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Abstract In very recent years microdevices, due to their potency in replacing large-scale conventional 
laboratory instrumentation, are becoming a fast and low cost technology for the treatment of several 
chemical and biological processes. In particular microfluidics has been massively investigated, aiming at 
improving the performance of chemical reactors. This is because of the fact that reaction is often an interface 
phenomenon where the greater the surface to volume ratio, the higher the reaction speed, and microscale 
mixing increases the interfacial area (in terms of mixing-induced-by-vortices generation). However, 
microfluidic systems suffer from the limitation that they are characterized mostly by very low Reynolds 
numbers, with the consequence that (i) they cannot take advantage from the turbulence mixing support, and 
(ii) viscosity hampers proper vortex detection. Therefore, the proper design of micro-channels (MCs) 
becomes essential. In this framework, several geometries have been proposed to induce mixing vortices in 
MCs. However a quantitative comparison between proposed geometries in terms of their passive mixing 
potency can be done only after proper definition of vortex formation (topology, size) and mixing 
performance. The objective of this study is to test the ability of different fluid dynamic metrics in vortex 
detection and mixing effectiveness in micromixers. This is done numerically solving different conditions for 
the flow in a classic passive mixer, a ring shaped MC. We speculate that MCs design could take advantage 
from fluidic metrics able to rank properly flow related mixing. 
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1.  Introduction 
 The possibility to replace large-scale 
conventional laboratory instrumentation with 
miniaturized systems offers a variety of 
advantages, including reduced hardware costs, 
low reagent consumption and faster analysis. 
In this circumstance, microfluidics is 
becoming a key technology in many chemical, 
biochemical, and biological applications. In 
fact, microfluidic systems are compact in size, 
disposable, and ensure high speed of analysis 
using decreased sample volumes.  
It is well known that at the micro scale mixing 
becomes crucial to optimize the performance 
of chemical reactions (Hessel and Löwe and 
Schönfeld 2005, Stroock et al. 2002, 
Whitesides 2006).  
In general, mixing strategies can be classified 
as either active or passive, according to the 
operational mechanism. Active mixers employ 
external forces in order to perform mixing. On 

the contrary, passive mixers avoid resorting to 
external electrical or mechanical sources by 
exploiting characteristics of specific flow 
fields in channel geometries to mix species. As 
microfluidic systems are characterized mostly 
by laminar, very low Reynolds flows, they 
cannot take advantage of turbulence in order to 
enhance mixing. In the absence of turbulence 
mixing support, the design of micro-channels 
(MCs) acting as micromixers becomes 
essential, in terms of properly induced 
vortices. Vortices are effective in both 
chemicals and heat diffusion processes: 
vortices fold the fluid stream increasing the 
area interested in diffusion and reducing 
diffusion boundary layer thickness. Several 
geometries for MCs have been proposed to 
induce mixing, with ribs, wedges, or abrupt 
turns used to elicit vortices (Hessel and Löwe 
and Schönfeld 2005, Stone and Stroock and 
Ajdari, 2004). Hence, from the previous 
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remarks, it is clear that when micromixing is 
needed, a comparison between MCs designs 
must be done in terms of their capability of 
vortex formation at low Reynolds numbers. 
The objective of this study is to compare the 
capability of different fluid dynamic metrics in 
estimating the performance both in vortex 
detection and mixing effectiveness of 
micromixers. This is done simulating different 
conditions for the flow, by means of the finite 
volume method, in a ring shaped MC, where 
centrifugal effects could induce secondary 
flows characterized by the presence of 
counter-rotating vortices (located in 
transversal sections of the channel).  
The MC geometry here considered serves to 
define proper vortex identification 
performances in terms of topology, number 
and mixing potency. 
 

2.  Methods 
In this study, we used a ring shaped, square 
section duct geometry of MC, like the one 
previously proposed by Schonfeld and Hardt 

(2004) (Fig. 1).  

 
Fig. 1. Square duct used to elicit twin vortices formation 
as due to Dean curvature instability. Computational 
domain and volume sections for vortex detection. 

