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Abstract This contribution deals with the pumping and deformation of oil in water droplets in alternating-
current electro-osmotic micropumps. These micropumps are used to transport lowly conductive fluids 
through micro channels by means of a harmonically driven electrode array on the channel bottom. The 
periodic formation of an electric double layer above the electrodes results in an electro-osmotic flow, which 
carries along adjacent fluid layers. In experiments we observed that droplets immersed in the carrier fluid are 
transported by the channel flow and periodically deformed when passing the electrodes. Due to the different 
polarizability and conductivity of the droplet and the carrier fluid, dielectrophoretic forces act on the fluid-
droplet interface. These forces that are described by the Maxwell stress tensor increase with the electric field 
strength and attract the droplet towards the electrode. This contribution analyses the mechanisms of droplet 
pumping and deformation numerically by means of solving for the electric and the flow field to the two 
phases in the channel and by evaluating the dielectrophoretic forces on the droplet. A conservative level-set 
method is used to track the droplet surface accurately. 
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1. Introduction 
 
 In micro-fluidic devices as e.g. lab-on-a-
chip devices a common task is the transport of 
liquids and immersed particles, droplets or 
cells. For the flow-generation through micro 
channels traditionally pumps with movable 
parts where used. With the aim of transporting 
fluids without the use of classical pumps, 
electro-kinetic effects have found be of great 
potential. Among these, the electro-osmotic 
(EO) flow describes the movement of charged 
fluid layers along charged walls due to an 
applied transversal electric field. It results in a 
plug-like flow but requires high electric fields 
of several kV/m. Recent publications 
recommend the use of periodic interdigitated 
electrode arrays with a length scale of some 
micrometers to reach these field strengths with 
applied voltages of a few volts (Ajdari, 2000). 
Alternating-current electro-osmotic (ACEO) 
micropumps consist of a rectangular channel 
with an interdigitated electrode array on the 
bottom. A device, which is built in SU8 tech-
nology by means of photolithography and a lift 

off process for the titanium electrodes (Hilber 
et al. 2008), is shown in Fig. 1. The pumping 
mechanism is based on the periodic formation 
of an electric double layer (EDL), which inho-
mogeneously screens the electrodes. EO flow 
results from the transport of charged fluid lay-
ers by the remaining tangential electric field. 

 

 
Fig. 1. Picture of the completed chip with a detailed 
view on the ACEO pump structure in the fluid channel. 
Distance between the fluid reservoirs is 10 mm. 
 
 Droplets and particles immersed in the EO 
channel flow are dragged along by viscous 
forces and influenced by gravitational and 
electric forces due to the remaining inhomo-
geneous electric field in the bulk of the 
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channel (Weiss et al. 2008). Depending on the 
polarizability and the conductivity of both, the 
carrier fluid and the droplet, it is pushed away 
from areas of high electric fields or attracted to 
them, which is known as dielectrophoresis. 
The interplay of dielectrophoretic (DEP), 
viscous shear, surface tension and gravitational 
forces affect the pumping dynamics of 
immersed droplets (Wang et al. 1997). 
 Experimental observations with the 
pumping of the compartments of a lubrication 
emulsion in water with the above device have 
shown interesting periodic droplet defor-
mation, which is depicted in Fig. 2. 
 

 
Fig. 2. Extracted pictures from a video taken with an 
ocular CCD of an oil-like drop in water being 
transported in an ACEO micropump. The fingers of the 
interdigitated electrode array on the channel bottom 
appear as white rectangles. When passing a finger the 
droplet is stretched significantly, such that its thickness 
decreases from 8µm to 4.5µm. The driving frequency 
was 1 kHz and the applied peak voltage was 4 V. 
 
 When passing over an electrode, the drop-
let is significantly stretched. The aim of this 
contribution is the investigation of the droplet 
dynamics in order to explain droplet defor-
mation an especially the influence of the 
harmonic electric field on its shape. Therefore, 
the droplet motion is computed by means of 
the finite element method. Section 2 and 3 
describe the modeling of the EO flow and 
analyze the resulting channel flow. Section 4 
and 5 finally deal with the modeling and 
analysis of the droplet dynamics. 
 
