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Abstract Copper oxide superconducting nanofluids exhibit a lot of very interesting technological 
properties and their behaviour is typical of a two- phase nanofluid. Near the superconductivity trasition 
temperature, their electrical conductivity is the sum of a normal conductivity component and a flux flow 
superconducting contribution from the unpinned motion of vortices within the sample. Armed with recent 
experimental results for regular type II superconductivity nanosamples, we review the corresponding 
expected behaviour for CuO High Temperature Superconducting (HTSC) systems. The equivalent Navier-
Stokes equations that go under the name Ginzburg–Landau equations for the superconducting density are 
briefly reviewed and their solutions are presented in a clear way for the particular problem. Contribution of 
fluctuations of the structural vortex lattice, which is a stable solution of the Time Dependent Ginzburg-
Landau (TDGL) equations, to the flux flow two -phase conductivity is briefly presented. The 
corresponding discussion for the two-phase thermal conductivity of a superconducting nanosample is 
going to be presented in a separate future publication. 
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1 Introduction 

Superconducting Electronics is a rapidly growing field which 
spans over many very useful applications in e.g. small 
magnetic field measurements ( brain waves ), green energy 
projects (wind farms generators, power transmission wires) 
etc. In order to establish the correct use of High Temperature 
Superconducting materials (HTSC) in superconducting 
electronics circuits and construct useful units out of them we 
need to understand and analyze the effect of noise on these 
circuits. One of the main reasons for the existence or not of 
noise in HTSC circuitry is the fluctuations of the order 
parameter ( wavefunction amplitude ) near the transition 
temperature of the HTSC material Tc, which is near the liquid 
nitrogen temperature area (77 K) and higher. In this paper we 
will try to summarize exactly the behavior of the order 
parameter and thus the conductivity near Tc. The paper is 
organized as follows: In Section 2 we present the basic 
equations that describe the phenomenology of the model that 
we are using for the electronic transport and go under the 
name of Ginzburg-Landau theory. In Section 3 we develop the 
contribution of the vortex conductivity fluctuations to the total 
conductivity tensor. In Section 4 we apply the above theory to 
the two-fluid electron gas HTSC material near Tc and discuss 
the signature of the fluctuation corrections. In Section 5 we 
present our conclusions and in Section 6 we give a list of our 
references. Finally in Section 7 we present a list of all our 
symbols and parameters used. 

 

2 Time Dependent GL Theory 

An important development of the theory of superconductivity 
has been the investigation of the dynamic behaviour of 
magnetic flux structures and the discovery of the connection 
between flux motion and the transport properties of 
superconductors. Encouraged by the success of the GL theory 
for treating the case of thermodynamic equilibrium, time-
dependent generalizations of the GL theory have been studied 
for describing variations of the order parameter with time 
([1],[2]). However the existence of an energy gap and the 
interconversion between normal excitations and superfluid 
due to the probe frequency, constitute major difficulties in 
writing a simple form for the corresponding GL equations or 
for repeating the same approximations as in the static case. 
Following the work of references [3]-[8], the resulting 
equation is of diffusion type 

  (2.1) 

where γ is the scattering rate of the order parameter ψ( t) and 

f( ,T,H) is the free energy density of the nanosample (  is 
the position of the electron in space, T is the local temperature 
and H is the local magnetic intensity) 

    (2.2) 

where m is the mass of the electron,  is the magnetic vector 
potential, α(Τ) and β(T) are the phenomenological GL 
parameters. We look for a time-dependent order parameter in 
the form 

  (2.3) 

with ψο being the time-independent equilibrium solution and 
δψ(t) the time-varying deviation from equilibrium, assuming 

   (2.4) 

Using (1.3) we find for zero magnetic field 

  (2.5) 

i.e. ψ( ,t) relaxes exponentially with a relaxation time 

  (2.6) 

Now we allow for spatial variation of the equilibrium solution 
and we turn on a magnetic field along the z-direction. 
Restoring gauge invariance we obtain from (2.1), (2.5) and 
Ohm's law for the normal current [9] 

  (2.7) 

 

    (2.8) 

ignoring the difference of the chemical potential for =0 and 

 0, where  =  is the diffusion coefficient, φ is 

the electric (scalar) potential,  = , ξ is the Τ-

dependent coherence length and  is the electric intensity 
vector. 

