 
S4 Linear fully integrated 

S4R Linear reduced 
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A set of 9 nominated reading points equally distanced by 100 mm, are chosen on the 

centreline of the top surface of the outer section as shown in Figure 6-2.  

Table 6-4 shows the Von mises results for each node in comparison with bending stress 

calculation. The engineer’s theory of bending (Rees, 2000) is employed to conduct the 

verification on the non-contact zone: 

Eq. 6-1 

𝜎 =
𝑦𝑀
𝐼

 

Plotting the Von Mises results on the diagram shows a minor difference between shell 

and solid performance. Among the solid options however fully integrated elements 

(C3D8) show slight over-stiffness near the contact vicinity, Figure 6-3. 

 

Figure 6-2 Nominated reading points on the centreline of the outer section 
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Table 6-4 Von Mises stress results and analysis running time with variation of 

elements 

Element Reading point Von Mises 
Total 

Von Mises 
Self weight 

Von Mises 
Payload 

Running 
time 

 ID x y z MPa MPa MPa Hr:min:sec 
C3D8I 1 200 50.85 0 14.77 3.46 11.31 00:06:14 

2 300 50.85 0 14.03 3.15 10.88 
3 400 50.85 0 12.56 2.69 9.87 
4 500 50.85 0 10.77 2.19 8.57 
5 600 50.85 0 10.88 1.79 9.09 
6 700 50.85 0 6.85 1.32 5.53 
7 800 50.85 0 4.83 0.88 3.96 
8 900 50.85 0 2.54 0.46 2.08 
9 1000 50.85 0 0.54 0.16 0.38 

C3D8 1 200 50.85 0 14.69 3.45 11.24 00:05:20 
2 300 50.85 0 14.01 3.14 10.86 
3 400 50.85 0 12.58 2.68 9.90 
4 500 50.85 0 11.17 2.20 8.97 
5 600 50.85 0 11.10 1.80 9.30 
6 700 50.85 0 6.93 1.34 5.59 
7 800 50.85 0 4.93 0.89 4.04 
8 900 50.85 0 2.48 0.45 2.03 
9 1000 50.85 0 0.80 0.16 0.63 

C3D20 1 200 50.85 0 14.71 3.45 11.26 00:31:07 
2 300 50.85 0 13.98 3.15 10.84 
3 400 50.85 0 12.51 2.68 9.83 
4 500 50.85 0 10.68 2.18 8.49 
5 600 50.85 0 10.83 1.79 9.04 
6 700 50.85 0 6.81 1.32 5.49 
7 800 50.85 0 4.80 0.87 3.93 
8 900 50.85 0 2.51 0.45 2.06 
9 1000 50.85 0 0.50 0.16 0.34 

S4 1 200 50.85 0 14.41 3.47 10.94 00:06:44 
2 300 50.85 0 13.62 3.16 10.47 
3 400 50.85 0 12.09 2.67 9.41 
4 500 50.85 0 10.42 2.19 8.23 
5 600 50.85 0 10.76 1.80 8.96 
6 700 50.85 0 6.50 1.31 5.19 
7 800 50.85 0 4.65 0.87 3.77 
8 900 50.85 0 2.46 0.46 2.00 
9 1000 50.85 0 0.52 0.16 0.36 

S4R 
1 200 50.85 0 14.44 3.48 10.96 00:05:14 
2 300 50.85 0 13.64 3.16 10.48 
3 400 50.85 0 12.11 2.68 9.43 
4 500 50.85 0 10.41 2.19 8.22 
5 600 50.85 0 10.77 1.80 8.97 
6 700 50.85 0 6.52 1.31 5.21 
7 800 50.85 0 4.66 0.88 3.78 
8 900 50.85 0 2.47 0.46 2.01 
9 1000 50.85 0 0.53 0.16 0.37 

 ID x y z Bending 
moment 

Ixx Von Mises 
Payload 

 

Hand 
calculations 

1 200 50.85 0 928516.5 4140589 11.40  
2 300 50.85 0 879466.5 4140589 10.80 
3 400 50.85 0 830416.5 4140589 10.20 
4 500 50.85 0 781366.5 4140589 9.60 
5 600 50.85 0 732316.5 4140589 8.99 
6 700 50.85 0 683266.5 4140589 8.39 
7 800 50.85 0 634216.5 4140589 7.79 
8 900 50.85 0 585166.5 4140589 7.19 
9 1000 50.85 0 536116.5 4140589 6.58 
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Figure 6-3 Von Mises stress along the centreline for element variation 

The largest stress component on the centreline axis appears in the bending direction that 

is calculated by the bending stress relationship.  The stress pattern in overlap area 

diverges from linear bending due to influence of the wear pads contact.  This behaviour 

is not influenced by the choice of element as both classes show close approximations. 

The analysis problem size is compared with the application of the different elements in 

Table 6-5 and detailed in Appendix XIII. The elements  performance in terms of 

problem size against running time is plotted in Figure 6-4. The number of elements are 

all kept consistent to make a correct comparison between the problem size. It is 

observed that C3D8I element perform an efficient analysis with respect to the available 

degrees of freedom. Figure 6-4 shows the graphical comparison for the time efficiency 

of the elements.  Due to the time efficient performance, two choices of S4R and C3D8I 

are shortlisted for more detailed comparison between stress components. The stress 

tensor notations are selected with respect to the global coordination system as detailed 

in Figure 6-5. 
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Figure 6-4 Element performance vs. Analysis running time 

 

Table 6-5 FEA problem size using different elements 

Class of 

Element 

Type of 

Element 

Degrees of 

Freedom 

Number of 

Elements 

Wallclock 

time (s) 

Solid 

Element 

C3D8 130524 18945 306 

C3D8I 296300 18945 358 

C3D20 322740 18945 1846 

Structural 

Element 

S4 130524 18945 386 

S4R 130524 18945 295 

 

Reduction in dimensionality caused by choice of shell element eliminates the stress 

components in the thickness direction, S22, S12 and S23 (Dassault Systèmes, 2010). 

Table 6-6 shows this compromise does not result in significant loss on the existing 

stress components. The complete stress tensor produced by solid element shows a very 

small stress magnitude in the reduced components. Both types of elements also agree on 

the non-existence of the in plane shear component on the axis of symmetry, S13. Only 

slight variation in the stress magnitude is observed in the other two perpendicular 

directions. 
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Figure 6-5 Stress components directions with respect to the global coordinates 

system (a) S11 in x direction along the length of the beam, (b) S22 in y direction in 

the  thickness direction (c) S33 in z direction across the width of the cross section 

(Dassault Systèmes, 2009, a) 
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Table 6-6 Stress tensor comparison between shell and solid elements 

Element Reading point Stress tensor 
 ID X Y Z S11 S22 S33 S12 S13 S23 

C3D8I 

1 200 50.85 0 15.26 -0.01 1.05 -0.02 0.00 0.00 
2 300 50.85 0 13.95 0.00 -0.16 0.00 0.00 0.00 
3 400 50.85 0 12.61 0.00 0.10 0.00 0.00 0.00 
4 500 50.85 0 12.18 -0.03 4.06 0.07 0.00 0.00 
5 600 50.85 0 12.51 -0.02 5.51 -0.11 0.00 0.00 
6 700 50.85 0 7.05 0.01 0.43 -0.01 0.00 0.00 
7 800 50.85 0 4.85 0.00 0.06 0.00 0.00 0.00 
8 900 50.85 0 2.66 0.00 0.28 0.00 0.00 0.00 
9 1000 50.85 0 0.28 0.00 -0.32 0.00 0.00 0.00 

S4R 

1 200 50.85 0 14.73 

 

0.62 

 

0.00  
2 300 50.85 0 13.56 -0.17 0.00 
3 400 50.85 0 12.18 0.13 0.00 
4 500 50.85 0 11.87 4.38 0.00 
5 600 50.85 0 12.44 5.88 0.00 
6 700 50.85 0 6.75 0.50 0.00 
7 800 50.85 0 4.68 0.06 0.00 
8 900 50.85 0 2.58 0.27 0.00 
9 1000 50.85 0 0.26 -0.33 0.00 

6.2.3 Element validation 

The elements’ performances are related to the physical performance of the test rig. The 

first instant of reality from Table 5-4 is constructed in this study.  In order to avoid 

discrepancies at the fixed end, the validation study contains the complete test rig 

assembly, as appears in Figure 6-6,  

Four nominated reading points, shown in Figure 6-6, are selected as: 

• a neutral point without including the effect of contact, Point 1 

• the contact vicinity, Point 2 

• the direct contact zone on the symmetrical point of the structure , Point 3 and 4 

 

Figure 6-6 Assembly simulation and validation measurement points 
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Four Rosette strain gauges are mounted in the selected locations as shown in Figure 

6-7 and Figure 6-8. The strain gauge instrumentations layout are schematically shown in 

Figure 6-9, and specifications are detailed in Appendices IX, X and XI (NI, 2008, a,b,c). 

 

Figure 6-7 Test rig assembly  

 

Figure 6-8 Strain gauges arrangement 

 



 

 

123 

 

Figure 6-9 Strain measurement instruments lay out (NI, 2012) 

During the experimental measurement the impact of gravity is eliminated by calibrating 

strain gauges under the self-weight. The analysis results also adapted to reflect the 

same, by deducting the values under the self-weight from the total values. 

The direct relationship between simulation and experimental measurement can only be 

established between strain tensors (NI, 2008, a). Table 6-7 reports the collected values 

under the maximum payload of 50 Kg. 

The strain comparison near to the fixed end, Point 1, shows a close comparison between 

tensor components. The strain components show a large tensile component in the length 

direction and a relatively smaller compression in the width direction which completely 

agrees with the simulation findings.  

However the comparison in the direct contact region, points 3 and 4, shows a variation 

in strain components. The strain components suggest that while one side of the 

assembly is taking the larger proportion of the reaction load, and showing tensile strain 

in two perpendicular directions, the response from the opposite side is negligible. The 

smaller tensile strain component in the length direction and a compressive component in 

the width direction confirm that one side barely reacts to the applied load.  

The effect of this behaviour is also observed in reading point 2 where the feedback of 

contact is expected. Strain components in point 2 are influenced by an asymmetric 

feature in the test rig and show a shear strain component where according to verification 

test it is not expected to be presented in the centreline.  

The strain tensor is converted to the stress tensor using the strain-stress relationships 

outlined in Chapter 2. Comparison between out of contact readings, point 1 and 2 with 

simulation show a very small variation caused by asymmetric feature of the test rig 

assembly. This can be observed by the existence of the minimal shear in the axis of 

symmetry. However in the contact regions the observation of strain behaviour is 

repeated in the stress tensor components. 
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Table 6-7 Element validation and quantitative comparison 

 Reading points  Strain tensor Stress tensor Von 
Mises 

Von 
Mises 

Von 
Mises 

Point 
ID 

x y z  E11 E22 E33 E12 E13 E23 S11 S22 S33 S12 S13 S23 Self-
weight 

Pay-
load 

Total 

     μs MPa MPa MPa MPa 

C3D8I 1 200 50.85 0  54 -20 -14 0 0 0 11.70 -0.01 0.82 -0.01 0.00 0.00 3.46 11.31 14.77 

2 600 50.85 0  42 -25 8 -1 0 0 10.54 -0.02 5.06 -0.10 0.00 0.00 1.79 9.09 10.88 

3 550 50.85 -54.75  58 -28 -4 0 0 0 13.05 -0.41 3.23 -0.01 -2.14 1.34 2.74 13.77 16.51 

4 550 50.85 54.75  58 -28 -4 0 0 0 13.05 -0.41 3.23 -0.01 2.14 -1.34 2.74 13.77 16.51 

S4R 1 200 50.85 0  53  -15  0  11.19  0.49  0.00  3.48 10.96 14.44 

2 600 50.85 0  41  9  0  10.44  6.39  0.00  1.80 8.97 10.77 

3 550 50.85 -54.75  57  -1  21  13.34  5.46  1.63  2.75 13.23 15.98 

4 550 50.85 54.75  57  -1  -21  13.34  5.46  -1.63  2.75 13.23 15.98 

Strain 
 Gauge 

1 200 50.85 0  57  -21  1  11.55  -0.51  0.08    12.09 
 

2 600 50.85 0  47  8  -19  11.46  5.43  -1.50   10.51 
 

3 550 50.85 -54.75  86  66  34  24.87  21.78  2.68   24.41 
 

4 550 50.85 54.75  47  -21  12  9.25  -1.27  0.95   10.75  
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The stress due to contact, manifested by two perpendicular tensile stresses, is not 

observed in the light side of the test rig. Also different shear behaviour on two sides 

confirms a different behaviour of two contact regions in the prototype. 

The Von Mises resultant on the neutral regions of point 1 and 2 show an insignificant 

impact of the above phenomena and produce a comparable results with simulation.   

The Von Mises stress at the contact region is heavily influenced by the asymmetry of 

the structure and the significant difference can be observed in stress resultants. 

6.2.4 Load magnitude variation 

The outlines of this study, extracted from Table 5-3, are detailed in Table 6-8.  The 

integrated analysis plan suggests that the required MPCs for this parameter variation 

can be obtained from the results of the previous analysis. Table 5-4 also indicates the 

commonality between the instant of realities for verification and validation.  

Table 6-8 Stress study condition, dependency to the load magnitude 

Stakeholders’ 

requirement 

MPCs Fixed Parameter Variable Parameter 

Stress behaviour near 
contact area 

Von Mises stress 

Stress tensor 

Strain tensor 

Overlap = 500 mm 

Load type: symmetric 

Element type, S4R 

Pay load: 

n1=10kg 

n2=20kg  

n3=30kg 

n4=40kg  

n5=50kg 

Table 6-9 and Figure 6-10 (a), (b) and (c) report the Von Mises stress propagation due 

to the applied load in equal increments as suggested in study condition, Table 6-8. This 

study also discounts the effect of the gravity in order to establish the consistency 

between simulation and experiment. In order to achieve repeatability in the 

experimental measurement the cycle of loading and unloading is obtained. 

