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Abstract A lattice Boltzmann method which can simulate droplet dynamics on partial wetting surface with
large liquid-gas density ratio is proposed. The interaction between the fluid-fluid interface and the partial
wetting wall is typically considered. Using the method, the dynamics of liquid drops on chemically
heterogeneous surfaces are numerically simulated. The corresponding mechanisms including droplet
spreading, break-up and migration on such surfaces are studied on the basis of droplet shapes, moving
contact lines and velocity fields.
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1. Introduction
There is a large class of industrial

processes which involve motions of droplets
on a partial wetting surface. Operations
ranging from painting, coating, inkjet printing
to lubrication and gluing are a few examples.
In order to perform a numerical study of such
type of phenomena, lattice Boltzmann method
(LBM) can be employed since, in recent years,
lattice Boltzmann method has become an
established numerical scheme for simulating
multiphase fluid flows. The intrinsic feature
enables the LBM to model phase segregation
and interfacial dynamics of multiphase flow,
which are difficult to be handled by applying
conventional CFD methods or employing the
molecular dynamics (MD) method to
incorporate intermolecular interactions at
mesoscopic level (Chen and Doolen, 1998).

Although some lattice Boltzmann models
(Gunstensen et al., 1991; He et al., 1999; Shan
and Chen, 1993; Swift et al., 1996; Swift et al.,
1995) for two-phase flows on partial wetting
surface have been presented, one of the
disadvantages of those models is that they
basically are limited to small density ratio due
to numerical instability. The maximum density
ratio in the simulations of droplets on partial
wetting surfaces (Dupuis and Yeomans, 2004;
Dupuis and Yeomans, 2005; Kusumaatmaja et

al., 2006) was reported just around 2.
Obviously, this is not realistic for most two-
phase systems e.g. the density ratio of liquid-
gas systems is usually larger than 100, and the
density ratio of water to air is about 1000.
Therefore, a model for large density ratio
should be developed. A new LBM scheme
for calculating liquid droplet behaviours on
particle wetting surfaces typically for the
system of liquid-gas of a large density ratio
was reported by Yan and Zu (2007). In the
present paper, the method is further applied to
the cases of droplet in air spreading on
different types of chemically heterogeneous
surfaces with detailed field analysis.

2. Numerical Method

2.1. Two-phase lattice Boltzmann model

For D3Q15 LBM model, as shown in Fig.
1, the particle velocity, e , is given by
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Fig. 1: D3Q15 model

To simulate a two-phase fluid flow, two
particle velocity distribution functions, f

and g , are introduced. Function f is used

to calculate the order parameter,  , which

distinguishes the two phases. Function g

is used to calculate the predicted velocity,

*u , of the two-phase fluids without a pressure
gradient. The evolution of the particle
distribution functions ),( tf x and ),( tg x

is calculated by the following equations:

),(),( )( tftf eq
tt xex    , (2)
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where u ,  and  are the macroscopic

velocity, density and dynamic viscosity

respectively; 1t is the time step; )(eqf

and )(eqg are the corresponding equilibrium

states of f and g , given by
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where, k is a constant parameter for
determining the width of interface and the
strength of surface tension. Given that )(

is the bulk free-energy density, then
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The macroscopic quantities, *u ,  ,  , 

can be evaluated as
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where the subscript L and G stand for liquid
and gas respectively.

To obtain the velocity field which satisfies
the continuity equation ( 0 u ), *u is
corrected by following equations:



p
 *uu , (12)
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where p is the pressure of the two-phase

fluid, which can be obtained by solving Eq.
(13) in the following LBM framework,
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where, n is the number of iterations and
 /15.0  is the relaxation time. The

pressure at step 1n is given by
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The convergent pressure p is determined

when for whole computational domain V

 |)1,()1,(|, npnpV xxx . (16)

2.2. Partial wetting boundary
To implement the wetting boundary

condition, here a Landau free energy function
(Briant et al., 2004; Briant and Yeomans,
2004) is introduced as
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For an isothermal system, assuming the free
energy density )( takes the following

simple form particularly as (Jamet et al., 2001)
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where,  is the constant relating to

interfacial thickness.
By substitution of Eq. (18), Eq. (8) becomes
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In a plane interface under an equilibrium
condition, the density profile across the
interface on equilibrium is represented as
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where z is the coordinate normal to the
interface; the interface thickness D is given
by

 2

4 k
D
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The fluid-fluid (liquid-gas) surface tension
force LG is expressed as (Rowlinson and

Widom, 1989)
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According to the Young’s law (Young, 1805),
when a liquid-gas interface meets a partial
wetting solid wall, the contact angle, w ,

measured in the liquid, can be calculated from
a balance of surface tension forces at the
contact line as

LG
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w
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where SG and SL are the solid-gas and

solid-liquid surface tension forces,
respectively. To calculate the surface tension
forces SG and SL within a mean field

framework, Assuming that the fluid-solid
interactions are sufficiently short-range such
that they contribute a surface integral to the
total free energy of the system (Cahn, 1977),
the total free energy becomes

 
s

s
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where s is the order parameter on the wall;