These equations were derived also microscopically, for a 
gapless superconductor in [3] and generalized in [8]. They 
don't include the quasiparticle contributions (normal 
excitations) which for some transport coefficients (e.g. 
thermal conductivity) can be substantial (see [10]). They 
include only the effect of the dynamical perturbation on the 
order parameter (Aslamazof-Larkin process [11], [12]). This 
omission can by no means be explained till the present, and 
the only way of remedying it is a direct but difficult full 
microscopic calculation. 
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3 The Effect of a Transport Current in the 
Vortex State 

This is a highly non trivial problem and of great practical 
importance. If we try to pass a dc current through the vortex 

array, there is a Lorentz force per unit volume  
acting on the vortices. This leads to motion of the flux lattice  
vortices (FLs) except if they are pinned by sample 
inhomogeneities or scattered by other fluctuating FLs that 
wander inside the sample. A measure of how freely the FLs 
are moving, is given by the experimental voltage drop which 
arises as follows: We consider a frame of reference moving 

with the velocity of the vortices L. In this frame, vortices are 
stationary and the Abrikorov solution describes their 
arrangement [13], while the electric field is everywhere zero 
since there is no FL motion. Transform back to the laboratory 
frame, for typical FL velocities ~103cm/sec the relativistic 
Lorentz factor be small, we get: 

Ex’=Ex-uLyHz/c=0 (3.1) 

assuming that the transport current flows in the x-direction, 
where the primed coordinate frame is the one that moves with 
the FL. Using Ohm's law 

Ex=ρfJx (3.2) 

we getType	equation	here. 

ρf =uLyHz/cJx (3.3) 

Substituting typical values uL=1000cm/sec, critical current 

density 106A/cm2 at 1000 Oe we get ρf ~ 10-5 Ohm cm which 
is close to an expected value for the normal state resistivity at 
low Τ for superconducting alloys. 

Let us now give a more concrete study of flux motion with 
the experimental situation deferred to the next chapter. 
Consider our usual geometry with a bulk superconductor in a 
magnetic field along the z direction. If an applied external dc 
current (transport current) flows along the x-direction, then 

the vortex structure moves with velocity L. The angle 

between the y axis and L is called the Hall angle for obvious 
reasons. The FLs motion is governed by the following 
balance equation for the forces per unit length on the FL: 

 
 +  +  -  =0  (3.4) 

(i)  is the Lorentz force per unit length which 
arises from the magnetic hydrostatic pressure plus an 

additional tension along the FL.  is the transport current 
density, φ0 is the flux quantum and c is the light velocity. 

(ii)  is the Magnus force as 
derived in [14], which is a consequence of restoration of 
Galilean invariance in a neutral superfluid. ns is the superfluid 

density and  is the supercurrent velocity. Notice that the 
Magnus force gives a velocity component parallel to the 
transport current and thus contributes to the Hall effect [15]. 

(iii)  is the sum of all the damping forces (e.g. 
dissipating currents within the core and possibly quasiparticle 
damping) where η is a phenomenological coefficient. 

(iv) p is the pinning force which opposes vortex motion so 

it is negative compared to L. Pinning arises from local 
minima in the free energy functional due to defects in the 
crystal structure of the sample and it turns out to be very 
important in the HTSC. 

Equation (3.4) describes also the flux motion for an applied 
time dependent magnetic field for zero transport current. 
Notice that when extensive pinning is present there is no 
dissipation due to flux motion since the flux line lattice (FLL) 
is pinned and thus superconductivity persists to higher 
external currents, giving rise to useful technological 
applications. Depending on which term wins in (2.4) we see 
different kinds of flux motion. 

