
Electronic Communications of the EASST
Volume 8 (2008)

Proceedings of the
Third International ERCIM Symposium on

Software Evolution
(Software Evolution 2007)

Evolutionary Success of Open Source Software:
an Investigation into Exogenous Drivers

Karl Beecher, Cornelia Boldyreff, Andrea Capiluppi and Stephen Rank

14 pages

Guest Editors: Tom Mens, Ellen Van Paesschen, Kim Mens, Maja D’Hondt
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/9633558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Evolutionary Success of Open Source Software:
an Investigation into Exogenous Drivers

Karl Beecher, Cornelia Boldyreff, Andrea Capiluppi and Stephen Rank1

1 (kbeecher,cboldyreff,acapiluppi,srank)@lincoln.ac.uk
Centre of Research on Open Source Software – CROSS

Department of Computing and Informatics
University of Lincoln, UK

Abstract: The “success” of a Free/Libre/Open Source Software (FLOSS)project
has often been evaluated through the number of commits made to its configuration
management system, number of developers and number of users. Based on Source-
Forge, most studies have concluded that the vast majority ofprojects are failures.

This paper argues that the relative success of a FLOSS project depends also on
the chosen forge and distribution: given a random sample of 50 projects contained
within a popular FLOSS forge (Debian, which is the basis of the successful Debian
distribution), we compared these with a similar sample fromSourceForge, using
product and process metrics, such as size achieved and developers involved.

The results show at first that, depending on the forge of FLOSSprojects, researchers
can draw different conclusions on the overall concept of success of FLOSS software.
Secondly, the projects included in the Debian distributionbenefit, on average, from
a larger evolutionary activity and a larger number of developers than the comparable
projects on SourceForge. Finally, the Debian projects benefit from more activity and
more developers from the point at which they joined this distribution.

Keywords: FLOSS, repositories, metrics, success, evolvability

1 Introduction

In terms of Lehman’s first law of software evolution, it can beanticipated that a useful and widely
used real-world software system, known as an evolutionary (or E-type) software system, must
undergo continuing change,i.e. that it must evolve [LRW+97]. Some well-known Open Source
projects, such as the so-called LAMP (Linux, Apache, MySQL,Perl), the Debian family, and
*BSDs, have achieved higher evolvability than others [MFH02]; these systems are categorised as
E-type. Their evolvability is made possible through these projects attracting a large community
of users as well as a strong base of developers. The user community initiates the need for change
while the developers make it happen; both are key factors in the evolution process.

The term “success” of FLOSS projects has been often empirically evaluated via endogenous
characteristics, such as the amount of development activity, the number of developers, or by
using proxies of their pool of users. Moreover, FLOSS literature has traditionally tackled this
research topic by sampling well-known FLOSS forges (mostlySourceForge), and concluding
that the vast majority are “unsuccessful”, or “dead” projects [ES07]. Perhaps because they are

1 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

too specialised in their functionality, but also it could bethat through lack of publicity, they
have never achieved the wide spread usage, nor attracted thedevelopers that would drive their
evolution. Using the literature terms, those projects never gained a ‘bazaar’ state, where users
join in a self-sustaining cycle and become developers on theproject [SM04, RG06, CM07].

Unless an open source evolutionary software project has enough developers to satisfy its users’
needs for change, it is likely to fail. An interesting case arises when one open source project
becomes incorporated into another, larger one; this is often found in the Open Source operating
system projects, such as Debian,e.g.in the case of new packages. In such a case, the incorporated
package project becomes as widely-distributed as the incorporating project and potentially is able
to reach the same user base and benefit from the developer baseof the incorporating project.

This paper investigates the exogenous drivers of FLOSS evolvability, and studies whether the
inclusion of a specific project in the same forge and distribution of a successful FLOSS project
(Debian) has an influence on its evolutionary characteristics. In order to understand the influence
of these drivers, we randomly sampled 50 projects from both forges: Debian and SourceForge,
and studied their evolution. Our goal is to determine whether the visibility given by the inclusion
into Debian increases the number of developers and their activity, compared to the SourceForge
sample. Also, we studied the “entry point” of each project into the Debian forge and distribution,
and evaluated its activity both prior to and after this event.

This paper is structured as follows: Section2 reviews related work in the area of FLOSS char-
acterisation and section3 introduces the traditional Goal-Question-Metric approach [BCR94],
as applied to the research topic of this paper. Two major questions will be introduced and later
instantiated in several hypotheses in section4. Section4.1 empirically evaluates and tests the
hypotheses derived from the first question, while section4.2 presents the results for the second
question. Section6 presents our conclusions.

2 Related work

There are two main types of FLOSS literature, tentatively termedexternaland internal to the
FLOSS phenomenon: based on the availability of FLOSS data, the former has traditionally used
FLOSS artefacts in order to propose models [HG05], test existing or new frameworks [CCP07,
LHMI07], or build theories [ACPM01] to provide advances in software engineering.

The latter includes several other studies that have analysed the FLOSS phenomenonper se
([SAOB02, Cap03, Ger04] with their results aimed at both building a theory of FLOSS,and
characterising the results and their validity specificallyas inherent to this type of software and
style of development. In this section we review some of the works of the latter category.

The success and failure of FLOSS projects has been extensively studied in the past: some spe-
cific forges were analysed, and metrics were computed of extracted from the forges themselves.
Examples include the use of thevitality andpopularity indexes, computed by the SourceForge
maintainers, which were used to predict other factors on thesame forges [SA02], or the com-
parison of the status of the projects between two different observations [FFH+02]. Also data
was collected from SourceForge about community size, bug-fixing time and the popularity of
projects, and it was used to review some popular measures forsuccess in information systems
to the FLOSS case [CAH03a]. Popularity of FLOSS projects was also assessed using web-

Proc. Software Evolution 2007 2 / 14



ECEASST

search engines [Wei05]. Other studies observed projects from SourceForge, and from their
release numbers they inferred their activity or success within a sample [CAH03b], while other
researchers sampled the whole SourceForge data space, and concluded that the vast majority of
FLOSS projects should be considered as failures [RG05]. Finally, other researchers have created
5 categories for the overall SourceForge site, based on dynamic growth attributes, and using the
terms “success” and “tragedy” within the FLOSS development. Again, it was shown that some
50% of the FLOSS projects should be considered as tragedies [ES07].

There are several tools and data sources which are used to analyse FLOSS projects. FLOSS-
mole1 is a single point of access to data gathered from a number of FLOSS forges (e.g., Source-
Forge, Freshmeat, Rubyforge). While FLOSSmole provides a simple querying tool, its main
function is to act as a source of data for others to analyse. CVSAnaly2 is a tool which is used to
measure any analyse large FLOSS projects [RKG04]. It is used in this paper to determine such
information as the number of commits and developers associated with a particular project.

3 Goal, Question, Metrics – GQM

The Goal-Question-Metric (GQM) method evaluates whether agoal has been reached by associ-
ating that goal with questions that explain it from an operational point of view and providing the
basis for applying metrics to answer these questions. The aim of the method is to determine the
information and metrics needed to be able to draw conclusions on the achievement of the goal.

In the following, we applied the GQM method to first identify the overall goal of this research;
we then formulate a number of questions related to the FLOSS projects and their success relative
to their host forge and distribution to which they belong; and finally we collect adequate product
and process metrics to determine whether the goal has been achieved.

Goal: The long-term objective of this paper is to evaluate metrics to identify successful
FLOSS projects, and to provide guidelines to FLOSS developers about practical actions to
foster the successful evolution of their applications. Based on two samples from Debian and
SourceForge, a comparison of their product and process characteristics will be evaluated to de-
termine which sample should be considered more successful in terms of their evolution. This
will also give an indication of the forges and distributionsin which developers should include
their projects so that they may achieve the best outcomes fortheir project’s future development.

Question: The purpose of this study is to establish differences between samples of FLOSS
projects extracted from Debian and SourceForge. Two sets ofquestions will be evaluated, one
comparative and one internal to Debian: the first will deal with a direct comparison of the evolu-
tionary characteristics achieved by the projects in the twosamples, and the latter will study the
projects in the Debian sample, and evaluate whether their evolution after being included in the
distribution is different from thatbeforethis date. The date when a FLOSS project was inserted
into the Debian distribution will be termed “entry point”. The difference before and after the
entry point will be evaluated by comparing the activity and number of developers in each phase.

As a summary the two main questions underlying this study canbe formulated as follows:
1. Are projects in Debian statistically different from projects in SourceForge?

1 http://ossmole.sourceforge.net/
2 http://cvsanaly.tigris.org/

3 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

2. After being inserted into the Debian forge and distribution, do FLOSS projects leverage
more activity and developers than before?

In section4, the first question will be articulated in four research hypotheses, while the second
question will lead to two further hypotheses.

Metrics: This study uses three sources of information to assess the above questions: the
SourceForge and the Debian forges to select two random samples of projects; each project’s
own repository (either their CVS or SVN); and, among the projects within the Debian sample,
their entry into Debian. Each of these sources has been analysed to obtain the metrics needed to
perform the investigation: the metrics for the study will beintroduced in each section below.

3.1 Debian and SourceForge samples

The Debian forge (http://www.debian.org/) hosts a large number of FLOSS projects under a com-
mon name. At the time of writing, more than 20,000 projects are listed under the “stable” label
of the latest version. Using a randomiser, we selected 50 of these stable projects. A summary of
the projects retrieved from Debian can be found in the first column of table1.

The SourceForge site (http://sourceforge.net/) hosts more than 150,000 projects. In order to
draw an accurate comparison, the sample from SourceForge was extracted only from the pool of
the “stable” projects,i.e. those projects whose core developers labelled the status ofthe project
with the tag “Production/Stable”. The number of projects from Debian and SourceForge in this
category is comparable (around 22,000). A summary of the projects that have been chosen from
the SourceForge site can be found in the first column of table2.

3.2 Code repositories

The CVS/SVN repository of each project from the Debian or theSourceForge sample was
searched: in the sample of 50 Debian projects, 42 existing repositories were found. In order
to provide a similar sample, 42 repositories were also selected from the SourceForge sample.

The following concept and attributes were used to build a table of results for each project:
Commit: the atomic action of a developer checking in one or more files(being source code

or other) into a central repository.
Modules and subsystems: at a fine granular level, both CVS and SVN repositories record

activity on files (here termed as “modules”) and their containing folder (termed “subsystem”).
Date: CVS/SVN repositories record the time when the module and its subsystem was modified

or created from scratch. A date with ISO formatting “YYYY-MM-DD” was recorded.
Developers: we recorded this information in two ways: firstly by assigning the activity to the

actual committer who placed the file into the repository; secondly by using any further developers
who were mentioned in the commit, by means of mentioning his/her involvement in the coding
or patching. This information was used to characterise the input provided to each project.

Touch: Since many modules and subsystems can be committed in the repository within the
same commit, and the same module could have been modified by more than one developer in
the same commit, the term “touch” was used to isolate the atomic information of a unique date,
unique union on module and subsystem, and unique developer.

Proc. Software Evolution 2007 4 / 14

http://www.debian.org/
http://sourceforge.net/


ECEASST

project oldestdate entry date newestdate days touches Dev. SLOC

acpidump 2003-05-01 2005-09-26 2003-05-01 1 34 1 2349
apmud 2001-12-07 2000-05-23 2001-12-24 18 95 1 2502
clamav 2003-07-29 2002-05-09 2007-06-02 1405 5382 9 116731

dia 1998-10-01 1998-09-02 2007-06-07 3172 12828 126 146550
EtoileWildMenus 2006-03-04 2006-10-03 2007-04-16 409 46 3 1711

fte 2000-01-30 1996-12-25 2007-03-15 2602 1937 16 51498
geomview 2000-08-15 1998-08-02 2007-05-21 2471 7777 6 101844

grass6 1999-12-29 2003-11-10 2007-06-02 2713 42135 77 107648
gwenview 2006-06-20 2001-09-16 2007-06-06 352 449 5 4580
kdegames 1997-09-11 1997-09-20 2007-06-07 3557 19659 243 118479

kdenetwork 1997-11-26 1997-10-19 2007-06-06 3480 43130 818 272576
kmouth 2003-01-17 2004-01-30 2007-06-05 1601 647 31 5240
liboil 2004-01-07 2004-11-04 2007-05-29 1239 3106 4 52996

mimedecode 2006-06-19 1996-11-29 2006-06-19 1 16 1 631
mod authkerb 2002-05-01 2004-02-21 2006-11-22 1667 349 2 119
myphpmoney 2002-11-20 2003-01-15 2007-05-27 1650 741 5 19434
octaveforge 2001-10-10 2001-02-25 2007-06-02 2062 16044 48 78150

Pike 1996-09-22 2002-05-05 2007-05-30 3903 21449 69 173196
prelude-manager 2001-08-23 2002-04-11 2007-05-02 2079 1557 44 10854

ProofGeneral 1996-03-15 2002-09-03 2007-05-25 4089 10425 20 48692
ruby 1998-01-16 2003-08-23 2007-06-05 3428 23968 143 419942
scid 2002-04-04 2001-02-13 2003-12-12 618 633 2 89402

shorewall 2002-05-01 2001-12-30 2007-06-06 1863 79498 4 25159
skel 2001-05-20 2003-07-13 2007-01-24 2076 219 13 120

sylpheed 2005-01-12 2000-09-30 2007-06-04 874 2719 2 106087
tcl 1998-03-26 1997-08-19 2007-05-30 3353 39124 109 165306
tdb 2000-08-14 2001-05-07 2005-08-02 1815 295 9 3261

tiobench 2000-03-23 2000-11-08 2003-12-22 1370 110 3 1689
txt2html 2007-01-15 2001-03-30 2007-05-10 116 4 1 3623

vlc 1999-08-08 2000-03-13 2007-06-06 2860 34736 113 401256
wxWidgets 1998-05-20 2000-02-13 2007-06-01 3300 246022 104 2142713
xmakemol 1998-04-03 2001-10-31 2006-09-23 3096 1386 4 18724

yaml4r 2002-06-22 2003-08-23 2003-04-24 307 498 1 10728
fig2ps 2005-11-16 2003-10-28 2007-02-19 461 105 1 397

syncekde 2003-02-11 2003-08-15 2006-11-26 1385 622 5 21684
noteedit 2004-09-15 2001-07-01 2005-07-30 319 590 4 63456

grub 1999-02-28 1997-11-19 2007-02-22 2917 5101 76 3536
libsoup 2000-12-06 2003-03-19 2007-06-01 2369 1548 42 15012
prcs1 2001-06-25 1997-03-28 2005-02-07 1324 858 5 37360

kphoneSI 2005-10-12 2002-12-20 2007-05-23 589 1630 1 41829
cdparanoia 1999-08-15 1998-05-16 2006-11-15 2650 297 6 9182

rlplot 2002-06-06 2004-04-16 2007-05-28 1818 1405 1 69493

Table 1: Summary of attributes of the Debian projects: in bold, the projects where there is a
recorded evolution before and after the entry-point

5 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

project oldestdate newestdate days touches developers SLOC

audiobookcutter 2006-05-06 2007-05-22 381 958 2 4229
pf 2005-10-03 2006-08-29 330 3207 2 84489

seagull 2006-06-06 2007-05-31 359 707 5 62875
csUnit 2002-12-16 2006-08-14 1337 2147 1 16241
fitnesse 2005-03-26 2007-06-04 800 5172 12 39503
galeon 2000-07-06 2007-04-20 2479 10839 82 93374

expreval 2006-08-29 2007-04-11 225 282 1 3588
cdlite 2005-12-06 2007-04-12 492 46 1 1116

txt2xml 2002-04-27 2006-07-26 1551 155 3 1345
wxactivex 2005-01-26 2005-01-27 1 59 1 3264

ustl 2003-03-21 2007-03-31 1471 11470 1 11416
neocrypt 2003-05-23 2005-06-25 764 108 2 2135

cpia 2000-03-02 2004-10-17 1690 429 15 22954
moses 2002-05-07 2007-02-20 1750 5170 8 105955

critical care 2002-01-18 2002-09-22 247 1708 5 38994
xmlnuke 2006-03-27 2007-03-07 345 888 2 57944

jtrac 2006-03-18 2007-06-06 445 1577 1 12771
QPolymer 2006-01-10 2007-05-24 499 459 1 86971

kasai 2004-08-31 2007-05-30 1002 673 3 8786
fourever 2005-02-23 2007-05-28 824 1795 2 15163
xqilla 2005-11-01 2007-05-28 573 8867 3 107320

uniportio 2006-05-29 2007-02-03 250 32 1 1096
genromfs 2002-01-18 2005-08-18 1308 94 3 654

Beobachter 2006-08-31 2006-12-10 101 376 1 2715
perpojo 2003-06-10 2003-07-31 51 70 1 1677
oliver 2004-07-22 2006-01-14 541 187 3 1429
hge 2005-11-18 2007-03-18 485 1183 3 45654

fnjavabot 2004-06-18 2007-06-05 1082 660 8 10142
ozone 2001-12-17 2005-12-12 1456 6108 7 63790
juel 2006-05-13 2007-04-25 347 990 1 7284
edict 2002-12-06 2006-12-28 1483 82 1 2556

Aquila 2004-05-04 2004-05-28 24 78 1 893
swtjasperviewer 2004-11-21 2007-05-21 911 188 1 3214

eas3pkg 2006-10-26 2007-05-22 208 274 2 43724
formproc 2001-05-10 2004-12-22 1322 1338 1 3514
toolchest 2002-01-03 2005-07-16 1290 15 1 494

ogce 2006-11-27 2007-06-03 188 26596 3 350997
simplexml 2002-08-23 2002-08-23 0 64 1 1691
intermezzo 2000-11-12 2003-09-30 1052 2276 15 34792
whiteboard 2003-06-15 2003-06-27 12 49 1 4910

modaspdotnet 2004-07-16 2007-03-02 959 688 1 2445
kpictorial 2002-05-09 2002-06-04 26 339 1 18214

Table 2: Summary of attributes of the SourceForge projects

Proc. Software Evolution 2007 6 / 14



ECEASST

3.3 Entry date

Every project within the Debian distribution has its own page under the Debian website, where
the ChangeLog (typically an unstructured list of amendments to the project) shows the first entry
in terms of changes made since the introduction into Debian.By manually investigating and
recording this date, we collected the information of the lifecycle of each project “before” and
“after” its inclusion into Debian. For instance, the DebianChangelog for “clamav” is shown
at http://tinyurl.com/2njfon. At the bottom of the page, the first date indicates that this project
entered Debian on May 9th, 2002, in its 0.11-1 release. All history before that date will be treated
as pre-Debian, after that date it will be treated as the post-Debian lifecycle.

4 Hypotheses and Results

Hypotheses have been formed concerning the two questions derived from the GQM approach.
Here they are grouped by the question to which they belong along with their results.

4.1 Empirical evaluation of question 1

The first research question was designed as a direct comparison between the Debian and Source-
Forge samples, and its objective was to highlight any significant difference on the selected char-
acteristics. Each of these hypotheses is evaluated empirically: given the null hypothesis in the
second column of table3, a statistical test will either reject it or not. A summary ofthe tests and
their results will be provided at the end of this section to wrap up the relevant conclusions.

4.1.1 Hypothesis 1.1 – Period of Activity

This hypothesis posits that the duration of time that projects from each forge have been evolved
over differs significantly, measured by the number of days for which activity could be observed
on a project’s repository. The null hypothesis states that Debian and Sourceforge projects have a
similar time-span, which should be rejected if the sample projects display significant difference.

Table 3 show that, apart from the minimum values (just 1 day of activity recorded in the
repository), the two samples have different medians, different quartiles Q1 and Q3, and different
maximum values. Applying both the t-test and the Wilcoxon test for two independent samples,
we can reject the null hypothesis with 99.99% confidence for each tests.

4.1.2 Hypothesis 1.2 – Size Achieved

The second hypothesis postulates that the typical size of a project differs significantly for each
forge, in terms of SLOC (sources lines of code), with the nullhypothesis stating that both forges
have similar sizes, to be rejected if project sizes are shownto be significantly different.

The results were evaluated on the extracted repositories using the R programming language.
They show that projects from Debian are larger than those in SourceForge (although we found
several outliers in the Debian distribution of sizes). The size of Debian packages also has a
greater range, with a greater number of outliers of larger magnitude found in the Debian distri-
bution, implying the presence of larger communities.

7 / 14 Volume 8 (2008)

http://tinyurl.com/2njfon


Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

Hypothesis: Days of evolution
H0: Debian and sf.net projects have a similar time
span

H1: Debian projects have a longer time span

min Q1 median Q3 max
debian 1 588 1740 2916 4088
sf.net 1 247 495.5 1290 2479
t-test t = -5.279 D.F. = 82 p≤ 1.142×10−6

Wilcoxon W = 1320 p≤ 3.248×10−5

Hypothesis: distribution of size
H0: Debian and sf.net projects have a similar size H1: Debian projects are larger than sf.net

min Q1 median Q3 max
debian 119 3,782 48,686 110,945 2,142,554
sf.net 654 2,346 11,416 49,854 106,478
t-test t = -1.627 D.F. = 82 p≤ 0.11

Wilcoxon W = 1550 p≤ 0.036

Hypothesis: distinct developers
H0: Debian and sf.net projects have a similar amount
of developers

H1: Debian projects have more developers than sf.net

min Q1 median Q3 max
debian 1 2 5,5 48 818
sf.net 1 1 2 3 82
t-test t = -2.294 D.F. = 82 p≤ 0.02436

Wilcoxon W = 1343 p≤ 7.829×10−5

Hypothesis: overall touches
H0: Debian and sf.net projects have a similar amount
of touches

H1: Debian projects have more touches than sf.net

min Q1 median Q3 max
debian 1 2 5,5 48 818
sf.net 1 1 2 3 82
t-test t = -2.029 D.F. = 82 p≤ 0.04577

Wilcoxon W = 1548.5 p≤ 0.03475

Table 3: Summary of the hypotheses, tests and results of the tests

From Table3and the boxplot illustrated in Figure1, we see that the two samples show different
distributions in terms of size achieved. The null hypothesis was based on the assumption that the
two sample come from the same population, and therefore havethe same average: based on the
tests, we can reject the null hypothesis with 89% and 96% of confidence (for the t-test and the
Wilcoxon test, respectively).

4.1.3 Hypothesis 1.3 – Developers

This hypothesis posits that the number of developers that a project attracts is, on average, sig-
nificantly different for each forge, measured according to the number of unique developers who
have contributed source code. The null hypothesis states that Debian and SourceForge projects
have approximately equal number of contributing developers, to be rejected if this is not the case.

The final column of tables1 and2 shows the number of distinct developers (CVS or SVN
committers or external developers acknowledged during a specific commit).

Proc. Software Evolution 2007 8 / 14



ECEASST

Figure 1: Boxplots of the size distribution (in SLOCs) in theDebian and SourceForge samples

We found several outliers in the Debian sample which rendered the average of the population
sample to 51 developers, while the SourceForge sample has anaverage of some 5 developers
only. In table3 the summaries for the boxplot evaluation are visualised, aswell as the results of
the t-test (with 82 degrees of freedom) and the Wilcoxon test.

Since the null hypothesis is that the two sample have the samemedian, the two tests show
that, for a confidence of 97.5% and 99.99% (for the t-test and the Wilcoxon test, respectively),
we can reject the null hypothesis. That means that there is a statistically significant difference in
the distribution of the evolution days in the two samples.

4.1.4 Hypothesis 1.4 – Activity (Touches)

The final hypothesis for question 1 postulates that the amount of activity (or output) observed
differs between each forge. Specifically, the null hypothesis states that, on average, individual
Debian projects and individual SourceForge projects will have a total number of file touches that
does not differ significantly. We may reject this if it is shown that either forge tends to harbour
significantly more active projects than the other.

The results are summarised in tables1 and2 . As seen in the previous test, some projects
(notably wxWidgets and shorewall) clearly skew the distribution of the Debian sample. The
two tests show that, for a confidence of 0.04 and 0.03 (for the t-test and the Wilcoxon test,
respectively), there is a statistically significant difference in the distribution of the activity (in
terms of the amount of overall touches) of the two samples.

4.2 Empirical Evaluation of Question 2

This section examines Debian only, and investigates whether it can be considered an external
driver for achieving a better software evolvability. Each project in this sample was analysed with
regards to the two phases of its lifecycle,i.e. before and after the date when it was first included
into Debian. If the projects experienced two statisticallydifferent behaviours before and after

9 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

the entry date, we could conclude that the “Debian treatment” is responsible for this difference.
As shown in table1, the bold entries in the entrydate column represent the date of each

project’s first appearance in Debian. This entry point,e, has been used to separate each project
into two phases, so the dependent variable in each hypothesis can be measured between both the
earliest available date ande, and betweene and the latest available date. For some projects the
entry date appears before any data was collected in their repository, hence there is no data to draw
a comparison of activities and developers before and after the entry date. For hypotheses 2.1 and
2.2 only projects with data available both before and after the entry point will be considered.

4.2.1 Hypothesis 2.1 – Developers

The first hypothesis for this question postulates that the number of contributing developers a
project has before insertion into Debian is significantly different to that figure after insertion.
The null hypothesis assumes that no significant difference will be observed between the two
durations. The metric used is the number of distinct developers.

The results are shown in the first two columns of Table4. As can be observed the number of
distinct developers in the second part of the lifecycle are always more than or equal to that of
the first part. In 18 projects out of 22, the number of distinctdevelopers after the introduction
into Debian is strictly larger than before, while 4 projectsout of 22 have the same amount of
developers both before and after the inclusion. These latter 4 are relatively smaller projects,
where at most 1 or 2 developers are currently responsible forthe overall development.

Since the majority of the observed projects showed a larger number of developers in the second
part of the lifecycle, we rejected the null hypothesis.

4.3 Hypothesis 2.2 – Activity (Touches)

The second hypothesis posits that the amount of activity a project displays before appearing
in Debian is significantly different to that after the event.The null hypothesis states that no
significant difference in activity is apparent in the two durations. As in hypothesis 1.4, activity
is measured in number of file touches.

The results are summarised in table4: each project was given an ID, while the overall number
of touches before, T (pre), and after, T (post) is shown in thesecond and third columns. Con-
sidering these unadjusted values, all considered projectsshow a larger number of touches after
joining Debian: these results lead us to reject the null hypothesis.

Considering the dates shown in table1, some projects had a longer time span within the Debian
distribution than outside. To consider this point, columns5 and 6 of table4 report an adjusted
value, given by the touches divided by the relative intervalof time spent either outside or inside
Debian (T/D (pre) and T/D (post) respectively). As shown by the ticks in the final column, 12
projects out of 22 experienced an adjusted number of toucheswhich was larger before joining
Debian than afterwards. This did not allow us to reject the null hypothesis, and hence to consider
the observed differences in the two phases as related to the applied treatment.

As reported, the only case where the null hypothesis had to berejected regards the amount of
touches done in projects within the Debian forge. In general, projects achieved a larger amount
of activity after the insertion into Debian, but this was notaccomplished with the same amount

Proc. Software Evolution 2007 10 / 14



ECEASST

ID D (pre) D (post) T (pre) T (post) T/D (pre) T/D (post)

1 9 10
√

10 1417
√

1.11 12.88
√

2 17 41
√

10 88
√

0.59 2.15
√

3 1 2
√

14 18
√

14 6 X
4 5 44

√
15 117

√
3 2.66 X

5 1 1
√

18 18
√

18 18
√

6 2 2
√

22 22
√

11 7.33 X
7 22 42

√
25 86

√
1.14 2.05

√

8 1 1
√

31 37
√

31 37
√

9 2 243
√

32 954
√

16 3.93 X
10 9 31

√
40 41

√
4.44 1.32 X

11 10 13
√

43 50
√

4.3 3.85 X
12 7 9

√
44 55

√
6.29 6.11 X

13 2 2
√

46 49
√

23 24.5
√

14 2 5
√

49 63
√

24.5 12.6 X
15 2 4

√
53 74

√
26.5 18.5 X

16 1 5
√

60 82
√

60 16.4 X
17 1 1

√
67 67

√
67 67

√

18 1 4
√

160 576
√

160 144 X
19 14 20

√
436 779

√
31.14 38.95

√

20 61 69
√

1666 1673
√

27.31 24.25 X
21 50 76

√
3972 6429

√
79.44 84.59

√

22 41 104
√

6923 18595
√

168.85 178.8
√

Table 4: Summary of the number of distinct developers and overall touches in the two samples

of touches per day (i.e., productivity) than before the entry point.

5 Threats to Validity

The limited information (from hypothesis 2) affects the ability to demonstrate a temporal rela-
tionship; what exists does not consistently confirm that cause precedes effect. However sugges-
tive the data is of such a relation, more measures applied to these and other forges of similar
prestige would help form a stronger opinion of temporal precedence.

The ability to generalize from this study may be threatened by the Debian forge (and others
of similar prestige) possessing attributes unique to them that may adversely effect their ability
to, for example, attract new developers. To provide more confidence of generalizability it would
need to be established that other forges acting as repositories – yet providing different services,
such as Mozilla or KDE – exhibit the same characteristics measured here.

6 Conclusions

This paper has investigated the presence of exogenous drivers to software evolvability, and pro-
posed that the inclusion in a successful FLOSS forge (Debian) has an influence on the evolu-

11 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

ID H0 H1 Metrics Outcome
1.1 Debian and sf.net

projects have a
similar time span

Debian projects have
a longer time span

Days H0 rejected

1.2 Debian and sf.net
projects have a
similar size

Debian projects are
larger than sf.net

SLOCs H0 rejected

1.3 Debian and sf.net
projects have a
similar amount of
developers

Debian projects have
more developers than
sf.net

Developers H0 rejected

1.4 Debian and sf.net
projects have a
similar amount of
touches

Debian projects have
more touches than
sf.net

Touches H0 rejected

2.1 Same amount of de-
velopers before and
after the treatment

More developers af-
ter the treatment

Debian
develop-
ers

H0 rejected

2.2 Same amount of
touches before and
after the treatment

More touches after
the treatment

Debian
touches

H0 NOT re-
jected

Table 5: Summary of the empirical hypotheses tested in this study (sf.net refers to SourceForge)

tionary characteristics of FLOSS projects (a summary of thehypotheses tested is displayed in
5).

The intended recipients of this paper are both researchers and practitioners. On the researchers’
side, it aims to show that by investigating and comparing different FLOSS forges, they are likely
to draw different results, and to characterise differentlythe FLOSS phenomenon. On the practi-
tioners’ side, the paper shows that FLOSS developers, if interested in further fostering the devel-
opment of their project, should consider their project’s inclusion in one large distribution-based
forges such as Debian.

The paper leveraged the well-known GQM method; two researchquestions were then for-
mulated, the first based on a direct comparison between the two samples, the second regarding
the Debian sample only. The first question postulated that the Debian forge would have signif-
icantly different attributes to Sourceforge. Debian projects were shown to have a longer period
of evolution, were larger in size, attracted more developers and experienced greater activity than
SourceForge. All of the designed hypotheses showed a difference in the two random samples,
and this positively assessed the first overall research question: Debian projects indeed show
different characteristics than projects from SourceForge.

The second research question was based on the Debian sample only and assessed the presence
of two phases of evolution, i.e. before and after the inclusion into the Debian forge. In statistical
terms, we studied whether there existed differences beforeand after applying a treatment to the
sample. The first hypothesis proposed that there are more developers after being inserted into

Proc. Software Evolution 2007 12 / 14



ECEASST

Debian, and the majority of projects showed this to be the case. The second hypothesis concerned
the activity before and after the entry point: from the results we gathered, we could not conclude
that there was a statistically significant difference before and after the treatment. This could be
the result of measuring activity in terms of touches.

Further research is required to substantiate the more general proposition that widespread dis-
tribution builds the user base of a FLOSS project thus driving its evolution, while incorporation
into a distribution with an existing developer base provides the basis for sustainable evolution.

Bibliography

[ACPM01] G. Antoniol, G. Casazza, M. D. Penta, E. Merlo. Modeling Clones Evolution Through Time
Series. InProc. IEEE Intl. Conf. on Software Maintenance 2001(ICSM 2001). Pp. 273–280.
Fiorence, Italy, Nov 2001.

[BCR94] V. R. Basili, G. Caldiera, D. H. Rombach. The Goal Question Metric Approach. InEn-
cyclopedia of Software Engineering. Pp. 528–532. John Wiley & Sons, 1994. See also
http://sdqweb.ipd.uka.de/wiki/GQM.

[CAH03a] K. Crowston, H. Annabi, J. Howison. Defining Open Source Software Project Success. In
Proceedings of ICIS 2003. Seattle, Washington, USA, Dec. 2003.

[CAH03b] K. Crowston, H. Annabi, J. Howison. Defining open source software project success. InICIS
2003. Proceedings of International Conference on Information Systems. 2003.

[Cap03] A. Capiluppi. Models for the Evolution of OS Projects. InProceedings of ICSM 2003. Pp. 65–
74. Amsterdam, Netherlands, 2003.

[CCP07] G. Canfora, L. Cerulo, M. D. Penta. Identifying Changed Source Code Lines from Version
Repositories.Mining Software Repositories0:14, 2007.

[CM07] A. Capiluppi, M. Michlmayr. From the Cathedral to theBazaar: An Empirical Study of the
Lifecycle of Volunteer Community Projects. In Feller et al.(eds.),Open Source Development,
Adoption and Innovation. Pp. 31–44. Springer, 2007.

[ES07] R. English, C. Schweik. Identifying Success and Tragedy of FLOSS Commons: A Prelimi-
nary Classification of Sourceforge.net Projects. InProceedings of the 1st International Work-
shop on Emerging Trends in FLOSS Research and Development. Minneapolis, MN, 2007.

[FFH+02] J. Feller, B. Fitzgerald, F. Hecker, S. Hissam, K. Lakhani, A. van der Hoek (eds.).Character-
izing the OSS process. ACM, 2002.

[Ger04] D. M. German. Using software trails to reconstruct the evolution of software.Journal of
Software Maintenance and Evolution: Research and Practice16(6):367–384, 2004.

[HG05] A. Hindle, D. M. German. SCQL: a formal model and a query language for source control
repositories.SIGSOFT Softw. Eng. Notes30(4):1–5, 2005.

[LHMI07] S. Livieri, Y. Higo, M. Matushita, K. Inoue. Very-Large Scale Code Clone Analysis and
Visualization of Open Source Programs Using Distributed CCFinder: D-CCFinder. InICSE
’07: Proceedings of the 29th International Conference on Software Engineering. Pp. 106–
115. IEEE Computer Society, Washington, DC, USA, 2007.

13 / 14 Volume 8 (2008)



Evolutionary Success of Open Source Software – Beecher, Boldyreff, Capiluppi and Rank

[LRW+97] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M. Turski. Metrics and Laws
of Software Evolution—The Nineties View. In El Eman and Madhavji (eds.),Elements of
Software Process Assessment and Improvement. Pp. 20–32. IEEE CS Press, Albuquerque,
New Mexico, 5–7 Nov. 1997.

[MFH02] A. Mockus, R. T. Fielding, J. Herbsleb. Two case studies of open source software develop-
ment: Apache and Mozilla.ACM Transactions on Software Engineering and Methodology
11(3):309–346, 2002.

[RG05] A. Rainer, S. Gale. Evaluating the Quality and Quantity of Data on Open Source Software
Projects. In Feller et al. (eds.),First International Conference on Open Source Systems. 2005.

[RG06] G. Robles, J. M. Gonzlez-Barahona. Contributor Turnover in Libre Software Projects. In
Damiani et al. (eds.),OSS. IFIP 203, pp. 273–286. Springer, 2006.

[RKG04] G. Robles, S. Koch, J. M. González-Barahona. Remote analysis and measurement of libre
software systems by means of the CVSAnalY tool. InProceedings of the 2nd ICSE Workshop
on Remote Analysis and Measurement of Software Systems (RAMSS ’04). 26th International
Conference on Software Engineering. Edinburgh, UK, May 2004.

[SA02] K. J. Stewart, T. Ammeter. An Exploratory Study of Factors Influencing the Level of Vi-
tality and Popularity of Open Source Projects. InICIS 2002. Proceedings of International
Conference on Information Systems 2002. 2002.

[SAOB02] I. Stamelos, L. Angelis, A. Oikonomou, G. L. Bleris. Code Quality Analysis in Open-Source
Software Development.Information Systems Journal12(1):43–60, 2002.

[SM04] A. Senyard, M. Michlmayr. How to Have a Successful Free Software Project. InProceedings
of the 11th Asia-Pacific Software Engineering Conference. Pp. 84–91. Busan, Korea, 2004.

[Wei05] D. Weiss. Measuring Success of Open Source ProjectsUsing Web Search Engines. In Scotto
and Succi (eds.),Proceedings of The First International Conference on Open Source Systems
(OSS 2005), Genova, Italy. Pp. 93–99. 2005.

Proc. Software Evolution 2007 14 / 14


	Introduction
	Related work
	Goal, Question, Metrics -- GQM
	Debian and SourceForge samples
	Code repositories
	Entry date

	Hypotheses and Results
	Empirical evaluation of question 1
	Hypothesis 1.1 -- Period of Activity
	Hypothesis 1.2 -- Size Achieved
	Hypothesis 1.3 -- Developers
	Hypothesis 1.4 -- Activity (Touches)

	Empirical Evaluation of Question 2
	Hypothesis 2.1 -- Developers

	Hypothesis 2.2 -- Activity (Touches)

	Threats to Validity
	Conclusions

