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Abstract  
The effect of structured roughness on the heat transfer of water flowing through minichannels was 
experimentally investigated in this study. The test channels were formed by two stainless steel plates, 4 mm 
thick, 12.7 mm tall, and 94.6 mm in length. The surfaces of the plates forming the channel walls were 
machined with structured roughness elements with height ranging from 18 μm to 96 μm, and pitch ranging 
from 250 μm to 400 μm. The hydraulic diameter of the channels range from 0.71 mm to 1.87 mm. After 
accounting for the heat loss from the edges and end sections, the heat transfer coefficient for smooth 
channels was calculated. The coefficient was found to be in good agreement with the conventional 
correlations in the laminar entry region and laminar fully developed region. Convective heat transfer was 
found to be enhanced by the roughness. In the ranges of tested parameters, the roughness element pitch was 
found to have almost no effect, while the heat transfer coefficient was significantly enhanced by increasing 
the roughness element height. An earlier transition from laminar to turbulent flow was observed with 
increasing relative roughness. Comparing with inserts, the highest relative roughness element provided the 
highest thermal performance factor in the Reynolds number in the range from about 400 to 2800. 
Keywords: Roughness, Microscale Heat transfer, Structured Roughness, minichannels 
 
1. Introduction 
Heat transfer in microscale passages is of great 
interest due to its application in micro heat 
exchangers, fuel cells, biomedical devices, etc. 
These passages can be formed by generating 
grooves on a substrate through CNC/MEMS 
technology and then covering them with a top 
cover. A number of earlier investigations on 
laminar flow at the microscale reported a 
significant departure from conventional heat 
transfer predictions [1-6], while the more 
recent literature revealed heat transfer data of 
liquid flow that is in agreement with 
conventional theory [7-10]. Data reduction, 
experimental uncertainty, and incorrect 
boundary conditions were found to be the 
major reasons in earlier investigations [11-16] 
showing disagreement. Some of the 
experimental issues were discussed in the 

literature: Celata et al. [17] revealed the effect 
of inaccurate measurement of tube diameters 
on friction factors. Using a 40X microscope, 
the diameter was measured as 84.7 μm, and 
the resulting friction factor was significantly 
higher than the prediction. While using a 400X 
microscope, the diameter of the same tube was 
found to be 80.0 μm and the data was 
predicted very well by the conventional 
correlation. Li et al. [18] indicated that Wu and 
Little [1] did not measure the wall roughness 
directly, but obtained the value of equivalent 
sand roughness from their f Re-Re chart. Mala 
and Li [19] relied on the manufacturers data 
for the values of relative roughness, and used 
the concept of roughness-viscosity to correlate 
their data. Herwig and Hausner [20] indicated 
that axial heat conduction was the major 
reason for the discrepancy in the experimental 
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 where mሶ , c୮ , T୤,୭  and T୤,୧  are mass flow 
rate, heat capacity, and outlet and inlet fluid 
temperatures, respectively. The total measured 
input power, q୫ୣୟ , is obtained from the 
voltage and current for the power supply: 
q୫ୣୟ ൌ I ൈ V  (5) 

where I and V are current and voltage 
respectively. A separate experiment was 
performed to calculate the heat loss in each 
individual location. The average heat flux is 
calculated from the following equation:  

q"ୟ୴୥ ൌ
୯ౣ౛౗ି୯ౢ౥౩౩

A౞,౜
  (6) 

where q୪୭ୱୱ is the heat loss from the channel 
to the surrounding, and A୦,୤  is the heat 
transfer area of the channel. The local heat 
transfer coefficient is calculated as follows 

h୶ ൌ
୯"౗౬ౝ

T౭,౮ିT౜,౮
   (7) 

where T୵,୶  and T୤,୶  are the local wall and 
fluid temperatures. T୵,୶ is measured from the 
thermocouple. The local Nusselt number Nu୶ 
is calculated as  

Nu୶ ൌ
୦౮D౞
୩౜,౮

   (8) 

where Dh is the hydraulic diameter. Dh is 
calculated as  

D୦ ൌ
ସୟୠ

ଶሺୟାୠሻ
   (9) 

where a is the width of the channel and b is the 
gap distance. 

