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Abstract The coexistence of rarefied continuum flow regime areas and relatively small elements in which 
rarefaction effects become important is a typical feature of many complex gas flows micro systems. In 
rarefied domains, the mean free path of gas molecules is comparable or larger than a characteristic scale of 
the system. These domains are naturally described by kinetic equation for the velocity distribution function, 
which involve a considerable effort in terms of CPU time and memory requirements, due to the discretization 
in both physical and velocity space. The continuum domains are best described by the fluid Navier Stokes 
(NS) equations in terms of average flow velocity, gas density and temperature. These equations are more 
efficient, but less accurate in critical rarefied areas. Thus, the development of hybrid solver combining 
kinetic and continuum models is of great interest especially for applications range from gas flows in micro 
systems to the aerospace applications, such as high altitude flights. The pressure –driven gas flow of rarified 
monatomic gas through a two-dimensional short microchannel is considered using hybrid solver. The 
calculations have been carried out for pressure ratios 0.1, 0.5 and 0.9 and fixed relatively large Knudsen 
number. The applicability of the solver is discussed via comparison with the kinetic and NS solutions.  
Keywords: Micro Flow, Hybrid method, model kinetic equation 
 
 
1. Introduction 
 
 The coexistence of rarefied and continuum 
flow regime areas is a typical feature of many 
complex gas flows micro systems. Rarefied 
domains, in which the mean free path of gas 
molecules is comparable or larger than a 
characteristic scale of the system, are naturally 
described by kinetic methods, such us the 
Direct Simulation Monte Carlo (DSMC), or 
require solutions of the Boltzmann kinetic 
equation for the velocity distribution function. 
Unfortunately, realistic kinetic simulations 
become rapidly too expensive, and often 
impossible, as the Knudsen number becomes 
smaller. On the other hand the continuum 
domains are best described by the continuum 
(Euler or Navier Stokes) equations in terms of 
average flow velocity, gas density and 
temperature. These equations are more 
efficient, but less accurate in rarefied areas.  
The development of hybrid solvers combining 
kinetic and continuum models has, thus, been 
an important area of research over the last 
decade [1, 2]. The key parameter defining the 
choice of the appropriate physical model is the 

local Knudsen number, Kn. Most references 
use Kn values based on the characteristic size 
of the system. However, different options are 
possible: in particular, in a recent paper [3], a 
more complex criterion based on the difference 
between the  Navier–Stokes stress and 
Fourier heat flux and the actual values as 
computed from the molecular solver is 
proposed. The main challenges in the 
development of hybrid code are, axtually, the 
identification of kinetic and continuum 
domains, as well as the choice of a proper 
coupling between these domains.  
 The different methods presented in the 
open literature can be classified into three 
categories. The first includes methods 
employing domain decomposition in physical 
space. In this category, the computational 
domain is decomposed into kinetic and 
continuum sub-domains using appropriate 
criteria [3-5]. The second category includes 
methods based on domain decomposition in 
velocity space where fast and slow particles 
are treated separately [6]. The third category 
includes hybrid models. With these methods, 
one solves both kinetic and fluid equations in 
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the entire domain and uses the velocity 
distribution function to compute transport 
coefficients for the fluid equations [1, 7]. Most 
of the published works fall into the first 
category. In [2, 8] particle methods such as 
DSMC or Molecular Dynamics are used in 
regions with strong deviations from 
equilibrium, and a fluid (Euler or NS) solver is 
used in other regions.  
 The Direct Numerical Solution (DNS) of 
kinetic equation is a viable alternative to 
DSMC [1, 9] and sometimes is preferable to 
DSMC for coupling kinetic and continuum 
models because similar numerical techniques 
are used for solving both the Boltzmann and 
continuum equations. Recent effort to combine 
DNS with a NS solver used a priori 
decomposition of the domain has been done in 
[5]. In [1] an Unified Flow Solver (UFS) 
combining the DNS of the Boltzmann equation 
in rarefied regions with kinetic schemes of 
continuum fluid dynamics elsewhere was 
developed. The authors added a Boltzmann 
solver for one component monatomic gases, 
compressible Euler and NS solvers based on 
kinetic scheme, and developed practical 
criteria for domain decomposition and 
coupling kinetic and CFD solvers. 
 In the present approach the computational 
physical domain is decomposed into kinetic 
and continuum sub-domains by computing 
appropriate criteria, based on the local 
Knudsen number and gradients of macro-
parametrs, using a preliminary NS solution 
throughout the whole physical domain. The 
hybrid code is the combination of direct 
numerical solution of the Bhatnagar-Gross-
Krook (BGK) model kinetic equation and NS 
ones. The solution is advanced in time 
simultaneously in both kinetic and continuum 
domains: the coupling is achieved by matching 
half fluxes at the interface of the kinetic and 
NS domains, taking care of the conservation of 
momentum, energy and mass through the 
interface. The accuracy and properties of the 
proposed method is assessed via the 
computation of the flow through a short 
microchannel of the length L = 0, 5 and 10. 
Outlet to inlet pressure ratio of 0.1, 0.5 and 0.9 
are considered, for a fixed Knudsen number. 