S is the surface of volume V .
Considering a 1-Dimensional problem and

remaining only the first-order term of power
series expansion with respect to s of
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Minimizing Eq. (25) by variational calculus
subject to natural boundary conditions leads to
two conditions as (Briant et al., 2002):
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A first integral for Eq. (26) yields,
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Then s can be determined by substituting

Eq. (28) into Eq. (27) and be written as
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The surface tension between wall and fluid,

SF , is given by
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The following expressions for surface tensions
are obtained:
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The wetting angle is determined by
substituting Eq. (22) and Eqs. (32) and (33)

into Eq. (23) and written as
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For a given wetting angle in the range of
  w0 ,  can be obtained from Eq. (34)
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where )arccos(sin2
w  and )sgn( gives

the sign of  . It is noted from Eq. (35) that

the required wetting potential  can be
obtained by choosing a desired contact angle

w and then calculating  by solving Eq.

(31) with the newly obtained  .

3. Results and Discussions
The motion of water droplets at normal

temperature surrounded by air on a partial
wetting wall is considered. The gravitational
force is taken into account by adding the term

ge G )/1(3 3    to the right hand side of

Eq. (3), where g is the dimensionless

gravitational acceleration. The densities of two

fluids are set at 33101~  kgmL

and 329.1~  kgmG , and the viscosities of

them are at 113101~  skgmL and
11510935.1~  skgmG , respectively. The

initial surface tension between water and air is

of 23101~  kgsLG and the gravitational

acceleration is set at 28.9~  msg . To relate

the physical parameters with simulation

parameters, a length scale of mL 4
0 101  ,

time scale of sT 6
0 101  and mass scale of

kgM 12
0 101  are chosen; these lead to the

dimensionless parameters: 3101L ;

29.1G ; 1.0L ; 310935.1 G ;

4.0L ; 1.0G ; 05.0k ; and
8108.9 g . Unless otherwise specified, the

flowing simulations are within a cuboid
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computational domain with a no-slip boundary
at the lower surface .i.e. the flat partial wetting
wall and the free outflow/inflow boundaries at
the other five surfaces.  in Eq. (16) is set as

6101  .
As a check on consistency of theoretical

prediction and present numerical results, the
method is firstly applied to the problems of a
water droplet spreading on uniform wetting
surfaces. Initially, the shape of droplet is
spherical, the distance between the centre of

the sphere and the wall is of mr 3101  ,
where r is the radius of the initial droplet.
Fig. 2 shows the equilibrium interfacial shapes
at 2/xLx  under initial conditions of

4/ w and 2/ w , respectively. Where,

Fig.2 (a) and (b) show the equilibrium droplet
shapes obtained at st 0675.0 and

st 0415.0 respectively. By measuring the
obtained equilibrium contact angles, it is noted
that the results of the simulation agree well
with those of initial prediction, i.e. 4/w  

for the dashed line interface and 2/w  

for the solid line interface. This indicates that
the present LBM can be used as a reliable way
to study fluidic control of wetting related
subjects.

(a) 4/ w (b) 2/ w

(c) Comparison in 2D view

Fig. 2: Equilibrium interfacial shapes.

In the present method, both velocities and
pressures are corrected by solving an
additional Poisson equation after each
collision-stream step. Such corrections are able
to make the velocity field to satisfy the
continuity equation and to smooth the pressure

distribution across the interface, so that to
ensure the numerical stability. In Fig. 3, a
velocity field on the cross section of

2/xLx  at t=0.006s under initial conditions

of 4/ w , where the solid line is the

interface between two phases, is given to show
that the present method can obtain a stable and
reasonable velocity distribution.

Fig. 3: Velocity distribution on the cross
section, 4/ w , t=0.006s.

Fig. 4 shows how a small hemispherical water
droplet evolves with time on a heterogeneous
surface. A narrow hydrophobic strip with

width of ml 4106  is located at the

centreline of the surface where 6/5 w ,

and the other areas are occupied by the
hydrophilic surface with 6/ w . The

initial droplet which has a radius

mr 3105.1  is set at the centre of the
wetting surface. As shown in the figure, the
droplet stretches over the area occupied by the
hydrophilic surface in the early stages of flow
evolution due to the adhesive force of the
surface. At the same time, the droplet rapidly
contracts inward along the hydrophobic strip.
With the development of time, the droplet
spreads further on the hydrophilic area, and
meanwhile contracts inward along the
hydrophobic strip and finally breaks up into
two smaller droplets. The newly formed
droplets continue spreading until an
equilibrium state is reached.

To define a cross section perpendicular to
the centreline of the hydrophobic strip, Fig. 5
shows the evaluation of the interface and the
corresponding velocity fields there.
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st 0.0 st 14.0

st 152.0 st 154.0

Fig. 4: Snapshots of a droplet spreading on a
surface with a hydrophobic strip.