This undemanding geometry, characterized by 
a constant curvature, induces the formation of 
secondary vortices in consequence of 
centrifugal forces arising at certain flow 
conditions. Dean (1928) proved that the flow 
confined between two cylinders undergoes 
secondary flow formation when the 
dimensionless Dean number Dn  

D
R

DDu
Dn D κ

ν
Re0 ==    (1) 

exceeds a threshold of about 36, where ReD is 

diameter based Reynolds number, D is the 
hydraulic diameter, u0 the averaged velocity, ν 
the fluid kinematic viscosity, k the duct 
curvature (kD nondimensional curvature), R is 
the ring radius (equal to 5D in our simulation).  

Dean number is a bifurcation parameter for the 
non linear Navier Stokes equations: beyond 
Dean threshold fluid evolves vortices. Dean 
proved that the flow undergoes a progressive 
centrifugal displacement of the maximal axial 
velocity, leading to the onset of vortices 
because of the unbalance of the centrifugal 
force and radial gradient of static pressure. 

Governing equations and computational 
model 

The numerical results presented in this work 
were based on the solution of the 
incompressible Navier–Stokes equations and 
the convection–diffusion equation for a 
concentration field by means of the finite 
volume method:  computed Knudsen number 
confirms the appropriateness of continuum 
mechanics approach. In this work, like in 
Schonfeld and Hardt (2004), we were mainly 
interested in the convective patterns 
redistributing the liquid transverse to the flow 
direction. With this analysis we aimed at 
obtaining information on the characteristic 
dimensions of the lamellae and the mixing 
length to be expected. Flow was assumed 
steady and laminar. Hence, the flow motion 
governing equations and convection–diffusion 
equation are: 

0=⋅∇ vvvv     (2) 

( ) vvvvvvvv    vvvv 2∇+−∇=∇⋅ µρ p (3) 

( ) cDc
t

c 2∇=∇⋅+
∂
∂ vvvv (4) 

where v and p are the velocity vector and the 
pressure in each point of the fluid domain, 
respectively; ρ and µ are fluid density and 
viscosity, respectively; D is the diffusion 
coefficient and c denotes concentration. For 
the reason mentioned above and in accordance 
with Schonfeld and Hardt (2004), here the 
inter species diffusion coefficient D was set 
equal to zero: eq. (4) states that the species 
concentration is constant along each 
streamline. Both the MC geometry and the 
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computational grid were created with the solid 
modeller GAMBIT (ANSYS Inc.). A 
structured mesh of about 200,000 hexahedral 
cells was used (in consequence of a mesh 
sensitivity analysis). A flat velocity profile 
was imposed at the inlet section of the duct 
while at the outlet pressure reference value 
was prescribed. No slip conditions were 
prescribed at duct walls. The adopted 
boundary conditions made the geometric 
symmetry plane a fluid dynamic symmetry 
plane: this allowed to study only half of the 
fluid domain. Ten simulations were performed 
at different ReD numbers (linear range 2.24-
224, corresponding to Dn range 1-100) using 
the commercial solver Fluent (ANSYS Inc). 
The SIMPLEC algorithm was used for 
pressure–velocity coupling, and the QUICK 
differencing scheme was used for 
discretization of the species concentration. The 
second order and the second order upwind 
differencing schemes were used for velocities 
and pressure fields, respectively.  

Vortex identification 

Velocity and concentration fields were further 
post processed in Matlab environment 
(Mathworks Matlab Inc.) for vortex 
identification and mixing quantitative 
evaluation. Considering the remarks on the 
role played by secondary vortices in 
micromixing, we remind here that Jeong and 
Hussain (1995) stated that a vortex should 
posses at least two properties: 

• the vortex core should have net circulation 
(no potential flows); 

• the geometrical characteristics of an 
identified vortex core should be Galilean 
invariant. 

In a purely rotational motion the flow 
undergoes a rigid body rotation: in this region 
the absence of strain prevents stream from 
blending. Thus, a vortex core can be defined as 
the rotational part of the vortex, while out of 
this region the vorticity decreases, eliciting 
stream folding and related mixing.  

