
Solving the Boltzmann equation on GPU’s

Aldo FREZZOTTIa, Gian Pietro GHIROLDIa, Livio GIBELLI ∗,a

aPolitecnico di Milano, Dipartimento di Matematica, PiazzaLeonardo da Vinci, 20133 Milano, Italy

Abstract

We present algorithms specifically tailored for solving kinetic equations onto graphics processing units. Unlike par-
ticle methods, the proposed methods of solution are ideallysuited for solving the unsteady low speed flows which
typically occur in MEMS containing oscillating components. The efficiency of the algorithms is demonstrated by solv-
ing the two-dimensional low Mach number driven cavity flow ofa monatomic gas. Computational results show that
it is possible to cut down the computing time of the sequential codes up to two order of magnitudes. The algorithms
can easily be extended to three-dimensional flows and to non-equilibrium flows of mixtures.

Key words: Gas micro flows, Boltzmann equation, BGKW equation, semi-regular method, regular method

1. Introduction

The correct description of rarefaction effects in gas
micro flows in MEMS or microchannels often requires
replacing the traditional hydrodynamic equations with
the Boltzmann equation or model kinetic equations [1].
In many cases, the flow Mach number is small and one
can linearize the kinetic equation. Numerical solutions
of linearized kinetic model equations have been pre-
sented in several studies of micro flows [2, 3] and suc-
cessfully compared with experimental data [4]. Appli-
cations of the full Boltzmann equation to micro flows
gas have been limited by its greater complexity and the
difficulty of extending the efficiency of DSMC schemes
[5] to “slow” flows. Attempts have been made to extend
DSMC in order to improve its capability to capture the
small deviations from the equilibrium condition met in
low Mach number flows [6, 7, 8]. However, in simulat-
ing high frequency unsteady flows, typical of microflu-
idics application to MEMS [9], the possibility of time
averaging is lost or reduced. Acceptable accuracy can
then be achieved by increasing the number of simula-
tion particles or superposing several flow snapshots ob-
tained from statistically independent simulations of the
same flow; in both cases the computing effort is consid-
erably increased.
In the present work, we solve the kinetic equations by

∗Corresponding author
Email address:livio.gibelli@polimi.it (Livio GIBELLI)

regular and semi-regular methods. Such methods com-
bine a finite difference discretization of the free stream-
ing term with either a deterministic or a Monte Carlo
evaluation of the collision integral [10, 11]. Unlike par-
ticle methods, they are not only better suited to solve un-
steady flows, but can be also more easily translated into
a parallel computer code to be executed on a Graphic
Processing Unit (GPU) [12]. GPUs have been used to
accelerate CPU critical applications such as simulations
of hypersonic flows [13], magnetized plasma [14] and
molecular dynamics [15]. However, so far few applica-
tions to kinetic theory of gases have been reported [16].
The aim of the paper is to describe efficient algorithms
specifically tailored for solving kinetic equations onto
GPUs using CUDATM programming language [12]. The
full non-linear form of the kinetic equations is used to
explore the limits of the linearized approach. The effi-
ciency of the algorithms is assessed by solving the low
speed two-dimensional driven cavity flow since, in spite
of its simple geometry, it contains most of the features
which appear in more complicated problems described
by kinetic equations. It is shown that it is possible to cut
down the computing time of the sequential codes up to
two order of magnitudes by a proper reformulation of
the algorithm to be executed on a GPU. The rest of the
paper is organized as follows. Section 2 is devoted to
a concise description of the mathematical formulation
of the two-dimensional driven cavity flow problem. In
Section 3, a short outline of the semi-regular and regular
methods of solution of the kinetic equations is given. In

Preprint submitted to Elsevier July 3, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/9633395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WV

To

L

L

x

y

Figure 1: Flow configuration.

Section 4 the key aspects of the GPU hardware archi-
tecture and CUDATM programming language are briefly
described and some details of the implementation of the
numerical methods are given. Results are discussed in
Sections 5 and concluding remarks are presented in Sec-
tion 6.