4. Results 

4.1 Experimental data validation with 
smooth channel 

In order to estimate the heat loss, a separate 
controlled experiment was conducted. The 
channel plate was heated by a power supply 
without any fluid flow. The heat supplied was 
lost by conduction through both the assembly 
parts and the insulation by natural convection 
to the surroundings. Since the heat losses were 
predominantly through the end regions, only 
the data in the central region is used in the 
present study.   

Figure 4 shows the calculated Nu in smooth 
channels plotted as a function of 1/Gz for the 
data taken only in the central region, where 
1/Gz is defined as 1/Gz=(Lh,x/Dh)/(RePr). The 
following correlation validated by Harms et al. 
[42] for thermally developing flow in a smooth 
rectangular channel is also plotted to compare 
with the present data. 
 
Nu ൌ 8.24 െ 16.8α ൅ 25.4αଶ െ 20.4αଷ ൅
8.7αସ,   1/Gz ൒ 0.1 (10a) 
Nu ൌ 3.35ሺ1/Gzሻି଴.ଵଷ଴αି଴.ଵଶ଴Prି଴.଴ଷ଼ ,   
0.013 ൑ 1/Gz ൏ 0.1 (10b) 
Nu ൌ 1.87ሺ1/Gzሻି଴.ଷ଴଴αି଴.଴ହ଺Prି଴.଴ଷ଺ ,   
0.005 ൑ 1/Gz ൏ 0.013  (10c) 

For laminar fully developed flow in a channel 
of aspect ratio α, the Nusselt number is given 
by: 
Nu ൌ 8.235ሺ1 െ 2.0421α ൅ 3.0853αଶ െ
2.4765αଷ ൅ 1.0578αସ െ 0.1861αହሻ   (11)

It is seen from Fig. 4 that the conventional 
correlations for smooth channels are able to 
predict the data well. However, in the 
developing region, larger discrepancies are 
found. One of the factors causing larger errors 
may be due to the fact that the conventional 
correlation for laminar developing flow in 
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rectangular channels with a high aspect ratio is 
not as reliable as that for circular tubes.  

 

Fig. 4 Comparison of experimental Nu in the 
center region to the prediction of conventional 

correlation 

4.2 Roughness effects on laminar flow heat 
transfer  

Water flow in rough channels was tested to 
investigate the effects of roughness on heat 
transfer. The effects on pressure drop are 
reported in a separate publication by Wagner 
and Kandlikar [40]. The surface roughness 
element structure details are given in Table 1. 
Channels B-1, B-2, C-1, C-2, E-1 and E-2 
have the same roughness element pitch λ=250 
μm, and channels C-1, C-2, D-1 and D-2 have 
the similar roughness element height H of 
about 35 μm. Each roughness element is tested 
with two different gaps resulting in two 
different hydraulic diameters.  

Figure 5 shows the experimental Nu of rough 
channel D-2 normalized by laminar 
developing flow correlation Nuth,plain as a 
function of Re. Nuth,plain is the theoretical Nu 
derived from the plain channel equation, Eq. 
(10). Roughness element D-2 has λ=400 μm, 
H=37.7 μm, and a hydraulic diameter of 1.76 

mm as shown in Table 1. The Nu data for D-2 
is significantly above the prediction from the 
conventional developing flow correlation for a 
smooth channel. In developing flow, Nu is a 
function of Re and increases as Re increases. 
In Fig. 5, Nu/Nuth,plain is independent of Re 
which implies that the slopes of the 
experimental data and the theoretical values 
are identical. As mentioned in the previous 
section, the data were taken in the central 
region of the channel. The heating length from 
the flow entrance location Lh,x is about 50 mm, 
while the thermal fully developed length is 
about 330 mm at Re=1000. The experimental 
data and the theoretical values both depend on 
Re, while their ratio Nu/Nuth,plain is seen to be 
independent of Re.  

