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Abstract

In this article, the identi…cation of instrumental variables and general-
ized method of moment (GMM) estimators with multi-period perceptions
is discussed. The state space representation delivers a conventional …rst
order condition that is solved for expectations when the Generalized Bé-
zout Theorem holds. Here, it is shown that although weak instruments
may be enough to identify the parameters of a linearized version of the
Quasi-Reduced Form (Q-RF), their existence is not su¢cient for the iden-
ti…cation of the structural model. Necessary and su¢cient conditions for
local identi…cation of the Quasi-Structural Form (Q-SF) derive from the
product of the data moments and the Jacobian. Satisfaction of the mo-
ment condition alone is only necessary for local and global identi…cation
of the Q-SF parameters. While the conditions necessary and su¢cient for
local identi…cation of the Q-SF parameters are only necessary to identify
the expectational model that satis…es the regular solution. If the con-
ditions required for the decomposition associated with the Generalized
Bézout Theorem are not satis…ed, then limited information estimates of
the Q-SF are not consistent with the full solution. The Structural Form
(SF) is not identi…ed in the fundamental sense that the Q-SF parameters
are not based on a forward looking expectational model. This suggests
that expectations are derived from a forward looking model or survey data
used to replace estimated expectations.
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1 Introduction
This article considers identi…cation of multivariate, multi-period rational expec-
tations (RE) models discussed by Broze, Gourieroux and Szafarz (1995) and,
Blinder and Pesaran (1997(BP97)). The article extends proposition 1 in BP97
via the Generalized Bézout Theorem to show, under more general conditions,
when a regular solution to the RE problem exists. It extends the conditions for
the identi…cation of linear RE models in Pesaran (1987), to the multi-period
expectations case. The conditions in Pesaran (1987) relate to linear models,
which links identi…cation to the question of valid instrument selection and va-
lidity. An issue paid particular attention in the literature on panel data models,
where identi…cation is generally accepted on satisfaction of tests of a number of
over-identifying restrictions (Arellano, Hansen and Sentana (2000) and Phillips
(2003)).
The question of identi…cation becomes more complicated when RE models

are derived from the solution to an objective problem. In addition to the exis-
tence of valid instruments there may be additional moment conditions that need
to be satis…ed, this occurs when the Generalised Method of Moments (GMM)
estimator is used to correct for the presence of serial correlation (Hansen and
Sargent (1982), West (1995) With panel data, a method devised by Bhargava
and Sargan (1983), and extended by Arellano and Bond (1991) is commonly
used to estimate dynamic euler equations. Again it is assumed that a test of
over-identifying restrictions is su¢cient to identify parameters of what are im-
plicitly viewed as being forward looking expectations models. However, such
tests of over-identifying restrictions are often accepted when there are weak in-
struments and when that is the case the tests are often unreliable (Stock and
Wright (2000)). Satisfying a test of over-identifying restrictions from limited
information estimates is not usually su¢cient to identify expectations as their
implicit estimates do not incorporate information about the forward solution to
the RE problem.
In RE models further parametric restrictions apply to the mean and/or the

variance equation, consequently higher order identi…cation may rely on such
non-linearity (Flôres and Szafarz (1994), Hunter (1992)). The impact of the
discount rate is not discussed here, but apart from the case where there is
a single equation the additional non-linearity introduced by the discount rate
generally aids identi…cation (Gregory et al (1993), Hunter (1989a,1992) and
Sargan (1982)). Euler equations estimated using an errors in variables approach
have a moving average error structure, which should either be accounted for
directly or indirectly through the impact of the terminal condition on the time
series properties or forecast performance of the model. The structure of the
expectational model as well as the nature of the instrument set is important
for identi…cation. Identi…cation may be lost when the estimator is not able to
bind the parameters to the solution of the expectational problem and testing of
the RE hypothesis in incomplete models may be compromised (Dufour (1997),
Stock and Wright (2000)).
In addition to the type of parametric restriction considered above euler equa-
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tions estimated using the errors in variables approach have a moving average
error structure, which implies that the underlying models should either account
for this or when such expectational errors are solved out then the terminal con-
dition a¤ect the time series properties and forecast performance of the model.
Hence, the structure of the expectational model as well as the nature of the
instrument set is important for identi…cation. What happens to identi…cation
when the estimator is not able to bind the parameters to the solution of the
expectational problem (i.e. the transversality condition discussed by Blinder
and Pesaran (1995) or the di¢culty in testing the RE hypothesis in incomplete
models outlined in Dufour (1997)).
This article is structured as follows: in section 2 the solution to multivariate

multi-period RE models is considered; in section 3 identi…cation is viewed in
terms of instrument validity and parametric restriction; in section 4 the impact
on identi…cation of the transversality condition and then conclusions are drawn.

