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Due to the lack of turbulence in micromixers diffusion is the main process contributing to mi-
crofluidic mixing. Especially mixing of fluids with low diffusivity is a difficult task. The recently
discovered mechanism of “chaotic-advection” enhances the diffusion process by stretching and fold-
ing the fluid interfaces in order to provide a larger interface. Certain passive micromixers like the
staggered herringbone mixer (SHM) apply this concept and succeed in enhancing the mixing process
considerably. The optimization of such micromixers is a time consuming and often expensive pro-
cess. We demonstrate that the application of the lattice Boltzmann (LB) method to study advection
and diffusion processes can be an efficient tool to optimize micromixers. By combining finite time
Lyapunov exponents to study chaotic advection and Danckwert’s intensity of segregation to study
the diffusion, we demonstrate how optimal geometrical parameters for the SHM can be found and
how diffusion is improved by the complex flow pattern inside the mixer. The current article provides
a review of our results published in [1] together with additional studies on modelling diffusive mixing
with the LB method.

I. INTRODUCTION

Microfluidics is an interdisciplinary engineering and
science branch which connects physics, chemistry, biol-
ogy and engineering and has applications in various sci-
entific and industrial areas. Here, we are interested in a
common building block for microfluidic systems, namely
micromixers. A micromixer is a microfluidic device used
for effective mixing of different fluid constituents. A typ-
ical example is the integration as important component
of chemical and biological sensors [2]. It can be used
for mixing of solutions in chemical reactions or to effi-
ciently mix for example a variety of bio-reactants, DNA
molecules, enzymes and proteins in portable integrated
microsystems with minimum energy consumption [3]. In
recent years the demand for highly efficient and reliable
micromixers has increased substantially in research and
in industry. Therefore, their optimized design has be-
come an important field of research [4].

Due to the small dimensions of micromixers laminar
flows are created inside the channels causing the mixing
performance to be limited. Experiments on channels with
complex surface topology have revealed that microscale
mixing is enhanced by “chaotic advection”, a process
which was first reviewed by Aref in 1984 [5]. He describes
how mixing is still possible even at low Reynolds number
by repeated stretching and folding of fluid elements. If
properly applied, this mechanism causes the interfacial
area between the fluids to increase exponentially, which
can then lead to an enhanced inter-material transport [6].
In a multicomponent system, i.e. a mixture of multiple
miscible fluids, the advection process is accompanied by
diffusion which is responsible for the mass transport in
the mixing process. The diffusivity determines the rate
of mixing among different fluids. One needs to carefully

study the underlying principles of advection and diffu-
sion in order to understand the mixing process. Our
aim is to study these phenomena and develop tools to
quantify micromixing. So far most of the numerical re-
search in this area has either been performed only in two
dimensions or was restricted to single phase/single com-
ponent systems. For the applicability to experiments it
is, however, highly desirable to study mixing in a three
dimensional framework including a fully resolved multi-
phase/multicomponent description.

The efficiency of a micromixer is often quantified on
the basis of its mixing length and mixing time. These
are defined as the distance and time span the fluid con-
stituents have to flow inside the mixer in order to obtain
a homogeneous mixture. An effective micromixer should
reduce the mixing length and time substantially in order
to achieve rapid mixing. Efficient mixing is achieved by
enhancing the advection and diffusion processes in the
micromixers. A common practice to achieve this goal
is to design passive devices that create alternating thin
fluid lamellae. These result in an interfacial area that
increases linearly with the number of lamellae rendering
the diffusion process more effective and hence allowing
faster mixing [7]. The drawback of such devices is that
the number of lamellae is generally limited due to the neg-
ative impact on the applied pressure drop caused by the
microstructures inside the channel. A so-called “chaotic
micromixer” can overcome this drawback to some extend.
Such a device consists of microstructured objects such as
“herringbones”, placed inside a microchannel. The stag-
gered herringbone mixer (SHM) shown in Fig. 1 is the
first chaotic micromixer that can be found in the liter-
ature. It was developed in 2002 by Stroock et al. [8].
The half cycles of the SHM consist of grooves with two
arms which are asymmetric and unequal in length. These
arms are inclined at an angle of 45◦ and the pattern in-
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terchanges every half cycle of the mixer. The peculiar
arrangement of the herringbone structure enhances the
mixing process by “chaotic advection” where the interfa-
cial area between the fluids grows exponentially in time
– the most important advantage over mixers using the
concept of multi-lamellation.