Amon and Mikic [43] numerically investigated 
flow patterns and heat transfer in slotted 
channel flow. Their numerical work indicated 
that recirculating vortices are generated behind 
the slot. These vortices are detrimental to heat 
transfer, but under certain conditions, an 
oscillatory separated flow was formed 
resulting in heat transfer enhancement. 
Dharaiya and Kandlikar [44] numerically 
investigated the effect of roughness on heat 
transfer for water flow in the rough channel 
with the same roughness element structure and 
channel geometries in the present study. The 
roughness elements present a series of slots. 
They found that there are no recirculating 
vortices generated over the pitch of the 
roughness elements because of the smooth 
profile.    
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Fig. 5 Comparison of Nu of rough channel 
(Channel D-2) normalized by theoretical 
developing flow heat transfer correlation    

4.3 Effect of roughness element pitch on 
heat transfer  

To study the effects of λ, heat transfer data for 
C-2 and D-2 are plotted in Fig. 6 for 
comparison. Both surfaces have similar 
roughness elements with H ~ 35 μm and Dh ~ 
1.7 mm, but with different pitches of λ=250 
μm for C-2 and λ=400 μm for D-2. The λ/H 
ratios for C-2 and D-2 are 7.8 and 10.6 
respectively. Since the aspect ratio of the two 
channels are the same, Nuth,plain is the same for 
the two data sets. As shown in Fig. 6, 
Nu/Nuth,plain is significantly higher than 1 for 
both data sets.  

 
Fig. 6 The effect of roughness element pitch to 
heat transfer enhancement in channels  

By comparing the two data sets, it is found that 
there is no significant effect of pitch on heat 
transfer in the ranges of the parameters 
investigated in the present study.  
The effect of roughness on heat transfer under 
fully developed flow conditions is shown in 
Fig. 7.  

 
Fig. 7 The effect of roughness element pitch 

for a roughness height about 35 μm  

The experimental Nusselt number values are 
normalized by the theoretical Nusselt number 
for fully developed laminar flow in a smooth 
channel. The ratio Nu/Nuth,plain is plotted as a 
function of λ for H around 35 μm. Data sets 
with the same roughness structure but different 
hydraulic diameters were also plotted. The 
rough channels show enhanced performance 
over a smooth channel, but the effect of λ is 
seen to be insignificant in the fully developed 
region as well.  

4.4 Effect of roughness element height on 
heat transfer  

Figure 8 shows the experimental Nu 
normalized by the theoretical Nu for laminar 
fully developed flow in a plain channel, 
Nu/Nuth,plain, plotted as a function of roughness 
element height H. The data sets are for a 
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roughness element pitch λ=250 μm with two 
different hydraulic diameters.  

 
Fig. 8 The effect of roughness element height 

H for a roughness elements pitch 250 μm 

Both data sets exhibit an increase in heat 
transfer with roughness element height. 
However, for H=96.3 μm it is observed that 
the enhancement for Dh=1.7 mm was 
significantly lower than that for Dh=0.7 mm. 
The heat transfer coefficient is thus seen to be 
dependent on the relative roughness H/Dh and 
increases with it. Hence with the same H=96.3 
μm, the enhancement for Dh=1.7 mm is lower 
than that for Dh=0.7 mm. From Table 1 it is 
seen that H/Dh values are 5.1% and 11.1% for 
a large channel (B-2) and a small channel (B-
1), respectively. The relative roughness of B-2 
(H/Dh=5.1%) is similar to that for channel C-1 
(H/Dh=4.3%). Comparing Nu/Nuth,plain for 
these two geometries as shown in Fig. 9, it is 
seen that the heat transfer enhancement of C-1 
and B-2 are quite similar. In general, heat 
transfer enhancement increases with increasing 
H/Dh for both channel diameters.  

 

Fig. 9 The effect of relative roughness element 
height H/Dh for a roughness elements pitch 

250 μm 

4.5 Early transition from laminar to 
turbulent flow  

Figure 10 shows the Nu data sets of B-1, B-2 
and C-1 plotted as a function of Re. The 
channels with B-1 and B-2 have the same 
roughness elements and different Dh, while the 
channels of B-1 and C-1 have the same 
diameter and roughness element pitch λ, but a 
different roughness element height H.  