The obtained by hybrid solver results are 
compared with NS and BGK solutions in 
terms of mass flow and local parameters. 
 
2. Statement of the problem 
 
 The pressure–driven gas flow between 
parallel plates of finite length L placed at the 
distance H from each other and connected two 
large reservoirs of the size L1L2 is examined 
on the basis of three codes: hybrid, kinetic and 
NS. The gas in the containers far from the 
plate is in equilibrium at constant pressures p0 
and pe, with p0 > pe, and temperatures T0. The 
temperature of the walls is equal to the 
temperature in reservoirs T0. The channel is 
infinite in z direction and due to the symmetry 
of the flow only half of the domain will be 
considered (Fig. 1.).  
 
3. Numerical method 
 
3.1 Coupling kinetic and Navier-Stokes 
solvers 
 The algorithm is based on decomposition 
of computational domain to kinetic and NS 
regions using, as switcthing criteria [1, 10], the 
value of SNS:  
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where all values are given in dimensionless 
form, and Kn denotes the local Knudsen 
number, based on the difference between the 
plates. SNS is derived from the NS solution, and 
we chose to define the kinetic region as the 
area where SNS is greater then 0.015. The 
adequate switching criterion is crucial since a 
wrong domain decomposition could even lead 
to a non-positive distribution function when 
the NS solution is coupled with the kinetic 
equation solution.  
 At each time step the kinetic equation is 
solved on the kinetic domain ΩK : 
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where f = f(t, x, ξ) is the velocity distribution 
function, x = (x, y, z) is the position vector, 
ξ = (ξx, ξy, ξz) is the velocity vector, J(f, f) is 
the collision integral. The coupling strategy 
between kinetic solver and NS one is 
completely general, and can be applied to the 
full Boltzmann equation. Nonetheless, for the 
simplicity, the collision integral J(f, f) is 
replaced by the BGK model: 
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where M is the local Maxwellian distribution 
function, n is the number density, p is the local 
pressure and μ is the gas viscosity at local 
temperature T, V is the vector of bulk velocity, 
R is the specific gas constant.  
 On each time step, molecules come into 
kinetic domain ΩK from the NS one with the 
Chapman–Enskog distribution function:  
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where η(x) is the outward vector normal to the 
ГK, boundary of ΩK, q is the heat flux vector, 
τij is the shear stress tensor, λ is the gas 
conductivity at local temperature T. All macro 
values are computed in the NS region: in the 
grid point xi (if the coupling boundary ΓK is 
placed in xi+1/2) and their gradients in the 
points xi-1,  xi, xi+1/2.  
 The Maxwell diffuse reflecting boundary 
conditions with the full accommodation on 
walls are applied:  
 

( , , ) | α( ) ( , , )
w w w wf t M n u Tx ξ x if η( ) 0 ξ x , 

 
where nw, Tw and uw are the wall number 
density, temperature and velocity, 
respectively. The parameter (x) is determined 
to so as to avoid a mass flux across the wall. 
For all particles coming off the surface it is 
assumed that molecules are emitted with the 
Maxwell distribution functions corresponding 
the zero mean flow velocity, the temperature is 
equal to the wall temperature Tw and the 
density calculated from the condition of 
equality of the fluxes of particles coming on 
and off the wall. At the symmetry line the 
specular boundary condition is imposed.  
 On continuum domain ΩNS the NS 
equations are solved, which can be written 
using the usual abstract conservative form: 
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where U= (ρ, ρV, ρetot), 2

int/ 2tote u e  , etot is 
the macroscopic total energy, eint is the 
macroscopic internal energy. At the inlet total 
pressure p0 and temperature T0 are defined 
while the outflow exit pressure pe is kept 
constant. The coupling from kinetic solver to 
the NS one is achieved by imposing the 
incoming half fluxes F-(U)•η, computed by the 
kinetic solver on the coupling boundary ΓK 
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where (ξ) = {1, ξ, ξ2}, fK is the distribution 
function, which is solution of kinetic equation 
for outgoing molecules.  
 
3.2 Kinetic solver 
 
 In the hybrid solver the same numerical 
method is applied as for pure kinetic 
simulations. In the rest of the paper the non-
dimensional formulation of the problem is 
used and for sake of simplicity the 
dimensionless quantities keep the same 
designations as the dimensional ones. The 
scale quantities are the following: 0n  is the 
number density, T0 is the temperature, 
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0 02v RT  is the thermal velocity, H is the 
distance between plates, μ0 is the gas viscosity 
at T0. For hard –sphere model the 
dimensionless viscosity coefficient is T .  
 In the non-dimensional form collision 
integral is written as follows: 
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where Kn is the Knudsen number based on H, 
δ is the rarefaction parameter. The 
macroscopic (bulk) distributions of number 
density, velocity vector and temperature can 
be written as 
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Taking advantage of the two-dimensionality of 
the flow, the z component of the molecular 
velocity is eliminated by multiplying (1) by 1 
and ξz