To compare different micromixers and to improve their
design, it is important to develop schemes to quantify
their performance. Efficiency and mixing quality have
been studied by various methods in the past. These
include the analysis of the probability density function
of the flow profiles, studying the stretching of the flow
field, the Poincaré section analysis. Here, an alternative
numerical optimization procedure is presented which is
tailored for the optimization of chaotic micromixers and
which relies on the advection properties of mixers like the
SHM. It is based on lattice Boltzmann (LB) simulations
to describe the flow inside complex mixer geometries to-
gether with a measurement of finite time Lyapunov expo-
nents (FTLE) as obtained from trajectories of massless
tracer particles immersed in the flow. Fig. 2 depicts two
typical snapshots from our simulations. The left figure
shows a snapshot of the tracer positions just after the
start of the simulations. Towards the end of the simu-
lation all tracer particles are homogeneously distributed
throughout the mixer demonstrating that the system is
fully mixed (right figure). The Lyapunov exponent pro-
vides a quantitative measure of long term average growth
rates of small initial flow perturbations and thus allows a
quantification of the efficiency of chaotic transport [9, 10].
We apply Wolf’s method to calculate the FTLE since the
systems of interest are finite and simulations are limited
to a finite time span [7]. We can compute the mixing
length of various mixers based on the intensity of segre-
gation (Id) as introduced by Danckwerts in 1952 [6, 11].
Both numerical schemes have the potential to assist ex-
perimental optimization since geometrical parameters or
fluid properties can easily be changed without requiring
a new experiment. To demonstrate its applicability, the
FTLE technique is applied to evaluate the optimal pa-
rameters of the SHM based on single component flows.
The concentration profiles of the fluids obtained from the
multicomponent LB simulations are used to estimate Id,
which can then be used to evaluate the mixing length for
mixcromixers.

II. SIMULATION METHOD

II.1. Single component fluid – advection analysis

For a description of the fluid flow inside the mi-
cromixer, we apply the lattice Boltzmann method
(LBM), a simplified approach to solve the Boltzmann
equation in discrete space, time and with a limited set of
discrete velocities [12]. The Boltzmann equation, given

as

∂tf + c · ∇f = Ω(f), (1)

describes the evolution of the velocity distribution func-
tion by molecular transport and binary intermolecular
collisions. f(r, c, t) represents the distribution of veloc-
ities in continuous position and velocity space, r and c,
respectively. The position x at which f(x, ck, t) is de-
fined, is restricted to a discrete set of points on a regular
discrete lattice with lattice constant ∆x. The velocity is
restricted to a set of velocities ck implying that velocity is
discretized along specific directions. ∆t denotes the dis-
crete time step. The model we adopt is a D3Q19 model,
i.e. a 3D model with 19 different velocity directions [13].
The right hand side of the above equation represents the
collision operator which is simplified to a discretized lin-
ear Bhatnagar-Gross-Krook (BGK) form [14] that can be
written as

Ωk = −1

τ
(fk(x, t)− f eqk (x, t)). (2)

Here, τ is the relaxation time of the system, which
controls the relaxation towards the Maxwell-Boltzmann
equilibrium distribution f eqk (x, t). By considering small
velocities and constant temperature, a discretized second
order Taylor expansion of the above equilibrium distri-
bution function can be written as

f eqk (x, t) = ζk
ρ

ρ0

(
1+

ck · u eq

cs2
+

(ck · u eq)2

2cs4
−u eq · u eq

2cs2

)
,

(3)
where ζk are the lattice weights, ρ is the density, ρ0 a
reference density, and cs = (1/