2 Asymmetric Multi-period Expectations Mod-
els

The following model with future and past expectations has been considered by
Broze and Szafarz (1991), Broze, Gourieroux and Szafarz (BGS95), and Blinder
and Pesaran (BP95,BP97):

A00yt =
KX
k=1

Akoyt¡k +
KX
k=1

HX
h=1

AkhE(yt+h¡kjIt¡k) + ut (1)

where yt and ut are G vectors of decision and forcing variables. Akh; k =
0; 1; :::K; h = 0; 1; :::H; are G£G dimensioned matrices of …xed coe¢cients and
It represents a non-decreasing information set at time t; containing current and
lagged values of yt and ut: It = fyt; yt¡1; :::; ut; ut¡1; :::g:Blinder and Pesaran
(1995(BP95)) show that (1) has the following canonical form

xt = Axt¡1 +BE(xt+1jIt) + wt (2)

where xt = (x
0
t; x

0
t¡1; :::x

0
t¡K+1); x

0
t = (y

0
t; E(y

0
t+1jIt); :::E(y

0
t+H jIt)); A = ¡D¡10 D1;

B = ¡D¡10 D¡1; wt = ¡D¡10 ¹#t; ¹#t = (#
0
t; 0

0
n£1; :::0

0
n£1)

0
; #t = (u

0
t; 0

0
G£1; :::0

0
G£1)

0
;

¹#t and xt are both K(H + 1)G£ 1 matrices (n = (H + 1)G), 00n£1 is an n£ 1
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vector of zeros, #t is of dimension n£ 1 and Di for i = ¡1; 0; 1 are de…ned as:

D¡1 =

26664
¡¡1 0n ¢ ¢ ¢ 0n
0n 0n ¢ ¢ ¢ 0n

. . .
0n 0n ¢ ¢ ¢ 0n

37775 ;D0 =
26664
¡0 ¡1 ¢ ¢ ¢ ¡K¡1
0n In ¢ ¢ ¢ 0n

. . .
0n 0n ¢ ¢ ¢ In

37775

D1 =

26664
0n 0n ¢ ¢ ¢ 0n ¡K
In 0n ¢ ¢ ¢ 0n 0n

. . .
0n 0n ¢ ¢ ¢ In 0n

37775 with ¡k; k = ¡1; 0; 1; :::K

¡¡1 =

26664
0G 0G ¢ ¢ ¢ 0G 0G
¡IG 0G ¢ ¢ ¢ 0G 0G

. . .
0G 0G ¢ ¢ ¢ ¡IG 0G

37775 ;¡0 =
26664
IG ¡A01 ¢ ¢ ¢ ¡A0H
0G IG ¢ ¢ ¢ 0G

. . .
0G 0G ¢ ¢ ¢ IG

37775

¡i =

26664
¡Ai0 ¡Ai1 ¢ ¢ ¢ ¡AiH
0G 0G ¢ ¢ ¢ 0G

. . .
0G 0G ¢ ¢ ¢ 0G

37775 for i = 1; :::K

It follows from proposition 1 in BP97 that when ¸i de…nes a solution to the
scalar problem:

Á(¸i) = det(B¸
2
i ¡ ¸iI +A) = 0

there are …nitely many Jordan matrices Ji for i = 1; 2; :::l that solve Á(C) = 0;
where C=SJiS¡1 for some non-singular matrix S. Any matrix Ji that solves
Á(C) = 0 also satis…es:

BS2i ¡ SJi +AS = 0: (3)

Vectorizing (3):

((J2i )
0 B ¡ J 0i  Im + Im A)vecS = 0:

When rankf(J2i )
0 B ¡ J 0i  Im + Im Ag = m¡ 1; then S is a non-singular

matrix, and Ji = ¤ is a solution to Á(C) = 0; which also solves:

P (C) = BC2 ¡C +A = 0;
where C = S¤S¡1: If P (C) = 0 then it follows from the Generalized Bézout
Theorem (Gantmacher (1960)) that the polynomial in z-transfom, P (z) =(Bz2¡
zI+A) has a left hand divisor of the form (zI¡C). Mapping P (z) = F (z)(zI¡
C) onto the time domain:

P (L¡1) = F (L¡1)(L¡1I ¡ C)
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where F (L¡1) = (I¡BC)(FL¡1¡I). P (C) = 0 when (i) (I¡BC)¡1 exists and
(ii) rankf(J2j )

0B¡J 0jIm+ImAg =m¡1: P (L¡1) = (BL¡1xt¡xt+ALxt)
decomposes into backward and forward components:

¡P (L¡1)Lxt = ¡(I ¡BC)(FL¡1 ¡ I)(L¡1I ¡ C)Lxt = (4)