2. Mathematical formulation

A monatomic gas is confined in a two-dimensional
square cavity with edgeL. The flow is driven by a uni-
form translation of the top with velocity velocityVW.
Figure 1 illustrates the flow geometry. The gas flow is
governed by the two-dimensional Boltzmann equation
[19]

∂ f
∂t
+ v · ∇x f = C(f , f) (1)

In Eq. (1), f (x, v|t) denotes the distribution function
of atomic velocityv at spatial locationx and timet,
whereasC(f , f) gives the collisional rate of change of
f at the phase space point (x, v) at time t. It is as-
sumed that all the walls are isothermal with tempera-
tureT0 and that the particles which strike the wall atxW

are re-emitted at the same space location according to
the Maxwell’s scattering kernel with complete accom-
modation [19]

f (xW, v) =
nW

(2πRT0)1/2
exp

[

− (v − VW)2

2RT0

]

(2)

whereVW is the wall velocity and the wall gas density
nW(xW) is set so as to impose zero net flux across the
wall

nW =

(

2π
RT0

)1/2 ∫

(v−VW)·n̂<0
(|v − VW| · n̂) f dv (3)

wheren̂ is the unit vector normal to the wall. The col-
lision integral,C(f , f), is a non-linear functional off ,
whose precise structure depends on the assumed atomic
interaction forces. For the dilute hard sphere gas con-
sidered here, the collision integral simplifies to

C(f , f) =
d2

2

∫

[

f (x, v∗|t) f (x, v∗1|t)−

f (x, v|t) f (x, v1|t)
] |k̂ ◦ vr |dv1d

2k̂ (4)

being d the hard sphere diameter andv∗, v∗1 the pre-
collisional velocities, obtained fromv, v1 andk̂ by the
simple relationships

v∗ = v + (vr ◦ k̂)k̂, v∗1 = v1 − (vr ◦ k̂)k̂ (5)

In Eq. (5),k̂ is the unit vector which gives the direction
of the relative position of the colliding particles at the
time of impact. Both from the theoretical and computa-
tional point of view, it is often convenient to use a sim-
pler collision term. In the kinetic model proposed by
Bhatnagar, Gross and Krook [17] and, independently,
by Welander [18], the collision term takes the form:

C(f , f) = ν(Φ − f) (6)

In Eq. (6)ν is the collision frequency, whereasΦ(x, v|t)
is the local equilibrium Maxwellian distribution func-
tion given by the expression

Φ =
n

(2πRT)3/2
exp

[

− (v − V)2

2RT

]

(7)

If ν does not depend on the velocityv, then conserva-
tion of mass, momentum and energy requires thatn(x|t),
V(x|t) andT(x|t) in Eq. (7) coincide with the local val-
ues of density, bulk velocity and temperature obtained
from f by the relationships

n(x|t) =

∫

f (x, v|t) dv (8)

V(x|t) =
1
n

∫

v f (x, v|t) dv (9)

T(x|t) =
1

3Rn

∫

(v − V)2 f (x, v|t) dv (10)

being R the specific gas constant. The above expres-
sions show that Eq. (6) is a strongly non-linear integro-
differential equation, in spite of the linear appearance of
its r.h.s.. As is well known, the BGKW model predicts
an incorrect value of the Prandtl number in the hydro-
dynamic limit [19]. Hence,ν can be adjusted to obtain
either the correct viscosity or heat conductivity, but not
both. If the viscosityµ(T) is selected, thenν is obtained
asnRT/µ.

2

3. Outline of the numerical methods

Eq. (1), with the collision integral given by Eq.
(4) or Eq. (6), is numerically solved by a semi-regular
and regular method, respectively. The spatial domain
is a square whose sides have lengthL; each side is
divided into Ns intervals of equal size to formN2

s
equal square cells. The infinite three-dimensional ve-
locity space is replaced by a rectangular box divided
into Nv = Nvx × Nvy × Nvz cells of equal volume
∆V, Nvα being the number of velocity nodes associ-
ated with the velocity componentvα. The size and po-
sition of the ”velocity box” in the velocity space have
to be properly chosen, in order to contain the signif-
icant part of f at any spatial position. The distribu-
tion function is assumed to be constant within each
cell of the phase space. Hence,f is represented by
the array fi,j(t) = f (x(ix), y(iy), vx(jx), vy(jy), vz(jz)|t);
x(ix), y(iy), vx(jx), vy(jy), vz(jz) are the values of the spa-
tial coordinates and velocity components in the cen-
ter of the phase space cell (i, j), being i = (ix, iy) and
j = (jx, jy, jz).
The algorithm that advancesf n

i,j = fi,j(tn) to f n+1
i,j =

fi,j(tn+∆t) is constructed by time-splitting the evolution
operator into a free streaming step, in which the r.h.s.
of Eq. (1) is neglected, and a purely collisional step, in
which spatial motion is frozen and only the effect of the
r.h.s. is taken into account. More precisely, the distri-
bution functionf n

i,j is advanced tof n+1
i,j by computing an

intermediate value from the free streaming equation

∂ f
∂t
+ vx

∂ f
∂x
+ vy

∂ f
∂y
= 0 (11)