2. Modeling of the EO flow 
 
2.1 Electric problem 
 The accumulation of ions of an electro-
lytic fluid beside a charged wall results in an 
EDL beside the wall. It consists of a Stern 
layer - a single layer of ions, which adhere to 
the electrode - and a movable diffuse layer, 
where diffusion forces due to thermal motion 

balance electric attraction.  A common ap-
proach for the computation of the EDL de-
velopment and the resulting EO flow is the 
thin double layer theory. For a symmetric fluid 
of density fρ , viscosity fμ , ion concen-
tration 0c , dielectric permittivity fε  and 
conductivity fσ  the characteristic length for 
the extension of the diffuse layer is defined by 
the Debye length (Ajdari, 2000) 
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where bk , T , z  and 0e  are the Boltzman 
constant, the temperature of the fluid, the ion 
valence and the elementary charge, respect-
tively. For lowly conductive fluids fλ  is in 
the order of a few nanometers. Consequently, 
in microfluidic environments the EDL is thin 
compared to the channel extension. Further-
more the thin EDL theory assumes that (1) the 
equilibrium bulk ion concentration is not 
influenced by the EDL formation, that (2) the 
accumulated ions can be quantified by a net 
surface charge q  at the fluid–electrode inter-
face. This permits that (3) the EDL formation 
can be described by charging a capacity of an 
equivalent electric circuit, where respective 
surface capacities SC  and DC  for the Stern 
and the diffuse layer are charged through the 
bulk fluid, which corresponds to a resistance 
characterized by its conductivity fσ  (Ajdari 
2000 and Green et al. 2002). For low EDL 
charging these capacities are constant and the 
capacity of the DL is 
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where δ  is the relation of the Stern layer 
thickness to the diffuse layer thickness. 
 The EDL formation and the field descrip-
tion can be summarized as follows. The elec-
tric field in the source free symmetric electro-
lyte is described by the Laplace equation 

 0φΔ = , (3) 

where φ  is the electric potential. At the elec-
trode fluid interface the following boundary 
condition describes the accumulation of the 
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charge q  in the EDL: 

 q n E
t

∂
= − ⋅

∂
, (4) 

where n  and E  are the normal vector of the 
boundary pointing into the channel and the 
electric field is E φ= −∇ . A voltage 

( )0 sin 2app dr iV V f tπ ϕ= +  of amplitude 0V  
and driving frequency drf  is applied to the 
electrodes. Here, iϕ  is / 2π  for every 
second electrode, indicating that neighboring 
electrodes are antipodally driven. Finally, the 
potential at the outside of the EDL serves as 
boundary condition for the electric field: 

 0 app
DL

qV
C

ϕ = + . (5) 

The electric problem is linear in case that the 
DL capacity is constant and independent from 
q , which is the case if 25Dq C mV< ⋅ . 
 
2.2 Flow problem 
 The charge accumulation in the mobile 
diffuse layer is quantified by the zeta-voltage 

/ Dq Cζ = . In the presence of an electric field 
component tangential to the electrode tE  the 
charged diffuse layer is dragged along by 
Coulomb forces. The velocity, which is 
reached by the outer layer of the diffuse layer, 
is called Helmholz-Smoluchowski electro-
osmotic slip velocity:  

 s f t
f

u Eζε
μ

= . (6) 

This slip velocity serves as a boundary 
condition for the flow problem (Green el al. 
2002). The fluid flow is described by the 
Navier-Stokes equations being the conser-
vation of mass and momentum. Considering 
that in the micro-fluidic flow regime viscous 
shear forces dominate over inertial forces, for 
an incompressible fluid these equations reduce 
to  