 
Fig. 10 Comparison of Nu as a function of Re 
for B-1 (λ=250, H=96.3 μm, Dh=0.69 mm), B-
2 (λ=250, H=96.3 μm, Dh=1.71 mm) and C-1 

(λ=250, H=32.0 μm, Dh=0.68 mm)  

At lower Re, the three data sets are weakly 
dependent on Re. However, for Re > 900, the 
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Nu for B-1 is significantly enhanced. This is 
believed to be due to a flow regime transition 
from laminar to turbulent flow. In turbulent 
flow, the heat transfer coefficient is much 
higher than that in laminar flow and Nu 
increases with Re. Earlier transition from 
laminar to turbulent flow was observed for B-1 
data sets. The data of B-2 and C-1 revealed 
that the Nu is independent of Re, indicating 
that no early transition occurred for B-2 and 
C-1; the transition is seen to occur for these 
two channels around Re=2,000.  
The heat transfer coefficients for B-1, B-2 and 
C-1 are shown in Fig. 11. It is observed that h 
for C-1 is higher than that for B-2, while Nu 
values for the two channels are similar. This is 
due to the fact that the diameter of C-1 is 
lower than that of B-2. Earlier transition was 
observed only for B-1.  

 

Fig. 11 Comparison of h as a function of Re 
for B-1 (λ=250, H=96.3 μm, Dh=0.69 mm), B-
2 (λ=250, H=96.3 μm, Dh=1.71 mm) and C-1 

(λ=250, H=32.0 μm, Dh=0.68 mm) 

Comparing Figs. 10 and 11, it is concluded 
that the earlier transition is due to the high 
value of relative roughness H/Dh. Brackbill 
and Kandlikar [38] studied the effect of 
relative roughness on transition Re, and 
proposed the following correlation based on 

the transition indicated by their friction factor 
data 
 

0 ൏ ு
஽೓
൑ 0.08, ܴ݁௧ ൌ ܴ݁௢ െ

ோ௘೚ି଼଴଴
଴.଴଼

800ሺ ு
஽೓
ሻ

     
    (12a) 
 

0.08 ൏ ு
஽೓
൑ 0.25 , ܴ݁௧ ൌ 800 െ 3,270ሺ ு

஽೓
െ

0.08ሻ    (12b) 
 
where Ret is the transition Reynolds number 
from laminar to turbulent flow and Reo is the 
transition Reynolds number for a smooth 
channel with the same geometry and aspect 
ratio. The calculated transition Re based on 
H/Dh=0.14 is Ret=604. From Figs. 10 and 11 
the transition Reynolds number is seen to be 
around Re=900. The difference in Ret for these 
two studies may be attributed to the 
differences in the surface profiles used in the 
two studies; the smoother profile in the current 
study yields a higher Ret.  
The roughness effect on friction factor for the 
geometries shown in Table 1 are reported from 
a separate publication by Wagner and 
Kandlikar [40]. Figure 12 shows friction 
factors for three surfaces B-1, B-2 and C-1. It 
is seen that the transition from laminar to 
turbulent flow occurs around Re=700 to 
Re=800 for these surfaces. The transition Re 
reported from the friction factor studies is 
similar to that observed from the heat transfer 
studies in the present study for B-1. Similar 
observations are made by comparing the 
friction factor data for B-2 and C-1 with the 
heat transfer data shown in Figs. 10 and 11. 
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Fig. 12 Comparison of f as a function of Re for 
B-1 [40] (λ=250, H=96.3 μm, Dh=0.69 mm), 

B-2 (λ=250, H=96.3 μm, Dh=1.71 mm) and C-
1 (λ=250, H=32.0 μm, Dh=0.68 mm) 

 
It is seen from earlier discussion, that the 
surface B-1 performed the best among the 
different surfaces tested. The friction factor 
increase and the heat transfer enhancement for 
the roughness element B-1 are displayed in Fig. 
13 in terms of the f and j-factor, which are 
commonly used in reporting performance data 
for compact heat exchanger surfaces. The 
dimensionless heat transfer coefficient j is 
defined as:  
݆ ൌ  ଶ/ଷ (13)ݎܲݐܵ