For evaluating mixing, vortex identification is 
mandatory, even if unambiguous, universal 
methods are still lacking: plausibly vortex is a 

connected region of finite volume where 
vorticity is spatially correlated. As a 
consequence, vortex identification methods 
based on local quantities are preferable to 
particle-based methods (Cucitore and Quadrio 
and Baron 1999). In this study, we applied one 
of the mainly adopted vortex detection 
methods, which are based on velocity 
gradients (i.e., based on local quantities). The 
λ2-method was introduced by Jeong and 
Hussain (1995). It defines the vortex as a 
region of negative values of the scalar λ2 
(second eigenvalue of the tensor 22 Ω+S , 
respectively symmetric and antisymmetric 
parts of velocity gradient ∇u), measure of 
balance of flow strain and rotation in 
uncompressible flows (Cucitore et al. 1999, 
Jeong and Hussain 1995). When λ2 is negative, 
at least two eigenvalues are negative therefore 
fluid undergoes swirling motion.  

Topology of the flow: helicity 

Moffatt (1969) introduced into the fluid 
mechanics literature the term “helicity” as the 
degree at which the velocity field lines wrap 
and coil around each other. The helicity H(t) 
of a fluid flow confined to a three dimensional 
domain D (bounded or unbounded) of volume 
V is defined as:  

( )dVH
V

VV ×∇⋅= ∫  (5) 

The pseudoscalar quantity Hk, given by the 
inner product of the velocity V and vorticity ω 
fields (ω =∇ x V): 

( )VV ×∇⋅=kH  (6) 

is the helicity density per unit volume. Helicity 
admits topological interpretation in relation to 
the linkage of vortex lines of the flow, thereby, 
just like energy, it has a great influence on the 
evolution and stability of both laminar and 
turbulent flows. In non potential flows Eq. (6) 
states that: (i) Hk is maximal in module (for a 
given total kinetic energy) when velocity (V) 
and vorticity (ω) vectors lie along the same 
direction (i.e., |Hk| = |V| |ω|); (ii) the flow has 
a null helicity density value when velocity or 
vorticity go to zero or when velocity (V) and 
vorticity (ω) lie along orthogonal directions 
(i.e., Hk=0). Considering the remarks on 
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helicity, it is possible to define the basic 
quantity local normalized helicity: 

)(

)(

VV
VV

×∇
×∇= •

LNH  (7) 

The quantity LNH is the local value of the 
cosine of the angle between the velocity and 
vorticity vectors. According to Eq. (7), LNH is 
one in module when the flow is purely 
helicoidal and zero when the flow is purely 
axial, circumferential or, in general, when 
either vorticity is null or orthogonal to 
velocity. In this work, we used the scalar LNH 
to calculate on sections of the MC transversal 
to its axis (cross-sections) a basic metric, the 
Normalized Average Helicity (NHavg):  

∫ ×∇
×∇= •

S

avg dS
S

NH
)(

)(1

VV
VV

 (8) 

where S is the area of the transversal section of 
the MC. The average surface integral of the 
absolute value of LNH was computed on 
seven sections of the MC (see fig. 1).  

Measure of mixing: Shannon Entropy 

The entropy concept was introduced as a 
measure of mixing by Wang et al. (2003). 
Similarly to Kang and Kwon (2004), we 
calculated information entropy as a 
quantitative measure of mixing, using coloured 
particles to visualize mixing in the MC, being 
the distribution of coloured particles related to 
the degree of mixing. To do this, we seeded 
the inlet section of the MC with a cluster of 
N=45000 binary coloured inert particles. The 
two non mixable species define an interface 
which develops flowing through the MC. Like 
in Kang and Kwon (2004), for a certain 
particle configuration of multiple species, the 
mixing entropy (S) is defined as a sum of the 
information entropy of individual cells 
constituting a cross-sectional area of the MC: 

( )∑ ∑
= =








=
Nc

i

Ns

k
kikii nnwS

1 1
,, log (9) 

where i is the index for the cell, k is the index 
for the species, wi is the weighting factor for 
the cell, Nc is the number of cells, Ns is the 
number of species to be mixed (two in our 

case) and ni,k is the particle number fraction of 
the kth species in the ith cell. The weighting 
factor, wi, is devised such that it is set to be 
zero for a cell with no particles at all or 
including only a sole species.  