√
3)∆x/∆t is the speed

of sound. u eq is the equilibrium velocity of the fluid,
which is shifted from the mean velocity by an amount
τg under the influence of a constant acceleration g. The
evolution of the LB process takes place in two steps: the
collision step where the velocities are redistributed along
the directions of the lattice and the propagation step by
which they are displaced along these directions. This
leads to the discretized Boltzmann kinetic equation:

fk(x+∆tck, t+∆t)−fk(x, t) = −∆t

τ
(fk(x, t)−f eqk (x, t)).

(4)
Here, the macroscopic fluid density is given by

ρ(x, t) = ρ0
∑
k

fk(x, t) (5)

and the macroscopic fluid velocity in the presence of ex-
ternal forcing is given by

u(x, t) =
ρ0

ρ(x, t)

∑
k

fk(x, t)ck −
∆t

2
g. (6)

It can be shown by a Chapman-Enskog expansion that
the macroscopic fields u and ρ from the above equations
fulfill the Navier Stokes equation in the low Mach number
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FIG. 1. A typical example of a SHM geometry as it is used for the simulations. The dimensions of this channel are 32×64×L/∆x
lattice units, where L depends on the distance between the grooves d and the number of grooves per half cycle n. H is the
height of the channel, h is the height of the grooves and w denotes the horizontal length of the long arm. We define the height
fraction as α = h/H, width fraction as β = w/W , and the distance fraction as γ = d/L. The top boundary at x = 32 is not
shown in the figure (from [1]).

limit and for isothermal systems [12]. In order to simulate
a fluid flow through microchannels, periodic boundary
conditions are implemented along the flow direction (see
Fig. 1) and no-slip bounce back boundary conditions are
imposed at the channel walls.

We simulate a fluid flowing inside a SHM with a cross
section of 96µm × 192µm. The length of the mixer is of
the order of 1536µm, but can be varied in order to always
accommodate a full cycle of the herringbone structure.
For computational efficiency we have chosen a lattice res-
olution of ∆x = 3µm. In the LB method, the kinematic
viscosity is related to the discrete time step through the
expression ν = cs

2∆t (τ/∆t− 1/2). τ/∆t is chosen to
be 1 and the simulated fluid has the kinematic viscosity
of water, ν = 10−6m2s−1. This implies for the current
choice of ∆x that ∆t = 1.5µs and cs = 1.15m/s. The
Reynolds number Re = u `/ν of the flow is ≈ 1.3, where

` =
√
H2 +W 2 is the characteristic length of the chan-

nel. H denotes the height of the channel and W denotes
the width of the channel. One set of simulations is ob-
tained for g being 0.4 × 10−3m/s2 which corresponds to
Re ≈ 0.4.

Trajectories of massless and non-interacting tracer par-
ticles introduced into the flow are obtained by integrating
the vector equation of motion

dRj

dt
= u(Rj), j = 1, ..., P, (7)

where Rj denotes the position vector of an individual
tracer particle. The velocity u(Rj) is obtained from the
discrete LB velocity field through a trilinear interpolation
scheme. After the flow simulation has reached its steady
state, P = 1000 particles are introduced at fluid nodes in
the inlet and then their velocities are integrated at each
time step.

A general feature of chaotic systems is that two nearby
trajectories diverge exponentially in time. The rate of di-
vergence can be related to the strength of the flow field to

create conditions for chaotic mixing. The Lyapunov ex-
ponent is a possible measure for this effect and is defined
as

λ∞ = lim
t→∞

1

t
ln
D(t)

D(0)
, (8)

where D(t) is the distance between two trajectories at
time t. Since any real system is finite it is not possible
to implement this definition to quantify mixing. Also,
when two trajectories separate from each other, this def-
inition does not allow to understand the ongoing stretch-
ing and folding dynamics. A quantitative measure of
mixing based on the Lyapunov exponent can be obtained
by using the FTLE instead [15, 16]. It is defined as [17]