Eq. (11) is solved by a simple first order explicit upwind
conservative scheme. After completing the free stream-
ing step, f n+1

i,j is obtained by solving the homogeneous
relaxation equation

∂ f
∂t
= C(f , f) (12)

The method of solution of Eq. (12) is different depend-
ing on the collision integral, Eq. (4) or Eq. (6). When
the collision integral is given by Eq. (4), Eq. (12) is
solved with a semi-regular method. At each spatial lo-
cation (x(ix), y(iy)), Eq. (12) is integrated over the cell
of the velocity space with centerj, Cj,

dNi,j

dt
=

∫

Cj

C(f , f)dv (13)

where Ni,j represents the expected number of atoms
in the cell centered around the velocity nodej, i.e.,

Ni,j(t) = ∆V f n
i,j. The integral in Eq. (13) can be trans-

formed into an integral extended to the whole velocity
domainV by introducingχj, the characteristic function
of the cellCj

dNi,j

dt
=

∫

V
χjC(f , f)dv (14)

Now, taking into account Eq. (4) to replaceC(f , f) and
making use of some fundamental properties of the col-
lision integral [19], Eq. (14) can be written in the fol-
lowing form

dNi,j

dt
=

d2

4

∫

V⊗V
dvdv1Φ0(v)Φ0(v1)

∫ 1

−1
dkz

∫ 2π

0
dφ

[

χj(v∗) + χj(v∗1) − χj(v) − χj(v1)
]

f (v) f (v1)Φ−1
0 (v)Φ−1

0 (v1)|k̂ · vr | (15)

The eight-fold integral in Eq. (15) is calculated by a
Monte Carlo quadrature method [20], since a regular
quadrature formula would be too demanding in terms
of computing time. The advantage of writing the rate
of change ofNi,j in the above form is that the equilib-
rium Maxwellian distribution function may be consid-
ered a probability density function from which the ve-
locity points are drawn to estimate the collision integral
with lower variance. The Monte Carlo estimate of the
rate of change of the particle number is then written as

dNi,j

dt
=

n2
0d2π

Nt

Nt
∑

l=1

[

χj(v∗l) + χj(v∗1l) − χj(vl) − χj(v1l)
]

f (vl)
Φ0(v)

f (v1l)
Φ0(v1l)

|k̂ · vr | (16)

Once the collision integral have been evaluated, the so-
lution is advanced from thenth time level to the next
according to the explicit scheme

f n+1
i,j = f n

i,j + Qn
i,j∆t (17)

where

Qn
i,j =

1
∆V

d
dt

Ni,j (18)

Although memory demanding, the method outlined
above produces accurate approximations off (x, v|t)
which do not require time averaging to provide smooth
macroscopic fields. A drawback of the technique is that,
due to the discretization in the velocity space, mass, mo-
mentum and energy are not exactly conserved. The nu-
merical error is usually small but tends to accumulate

3

during the time evolution of the distribution function.
The correction procedure proposed in Ref. [21] has
been adopted to overcome this difficulty. At each time
step the distribution function is corrected in the follow-
ing way

f̃ n+1
i,j = f n+1

i,j

[

1+ A+ B · v +Cv2
]

(19)

where the constantsA,B andC are determined from the
conditions

∫

ψ(v) f̃ n+1(v)dv =
∫

ψ(v) f n(v)dv (20)

whereψ(v) = 1, v, v2.
The solution of the homogeneous relaxation equation
(12) is much simpler when the collision integral is given
by Eq. (6). Sincen, V and T are conserved during
homogeneous relaxation, Eq. (12) can be exactly solved
to obtain

f n+1
i,j =

[

1− exp(−νi∆t)
]

Φi,j + exp(−νi∆t) f n
i,j (21)

in each cell (i, j) of the phase space. Since the den-
sity, bulk velocity and temperature obtained from the
discretized Maxwellian distribution functionΦi,j are not
exactly equal toni, Vi andTi, to ensure the exact con-
servation of mass momentum and energy, the correction
procedure represented by Eqs. (19)-(20) should be used.
Independently of the collision integral employed, the
computational work associated to free streaming and
relaxation sub-steps can be easily parallelized, each of
them consisting of a number of independent threads.