This comparison also shows a very similar pattern for the Von Mises stress propagation 

pattern, to the one has been discussed in section 6.2. A close agreement in the non- 

contact area along with violated results in the contact region demonstrates an inherited 

asymmetric feature in the test rig. The linear gradient shows the recorded results are 

within the elastic limit of the material. 
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Table 6-9 Von Mises stress results for incremental loading 

Payload Reading points S4R Strain Guage 
Point ID x y z Von Mises Von Mises 

(KG)  (mm) (mm) (mm) (MPa) (MPa) 

10 

 
1 
 

 
200 

 

 
50.85 

 

 
0 
 

2.76 2.38 

20 5.53 4.77 

30 8.31 7.12 

40 11.09 9.49 

50 13.87 11.93 

40 11.09 9.47 

30 8.31 7.11 

20 5.53 4.74 

10 2.76 2.35 

10 

 
2 
 

 
600 

 

 
50.85 

 

 
0 
 

3.94 2.35 

20 6.00 4.6 

30 8.06 6.79 

40 10.12 8.46 

50 12.17 10.33 

40 10.12 8.68 

30 8.06 7.08 

20 6.00 5.29 

10 3.94 2.95 

10 

 
3 
 

 
550 

 

 
50.85 

 

 
-54.75 

 

3.08 4.48 

20 6.16 10.9 

30 9.23 16.9 

40 12.29 20.61 

50 15.34 24.13 

40 12.29 21.42 

30 9.23 18.69 

20 6.16 15 

10 3.08 8.58 

10 

 
 
 

4 
 
 
 

 
 
 

550 
 
 
 

 
 
 

50.85 
 
 
 

 
 
 

54.75 
 
 
 

3.08 2.09 

20 6.16 4.26 

30 9.23 6.46 

40 12.29 8.22 

50 15.34 10.56 

40 12.29 8.13 

30 9.23 6.40 

20 6.16 5.00 

10 3.08 2.92 
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(a) 

 

(b) 

 

(c) 

Figure 6-10 Von Mises stress propagation due to incremental loading 

In order to quantify the stress distribution at the contact vicinity further investigation of 

Von Mises stress is conducted on five equidistance locations as shown in Figure 6-11. 

12 selected nodes cover 50mm of the length of the outer section from the centreline to 
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the side wall. Figure 6-12 (a) to (e) shows the progress of Von Mises stress along 

these lines under the 5 load increments up to the maximum payload of 50kg. 

 

Figure 6-11 Axis of reading on contact area in one side of the structure 
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(c) Axis 3 

 

(d) Axis 4 

 

(e) Axis 5 
Figure 6-12 Stress increase due to load magnitude variation on the contact region 
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Table 6-10 Strain and stress tensor propagation in incremental loading 

Incremental  
Load 

Reading points S4R Strain Gauge 
Strain tensor Stress tensor Strain tensor Stress tensor 

Point ID x y z E11 E33 E13 S11 S33 S13 E11 E33 E13 S11 S33 S13 
(kg)     (μs) (MPa) (μs) (MPa) 

10 

1 200 50.85 0 

12 -8 0 2.13 -0.99 0.00 11 -4 -7 2.29 -0.07 -0.58 

20 12 -16 0 4.26 -1.99 0.00 23 -8 4 4.66 -0.02 0.34 

30 35 -24 0 6.40 -3.00 0.00 34 -12 5 6.89 -0.14 0.37 

40 47 -32 0 8.53 -4.01 0.00 45 -16 5 9.12 -0.32 0.40 

50 59 -41 0 10.66 -5.02 0.00 57 -20 -2 11.53 -0.28 -0.17 

40 47 -32 0 8.53 -4.01 0.00 45 -16 -2 9.13 -0.24 -0.18 

30 35 -24 0 6.40 -3.00 0.00 34 -12 1 6.83 -0.25 0.12 

20 12 -16 0 4.26 -1.99 0.00 22 -8 2 4.53 -0.17 0.13 

10 12 -8 0 2.13 -0.99 0.00 11 -4 2 2.18 -0.14 0.14 

10 

2 600 50.85 0 

9 3 0 2.38 1.38 0.00 10 1 -6 2.49 1.11 -0.47 

20 18 6 0 4.77 2.75 0.00 20 3 -12 4.86 2.25 -0.94 

30 28 8 0 7.15 4.12 0.00 30 5 -16 7.24 3.46 -1.29 

40 37 11 0 9.52 5.47 0.00 37 7 -17 9.18 4.49 -1.36 

50 46 14 0 11.88 6.82 0.00 46 8 -18 11.32 5.39 -1.45 

40 37 11 0 9.52 5.47 0.00 38 8 -18 9.41 4.70 -1.42 

30 28 8 0 7.15 4.12 0.00 31 7 -16 7.59 3.95 -1.29 

20 18 6 0 4.77 2.75 0.00 22 6 -14 5.55 2.97 -1.14 

10 9 3 0 2.38 1.38 0.00 12 3 -9 3.05 1.55 -0.69 
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Table 6-9 continued 

Incremental  
Load 

Reading points S4R Strain Gauge 
    Strain tensor Stress tensor Strain tensor Stress tensor 

Point ID x y z E11 E33 E13 S11 S33 S13 E11 E33 E13 S11 S33 S13 
(kg)     (μs) (Mpa) (μs) (Mpa) 

10 

3 550 50.85 -54.75 

27 5 -8 3.42 1.91 -0.37 16 12 5 4.62 3.98 0.36 

20 40 8 -13 6.81 3.79 -0.73 36 32 14 10.85 10.15 1.08 

30 53 12 -17 10.20 5.66 -1.09 56 50 24 16.66 15.75 1.92 

40 67 16 -22 13.57 7.53 -1.45 71 58 29 20.73 18.72 2.29 

50 80 19 -26 16.94 9.38 -1.81 85 65 34 24.59 21.48 2.65 

40 67 16 -22 13.57 7.53 -1.45 72 61 31 21.32 19.67 2.48 

30 53 12 -17 10.20 5.66 -1.09 60 57 29 18.10 17.68 2.25 

20 40 8 -13 6.81 3.79 -0.73 45 49 22 14.09 14.66 1.74 

10 27 5 -8 3.42 1.91 -0.37 24 29 15 7.81 8.46 1.18 

10 

4 550 50.85 54.75 

13 4 5 3.42 1.91 0.37 7 -8 0 0.89 -1.44 0.02 

20 26 7 9 6.81 3.79 0.73 13 -18 2 1.62 -3.08 0.15 

30 40 11 14 10.20 5.66 1.09 19 -27 4 2.43 -4.66 0.30 

40 53 15 18 13.57 7.53 1.45 31 -27 7 5.17 -3.79 0.57 

50 66 18 23 16.94 9.38 1.81 46 -22 12 9.06 -1.45 0.92 

40 53 15 18 13.57 7.53 1.45 33 -23 8 5.87 -2.81 0.63 

30 40 11 14 10.20 5.66 1.09 21 -25 4 3.04 -4.04 0.35 

20 26 7 9 6.81 3.79 0.73 10 -23 0 0.57 -4.59 0.03 

10 13 4 5 3.42 1.91 0.37 4 -14 -1 -0.15 -2.90 -0.11 
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The direct comparison of strains and stress components are detailed in Table 6-10. Ther 

state of the strain in the prependicular direction to the overall bending, E33, determine 

the state of contact at the region (Aalami and Williams, 1975). Comparison of the E33 

at the reading point 3 and 4 are plotted against FEA prediction in Figure 6-13.This 

shows the light side of the test rig start reacting to the load nearly at the last load 

increment. The negative progress of the strain value in the width direction is similar to 

the behaviour of non-contact areas, e.g. point 1 Figure 6-14. 

 

Figure 6-13 E33 comparison in contact area 

 

Figure 6-14 E33 comparison near to the fixed end 
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6.2.5 Load type variation and validation 

The analysis condition, taken from Table 5-3 is elaborated in Table 6-11. This study 

aims to quantify the impact of variation of the load type on the stress behaviour due to 

contact. Plan for integrated analysis suggested that the required MPCs for the symmetric 

load case can be obtained from the previous analysis. Therefore an additional analysis to 

apply a moment component to the concentrated force, in the x direction, Figure 6-15, is 

conducted to complete this section. The second instant of reality as proposed by Table 

5-4 is also constructed for validation.  

Table 6-11 Stress study condition, dependency to the type of load  

Stakeholders’ 

requirement 
MPCs Fixed Parameter Variable Parameter 

Influence of the 

type of load on the 

Stress behaviour 

near contact area 

Von Mises stress 

Stress tensor 

Strain tensor 

Overlap = 500 mm 

Pay load= 50kg 

Element type: S4R 

Type of load: 

50 in CL 

50kg at 300mm 

offset from CL 

 

 

Figure 6-15 Asymmetric load application, 300mm offset from centreline 
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The Von Mises stress results for two types of applied loads are extracted from 

simulation and experiment and presented in Table 6-12. Despite the significant 

difference in two contact regions the effect of moment on non-contact regions, point 1 

and 2 is negligible. The inherited asymmetry in the test rig is magnified under the 

asymmetric payload by generating larger stress. 

Comparing the stress and strain components shows the difference mostly caused by two 

normal stress components rather than the shear component Table 6-13. FEA results 

shows the strain component of E22 in the perpendicular direction to the overall bending, 

significantly varies between load cases. The unloaded side of the structure shows slight 

compression whereas the heavy side is going through a significant tension, the pattern 

that is visible in experimental measurement. Despite the agreements in the pattern, 

experimental results show a different magnitude due to an inherited asymmetry in the 

overall assembly. Figure 6-16 demonstrates the Von Mises stress magnitudes for two 

loading case. 

Table 6-12 Von Mises stress validation under the impact of asymmetric loading 

Loading 
condition Reading points Von Mises Stress 

(MPa) 

FEA 
 

(S4R) 

Experimental 
measurement 

Strain Gauge 
ID x y z 

Symmetric  1 200 50.85 0 10.96 12.09 

2 600 50.85 0 8.97 10.51 

3 550 50.85 -54.75 13.23 24.41 

4 550 50.85 54.75 13.23 10.75 

Asymmetric  1 200 50.85 0 15.19 12.70 

2 600 50.85 0 11.02 9.64 

3 550 50.85 -54.75 23.85 34.67 

4 550 50.85 54.75 10.56 10.18 

 



135 

Table 6-13 Strain and stress tensor validation for asymmetric loading 

Loading 

condition 
Reading points Simulation S4R Experimental study 

Strain tensor Stress tensor Strain tensor Stress tensor 
ID x y z E11 E33 E13 S11 S33 S13 E11 E22 E12 S11 S22 S12 

(μs) (μs) (μs) MPa MPa MPa (μs) (μs) (μs) MPa MPa MPa 
Symmetric  1 200 50.85 0 59 -41 0 10.66 -5.02 0.00 57 -21 1 11.55 -0.51 0.08 

2 600 50.85 0 46 14 0 11.88 6.82 0.00 47 8 -19 11.46 5.43 -1.50 

3 550 50.85 -54.75 66 18 23 16.94 9.38 1.81 86 66 34 24.87 21.78 2.68 

4 550 50.85 54.75 66 18 -23 16.94 9.38 -1.81 47 -21 12 9.25 -1.27 0.95 

Asymmetric  1 200 50.85 0 59 -41 -20 10.66 -5.07 -1.61 57 -20 15 11.63 -0.27 1.14 

2 600 50.85 0 49 14 3 12.62 7.09 0.20 44 8 6 10.76 5.20 0.47 

3 550 50.85 -54.75 82 65 29 24.47 21.73 2.29 103 106 42 31.84 32.31 3.28 

4 550 50.85 54.75 41 -35 -25 7.01 -5.13 -1.96 37 -31 15 6.18 -4.34 1.18 
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(a) 

 

(b) 

Figure 6-16 Qualitative comparison of Von Mises stress plot for load type 

variation, (a) Symmetric load (b) Asymmetric load 

6.2.6 Effect of the overlap length 

The analysis condition, taken from studies 4-8 of Table 5-3, is elaborated in Table 6-14. 

This study aims to clarify the impact of the overlap variation on the stress behaviour at 

the contact region. Since the task of stress-displacement verification and validation is 

achieved in the previous stages, the observations of this section are concluded based on 

the simulation results. 

The general conditions of the analysis are as described in Table 6-1. The measurement 

points are selected in the same fashion as described in section 6.2.1, shown in Figure 

6-11. Due to the symmetry only half of the model is chosen for this study. Since the 

contact location varies with overlap change, the reading points are offset equal to the 

overlap increment to locate in the identical position respective to the contact zone. 

The Von Mises stress comparison for similar reading points are presented in Figure 

6-17(a)-(e). A sudden increase in the stress values is observed by reducing the overlap 

length. 
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Table 6-14 Stress behaviour study, dependency to the overlap length 

Stakeholders’ 

requirement 

MPCs Fixed Parameter Variable Parameter 

Stress behaviour 
near contact area 
 

Von Mises stress 

 

Element type S4R  

Pay load= 50kg 

Load type: Symmetric 

Overlap  

n1=500 mm 

n2=400 mm 

n3=300 mm 

n4=200 mm 

n5=100 mm 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 6-17 Von Mises stress plot with overlap variation across half of the width of 

the outer section (a) reading axis 1(b) reading axis 2 (c) reading axis 3 (d) reading 

axis 4 (e) reading axis 5 
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6.2.7 Conclusion on stress behaviour due to contact 

The contact stress behaviour of the telescopic cantilever boom is characterised for the 

variation of specified parameters. The instants of realities determined in Chapter 5 

assists to verify and validate the FEA outcomes. 

On the subject of element variation, the response variation for the use of shell and solid 

elements is investigated. It is found that the loss of dimensionality due to the use of 

shell elements does not significantly distract the stress performance. However there is a 

slight advantage for the shell elements in terms of analysis running time which makes it 

preferable for the more detailed structure.  

The instant of reality is used to verify and validate the FEA results. The verification 

process is conducted in the less complex areas where the theoretical calculation leads to 

an accurate answer. 

In the validation stage, the performances of the elements are compared against the 

measurements from physical test rig. The quantitative comparison leads to identification 

of inaccuracy in the test rig assembly that affects the strain and stress components in the 

vicinity of contact. The lack of correlation in stress and strain responses is 

predominately caused by asymmetric feature in the test rig at the wear-pads interaction 

region. More detail investigation into the strain tensors correlation suggests the 

asymmetric feature presents in a form that cause a delay between two wear-pads to react 

to the applied load equally and uniformly. The findings of the study in conceptual level, 

indicates noticeable design sensitivity for the stress at the vicinity of contact, and the 

risk of repetition in the design of the full-scale product. Therefore this analysis 

prescribes a multi-parametric sensitivity analysis with the aim of contact optimisation.   

The contact stress and strain propagation with load magnitude is investigated and 

compared against experimental measurement. The findings of the element selection 

stage are reconfirmed in this practice. Also the detail behaviour of asymmetry in the 

structure and unequal reaction of the wear pads to the applied load is identified by 

comparing the contributing strain components.  

The effect of load type variation is analysed and compared against through identified 

MPCs. This study shows the contributing stress and strain components in the event of 

asymmetric loading that characterise the contact variation. 
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The impact of the overlap variation on the contact stress is quantified. The non-

linear ascending of the Von Mises stress at the contact area specifies the importance of 

the optimised overlap length  in the full-scale design. 

6.3 Displacement behaviour 
The displacement performance of the telescopic boom is discussed in this section. The 

corresponding MPCs are collected from the analyses 1,2 and 4-8 of Table 5-3, and 

validated through the first instant of reality of Table 5-4.  