 ( )
0,

0 ,T
f f

u

p u uμ μ

∇⋅ =

⎡ ⎤= −∇ +∇⋅ ∇ + ∇⎣ ⎦
 (7) 

where p and u  are the pressure and the 
vector of the fluid velocity. We apply the slip 

velocity as a boundary condition for the 
electrodes, the no-slip condition to the channel 
walls and periodic boundaries, as we only 
want to compute the flow over one pair of 
electrodes in the array. 
 In electro-osmotic flows, the time-scale of 
the driving voltage is far below the time-scale 
of the fluid flow. Consequently, time-averaged 
values of the slip velocity can be used as 
boundary for the static fluid computation. We 
regard a harmonic driving voltage and 
consequently, the potential φ  is also 
harmonic { } ( )2 *( ) Re / 2drj f tt e πφ φ φ φ= = + , 
where the over-line indicates a complex value 
and *φ  is the conjugate complex value of 
φ . The time-averaged slip-velocity is finally 

{ }*, Re / 2s av f t fu Eε ζ μ= . 
 
2.3 Numerical solution 
 In the computation of the electro-osmotic 
channel flow the electric and the flow problem 
are exclusively coupled by the slip-velocity 

,s avu , which results from the solution of the 
electric problem. Consequently, the electric 
problem is solved primarily, resulting in the 
slip-velocity for the subsequent computation 
of the flow problem. 
 
3. Analysis of the channel flow 
 
 Let us now look at the resulting electric 
and flow field above a pair of electrodes, when 
the electrode array is driven with a voltage 0V  
of 2 V and a frequency drf  of 1 kHz. The 
used liquid is DI water with a conductivity of 
20 µS/m. 
 
3.1 Electric field 
 Figure 3 shows us, that the EDL is mainly 
charged above the edges of the electrodes 
where the electric field is strongest. Due to the 
inhomogeneity of the EDL charging an electric 
field component tE  arises, which is parallel 
to the electrodes. In spite of the EDL charging 
the electric field gradient is highest above the 
electrode edges.  
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Fig. 3. Big plot: Electric potential, the lines and arrows of 
the electric field and the double layer charging at the 
moment of maximum spatially averaged slip above a pair 
of electrodes. Small plot: Voltage drops across the Stern 
layer (dashed blue), voltage drop across the diffuse layer 
(blue minus blue dashed line) and the potential at the 
electrode (red). 
 
3.2 Flow field  
 The remaining electric field is 
inhomogeneous and moves the EDL above the 
electrodes through Coulomb forces which 
results in an electro-osmotic slip. This flow 
velocity scales with the charging of the diffuse 
layer – characterized by ζ - and the trans-
versal electric field. Consequently, the EO-slip 
is highest at the electrode edges and points 
towards the electrode centres – see Fig. 4. In 
the case of a planar symmetric electrode array, 
two swirls above each electrode would result, 
that would cancel out each other. Lowering the 
right part of the electrode effects that the swirl 
above this lowered part supports the flow 
caused by the left electrode part in stead of 
cancelling it (Urbanski et al. 2007). The 
resulting flow above this electrode configu-
ration is characterized by a periodic wavelike 
shape with vertices that concentrate on the 
electrode edges.  
 
4. Modeling of the droplet motion 
 
 Computing the motion of a droplet in the 
ACEO channel flow corresponds to a two-

phase computation. One possible solution 
would be the modeling of the droplet as a 
separate computational domain with a proper 
system of equations. At each time step the 
fluid-droplet interface would have to be 
updated, by evaluating the stresses, evolving 
the interface and by remeshing the problem. In 
this work we follow an Eulerian approach 
using the level-set method of Olsson et al. 
(2007). 

Fig. 4. Contours of the amplitude and arrows of the 
resulting channel flow. The small plot shows the 
detailed flow above one electrode, where we can see a 
swirl above the lowered electrode part which enforces 
the net flow through the channel.  
 