4. CUDA

4.1. GPU and CUDATM overview

NVIDIA GPU is built around a fully programmable
processor array organized into a number of multipro-
cessor with a SIMD-like architecture[12], i.e. at any
given clock cycle, each core of the multiprocessor ex-
ecutes the same instruction but operates on different
data. CUDATM is the high level programming language
specifically created for developing applications on this
platform.
A CUDATM program is organized into a serial program
which runs on the host CPU and one or more kernels
which define the computation to be performed in paral-
lel by a massive number of threads. Threads are orga-
nized into a three-level hierarchy. At the highest level,
all threads form a grid; they all execute the same kernel
function. Each grid consists of many different blocks
which contain the same number of threads. A single

multiprocessor can manage a number of blocks concur-
rently up to resource limits. Blocks are independent,
meaning that a kernel must execute correctly no mat-
ter the order in which blocks are run. A multiproces-
sor executes a group of threads belonging to the active
block, called warp. All threads of a warp execute the
same instruction but operate on different data. If a ker-
nel contains a branch and threads of the same warp fol-
low different paths, then the different paths are executed
sequentially (warp divergence) and the total run time is
the sum of all the branches. Divergence and reconver-
gence are managed in hardware but may have a serious
impact on performance. When the instruction has been
executed, the multiprocessor moves to another warp. In
this manner the execution of threads is not so much si-
multaneous as it is interleaved.
Each multiprocessors has a number of register which
are dynamically partitioned among the threads running
on it. Registers are memory spaces that are readable
and writable only by the thread to which they are as-
signed. Threads of a single block are allowed to syn-
chronize with each other and are available to share data
through a high-speed shared memory. Threads from
different blocks in the same grid may coordinate only
via operations in a slower global memory space which
is readable and writeble by all threads in a kernel as
well as by the host. Shared memory can be accessed by
threads within a block as quickly as accessing registers.
Instead, reading from and writing to the global mem-
ory is particularly expensive, unless the access is coa-
lesced [12]. Because of the interleaved warp execution,
memory access latency are partially hidden, i.e., threads
which have read their data can be performing computa-
tions while other warps running on the same multipro-
cessor are waiting for their data to come in from global
memory. Note however that GPU global memory is still
ten time faster than the main memory of recent CPUs.
Code optimization is a delicate task. In general, applica-
tions which require many arithmetic operations between
memory read/write, and which minimize the number
of out-of-order memory access, tend to perform bet-
ter. Number of blocks and number of threads per block
have to be chosen carefully. There should be at least as
many blocks as there are multiprocessor in the device.
Running only one block per multiprocessor can force
the multiprocessor to idle during thread synchronization
and device memory reads. By increasing the number
of blocks, on the other hand, the amount of available
shared memory for each block diminishes. Allocating
more threads per block is better for efficient time slic-
ing, but the more threads per block, the fewer registers
are available per thread.