= (I ¡BC)(I ¡ FL¡1)(I ¡ CL)xt = wt (5)

and (I ¡ FL¡1) inverts to produce the regular solution in BP97 without the
requirement that AB = BA :1

xt ¡ Cxt¡1 =
1X
s=0

F s(In ¡BC)¡1D¡1
0 E(¹#t+sjIt) (6)

C =

26664
C0 ¢ ¢ ¢ CK¡2 CK¡1
In ¢ ¢ ¢ 0n 0n

. . .
0n ¢ ¢ ¢ In 0n

37775 , Ci =

26664
Ci0 ¢ ¢ ¢ CiH
0G ¢ ¢ ¢ 0G

. . .
0G ¢ ¢ ¢ 0G

37775 ; i = 0; :::K ¡ 1:

If ut = Ãzt + "t (BP95) then solving for expectations gives rise to a Vector
Auto-Regressive (VAR) model (Pesaran (1987)):

xt ¡ Cxt¡1 = ¨(L)zt + "t (7)

where ¨(L) = (¨0 +¨1L+ :::¨s¡1Ls¡1);

¨i(Kn£Kn¤) =

26664
©0i 0n ¢ ¢ ¢ 0n
0n 0n ¢ ¢ ¢ 0n

. . .
0n 0n ¢ ¢ ¢ 0n

37775 ; ©0i =
26664
Á0i 0G ¢ ¢ ¢ 0G
0G 0G ¢ ¢ ¢ 0G

. . .
0G 0G ¢ ¢ ¢ 0G

37775 ; i = 1; :::s;

z0t = [z
¤0
t ; 0; :::;0] is a state vector containing exogenous process, z

¤0
t = [z

0
t; 0; :::; 0],

"0t = ["¤0t ; 0; :::; 0]; is a state vector containing white noise residuals, "
¤0
t =

1The result presented replaces Proposition 2 in BP(97). It follows from the application
of Frobenius Theorem or the appropriate matrices having Property P (Motzkin and Taussky
(1954)), that P (C) = BC2 ¡ C +A = 0 has the following roots Á = ¸b¸

2 ¡ ¸+ ¸a = 0 when
AB = BA: In (2), AB = BA only occurs when the problem is …rst order and B = ¯A:
Alternatively, it is either required that ¸¡¸b¸2 = ¸a and property P is satis…ed or P (C) = 0

and C ¡ BC2 = A: It follows from the similarity of C ¡ BC2 and A that the roots (¹) of
C ¡BC2 equal ¸a:
Any matrix pair (C;B) with roots (¸; ¸b) is said to satisfy property P (see Motzkin and

Taussky (1954)) when F (C;B) has as its roots f (¸; ¸b):More generally, Schneider (1955) shows
that property P follows for every pair of matrices (Ai; Aj) in an ordered matrix polynomial
when (AiAj ¡ AjAi)Ri = 0:Hence, C ¡ BC2 has roots ¸ ¡ ¸b¸2 when (BC ¡ CB)Ri = 0
for some matrix polynomial Ri. Property P will be satis…ed when BC = CB and AB = BA
Otherwise, when ¹ = ¸a and a Jordon form C = SJiS¡1 satis…es P (C) = 0; then ¹ = ¸¡¸b¸2.
Conditions (ii)-(iv) in BP(97) follow from these results without the requirement that A and
B commute.
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["0t; 0; :::; 0] and n
¤ = (H + 1)Gz. Now xt¡1 contains perception variables

(E(y
0
t¡ijIt¡j) for j > i):2 :
Given measures for all elements in xt¡1a solved form of the …rst order con-

dition can be derived (Appendix A), the Quasi-Structural Form (Q-SF):

(I + FC)xt ¡ FE(xt+1jIt+1)¡Cxt¡1 ¡ (In ¡BC)¡1D¡10 (ªzt + "t)

= F (ªR¹³t+1 + "
0
t+1) (8)

where ¹#t = ªzt + "t; F = (I ¡ BC)¡1B, I is a Kn dimensional identity
matrix and R =

P1
s=0 F

s(BC ¡ I)¡1D¡10 Rs. The following linearization of (8)
can be estimated consistently by Instrumental Variables (IV) when an optimal
instrument set exists (Sargan (1983a)):

Qoxt ¡Q1xt+1 ¡Q2xt¡1 ¡¦zt = &t+1 (9)

where &t+1= (In ¡BC)¡1D¡1
0 "t ¡ F"0t+1 ¡ FªR¹³t+1; an MA(1) error in state

space form, Qo = (I ¡ BC)¡1, Q1 = (I ¡BC)¡1B, Q2 = C and ¦ = (BC ¡
I)¡1D¡10 ª: Multiplying through by (I ¡BC) yields the Q-RF

xt ¡ P1xt+1 ¡ P2xt¡1 ¡ P3zt = &¤t+1 (10)