In this communication we will examine the flux flow regime: 
When fL + fp > 0, then the vortex motion is retarded only by 
viscous damping. The flow state, results when the current 
exceeds a critical value (pinning) with vortices moving 
perpendicular to the direction of the current. A voltage 
appears following a linear rise with increasing current, which 
however is much smaller than if the material were normal. 
The slope dV/dI defines the flux flow resistance Rf. Notice 
that while Ic depends on the pinning force, Rf (slope) does not. 
Thus Rf is characterized only by the parameters that affect the 
vortex lattice formation. The nonlinear region of the V(I) 
curve can be explained by non uniform FLL motion due to 
spatial variation in fp. According to GL theory the critical 
current decreases with increasing magnetic field and 
temperature. 

To obtain a quantitative expression for the flux flow 
resistivity we use eq. (3.1), following reference [16],for the 
resistive voltage due to vortex motion which we write as  

  (3.5) 

For our geometry uLy causes the longitudinal (resistive) 
voltage whereas uLx causes the transverse (Hall) voltage. 
Neglecting for the moment pinning in (3.4), we see that if 

there is no normal core damping (η -> 0) then L = s and 
there is only a Hall response since the FL follows the 

supercurrent. If there is no Magnus force then L    s and 
there is only longitudinal response present, which gives a 
resistivity 

  (3.6) 

which is the slope of increase of the longitudinal electric field 

with the current density . This leaves us with calculating η, 
bearing in mind that the final results should be consistent with 
the Bardeen-Stephen formula [17]: 

 (3.7)	

for low fields and low κ superconductors, where  is 
the upper critical magnetic field at zero temperature. Bardeen 
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and Stephen derived the above relation under the following 
assumptions 

(i) Local electrodynamics 

(ii)  Fully normal vortex core of extent ξ (superconducting 
coherence length) 

(iii) Dissipation occurs only by normal resistive processes in 
this core (quasiparticle scattering by the lattice) 

(iv) Τ << Tc, i.e. neglect the electrons outside the normal 
core 

(v) The transport current density and the normal current 
density generated from the flux motion are assumed small 
with respect to the supercurrent densities circulating around 

the vortex cores i.e. uL τ <<ξ 

(vi) No pinning => normal current density in the core = 
applied transport current density. 

They found  

   (3.8) 

where ρn is the normal state resistivity, and inserting this into 
(3.6) they derived (3.7) which is quite successful for small T 
(i.e. Τ<< Tc). To complete the discussion we give the 
microscopic result from the work of Caroli and Maki [5] for 
the slope of the flow curve near Hc2 

  (3.9) 

Usui et al [18] have calculated by fitting to their data for V, 
values of κ(Τ), which then plugged into the GL expression for 
the magnetization 

  (3.10)	

(β = 1.16 for a triangular Abrikosov FLL) and then fitted 
magnetization slope results to their experimental data with 
excellent agreement. In the dirty limit the expressions of 
Caroli and Maki were corrected by Thomson [7] and gave 
fairly good agreement with experiments. 

Finally there is an interesting consistency between the BS 
result (3.7) and its assumption (iii) which can be written in 
terms of the coherence length and the inter- vortex distance d 
as 

 

Thus ρf/ρn is approximately equal to the volume fraction 
occupied by the vortex core in direct agreement with the 
assumption of quasiparticle scattering dissipation in the 
normal cores only. In other words the current must pass 
through the normal cores and as they are normal the work is 
dissipated in driving the current across them. When the 
vortices are stationary and not too close to Tc or Hc2 there is 
plenty of space for the current to move through 
superconducting region, thus dissipating no energy. However 

when the vortices move, there is a "frustration" for the current 
in choosing between superconducting and normal region, 
which interchange rapidly due to the viscous vortex motion. 
Then there is current passing through the normal cores and 
thus dissipation, resulting to finite longitudinal flux flow 
resistivity. The Nozières-Vinen model [15] (Magnus force) 
gives essentially the same result for the flux flow resistivity. 