6.3.1 Effect of the element variation 

The effect of elements variation on tip displacement and deflection along the length of 

the assembly in y direction, U2, is studies as outlines in Table 6-15. The required 

analysis and V&V case are in common with the contact stress behaviour study as 

discussed in Table 5-3 and Table 5-4. 

Table 6-15 element variation study on displacement behaviour 

Stakeholders’ 

requirement 

MPCs Fixed Parameter Variable Parameter 

Displacement  

behaviour 

Total tip 

displacement 

Deflection along 

the length 

Overlap = 500 mm 

Load type: symmetric 

Payload= 50 kg 

 

Element type: Shell, Solid 

 

The vertical deflection of the structure along the length of the beam for the studied 

elements of Table 6-3, are collected at a equal distance Table 6-16 and plotted Figure 

6-18. 

The vertical tip displacement is also measured and plotted for the variable pay load in 

Table 6-17 and Figure 6-19. The close incline gradient in the tip displacement and 

radius of curvature in the length deflection confirms the minimal loss due to element 

variation  and in particular shell assumptions. 
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Table 6-16 Telescope vertical deflection under the maximum payload on the 

centreline along the length  

Reading points Reading parameter 
U2 (mm) 

x y z   C3D8 C3D8I C3D20 S4 S4R 
200 50.85 0   0.0042 0.0049 0.0049 0.0056 0.0056 

300 50.85 0   0.0246 0.0250 0.0250 0.0240 0.0240 

400 50.85 0   0.0560 0.0554 0.0553 0.0530 0.0531 

500 50.85 0   0.0881 0.0874 0.0873 0.0823 0.0825 

600 50.85 0   0.1387 0.1378 0.1375 0.1304 0.1306 

700 50.85 0   0.2199 0.2190 0.2185 0.2108 0.2112 

800 50.85 0   0.2937 0.2937 0.2930 0.2832 0.2837 

900 50.85 0   0.3702 0.3699 0.3691 0.3569 0.3576 

1000 50.85 0   0.4497 0.4497 0.4485 0.4340 0.4348 

1100 40 0   0.5953 0.5986 0.5987 0.5838 0.5850 

1200 40 0   0.7250 0.7292 0.7293 0.7115 0.7129 

1300 40 0   0.8666 0.8714 0.8716 0.8504 0.8522 

1400 40 0   1.0185 1.0241 1.0242 0.9992 1.0013 

1500 40 0   1.1793 1.1856 1.1856 1.1565 1.1590 

1600 40 0   1.3474 1.3544 1.3543 1.3207 1.3237 

1700 40 0   1.5213 1.5290 1.5288 1.4906 1.4939 

1800 40 0   1.6996 1.7081 1.7077 1.6646 1.6684 

1900 40 0   1.8805 1.8902 1.8897 1.8415 1.8457 

2000 40 0   2.1172 2.1329 2.1324 2.0747 2.0796 

 

Figure 6-18 Telescope vertical deflection on the centreline along the length 
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Table 6-17 Telescopic cantilever tip displacement variation with incremental 

symmetric load 

 C3D8 C3D8I C3D20 S4 S4R Verification 
Load   Displacement 

(KG)  (mm) (mm) (mm) (mm) (mm) (mm) 

0  0.35 0.36 0.36 0.36 0.36 0.34 

10  0.71 0.71 0.71 0.70 0.70 0.67 

20  1.06 1.07 1.07 1.05 1.05 1.01 

30  1.41 1.42 1.42 1.39 1.39 1.33 

40  1.77 1.78 1.78 1.73 1.74 1.67 

50  2.12 2.13 2.13 2.08 2.08 2.01 

 

 

Figure 6-19 Structure's tip displacement VS. incremental symmetric load 

6.3.2 Displacement verification 

Abraham and Sivaloganathan formulised the telescopic cantilever tip end displacement 

by proposing the Tip reaction Model (2011). This theory that employs direct integration 

method was verified true a three staged telescopic cantilever case-study and developed 

to a C programme. This C programme flowchart is available in Appendix XIII . This 

programme has been used for the purpose of analysis verification in this study. The 

verification study is considered for the displacement response of the two nested sections 

in isolation, to avoid the discrepancy that may cause by structures translation due to the 

test rig components deformation. The results comparison are shown in Table 6-17 and 

Figure 6-19. 
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6.3.3 Displacement behaviour validation 

The complete assembly nodal displacement is measured on the assembly, completed by 

test rig components, using a dial gauge as shown in Figure 6-20. This ensures both the 

displacement measurements by both analysis and the experiment, will consider the  

structure's translation due to the test rig deformation. 

The tip displacement comparison between FEA and experiments under the payload is 

established for the shell elements due to its advantageous convergence rate. The 

numerical and graphical results are presented in Table 6-18 and Figure 6-21 

respectively. Comparison shows a close approximation by the analysis in this respect.  

The similar comparison is made for the beam displacement under the same condition, 

along the length of the beam as presented in Table 6-19 and Figure 6-22. 

This study confirms a minimal impact of the test rig asymmetric feature, found in the 

previous section, on the displacement behaviour. 

 

Figure 6-20 Tip displacement experimental measurement with dial gauge 
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Table 6-18 Tip displacement validation along the length of the beam under the 

maximum payload  

 Simulation Experiment 

Load S4R Dial Gauge 
(KG) (mm) (mm) 

0 0.00 0.00 

10 1.28 1.00 

20 2.57 2.15 

30 3.85 3.36 

40 5.14 4.64 

50 6.43 6.07 

 

 

Figure 6-21 Tip displacement validation between simulation with shell and 

experimental measurement 
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Table 6-19 Vertical deflection validation along the length of the beam under the 

maximum payload 

Reading point Vertical displacement  

U2 

x y z S4R Dial gauge 
(mm) (mm) 

200 50.85 0 0.31 0.42 
400 50.85 0 0.80 0.76 
600 50.85 0 1.34 1.25 
800 50.85 0 1.95 1.85 

1000 50.85 0 2.55 2.38 
1200 40 0 3.27 3.3 
1400 40 0 4.00 4.04 
1600 40 0 4.76 4.23 
1800 40 0 5.54 5.1 
2000 40 0 6.43 6.24 

 

Figure 6-22 Vertical displacement validation across the length of the beam under 

the maximum payload 

6.3.4 Effect of the load magnitude  

Abraham, Sivaloganathan and Rees (2011) have established that a telescopic cantilever 

beam exhibits Hookean behaviour within the elastic limits. This means that when a 

telescopic cantilever is loaded at the tip, within its elastic limit, the tip deflection will be 

proportional to the applied tip load applied. The force-displacement graph is a straight 

line and the slope of the graph will be a multiple of the beam equivalent rigidity.  

Choosing the fixed load increments in the previous study the propagation of the 

displacement with load is demonstrated in Figure 6-21.  However the measured values 

of this graph cannot be used for the structure’s rigidity calculation since they contain the 

effect of structure's translation. The structure’s rigidity value is calculated for the 

displacement of the structure in isolation in Table 6-20.  
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6.3.5 Effect of the overlap length 

In order to avoid disruption on the force-displacement plot by the deflection of the 

fixing components of the test rig, test rig base and clamping assembly are replaced with 

encastered boundary conditions, applied at the fixed end. This will ensure the measured 

quantity at the tip end is due to the actual structure deflection and not the rigid body 

translation caused by the deformation of the clamping components. 

The force-displacement plot for variation of the overlap length is shown in Figure 6-23. 

The structures rigidity can be calculated from the graph gradients as listed in Table 

6-20. The rigidity values are plotted against overlap variation in Figure 6-24 that shows 

a linear gradient with the increase in overlap length. This graph makes the designer able 

to approximate the required overlap for the target displacement at the tip end in the 

conceptual design phase. 

Table 6-20 Tip displacement results for variable overlaps 

Applied 
Force 

Overlap length 
500mm 400mm 300mm 200mm 100mm 

Tip displacement 
(kg) (N) (mm) (mm) (mm) (mm) (mm) 

0 0 0 0 0 0 0 
10 98 0.34 0.43 0.56 0.84 2.82 
20 196 0.69 0.86 1.11 1.69 5.64 
30 294 1.03 1.29 1.67 2.54 8.45 
40 392 1.37 1.72 2.23 3.39 11.25 
50 491 1.72 2.15 2.78 4.24 14.04 

Slope (N/m) 285690 228520 176310 115460 34931 

 

 

Figure 6-23 Tip displacement plot against variable overlap 
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Figure 6-24 Structure’s rigidity variation with overlap length 

6.3.6 Conclusion  

The displacement behaviour of the telescopic cantilever boom is characterised for the 

variation of specified parameters. The MPCs are collected from the previous analysis 

for the contact stress behaviour, and validated with the same instant of reality. 

The element variation response is assessed as insignificant on both local deflection and 

tip end displacement. The validation results shows also the previously found 

discrepancy on the test rig that affect the contact stress behaviour, is not visible on the 

displacement response. 

The load magnitude variation is analysed and the response on the tip end displacement 

is used to quantify the structure’s rigidity. 

The effect of overlap variation on the tip end displacement is studied. Using the load-

displacement graph the variation in rigidity of the structure is calculated. The graphical 

representation shows a linear relationship between overlap and structure’s rigidity.  

6.4 Vibration behaviour 
This section is dedicated to characterisation of the structure’s vibration behaviour with 

variation of input parameters.  The analysis 9-13 and 14-18 of Table 5-3 along with the 

third and fourth V&V case of  Table 5-4 are collecting the corresponding MPCs and 

verify and validate them. The analysis procedure is also different from the stress-

displacement analysis. This sections starts with the general analysis set up for linear 

perturbation analysis as it is required to obtain natural frequency. Also the verification 

method that is used to confirm the FEA outcomes is discussed in this section. 
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6.4.1 General linear perturbation analysis set up 

The required analysis in this section is specified as the general static to obtain the 

deformed structure under the payload, followed by linear perturbation to obtain the 

natural frequency response. The procedure, detailed in Figure 6-25 defines the set up for 

a natural frequency analysis of a pre-loaded structure (Dassault Systèmes, 2009, b). 

 

Figure 6-25 Natural frequency analysis general set up 

6.4.2 Verification method 

The verification is conducted using Dunkerly method as established by Salazar et al. 

(2011) as an approximation method to predict structure’s natural frequency. The 

application of this theory on cantilever structures, holding a tip mass, has been verified 

in a comparative study via Lagrange’s multipliers method (Gurgoze et al. 1984). To 

explain Dunkerley’s method consider a system with several masses (n) as shown in 

Figure 6-26 (Green, 1962). Each mass when considered alone has its amplitude and 

frequency as shown in Figure 6-26. If fn1 denotes the vibration of mass m1 with 

amplitude of x1 and similarly fn2 denotes the vibration of mass m2 with amplitude of x2, 

according to Dunkerley’s method the first natural frequency of the overall system, fn, is: 

Eq. 6-2 

1
𝑓𝑛2

=
1
𝑓𝑛12

+
1
𝑓𝑛22

+  … +
1
𝑓𝑛𝑖2
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Green suggests that the natural frequency behaviour of a cantilever contains self-

weight and tip mass can be obtained using the Superposition Theorem (Green, 1962): 

Eq. 6-3 

1
𝑓𝑛2

=
1
𝑓𝑛12

+
1
𝑓𝑛22

 

where fn indicates natural frequency of the overall system, fn1 is natural frequency of the 

beam under its self-weight and  fn2  is the tip mass. The required parameter for the Eq. 

6-3 is the natural frequency of the weightless beam carrying tip load that can be 

obtained by (Salazar et all, 2011): 

Eq. 6-4 

𝑓𝑛 =
1

2𝜋
�𝑆𝑙𝑜𝑝𝑒

𝑀
 

and the natural frequency of the compound beam under the self-weight that is (Salazar 

et all, 2011): 

Eq. 6-5 

𝑓𝑛 =
1

2𝜋
1.8752�

𝑆𝑙𝑜𝑝𝑒
3𝑀

 

Where M is the mass of the system and slope refers to the structures rigidity value as 

described in section 6.3. 

 

Figure 6-26 A System with Several Masses 
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6.4.3 The variation of load magnitude 

The effect of the load magnitude variation on the natural frequency response is studied 

analysed as suggested by analysis 9-13 of Table 5-3, detailed in Table 6-21. Table 6-22 

shows the quantitative comparison for the verification practice. Figure 6-27 plot the 

natural frequency values against the variable payloads in each overlap increment. The 

plots show the close agreement between formulation and simulation results. The results 

show a larger difference on the lower ranges of the payload.  

Table 6-21 Natural frequency study, dependency to the load magnitude 

Stakeholders’ 
requirement 

MPCs Fixed Parameter Variable Parameter 

Natural frequency 
behaviour of the 
structure 

Natural frequency Element type: S4R  
Load type: Symmetric 
Overlap= 500 mm  

Overlap  
n1=500 mm 
n2=400 mm 
n3=300 mm 
n4=200 mm 
n5=100 mm 

 

Table 6-22 Natural frequency verification results 

Dunkerley method calculation for natural frequency FEA 
Section mass Overlap Slope Fn1 Payload Fn2 Fn Fn 

(kg) (mm) (N/m) (Hz) (kg) (Hz) (Hz) (Hz) 
37 500 285690 28.39 50 12.03 11.08 11.61 

40 13.45 12.15 12.82 

30 15.53 13.63 14.51 

20 19.02 15.80 17.10 

10 26.90 19.53 21.87 

 

 

Figure 6-27 Natural frequency verification for payload variation 
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The validation process is conducted on the third instant of reality of Table 5-4. 

The validation results comparison with the verification result for structure in isolation 

shows, a significant interference from the test rig assembly in the natural frequency of 

the system. This suggests that analysis on the isolated telescopic structure does not 

represent the physical practice. The presence of the load hanger part can also affect the 

accuracy of the simulation not only by its additional mass but also slight variation in the 

payload application point. Table 6-23 shows the quantitative comparison between FEA 

and experimental results for the variation of payload. The results are plotted in Figure 

6-28.  

Table 6-23 Validation of natural frequency, quantitative comparison 

Load 

(kg) 

Natural 
frequency   

(Hz) 
FEA Experiment 

0 19.98 17.4 
10 12.03 10.25 
20 9.48 8.20 
30 8.42 7.20 
40 7.80 7.20 
50 7.23 6.20 

 

 

Figure 6-28 Natural frequency verification for payload validation 
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6.4.4 The effect of the overlap length 

The effect of overlap variation on natural frequency response is analysed using studies 

14-18 of Table 5-3, detailed in Table 6-24.  

The verification comparison is reported in Table 6-25. Graphical comparison in Figure 

6-29 shows that the formulation may not be sufficient on the lower ranges of the overlap 

length.  