4.1 Level-set method 
 In the whole computational domain the 
scalar field ψ  - called level-set function 
(LSF) - describes whether this point is part of 
the carrier fluid ( 0ψ = ) or part of the droplet 
( 1ψ = ). The 0.5ψ =  level defines the fluid-
droplet interface. In order to compute 
interfacial forces accurately, a smooth 
transition of the LSM from 0 to 1 has to be 
assured. The motion of the droplet corresponds 
to the advection of the LSM with the fluid 
velocity: 

 ( ). 0u
t
ψ ψ∂

+∇ =
∂

. (8) 

The LSF is initialized with a sine-function 
regarding a smooth transition at the interface. 
In the course of the droplet deformation the 
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LSF gets distorted, which corrupts the 
computation of interfacial forces such as 
surface tension. In order to avoid this, the LSF 
has to be regularly reinitialized. As reinitiali-
sation procedure, which conserves the droplet 
volume, the equation 

 ( ) ( )( )(1 )n n n
t
ψ ψ ψ α ψ∂

+∇⋅ − = ∇⋅ ∇ ⋅
∂

 (9) 

is solved to steady state. Here, α  is a 
diffusion constant and affects the width of the 
transition thickness of the interface, and 

ˆ ˆ0 0/t tn ψ ψ= == ∇ ∇  is the unit normal vector 
on the interface at beginning of the 
reinitialisation procedure. 
 For the computation of electric and flow 
fields in the carrier fluid and the drop the 
upper Laplace the Navier-Stokes equations can 
be used regarding the properties 

 ( )f d fμ μ ψ μ μ= + −  (10) 

and analogous equations for the permittivity, 
the density and the conductivity of the both 
phases. Here, the subscript d is used to 
describe the properties of the droplet. 
 
4.2 Fluid forces 
 As the droplet and the carrier fluid have 
different interfacial tensions, a surface tension 
force has to be regarded in the momentum 
balance 

 

( )

6 (1 ) ,

stF n

κ

γ κ δ ψ

ψγ ψ ψ ψ
ψ

=

⎛ ⎞∇
= − ∇⋅ − ∇⎜ ⎟⎜ ⎟∇⎝ ⎠

 (11) 

where κ and γ  are the curvature of the 
droplet surface and the surface tension 
coefficient. 
 
4.3 Electric forces – Maxwell Stress Tensor 
 In the presence of an electric field, both the 
droplet and the carrier fluid are polarized. If 
the permittivity of the fluid and the droplet are 
different, an effective electric dipole moment 
results, that acts as a force on the drop surface. 
In the case of conductive fluids beside the 
displacement current also conduction current 

influences this force as free charge carriers 
accumulate at the fluid droplet interface. The 
Maxwell stress-tensor (MST) couples these 
electric forces to the momentum balance of 
both phases (Wang et al. 1997): 

 ( )1
2MT E E E E Iε ε= ⊗ − ⋅ , (12) 

where I  is the unit matrix and ⊗  is the 
dyadic product. Regarding that the time-scale 
of the electric problem vanishes compared to 
the fluid flow, we use the time-averaged MST 
in the momentum balance 

{ } ( )
( )

* *
,

1 Re
4M avT E E E E

E E I

ε ⎡= ⊗ + ⊗⎢⎣
⎤− ⋅ ⎥⎦

 (13) 

and compute the electric field with 

 ( ). 0ε φ∇ ∇ = . (14) 

In this equation, ( )/ 2 dri fε ε σ π= −  
describes the complex permittivity, which 
accounts for both polarization and for the ion 
accumulation at the fluid-drop interface due to 
conduction currents that scale with the 
conductivity σ . 
Regarding the time-averaged MST and the 
surface tension force in the momentum 
equation yields in dimension-less form (Singh 
et al. 2007) 

 

( )

'
,

2

10 ' ' ' ' ' ' ' ' '
Re

1 1' '( ) '
ReCa Re Ma
1 (1 ').