4

4.2. CUDATM implementation
The code to numerically solve Eq. (1) is organized

into a host program, which deals with all memory man-
agement and other setup tasks, and a number of kernels
running on the GPU. One performs the streaming step
and the others perform the collision step.
For each given cell of the velocity space, the stream-
ing step involves the distribution function evaluated at
different space locations. The key performance en-
hancing strategy is to allow threads to cooperate in the
shared memory. The threads should thus grouped into
as many blocks as the cells in the velocity space with a
number of threads per block equals to the number of
cells in the physical space. In practical applications,
however, the number of cells in the physical space is
greater than the maximum allowable number of threads
per block. In order to fit into the device’s resources,
hence, the number of threads per block is set to a lower
value which is chosen to maximize the utilization of
registers and shared memory usage. When a block be-
come active, each thread loads one element of the dis-
tribution function from global memory, stores it into
shared memory and then update its value. To ensure
non-overlapping access, threads are synchronized at the
onset of both reading from and writing to the global
memory. In order the access to the global memory to
be coalesced, the discretized distribution function has
been organized such that the value which refers to cells
which are adjacent in the physical space are stored in
contiguous memory locations. A random memory ac-
cess would determine otherwise a performance bottle-
neck. Threads which update boundary points perform
calculations which are slightly different to account for
the incoming Maxwellian flux from the boundary of the
domain. This leads to a thread divergence which deter-
mines some code inefficiency. However, testing shows
that the performance loss is small.
The relaxation step in a cell of the phase space does not
involve any information from nearby cell, whatever the
collision operator employed, Eqs. (17) and (21). This
naturally fits for GPUs.
The relaxation step for the Boltzmann equation is orga-
nized into two kernels. The first kernel computes the
sequence ofNt velocity vectorsvl andv1l by having a
thread associate to each of theNt samples. In the sec-
ond kernel, there are as many threads as the number of
cells in the physical space. The kernel updates the dis-
tribution function according to Eq. (17) and enforces
the conservation properties by means of the correction
procedure represented by Eqs. (19)-(20).
Unlike the collision operator (4), the concurrent com-
putation of (6) would be possible mapping each thread

0 0.2 0.4 0.6 0.8 1
y/L

-0.2

0

0.2

0.4

0.6

0.8

V
x/V

w

0 0.2 0.4 0.6 0.8 1
x/L

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V
y/V

w

(a) (b)

Figure 2: Profiles of (a) the horizontal component of the velocity on
the vertical plane crossing the center of the cavity and (b) the ver-
tical component of the velocity on the horizontal plane crossing the
center of the top vortex. Solid lines: solution reported in Ref. [22].
Filled circles: parallel solution of the BGKW model equation. Un-
filled squares: parallel solution of the Boltzmann equation.

to a single cell in the phase space. According to Eq.
(21), however, one must first calculate in each cell of
the physical space the macroscopic quantities, Eqs. (8)-
(10). In the attempt of reducing data transfers from and
to the global memory, the computation of the macro-
scopic quantities and the collision step are then per-
formed in the same kernel, by having a thread associated
to each cell of the physical space. Although this choice
reduce the overall number of threads, it is not quite lim-
iting since for realistic three-dimensional problems, one
would refine the physical grid more than the velocity
grid.

5. Results and discussion

In Ref. [22], the cavity flow problem has been solved
by assuming thatVW ≪

√
2RT0 and thus Eq. (1) with

the collision integral (6) has been linearized around the
equilibrium state at rest. In order to reproduce these re-
sults, the dimensionless lid velocity is here set to 0.1.
The gas is thus in a weakly non-equilibrium state and
one can expect that the nonlinear results approach the
linearized ones. The square cavity, [0, δ] × [0, δ], has
been divided into 160× 160 cells with uniform width.
Hereδ is the rarefaction parameter which is proportional
to the inverse of the Knudsen number. In the following,
δ will be based on the mean free path of the BGKW
equation. In the Boltzmann results, the mean free path
of the hard-sphere molecular system is converted to that
of the BGKW equation through the viscosity. The cav-
ity flow problem has been solved over a wide range of

5

D G

δ BHS BGKW Ref [22] BHS BGKW Ref [22]

0.1 0.672 0.676 0.677 0.0970 0.0970 0.0974

1 0.623 0.625 0.628 0.103 0.103 0.104

10 0.392 0.392 0.413 0.142 0.141 0.145

Table 1: Drag coefficient, D, and reduced flow rate,G, versus the
rarefaction parameter,δ

the rarefaction parameter. The computational grid in
the physical space has been chosen to achieve the con-
vergence of the results in the whole range of rarefac-
tion parameter considered. The number of velocity cells
has been setNvα = 20 with vα ∈ [−3, 3]. Finally, the
dimensionless time step has been varied in the range
10−4 − 10−2 depending on the value of the rarefaction
parameter.