It is found that the enhancement in f and j are 
quite similar. Both of the data revealed a slope 
change between Re=700 and Re=900, which 
indicated an earlier transition to turbulent flow.  
The heat transfer enhancement is generally 
compared with the friction factor increase 
when considering their applicability in heat 
exchangers. The enhancement is measured in 
terms of a thermal performance index η that 
compares the heat transfer enhancement to the 
pumping power requirement and is defined as: 

ηൌ ࢔࢏ࢇ࢒࢖,ࢎ࢚࢛ࡺ/࢛ࡺ

൫࢔࢏ࢇ࢒࢖,ࢎ࢚ࢌ/ࢌ൯
૚/૜  (14) 

The thermal performance index for surface B-
1 is compared with some of the recent 
enhancement studies reported in the literature 
[32], [33] and [34] with tape and other inserts 
in the flow channel.  

 
Fig. 13 Comparison of f and j (=StPr2/3) as a 
function of Re for B-1 (λ=250, H=96.3 μm, 

Dh=0.69 mm) 

Figure 14 shows the results of this comparison, 
and it can be seen that the performance factor 
for the surface B-1 is better than the other 
surfaces. The heat transfer enhancement 
Nu/Nuth,plain reported by Wongcharee and 
Eisama-ard [33] using alternate clockwise and 
counter-clockwise twisted tapes is about 6 to 
13, but the friction factor increase is about 8 to 
15 fold. The heat transfer enhancement 
Nu/Nuth,plain reported by Huang et al. [34] with 
a porous medium insert is about 5.5 to 4.5, but 
their friction factor enhancement is very high, 
about 50 to 60 fold. In laminar flow, heat 
transfer performance was significantly 
enhanced by inserting twist, porous material, 
and coiled wires. Similar observations are 
made by Krishna et al. with the twisted tape 
inserts in a plain tube with a full twist, and 
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Akhavan et al. [35] for a coiled insert. From 
the data in Fig. 14 it is seen that by generating 
internal roughness structure on microchannels 
the heat transfer coefficient is efficiently 
enhanced.   
 

 
Fig. 14 Comparison of η of B-1 (λ=250, 

H=96.3 μm, Dh=0.69 mm) to available data in 
recent literature [32-35] 

 
5. Discussions 
From the experimental data reported in this 
investigation, it was found that structured 
roughness enhanced the heat transfer. The Nu 
data from fully developed laminar flow in 8 
rough channels, and the friction factor data in 
[40], are summarized in Table 2. For all rough 
channels, heat transfer was enhanced and 
Nu/Nuth,plain are all found to be greater than 1. 
The enhancement was normalized with respect 
to the plain tube results.  
Although heat transfer enhancement of B-1 is 
as high as 377%, which is significantly higher 
than the other channels, it should be noted that 
the enhancement of the friction factor is 371%, 
which is also significantly higher than the 
other channels. From the summary of Nu and f 
data in the present study and [40], it was found 
that heat transfer enhancement due to 

roughness is higher than the friction factor in 
the parametric ranges investigated. The 
simulation work of Dharaiya and Kandlikar 
[44] indicated that the laminar fully developed 
Nu for the same roughness structure is 30.7 
which is very close to the experimental Nu 
28.9 in the present study; there is only a 6% 
difference between the simulated results and 
the experimental data.  

 
 Table 2 Heat transfer and friction factor 

enhancement of rough channels 

 
Coleman et al. (2007) [45] experimentally and 
numerically assessed the effect of transverse 
rib roughness pitch-to-height ratios, λ/H, on 
turbulent flow. The maximum drag was 
reported to be at λ/H around 8. The authors 
reported a smooth transition from skimming 
flow to interactive flow at a rib spacing of λ/H 
= 5. In the extremes where λ/H is significantly 
greater than 5, or less than 5, the roughness 
effect is expected to diminish. Although these 
publications discussing roughness ratios focus 
on turbulent flows, the concept may still hold 
true for microscale laminar flows. Webb et al. 
[46] revealed flow patterns over transverse-rib 
roughness as a function of rib spacing. The 
flow separates at the rib and reattaches six-to-
eight rib heights downstream from the rib. The 
reattachment does not occur for λ/H less than 8. 
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The heat transfer coefficient attains the 
maximum values near the attachment point; 
the highest enhancement occurs for λ/H 
between 10 to 15.  
To study the effect of pitch to height ratio, the 
heat transfer and friction factor enhancement is 
plotted as a function of λ/H in Fig. 15. It is 
found that the enhancement decreases with the 
increasing of λ/H. Pethkool et al. [47] 
investigated heat transfer enhancement in a 
helically corrugated tube. Their data showed 
that the effect of relative roughness was higher 
than the effect of pitch. Figure 16 shows the 
effect of relative roughness on the 
enhancements. Both heat transfer and friction 
factor enhancements increase with increasing 
H/Dh. Further experiments are needed to cover 
the wider ranges of pitch to height ratio, 
although the trends observed in the present 
work are in agreement with the effects seen for 
other similar geometries by earlier 
investigators.   

 
Fig. 15. f and Nu enhancement ratio of as a 

function of λ/H 

 
Fig. 16. f and Nu enhancement ratio of as a 
function of H/Dh 

6 Conclusions 
The heat transfer performance of water 
flowing in smooth channels and channels with 
structured roughness surfaces was 
experimentally investigated in the present 
study. The following conclusions are drawn 
based on the experimental results:  
1. The experimental data of smooth channels 
indicated that the Nu agrees well with 
conventional correlation predictions in both 
developing and fully developed flows.  
2. The heat transfer coefficient was found to 
be significantly enhanced by roughness 
structure. Surfaces with higher H/Dh had large 
enhancement in both heat transfer and pressure 
drop.  
3. The roughness element pitch did not affect 
heat transfer significantly in the range 
investigated.  
4. Relative roughness H/Dh has a more 
significant effect on heat transfer than H.  
5. The thermal performance index for 
roughness structure with a high relative 
roughness was found to be at least comparable 
to the tape and coil inserts examined by earlier 
investigators. 
6. An earlier transition from laminar to 
turbulent flow was observed in high H/Dh 
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rough channels, and the transition Reynolds 
number obtained from heat transfer studies 
corresponded with the transition noted from 
the friction factor data. The transition 
Reynolds numbers were in reasonable 
agreement with the transition models based on 
relative roughness proposed by Brackbill and 
Kandlikar [38], although the smoother profile 
in the present study seems to have delayed the 
transition. 

Nomenclature 

a Channel height, m  
Ah Flow heat transfer area, m2 
Ah,s Cross-section area of channel, m2  
Af Cross-section area of fluid flow in 
 channel, m2  
b Channel width, m 
cp Heat capacity, J/kg oC 
Dh Hydraulic diameter, m 
f Friction factor, dimensionless 
fth,plain Theoretical friction factor for smooth 
 channel, dimensionless 
Gz Graetz number, dimensionless 
h Heat transfer coefficient, W/m2 oC 
hx Local heat transfer coefficient, W/m2 

 oC 
H Roughness elements height, m 
I Current, A 
ks Wall thermal conductivity, W/m oC 
kf Fluid thermal conductivity, W/m oC 
kf,x Local fluid thermal conductivity, 
 W/m oC 
Lh,x Local heating location distance from 
 the entrance, m 
Lh,All Total heating length of channel, m 
mሶ  Mass flow rate, kg/s 
Nu Nusselt number, dimensionless 
Nuk0 Nusselt number without axial 
 conduction, dimensionless 
Nuth,plain Nusselt number for plain channel in 
 developing flow, dimensionless 
Nux Local Nusselt number, dimensionless 
Pr Prandtl number, dimensionless 
qconv Input power to the fluid, W 
qmea Measured input power, W 
qloss Heat loss, W 
q”avg Average heat flux, W/m2 
Re Reynolds number, dimensionless 

Ret Transition Reynolds number, 
 dimensionless 
Reo Transition Reynolds number for 
 smooth channel, dimensionless 
Tf,i Channel inlet fluid temperature, oC 
Tf,o Channel outlet fluid temperature, oC 
Tf,x Local fluid temperature, oC 
Tw,x Local wall temperature, oC 
V Voltage, V 
 
Greek symbols  
α Aspect ratio a/b, m 
η Performance factor, dimensionless 
λ Roughness elements pitch, m 
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