Reasonably, the mixing entropy increases 
along the downstream direction, if the MC 
flow conditions allows vortex generation. The 
ratio of entropy increment kSE (ratio between 
entropy gain and maximal entropy difference) 
serves as an indicator of achievable mixing: 

0max

0

SS

SS
kSE −

−
= (10) 

Eq. (10) states that kSE is defined as the ratio of 
the entropy gain at a certain location to the 
maximum possible entropy increase: a kSE 
value equal to 1 corresponds to the maximal 
disorder (independently to cell size), i.e., a 
condition of uniform particle distribution of all 
the different specimens, while kSE equal to 0 
corresponds to maximal order or zero mixing 
as the one at the inlet. Cross sectional cell 
division for entropy calculation was set 
accordingly to the principle proposed by 
Schonfeld and Hardt (2004). 

3. Results 
In the range of Reynolds numbers of interest 
for MCs, the fluid behaves as dominated by 
the viscous term. Non slip condition at the 
duct wall induces vorticity: the boundary layer 
bears the mainstream acting as a distributed 
bearing. This generates a vortex ring coupled 
within the duct walls. This vortex ring does 
not elicit mixing. Furthermore, in this 
boundary layer wall induced vorticity 
represents a bias in the vorticity field we are 
interested in, thus preventing from the proper 
detection by of expected streamwise vortex 
twins (Cucitore et al. 1999).  
At low Reynolds (and Dean as a consequence 
in our case, see equation 1), numbers λ2 
detects vortices located near the inner wall of 
the duct. As an example, figure 2 (upper panel) 
shows that at Dn = 10 (ReD = 22.4) the 
distribution of negative values of λ2 is placed 
towards the inner wall of the MC, and spans 
up to the fluid dynamic symmetry plane, 
failing in identifying the cores of the vortices, 
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as can be easily observed looking at the 
velocity vector map. 
Figure 2 (lower panel) also puts in evidence 
that at higher Dean numbers (Dn=50; ReD = 
111.8), the scalar λ2 (λ2 scales as (u0/D)2) 
identifies a couple of counter-rotating vortex 
twins which interact at symmetry plane of the 
channel. 
 

 
Fig. 2. Contour plot of the λ2 scalar at different Dean 
number (Dn = 10, 50 up and down respectively) for 
plane πR from the inlet. The section minima for λ2 
scalar  are respectively -3.0E5 s-2,  -1.1E7 s-2 for Dn = 
10, 50.  

Figures 3, 4 display contour maps of the 
helicity density over the cross section at 
distance πR from the inlet of the MC, at Dn 
numbers equal to 10 and 50, respectively. By 
definition, Hk is a pseudo scalar and is 
antisymmetric with respect to the symmetry 
plane. Notably, Hk is null at the duct walls and 
at the symmetry plane, where velocity and 
vorticity are orthogonal to each other, thus 
giving demonstration of its ability in defining 
vortex twins detached from symmetry plane. 
We observe, at all Dn (ReD) numbers in the 
range here investigated, the presence of a well 
localized stationary point for Hk (respectively 
a maximum or a minimum in the two halves of 
the MC, with respect to the symmetry plane), 
at all the MC cross sections. At low Dn 
numbers this helicity density stationary point 
is located at the duct cross section centre (Fig. 
3, upper panel), and it moves towards the outer 
wall (consequence of centrifugal velocity peak 
value displacement) as the Dn number 

increases (Fig. 4, upper panel). Interestingly, 
we observe that: (i) the localized stationary 
point of Hk identifies unambiguously the core 
of the vortex over MC cross sections at low 
Dean number, as it can be easily observed 
looking at the velocity vector map (figure 3, 
upper panel); (ii) the cross sectional position 
of the stationary point value of Hk moves 
according to the peak value of the velocity 
vector component normal to the cross section, 
as shown in figures 3 an 4 (lower panel).  