Fr

T

M av

p u u

rn T
l

μ μ

κ δ ψ

ρ

⎡ ⎤= −∇ + ∇ ⋅ ∇ + ∇⎣ ⎦

+ + ∇ ⋅

+ −

(15) 

Here, 0Re /f fu rρ μ=  is the Reynolds 
number, which describes the ratio of inertial to 
viscous forces in the carrier fluid. The Froude 
number 0 0Fr /u gl=  quantifies the 
influence of gravity and buoyancy forces. The 
capillary number 0Ca /fu μ γ=  describes the 
ratio of viscous to surface tension forces. 
Finally, the Mason number 

2 2
0 0Ma /f fu r Eμ ε β=  is the ratio of viscous to 

electric forces. The adapted Weber number 
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We Ma / Ca=  quantifies the droplet 
deformation due to dielectrophoretic forces. In 
these dimensionless numbers r , 0l , 0u  and 

0E  are the radius of the undeformed spherical 
droplet, the characteristic width of an 
electrode, the spatially averaged slip velocity 
and the characteristic electric field strength 

0 0/V l , respectively. 
 
4.4 Solution procedure 
 The transient problem comprises the 
electric field, the flow solution and the 
convection and regular reinitialisation of the 
LSF. Thereby, the only time-dependent term 
occurs in the convection equation. The 
problem is solved in three dimensions with the 
commercial finite element solver Comsol 
Multiphysics 3.5 using Matlab 7 as program-
ming interface. As a transient coupled solution 
of the system was not possible a sequential 
solution was used. The convection equation 
was solved transiently, where the electric and 
the flow field where regularly updated. 
 
5. Analysis of the droplet motion 
 
 This section analyses the electric and the 
flow field around an 12 µm droplet immersed 
in water, which is characterized by a density of  

dρ = 880 3kg m− , a viscosity of dμ = 80  
mPa s , an interfacial surface tension of 

48 /mN mγ = and a conductivity of 
65 /d mS mσ = . In this case the Weber number 

is We=0.013. 
 
5.1 Numerical issues 
 The computations where performed on a 
two core work station with 2x2.6 GHz and 6 
GB of RAM. Using a computational mesh 
with 7100 hexahedral elements and Lagran-
gian elements of second order for all values 
besides the pressure, the computation of the 
unique droplet motion over the electrode pair 
took about 13 hours. The complex dynamics at 
the fluid-droplet interface would require more 
computational accuracy, by using elements of 
higher order or adaptive mesh refinement at 
the interface. Respective adaptations have not 
been possible due to limited computational 

resources. Nevertheless, the following results 
reproduce the interface dynamics quite well. 
 
5.2 Electric field 
 Figure 5 shows the electric potential and 
the electric field lines corresponding to the 
Fig. 3 without an immersed droplet. In 
comparison to the carrier fluid, the drop acts 
like a conductor as its conductivity is several 
orders higher than the conductivity of the 
carrier fluid. Consequently, free ionic charges 
dispersed in the droplet accumulate at the 
fluid-droplet interface due to an initial electric 
field until the potential in the droplet is 
constant and the local electric field in the 
droplet vanishes. 
 

Fig. 5. Electric potential and electric field lines at the 
moment where the electrodes have a potential of 0V±  in 
the plane of symmetry of the droplet, i.e. indicated by the 
contour. 
 
5.3 Flow field 
 Investigating the channel flow in the 
presence of an immersed droplet, shown in 
Fig. 6, yields the following:  

Fig. 6. Contours of the amplitude and vectors of the 
resulting EO channel flow in the case of an immersed 
droplet (corresponding to Fig. 4) in the plane of 
symmetry of the droplet, i.e. indicated by the contour. 
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(1), the velocity in the droplet is almost 
constant is its shape deforms only little in the 
periodic motion. (2), the velocity peak above 
right electrode is hindered by the slowly 
propagating droplet. And (3), the conductive 
droplet causes an increase of the electric field 
and consequently the averaged resulting slip 
velocity is 12 % higher than in the channel 
flow without the droplet (see Fig. 4). 
 
5.4 Interfacial forces 

Fig.  7. Amplitude and vectors of the surface tension 
forces. They act on the smooth phase transition and 
push especially highly deformed interfaces 
characterized by a high curvature towards the centre of 
the droplet. 
 
 The droplet deformation is directly related 
to the present interfacial forces, namely 
viscous shear forces, surface tension and 
dielectrophoretic forces. Surface tension scales 
with the curvature of the surface and con-
sequently pushes the droplet back towards a 
spherical shape, as it can be observed in Fig. 7. 