λFTLE =
1

δt
ln
D(t+ δt)

D(t)
, (9)

where t is any particular instant of time and δt is a finite
time after which the FTLE is measured. The same pro-
cess is repeated over N times. For large N the average
FTLE converges to the Lyapunov exponent [16],

lim
N→∞

〈λFTLE〉N = λ∞. (10)

Wolf et al. suggested a method to calculate the FTLE
from a set of experimental data [7, 18]. Following Wolf’s
approach, we implement the following equation to quan-
tify the mixer performance on the basis of the average
FTLE as

〈λ〉N =
1

N

N−1∑
i=0

1

τi
ln
D(ti + τi)

D(ti)
, (11)

where ti is the ith time when a FTLE is evaluated,
D(ti + τi) and D(ti) are the distance at time step ti + τi
and ti, respectively. τi is a multiple of ∆t and N is
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FIG. 2. A snapshot from a typical simulation of flow inside a staggered herringbone micromixer demonstrating the highly
regular arrangement of tracer particles at the beginning of the simulation (left) and a fully mixed state at a late stage of the
simulation (right). The fluid itself is not shown.

the total number of times the particle positions are re-
adjusted. If 〈λ〉N has a positive and non-zero value the
distance between two nearby particles diverges at an ex-
ponential rate. Particle pairs which are initially placed
very close to each other are chosen to evaluate the FTLE
i.e. with a distance ∆x. If the separation is greater than a
maximum distance which is half the minimum dimension
of the system H/2, the distance between the particles
is re-adjusted to the initial distance ∆x and one of the
particles is placed along the line of separation in order to
avoid errors due to orientation. If a replacement point
cannot be found due to a wall node present at the loca-
tion, a nearby fluid node is selected instead. If even such
points cannot be found, the replacement is postponed to
a later timestep. In the implementation of the scheme,
for every particle pair one of the trajectories is chosen as
the fiducial path, while the position of the other particle
is replaced if the distance exceeds the threshold.

II.2. Multi component fluid – diffusion analysis

To simulate the diffusion process involving multiple
species with the LB method, we apply a multicomponent
fluid solver based on the model by Shan and Chen as an
extension to the previously introduced single component
LBM [19]. We restrict the explanation of this model to a
binary system. The interaction of components A and B
is given by a mean field force

FAB(x, t) = −ψA(x)GAB

∑
k

ζkψB(x + ∆tck)ck, (12)

which depends on the local fluid density and the density
of the nearest neighbour lattice sites through an effective
mass function ψ(x, ρ) [19]. GAB is the parameter that
controls the repulsion between the components and it is

symmetric i.e. GAB = GBA. While low values of GAB

cause the fluids to be miscible, larger values allow the
simulation of immiscible fluids. The force FAB enters
Eq. (3) as a shift of the equilibrium velocity ueq. The
macroscopic velocity for component A is then expressed
as

uA(x, t) =
ρ0

ρA(x, t)

∑
k

fAk (x, t)ck−

− τA
2ρA(x, t)

FAB(x, t)− ∆t

2
g,

(13)

where ρA, τA and fAk are the density, the relaxation
time, and the distribution function for component A.
Similarly we can calculate the velocity for component
B. Both components individually satisfy Eq. (4). With
the increase in GAB the repulsion between the individ-
ual components increases. We use the multi component
LB method to simulate typical micromixing experiments.
This requires us to investigate a suitable Reynolds and
Péclet number (Pé = u`/DAB) regime. The ratio of Pé to
Re is called the Schmidt number (Sc = ν/DAB). The dif-
fusion in a multi component system is governed by Fick’s
laws. Considering a binary system of components A and
B with diffusivity DAB Fick’s first law of mass flux of
component A into B is

jA = ρA(uA − u) = −ρDAB∇ωA, (14)

where uA is the velocity of component A relative to the
mean velocity of the mixture u, ωA is the mass fraction
of A and ρ is the total density. A similar equation can
be written for the species B, where DBA = DAB . Thus
for a binary system we have only one value of diffusiv-
ity. After inserting the Fick’s first law from Eq. (14) into
the continuity equation for the components, we obtain
an equation which is known as Fick’s second law for dif-
fusion. At a constant temperature and pressure, which
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assures a constant ρDAB , Fick’s second law is given by