Figures 2a and 2b show the profiles of the horizontal
component of the velocity,Vx, on the vertical plane
crossing the center of a square cavity and the vertical
component of the velocity,Vy, on the horizontal plane
crossing the center of the top vortex, respectively, for
δ = 10. Solid lines are the numerical results reported in
Ref. [22] whereas filled circles and unfilled squares are
the results obtained by solving the BGKW model equa-
tion and the Boltzmann equation with the parallel codes,
respectively. Although the parallel codes solve the non-
linear equations, for a sufficiently low velocity of the lid
of the cavity there is an almost perfectly match with the
linearized results presented in Ref. [22]. In order to pro-
ceed with a more detailed comparison, we introduce two
overall quantities, namely the mean dimensionless shear
stress along the moving plate,D, and the dimensionless
flow rate of the main vortex,G. The former quantities is
obtained by integrating the shear stress along the lid of
the cavity, the latter by integrating the x-component of
the velocity profile along the plane crossing the center
of the cavity from the center of the top vortex up to the
lid.

Table 1 compares the prediction ofD andG obtained
by solving Eq. (1) with the parallel codes and the values
reported in Ref. [22], for different values of the rarefac-
tion parameter. The agreement is good.

Figure 3 shows the drag coefficient versus the dimen-
sionless time for both Boltzmann and BGKW equations.
Although the noise due to the finiteness of the sample
used to evaluate the collision integral, the semi-regular
method is able to capture the transient of the solution.
Smoother results may be obtained either by increasing
Nt or by an appropriate time averaging.

0 10 20 30 40

t(RT
o
)
1/2

/λ
0

0.4

0.5

D

Figure 3: Drag coefficient versus dimensionless time. Solid line:
Boltzmann solution withNt = 63488. Dashed line: BGKW solution.

0 5000 10000 15000 20000
N

r

0.1

1

10

100

T
 (

ns
)

Figure 4: Time spent for processing one cell of the phase space versus
the number cells used to discretized the physical space,Nr . Filled
circles: BGKW solution. Unfilled squares: BHS solution withNt =

4096. Unfilled diamonds: BHS solution withNt = 40960.Nvα = 16.

Figure 4 shows the time spent for processing one cell
of the the phase space at each time step, expressed in
nanoseconds, versus the number of cells used to dis-
cretized the physical space,Nr = N2

s . Filled circles are
the results for the BGKW model equation whereas un-
filled squares and diamonds are the results for the Boltz-
mann equation withNt = 4096 andNt = 40960, respec-
tively. The codes fully utilize the GPU when the num-
ber of cells in the physical space is about 10000. For
a greater number of cells, the total execution time in-
creases linearly and hence the time spent for processing
one cell of the phase space at each time step is nearly
constant. The code which solves the Boltzmann equa-
tion is slower than the code which solves the BGKW
model equation by a factor between 2 and 10, depend-
ing on the numberNt of velocities samples. According
to the results reported in Ref. [16], the speed-up of the

6

BGKW code is greater than 100 and the same can be
inferred for the Boltzmann code. The algorithms for the
BGKW and Boltzmann equation, in fact, show the same
degree of parallelism. Independently of the value of the
rarefaction parameter, the BGKW solution takes 8 min-
utes whereas the Boltzmann solution needs 10 minutes
for δ = 0.1, 18 minutes forδ = 1 and 75 minutes for
δ = 10. This is due to the fact that by increasing the
rarefaction parameter, it is necessary to increaseNt.

6. Conclusion

The purpose of this paper was to develop algorithms
to solve non-equilibrium low speed gas flows onto
GPUs using NVIDIA CUDATM programming model.
The two-dimensional low Mach number driven cavity
flow has been chosen as test problem. The Boltzmann
equation has been solved with a semi-regular method
based on the Monte Carlo evaluation of the collision
integral, while the BGKW model equation has been
solved by directly discretizing the collision integral with
a finite difference scheme. These methods of solution
are ideally suited for the parallel architecture provided
by commercially available GPUs. The solutions of the
linearized kinetic equations are obtained as the limiting
solutions of the corresponding non-linear equations for
a vanishing perturbation. Numerical experiments indi-
cate that it is possible to cut down the computing time
of the sequential codes up to two order of magnitudes.
The algorithm described can easily be extended to three
dimensions and to non-equilibrium flows of polyatomic
gases and/or involving chemical reactions.

ACKNOWLEDGMENTS

Support received fromFondazione Cariplo within
the framework of project“Fenomeni dissipativi e di
rottura in micro e nano sistemi elettromeccanici”,
and Galileo Programme of Università Italo-Francese
within the framework of project MONUMENT (MOd-
ellizzazione NUmerica in MEms e NanoTecnologie) is
gratefully acknowledged. The authors wish to thank
Professor Dimitris Valougeorgis for providing his nu-
merical results.

