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Abstract The transient heat transfer problem through a rarefied gas confined between parallel plates 
maintained at different temperatures is investigated. The theoretical formulation is based on the linear BGK 
kinetic model subject to Maxwell diffuse reflection. The governing time dependent equation is solved by 
using the discrete velocity method. Results are presented for the number density, macroscopic velocity, heat 
flux and temperature distributions in the whole range of the Knudsen number. The results are compared with 
direct Monte Carlo simulations and good agreement is found for small temperature variations.  
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1. Introduction 
 

Steady-state heat transfer through a 
rarefied gas confined between parallel plates is 
one of the main benchmark problems in the 
field of rarefied gas dynamics and it has been 
extensively used to test and validate several 
computational approaches. However, the 
corresponding unsteady heat transfer problem 
has received much less attention. Time 
dependent heat transfer configurations are 
common in gaseous micro devices and may be 
produced by time dependent boundary cooling 
or heating. Recently in [1,2] the transient heat 
transfer in a gas confined in a small-scale slab 
due to the instantaneous change of a wall 
temperature as well as due to periodic 
boundary heating has been investigated. In 
these works semi-analytical approaches have 
been applied in the free molecular and 
hydrodynamic limits, while the DSMC method 
has been used in the transition regime. 

In the present work, analysis of the time 
response of a rarefied gas confined between 
two infinite parallel plates due to a sudden 
jump in the temperature of one of the 
boundaries is presented based on linear kinetic 
theory. The time dependent heat transfer is 
modelled by the linearized unsteady BGK 
equation subject to Maxwell purely diffuse 

boundary conditions and accordingly chosen 
initial conditions. 

Results are presented for the time 
evolution of all macroscopic quantities 
(number density, bulk velocity, temperature, 
heat flux) from the initial state all the way to 
the steady-state conditions. Since a kinetic 
approach is implemented the results are valid 
in the whole range of the Knudsen number. It 
is interesting to note that the sudden change in 
the thermal properties of a boundary causes a 
gas flow with non-zero bulk velocity 
perpendicular to the plates as well as a space 
dependent heat flux. After some time which 
depends on the degree of gas rarefaction the 
velocity tends to zero and the heat flux 
between the plates becomes constant 
recovering gradually the well known steady-
state behaviour. The accuracy of the results is 
validated by solving the same micro heat 
transfer configuration by the DSMC method 
obtaining a very good agreement for small 
temperature variations. 

Overall, the kinetic solution provides a 
detailed description of the evolution of the 
heat flow field with regard to time from the 
starting point, where the gas is at rest up to a 
certain time where almost steady-state 
conditions are recovered. Also, the present 
work provides an estimate of how fast a 
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rarefied heat flow, depending upon its 
rarefaction, will respond to a sudden change of 
the wall temperature. It is noted that since the 
present analysis is based on linear kinetic 
theory it is limited to small temperature 
differences.   
  
2. Statement of the problem 

 
Consider two infinite parallel plates, fixed 

at , confining a monatomic gas at 
pressure . Both plates and the gas are 
initially at temperature . Then, at some time 
the temperature of the plate at  is 
suddenly raised to and 
maintained at this temperature, while the 
temperature of the plate at  is kept 
at . As a consequence of this temperature 
increase of one of the plates, a net time-
dependent heat flux will be exchanged among 
the plates and the rarefied gas, which gradually 
will grow and, as time tends to infinity, will 
approach the steady-state heat flux.  

/ 2y H= ±

0P

0T
/ 2y H= −

1 0T T T= + Δ

/ 2y H= +

0T

The main dimensionless quantity 
determining the heat flux is the reference 
rarefaction parameter referring to the distance 

 between plates and defined as H

 0

0 0

P Hδ
μ υ

= , (1) 

where  is the reference pressure, 0P 0μ  is the 
gas viscosity at reference temperature  and 0T

0 2 0RTυ =  is the most probable molecular 
velocity, with R denoting the gas constant. The 
rarefaction parameter is proportional to the 
inverse Knudsen number. The dimensionless 
space and time independent variables 

 'yy
H

= ,  0 'tt
H
υ

= , (2) 

respectively, where 1/ 2 1/ 2y− ≤ ≤  and 
 are introduced. The macroscopic 

quantities of number density, temperature, heat 
flux and velocity may be written in 
dimensionless form as 

0t >

 0 0 0 0 0

0 0 0 0

, , ,n n T T T T Tq uq u
n T T P T T

ρ τ
υ υ
′ ′− −

= = = =
Δ Δ Δ Δ  

  (3) 

respectively. It is noted that  and u  are the q
y -components of the corresponding vectors 

which are nonzero, while is 

an average density. 

1/2

20 1/
( )n n y dy

−
= ∫

By considering a limited temperature 
difference between the plates according to 

0T TΔ , the heat flow is modelled by the 
unsteady linearized BGK model equation, 
which may be given by the two coupled 
integrodifferential equations: 

2 12
2y yut y

φ φυ δφ δ ρ υ τ υ y
∂ ∂ ⎡ ⎛ ⎞+ + = + + −⎜ ⎟

⎤
⎢ ⎥∂ ∂ ⎝ ⎠⎣ ⎦
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yt y
ψ ψυ δψ δτ∂ ∂

+ + =
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        (4) 

Here, ( ), , yt yφ φ υ=  and ( ), , yt yψ ψ υ=  are 
the reduced distributions functions, with 

( ),yυ ∈ −∞ ∞  denoting the -component of 
the molecular velocity, while the macroscopic 
moments at the right hand side of Eqs. (4) are 
given by 
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( ) 221 2 2 3
2
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y yq e υ .ydψ φ υ υ υ

π
−⎡ ⎤= + −⎣ ⎦∫  (5) 

The interaction between the particles and the 
walls is modelled according to Maxwell purely 
diffuse boundary conditions, which are written 
for the outgoing distributions at the walls as 

( ) 22

0

1 1, , 2 2 , ,
2 2

y
y y y yt t υ

ye dφ υ υ φ υ υ
∞ −+ ⎛ ⎞ ⎛ ⎞− = − + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫ υ  

( ), 1/ 2, 1ytψ υ+ − =                    (6) 
and 

( ) ( ) 2

0

,1/ 2, 2 ,1/ 2, y
y y yt t υ

ye dφ υ φ υ υ
∞

−+ = ∫ υ  

( ),1/ 2, 0ytψ υ+ =                     (7) 
The initial conditions are 

(0, , ) (0, , ) 0y yy yφ υ ψ= υ = . (8) 
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3. Method of solution 
 
The governing Eqs. (4) and (5) subject to 

the boundary and initial conditions (6-8) are 
solved numerically in the whole range of the 
rarefaction parameter δ . The computational 
scheme is fully deterministic and all spaces are 
accordingly discretized. In particular, the 
discretization in the molecular velocity space 
is performed by using the discrete velocity 
method. The continuum spectrum is 
substituted by a discrete set of velocities mυ , 

, which are taken to be the roots 
of the Legendre polynomial, with M denoting 
the degree of the polynomial, accordingly 
mapped into the interval of interest. The 
physical space is divided into I segments and it 
is consisting of  nodes, while 
the discretization is performed by a second 
order central difference scheme. Finally, the 
discretization in time  is implicit and at 
its time step  a first order 
backward difference scheme is applied. A 
similar approach has been recently applied to 
solve unsteady fully developed flow through 
rectangular and circular microchannels [3,4]. 

1, 2,...m = M

+

N

0

1, 2,... 1i I=

0t >
1, 2,...nt =

The discretized set of Eqs. (4) is solved at 
each time step and for each molecular velocity 
marching through the physical space, while at 
each time step the macroscopic quantities 
defined by Eqs. (5) are estimated by a Gauss-
Legendre quadrature.  

Since the scheme is implicit any size of 
time step will provide stable results, which 
however will not be necessarily accurate 
enough. To capture the proper evolution of the 
macroscopic quantities it is required to have 
the dimensional time step less than the 
collision time, which is defined as 

0 /c Pτ μ= . By using (2) and introducing the 
dimensionless time step one can obtain the 
following condition, which must be satisfied:  
 1t δΔ × < . (9) 

Based on the above the results presented 
in the next section, have been obtained with 

and . Also, in order to have 
the same accuracy for all 

300M = 200I =
δ  the time step is 

taken as  in all cases, which always 

satisfies condition (9). The evolution with 
respect to time is concluded at some total time, 
where the computed unsteady macroscopic 
quantities reach up to 99% of their 
corresponding steady-state distributions. This 
discretization ensures grid independent results 
up to at least two significant figures. 

4Δ 10t −=

 
4. Results 
 

Results are presented for the macroscopic 
quantities in terms of time in the whole range 
of the rarefaction parameter δ . 

Figures 1-4 show the time evolution of the 
number density ( )yρ , macroscopic velocity 
u(y), temperature ( )yτ  and heat flux  
distributions in terms of the space coordinate 

( )q y

y  for specific values of time  and for 0t >
0δ = , 1, 10 and 100, which roughly 

correspond to the free molecular, transition, 
slip and continuum regimes respectively. The 
corresponding steady-state solution at each δ  
is also included (dashed line).  

Initially, at t = 0, the gas is at rest all 
macroscopic quantities are uniform, with the 
bulk velocity and heat flux equal to zero. 
Then, due to the sudden increase of the 
temperature of the plate located at 1/ 2y = −  
non-uniform distributions start to develop. As 
time is increased all macroscopic quantities 
keep developing up to some certain time and 
then they are reaching asymptotically the 
corresponding steady-state profiles. It should 
be noted that every macroscopic quantity takes 
its own time in order to reach the steady state 
and in all cases this time depends on the gas 
rarefaction.  

In Fig. 2, in the transient phase, there is a 
nonzero bulk velocity which has an oscillatory 
damping behavior with time. This effect can 
be observed in the whole range of the gas 
rarefaction. This behavior of the gas may be 
explained by the density wave travelling with 
varying bulk velocity from the hot to the cold 
wall and backwards. Its amplitude is decreased 
as time is increased and finally at sufficiently 
large times it is damped.  
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Fig. 1: Time evolution of number density at (a) 0δ = , (b) 1δ = , (c) 10δ =  and (d) 100δ = . 
 

 
Fig. 2: Time evolution of bulk velocity at (a) 0δ = , (b) 1δ = , (c) 10δ =  and (d) 100δ = . 
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Fig. 3: Time evolution of temperature at (a) 0δ = , (b) 1δ = , (c) 10δ =  and (d) 100δ = . 

 
Fig. 4: Time evolution of heat flux at (a) 0δ = , (b) 1δ = , (c) 10δ =  and (d) 100δ = . 
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Fig. 5: Comparison of the temperature (upper four graphs) and of the heat flux (lower four graphs) 
distributions between kinetic and DSMC results at (a) 0.067δ = ,  (b) 0.67δ = , (c) 6,67δ =  
and (d) 66.67δ = ; dashed-dotted lines refer to DSMC results. 
 
 

-0.4 -0.2 0 0.2 0.40

0.05

0.1

0.15

0.2

0.25

-0.4 -0.2 0 0.2 0.40

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.40

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.40

0.1

0.2

0.3

0.4

0.5

0.1 0.2 

2 

4 

0.4 

1 

0.1 0.3 
0.5 

3 

y 

0.1, 0.6, 2, 10 0.1, 0.3, 0.5, 1, 2, 4 

y 

q 

y 

y 

q q 

q 

1 
1.5 

(a) (b) 

(c) (d) 

0.1 0.2 
0.4 

0.1 0.3 
0.5 

1.5 

y y 

(c) (d) τ τ

0.1, 0.3, 0.5, 1, 2, 4 0.1, 0.6, 1.5, 5, 10 

y y 

- 6 - 



3rd Micro and Nano Flows Conference 
Thessaloniki, Greece, 22-24 August 2011 

In parallel the heat flux varies between the 
plates, i.e., it is space dependent and at large 
times when the velocity magnitude becomes 
zero, the heat flux tends to become constant 
recovering its steady state value. Also it is 
interesting to note in Figs. 1 and 3 that the gas 
near the hot wall has lower number densities 
and higher temperatures than that at the cold 
wall. Especially this effect is more evident if 
we consider the gas state far from the free 
molecular one (e.g. Figs 1,3 c,d), because in 
this case the molecules going towards the cold 
wall lose their heat energy due to increasing 
number of collisions with outgoing molecules. 

In order to validate the accuracy of the 
kinetic solution the comparison with the 
corresponding results obtained by the DSMC 
solutions of the Boltzmann equation for a 
hard-sphere gas is performed.  The y-
direction is discretized using 400cn =  
computational cells for 100δ =  and 

 for 200cn = 100δ < , while the time step is 
chosen to be a small fraction of the cell 
traversal time 0/ ( )cH nυ . Also 2000 particles 
per cell are used. The results are ensemble 
averaged until the desired statistical 
uncertainty is obtained. In accordance with our 
problem description, the gas is initially at 
equilibrium with the wall temperature , 
while diffuse boundary conditions are used. 
Also the temperature ratio is .  

0T

1 0/ 1.0T T = 5
Figure 5 shows the space and time 

variations of the temperature and the heat flux 
respectively at 0.067δ = , 0.67, 6.67 and 
66,67. The dashed-dotted lines correspond to 
DSMC results and the thin solid lines mark the 
kinetic results. In all cases the dashed line 
denotes the steady-state limit. It follows that a 
good agreement is obtained and therefore the 
kinetic solution provides an accurate 
description of the transient heat transfer at 
small temperature difference. For this specific 
problem the required computational effort for 
the kinetic solution is considerably smaller 
than for the DSMC procedure. 
 
 
 

5. Conclusions 
 
The transient heat transfer through a 

rarefied gas confined between parallel plates is 
investigated on the basis of the linear BGK 
kinetic model subject to Maxwell diffuse 
boundary conditions. The problem is solved in 
a fully deterministic manner. Results are 
presented for the number density, velocity, 
temperature and heat flux in the whole range 
of the Knudsen number. The accuracy of the 
kinetic results is validated by comparing them 
successfully with corresponding DSMC 
results. The obtained solution will be used, in 
the near future, in the design of micro-Pirani 
sensors.  
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