Table 6-24 Natural frequency study, dependency to the overlap length 

Stakeholders’ 

requirement 

MPCs Fixed Parameter Variable Parameter 

Natural frequency 

behaviour of the 

structure 

Natural frequency Element type: S4R  

Load type: Symmetric 

Payload= 50 kg 

Overlap  

n1=500 mm 

n2=400 mm 

n3=300 mm 

n4=200 mm 

 
Table 6-25 Natural frequency verification results 

Dunkerley method calculation for natural frequency FEA 
Section mass Overlap Slope Fn1 Payload Fn2 Fn NF 

(kg) (mm) (N/m) (Hz) (kg) (Hz) (Hz) (Hz) 
37 500 285690 28.39 50 12.03 11.08 11.61 

37 400 228520 25.39 50 10.76 9.91 10.51 

37 300 176310 22.30 50 9.45 8.70 9.52 

37 200 115460 18.05 50 7.65 7.04 8.54 

37 100 34931 9.93 50 4.21 3.87 7.12 

 

Figure 6-29 Verification of natural frequency response to overlap variation 
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The quantitative comparison between experimental results and FEA on the overall 

assembly is reported in Table 6-26 and demonstrated graphically in Figure 6-30. The 

forth instant of reality of Table 5-4 is used for this purpose. 

Table 6-26 Validation of natural frequency response to overlap variation 

Overlap 

length 

(mm) 

Natural 
frequency   

(Hz) 
FEA Experiment 

500 7.23 6.20 
400 6.75 6.15 
300 6.3 5.15 
200 5.84 5.15 

 

Figure 6-30 Validation of natural frequency response to overlap variation 

6.4.5 Conclusion on natural frequency behaviour  

The structure’s vibration behaviour, translated to the natural frequency, is studied in this 

section. The impact of the load magnitude variation and overlap length variation is 

analysed verified and validated independently.  

The proposed formulation to calculate the natural frequency of the compound beam is 

established based on the Dunkerley method and the theory of equivalent beam and the 

range of its application is discussed in this stage. 

The validation of the results is conducted using the instant of realities. It is understood 

that the input from the ancillary supportive parts can significantly change the magnitude 

of the measured values. This input must be considered for the future development of the 

full-scale structure. The behavioural pattern of the natural frequency is plotted as a 

monogram for further design considration. 
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6.5 Buckling performance 
This section studies the buckling performance of the telescopic cantilever with input 

parameters variation. The required analyses of 19, 20 and 21-24 as outlined in Table 

5-3, are conducted in his section to obtain corresponding MPCs as Buckling Critical 

Load and buckling mode.  The required analysis procedure to obtain the MPCs is 

detailed in this section. 

As it is discussed in Chapter 2 the buckling failure is the effect of compressive stress 

and from the previous studies it has been emerged that the variation of load type and 

overlap length vary the structure’s stress response that in turn varies Buckling Critical 

Load. 

6.5.1 General buckling analysis procedure 

The required procedure for buckling analysis is outlined in Figure 6-31. The analysis 

starts with an Eigenvalue analysis. The purpose of this analysis is to investigate 

singularities in a linear perturbation of the structure’s stiffness matrix. This estimation is 

useful in design only if the linear perturbation is a realistic reflection of the structure’s 

response before it buckles. Eigenvalue buckling is useful for “stiff” structures that 

exhibit only small, elastic deformations prior to buckling. The objective of an 

Eigenvalue buckling analysis is to find the load level at which the equilibrium becomes 

unstable or estimate the maximum load level which the structure can sustain.  

The stiffness of the structure in the base state K0 , is defined by application of pre-load 

in the form of “dead” load, P0 (Dassault Systèmes, 2011). Presuming that the response 

of the structure is stiff and linear elastic, the stress and the structural stiffness will 

change proportionally by addition of the “live” load , λΔP, where λ is the magnitude ΔP 

is the pattern of the live load as  𝐾0 + λΔK. 

Where Δ𝐾 is made up of two parts: the internal stress and the applied load, due to 

incremental loading pattern: 

Eq. 6-6 

Δ𝐾 = 𝐾Δ𝜎 + 𝐾Δ𝑃 

A loss of stability occurs when the total stiffness matrix is singular: 
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Eq. 6-7 

(𝐾0 + λΔK)V = 0 

Values λcr which provide nontrivial solutions to this Eigen-problem, define the critical 

buckling load as 𝑃0 + λcrΔP.  

Buckling mode shapes, V, are normalized vectors and do not represent actual 

magnitudes of deformation at the critical load. 

Eigenvalue, λcr and corresponding mode V, are often the most useful outcomes of the 

Eigenvalue analysis since they predict the likely failure mode of the structure.  The 

closer approximation can be achieved with a higher preload condition that is generated 

by a higher dead-load at the general static step obtained from the Buckling load 

calculation. (Falzon, Hitchings, 2006).  

The Eigenvalue buckling is not producing a reliable response if the elasticity of the 

structure is violated during the loading. Also if by applying the buckling critical load it 

is expected that a part of the structure exceeds the yield point then the predicted value 

can be incorrect. 

In this occasion the buckling analysis workflow continues with regular static procedure. 

In this step two techniques are available as: 

• Load control: Loading applied via applied load (e.g. concentrated force, 

distributed pressure).  

• Displacement control: Loading applied by enforcing non-zero boundary 

conditions. In some simple cases displacement control can provide a solution, 

even when the reaction force decreases as the displacement increases. 

In the load control approach the structure is loaded up to or slightly above calculated 

Buckling Critical Load from the previous stage in a single static step.  If the Eigenvalue 

estimation is valid general static step reaches the vicinity of the predicted buckling 

mode.  
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Figure 6-31 Buckling analysis procedure in Abaqus 

The general static analysis in Abaqus/Standard uses an incremental-iterative solution 

technique based on the Newton-Raphson method for solving the nonlinear equilibrium 

equations. The method can be understood in one dimension from a load-displacement 
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diagram as demonstrated in Figure 6-32 (Dassault Systèmes, 2011). The analysis 

follows the below path to converge into a solution:  

1. Apply an increment of load or time. 

2. Iterate until the sum of all forces acting on each node is small (statics) or is 

equal to the inertia force (dynamics). 

3. Update the state once equilibrium has been satisfied. 

4. Go back to Step 1, and apply the next increment. 

 

Figure 6-32 Newton-Raphson solution convergence (Hinton, 1992).   

Despite the great convergence ratio this method is less likely to converge to an unstable 

equilibrium configuration. The Newton-Raphson method breaks down completely when 

a critical load is reached as a solution does not exist or is far removed from the starting 

point, as shown in Figure 6-33. 

This method can also incorporate the effect of material non-linearity in the form of 

plastic deformation. In order to increase the accuracy of deformation prediction when 

parts of the structure are expected to exceed the yield point the material model needs to 

represent the post-yield stiffness by the shape strain-stress. (Chillery, 2010, a). The two 

gradient curves shown in Figure 6-34 creates a sufficient fit to the actual post-yield 

stress-strain curve of a typical engineering steel. 



 

 

158 

 

Figure 6-33 Newton-Raphson limitation near the load maximum (Dassault 

Systèmes, 2011). 

 

Figure 6-34 Bilinear material model for post-yield behaviour (Johnson and Mellor, 

1973).   

Therefore while the method can predict the buckling mode and required load more 

accurately than Eigenvalue estimation, it will not be able to produce any information 

about post-buckling behaviour of the structure in certain circumstances.  

If the state of buckling reached the next step is displacement control method to achieve 

an initial indication for the post-buckling behaviour. Critical displacement can be 

obtained from the load-displacement graph from the Load control analysis. In the case 

of cantilever beam displacement can be estimated by the structure’s rigidity graph, 

discussed in section 6.3.  The applied displacement in the form of non-zero boundary 

condition can deform the structure up to the critical point (Smolira, 1980).  
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As discussed earlier in this section the buckling phenomenon is always accompanied 

with lose of stiffness locally or globally to the structure. This phenomenon can be best 

characterised by the force-displacement diagram, and will be used to assess the buckling 

behaviour in the forthcoming analysis. 

6.5.2 Load type variation 

The effect of load type variation on the buckling response is studied in this section. The 

details of the analysis condition is extracted from analysis 19 and 20 of Table 5-4 and 

presented in Table 6-27.  

Table 6-27 Buckling behaviour study, dependency to load type variation 

Stakeholders’ 

requirement 

MPCs Fixed Parameter Variable Parameter 

Buckling behaviour 

of the structure 

Buckling load 

factor 

Buckling mode 

Element type: S4R  

Pay load= 50 kg 

Overlap= 500mm 

Type of load: 

Symmetric:50 in CL 

Asymmetric: 50kg at 

300mm offset from CL 

Following the procedural practice suggested in Figure 6-31, the analysis is started with 

Eigenvalue study.  Table 6-28 suggests the required BCL in addition to the self-weight. 

The corresponding buckling mode suggests that the structure will lose its stiffness near 

to the fixed end, as it is shown in Figure 6-35 (a) and (b). There is no significant 

variation observed in the MPCs due to load type variation. The compressive stress on 

the bottom surface of the section, illustrated in Figure 6-35 (c) and (d) shows the 

buckled surfaces experience very similar compressive stress magnitude in both type of 

loads.  

Table 6-28 Eigenvalue buckling study results for load type variation 

 Loading Results 
Gravity Dead-load Live-load EV BCL 

Concentrated 
Force (Fy) 

Concentrated  
Moment 

(Mx) 

Concentrated 
Force (Fy) 

Concentrated  
moment 

(Mx) 
(mm/s2) (N) (N.mm) (N) (N.mm)  (N) 

Symmetric load 9810 -490 ------ -100 ------ 663.10 66800 

Asymmetric load 9810 -490 147150 -100 30000 658.62 66352 
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                                            (a)                                                                                                             (b)  

                        

                                         (c)                                                                                                              (d) 
Figure 6-35 Qualitative comparison for load type variation (a) Symmetric load case (b) Asymmetric load case (c) Stress plot at the buckling 

vicinity under symmetric load (d) Stress plot at the buckling vicinity under asymmetric load
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The magnitude of predicted BCL is significantly higher than the applied load. The 

comparison shows almost an additional 6800 kg is required to observe the first probable 

buckling mode. Comparing this with the current state of stress recommends that the 

structure will certainly exceed the yield point. Although inelastic instability is assessed 

unlikely with the Eigenvalue analysis, the risk of buckling after the elastic limit remains 

unknown. 

To characterise the behaviour of the structure after the yield limit, the load control 

analysis is conducted for both load types scenarios. The effect of bilinear material is 

also incorporated to determine the structure’s deflection path beyond yield point. The 

analysis is set up in two static steps to segregate the impact of gravity and applied load. 

The applied load is chosen higher than the predicted BCL to allow for the solution to 

approach the closest possible to the buckling mode. The asymmetric load case would be 

under the same load at 300mm offset from the z direction.  

The results of both variations of the load type shows the structure deformed to the 

plastic phase and start penetrating into the test rig base until the analysis break down 

due to excessive deformation, Figure 6-36. The deformation plots for both load cases, 

Figure 6-37, do not show any similarity to the buckling modes Figure 6-35. 

The load-displacement diagram in both cases, Figure 6-38, do not show any indication 

of loss of stiffness or bifurcation. The non-linear deformation after application of force, 

Figure 6-39 suggests the deformation is completely plastic until the analysis crash. This 

would discount the necessity of conducting the displacement control analysis to 

visualise post-buckling behaviour. 

 

Figure 6-36 Structure deformation due to application of BCL
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Figure 6-37 Stress plot (a) Asymmetric load case (b) Symmetric load case
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Figure 6-38 Load-displacement diagram, for the two loading steps 

 

Figure 6-39 Load-displacement diagram for payload application step 

 

Table 6-29 Results for the load control study up to the maximum feasible tip 

displacement (up to material interference occurrence) 

Analysis 
condition 

Applied load Analysis 
completion 

Feasible 
Payload 

Feasible Tip 
displacement Gravity Concentrated 

Force (Fy) 
Concentrated  

Moment 
(Mx) 

(mm/s2) (N) (N.mm) (%) (N) (mm) 
Symmetric load 9810 -85000 ------------ 6.6852 5682 172.5 

Asymmetric load 9810 -85000 25500000 6.7863 5768 181.7 
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6.5.3 Effect of the overlap length 

This section address the effect of overlap variation in the buckling response as 

suggested in Table 6-27. The analyses of 21-24 from Table 5-3 are conducted for the 

required MPCs.  

Similar to the previous study the procedural process starts with Eigenvalue study. As it 

has been already observed that the BCL is far above the structures load capacity this 

study does not proceed further beyond. The result of these analyses, summarised in   

Table 6-31, confirms that the risk of plastic failure is more imminent than buckling in 

this structure. The ratio between BCL to designated payload quantifies the safety level 

of the structure. Figure 6-40 plot the input variable against the calculated safety ratio.  

Table 6-30 Buckling behaviour study, dependency to overlap length variation 

Stakeholders’ 

requirement 

 

MPCs 

Fixed Parameter Variable Parameter 

Buckling behaviour 

of the structure 

Buckling load 

factor 

 

Buckling mode 

Element type: S4R  

Pay load= 50 kg 

Load type: Symmetric 

Overlap  

n1=500 mm 

n2=400 mm 

n3=300 mm 

n4=200 mm 

n5=100 mm 

 

Table 6-31 Buckling results for the Eigenvalue buckling study with load type 

variation 

Overlap 
length 

 

Loading Results 
Gravity Dead-load Live-load EV BCL Safety ratio 

Concentrated 
Force (Fy) 

Concentrated 
Force (Fy) 

   

(mm) (mm/s2) (N) (N)  (N)  
500 9810 -490 -100 663.10 66800 136 

400 9810 -490 -100 626.35 63125 129 

300 9810 -490 -100 593.18 59808 122 

200 9810 -490 -100 563.28 56818 116 

100 9810 -490 -100 536.21 54111 110 
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Figure 6-40 Safety index variation with overlap length change 

6.5.4 Conclusion on buckling behaviour  

The procedural steps to obtain the buckling response are illustrated in this section. 

The buckling behaviour of the nominated structure is characterised only analytically 

through FE simulation for the variation of load type and overlap length.  Different 

numerical techniques are incorporated to verify the analysis outcomes by cross-

checking. 

The effect of load type variation assessed not significantly influential on the buckling 

performance; consistent local buckling is predicted at the bottom surface of the outer 

section near to the clamped end.  The structure shows more considerable response to  

overlap length variation, although conducted analysis does not indicate any feasible 

buckling mode.  An index of safety as the ratio between BCL to the maximum service 

load is introduced.  The progression of this index with overlap length in this study is 

observed as linear. 

The proposed salient benchmark is assessed as far too stiff to be used for the buckling 

validation purpose.  

6.6 Chapter summary 
The list of required analyses along with the instants of reality for the verification and 

validation practice that are produced in Chapter 5, are put into practice in this chapter to 

obtain the corresponding the required MPCs to each stakeholder's requirement.  