Where &¤t+1 = "+t ¡ FD0"+t+1 ¡ FªR¹³t+1; "+t = D¡10 "t; P1 = B = D¡10 D¡1;
P2 = C ¡BC2 and P3 = D¡10 ª:

3 Identi…cation of Expectations Models
The conditions presented in Pesaran (1987) can be extended to identify lin-
earized versions of (10) and (9). Identi…cation of SF parameters follows from
the existence of a well de…ned RF or Q-RF and identi…cation of (7) from the
existence of su¢cient lagged information.3

If Qo is non-singular, xt = Cxt¡1 + ¨(L)zt + "t then E(xtjIt) depends on
xt¡1 and zt¡i, for i = 0; 1; 2::s ¡ 1: As (9) is a state space analogue of the
model in Pesaran (1987) and b = [Q0;Q1;¦; C], is identi…ed when UQ below
has appropriate rank:4

UQ =

2664
b© O O ::: O
O IKn O ::: O
O O IKn¤ ::: O
O C2 ¥0 ::: ¥S¡1

3775 ,
2Such variables are either directly measurable at time t; can be calculated from VAR or

solved using the Quadratic Determinantal Equation Method discussed in BP(95, 97).
3Such conditions derive from Rothenberg(1971) and relate to the instrument matrix having

su¢cient rank.
4 Implicit in the notion of a Q-RF is the idea that either B0 = I or C = I .
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U =

2664
Q0 ¡Q1 ¡¦ ¡Q2
O IKn O O
O O IKn¤ O
O O O IKn

3775 and Q =

2664
©i C ¨0 ::: ¨S¡1
O IKn O ::: O
O O IKn¤ ::: O
O C2 ¥0 ::: ¥S¡1

3775 ; :

where Q0C ¡ Q1 ¡ Q2C2 = 0; Q0¨0 ¡ ¦ ¡ Q2¥0 = 0; Q0¨i ¡ Q2¥i = 0 for
i = 2; 3; :::s¡1 and without further homogenous linear restrictions © = [©i : O]:
This simpli…es as rank(UQ) =Kn+Kn¤ + rank(UQ¤); where:

UQ¤ =
·
b© O ::: O
O ¥1 ::: ¥S¡1

¸
:

If UQ is dimensioned 2Kn£ (r +Kn¤(s¡ 1)) with r conventional restrictions
on B and rank(¥i = C¨i) · min(Kn;Kn¤); then a unique solution to b;
to a normalization implies rank(UQ¤) = 2Kn ¡ 1: A necessary condition for
identi…cation is:

2K(1 +H)G¡ 1 < r +K(1 +H)Kz(s¡ 1):

Exact identi…cation requires r restrictions and enough pre-determined informa-
tion via lags on the VAR (s) and/or exogenous variables (Kz).5 Given enough
a priori restrictions, rank(

£
¥1 ::: ¥S¡1

¤
) = Kn is all that is required. But

for a process in x truncated then C is rank de…cient and irrespective of s identi…-
cation is lost. Technically, identi…cation will be accepted when there are enough
non-zero lags on the exogenous variables in the RF, but empirically the RF
is well estimated and the parameters distinguished from zero when these lags
are signi…cant. It may be possible that rank(

£
¥1 ::: ¥S¡1

¤
) = Kn when a

long enough dynamic process is estimated, but identi…cation though technically
accepted may be invalidated by weak instruments. The local conditions also
globally identify the linearized Q-SF parameters and when Q0 = I the Q-RF.
Sargan (1983) shows that when it is possible to solve the underlying parame-

ters from well de…ned estimates of a RF, the conditions due to Hunter (1992) are
su¢cient for global identi…cation. Given that rank(

£
¥1 ::: ¥S¡1

¤
) = Kn, a

necessary condition for identi…cation of the RF and Q-RF parameters, then the
Q-SF parameters can be solved in the following way using their de…nitions (10)
and the imposition of some additional linear restrictions. Therefore, D0 may be
identi…ed from homogenous linear restrictions on the parameters of the SF (Sar-
gan(1988)) and cross equation restrictions that derive from D¡1 ¡D0P1 = 0; 6
C follows from the solution to P2 ¡ C + P1C2 = 0 and ª = D0P3. When

5When s = 2 and G = Gz then this; order condition has a more usual form:

r > K(1 +H)G ¡ 1:

6Be aware that not all these restrictions should be e¤ective as D¡1 is a …xed matrix for
the case considered by BP97 and consequently P1 is non-invertible.
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P2 = A = C ¡ P1C2 then (2) and (10) are equivalent but full equivalence
of these two forms only occurs when the transversality conditions hold and
P2¡C +BC2 = 0 de…nes a valid solution to the forward looking expectational
problem (BP95 and BP97). If rank(P3) = Kn, then D¡1