4 Two fluid Model 

We consider now a superconductivity nanofluid that is 
isotropic, unpinned, low temperature and follows the Bardeen- 
Cooper-Schrieffer (BCS) standard superconductivity 
mechanism (see [19]). Although the mechanism of 
superconductivity for the CuO HTSC doesn’t exactly follow 
the BCS standard mechanism, their electromagnetic properties 
are very closely following the BCS electromagnetic response.  

Following TDGL theory (Vekris & Pelcovits [20]) we write 
for the two fluid conductivity: 

  (4.1) 

where σf  is the flux flow conductivity, σn is the normal fluid 
conductivity, Hc2(T) is the upper critical magnetic field 
(temperature dependent) and B is the local magnetic field 
within the nanofluid body. As B->HC2(T) the first term in (3.1)  
becomes negligible. ν is a fitting factor in the spirit of 
references Liang and Kunchur ([22],[23]). They apply the 
mean field result ( i.e. no fluctuations) equation (4.1) and plot 
the resistivities vs T for an adequate temperature range right 
below Tc . They use the expression  

    (4.2) 

where  and oK for their 
Mo0.79Ge0.21 LTSC samples A and B. After plotting their data 
for R vs B ( Figure 1) and deciding on the best ν ( Figure 2), a 
strong agreement between experimental values and theory is 
observed for the LTSC MoGe conductivity σf vs T away from  
Tc (Figure 3). There is clearly a strong discrepancy between 
their experimental data and the fitted formula (4.1) (for v=0.4) 
near Tc.. Notice that this formula can be casted as 

   (4.3) 

where  

   (4.4)	

and Rf is the flux flow state resistance, Rn is the normal state 
resistance. 
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Figure1: (a) and (b) Resistance versus magnetic field data 
(symbols) for sample A at temperatures (bottom to top): T 
=3.25, 3.74, 4.24, 4.56, 4.79, 4.90, 5.00, 5.21, and 5.31 K. (c) 
and (d) Resistance versus magnetic field data (symbols) for 
sample B at temperatures (bottom to top): T=3.17, 3.48, 3.71, 
4.01, 4.21, 4.53, 4.77, 4.88, 4.98, 5.19, and 5.30 K. (a) and (c) 
show fits to LO theory (Ref. [24]). (b) and (d) show fits to the 
TDGL theory [Eq. (4.1)} using ν as a fitting parameter for 
each curve (i.e., for each T). The resulting values of ν are 
shown in Fig. 2. All fits use the same Hc2(T) given by Hc2(T) 
= H'c2[T- Tc0] and the measured value H'c2=-3.125 T/K. 

 

Figure 2: (Color online) (a) Experimentally deduced parameter 
ν [of Eq. (2)] and its variation with temperature for MoGe 
samples A-D. The asterisk shows a ν value for the Nb3Ge data 
of Ref. 15 plotted in panel (b). (b) Normalized resistance 
versus normalized field for amorphous Nb3Ge films from 
Berghuis et al. (Ref. [25]) t = T/Tc = 0.85 with Tc = 2.93 K. 
Solid red line represents a TDGL curve [Eq. (4.2)] with 
ν=0.27. Blue dashed and black dotted lines correspond to the 
LO theory for the condition "close to Hc2" (Ref. [24]). 

 

Figure 3: (Color online) Resistive transitions in magnetic 
fields. Symbols show experimental data. Solid lines are 
theoretical curves. (a) Sample A with Larkin-Ovchinikov 
theory curves (Ref. [24]). (b) Sample A with TDGL theory 
curves [Eq. (4.1) with ν=0.34 for all B and T]. (c) Arrhenius 
plots of the same resistive-transition data for Sample A. (d) 
Sample B with TDGL theory curves [Eq. (4.1) with ν=0.26 
for all B and T]. 