The required analyses for each section are proven to be adequate to collect the required 

MPCs and create a sufficient account to be considered in the next level of design 

iteration.  Each of stakeholder's requirements are investigated independently and the 
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conclusive remarks for each sections are provided at the end of each study. 

Furthermore, the verified and validate analytical methods create a reliable analytical 

procedure for future use in the more detailed and complicated design level. 

Following the successful application of the design integrated structural analysis 

methodology on the nominated structure, the proposal is assessed as functional, and 

adequate for the designated purpose.  The findings of this section create a credible 

platform for the next iteration in the structural design and analysis of the telescopic 

cantilever boom. 
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7 Discussions and Conclusions 

7.1 Summary 
Structural analysis has a critical role in the design and development of mechanical 

products. Many key decisions about size, shape, and material are directly taken based on 

the structural performance.  Commercial entrepreneurs invest in software, hardware, 

and human resources to simulate mechanical systems.  These components are necessary 

but not sufficient to incorporate structural analysis in its full capacity as a design tool 

and do not lead to the maximum benefit from the investment. This research addressed 

the above issue by enhancing the position of structural analysis in the design process by 

proposing a QFD-Based Design Integrated Structural Analysis Methodology.  

The structural analysis process was conventionally conducted by theoretical calculations 

that are, in a more pragmatic environment, accompanied by experimental 

measurements. In modern applications, the use of Computer Aided Engineering and 

simulation has been significantly improved by the advent of computers in engineering 

leads to yet the most exact prediction of stress and strain distribution in the components 

The first step to achieve this aim, identified as a common ground between Design and 

Analysis disciplines, has been established by introducing the analysis aim and 

objectives. Furthermore, the structural analysis quest has been identified with its 

quantifiable parameters. This knowledge is fundamental for two involved disciplines to 

communicate effectively and contribute to the product development process. As the 

mean of achieving the objectives, analysis methods and tools are discussed in this study. 

In the second step the design perspective, its procedure and requirements are introduced. 

This perspective is established based on the accepted mainstreams in the field that are 

regarding the design process as a systematic procedural practice. The state-of-the-art 

practices to organise the structural analysis workflow is assessed critically. Despite the 

efficiency and productivity of the available practices lack of total design and product 

multi-functionality view are identified as prohibitive factor for design integration. 

In the third step a creative adaptation of the QFD method has been proposed as the key 

element to create a descriptive form of reality of interest. The combination of the QFD 

with benchmark, and V&V boost the impact of the proposed methodology to reliably 

integrate with design process from the early stages.  
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The validity of the proposed methodology has been investigated through an 

application on an industrial structure. The telescopic cantilever boom as it appears in the 

crane and access platforms has been the subject of this study. The structural multi-

functional aspect of the product as well as variety in the design input parameters make it 

an ideal candidate to explore the functionality of the proposed methodology. 

The structural multi-functional aspect, translated into the measurable performance 

characteristics has been quantified, verified and validated through the most effective 

number of analyses and experimentations. The basic presentations of the results 

demonstrate the capability of the methodology to characterise performance behaviours 

of the structure with respect to design parameter variation. The integrity of the process 

with the product design from early stages reduces the chance of error propagation in the 

finalised product. The limitations of existing structural analysis approaches have been 

discussed.  The following section defines the contribution of this research to knowledge. 

7.2 Contribution to knowledge 
The key contribution of this work to knowledge are summarised below: 

• A creative adaptation of Quality Function Deployment (QFD) that leads to a 

generic Design Integrated Structural analysis Methodology. 

• Application of a technique from one field to overcome a shortcoming in another 

field that assists analysts to tackle unfamiliar problems in a systematic way  

• The effectiveness of the methodology is examined in an industrial case-study.  

Furthermore the impacts of this research in industry are: 

• to develop a tool to capture all design requirements and eliminate wasteful 

rework and encourage value-adding iterative structural analysis 

• higher return on investment.  

7.3 Recommendation for future developments 
This research has shown benefits in using a new approach to structural analysis.  The 

following areas of interest could offer opportunities for further development: 

• Design of the salient benchmark that covers product multi-functional structural 

aspects is not always possible. The minimum instant of realities for verification 

and validation can be identified from the proposed methodology, however this 
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outcomes might need further considerations and developments on special 

cases e.g. when the test associated with the risk of structure to failure. 

• The iterative route is suggested as a possibility and initial test does not indicate 

any amendments. However this route needs further validation by 

implementation to an iterative design process. 

• The methodology has a potential to contribute to Knowledge-base creation. In a 

commercial application this option can convert the findings into the commercial 

solution for structural analysis to be reused in similar product development 

projects.  

• The opportunity to propose alternative methodologies using different design 

tools and combinations can be further explored and assessed against the QFD 

bases methodology for improvements and optimisation  

7.4 Conclusion 
This research enhances the mutual understanding between two fields of design and 

structural analysis and improve the extent and the quality of contribution of structural 

analysis process for design of the mechanical product. Therefore this research 

investigates the question of:   

“How is it possible to increase the effectiveness of structural analysis by its 

interactive and systematic integration within the product design process?” 

The significance of this question can only be understood knowing the conventional 

structural analysis practice in industry: 

• In a typical commercial design environment the process of the structural analysis 

is started near to the finalised state of the structure, when many aspects such as 

fabrication, drive mechanism, packaging etc. have already been decided. This 

type of structural analysis, termed as Design Verification, and follows the 

Design-Commitment-Validation approach as discussed in Table 3-1. All the 

downside effects of the DCV approach as outlined in Chapter 3, including the 

risk of error propagation, and the cost and inefficiency of error hunting in the 

finalised design, are applicable to this practice.  

• Assuming the design environment is committed to the application of V&V, the 

correlation process starts following the outcomes of experimental measurements. 

It is very common that the correlation exercise shows a discrepancy that in turn 
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follows by error quantification process. This practice can be cumbersome, 

inefficient and frustrating, and in many occasions unachievable with the product 

in its finalised stage ready for the market delivery.   

• The finalised product leaves the structural analysis with only limited options to 

optimise the required function. The limitation leads to random change of either 

design Variable Input Parameters or product specification until the practice 

converges to the acceptable level of safety. This practice leads to an exhausting 

process with no clear tractability, which in many occasions reaches the 

conclusion only due to the market pressure. 

• Moreover the structural analysis process in this stage normally targets the most 

significant or common aspect of the structural failure and optimise the structure 

towards an ideal performance. In the situations that more than one failure modes 

is expected, the response of the Variable Input Parameters and their 

interdependencies require more comprehensive process. 

These malfunctions and complications in the conventional process usually abort the 

structural analysis pre-maturely without a definitive answerer, considering the market 

pressure for the ready-to-commission design.  

The QFD-Based Design Integrated Structural Analysis Methodology aims to enhance 

the capability of the structural analysis for the product design application by finding a 

solution to the above outstanding issues.  The functionality of the proposed 

methodology, proven via an industrial case-study shows its potential for expansion in 

the range of commercial application. 

Despite the proposed methodology main effect is in productivity of the structural 

analysis in design it also contributes to the time efficiency of the process. This 

methodology was practised during the design and development of the company partner 

of the project, new Access Platform product HR28. The design and development of this 

product is conducted for the period of 3 years, in comparison with smaller product in 

the family HR21 that took over 5 years with company’s conventional practice.  
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Appendix I – Stress invariants 
The concept is better described in an infinitesimal tetrahedron with a known stress on 

the reference planes, as shown in the figure. Inclined face of ABC can be considered as 

principle plane if the principal stress σ be in the normal direction to this plane 𝑛�, having 

direction cosines 𝑎𝑛𝑥 ,𝑎𝑛𝑦 ,𝑎𝑛𝑑 𝑎𝑛𝑧. In the absence of body and inertia force the 

Newton’s second law of motion in Z-direction can be applied as: 

𝜎.𝐴𝐵𝐶.𝑎𝑛𝑧 − 𝜎𝑧 .𝐴𝑂𝐵 − 𝜏𝑦𝑧 .𝐴𝑂𝐶 − 𝜏𝑥𝑧 .𝐵𝑂𝐶 = 0 

Dividing by the area ABC and similarly for other directions of X and Y: 

(𝜎𝑥 − 𝜎).𝑎𝑛𝑥 + 𝜏𝑥𝑦.𝑎𝑛𝑦 + 𝜏𝑥𝑧 .𝑎𝑛𝑧 = 0 

𝜏𝑥𝑦.𝑎𝑛𝑥 + (𝜎𝑦 − 𝜎).𝑎𝑛𝑦 + 𝜏𝑦𝑧 .𝑎𝑛𝑧 = 0 

𝜏𝑥𝑧 .𝑎𝑛𝑥 + 𝜏𝑦𝑧.𝑎𝑛𝑦 + (𝜎𝑧 − 𝜎).𝑎𝑛𝑧 = 0 

Therefore three simultaneous homogeneous equations can be written in a matrix format 

as: 

�
𝜎𝑥 − 𝜎 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 − 𝜎 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 − 𝜎

� �
𝑎𝑛𝑥
𝑎𝑛𝑦
𝑎𝑛𝑧

� = �
0
0
0
� 

 

By using Cramer’s rule: 

𝑎𝑛𝑥 =

�
0 𝜏𝑥𝑦 𝜏𝑥𝑧
0 𝜎𝑦 − 𝜎 𝜏𝑦𝑧
0 𝜏𝑦𝑧 𝜎𝑧 − 𝜎

�

�
𝜎𝑥 − 𝜎 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 − 𝜎 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 − 𝜎

�

 

𝑎𝑛𝑥 will be zero unless the denominator in the preceding equation is zero so as to permit 

an indeterminate result. But all the other direction cosines can not be zero, because: 

𝑎𝑛𝑥2 + 𝑎𝑛𝑦2 + 𝑎𝑛𝑧2 = 1 

Expanding the determinant of the denominator matrix produces a cubic equation: 

𝜎3 − 𝐼1𝜎2 + 𝐼2𝜎 − 𝐼3 = 0 

where: 
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𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 = 𝐼1 = 𝐹𝑖𝑟𝑠𝑡 𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠 

𝜎𝑥𝜎𝑦 + 𝜎𝑦𝜎𝑧 + 𝜎𝑥𝜎𝑧 − 𝜏𝑥𝑦2 − 𝜏𝑦𝑧2 − 𝜏𝑥𝑧2 = 𝐼2 = 𝑆𝑒𝑐𝑜𝑛𝑑 𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠 

𝜎𝑥𝜎𝑦𝜎𝑧 − 𝜎𝑥𝜏𝑦𝑧2 − 𝜎𝑦𝜏𝑥𝑧2 − 𝜎𝑧𝜏𝑥𝑦2 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑥𝑧 = 𝐼3 = 𝑇ℎ𝑖𝑟𝑑 𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠 

The cubic equation can be solved by Newton-Raphson approximation method. If the 

approximated root for the above equation chosen as σi , then the better approximates can 

be estimated by: 

𝜎𝑖+1 = 𝜎𝑖 −
𝑓(𝜎𝑖)
𝑓′(𝜎𝑖)

 ,       𝑖 = 0,1,2, … 

The iteration process may be continued until the between the two successive roots is not 

appreciable as demanded by the accuracy. Thus the three principal stresses, σ1, σ2, σ3 

can be determined.  

Three direction cosines can be computed by substituting back.  Then the non-trivial 

solution for σ1 is: 

𝑎𝑛𝑥1 =
𝐴

√𝐴2 + 𝐵2 + 𝐶2
 , 𝑎𝑛𝑦1 =

𝐵
√𝐴2 + 𝐵2 + 𝐶2

 , 𝑎𝑛𝑧1 =
𝐶

√𝐴2 + 𝐵2 + 𝐶2
 

where 

𝐴 = �
𝜎𝑦 − 𝜎1 𝜏𝑦𝑧
𝜏𝑦𝑧 𝜎2 − 𝜎1� = 𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝐷 

𝐵 = − �
𝜏𝑥𝑦 𝜏𝑦𝑧
𝜏𝑥𝑦 𝜎2 − 𝜎1� = 𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝐷 

𝐶 = �
𝜏𝑥𝑦 𝜎𝑦 − 𝜎1
𝜏𝑥𝑧 𝜏𝑦𝑧 � = 𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑖𝑟𝑑 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝐷 

The direction cosine for other principal stresses can be determined similarly.  
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Appendix II – Maximum shearing stress 
maximum shearing stress can be specified  by  choosing the axis of coordinates 0 xyz in 

the direction of the normal,  𝑛� , along the principal stresses in an arbitrary area whose 

direction cosines are  𝑎𝑛𝑥,𝑎𝑛𝑦 𝑎𝑛𝑑 𝑎𝑛𝑧 . The normal stress in this area is: 

𝜎𝑛 = 𝜎1𝑎𝑛𝑥2 + 𝜎2𝑎𝑛𝑦2 + 𝜎3𝑎𝑛𝑧2  

The resultant stress is: 

𝜎𝑅2 = 𝜎𝑛2 + 𝜏𝑛𝑠2  

∴ 𝜏𝑛𝑠2 = 𝜎𝑅2 − 𝜎𝑛2 

Knowing the above equation and having: 

𝜎𝑅2 = 𝜎12𝑎𝑛𝑥2 + 𝜎22𝑎𝑛𝑦2 + 𝜎32𝑎𝑛𝑧2  

∴ 𝜏𝑛𝑠2 = �𝜎12𝑎𝑛𝑥2 + 𝜎22𝑎𝑛𝑦2 + 𝜎32𝑎𝑛𝑧2 � − �𝜎1𝑎𝑛𝑥2 + 𝜎2𝑎𝑛𝑦2 − 𝜎3𝑎𝑛𝑧2 � 

For the shear stress, 𝜏𝑛𝑠 , to be maximum or minimum: 

𝜕𝜏𝑛𝑠2

𝜕𝑎𝑛𝑥
=

2𝜏𝑛𝑠 𝜕𝜏𝑛𝑠 
𝜕𝑎𝑛𝑥

= 0 

𝜕𝜏𝑛𝑠2

𝜕𝑎𝑛𝑦
=

2𝜏𝑛𝑠 𝜕𝜏𝑛𝑠 
𝜕𝑎𝑛𝑦

= 0 

∴ Either: 

𝜏𝑛𝑠  = 0  ,
𝜕𝜏𝑛𝑠 
𝜕𝑎𝑛𝑥

= 0  ,
𝜕𝜏𝑛𝑠 
𝜕𝑎𝑛𝑦

= 0 

The first term of above equation happens at principal area whereas the second and third 

terms, with the condition of 𝜎1 ≠ 𝜎2 ≠ 𝜎3 lead to: 