0 exists and the param-
eter matrices D¡1, D0 and D1 along with their associated sub-matrices are also
identi…ed. The existence of such a solution is su¢cient for global identi…cation.
of the Q-RF and Q-SF parameters.
Flôres and Szafarz (1994) derive conditions, which depend on the rank of

the Jacobian Matrix considered without expectations by Rothenberg (1971).
When compared with Flôres and Szafarz, the following condition developed
from Sargan (1983a) depends on the product of the Jacobian and the moment
matrix of the data for models that include perception variables (K > 1):The
Sargan approach to local identi…cation is considered next.
When (10) is stacked across the sample the system can be written:

V (µ)X¤0 = E0 (11)

where V (µ) = [D0 :-ª : ¡D¡1 : ¡D0C + D¡1C2 ], X¤ = [X Z X+1 X¡1 ] ;
X and is an N £Kn, matrix of observations on yt; Z is an N £Kn¤ stacked
matrix of observations on zt, E0is an N£Kn stacked matrix of observations on
&¤t+1; N is the number of time observations, matrices subscripted by +1 relate
to observations for the period t+ 1 and ¡1 to period t¡ 1.
De…ne Z¤as

h
X̂ Z X̂+1 X¡1

i
where X̂ and X̂+1 are matrices of predictions

or forecasts ofX andX+1: Post multiplying (11) by the instrument matrix (Z¤):

V (µ)X¤0Z¤ = E0Z¤ (12)

Satisfaction of the following criterion, the probability limit of (12) is required
to estimate the parameters of (9) consistently (Sargan (1983a))7 :

V (µ)
plim(X¤0Z¤)

N
= 0 (13)

The criterion is made operational by replacing X̂ and X̂+1by their instruments
Z+ =[X¡1; Z;Z¡1; Z¡2; :::Z¡s] so the moment matrix of the data can be written:

p lim(
Z+0X¤

N
) =M = plim

·
Z+0X
N

:
Z+0Z
N

:
Z+0X+1
N

:
Z+0X¡1
N

¸
:

Vectorizing (V (µ)M):

vec(V (µ)M 0) = (M  IKn)vec(V (µ)) = 0: (14)

Following Sargan(1983a) necessary and su¢cient condition for the local identi-
…cation of dynamic autoregressive models estimated by IV can be derived from

7As is explained by Arellano (2002) GMM has generalized this the type of NLIV criterion
to consider broader forms of non-linearity, but at the penalty of losing Sargan’s original
motivation to handle measurement error, the expectational case considered here. Also dynamic
information from the mean and variance equations is often discarded when GMM is applied.
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the …rst derivative of (12). Di¤erentiating (14) with respect to the parameter
vector:

dvec(V (µ)M 0)
dµ

= (M  IKn)dvec(V (µ))
dµ

; (15)

gives rise to the rank condition:

rankf(M  IKn)dvec(V (µ))
dµ

g <m = 2Kn+Kn¤: (16)

If µ = [vec(D0)0 : vec(ª)0 : vec(C)0] , then:

dvec(V (µ))

dµ
=

2664
I 0 0
0 I 0
0 0 0

¡(C 0  I) 0 ¡(I D0) + ((I D0C) + (C0 D0)

3775
(17)

and conditions that are essentially the same as those due to Flôres and Szafarz
(1994) follow from the rank of Jacobian of the transformation (17). But Sargan
(1983a) shows for a class of dynamic model that the condition on the rank of
the Jacobian is only su¢cient for identi…cation.8 Pre-multiplying dvec(V (µ))

dµ
by

(M  IKn) :

(M  IKn)dvec(V (µ))
dµ

= [(M0  IKn)¡ (M3  IKn)(C 0  IKn) :
¡(M1  IKn) : (M3  IKn)(¡(I D0) + ((I D0C) + (C 0 D0))]

= [(M0  IKn)¡ (M3C
0  IKn) : ¡(M1  IKn) :

(M3  IKn)((C 0 ¡ I)D0 + (I D0C))]
= [((M0 ¡M3C

0) I) : ¡(M1  IKn) :
(M3(C

0 ¡ I)D0) + (M3 D0C))] (18)

whereM = [M0 :M1 :M2 :M3]: A necessary condition for identi…cation is that
rank(M) < (2Kn+Kn¤). Given, the de…nition of the model in section 2, D1
is a …xed matrix and is identi…ed a priori. The remaining parameters are not
identi…ed when the above rank condition fails or:

rank(M0 ¡M3C
0) < Kn (I)

rank(M1) < Kn¤ (II)

rank(M3(C
0 ¡ I)D0) + (M3 D0C)) < Kn (III)

It follows that D0 is not-identi…ed when M0 = M3C
0 or certain rows and

columns inM0 andM3C
0 are subject to some cancellation. A special case of this

8The results presented here do not consider conditions on the variance-covariance matrix,
but the authors of this article believe that a key distinction between this paper and that of
Flores and Safarz follows form the interaction of the moment conditions with the Jacobian.
The conditions on the variance-covariance matrix induce further non-linearities, which only
make the identi…cation story more complicated.
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occurs when there are unit roots in the process driving the exogenous variables.
Failure of (II) occurs whenM1 is rank de…cient and ª is not identi…ed; there are
insu¢cient instruments or z is cointegrating exogenous for a subset of the deep
parameters (Hunter (1989)). Cointegrating exogeneity implies that the long-run
processes forcing the y do not force z. Failure of (III) occurs when either D0 or
M3 are rank de…cient. Otherwise, C = 0 whenM3(C 0¡I)D0) = ¡(M3D0C)
or C is not fully identi…ed when there are dependencies betweenM3(C

0¡I)D0)
and (M3 D0C). There may also be rank dependencies across the columns of
(18) associated with cointegration between the x variables alone This will lead
to further restrictions, which imply that not all the parameters in ª are identi-
…ed.9

Non-identi…cation occurs when conditions on the product of the Jacobian
matrix and the Moment matrix of the data are rejected, but as Phillips (2003)
suggests, the literature often considers it enough to satisfy the moment condi-
tions or an empirical test of the type of rank condition found in Pesaran (1987).
However, Dufour (1997) and Stock and Wright (2000) question the performance
of such tests of moments. Dufour is critical of the power of the underlying tests
based on what are limited information estimators, while Stock and Wright con-
sider the question of Weak Instruments. Furthermore, Stock Wright and Yogo
(2002) explain that the IV and GMM sample distributions are non-normal un-
der weak instruments and as a result point estimates and hypothesis tests are
unreliable. This should be seen in the context of a broader observation made
by Sargan (1983) that a loss of identi…cation may be associated with estimators
that have fat-tailed distributions. The poor size of tests of instrument validity
may be associated with any loss of identi…cation due to failure of (I)-(III). Both
weak instruments and/or an empirical incapacity to detect the supposed RE
structure.
The latter observation leads to the …nal proposition of this article, that

identi…cation thus far described relates to the parametric identi…cation of the
Q-RF and Q-SF parameters. alone and not to the forward looking representation
of the model. That is estimates of parameters based on (2) (6) and (7) need
to be observationally equivalent to those derived from (8), (9) and (10).for
full identi…cation of the structure As the (Q-RF) and (Q-SF) do not impose
the solution, then equivalence with (2) only occurs when the instruments well
approximate the true expectations, but the true expectations are unobserved.
Although the observation of weak instruments may lead to a valid rejection of
the expectations model, as Stock and Wright (2000) suggest, poor instrument
performance may be the cause of the test to falsely reject either the null or the
alternative using conventional criterion.

9As compared with Flôres and Szafarz, the rank condition considered here is a¤ected by
the existence of unit roots and cointegration. As this is associated with rank de…ciencies
amongst the moment matrices of the exogenous and endogenous variables, then identi…cation
of some parameters is lost.
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4 The impact on Identi…cation of the Transver-
sality condition

The previous section considers identi…cation of SF and RF form parameters
in relation to models that do not fully exploit the solution to the RE model.
Therefore the local conditions developed in the previous section are necessary
and su¢cient to identify the parameters of both (10) and (9), but they are only
necessary for the models (10) and (2) to be isomorphic.
Two models are isomorphic when the two sets of parameters are observation-

ally equivalent. However, the Q-RF (10) is a model with an MA error structure
that does not use estimates of expectations that bind the parameters to the
solution, while (2) contains the true expectations. These two RE model will
only be comparable when the separation associated with (i) and (ii) holds or
empirically:

(ia) rank(I ¡ P1C) = m

(iia) rankf(J2j )
0  P1 ¡ J 0j  Im + Im  P2g = m¡ 1

However, (ii) cannot be tested from estimates of (10) alone, because C will then
be computed by stacking the stable roots of the z-transform of the polynomial
P IV (z) = P1z2 ¡ z + P2 = 0; implying P IV (C) = P1C2 ¡ C + P2 = 0 or (iia)
holds by construction. Otherwise, BP95 provide an approach that might be
used to check the validity of the RE form and calculate an RE solution. Set
¹Xt = ¹xt ¡ Cxt¡1 and rewrite (10):

(I ¡BC)Xt ¡ P1Xt+1 ¡ (P1C2 ¡C + P2)xt¡1 = P3zt + &¤t+1
When (i) or (ia) holds, then:

Xt = (I ¡BC)¡1P1Xt+1 + (I ¡BC)¡1(P1C2 ¡C + P2)xt¡1 +
(I ¡BC)¡1P3zt + (I ¡BC)¡1&¤t+1 (19)

If C has a canonical form S¤S¡1 and P (C) = P1C2 ¡ C + P2 = 0; then (19)
can be used to compute both empirically and analytically a forward looking
solution. When P (C) = 0; then (19) gives rise to:

Xt = (I ¡BC)¡1P1Xt+1 + (I ¡BC)¡1P3zt + (I ¡BC)¡1&¤t+1 (20)

Taking expectations at period t + i, where E(&¤t+ijIt) = 0 for i = 1; :::N and
substituting recursively for E(Xt+ijIt) using (I¡BC)¡1P1E(Xt+1+ijIt)+(I¡
BC)¡1P3E(zt+ijIt) yields the …nite horizon solution

Xt = xt ¡Cxt¡1 = (I ¡BC)¡1P1E(Xt+1+N jIt) +
NX
s=0

F s(In ¡BC)¡1P3E(¹zt+sjIt)

11



where (I ¡ BC)¡1P1E(Xt+1+N jIt) =
P1

s=N F
s(In ¡ BC)¡1P3E(¹zt+sjIt): It

follows that the …nite horizon solution is the same as (6) when the truncation or
terminal condition

P1
s=N F

s(In ¡ BC)¡1P3E(¹zt+sjIt) = 0: From Proposition
1 in BP97,

P1
s=N F

s(In ¡ BC)¡1P3E(¹zt+sjIt) = 0 when condition (ii) is ac-
cepted. While the isomorphism required for (2) and (10) to be observationally
equivalent also depends on satisfaction of condition (ii), which implies that the
transversality condition has been satis…ed. A su¢cient condition for proposi-
tion (ii) to hold is Xt » I(0): However, (ii) will fail when either Xt ¿ I(0)
or C is ill-de…ned and the latter occurs, when C does not have an appropriate
canonical form. For the solution to be partitioned into separate forward looking
and backward looking solutions (i) and (ii) above are required to hold. If the
parameters estimated from (9) are consistent with the existence of a forward
looking solution, S¡1 exists P (C) = 0 and A = C ¡BC2:
Alternatively, Sargan (1983) states that consistency is generally su¢cient for

higher order identi…cation. Thus (10) and (2) are isomorphic, when the matrix
pair [P1; P2] lies in a neighbourhood of some consistent estimates of [B̂; Â]: To
test this proposition requires E(xt+ijIt) in (2) to be replaced by a measure that
is consistent with the transversality condition being satis…ed.
In the limit an estimator, which satis…es (14) will converge to zero and the

associated model estimates will satisfy the Euler condition as p lim E0Z+
N

will
not be statistically di¤erent from zero. Hence, any estimator satisfying a test
of over-identifying restrictions will tend to parameter values that satisfy the
transversality condition. However, the notion of convergence that is appropri-
ate for the test of over-identi…cation to be consistent with satisfaction of the
transversality condition implies that the forecast horizon T ¡N must collapses
to zero as N becomes large. It was shown in section 2 that the separation into
a forward and backward looking component occurs when P (C) = 0. But such a
test requires one to check the consistency of any limited information estimates
of parameters by comparison with equivalent parameters from a model that
contains estimates of expectations that embody the proposition that agents are
forward looking.

5 Conclusions
Estimation of the structural parameters of optimizing models has become enor-
mously popular. It is legitimate to question the validity of the two approaches
to the problem. The full information procedure is computationally burdensome,
requires additional models for the exogenous processes and as with all likelihood
based procedures is often viewed as being non-robust. However, it permits the
restrictions associated with both the forward looking solution and RE to be im-
posed. Limited information procedures (IV/GMM) as typically applied, yield
Q-SF, but they do not ordinarily permit testing of all the RE restrictions or the
imposition of the transversality condition.
In this article, it is shown that the parameters of the structural model can be

identi…ed under the assumption that P (C) = 0: This proposition appears not to
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be testable in the context of models that estimate the …rst order condition via
GMM or IV. When compared with testing for over-identifying restrictions (Arel-
lano et al (2000), Hansen and Sargent (1982) and Sargan (1964)) and checking
rank conditions (Rothenberg (1971) and Flôres and Szafarz (1994)), the ap-
proach due to Sargan (1983a) considers the impact of both the moments and
the Jacobian Matrix. Pesaran (1987) derived conditions for identi…cation, but
they relate to linear models and in that case they boil down to the existence of
su¢cient instruments, which in practice are often found to be weak (Stock and
Wright (2000)). Conventional tests of over-identifying restrictions or moment
conditions may obviate some of the problems associated with weak instruments,
but even these tests may be swamped by selection of enough lagged informa-
tion. And according to Stock, Wright and Yogo (2002), the impact of weak
instruments is worse when GMM is used.
Flôres and Szafarz (1994) have addressed the question of instrument in-

teraction in the sense of the information set available, but their conditions
pre-dominantly emphasize the role of the non-linearity in identi…cation via the
Jacobian matrix. In the Sargan approach the e¤ect of the moments and the Ja-
cobian matrix interact, which yields conditions reliant on non-linear structure
and data dependence. Both the moment conditions and the Jacobian conditions
are necessary, but not su¢cient for identi…cation. Especially when cointegration
is important then the distinction between the impact of the Jacobian and the
moment conditions is apparent The moment conditions will fail with cointegra-
tion amongst endogenous, exogenous and between endogenous and exogenous
variables. This is a question of long-run structure as compared with the poor
informational properties of the data.
A further issue not addressed in the conventional literature, which further

distinguishes this work, relates to the existence of the forward looking represen-
tations, this follows from the Generalized Bézout Theorem. Partly, this relates
to (i) which is necessary for the existence of RF and Q-RF equations and all
the results considered in section 3, but it also relates to cointegration amongst
the endogenous variable processes. Furthermore it links to the key condition for
separation of the solution into backward and forward components that requires
a C matrix satisfying the condition P (C) = 0:

In line with the concluding remarks made by Stock and Wright (2000), this
article has extended the results presented in Sargan (1983a) for the Identi…cation
of non-linear IV estimators to the Euler equation case and augmented these
conditions by the well known proposition that alternative estimates either of
expectations or of model parameters must be consistent for identi…cation.
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6 Appendix A
Applying the forward Koych transformation (I ¡ FL¡1) to (6) assuming that
there exist measures for all lagged expectations in xt¡1 :

(I ¡ FL¡1)(xt ¡ Cxt¡1) =
1X
s=0

F s(In ¡BC)¡1D¡1
0 E(¹#t+sjIt)¡

F
1X
s=0

F s(In ¡BC)¡1D¡10 E(¹#t+s+1jIt+1)(21)

where L¡iE(xt+sjIt) = E(xt+s+1jIt+1): Re-ordering the indices on the sum-
mation signs and re-ordering terms gives rise to:

(I ¡ FL¡1)(xt ¡ Cxt¡1) = (In ¡BC)¡1D¡10 ¹#t +

F
1X
s=0

F s(In ¡BC)¡1D¡10 (E(¹#t+sjIt)¡ E(¹#t+s+1jIt+1))

When the exogenous processes have a Wold representation, zt =
1P
r=1

µiL
ivt;

where µi is a G£G matrix of …xed parameters, vt is a G vector of white noise
residuals and L is the lag operator then:

(E(¹#t+sjIt)¡E(¹#t+sjIt+1)) = (E(ªzt+s + "t+sjIt)¡E(ªzt+s + "t+sjIt+1))
= (ªE(zt+sjIt) + E("t+sjIt)¡ªE(zt+sjIt+1)

¡E("t+sjIt+1))
= (ªE(zt+sjIt)¡ªE(zt+sjIt+1)) + (E("t+sjIt)

¡E("t+sjIt+1))
= ¡ªRs¹³t+1 ¡ "t+1

where, E("0t+sjIt+i) = 0 for s > i; ¹³t = (³
0
t; 0

0
n£1; :::0

0
n£1)

0
; ³t = (v

0
t; 0

0
G£1; :::0

0
G£1)

0
;

¹³t is an Kn£ 1 matrix 0
0
n£1 is an n£ 1 vector of zeros and ³t is of dimension

n£ 1; and Rs is a square matrix de…ned as

Rs =

26664
£s 0n ¢ ¢ ¢ 0n
0n 0n ¢ ¢ ¢ 0n

. . .
0n 0n ¢ ¢ ¢ 0n

37775 and £s =

26664
µs 0G ¢ ¢ ¢ 0G
0G 0G ¢ ¢ ¢ 0G

. . .
0G 0G ¢ ¢ ¢ 0G

37775 for i = 1; :::1
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A forward solution follows by substituting out for updated expectations:

(I ¡ FL¡1)(xt ¡ Cxt¡1) = (In ¡BC)¡1D¡10 ¹#t ¡

F
1X
s=0

F s(In ¡BC)¡1D¡1
0 (ªRs¹³t+1 + "

0
t+1)

Multiplying through by the forward term on the Koych lead and replacing ¹#t
by ªzt + "t;reveals a Quasi-Structural Form (Q-SF):

(I + FC)xt ¡ FE(xt+1jIt+1)¡ Cxt¡1 ¡ (In ¡BC)¡1D¡10 (ªzt + "t) =

F (ªR¹³t+1 + "
0
t+1)

where F = (In ¡BC)¡1B and R =
P1

s=0 F
s(In ¡BC)¡1D¡1

0 Rs.
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