 

 
Fig. 3. Cross section πR. Helicity density distribution 
(in ms-2) at Dn =10. Velocity profile at the fluid 
symmetry plane. At low ReD numbers the profile of the 
velocity component normal to the cross section is 
insensible to duct curvature, therefore it’s about 
symmetrical to local vertical plane. On the symmetry 
plane vorticity and velocity are orthogonal, therefore 
Hk.is null. 

A qualitative visualization of the vortex related 
mixing is given by the color distribution of the 
two non mixable species over MC cross 
sections. The seeded particles, mimicking the 
two species, belong respectively to the 
intrados (red particles) and extrados (black 
particles) part of the inlet section (Fig. 5, upper 
panel). As an example of what we observed, 
we report in figure 5 the results obtained at 
Dn=20 (ReD = 44.7): the initial vertical 
interface between non mixable species folds, 
in MC cross section downstream of the inlet 
section, increasing the interface area. 
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Fig. 4.Cross section πR. Helicity density distribution (in 
ms-2)  at Dn = 50. Velocity profile at the fluid symmetry 
plane. The increment of Reynolds number, and relate 
increment in Dean number, induces a centrifugal 
skewness in the velocity profile. Helicity density Hk, 
zeroed at the fluid symmetry plane, shows a minimum 
displaced radially.  

In fact, evaluating the particle distributions at 
successive cross sectional locations, the color 
pattern changes from the initial distribution: 
for Dn=20 the stream folding is limited, but 
the interface increases because of stretching, 
folding of the fluid with a resulting thinning of 
the diffusion boundary layer (Fig. 5). We 
noticed from qualitative visualizations that the 
stream folds more as Dn number increases, as 
shown in Fig. 6, where species distribution is 
depicted at the same MC cross section (at a 
distance equal to πR from the inlet section), at 
Dn numbers equal to 10 (left panel) and 50 
(right panel). 
Figure 7 displays the values assumed by the 
normalized average helicity NHavg over MC 
cross sections along the duct, at two Dn 
numbers. 
It is possible to notice that (i) as Dean number 
increases, NHavg increases over the same MC 
cross section, (ii) NHavg exhibits a plateau at a 
certain distance from the inlet section, due to 
the similarity of fluid flow along the 
streamwise cross sections, putting in evidence 
a progressive realignment of vorticity in 
streamwise direction. 
 

 

 

Fig. 5. Shannon entropy colored map at different plane 
(inlet and cross section at π/4R, π/2R, 3/4πR, πR, 
5/4πR, 3/2πR) for Dn=20. 

 
Fig. 6. Shannon entropy colored map at different Dean 
number (Dn =10, 50 on the left and right respectively) 
for cross section πR 

 
Fig. 7 Half section average helical density (NHavg). The 
NHavg shows a plateau for the similarity of fluid flow 
along the stream wise sections. Greater is the NHavg 
higher is the entropy increment gain going streamwise.  

Figure 8 displays the values assumed by the 
Shannon entropy ratio kSE over MC cross 
sections along the duct, at two Dn numbers. It 
can be noticed that kSE increases moving away 
from the inlet section with an increment more 
marked for the highest Dn numbers. 
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Fig. 8 Entropy increment ratio (kSE). Stream wise kSE 
increases more markedly as Dean number increases. 
Greater is the NHavg higher is the entropy increment 
gain going streamwise.  

 

Fig. 9 Pressure drop along the pipe as a function of ReD.  

In accordance with Dean (1928) we observed 
that the presence of secondary vortices has a 
marginal effect on energy dissipation when 
compared to hydraulic energy losses in straight 
conduits at low Reynolds numbers (see the 
linear behavior of pressure drop along the duct 
vs ReD in fig. 9). 

4.Discussion 
Consistently to vortex definition criteria, the 
presence of a fluid dynamic symmetry plane  
forces vortex twins to be expected. In fact 
fluid is symmetric with respect of duct 
spanning plane: a even number of vortices 
detected by identification methods is expected. 
From a phenomenological viewpoint, we know 
that proper vortex identification methods were 
developed at high Reynolds numbers by 
several authors, making use of velocity field 
derived scalars, pressure scalars and particles 
tracking techniques. However at low Reynolds 
numbers, i.e. the working flow regimes in 
MCs, viscosity hampers proper vortex 
detection (Cucitore et al. 1999). This difficulty 

in methods for vortex detection at the flow 
regimes at which MCs operate becomes, as a 
consequence, a limitation in properly setting 
design strategies for micromixing 
enhancement, where passive mixing is based 
on induction of secondary vortices in MCs. 
As reported by other authors (Siggers and 
Waters 2005), flow undergoes vortices 
formation even at sub critical values of Dean 
number (for infinite cylinders Dncr ≅ 36, Dean 
1928). Vortices develop from the inlet as 
velocity maximum is displaced centrifugally: 
the progressive velocity displacement induces 
recirculation and vortex twins (Siggers and 
Waters 2005). In this vortex induction process, 
duct curvature is the key factor. At low ReD 
this process is limited and fluid pattern 
behaves similarly to the one typical of straight 
duct. The viscous term dominates the flow as 
shown in microfluidic system: for the curved 
channel considered here, at values of ReD 
lesser than 2.25 (Dn = 1) the velocity field is 
about symmetric and the centrifugal effects are 
damped. Hence, duct curvature has a marginal 
effect on centrifugal displacement of velocity 
maximum.  
Vorticity norm is unsuitable in vortex 
identification: shear induces vorticity which 
prevents from the proper vortex identification. 
The high value of vorticity induced by this 
creeping flow biases the vorticity norm, 
preventing from the identification of local 
vorticity stationary point expected in vortex 
cores. The λ2 method is more effective for 
vortex detection in the boundary layer of the 
innner wall (fig. 2). However the λ2–based 
definition of a vortex, defined from isosurfaces 
of λ2, at low Dn numbers could be misleading 
in identifying vortex twins, since λ2 iso-
surfaces intersect the symmetry plane, in 
curved MCs. This could lead both to incorrect 
design and mixing evaluation. 
Our results confirm previous general 
observations relative to similar scalars for 
vortex detection, in flows dominated by the 
viscous term (Cucitore et al. 1999): at low ReD 
numbers (representing a range of working 
conditions for MCs), no proper value for the 
λ2 scalar was found able to detect vortex 
twins. In a different way, we observe that 
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mapping helicity density allows vortex core 
detection identification in MCs working flow 
regimes (see figure 3). Moreover, being 
helicity a pseudoscalar, it serves in detecting 
couple of vortex twins rotating in opposite 
directions.  
The color distribution of two non mixable 
species over MC cross sections puts in 
evidence that the straight interface at the inlet 
section develops showing stream folding and 
thinning of lamellae (fig. 5). This phenomenon 
is limited but not negligible at low Dean 
numbers, while at a higher Dean numbers 
interface distortion is more marked (fig. 6) 
resulting in a increased stream folding 
(secondary flow). 
The entropy-based metric kSE, a measure of the 
mixing over MC cross sections, increases 
faster along the curvilinear length of the MC, 
putting in evidence that mixing increases 
moving away from the inlet section, with a 
rate depending on the Dean number: the 
greatest Dn, the higher the mixing over the 
MC cross section (fig. 8). 
As for the helicity-based metric NHavg, it 
increases steeply just downstream of the inlet 
section (due to curvature), rapidly reaching a 
plateau. Interestingly, NHavg values increase 
with the Dean number.  
In conclusion, we found that helicity density is 
promising in proper vortices detection at low 
values for ReD: a curved microchannel 
geometry served to test vortex identification 
methods and mixing performance. We 
speculate that micromixer design could gain 
more precise insight on vortex topology from 
the proposed scalar.  
In the future, the metrics herein applied to a 
simple model of MC will be used to test the 
mixing potency of innovative designs of MCs. 
Moreover the interplay between Reynolds 
number and no dimensional curvature in micro 
fluidic system will be analyzed in the 
framework proposed by Dean.  
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