�𝜎1 − 𝜎3 − 2�(𝜎1 − 𝜎3)𝑎𝑛𝑥2 + (𝜎2 − 𝜎3)𝑎𝑛𝑦2 ��𝑎𝑛𝑥 = 0 

�𝜎2 − 𝜎3 − 2�(𝜎1 − 𝜎3)𝑎𝑛𝑥2 + (𝜎2 − 𝜎3)𝑎𝑛𝑦2 ��𝑎𝑛𝑦 = 0 

Therefore 𝑎𝑛𝑥 =  𝑎𝑛𝑦 = 0  𝑎𝑛𝑑 𝑎𝑛𝑧 = 1 must be dropped since it gives a principal area 

lying in the plane oxy. Three feasible cases are: 

𝑎𝑛𝑥 ≠ 0,𝑎𝑛𝑦 = 0,    𝑎𝑛𝑥 = 0,𝑎𝑛𝑦 ≠ 0,     𝑎𝑛𝑥 ≠ 0,𝑎𝑛𝑦 ≠ 0 
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The first and second case gives: 

𝑎𝑛𝑥 = ±
1
√2

  ,𝑎𝑛𝑦 = 0 , 𝑎𝑛𝑧 = ±
1
√2

   

𝑎𝑛𝑦 = ±
1
√2

  ,𝑎𝑛𝑥 = 0 , 𝑎𝑛𝑧 = ±
1
√2

   

The third condition is impossible since cancelling 𝑎𝑛𝑥𝑎𝑛𝑑 𝑎𝑛𝑦 and subtracting the 

resulting equations from each other get  𝜎1 = 𝜎2 which contrary to the assumption𝜎1 ≠

𝜎2 ≠ 𝜎3. Repeating the analysis for 𝑎𝑛𝑦 instead of 𝑎𝑛𝑧 gives: 

𝑎𝑛𝑥 = ±
1
√2

  ,𝑎𝑛𝑦 = ±
1
√2

 ,𝑎𝑛𝑧 = 0   

Each of these two solutions determines the area passing through one of the coordinate 

axes and inclined to the other at angles of 45° and 135°. Substituting back: 

𝜏𝑛𝑠2 =
𝜎12 − 𝜎32

2
− �

𝜎1 + 𝜎3
2

�
2

= �
𝜎1 − 𝜎3

2
�
2
 

Eq. 2-9 along with the remaining two solutions give: 

𝜏𝑛𝑠(max) = ± �𝜎1−𝜎3
2

�, 𝜏𝑛𝑠(max) = ± �𝜎1−𝜎2
2

�, 𝜏𝑛𝑠(max) = ± �𝜎2−𝜎3
2

� 

Therefore the direction cosines for planes of  𝜏𝑛𝑠(max) and 𝜏𝑛𝑠(min) are given in the 

table and plane of maximum shear stress are shown in the figure. 

 𝝉𝒏𝒔(𝐦𝐚𝐱) 𝝉𝒏𝒔(𝐦𝐢𝐧) 

𝑎𝑛𝑥 ±
1
√2

 0 ±
1
√2

 0 0 ±1 

𝑎𝑛𝑦 ±
1
√2

 ±
1
√2

 0 0 ±1 0 

𝑎𝑛𝑧 0 ±
1
√2

 ±
1
√2

 ±1 0 0 
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Appendix III – Principal strains 
The problem of computing the extreme value of the strain components reduces to the 

determination of the initial directions (𝑎𝑥′𝑥,𝑎𝑥′𝑦,𝑎𝑥′𝑧) for which 𝜖𝑥′𝑥′ under the 

restriction: 

𝑎𝑥′𝑥2 + 𝑎𝑥′𝑦2 +  𝑎𝑥′𝑧2 = 1 

The extreme values of 𝜖𝑥′𝑥′ are called the principal strains and the initial directions 

along which 𝜖𝑥′𝑥′ attains stationary values are called the principal directions of strain. 

Using 𝜕𝜖𝑥′𝑥′ 
𝜕𝑎𝑥′𝑥

= 𝜕𝜖𝑥′𝑥′ 
𝜕𝑎𝑥′𝑦

= 𝜕𝜖𝑥′𝑥′ 
𝜕𝑎𝑥′𝑧

= 0 gives: 

2𝜖𝑥ax′x + γxy ax′y + γxzax′z = 0 

γxy ax′x + 2𝜖𝑦ax′y + γyzax′z = 0 

γxzax′x + γyz ax′y + 2𝜖𝑧ax′z = 0 

Which may be written: 

⎣
⎢
⎢
⎢
⎢
⎡ 𝜖𝑥

γxy
2

γxz
2

γxy
2

𝜖𝑦
γyz
2

γxz
2

γyz
2

𝜖𝑧 ⎦
⎥
⎥
⎥
⎥
⎤

�
ax′x
ax′y
ax′z

� = �
0
0
0
� 

The non-trivial solution may be obtained by determining the eigen-value of the strain 

matrix if 𝜖𝑖, 𝑖 = 1, 2, 3 be the eigen values of the strain matrix 𝜖𝑖𝑗 then the characteristic 

equation of the eigen-value of the determinant would be �𝜖𝑖𝑗 − 𝜖𝑖I � = 0, where I is the 

unit matrix. 

�

�
𝜖𝑥 − 𝜖𝑖

γxy
2

γxz
2

γxy
2

𝜖𝑦 − 𝜖𝑖
γyz
2

γxz
2

γyz
2

𝜖𝑧 − 𝜖𝑖
�

�
= 0 

Solving the determinant gives: 

𝜖𝑖3 − 𝐽1𝜖𝑖2 + 𝐽2𝜖𝑖 − 𝐽3 = 0 
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Where: 

𝐽1 = 𝜖𝑥 + 𝜖𝑦 + 𝜖𝑧 = 𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 

𝐽2 = 𝜖𝑥𝜖𝑦 + 𝜖𝑦𝜖𝑧 + 𝜖𝑧𝜖𝑥 −
γxy2

4
−
γyz2

4
−
γxz2

4
= 𝑠𝑒𝑐𝑜𝑛𝑑 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 

𝐽3 =
�

�
𝜖𝑥

γxy
2

γxz
2

γxy
2

𝜖𝑦
γyz
2

γxz
2

γyz
2

𝜖𝑧
�

�
= 𝑡ℎ𝑖𝑟𝑑 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 

To change the sense of the angle requires only reversing the sign of Eq. 2-48. Thus: 

Eq. 7-1 









−

−−
=−= −

31

3121
,

2tan
2
1

εε
εεεθϕ QP
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Appendix IV - List of failure modes 
 

1. Force and/or temperature 
induced elastic deformation 

2. Yielding 
3. Brinnelling 
4. Ductile Rupture 
5. Brittle Fracture 
6. Fatigue 

a. High-cycle fatigue 
b. Low-cycle fatigue 
c. Thermal fatigue 
d. Surface fatigue 
e. Impact fatigue 
f. Corrosion fatigue 
g. Fretting fatigue 

7. Corrosion 
a. Direct chemical attack 
b. Galvanic corrosion 
c. Crevice corrosion 
d. Pitting corrosion 
e. Intergranular corrosion 
f. Selective corrosion 
g. Erosion corrosion 
h. Cavitation corrosion 
i. Hydrogen damage 
j. Biological corrosion 
k. Stress corrosion 

8. Wear 
a. Adhesive wear 
b. Abrasive wear 
c. Corrosive wear 
d. Surface fatigue wear 
e. Deformation wear 
f. Impact wear 
g. Fretting wear 

9. Impact 
a. Impact fracture 
b. Impact deformation 
c. Impact wear 
d. Impact fretting 
e. Impact fatigue 

10. Fretting 
11. Creep 
12. Thermal relaxation 
13. Stress rupture 
14. Thermal shock 
15. Galling and seizure 
16. Spalling 
17. Radiation 
18. Buckling 
19. Creep buckling 
20. Stress corrosion 
21. Corrosion wear 
22. Combined creep fatigue 

a. Fretting fatigue 
b. Fretting wear 
c. Fretting corrosion 
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Appendix V - Nodal degrees of freedom convention 
Degrees of freedom Except for axisymmetric elements, the degrees of freedom are 

always referred to as follows: 

1) x-displacement 

2) y-displacement 

3) z-displacement 

4) Rotation about the x-axis, in radians 

5) Rotation about the y-axis, in radians 

6) Rotation about the z-axis, in radians 

7) Warping amplitude (for open-section beam elements) 

8) Pore pressure, hydrostatic fluid pressure, or acoustic pressure 

9) Electric potential 

10) Connector material flow (units of length) 

11) Temperature (or normalized concentration in mass diffusion analysis) 

12) Second temperature (for shells or beams) 

13) Third temperature (for shells or beams) 

14) Etc. 

Here the x-, y-, and z-directions coincide with the global X-, Y-, and Z-directions, 

respectively; however, if a local transformation is defined at a node they coincide with 

the local directions defined by the transformation. A maximum of 20 temperature values 

(degrees of freedom 11 through 30) can be defined for shell or beam elements in 

Abaqus/Standard. The displacement and rotation degrees of freedom in axisymmetric 

elements are referred to as follows: 

1) r-displacement 

2) z-displacement 

5) Rotation about the z-axis (for axisymmetric elements with twist), in radians 

6) Rotation in the r–z plane (for axisymmetric shells), in radians 

Here the r- and z-directions coincide with the global X- and Y-directions, respectively; 

however, if a local transformation is defined at a node, they coincide with the local 

directions defined by the transformation. 
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Appendix VI – Principal strain angle in rosette  
The physical direction of the acute angle given by either Eq. 2-48 or Eq. 7-1 is always 

anticlockwise if positive, and clockwise if negative. The only difference is that θ is 

measured from the principal axis to Grid 1, while ϕ is measured from Grid 1 to the 

principal axis. Since tan 2𝜑 ≡ tan 2(𝜑 + 90), the calculated angle can refer to either 

principal axis. This ambiguity can readily be resolved (for the rectangular rosette) by 

application of the following simple rules: 

• if 31 εε > , then PQP ϕϕ =,  

• if 31 εε < , then QQP ϕϕ =,  

• if  31 εε =  and 12 εε < , then 45, −== PQP ϕϕ  

• if  31 εε =  and 12 εε > , then 45, == PQP ϕϕ  

• if 321 εεε == , then QP ,ϕ  is indeterminate (equal biaxial strain). 
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Appendix VII – Benchmark parts drawings 
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Appendix VIII - Size of the FEA Problem with Different Elements 
 
Abaqus 6.10-EF1                                  Date 16-Dec-2011   
Time 10:15:31 
   For use at BRUNEL UNIVERSITY under license from Dassault Systemes 
or its subsidiary. 
 
C3D8 50 kg, 500 mm overlap 
 
P R O B L E M   S I Z E 
 
NUMBER OF ELEMENTS IS                                 18945   NUMBER 
OF ELEMENTS DEFINED BY THE USER AND *TIE       15057 
NUMBER OF INTERNAL ELEMENTS GENERATED FOR CONTACT      3888 
NUMBER OF NODES IS                                    48930 
NUMBER OF NODES DEFINED BY THE USER                   29633 
NUMBER OF INTERNAL NODES GENERATED BY THE PROGRAM     19297 
TOTAL NUMBER OF VARIABLES IN THE MODEL               130524 
(DEGREES OF FREEDOM PLUS MAX NO. OF ANY LAGRANGE MULTIPLIER 
VARIABLES. INCLUDE *PRINT,SOLVE=YES TO GET THE ACTUAL NUMBER.) 
 
       JOB TIME SUMMARY 
       USER TIME (SEC)      =   291.30     
       SYSTEM TIME (SEC)    =   3.5000     
       TOTAL CPU TIME (SEC) =   294.80     
       WALLCLOCK TIME (SEC) =        306 
 
------------------------------------------------------------------- 
                             
Abaqus 6.10-EF1                                  Date 15-Dec-2011   
Time 16:07:06 
   For use at BRUNEL UNIVERSITY under license from Dassault Systemes 
or its subsidiary. 
 
C3D8I 50 kg, 500 mm overlap 
 
P R O B L E M   S I Z E 
 
NUMBER OF ELEMENTS IS                                 18945 
NUMBER OF ELEMENTS DEFINED BY THE USER AND *TIE       15057 
NUMBER OF INTERNAL ELEMENTS GENERATED FOR CONTACT      3888 
NUMBER OF NODES IS                                   112690 
NUMBER OF NODES DEFINED BY THE USER                   29633 
NUMBER OF INTERNAL NODES GENERATED BY THE PROGRAM     83057 
TOTAL NUMBER OF VARIABLES IN THE MODEL               296300 
(DEGREES OF FREEDOM PLUS MAX NO. OF ANY LAGRANGE MULTIPLIER 
VARIABLES. INCLUDE *PRINT,SOLVE=YES TO GET THE ACTUAL NUMBER.) 
 
       JOB TIME SUMMARY 
       USER TIME (SEC)      =   341.80     
       SYSTEM TIME (SEC)    =   3.6000     
       TOTAL CPU TIME (SEC) =   345.40     
       WALLCLOCK TIME (SEC) =        358 
 
 
 
 
 
Abaqus 6.10-EF1                                  Date 16-Dec-2011   
Time 11:14:26 
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   For use at BRUNEL UNIVERSITY under license from Dassault 
Systemes or its subsidiary. 
 
C3D20 50 kg, 500 mm overlap 
 
P R O B L E M   S I Z E 
 
NUMBER OF ELEMENTS IS                                 18945 
NUMBER OF ELEMENTS DEFINED BY THE USER AND *TIE       15057 
NUMBER OF INTERNAL ELEMENTS GENERATED FOR CONTACT      3888 
NUMBER OF NODES IS                                   113002 
NUMBER OF NODES DEFINED BY THE USER                   93705 
NUMBER OF INTERNAL NODES GENERATED BY THE PROGRAM     19297 
TOTAL NUMBER OF VARIABLES IN THE MODEL               322740 
(DEGREES OF FREEDOM PLUS MAX NO. OF ANY LAGRANGE MULTIPLIER 
VARIABLES. INCLUDE *PRINT,SOLVE=YES TO GET THE ACTUAL NUMBER.) 
 
       JOB TIME SUMMARY 
       USER TIME (SEC)      =   1818.9     
       SYSTEM TIME (SEC)    =   11.700     
       TOTAL CPU TIME (SEC) =   1830.6     
       WALLCLOCK TIME (SEC) =       1846 
 
------------------------------------------------------------------- 
 
Abaqus 6.10-EF1                                  Date 15-Dec-2011   
Time 16:18:20 
   For use at BRUNEL UNIVERSITY under license from Dassault Systemes 
or its subsidiary. 
 
shell S4R 50 kg, 500 mm overlap              
                                                    
P R O B L E M   S I Z E 
 
NUMBER OF ELEMENTS IS                                 18945 
NUMBER OF ELEMENTS DEFINED BY THE USER AND *TIE       15057 
NUMBER OF INTERNAL ELEMENTS GENERATED FOR CONTACT      3888 
NUMBER OF NODES IS                                    36074 
NUMBER OF NODES DEFINED BY THE USER                   16777 
NUMBER OF INTERNAL NODES GENERATED BY THE PROGRAM     19297 
TOTAL NUMBER OF VARIABLES IN THE MODEL               130524 
(DEGREES OF FREEDOM PLUS MAX NO. OF ANY LAGRANGE MULTIPLIER 
VARIABLES. INCLUDE *PRINT,SOLVE=YES TO GET THE ACTUAL NUMBER.) 
 