(a) st 14.0

(b) st 152.0

(c) st 154.0

Fig. 5: Evolution of the interface and the
corresponding velocity fields.

Then, a single droplet spreading on a
heterogeneous surface with intersecting
hydrophobic strips is simulated. As shown in
Fig. 6, two cross hydrophobic strips

( 9/5 w ) with width of ml 4109  are

located at the centreline of the square surface,
the other areas are occupied by the hydrophilic
surface with 4/ w . Initially, the droplet

has a shape of spherical cap with radius of

mr 3102  and height of mh 3101  ,
and is set at the centre of the surface. The
shape evolution of the droplet with time is
shown in Fig. 6. From the figure, it can be
seen that the droplet symmetrically spreads
into four hydrophilic sections with the
development of time and finally reaches an
equilibrium state with a shape of four-leaved
flower.

st 0.0 st 03.0

st 05.0 st 09.0

Fig. 6: Snapshots of a droplet spreading on a
surface with intersecting hydrophobic strips.

st 0.0 st 02.0

st 04.0 st 12.0

st 14.0 st 18.0

Fig. 7: Droplet spreading on a surface
consisting of alternating and parallel strips.

Fig. 8: Evolution of moving contact line on a
surface with alternating and parallel strips.

Finally, the evolution of a water droplet
spreading on the heterogeneous surface
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consisting of alternating and parallel
hydrophilic strips with the width and the

steady-state contact angle of ml 4107  ,
9/2 w and the hydrophobic strips with

ml 4105  and 9/5 w is considered.

Initially, the droplet has a shape of spherical

cap with radius mr 3102  and height

mh 3101  ; the centre of initial circular
contact line is set on the hydrophilic surface
and the minimum distances form it to two
neighbouring hydrophobic strips are

m4102  and m4105  respectively. The
behaviour of 3D droplet and the time evolution
of the contact are shown in Figs. 7 and 8
respectively. It can be noted from the figures
that, the droplet can finally reach a symmetric
shape although the centre of the droplet is
initially set at a location other than the
centreline of any strip.

As shown in Fig. 9, two cross sections, CS-I
and CS-II, vertical to the heterogeneous
surface are defined. L1 and L2 show the
corresponding lines of intersection of CS-I and
CS-II with the heterogeneous surface
respectively.

Fig. 9: Definition of L1 and L2

Fig. 10 and 11 show the evolution of the
interface and the corresponding velocity fields
on cross section CS-I and CS-II respectively.
From Fig. 10, it can be found that the droplet
moves to the left. This should be caused by the
asymmetry of the wall surface tension with
respect to the centre line of the droplet. As
shown in Fig. 9, the hydrophilic area occupied
by the droplet at the left side of L2 is larger
then that at the right side of L2. This means
that the wall total surface tension at the left
part of the droplet is larger than right one.
Therefore, the droplet tents to reach a steady
state when the centre of the droplet reaches a

centreline of any strip if the heterogeneous
surface is horizontal. See Fig. 11, the cross
section connects with the hydrophilic strip of
the surface. So, the contact angle is less then
90 degree. Also, the interface and velocity
field are symmetric due to the symmetry of the
surface tension distribution.

(a) st 02.0

(b) st 12.0

(c) st 14.0

Fig. 10: Evolution of interface and the
corresponding velocity fields on CS-I.

(a) st 02.0

(b) st 12.0

(c) st 14.0

Fig. 11: Evolution of the interface and the
corresponding velocity fields on CS-II.

4. Conclusions
In this paper, a lattice Boltzmann method

for calculating liquid droplet behaviours on
particle wetting surfaces typically for the
system of liquid-gas of a large density ratio
has been reported. The method has developed
a novel treatment for partial wetting
boundaries which existing when a liquid
droplet spreads on a partial wetting surface. In
the present study, a water droplet in air
spreading on partial wetting surface are
studied and simulated based on the current
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LBM scheme. To check the reliability of the
scheme, the method is firstly applied to the
problems of a water droplet spreading on the
uniform wetting surface with different contact
angles. By measuring the obtained equilibrium
contact angles, it is noted that the results of the
simulation agree well with those of initial
prediction, which indicate that the present
LBM can be used as a reliable way to study
the interaction between the two-phase flow
and wetting surfaces. Then, using the
method, water droplets on three types of
heterogeneous surfaces are studied. One is the
a heterogeneous wetting wall which combines
a narrow hydrophobic strip; the other is a
wetting surface combined with cross
hydrophobic strips; the third case is concerned
with the heterogeneous surface consisting of
alternating and parallel hydrophilic strips. The
interactions between the fluid-fluid interface
and the partial wetting wall are typically
considered in the simulations. The droplet
dynamics on partial wetting surfaces including
the phenomena of droplet spreading, breaking
up and also the migration of the centre caused
by asymmetrical wall surface tension have
been analyzed. And the corresponding
mechanisms have been studied on the basis of
the obtained evolutions of phase distribution
and flow fields.
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