∂ωA

∂t
+ u · ∇ωA = DAB∇2ωA. (15)

By analyzing the temporal and spatial variation of the
concentration field obtained from the multi component
LB method and evaluating the derivatives from Eq. (15)
we can estimate the diffusivity of the components which
we simulate. A measure for the quality of mixing in a
micromixer can also be obtained from the concentration
field. Danckwerts segregation of intensity (Id) is used to
quantitatively evaluate the performance of different mix-
ing states of micromixers [20]. To evaluate the Id we need
to have knowledge of the concentration field of the system
at different locations along the length of the micromixer.
Considering the flow to be along the z direction, intensity
of segregation is defined as

Id(z) =
σ2(z)

σ2
max(z)

, (16)

where σ2(z) is the standard deviation of the concentra-
tion at some plane z inside the channel and

σ2
max(z) = cmean(z)(cmax(z)− cmean(z)). (17)

c(z) is the concentration at a fluid element at position
z. cmax(z) and cmean(z)) are the maximum and mean
concentration at position z, respectively. The mixing
length (Λ) is defined as the value of z when Id is less
than 0.5% of its initial value.

In order to measure Id in a microchannel, the system
is initialized with two parallel fluid lamellae consisting
of component A and B. While for the single component
simulations periodic boundary conditions were applied
in z direction, here we use a so-called recoloring scheme.
After leaving the channel at the end and when reentering
it at z = 0, the ratio of components A and B is redis-
tributed as such that we obtain a constant inflow of two
lamellae consisting only of a single component each. Fur-
ther, the fluid-surface boundary conditions are adopted
by a modified Shan-Chen forcing term so that a contact
angle of 90 degrees is assured.

III. RESULTS

We study the interplay of advection and diffusion phe-
nomena in micromixers. The first part of this section
is based on our single component LB simulations, where
we evaluate the optimal parameters of the SHM to create
chaotic advection in the flow. The second part is based on
multi component LB simulations, where we study mix-
ing of multiple fluids and quantify the mixing length of
micromixers based on the diffusive properties.

III.1. Single component fluid – advection analysis

Here we follow our work presented in [1] to demon-
strate how FTLE can be utilized for an optimization
strategy for chaotic micromixers. The influence of dif-
ferent parameters which directly affect the performance
of the SHM is evaluated. These are the ratio of height of
the grooves to the height of the channel α, the ratio of the
horizontal length of the long arm to the channel width β,
the ratio of distance between the grooves to the length of
the channel γ and the number of grooves per half cycle n.
While keeping all other parameters fixed, the width frac-
tion (β) is varied within the range of 0.22 and 0.82 and
the distance fraction (γ) from 0.04 to 0.11. The width
of the grooves is kept fixed at 24µm for all simulations.
Then, the number of grooves per half cycle (n) is varied
from 2 to 10 and the height fraction (α) from 0.125 to
0.343. One has to take care of a thorough convergence of
the simulations since 〈λ〉N fluctuates before finally con-
verging to a particular value after ∼ 6 × 105 time steps.
The effect of the geometry can be measured by compar-
ing the average of the converged FTLE which is denoted
by λ. The error bars in Figs. 3 A to D are given by the
standard deviation of the data from the point where it
has converged.

Fig. 3 A depicts the variance of λ and as such the per-
formance of the SHM with respect to β for two different
Reynolds numbers, Re = 0.4 and 1.3. Due to the sym-
metry of the mixer geometry, only values for β ≥ 0.5 are
plotted. The datasets peak at β = 2/3 implying that the
degree of chaotic advection is maximized for this partic-
ular value of the width fraction β. The measurements
at different Reynolds numbers depict that changing the
driving force does change the absolute value of λ, but
has no influence on the general shape of the curve. This
is confirmed by similar studies of the Re dependence for
other geometrical parameters and various different driv-
ing forces. Therefore, we restrict ourselves to Re = 1.3 for
all further simulations. Our findings are consistent with
the original experimental work of Stroock et al. [8] as well
as numerical optimizations by Stroock and McGraw [21].
Both publications show that β = 2/3 generates a maxi-
mum swirling motion of the fluid trajectories. However
such analysis with dyes or concentration profiles does not
allow to obtain an insight into the behavior of the flow
field, while the FTLE does.

In Fig. 3 B, data from a set of simulations with β fixed
at the optimized value of 2/3 and the distance fraction
γ being varied from 0.04 to 0.11 is shown. It can be
observed that after a moderate increase of λ with γ, the
curve has a sharp peak at γ = 0.07, for the current choice
of ∆x. Afterwards, λ decreases in a similar fashion as for
small γ, but still at higher absolute values.

In the following the number of grooves per half-cycle
n is varied from 2 to 10. It can be understood from
Fig. 3 C that a variation of n has the largest impact on
the performance of the mixer as compared to β or γ.
For the current setup, by variation of n it is possible to
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FIG. 3. A) A maximum of the variation of the averaged finite time Lyapunov exponent λ with different width fraction β can
be obtained for a width fraction of β = 2/3. While the position of the maximum is not affected by changing Re, the absolute
values do change. B) The FTLE rises with the increase of the distance fraction γ until it reaches a distinct peak. Then, the
curve decreases demonstrating an optimized performance of the mixer at γ = 0.07. C) A maximum of the variation of the
maximum averaged finite time Lyapunov exponent λ with different width fraction β can be obtained for a width fraction of
β = 2/3. While the position of the maximum is not affected by changing Re, the absolute values do change. D) The FTLE rises
with the increase of the distance fraction γ it reaches a distinct peak. Then, the curve decreases demonstrating an optimized
performance of the mixer at γ = 0.07 [1].

increase the value of λ by a factor of 2.3 as compared to
1.2 for β and 1.3 for γ. The data clearly demonstrates
that a staggered herringbone mixer with n = 5 performs
best.

The final parameter to be considered is the ratio of the
half depth of the grooves to the height of the channel α.
Fig. 3 D depicts the average value of the converged Lya-
punov exponents for α between 0.125 and 0.343. After
a strong increase of the curve the data has a maximum
at α = 0.25. For larger α the value of λ decreases again.
Our result are confirmed by the original experimental
analysis of Stroock et al. [8].

III.2. Multi component fluid – diffusion analysis

In the section introducing the simulation method it is
described how the parameter GAB controls the repulsion
between the components. We expect the diffusivity be-
tween the components to decrease with the increase of
GAB . To estimate the value of DAB we simulate a peri-
odic system with dimensions 1×1×64. The one dimen-
sional system consists of two lamellae of different com-
ponents each which are 32∆x long. The fluid densities
are initialised as 0.5 in lattice units. By studying the
concentration profiles and evaluating DAB from Eq. (15)
we find that DAB decreases linearly with GAB (see upper
inset of Fig. 4). Our data agrees well with the observa-
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tion of Shan and Doolen [22]. GAB has a critical value
beyond which the fluids become immiscible. From our
tests we obtain a critical value of GAB = 2.894 (ρ0∆t)−1.
We estimate the value of DAB at the critical value of
GAB to be 10−3 (∆x)2/∆t and use this value of diffu-
sivity for the simulations presented below. To compare
different mixers we need to estimate the different mixing
lengths Λ. We define Λ at the position where Id goes
below 0.5 % of its initial value. Id is estimated from
the concentration profiles of the system in steady state.
The influence of the diffusivity on the mixing length can
be observed in Fig. 4 (bottom), where we demonstrate
a strongly non linear behaviour showing a saturation.of
the mixing length for lagrer values of the diffusivity.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
GAB[1/(ρ0∆t)]

0.00

0.05

0.10

0.15

D
A

B
 [(

∆x
)2 /∆

t]

0.00 0.03 0.05 0.08 0.10 0.13 0.15

DAB[(∆x)
2
/∆t]

0

200

400

600

800

1000

Λ
 [∆

x]

FIG. 4. Top: The diffusivity decreases linearly with the in-
crease of GAB . Bottom: The mixing length Λ is computed
from the concentration field and decreases with the increase
of DAB .

We can infer that weakly diffusive fluids need a very
long channel to show perfect mixing. We simulate flow
in two systems, one being a SHM with the optimized pa-
rameters obtained from our single component simulations
and the other one being a plain channel. Each system is
of dimensions 32×64×1546 ∆x. From Fig. 5 we can esti-
mate the mixing length for the SHM as ΛSHM = 493 ∆x
and for the plain channel we obtain ΛPlain = 782 ∆x

0 250 500 750 1000
z [∆x]

0

0.1

0.2

0.3

0.4

0.5

I d

Plain channel
SHM

FIG. 5. The measured Id decreases faster for the SHM as com-
pared to the plain channel indicating that the mixing length
decreases by 37% when “chaotic-advection” is introduced into
the flow.

corresponding to a 37% reduction in the mixing length
when chaotic advection is introduced into the flow [8].
From the experiments on SHM, it can be observed that
the difference of mixing lengths becomes more prominent
when the diffusivities of the components are lower.

In the plain channel the flow is diffusion dominated.
Hence from our preliminary results obtained with the
multi component model we can confirm that “chaotic
advection” reduces the mixing length by enhancing the
diffusion process and evaluating Id can be used as a tool
to quantify the mixing length of micromixers. The chal-
lenge which we face is to simulate the experimental set
up of Stroock et al. with this multi component model.
So far we could achieve DAB ∼ 10−3 (∆x)2/∆t which
gives Sc ∼ 102. To simulate the experiment, we would
need to achieve Sc ∼ 107. Improvements of the simula-
tion model are required to achieve a low diffusivity which
can give such high Sc numbers. However, this limitation
does not influence the possibility to understand the gen-
eral interplay between advection and diffusion and use
the simulation paradigm presented here as a tool to op-
timize micromixer geometries.

IV. SUMMARY

Passive chaotic micromixers can be successfully ap-
plied to improve mixing at the microscale where turbu-
lence is absent. The processes of advection and diffusion
play an important role in determining the efficiency of a
micromixer. Micromixing is made more efficient by intro-
ducing “chaotic advection” to the flow. Chaotic mixers
provide a large fluid-fluid interface by repeatedly stretch-
ing and folding of these interfaces. In this work we have
demonstrated efficient numerical schemes which allow the
quantification of “chaotic advection” and “diffusion” and
thus the performance of a micromixer. The first scheme
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is based on multi component LB simulations to describe
the time dependent flow field in complex mixer geome-
tries combined with Wolf’s method to compute FTLE
from passive tracer trajectories and Id from concentra-
tion profiles. We have demonstrated the applicability of
the quantification methods by applying it to optimize the
geometry of the SHM and estimating the mixing length.
By performing a systematic variation of the relevant ge-
ometrical parameters we obtained a set of optimal val-
ues α = 0.25, β = 2/3, γ = 0.07 and n = 5 which is
consistent with literature data published by others. An
important feature of the method presented here is that
it allows optimization of the mixing performance by di-
rect investigation of the underlying dynamical process [1].
Second, we apply multi component LB simulations in or-
der to study the mixing of multi component flows in mi-

crochannels. We can estimate the diffusivity based on
Fick’s diffusion laws and estimate the mixing length by
studying the spatial variation of the steady state concen-
tration field.
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[1] A. Sarkar, A. Narváez, and J. Harting. Quantification
of the degree of mixing in chaotic micromixers using fi-
nite time Lyapunov exponents. Submitted for publication,
arXiv:1012.5549, 2010.

[2] M. A. Burns. Microfabricated structures for inte-
grated DNA analysis. Proc. National Acad. Sci. USA,
68(93):5556–5561, 1996.

[3] P. Watts and S. Haswell. Microfluidic combinatorial
chemistry. Curr. Opin. Chem. Biol., 7:380–387, 1996.

[4] V. Hessel, H. Loewe, and F. Schoenfeld. Micromixers- a
review on active and passive mixing principles. Chem.
Eng. Sci., 60:2479–2501, 2005.

[5] H. Aref. Stirring by chaotic advection. J. Fluid Mech.,
143:1–21, 1984.

[6] H. Kim and A. Beskok. Quantification of chaotic strength
and mixing in a micro fluidic system. J. Micromech.
Microeng., 17:2197–2210, 2007.

[7] F. G. Bessoth, A. de Mello, and A. Manz. Microstructure
for effecient conitinuous flow mixing. Analyt. Comm.,
36:213–215, 1999.

[8] A. Strook, S. Dertinger, A. Adjari, I. Mezic, H. Stone,
and G. Whiteside. Chaotic mixer for microchannels. Sci-
ence, 295:647–651, 2002.

[9] C. Ziemann, L. A. Smith, and J. Kurths. Localized
Lyapunov exponents and the prediction of predictabil-
ity. Phys. Lett. A, 4:237–251, 2000.

[10] G. Lapeyre. Characterization of finite-time Lyapunov
exponents and vectors in two-dimensional turbulence.
Chaos, 12(3):688–698, 2002.

[11] T. K. Kang, M. K. Singh, T. H. Kwon, and P. D. An-
derson. Chaotic mixing using periodic and aperiodic se-
quences of mixing protocols. Microfluids and Nanofluids,
4(6):589–599, 2007.

[12] S. Succi. The Lattice Boltzmann Equation for Fluid Dy-
namics and Beyond. Oxford University Press, 2001.

[13] Y. H. Qian, D. d’Humieres, and P. Lallemand. Lat-
tice BGK models for Navier-Stokes Equation. Europhys.
Lett., 17(6):479–484, 1992.

[14] P. Bhatnagar, E. Gross, and M. Krook. A model for colli-
sion process in gases. small amplitude process in charged
and neutral one-component systems. Phys. Rev., 94:511–
525, 1954.

[15] D. Ruiquiang and L. Jianping. Nonlinear finite-time
Lyapunov exponent and predictibility. Phys. Lett. A,
364:396–400, 2007.

[16] X. Tang and A. Boozer. Finite time Lyapunov expo-
nent and chaotic advection-diffusion equation. Physica
D, 95:283–305, 1996.

[17] Y. Lee, C. Shih, P. Tabeling, and C.-M. Ho. Experimen-
tal study and non-linear dynamics of time-periodic micro
chaotic mixers. J. Fluid Mech., 575:425–448, 2007.

[18] A. Wolf. Determining Lyapnov exponents from a time
series. Physica D, 16:285–317, 1985.

[19] X. Shan and H. Chen. Lattice Boltzmann model for simu-
lating flows with multiple phases and components. Phys.
Rev. E, 47(3):1815–1819, 1993.

[20] P. V. Danckewerts. The definition and measurement of
some characterisitics of mixtures. App. Sci. Res., 2:279,
1952.

[21] A. D. Stroock and G. J. McGraw. Investigation of the
staggered herringbone mixer with a simple analytical
model. Phil. Trans. R. Soc. Lond. A, 362:923–935, 2004.

[22] H. Shan and G. Doolen. Diffusion in a multicomponent
lattic Boltzmann model. J. Stat. Mech., 54:3614, 1996.

8