       JOB TIME SUMMARY 
       USER TIME (SEC)      =   282.20     
       SYSTEM TIME (SEC)    =   2.5000     
       TOTAL CPU TIME (SEC) =   284.70     
       WALLCLOCK TIME (SEC) =        295 
 
 
 
 
 
 
 
 
 
Abaqus 6.10-EF1                                  Date 16-Dec-2011   
Time 12:05:53 
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   For use at BRUNEL UNIVERSITY under license from Dassault 
Systemes or its subsidiary. 
 
Shell S4 50 kg, 500 mm overlap              
                                                        
P R O B L E M   S I Z E 
 
 
NUMBER OF ELEMENTS IS                                 18945 
NUMBER OF ELEMENTS DEFINED BY THE USER AND *TIE       15057 
NUMBER OF INTERNAL ELEMENTS GENERATED FOR CONTACT      3888 
NUMBER OF NODES IS                                    36074 
NUMBER OF NODES DEFINED BY THE USER                   16777 
NUMBER OF INTERNAL NODES GENERATED BY THE PROGRAM     19297 
TOTAL NUMBER OF VARIABLES IN THE MODEL               130524 
(DEGREES OF FREEDOM PLUS MAX NO. OF ANY LAGRANGE MULTIPLIER 
VARIABLES. INCLUDE *PRINT,SOLVE=YES TO GET THE ACTUAL NUMBER.) 
 
       JOB TIME SUMMARY 
       USER TIME (SEC)      =   342.40     
       SYSTEM TIME (SEC)    =   3.3000     
       TOTAL CPU TIME (SEC) =   345.70     
       WALLCLOCK TIME (SEC) =        386 
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Appendix IX- Strain gauge specification 
Manufacturer: Tokyo Sokki Kenkyujo co. Ltd. 

 Type Gauge size 

(mm) 

Backing 

(mm) 

Resistance 

Ω 

Gauge Factor 

  Length Width φ  1 2 3 

 

FRA-3-

350-11 

3 2 11 350 2.10 2.10 2.10 
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Appendix X- Specification NI cDAQ-9172 
These specifications are for the NI cDAQ-9172 chassis only. These specifications are 

typical at 25 °C unless otherwise noted. For the C Series I/O module specifications, 

refer to the documentation for the C Series I/O modules you are using. 

 

Analogue Input 

Input FIFO size ...................................... 2,047 samples 

Sample rate1 

Maximum........................................ 3.2 MS/s (multi-channel, aggregate) 

Minimum ........................................ 0 S/s 

Timing accuracy ................................... 50 ppm of sample rate 

Timing resolution ................................. 50 ns 

Number of channels supported ..............Determined by the C Series I/O modules 

Analogue Output 

Numbers of channels supported 

In hardware-timed task ................... 16 

In non-hardware-timed task ............Determined by the C Series I/O modules 

Maximum update rate ............................ 1.6 MS/s (multi-channel, aggregate) 
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Timing accuracy..................................... 50 ppm of sample rate 

Timing resolution .................................. 50 ns 

Output FIFO size.................................... 8,191 samples shared among channels used 

AO waveform modes..............................Non-periodic waveform, 

     periodic waveform regeneration mode from 

onboard      

     memory, periodic waveform regeneration from 

host  

     buffer including dynamic update 

Power Requirements 

You must use a National Electric Code (NEC) Class 2 power source with the NI cDAQ-

9172 chassis. 

Note:  Some I/O modules have additional power requirements. For more information 

about 

C Series I/O module(s) power requirements refer to documentation included with the C 

Series I/O module(s). 

Note:  Sleep mode for C Series I/O modules is not supported in the NI cDAQ-9172. 

Input voltage range................................. 11 V to 30 V 

Maximum required input power ............ 15 W 

Power input connector ...........................DC input jack with locking, threaded 

ring 0.8  

     in. (2 mm) center pin 

Power input mating connector ............... Switchcraft S760K 
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Appendix XI - Specification NI 9236 
8-Channel, 24-Bit Quarter-Bridge Analogue Input Module 

 

The following specifications are typical for the range –40 to 70 °C unless otherwise 

noted.  

Input Characteristics 

Number of channels..........................8 analogue input channels  

Quarter-bridge completion ....................................... 350 Ω, 10 ppm/°C max 

ADC resolution................................. 24 bits 

Type of ADC.....................................Delta-Sigma (with analogue pre-filtering) 

Sampling mode .................................Simultaneous 

Internal master time-base (fM) 

Frequency ...................................12.8 MHz 

Accuracy.....................................±100 ppm max 
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Accuracy  

Measurement condition % of Reading* 
(Gain Error) 

% of range (Offset Error) 
30 days after cal. 

(±5° C) 
1 year after cal. 

(±5° C) 
Calibrated typ (25°C ± 5°C) 0.02% 0.08% 0.14% 
Calibrated max(-40 to 70° C) 0.07% 0.16% 0.39% 
Uncalibrated typ (25° C ± 5° C) 0.15% 0.79% 
Uncalibrated max ( -40 to 70° C) 0.53% 01.67% 
*Exclusive of lead wire desensitisation error. 
† Range equals 29.4 mV/V 
‡Calibrated errors represent offset stability following unstrained measurement. Errors include the effect of 
completion resistors tolerance and drift. 

Shunt Calibration Characteristics 

Accuracy 

Measurement condition % of Reading (Gain Error) 
Typical (25° C, ±5°C) 0.07 % 
Maximum (-40 to 70° C) 0.2% 

Resistance ....................................... 100 kΩ 

Output value ....................................–873.47 μV/V 

Temperature drift ............................. 15 ppm/°C 

Method..............................................Shunt across completion resistor 

Excitation Characteristics 

Excitation type..................................Constant voltage 

Excitation value .......................................3.3 V ± 1% 

Maximum output current .........................46 mA 

Power Requirements 

Power consumption from chassis 

Active mode .........................675 mW max 

Sleep mode...........................25 μW max 

Thermal dissipation (at 70 °C) 

Active mode .........................675 mW max 

Sleep mode...........................25 μW max 
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Appendix XII- Specification NI 9234  
4-Channel, ±5 V, 24-Bit Software-Selectable IEPE and AC/DC Analog Input Module 

 

The following specifications are typical for the range –40 to 70 °C unless otherwise 

noted. 

Input Characteristics: 

Number of channels..........................4 analog input channels 

ADC resolution................................. 24 bits 

Type of ADC.....................................Delta-Sigma (with analog prefiltering) 

Sampling mode .................................Simultaneous 

Type of TEDS supported .................. IEEE 1451.4 TEDS Class I 

Internal master timebase (fM) 

Frequency ...................................13.1072 MHz 

Accuracy.....................................±50 ppm max 

Data rate range (fs) using internal master timebase 

Minimum....................................1.652 kS/s 

Maximum................................... 51.2 kS/s 

Data rate range (fs) using external master timebase 

Minimum....................................0.391 kS/s 

Maximum................................... 52.734 kS/s 

Accuracy 
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Measurement condition % of Reading 
(Gain Error) 

% of range * 
(Offset Error) 

Calibrated max(-40 to 70° C) 0.34%,  ± 0.03 dB ±0.14%,  7.1 mV 
Calibrated typ (25°C ± 5°C) 0.05%, ± 0.005 dB ±0.006%, 0.3 mV 
Uncalibrated max ( -40 to 70° C) 1.9%, ±0.16 dB ± 0.27%, 13.9 mV 
Uncalibrated typ (25° C ± 5° C) 0.48%, ± 0.04 dB ±0.04%, 2.3 mV 
*Range = 5.1 Vpk 

Idle channel noise and noise density 

Idle Channel 51.2 kS/s 25.6 kS/s 2.048 kS/s 
Noise 97 dBFS 99 dBFS 103 dBFS 

50 μVrms 40 μVrms 25 μVrms 
Noise density 310 nV/√Hz 350 nV/√Hz 780 nV/√Hz 

Input impedance 

Differential ................................. 305 kΩ 

AI– (shield) to chassis ground.... 50 Ω 

Total harmonic distortion (THD) 

Input Amplitude 1 kHz 8 kHz 
-1 dBFS -95 dB -87 dB 
-20 dBFS -95 dB -80 dB 

Power Requirements 

Power consumption from chassis 

Active mode ...............................900 mW max 

Sleep mode .................................25 μW max 

Thermal dissipation (at 70 °C) 

Active mode ...............................930 mW max 

Sleep mode .................................25 μW max 
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Appendix XIII- Tip Displacement Calculation Flowchart 
(Abraham and Sivaloganathan, 2011) 

 

                         

B RR RI II gg gd dd dd etc.C DE 12  31 23 12 34 5

Calculate Reactions R RR RBC DE

        

33 

Equation set (1)

Consider BE in CD, Establish equation of the shape using g and d22 

        

11 

Consider AC, Establish equation of the shape & calculate g and d11

Equation set (3)

Consider CB in AB, Establish equation of the shape using g and d11

        

5 

Consider DF in EF, Establish equation of the shape using g and d44 

        

22 

Consider CB in CD, Establish equation of the shape using g and d11

        

44 

Consider ED in CD, Establish equation of the shape using g and d33

33

 

  



 

 

197 

References: 

1. Aalami, B. and Williams, D.G. (1975) Thin plate design for transverse loading, 

London: Crosby Lockwood Staples.  

2. Abbod, M.F., Talamantes-Silva, J., Linkens, D.A. and Howard, I. (2004) 

‘Modelling of plane strain compression (PSC) test for aluminium alloys using 

finite elements and fuzzy logic’, Engineering Applications of Artificial 

Intelligence, 17(5), pp. 447-456.  

3. Abd El-Ghany, K.M. and Farag, M.M. (2000) ‘Expert system to automate the 

finite element analysis for non-destructive testing’, NDT & E International, 

33(6), pp. 409-415.  

4. Abraham, J., Sivaloganathan, S., and Rees, D.A. (2011), ‘The Telescopic 

Cantilever Beam, Part 1: Deflection Analysis’, Engineering Integrity. 30, pp 6-

15. 

5. Adams, R.S. and Atman, C.J. (1999), ‘Cognitive Processes in Iterative Design 

Behavior’,  Proceedings of the 29th ASEE/IEEE Frontiers in Education 

Conference, San Juan de Puerto Rico, pp 10-13. 

6. Adams, V. (2006), How To Manage Finite Element Analysis in the Design 

Process, Glasgow: NAFEMS Ltd.  

7. Adams, V. (2008), A designer's guide to simulation with finite element analysis, 

Glasgow: NAFEMS Ltd.  

8. Akao, Y. (1990), Quality function deployment: integrating customer 

requirements into product design, Oregon: Productivity Press.  

9. Andreassen, M.M. (1998), ‘Conceptual Design Capture, Keynote Address’, 

Proceedings of the Engineering Design Conference 98, Professional 

Engineering Publications, pp 21-30.  

10. ASME (2006), Guide for Verification and Validation in Computational Solid 

Mechanics, New York: American Society of Mechanical Engineers. 

11. Bathe, K. (1996), Finite element procedures, Englewood Cliffs: Prentice Hall.  

12. Beerel, A.C. (1987), Expert systems: strategic implications and applications, 

Chichester: Ellis Horwood.  

13. Bellenger, E., Benhafid, Y. and Troussier, N. (2008), ‘Framework for controlled 

cost and quality of assumptions in finite element analysis’, Finite Elements in 

Analysis and Design, 45(1), pp. 25-36.  



 

 

198 

14. British Standards Institution (2001), BS EN 280:2001 Mobile elevating work 

platforms — Design calculations — Stability criteria — Construction —Safety 

— Examinations and tests. London: BSI. 

15. Carino, C. (2006), ‘Structural layout assessment by orthogonal array based 

simulation’, Mechanics Research Communications, 33(3), pp. 292-301.  

16. Carnevalli, J.A. and Miguel, P.C. (2008), ‘Review, analysis and classification of 

the literature on QFD—Types of research, difficulties and benefits’, 

International Journal of Production Economics, 114(2), pp. 737-754.  

17. Carpinteri, A. (1997), Structural mechanics: a unified approach, London: E & 

FN Spon.  

18. Chan, L. and Wu, M. (2005), ‘A systematic approach to quality function 

deployment with a full illustrative example’, Omega, 33(2), pp. 119-139.  

19. Chandrupatla, T.R. and Belegundu, A.D. (2002), Introduction to finite elements 

in engineering, 3rd edn, Englewood Cliffs: Prentice-Hall.  

20. Chillery, M. (2010), ‘Nominal and Non-linear Stresses’ in Knowledge base don't 

forget the basics, Quinn D. (ed.), Glasgow: NAFEMS (a), pp. 14-15.  

21. Chillery, M. (2010), ‘The Importance of Mesh Convergence’ in Knowledge base 

don't forget the basics, Quinn D. (ed.), Glasgow: NAFEMS (b), pp. 5-6.  

22. Chou, P. C. and Pagano, N. J. (1967), Elasticity, Tensor, Dyadic and 

Engineering Approaches, Canada: Van Nostrand Company Inc. 

23. Cohen, L. (1995), Quality Function Deployment: How to Make, QFD Work for 

You, Massachusetts: Addison-Wesley. 

24. Collins, J.A. (1993), Failure of Materials in Mechanical Design, 2nd edn, New 

York: John Wiley & Sons, Inc. 

25. Cooper, R.G. and Kleinschmidt, E.J. (1987), ‘New products: What separates 

winners from losers?’, Journal of Product Innovation Management, 4(3), pp. 

169-184.  

26. Costa, R. and Sobek, D.K. (2003), ‘Iteration in Engineering Design: Inherent 

and Unavoidable or Product of Choices Made?’, International conference on 

design theory and methodology, Chicago, IL. 

27. Craig, A. and Hart, S. (2003), Dimensions of success in new product 

development. In:  Baker M. J. (ed.) Perspectives on Marketing Management. (3), 

London: John M. Wiley & Sons. Ltd.  



 

 

199 

28. Cross, M. and Sivaloganathan, S. (2004), ‘A methodology for developing 

company-specific design process models’, Proc. IMechE, Part B: J. Engineering 

Manufacture, 219, pp. 265-282.  

29. Culbert, C., Riley, G. and Savery, R.T. (1989), ‘An expert system development 

methodology that supports verification and validation’, ISA transactions, 28 (1), 

pp. 15-18.  