Fig.  8. Amplitude and vectors of the dielectro-phoretic 
forces on the phase transition. 
 Contrariwise, dielectrophoretic forces on 
the fluid-droplet interface in Fig. 8 point out of 
the droplet and deform it. Looking at the MST 
shows us that this interfacial force scales with 

the square of the electric field strength. 
Consequently, dielectrophoretic forces are 
highest near the electrode edges and push the 
particle toward the areas of high electric fields, 
which is called positive dielectrophoresis. In 
the case of a high driving frequency or a 
vanishing conductivity of the droplet, negative 
dielectrophoretic forces would push the 
droplet away from the electrodes. 
 
5.5 Droplet stretching 

Fig. 9. Shape of the 12 µmm droplet in water at three 
different times.  
 
 Figure 9 shows the shape of the 12 µm 
droplet at three different moments. We notice 
a strong elongation of the droplet from 12 µm 
of the undeformed state to 17 µm. This lateral 
elongation is strongest, when the droplet 
moves above the upper step of the electrode. 
The elongation is smallest between two 
electrodes. Furthermore, it appears that the 
vertical motion of the droplet is small, which 
indicates that the vertical dielectrophoretic 
force is in the order or the buoyancy force. The 
elongation of the drop is caused both by 
viscous shear forces and lateral 
dielectrophoretic forces, which are oriented 
towards the electrode edges. These 
interrelations correspond to the observations 
shown in Fig. 2. 
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6. Conclusions 
 
 This work analyzes the mechanisms of 
pumping and deformation of oil-like droplet in 
water in ACEO micropumps by means of 
finite element computations. The modeling of 
the two-phase flow comprises the thin double 
layer approach for the EO flow, the level-set 
method to describe the fluid-droplet interface 
and the Maxwell stress tensor for coupling the 
interfacial electric forces to the fluid motion. 
Computations have shown that special 
attention has to be drawn to the mesh quality 
at this interface, which could not be resolved 
satisfactory in the current computations. Even 
so, important insight into the interface 
dynamics could be achieved. 
 The computations have shown that the 
electrical problem is dominated by the 
conductivity of the droplet. Due to the initial 
electric field ions accumulate at the droplet 
surface such that the electric field inside the 
droplet is cancelled out. The resulting increase 
of the electric field at the droplet-fluid 
interface causes strong dielectrophoretic forces 
that attract the droplet surface towards the 
edges of the driving electrodes. The interplay 
with the surface tension forces and viscous 
shear forces caused by the electro-osmotic 
channel flow, determines the periodic motion 
and deformation of the droplet when passing 
the electrodes. In the current configuration the 
droplet is stretched by viscous and lateral 
dielectrophoretic forces. The maximum 
elongation occurs when the droplet passes the 
higher part of an electrode, which is in 
agreement with experimental observations.  
 This work shows that the applied modeling 
is fully capable of describing the motion and 
interface dynamics of droplets. Further 
developing the modeling will finally make this 
method applicable to cell dynamics.  
 
 
 
 
 
 
 
 

Nomenclature: 
 
symbol unit description 

C  2C m−  surface cap. of the EDL 

0c  3m−  equilibrium ion concentr. 
E  1V m−  electric field 

drf  1s−  frequency of appV  
p  2N m−  pressure 
q  2C m−  surface charge density 
u  1m s−  fluid velocity 

su  1m s−  EO slip velocity 

appV  V  applied voltage 

0V  V  magnitude of appV  
δ  1 ratio of diff. and Stern layer 

fε  1 1AsV m− −  permittivity of carrier fluid 
φ  V  potential 
γ  1N m−  surface tension 
κ  1m−  curvature 

dλ  m  Debye length 
μ  1 1kg m s− −  dynamic viscosity 
ρ  3kg m−  mass density 
σ  1S m−  conductivity 
ψ  1 level set function 
ζ  V  voltage drop over diff. layer 
γ  1N m−  surface tension 
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