References

[1] C. Cercignani, A. Frezzotti, S. Lorenzani, Using the kinetic
equations for MEMS and NEMS, inAdvances in Multiphysics
Simulation of MEMS and NEMSedited by Aluru, C. Cercignani,
A. Frangi and S. Mukherjee, Imperial College Press, London,
2008.

[2] S. Naris, D. Valougeorgis, The driven cavity flow over thewhole
range of the Knudsen number,Phys. Fluids17, 097106-12,
2005.

[3] I. Graur, F. Sharipov, Gas flow through an elliptical tubeover
the whole range of the gas rarefaction,Eur. J. Mech. B/Fluids,
27 (3), 335-345, 2008.

[4] S. Lorenzani, L. Gibelli, A. Frezzotti, A. Frangi, C. Cercignani,
Kinetic approaches to gas flow in microchannels,Nanoscale and
Microscale Thermophysical Engineering, 11, 211-226, 2007.

[5] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation
of Gas Flows, Oxford University Press, 1994.

[6] J. Chun and D. L. Koch, A direct simulation Monte Carlo
method for rarefied gas flows in the limit of small Mach number,
Phys. Fluids17, 107107-14, 2005.

[7] T. M. M. Homolle, N. G. Hadjiconstantinou, A low-variance
deviational simulation Monte Carlo for the Boltzmann equation,
J. Comput. Phys.226 (2), 2341-2358, 2007.

[8] W. Wagner, Deviational particle Monte Carlo for the Boltzmann
equation,Monte Carlo Methods and Applications, 14 (3), 191-
268, 2008.

[9] M. Gad-el-Hak, The fluid mechanics of microdevices - the Free-
man Scholar Lecture,J. Fluids Eng. (Trans. ASME), 121, 5-33,
1999.

[10] A. Frezzotti, Numerical study of the strong evaporation of a bi-
nary mixture,Fluid Dynamics Research, 8 (5-6), 175-187, 1991.

[11] F. Tcheremissine, Direct numerical solution of the Boltzmann
Equation, RGD24, AIP Conference proceeding, 762, 677-685,
2005.

[12] NVIDIA Corporation, NVIDIA CUDA Programming Guide,
Jun. 2008. Version 2.0. http://www.nvidia.com/CUDA

[13] E. Elsen, P. LeGresley, E. Darve, Large calculation of the flow
over a hypersonic vehicle using a GPU,J. Comp. Phys.227,
10148-10161, 2008.

[14] G. Stantchev, W. Dorland, N. Gumerov, Fast parallel Particle-
To-Grid interpolation for plasma PIC simulations on the GPU,
J. Parallel Distrib. Comput.68, 1339-1349, 2008.

[15] J. A. Anderson, C. D. Lorenz, A. Travesset, General purpose
molecular dynamics simulations fully implemented on graphics
processing units,J. Comp. Phys.227, 5342-5339, 2008.

[16] A. Frezzotti, G. P. Ghiroldi, L. Gibelli, Solving Kinetic
Equations on GPUs I: Model Kinetic Equations, eprint
arXiv:0903.4044

[17] P. L. Bhatnagar, E. P. Gross, M. Krook, A model for collision
processes in gases. I. Small amplitude processes in chargedand
neutral one-component systems,Phys. Rev.94, 511-525, 1954.

[18] P. Welander, On temperature jump in a rarefied gas,Arkiv fiir
Fysik7 44, 507-553, 1954.

[19] C. Cercignani,The Boltzmann Equation and Its Applications,
Springer-Verlag, New York, 1988.

[20] M. H. Kalos, P. A. Whitlock,Monte Carlo Methods, Wiley, New
York, 1986.

[21] V. V. Aristov, F. G. Theremissine,U.S.S.R. Comput. Math. Math.
Phys., 20, 208-225, 1980.

[22] S. Varoutis, D. Valougeorgis, F. Sharipov, Application of
the integro-moment method to steady-state two-dimensional
rerafeied gas flows subject to boundary induced discontinuities,
J. Comput. Phys.227, 6272-6287, 2008.

7