30. Dar, F.H., Meakin, J.R. and Aspden, R.M. (2002), ‘Statistical methods in finite 

element analysis’, Journal of Biomechanics, 35(9), pp. 1155-1161.  

31. Dassault Systèmes (2007), Abaqus 6.7 Analysis User’s ManualVolume II: 

Analysis Procedures, Solution and Control, Dassault Systèmes (a), USA.  

32. Dassault Systèmes (2007), Abaqus 6.7 Analysis User's Manual 

Volume IV: Elements, Dassault Systemes (b), USA.  

33. Dassault Systèmes (2009), Introduction to Abaqus 6.9, Dassault Systemes (a), 

USA.  

34. Dassault Systèmes (2009), Linear Dynamic with Abaqus 6.9, Dassault Systemes 

(b), USA.  

35. Dassault Systèmes (2009), Modelling Contact with Abaqus 6.9, Dassault 

Systemes (c), USA.  

36. Dassault Systèmes (2010), Element Selection in Abaqus 6.10, Dassault Systems, 

USA.  

37. Dassault Systèmes (2011), Essentials of Modeling Buckling and Postbuckling 

with Abaqus 6.11, Dassault Systèmes, USA.  

38. Dolsak, B. (2002), ‘Finite element mesh design expert system’, Knowledge-

Based Systems, 15( 5-6), pp. 315-322.  

39. Dolšak, B. and Novak, M. (2011), ‘Intelligent decision support for structural 

design analysis’, Advanced Engineering Informatics, vol. 25, no. 2, pp. 330-340.  

40. Kang, K.H. (1995), ‘Intelligent Finite Element Mesh Generation’, Engineering 

with Computers, 11, pp. 70-82.  

41. Falzon, B.G. and Hitchings, D. (2006), An Introduction to Modelling Buckling 

and Collapse, Glasgow: NAFEMS.  

42. Forsyth, R. (1989), Expert systems: principles and case studies, 2nd edn, 

London: Chapman and Hall.  



 

 

200 

43. Gerstle, K.H. (1974), Basic structural analysis, Prentice-Hall, Englewood 

Cliffs: London.  

44. Green, W.G. (1962), Theory of Machines, London & Glasgow: Blackie and Son 

Ltd. 

45. Griffin, A. and Page, A.L. (1993), ‘An interim report on measuring product 

development success and failure’, Journal of Product Innovation Management, 

10 (4), pp. 291-308.  

46. Gürgöze, M. (1986), ‘On the approximate determination of the fundamental 

frequency of a restrained cantilever beam carrying a tip heavy body’, Journal of 

Sound and Vibration,105 (3) , pp 443-449  

47. Hinton, E. (1992), ‘Incremental-Iterative Solution’, in Hinton, E. (ed.) 

Introduction to Nonlinear Finite Element Analysis, Reprint Glasgow: NAFEMS 

(2010). 

48. Huebner, K.H., Dewhirst, D.L., Smith, D.E. and Byrom, T.G. (2001), The finite 

element method for engineers, 4th edn, New York: Wiley.  

49. Jeang, A., Chung, C., Chen, C. and Li, H. (2009), ‘Optimizing process 

parameters of hot-bar soldering process through quality function deployment 

and Taguchi method’, Journal of Materials Processing Technology, 209 (6), pp. 

2967-2977.  

50. Jonson, W., Mellor, P.B. (1973), Engineering Plasticity, Berkshire: Van 

Nostrand Reinhold Company Ltd. 

51. Computational Methods in Design and Manufacturing, [CD-ROM], Department 

of Mechanical Engineering, Madras: Indian Institute of Technology Madras.  

52. Kurowski, P.M. (2004), Finite element analysis for design engineers, 

Warrendale, PA : SAE International.  

53. Labrie, R., Thilloy, C., Tanguy, P.A. and Moll, G.H. (1994), ‘An expert assistant 

to monitor finite element simulations’, Mathematics and Computers in 

Simulation, 36 (4-6), pp. 413-422.  

54. Li, B., Reis, L. and de Freitas, M. (2006), ‘Simulation of cyclic stress/strain 

evolutions for multiaxial fatigue life prediction’, International Journal of 

Fatigue, 28 (5-6), pp. 451-458.  

http://www.sciencedirect.com/science/journal/0022460X
http://www.sciencedirect.com/science/journal/0022460X
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236923%231986%23998949996%23442193%23FLP%23&_cdi=6923&_pubType=J&view=c&_auth=y&_acct=C000027918&_version=1&_urlVersion=0&_userid=7694587&md5=8f926895b459469a817b52feaa5f5555


 

 

201 

55. Lin, Y. and Lo, S. (2005), ‘Modeling of chemical mechanical polishing 

process using FEM and abductive network’, Engineering Applications of 

Artificial Intelligence,18 (3), pp. 373-381.  

56. Lo, C., Tseng, K.C. and Chu, C. (2010), ‘One-Step QFD based 3D 

morphological charts for concept generation of product variant design’, Expert 

Systems with Applications, 37 (11), pp. 7351-7363.  

57. MacLeod, I.A. (2005), Modern structural analysis: Modelling process and 

guidance, London: Thomas Telford.  

58. Mair (1984), Guidelines to finite element practice, Dept. of Trade and Industry, 

National Engineering Laboratory, Glasgow: NAFEMS.  

59. Maropoulos, P.G. and Ceglarek, D. (2010), ‘Design verification and validation 

in product lifecycle’, CIRP Annals - Manufacturing Technology, 59 (2), pp. 740-

759.  

60. Martin, J. (1988), Building Expert Systems, Cliffs: Prentice-Hall.  

61. Mottram, J.T. and Shaw, C.T. (1996), Using finite elements in mechanical 

design, London: McGraw Hill. 

62. National Agency for Finite Element Methods and Standards and National 

Engineering Laboratory (2006), What is Verification and Validation? National 

Agency of Finite Element Methods and Standards, Glasgow.  

63. National Agency for Finite Element Methods and Standards and National 

Engineering Laboratory (1987), A finite element primer , National Engineering 

Laboratory : National Agency for Finite Element Methods and Standards, 

Glasgow.  

64. NI (2008), operating instructions and specifications NI 9235/9236, National 

Instruments Corp.  

65. NI (2008), operating instructions and specifications NI 9234, National 

Instruments Corp.  

66. NI (2008), user guide and specifications NI cDAQ-9172, National Instruments 

Corporation.  

67. Niftylift Ltd (2010), Access Platform Catalogue, Niftylift Ltd, Milton Keynes, 

UK.  

68. Novak, M. and Dolšak, B. (2008), ‘Intelligent FEA-based design improvement’, 

Engineering Applications of Artificial Intelligence, 21 (8), pp. 1239-1254.  



 

 

202 

69. Oberkampf, W.L. and Barone, M.F. (2006), ‘Measures of agreement 

between computation and experiment: Validation metrics’, Journal of 

Computational Physics, 217 (1), pp. 5-36.  

70. Oberkampf, W.L. and Trucano, T.G. (2008), ‘Verification and validation 

benchmarks’, Nuclear Engineering and Design, 238 (3), pp. 716-743.  

71. Oberkampf, W.L., Trucano, T.G. and Hirsch, C. (2004), ‘Verification, 

validation, and predictive capability in computational engineering and physics’, 

Applied Mechanics Reviews, 57 (1-6), pp. 345-384.  

72. Ostrofsky, B. (1977), Design, planning and development methodology, London : 

Prentice-Hall. 

73. Pahl, G. and Wallace, K. (2006), Engineering design: a systematic approach, 

3rd edn, London: Springer.  

74. Parameswaran, M.A. (2004), An introduction to design engineering, Harrow: 

Alpha Science International,.  

75. Peterson, R.E. (1974), Stress concentration factor, John Wiley and Sons, USA 

76. Pilkey, W.D. (1994), Formulas for stress, strain, and structural matrices, Wiley, 

New York ; Chichester.  

77. Pinfold, M. and Chapman, C. (2001), ‘The application of KBE techniques to the 

FE model creation of an automotive body structure’, Computers in Industry, 44 

(1) , pp. 1-10.  

78. Potma, T. (1967), Strain Gauges Theory and Application, Netherlands: Philips 

79. Prasad, B. (1998), ‘Review of QFD and related deployment techniques’, Journal 

of Manufacturing Systems, 17 (3), pp. 221-234.  

80. Pugh, S. (1991), Total design: integrated methods for successful product 

engineering, Pearson Education Ltd., Harlow.  

81. Ratchev, S., Phuah, K. and Liu, S. (2007), ‘FEA-based methodology for the 

prediction of part–fixture behaviour and its applications’, Journal of Materials 

Processing Technology, 191 (1-3), pp. 260-264.  

82. Ray, M.S. (1985), Elements of engineering design: an integrated approach, 

New York: Prentice-Hall.  

83. Reddy, J.N. (1984), An introduction to the finite element method, New York: 

McGraw-Hill.  

84. Rees, D. (1997), Basic solid mechanics, London: Macmillan.  



 

 

203 

85. Rees, D. (2000), The mechanics of solids and structures, London: Imperial 

College Press. 

86. Ross, P.J. (1996), Taguchi techniques for quality engineering: loss function, 

orthogonal experiments, parameter and tolerance design, 2nd edn, New York: 

McGraw-Hill.  

87. Roy, C.J. and Oberkampf, W.L. (2011), ‘A comprehensive framework for 

verification, validation, and uncertainty quantification in scientific computing’, 

Computer Methods in Applied Mechanics and Engineering, 200 (25-28), pp. 

2131-2144.  

88. Sack, R.L. (1984), Structural analysis, London: McGraw-Hill. 

89. Sadd, M.H. and Rolph III, W.D. (1987), ‘On training programs for design 

engineers in the use of finite element analysis’, Computers & Structures, 26 (1-

2), pp. 411-414.  

90. Salazar, J.R., Mobasseri, S.O. and Sivaloganathan, S. (2012), ‘Equivalent 

Rigidity Method for Estimating the Natural Frequency of Telescopic Cantilever 

Beams’, International Journal of Computer Application Technology, 44 (6).  

91. Samuel, A.E. and Weir, J. (2005), Introduction to engineering design, Elsevier 

Butterworth-Heinemann, Oxford.  

92. Shephard, M.S. and Wentorf, R. (1994), ‘Toward the implementation of 

automated analysis idealization control’, Applied Numerical Mathematics, 14 (1-

3), pp. 105-124.  

93. Singh, S. (1979), Applied stress analysis, First edn, Delhi: KHANA Publishers.  

94. Sivaloganathan, S., Evbuomwan, N.F.O., Jebb, A. and Wynn, H.P. (1995) 

‘Design function deployment — a design system for the future’, Design Studies, 

16 (4), pp. 447-470.  

95. Smolira, M. (1980), Analysis of Structure by the Force-Displacement Method, 

London: Applies Scince Publishers. 

96. Spreng, R.A., MacKenzie, S.C., Olshavsky, R.W. (1996), ‘A re-examination of 

the determinants of consumer satisfaction’,  Journal of Marketing,  60: pp 15-32. 

97. Timoshenko, S.P. and Young, D.H. (1965), Theory of structures, 2nd edn, 

London: McGraw-Hill.  

98. Timoshenko, S. P. and Goodier, J. N. (1951), Theory of Elasticity, 2nd ed., USA: 

McGrow Hill. 



 

 

204 

99. Trahair, N.S. (1993), Flexural-torsional buckling of structures, London: 

Spon. 

100. Turkiyyah, G.M. and Fenves, S.J. (1996), ‘Knowledge-based assistance 

for finite-element modeling’, IEEE Expert, 11 (3), pp. 23-32.  

101. Ugural, A.C. (1999), Stresses in plates and shells, 2nd edn, London : 

McGraw-Hill.  

102. Vinson, J.R. (1989), The behavior of thin walled structures : beams, 

plates, and shells, Dordrecht: Kluwer Academic Publishers.  

103. Vishay (2010), Strain Gauge Rosettes- Selection, Application and Data 

Reduction, Vishay Micro-Measurements (a).  

104. Vishay (2010), Strain Guage selection: Criteria, Procedures, 

Recommendations, Vishay Micro-Measurements (b).  

105. Vishay (2011), Surface Preparation for Strain Gage Bonding, Vishay 

Micro-Measurements.  

106. Wang, C. T., (1953), Applied Elasticity, USA: McGrow Hill  

107. Wu, D.H., Tsai, Y.J. and Yen, Y.T. (2003), ‘Robust design of quartz 

crystal microbalance using finite element and Taguchi method’, Sensors and 

Actuators B: Chemical, 92 (3), pp. 337-344.  


	Front Page
	Table of Contents
	Figures
	Tables
	1 Introduction
	1.1 Research aim and objectives
	1.2 Thesis structure

	2 Principles of Applied Stress Analysis 
	2.1 Structural analysis in application, aims and objectives
	2.2 Quantifiable parameters and failure criteria 
	2.3 Numerical method in structural design
	2.4 Experimental analysis
	2.5 Chapter summary

	3 Structural Analysis in Product Development 
	3.1 Product design perspective
	3.2 Implementing Structural analysis in the design process
	3.3 Systematic Structural Analysis 
	3.4 Quality Function Deployment (QFD) 
	3.5 Chapter summary

	4 QFD-Based Design Integrated Structural Analysis Methodology
	4.1 General Provision 
	4.2 Methodology process model 
	4.3 Methodology framework 
	4.4 Chapter summary

	5 Case Study- Telescopic Cantilever Boom 
	5.1 Telescopic cantilever boom
	5.2 Benchmark construction
	5.3 Stakeholder’s requirements
	5.4 Measurable performance characteristics
	5.5 Independent parameter
	5.6 QFD chart 1
	5.7 QFD Chart 2
	5.8 Plan for individual studies
	5.9 V&V on the instant of reality
	5.10 Chapter summary

	6 Analysis and Results
	6.0 Introduction
	6.1 General condition of the analysis
	6.2 Stress behaviour at vicinity of contact area
	6.3 Displacement behaviour
	6.4 Vibration behaviour
	6.5 Buckling performance
	6.6 Chapter summary

	7 Discussions and Conclusions
	7.1 Summary
	7.2 Contribution to knowledge
	7.3 Recommendation for future developments
	7.4 Conclusion
	Appendix I – Stress invariants
	Appendix II – Maximum shearing stress
	Appendix III – Principal strains
	Appendix IV - List of failure modes 
	Appendix VI – Principal strain angle in rosette 
	Appendix VII – Benchmark parts drawings
	Appendix VIII - Size of the FEA Problem with Different Elements
	Appendix IX- Strain gauge specification
	Appendix X- Specification NI cDAQ-9172
	Appendix XI - Specification NI 9236
	Appendix XII- Specification NI 9234 
	Appendix XIII- Tip Displacement Calculation Flowchart
	References:


