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Summary. This chapter presents a sample of empirical studies of Open Source
Software (OSS) evolution. According to these studies, the classical results from the
studies of proprietary software evoltion, such as Lehman’s laws of software evolution,
might need to be revised, if not fully, at least in part, to account for the OSS
observations. The book chapter also summarises what appears to be the empirical
status of each of Lehman’s laws with respect to OSS and highlights the threads to
validity that frequently emerge in these empirical studies. The chapter also discusses
related topics for further research.

1 Introduction

Software evolution is the phenomenon of software change over years and re-
leases since inception to the final decommissioning of a software system. The
evolution of a large software system poses many challenges. Software develop-
ment and maintenance can be improved by taking into account the findings
of empirical studies of evolving software systems.

With the emergence of the open source paradigm, software evolution re-
searchers have access to a larger number of evolving software systems for study
than ever before. This has led to a renewed interest in the empirical study of
software evolution. Some surprising findings in open source have emerged that
appear to diverge from the classical view of software evolution. In this book
chapter we examine this and argue that the divergence can be explained us-
ing simple system theory concepts. We also propose research topics for further
advance in this area.

1.1 Classical Views of Proprietary Software Evolution

In the late 1960s and early 1970s Lehman and his collaborators pioneered
the empirical study of the evolution of software. They examined a number of
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proprietary systems, including the IBM 360-370 operating system [1]. In the
late 1970s and early 1980s they studied measurement data from several other
systems. Their initial fascination was with the phenomenon of large program
growth dynamics. But later they realised that the phenomenon was not only a
property of large systems, partly because largeness cannot be unambiguously
defined. What they saw was a process of change in which software systems
acquire additional functionality and other characteristic that could be legiti-
mately called software evolution. Their intention wasn’t to make an analogy
with Darwinian evolution, particularly when the differences between software
and biological entities are so notorious, but to highlight that software artefacts
experienced progressive enhancement in functional power and other changes
in characteristics that could be legitimally called evolution.

Lehman realised that software evolution, the continual change of a pro-
gram, was not a consequence of bad programming, but something that was
inevitably required to keep the software up-to-date with the changing oper-
ational domain. Continual software change was needed for the stakeholders’
satisfaction to remain at an acceptable level in a changing world. This matched
well with the software measurements that he and colleagues had collected.
This realisation was so compelling that this observation was termed the law of
continuing change. The use of the term law was justified on the basis that the
phenomenona they described was beyond the control of individual developers.
The forces underlying the laws were believed to be as strong as those of the
laws of demand and supply. Other empirical observations were encapsulated
in statements and similarly called laws. Initially three laws were postulated,
followed by five that were added at various points later, giving a total of eight.

Despite the strong confidence on the validity of the laws, the matter of
universality of the laws was not sufficiently well defined. Anyone could al-
ways recall a program that was developed, used only once or twice and then
discarded. Hence, the first requisite for evolution is that there is a continual
need for the program, i.e. there is a community of users for which running
the program provides some value. Lehman’s analysis, however, went deeper
and led to the realisation that, strictly speaking, the laws only applied to a
wide category of programs that Lehman called E-type systems [1], where the
“E” stands for evolutionary. An E-type system is one for which the problem
being addressed (and hence, the requirements and the program specification)
can’t be fully defined. E-type software is always, to some extent, incomplete
and addresses open problems (open in the sense that the change charter has
arbitrary boundaries that may change at any time and that the specification
can always be further refined or modified in some other way). The immedi-
ate consequence is that for an E-type program there is always a possible or
perceive need for change. Another characteristic of E-type system is that the
installation of the program in its operational domain changes the domain. The
evolution process of an E-type program becomes a feedback system [1]. This
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is illustrated in Fig. 1.

Fig. 1. Lehman’s view of E-type Software Process. Taken from [2]

E-type systems contrast with S-type programs, where the “S” stands for
specified. In S-type programs the specification is complete and should be ex-
pressible formally using Mathematics. In S-type programs mathematical ar-
guments are used to prove that the program fully satisfies its specification.
S-type programs represent the domain within which the application of formal
verification methods is more meaningful and likely to be effective. However,
the vast majority of systems used in businesses and by the general public are
of the type E. Hence the importance of this type and the laws that are claimed
to be descriptions of their evolutionary characteristics. In its original classifi-
cation [1], Lehman also identified another type, called P-type (problem). The
P-type related to programs that are based on heuristics rather than math-
ematical proof. They are generally characterised by some trade-offs in their
requirements and their results are satisfactory only to certain level (not ab-
solutely correct as in the case of S-type programs). If a P-type program is
activelly used in a real-world application it is likely to acquire, at least to
some extent, E-type properties. Traditionally, the software evolution research
has concentrated on E-type programs since it is the most common of the three.

Initially the topic of empirical study of software evolution did not reach
much momentum beyond Lehman’s immediate circle of collaborators. There
were two independents studies in the 1980s: one confirmatory by Kitchen-
ham [3] and one that was mainly critic and unsupportive by Lawrence [4].
Lawrence [4] took a statistical approach and found support for one of the at
that time five laws. Three of the laws were not supported by his tests and he
was not able to formulate one of the laws into proper statistical tests. The key
contribution of Lawrence’s study is that laws are informal statements and that
their formal testing against data involve their formalisation. Because each law
can be formalised in more than one different way, it may lead to more than
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one test for each law.

Despite these empirical challenges and the common perception that soft-
ware is not restricted by any natural laws, the wider software engineering
community seemed to progressively realise that Lehman’s laws were a legit-
imate, possibly the most insightful so far, attempt to describe why software
evolves and what evolutionary trends software is likely to display. The laws
appeared to match common experience and were discussed in popular software
engineering textbooks and curricula [5, 6]. The laws should be considered, at
the very least, hypotheses worth further studying.

In the late 1990s and early 2000s a fresh round of empirical studies by
Lehman and colleagues took place (e.g. [7]). These involved five proprietary
systems that were studied in the FEAST projects with results widely publi-
cised [8]. FEAST led to the refinement of some of the laws, which, as we said,
are currently eight in number. The laws were no longer isolated statements:
the phenomena they describe are interrelated. The project realised that em-
pirical data related to some of the laws were easier to extract than for others.
Despite the difficulties, the laws were generally supported by the observations
and seen as the basis for a theory of software evolution. The laws, in a recent
post-FEAST wording, are listed in Table 1.

As can be seen in Table 1 a recent refinement of the fourth law included
the text “The work rate of an organisation evolving an E-type software system
tends to be constant over the operational lifetime of that system or segments
of that lifetime”, with the most recent addition in italics. This apparently
minor addition recognised explicitly in the laws for the first time the possi-
ble presence of discontinuities in the lifetime of a software system and was
a consequence of the observation in FEAST of breakpoints in growth and
accumulated changed trends. Other researchers [9, 10] arrived to similar inde-
pendent views that software evolution tends to be discontinuous. Aoyama [9]
studied the evolution of mobile phone software in Japan over a period of four
years in the late 1990s. During this time mobile phones went through a fast
evolution from voice communication devices to mobile internet Java-enabled
terminals. The code base studied by Aoyama increased its size by a factor of
four in four years within which the software experienced significant structural
changes at particular points. In Aoyama’s view, dealing with discontinuities
in evolution is an unresolved challenge. The immediate consequence is that
it may not be sensible to simply project evolution trends, such as growth or
change rate, to predict the future of a system.

In connection to the idea of discontinuity, an important addition to the
description of how proprietary systems evolve came from two software mainte-
nance researchers, Bennett and Rajlich [10], in the form of their staged model
of the software lifecycle. A key idea contributed by Bennett and Rajlich is
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that there are distinctive phases or stages, as illustrated in Fig. 2. While skip-
ping unnecessary details, the staged model indicates that systems tend to go
through distinctive phases, termed initial development, evolution, servicing,
phase-out and finally close-down, and that the management of such of these
phases involves specific challenges. Bennett and Rajlich chose to call evolution
to one of their phases, possibly because according to them it is within this
phase that software is actively enhanced and changed. During the so-called
servicing phase, only minor fixes are implemented to keep the system running
before phasing it out.

Fig. 2. Staged model of the software life-cycle[10]. Taken from [2]

This section has presented a brief account of the situation with regards
to empirical studies of proprietary system evolution. With the emergence of
open source, software evolution researchers can access vast amounts of soft-
ware evolution data which is now available for study. Some of the initial find-
ings (e.g. [11]) were concerning because they suggested that OSS evolutionary
patterns can be different to the ones suggested by the laws and generally
expected in proprietary software evolution. This and other OSS studies will
be examined in the remainder of this chapter with the aim of providing the
reader with an overall picture of the past and current empirical OSS evolution
research.
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1.2 The Emergence of Open Source

The emergence of open source software (OSS) and free software 3, has provided
researchers with access to large amounts of code and other software artefacts
(e.g. documentation, change-log records, defect databases, email conference
postings) that they can use in their studies. For example, using OSS data
researchers are able to test certain hypotheses about the effectiveness, of a
software engineering technique or the validity of theory. OSS has become an
established approach to distribute software as a common good . This is the
free software ideal defended by the Free Software Foundation and others. It is
often emphasised that in free software, “free” is used as in “freedom”, not as
in “free beer”. The following quotation from the Debian website (one of the
largest Linux distributions) captures well the open source philosophy:

“While free software is not totally free of constraints...it gives the user
the flexibility to do what they need in order to get work done. At the
same time, it protects the rights of the author. Now that’s freedom.”4

The OSS paradigm is well documented in the literature with many studies
describing it(e.g. [12]). Its main characteristic is that source code is shared
with only some restrictions (e.g. normally any changes can only be released
as OSS and under the same license restrictions). Contributors are working in
their free time with their own computing resources even though businesses are
getting increasingly engaged in some OSS projects for market and other rea-
sons. The actual OSS process is highly streamlined, with the code being the
main artefact for sharing knowledge and understanding amongst contributors.
Release notes, email lists, defect databases and configuration management fa-
cilities are frequently provided by a project. However, one should not expect
to find in OSS other advanced software engineering tools such as, for example,
requirements engineering tools. One could say tha tOSS is code-centric and it
is unlikely that documents and other artefacts will be present such as a formal
or informal requirements specification, a program specification or some formal
representation of the architecture of a system. To different degrees, individuals
can control the evolution of a system. They operate as gate keepers or main
architects under a set of policies or rules which may change from community
to community and from project to project. Normally there are two evolving
streams of code that are interrelated, the so-called stable or apt for distribu-
tion stream, and the developmental, which is the one currently being changed
and enhanced. From time to time, development releases become stable and are
distributed. There are not external constraints on the timing of releases and
in many projects there is no formal testing (e.g. no test cases are available).

3 In this chapter we use “open source” and “free” as synomyns, even though there
are slight differences in meaning (see their glossary entries).

4 http://www.debian.org/intro/free (as of Nov 2006)
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Since the late 1990s the OSS-related contributions to the empirical soft-
ware evolution literature have increased. It is useful to distinguish here two
type of studies. On the one hand, there are technology-oriented papers. These
constitute what Lehman called the “how view of evolution”. These papers
address a particular technical problem in implementing or supporting soft-
ware evolution processes and propose a technique to address such problem.
On the other hand, one encounters empirical studies that gather and analyse
observations of the OSS evolution phenomenon and an attempt to their mod-
elling and explanation, trying to find out what Lehman termed the “what and
why view of evolution”. These empirical studies aim at characterising software
evolution, identifying general or particular evolutionary patterns and either
to increase our understanding of the phenomenon or to inform good evolution
practice. The empirically-oriented papers that we have selected for our discus-
sion examine code evolution, i.e. sequences of code versions or releases, and
provide empirical observations related to classical view of software evolution.
These include OSS functional growth patterns and OSS compliance or not
with Lehman’s laws.

The structure of this chapter is as follows. Section 2 presents and sum-
marises a number of relevant empirical studies of open source evolution. Sec-
tion 3 compares the findings with regards to the evolution in OSS and pro-
prietary systems and discusses the currently stressed relationship between
empirical studies of OSS evolution and the classical theories of software evo-
lution. The main threats to validity of the surveyed studies are summarised
in Section 4. Section 5 concludes this chapter and indicate topics for further
work.

2 Empirical Studies of Open Source Evolution

Pirzada’s PhD thesis [13] was the first study that singled out differences be-
tween the evolution of Unix operating system and the systems studied by
Lehman et al. (e.g. [1]). Pirzada’s work was still in the pre-Internet days and
open source was yet to arrive. However, Pirzada’s study should be credited
with arguing, probably for the first time, that differences in development en-
vironments, in this case, academic vs industrial development, could lead to
differences in the evolutionary patterns. If Pirzada was right we should expect
differences between OSS and proprietary evolution. However, study of OSS
evolution started 10 years or so later. In the next sections we summarise some
of the most relevant empirical studies of OSS evolution to date.

2.1 The Linux kernel study by Godfrey and Tu [11]

Godfrey and Tu [11] studied the growth trend of the popular OSS operating
system Linux, for which Unix was a precursor, over six years of its lifespan,
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with data covering the period 1994 to 1999. Development of Linux started as
a hobby by Linus Torvalds in Finland. The system was then publicly released
and experienced an unprecedented popularity with hundreds of volunteers
contributing to Linux. In 2000 more than 300 people were listed as having
made significant contributions to the code. Godfrey and Tu found that Linux,
a large system with about 2 million LOCs at that time, had been growing
superlinearly. This essentially meant that the system was growing with an in-
creasing growth rate. These authors found that the size of the Linux followed
a quadratic trend. This type of growth was fully in line with Lehman’s sixth
law, but the superlinear rate contradicted some consequences of the second
law, such as growth rate slow down as complexity increases. It also appeared
to contradict laws three (self-regulation) and fifth (conservation of familiarity).

Godfrey and Tu found that the growth rate was higher in a one particular
sub-system of Linux that holds the device drivers as can be seen in Fig. 3.
Drivers enable a computer to communicate with a large variety of external
or internal hardware devices such as network adapters and video cards. Their
explanation for Linux high growth rate was that drivers include code which
tends to be independent of each other. Another significant part of the Linux
code base was the replicated implementation of features for different CPU
types, giving the impression that the system was larger than it really was.
The core or kernel of Linux represents only a small part of the code reposi-
tory. These authors recommended, in line with previous researchers [14], that
evolution patterns should be visualised not only for the total system but also
individually for each subsystem.

Godfrey and Tu’s study was later replicated by Robles et al. [?] using in-
dependently extracted data from the Linux repository and who also identified
a superlinear growth trend.

2.2 The Comparative Study by Paulson et al. [15]

Paulson et al. [15] compared the evolution of three well-known and successful
OSS (the Linux operating system kernel, the Apache HTTP web server, and
the GCC compiler) and three proprietary systems in the embedded real time
systems domain (the proprietary systems were described as “software pro-
tocol stacks in wireless telecommunication devices”). They chose to look at
the Linux kernel because in their view it was more comparable to their three
proprietary systems than the Linux system as a whole. The five hypotheses
studied were: (1) OSS grows more quickly than proprietary software, (2) OSS
projects foster more creativity, (3) OSS is less complex than proprietary sys-
tems, (4) OSS projects have fewer defects and found and fix defects more
rapidly, and (5) OSS projects have better modularization. The measurements
used to test these hypotheses were as follows:

1. For hypothesis 1, related to size (or growth): number of functions and in
lines of code (LOCs) over time.
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Fig. 3. Growth of Linux’s major subsystems (development releases only).
Source [11].

2. For hypothesis 2, related to creativity: functions added over time.
3. For hypothesis 3, related to complexity: overall project complexity, aver-

age complexity of all functions, average complexity of added functions.
4. For hypothesis 4, related to defects: functions modified over time, per-

centage of modified functions with respect to total.
5. For hypothesis 5, related to modularity: correlation between functions

added and modified.

Only hypotheses (2) and (4) were supported by the measurements. How-
ever, with respect to hypothesis 2, it could be an over simplification to assess
creativity by simply looking at the number of functions added over time,
without taking into consideration the number of developers. With respect
to hypothesis 4, one would have expected some direct measure of defects or
defect density, instead of simply looking at functions. For these reason we
conclude that these two hypotheses are not easy to investigate based on the
measurements chosen and raise some questions.

The investigation of the other three hypothesis seem to have been much
more straight-forward. Paulson et al. found that the growth of the six sys-
tems analyzed was predominantly linear. They compared their results with
the averaged data by two other groups of researchers (see Fig. 4), finding that
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the slopes in the data by others matched well into the pattern they found.
Paulson et al. also found, using three different complexity measures, that
the complexity of the OSS projects was higher than that of the proprietary
systems, concluding that the hypothesis that OSS projects are simpler than
proprietary systems was not supported by their data. As said, one further
aspect investigated was modularity. They looked at the growth and change
rates, arguing that if modularity is low, adding a new function will require
more changes in the rest of the system than if modularity is high. No sig-
nificant correlation was found between the growth rate and change rate in
proprietary systems, but such correlation was present in OSS projects. Hence,
no support was found to the hypothesis that OSS projects are more modular
than proprietary systems.

Whereas Godfrey and Tu (see section 2.1) found superlinear growth in
Linux, Paulson et al. detected linear growth. These two findings do not neces-
sarilly contradict each other because the former study was looking at Linux as
a whole, while the latter focused on the kernel, which is one of its subsystems
and does not include drivers.

Fig. 4. Total size of systems studied by Paulson et al. and by other researchers
(linear approximations). Source [15].
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2.3 The Study of Stewart et al.[16]

Stewart et al. [16] explored the application of a statistical technique called
functional data analysis (FDA) to analyze the dynamics of software evolu-
tion in the OSS context. They analysed 59 OSS projects in order to find out
whether their structural complexity increases over time or not. Two mea-
surements of complexity were considered: coupling and lack of cohesion. The
higher a program element is related to others, the higher the coupling. The
higher the cohesion was, the stronger the internal relationships within an ele-
ment of a program. They consider that generally there is trade-off between the
two measurements (i.e. increasing cohesion leads to a decrease in coupling).
For this reason they use the product of the two attributes “coupling × lack of
cohesion”, as their measurement of interest. These authors found that FDA
helped to characterize patterns of evolution in the complexity of OSS projects.
In particular, they found two basic patterns: projects for which complexity
either increased or decreased over time. When they refined their search for
patterns they actually found four patterns, as shown in Fig. 5. The name give
to each of these patterns (and the number of projects under each) were early
decreasers (13), early increasers (18), midterm decreasers (14) and midterm
increasers (14).

Another differentiating factor, not represented in Fig. 5, was the period
of time, shorter or longer, during which projects appeared to be most active.
These researchers explored factors that might explain such patterns, as both
functional growth and complexity reduction are desirable evolution charac-
teristics. They discuss that contrary to their hypotheses, neither the starting
size or the increase of size was significantly different between increasing and
decreasing complexity clusters. Moreover, there was not a significant differ-
ence in the patterns on the average release frequency between increasing and
decreasing complexity clusters. The authors hypothesise that the results may
relate to the number of people involved in the project. Generally a correlation
is expected between the number of contributors and the complexity. Projects
with low complexity may initially attract and retain more people than others,
but if they become very popular, their complexity may later increase. This
may explain the midterm complexity increase pattern observed. However, in
this study the number of contributors was not measured and this is suggested
as further work.

2.4 The Study by Herraiz et al. [17]

Herraiz et al. [17] examined the growth of 13 OSS systems. This sample in-
cluded some of the largest packages in the Debian/Linux distribution. They
concluded that the predominant mode of growth was superlinear. The choos-
ing of the large and popular Debian/Linux distribution was an attempt of
achieving a representative sample of successful OSS projects. After various
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Fig. 5. Four clusters (mean functions) detected by Stewart et al. in their sample of
59 OSS projects [16].

technical considerations, 13 projects were selected for study. Mathematical
models were fitted to the growth trends and the best fits were selected,
determining that six projects where experimenting superlinear growth, four
projects displayed linear growth and three projects were sublinear. The size
measurements were made using number of files and number of lines or state-
ments in the source code (SLOCs), with both measurements giving similar
results. This research, that looked at Linux growth data from 1991 to 2003
or so, confirming that Linux have been still growing superlinearly since God-
frey and Tu’s study [11] six years before. Table 2 lists the names of the OSS
systems studied, their growth rates and the identified overall growth trends.
For the growth rates, what’s only relevant is their sign5, positive, approxi-
mate zero or negative, which indicates predominantly superlinear, linear or
sublinear growth.

5 Herraiz et al. [17] fitted a quadratic polynomial to the SLOC and number of files
data and looked at the coefficient of the quadratic term as an indication of the
overall trend.
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Number (year) Name Statement

I (1974) Continuing
change

An E-type system must be continually adapted
otherwise it becomes progressively less satisfac-
tory in use, (and) more difficult to evolve

II (1974) Increasing
complexity

As an E-type system is evolved its complexity in-
creases unless work is done to maintain or reduce
the complexity

III (1974) Self regula-
tion

Global E-type system evolution is regulated by
feedback

IV (1978) Conservation
of organ-
isational
stability

The work rate of an organisation evolving an E-
type software system tends to be constant over the
operational lifetime of that system or segments of
that lifetime

V (1991) Conservation
of familiar-
ity

In general, the incremental growth (growth rate
trend) of E-type systems is constrained by need
to maintain familiarity

VI (1991) Continuing
growth

The functional capability of E-type systems must
be continually enhanced to maintain user satisfac-
tion over the system lifetime

VII (1996) Declining
quality

Unless rigorously adapted and evolved to take into
account changes in the operational environment,
the quality of an E-type system will appear to be
declining

VIII (1971/96) Feedback
system

E-type evolution processes are multi-level, multi-
loop, multi-agent feedback systems

Table 1. Laws of E-type Software Evolution

Project Growth rate (SLOCs) Growth rate (files) Category

Amaya 1.45 -0.0055 linear
Evolution -31.89 -0.17 sublinear
FreeBSD* 15.16 0.056 linear

Kaffe 77.13 0.71 superlinear
NetBSD* 152.74 1.04 superlinear

OpenBSD* 401.20 2.01 superlinear
Pre tools 4.31 0.044 superlinear
Python 18.43 -0.062 linear
Wine 50.06 0.064 linear

wxWidgets* 587.56 0.29 superlinear
XEmacs -259.44 -0.60 sublinear
XFree86 -412.28 -1.47 sublinear
Linux* 186.21 0.71 superlinear

Table 2. Growth rates and overall growth trend in some Debian packages. Growth
rates are semiannual (For projects with * monthly, rather than seminannual, growth
rates are indicated.) Taken from [17].



14 Fernandez-Ramil et al.

2.5 The Study by Wu et al.[18, 19]

Wu et al. [18, 19] analyzed the evolution of three OSS systems (Linux,
OpenSSH, PostgreSQL). One of the contributions of this work is to have
put forward evidence that reinforces the observation that OSS evolution goes
through periods of relatively stability where small, incremental changes are
implemented, separated by periods of radical restructuring, where architec-
tural changes take place. These are changes that may occur in relatively short
periods of time and that virtually transform the architecture of an evolving
system and the subsequent evolution dynamics. Fig. 6 presents one of the
results derived by Wu [19] for Linux using the evolution spectograph [18] visu-
alisation technique. This type of graph shows the time on the x-axis, whereas
the y-axis is mapped to a single element (e.g. a file) in the system. Files are
ordered on the y-axis based on their creation date, from the bottom upwards.
Every horizontal line in the graph describes the behaviour of a property (e.g.
number of dependencies) over time for each element. Whenever the property
changes for an element at a point in time, that portion of the horizontal line is
painted with strong intensity. If the property does not change or changes little,
the intensity gradually decreases and the line fades away. Changes in colour
intensity that can be seen vertically denote many elements having changes in
that property. When vertical lines appear on the spectrograph, these indicate
massive changes across the system. As one can see in Fig 6, there is evidence
for at least four major Linux restructurings, identified with the release codes
in the figure.

2.6 The Study of Capiluppi et al. [20, 21, 22]

Capiluppi et al. [20, 21, 22] studied the evolution of approximately 20 OSS
systems using measurements such as growth in number of files, folders and
functions; complexity of individual functions using the McCabe index [?];
number of files handled (or touched) [1] and amount of anti-regressive work [1].

Segmented Growth Trends

One example of the systems studied is Gaim, a messenger that runs under
Linux, Windows, MacOS X and BSD. The growth trend of this system, in
number of files and folders, is presented in Fig. 7.

In Gaim, one cannot easily identify which is its overall growth pattern.
From day 1 to day 450 or so the growth pattern is superlinear. Then, growth
essentially stops until day 1200, after which growth is resumed at a linear rate.
It is difficult to predict what type of curve (linear, sublinear, or superlinear)
will come out if this data is fed into a curve fitting algorithm. Gaim pro-
vides evidence of the fragmented nature of software growth patterns: growth
patterns can be abstracted differently depending on the granularity of the
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Fig. 6. Outgoing dependency changes in Linux [19].

observations. Another OSS system studied, Arla, showed a positive sublinear
growth followed by stagnation (Fig. 8.

While the growth pattern of Arla is smoother than that of Gaim, overall
it is a sublinear growth pattern. Nevertheless, it can also be seen as an initial
superlinear trend, up to day 125, then followed by a sublinear trend, up to
day 400 or so, followed by a short period of no growth, then followed by linear
growth until day 1,000, and, more recently, a period of no growth. As in the
Gaim case, in Arla, the interpretation of a fragmented growth trend as an
arbitrary sequence of superlinear, linear and sublinear trends is plausible.

Both Fig. 7 and 8 display the growth in number of folders which overall
follows the file growth trend but tends to be more discontinuous, with the big
jumps possibly indicating architectural restructuring or other major changes,
as when large portions of code are transferred from another application. There
is tendency for large jumps (e.g. growth greater than 10 percent) in number of
folders to precede a period of renewed growth at the file level and it appears
that one could use, to certain extent, the folder size measurement to identify
periods of restructuring, even though it does not always work.
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Fig. 7. Growth of the OSS Gaim system both in number of files and number of
folders [?].

Refactoring Work in OSS

A contribution of these studies [22] was the provision of metric evidence that
the so called anti-regressive work, which is related to what has been more
recently called refactoring [23], actually takes place in some OSS projects.
Refactoring involves re-writing of portions of the code which appear to be
too complex, without changing the functionality and it is a popular and well
accepted practice in agile methods. However, there is no “official” approach
to refactoring in OSS projects, with some OSS projects more concerned with
the understandability and complexity of the code than others. From a small
sample of systems studied by Capiluppi et al., it appears that in general OSS
projects invest on average only a small portion of the effort in refactoring, even
though some large peaks of refactoring activity can be present. In two OSS
systems (Arla and Mozilla) for which anti-regressive work was measured, the
portion of changes that can be considered as conducting complexity reduction
work, were less than 25 percent of the total changes in a given release. This is
illustrated in Fig. 9 that presents the approximate amount of anti-regressive
work in Arla. The figure shows high variance in the work devoted to refactoring
with high peaks but low average [22]. Note that the presence of a peak in anti-
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Fig. 8. Growth of the OSS Arla system both in number of files and number of
folders [?].

regressive work does not imply that the activity for that month or period was
predominantly refactoring. New functionality could have been added during
the same interval.

2.7 The Study by Smith et al. [24, 25]

One important aspect, not considered by Lawrence [4] in his critic, is that the
phenomena described by all the laws operate in the real-world in a parallel
fashion. The important point to make here is that testing each law in isolation
and independently of the other laws and their assumptions can lead to erro-
neous results. This is way, in our opinion, simulation models remain as the
most promising way of empirically validating the laws. In this line of work,
Smith et al. [25] examined 25 OSS systems by looking at the following at-
tributes: functional size, number of files touched and average complexity. The
research question was to test whether the growth patterns in OSS were similar
to those predicted by three simulation models previously studied [26]. This was
an indirect way of testing the empirical support for some of Lehman’s laws,
as these models were three different interpretations or refinements of some of
Lehman’s laws, in particular those related to system growth and complexity.
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Fig. 9. Estimated amount of complexity reduction work as a percentage of all the
files touched in a given release [22].

As previouly indicated in Section 1.1, simulation models are a good way to
test the empirical validity of the laws as a whole. This is important because
the laws interact with each other. Moreover, because the laws are informally
stated in natural language, their formalisation is varied and leads to multiple
simulation models.

This work used qualitative abstraction. The key idea is to abstract from the
detail of the data and focus on a high level characteristic (e.g. overall pattern
of growth). One possible way of applying qualitative abstration is finding out
whether a trend is superlinear, linear, or sublinear by checking the value of the
first and second differences in a time series. The symbols used are presented
in Fig. 10.

Since growth trends in OSS systems display discontinuities, a characteristic
already discussed in Section 2.6, the authors allowed for a sequence of multiple
growth trends to be considered. Fig. 11 shows the results obtained for 25
systems. Two types of growth trends were considered for each system: size
in files per release, called un-scaled trend, and a trend where the incremental
growth in number of files was divided by the number of files touched during
the interval, called scaled trend. The scaled trend was intended in order to



Empirical Studies of Open Source Evolution 19

Fig. 10. Symbols used to represent abstracted trends and the corresponding signs
for the first and second differences of the variable [24].

remove the effect of the effort applied, hoping that any impact of the evolving
complexity will be more evident. In fact, however, both scaled and un-scaled
patterns were quite similar, as can be appreciated in Fig. 11.

The results in Fig. 11 show a variety of segment sequences (or patterns).
These 25 OSS systems display greater variability in their segmented sequences
of growth than the proprietary systems studied in [26]. In the OSS systems, in-
creasing patterns predominated over non-growth or decreasing patterns. None
of three qualitative simlation simulation models, built and run using a tool
called QSIM, was able to predict the OSS observed trends, with the latter
being richer and more complex than those predicted by the models. (The
interested reader is referred to [24] for details on how this type of analysis
was carried out.) This has led to the development of a multi-agent model to
study how size, complexity and effort relate to each other in OSS [25]. In this
model, a large number of contributors, represented in the model as agents,
generate, extend, and re-factor code modules independently and in parallel.
To our knowledge, this was the first simulation model of OSS evolution that
included the complexity of software modules as a limiting factor in productiv-
ity (second law), the fitness of the software to its requirements (seventh law),
and the motivation of developers (a new factor). Evaluation of the model was
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Fig. 11. Qualitative behaviours for system growth identified in empirical data from
25 OSS systems [24].

done by comparing the simulated results against four measures of software
evolution (system size, proportion of highly complex modules, level of com-
plexity control work, and distribution of changes) for four OSS systems (Arla,
Gaim, MPlayer, Wine). The simulated results resembled the observed data,
except for system size: three of the OSS systems showed alternating patterns
of super-linear and sub-linear growth, while the simulations produced only
superlinear growth. However, the fidelity of the model for the other measures
suggests that developer motivation, and the limiting effect of complexity on
productivity, are likely to have a significant effect on the development of OSS
systems and should be considered in further simulation models of OSS devel-
opment [25].

3 Comparing the Evolution of Open and Closed Source
Software Systems

From the above discussion we can observe the following:

• The laws were proposed when most of the systems were developed in-
house by a dedicated group of engineers working in the same place, under
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some form of hierarchical management control and following a waterfall-
like process. The software systems of the 70s and 80s were in many cases
monolithic and there was little reuse from other systems. OSS challenges
many of these assumptions6.

• The laws are difficult to test empirically, because they are informal state-
ments. One can formalise them making assumptions but many different
formalisations are possible. Moreover, the phenomena described by the
laws happens in parallel, with some of the laws related to the others. This
calls for the use of techniques such as simulation models to test the laws.
Qualitative simulation and multi-agent simulations are promising tech-
niques.

• Growth patterns of OSS systems seem to be less regular than those of
proprietary systems studied in the past7 This could be due to the open
system, in the system-theoretic sense, nature of OSS systems: contributors
can come and go from wherever in the world, code can be easily duplicated
or transferred from one application to the other. There are less restrictive
rules than in traditional organisations. All these appear to contribute to a
richer and more chaotic phenomenon.

• OSS evolutionary trends are in general more difficult to predict than those
of traditional systems. Paradoxically, this does not imply more risk for
those using OSS. Since they have access to the source code, they have a
degree of control on the evolution of a system that users of proprietary
systems do not have. OSS users can eventually implement their own fea-
tures and fix defects, or even create and evolve their own stream if they
need to.

• There is evidence for discontinuity in OSS evolution (see Section 2.6).
Evolutionary stages are present in OSS but these have not been fully
characterised. Models such as the one by Bennett and Rajlich [10] will
need to be revisited to accommodate OSS observations.

Table 3 is an attempt to summarise the applicability of each of the laws
to successful OSS projects, based on the empirical evidence so far collected.
The laws do not apply to very many OSS projects which remain in the initial
development or proposal stage. Some of the possible reasons for a project to
become successful have been investigated in [27] and this is an important topic
for the understanding of OSS evolution.

It is worth mentioning here that the laws refer to common properties across
evolving E-type systems at a very high level of abstraction. For example, under
the laws, the fact that two software systems display functional increase over

6 Current proprietary systems are less monolithic and waterfall is progressivelly
replaced by other process models. This is likely to affect the validity of the laws
even for proprietary systems.

7 Ideally one would like to compare contemporary proprietary and OSS system
evolution and not contemporary OSS with out-of-date proprietary systems, but
access to new proprietary systems is limited.
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Number Name Empirical
Support

Comment on applicability to Open Source Evolu-
tion

I Continuing
change

YES Seems to apply well to those OSS projects which
have achieved maturity. Many projects do not
pass the initial development stage. However, even
successful projects experience periods of none or
little change.

II Increasing
complexity

? Evidence is so far contradictory. There are some
OSS systems that show increasing complexity and
others of decreasing complexity. There is evidence
of complexity control but it is not clear how this
affects the overall complexity trend. Structural
complexity has many dimensions and only a hand-
ful of them have been so far measured.

III Self regula-
tion

? Not clear whether this law applies to OSS or not.
For example, the influence of individuals like Li-
nus Torvalds in the evolution of a system is very
significant. On the other hand, there are forces
from the entire multi-project eco-system which
may affect the growth, change and other rates.

IV Conservation
of organ-
isational
stability

? There are different degrees and types of control
by small groups of lead developers and how their
policies and loose organisation affect evolution is
still not understood. Segmented growth suggests
less stability than in proprietary systems. Mech-
anism that influence the joining in and departure
of contributors need to be better understood.

V Conservation
of familiar-
ity

? Literally all, including users, can access the code
and the documents available. Need to familiarise
with a new release might be less relevant in OSS
than in proprietary systems because many users
are at the same time contributors and have a more
in-depth knowledge of the application or partici-
pated in the implementation of the latest release.

VI Continuing
growth

YES The law seems to describe well mature and suc-
cessful OSS where despite irregularity in patterns
there is a tendency to grow in functionality. Some
successful OSS systems like Linux display super-
linear growth. However, many OSS projects also
display none or little growth.

VII Declining
quality

Possibly,
but not
tested yet

This law is difficult to test because it depends on
the measurement of quality. At least it should con-
sider in addition to defect rates, the number of re-
quirements waiting to be implemented at a given
moment in time. These variables are difficult to
study in OSS since, in general, there are no for-
mal requirements documents.

VIII Feedback
system

YES, but
different
type of
feedback
system

This law seems to apply well to OSS evolution.
However the nature of the feedback in proprietary
and open source systems may be different, leading
to more variety, perhaps more chaotic behaviour,
in OSS evolution.

Table 3. Applicability of the laws of software evolution to mature and successful
OSS projects
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time or over releases, means that they share one property: positive functional
growth. Growth is a rather straight-forward and global characteristic that can
be studied across a large number of systems. However, there is empirical re-
search where investigators are looking to much more detailed characteristics
(e.g. types of design problems in software systems), perhaps looking for sta-
tistical regularities in these, which might be more challenging to generalise
across systems than the simple properties which are the concern of the laws.
This also means that two systems may share some properties at a high level
of abstraction but when one studies the details they might be highly different.
One needs to keep the issues of the level of abstraction in mind when one is
referring to common or different characteristics across software systems. The
same applies when one is discussing whether software evolution is predictable
or not. Some characteristics at a high level of abstraction may be predictable
but as we get concerned of more detailed properties (e.g. the precise evolution
in requirements that a software application will experience in two years time),
characteristics are likely to be much more difficult to predict.

4 Threats to Validity

Empirical studies are frequently subject to some threats to validity and it is
seen as a duty of authors to discuss these to the best of their knowledge [28].
The validity of the results of the empirical studies of OSS evolution, and in
some cases also of proprietary software evolution, is constrained by a number
of factors such as:

Incomplete or erroneous records: Chen et al. [29] found that in three differ-
ent OSS systems studied, the omissions in change-logs ranged from 3 to
almost 80 percent and conclude that change-logs are not a reliable data
source for researchers. This is obviously a concern because some studies
may use change-logs as a data source. Other data sources may be subject
similarly to missing or mistaken entries. Quantification of the error (or
uncertainty) due to missing, incomplete or erroneous records tends to be
difficult and, unfortunately, not common. This is factor that requires in-
creasing attention in order for empirical studies of software evolution to
become more disciplined, scientific and relevant.

Biased samples: When projects selected for study were not randomly chosen
there is a risk of having selected more projects of some type than others.
For example, we know that only a small percentage of OSS projects achieve
a mature and stable condition where there is a large number of contribu-
tions. The vast majority of OSS projects do not reach such stage [27].
Similarly many software projects are cancelled for one reason or another
before initial delivery to users and hence never achieve evolution. Strictly
speaking, one should be referring to many studies as empirical studies of
successful software evolution.
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Errors in data extraction: Data extraction from raw sources (e.g. code repos-
itories and configuration management systems) can be complex and error
prone. Assumptions may have made that are not clearly indicated. Data
extraction and parsing and visualisation tools may contain errors.

Data extraction conventions: Whereas classic studies of proprietary systems
use time series, where each measurement was taken for a given release,
most of OSS studies follow a contemporary trend of using time series based
on actual time of the measurement. Some authors like [15] have argued
that this is more appropriate. However, it remains the question to what
extent the release sequence is more or less informative than actual dates
(rel-time) and how these different data can be compared.

External validity: In many studies it is not clear how the systems studied
were selected and to what extent the systems analyzed are representative
of typical OSS, or whether such a typical OSS actually exists. Some em-
pirical evidence [27] suggests that the type of application influences the
stability and success on an OSS project. Whether and how application
domains relates to evolutionary patterns remains an open question for
further research.

Granularity: There is evidence that evolutionary behaviour at the total sys-
tem level and at the level of individual subsystems is different [11]. This
may affect the internal validity of any results. Moreover, there is little
knowledge on how the behaviour observed at the total system level re-
lates to the behaviour observed at the subsystem level.

Initial development: Many OSS projects are started as closed-source projects
before made available as OSS on the Internet. Little is known about what
happens during this initial phase and how it influences the later evolu-
tion phases. Most of the empirical data do not capture this hidden initial
development phase, which is possibly more similar to proprietary initial
development than the later time when a system becomes OSS.

Confounding variables and co-evolution: There might exist other known or
unknown variables that impact on the observed behaviours different to
those considered in the studies. This could be due to measurement dif-
ficulties, because the researchers could not take additional variables into
account for practical reasons or because these additional variables are un-
known. One example of these is the amount of code that is duplicated,
sometimes called code cloning, or ported from another system. This is an
example of network externality [30]. Scacchi et al. [30] refer to OSS as a
“software eco-system”. In such eco-system one should not study individ-
ual systems, but one should look at the complex co-evolution of multiple
software projects in order to make sense of the evolutionary trends.

The above list is not complete and other factors may also become threats
to validity. Future studies will need to consider and handle these factors in
detail. For the moment, we assume that the empirical results are the best
description we have at hand of OSS evolution. The fact that some studies
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have been replicated or point towards the same type of phenomena, however,
enhances the validity of the current OSS empirical research, despite the many
threats that we have mentioned in this section.

5 Conclusions and Further Work

In this chapter we have been concerned with evolution, that is, all that hap-
pens after the first release of a software, simply because it is an extremelly
important part of the lifecycle of an application. OSS has made software evo-
lution accessible for wider study. Empirical studies of open source software is
a vast area and this chapter has discussed a small sample of studies that are
concerned with the evolution of OSS, which is, as someone put it, what hap-
pens when one looks at the dynamic changes in software characteristics over
time. By studying how OSS changes over time one might understand better
the specific challenges of OSS evolution and how to address them in different
ways, by inventing specific tools, for example. The many “static” empirical
studies of OSS to date [30] have, therefore, not been of immediate interest in
this chapter.

Empirical studies of OSS evolution, the focus of this chapter, tell us that
the classical results from the studies of proprietary software evolution, which
have laid a foundational stone in our collective understanding of software evo-
lution, need to be reconciled with some of the evidence coming from OSS.
From Table 3 it is clear that the OSS evolution phenomenon is not com-
pletely inconsistent with the laws, but it is opening up new questions which
challenge the assumptions of the laws and it could well be that we are facing a
paradigm-shift in our understanding of software evolution. Scacchi et al. [30]
have put forward the view that OSS evolution should be viewed as an eco-
system. If this were so, we would need to get a better understanding of the
personal attitudes, rules and “good practice” that make the OSS eco-system
work successfully. Multi-agent simulation models (e.g. [25]) may be particu-
larly useful here and perhaps the software evolution and biological evolution
analogies, discussed in the 70s and 80s [1], may need to be revisited. We add
a precautionary note here since fundamental differences are likely to remain
between the two domains: software evolution is done by people using pro-
gramming languages and technologies that themselves evolve, unconstrained
by any physical laws, while biological evolution is constrained by the physical
and chemical properties of molecules such as the DNA.

In Section 4 a number of important threats to the validity of the empiri-
cal studies of OSS evolution were indicated. A key issue is to find out which
should be the first-class entity in the software evolution research. While clas-
sical studies of software evolution concentrated in a single software system
as the first-class entity, in OSS (and in some proprietary environments too)
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there is high code re-use and software evolves within interrelated multi-project
environments. Because many OSS software systems can be strongly related
through re-use and the importing and exporting of code, various systems co-
evolve and influence the evolution of each other. This suggest that we should
conduct future empirical studies of families of OSS systems.

For software evolution researchers who are seeking to contribute to OSS
evolution, perhaps one of the areas in which they could contribute is, rather
than trying to apply concepts that were conceived with proprietary processes
in mind, seeking to identify the evolutionary characteristics of OSS and ad-
dress them directly within the characteristics of OSS. For example, one inter-
esting aspect is the issue of growth discontinuity and, in particular, the stages
during which OSS systems appear to have stopped evolving, only to regain
momentum some time later. What can be done in terms of tools, for example,
to preserve the knowledge about the “mysteries” of the system during such
periods?

Another interesting question is to what extent OSS evolution can be
planned and controlled and the OSS evolutionary stages predicted. Many cor-
porate and other customers (e.g. governments) would feel attracted to OSS
if they had more confidence in the predictability of the evolution of these
systems without having to create their own evolution stream of the system.
More predictability is needed for OSS to become serious contenders of popular
proprietary applications. However, are the OSS communities ready to become
more business-like in setting targets and commitments?

Finally, even from a superflous analysis it is becoming evident that un-
derstanding of OSS evolution requires a multi-disciplinary approach that in-
volves economics, social science and other disciplines in addition to computing.
This all means plenty of challenges for developers and researchers and need
to establish links to other research communities (e.g. information systems,
economics, complexity science, psychology) with whom wider questions and
interests could be shared. This is a pre-requisite to any major progress in the
understanding of OSS evolution and its improvement.
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