The discrepancy is clearly an over exaggeration of Rf near Tc. 
Is there a mechanism that could explain this? We propose the 
themal fluctuations of the vortex lattice that are present and 
very strong near Tc. Following [20] and [21] we estimate the 
corrected formula to be:  

  (4.5) 

where t=T/Tco, and εG is the Ginzburg number for the 
nanofluid (analogous to the Reynolds numbers for viscocity 
problems). 

We plot the results in Figure 4 which we expect to be a much 
better fit for HTSC nanosamples. Usually εG ≈ 1 for HTSC 
CuO nanofluids, which tells us that for T~Tco these 
fluctuations are extremely important, since the correction 
factor becomes very large. However, in the case of Liang and 
Kunchur, their sample is a low Tc superconducting nanofluid 
where εG~10-6, thus only right on Tc things would get 
interesting. 
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Figure 4: Plot of the flux flow two- phase conductivity Rf vs T 
from (3.5) (i.e. including fluctuation corrections). 

5 Conclusion 

We present a review of the flux flow conductivity status 
knowledge for a CuO HTSC two-phase nanofluid, viewed 
from the perspective of the very recent experimental results of 
Liang and Kunchur extrapolated for a HTSC. We give a 
plausible explanation for the correction of standard TDGL 
flux flow contribution due to thermal fluctuations that distort, 
but do not melt, the vortex lattice FLL in the mixed phase of 
the nanofluid. More experimental evidence is needed to 
validate our assertion. The technological advantages of a 
definite answer to the above question would be critical for the 
construction of dissipationless lab-on-a-chip systems. 
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7 Appendix 
 

    total magnetic vector potential 
(Oe·cm) 

     magnetic induction  (Tesla) 

  dimensionless ratio of magnetic fields 
D   diffusion coefficient  (gr/ (erg2 ·sec)) 
d  intervortex spacing in Abrikosov 

lattice  (cm) 

       electric intensity  (statvolt/cm) 
e*   charge of the superconducting 

electronic excitation  (esu) 

f( ,T,H)   free energy density of nanosample 

L  Lorentz force  (gr·(cm/sec2) ) 

M  Magnus force  (gr·(cm/sec2) ) 

P  pinning force  (gr·(cm/sec2) ) 

V  damping force  (gr·(cm/sec2) ) 

   magnetic field  (Oe) 
Hc2(T)  temperature dependent upper critical 

magnetic field  (Oe) 
H’c2(T)  slope of the upper critical magnetic 

field  (Oe/oK)  

   current density  (A/cm2) 
m   mass of the electron  (gr) 
ns  superfluid density  (cm-3) 
Rn  normal resistance  (Ohm) 

   position of excitation in space  (cm) 
T   temperature  (oK) 
Tc  transition temperature  (oK) 
t   time  (sec) 

   vortex velocity  (cm/sec) 

   supercurrent velocity  (cm/sec) 
V  voltage  (statvolt) 
 
α(T)   first Landau-Ginzburg coefficient 
β(Τ)  second Landau-Ginzburg coefficient 
β  Abrikosov flux lattice parameter 

(dimensionless) 
γ   scattering rate of the order parameter  

(sec-1) 

δψ( ,t) order parameter variation 
(dimentionless) 

εG Ginzburg number (dimensionless) 
η damping coefficient  (gr/sec) 
κ  Ginzburg-Landau parameter 

(dimensionless) 
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λ wavelength of excitation (cm) 

      temperature dependent coherence 
length  (cm) 

ρn  normal state resistivity  (Ohm cm) 
ρf  flux flow resistivity (Ohm) 
σf   flux flow conductivity (inverse 

resistivity units) 
τ   relaxation time  (sec) 
φ   electronic scalar potential  (statvolt) 
φo  superconducting flux quantum 

(Oe/cm2) 

ψ( ,t)   order parameter  (dimensionless) 

ψo( ,t)  equilibrium order parameter  
(dimensionless) 

 