2 and integrating on dξz. To discretize 
the obtained system of two equations, the 2D 
Cartesian grid with equidistant nodes is 
defined in the velocity space, and the grid 
{xi, yj} is defined in the physical space. 
Introducing of the grid values, the obtained set 
of equations for f is numerically solved 
explicit-implicitly in time [11].  
 The collision part is written on n+1 time 
level, while macroscopic quantity Un+1 can be 
obtained explicitly, which defines Mn+1.  
 The numerical solution of the transport 
step is treated explicitly and approximated by 
a standard finite volume scheme with the flux 
limiter function, provided a second order of 
the scheme. The time step follows the 
condition: t = CFL/max(Vmax/x + Vmax /y), 
CFL = 0.7 is the Courant - Friedrichs - Lewy 
number, Vmax = 5 is a boundary of the velocity 
space and Δx and Δy are the mesh sizes in the 
x and y directions, respectively. 
 The results have been obtained with a non 

uniform, structured mesh of 280 points in x 
direction and 40 ones in y (for L = 5, L1 = 20, 
L2 = 40) and 260  40 (for L = 10, L1 = 10, 
L2 = 20) nodes in physical space. For the slit 
problem the computational domain is taken in 
the form of a half circle with radius L1 = 100, 
kinetic and NS solvers used the mesh of 
320  40 and for the hybrid code mesh was 
303  60 with minimum axial spacing is of the 
order of 0.02H. For all calculations 24  24 
mesh in velocity space is used. The iteration 
process is terminated when a relative 
convergence criterion of 10-7 imposed on the 
dimensionless flow rate is fulfilled.  
 Parallelization in physical space for kinetic 
region is adopted in order to improve the 
efficiency of the algorithm. The software code 
was written in C++ with the use of MPI 
(Message Passing Interface). The code run on 
double processors, quad core systems, using, 
thus, up to a total of 8 parallel processes.  
 
3.3 Navier-Stokes solver 
 
For the solution of the problem the viscous, 
compressible NS equations for 2D laminar 
flow are solved by employing a hybrid finite 
difference-finite volume method. For the time 
integration implicit, spatially factored ADI 
scheme proposed by Beam and Warming is 
used [12]. The program in FORTRAN has 
been developed by Croce [13] and has already 
been applied and validated for the simulations 
of microflows [14]. 
 
4. Results and discussions 
 
 The numerical simulation of 2D gas flow 
through a short channel of the length L = 0, 5 
and 10 between two containers for the pressure 
ratio p0/pe = 0.1, 0.5 and 0.9 and rarefaction 
parameter δ = 10 have been carried out using 
three solvers: kinetic, NS and hybrid.  
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Fig. 1. The computational domain: solid line is 
the wall, dash- dotted line is symmetry one. 
 
 The validation for kinetic solver has been 
done by comparison with the DSMC results 
for the case of the flow through the channel of 
length L = 0, 5 and 10 into the vacuum [15]. 
The dimensionless flow rate W = m/mfm (where 

0 0/fmm p H v  is the analytically deduced 
mass flow rate in the free molecular regime) 
computed by both methods are very close and 
shown in Fig. 2.  
 

 
Fig. 2. The dimensionless mass flow rate vs. 
rarefaction parameter: lines, DSMC results; 
symbols, BGK ones.  
 

TABLE 1. Kinetic domain. 
pe/p0 L ΩK 
0.1 0 -1.29 < x < 9.84 

5 -4 < x < 9.28 
10 -6.61 < x < 8.2 

0.5 0 -2.7 < x < 8.75 
5 -4.25 < x < 7.23 
10 -6.61 < x < 7.32 

0.9 0 -3.64 < x < 4.07 
5 -3.97 < x < 5.68 
10 -6.62 < x < 7.3 

 
 For hybrid code most of the computational 
domain is described by the NS model, while a 

region near the channel is described by the 
BGK model (see Table 1). To demonstrate the 
consistency of the hybrid method the contour 
lines of number density, velocity and 
temperature for L = 0 and pressure ratio 
pe/p0 = 0.5 are presented in Fig. 3 (dashed line 
denotes the domains interface). The coupling 
between kinetic and NS solutions works well 
enough, showing a smooth transition along the 
iso lines crossing the domains interface. It 
should be noticed that the iso lines of 
temperature are less smooth. This can be 
explained by the use of the kinetic BGK model 
which does not provide correct Prandtl 
number.  
 In Fig. 4-6 the variation of the 
dimensionless number density, velocity and 
temperature along the symmetry axis are 
shown for three different length L = 0, 5 and 
10, and pressure ratio pe/p0 = 0.1, 0.5 and 0.9. 
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Fig. 3. Contours of number density, velocity 
and temperature near the slit for pe/p0 = 0.5.  
 
Coupled solutions are compared with NS and 
BGK results as a reference. The density (or 
pressure) variations are qualitatively similar in 
all cases. In case L = 0 (slit flow), before and 
after the slit density tends to upstream and 
downstream conditions, while in the slit region 
it sharply decreases. The axial velocity far 
upstream is almost zero and it grows in the 
region around the slit. The temperature 
decreases near the slit, while at the rest of the 
domain it remains very close to the reference 
temperature. The same behavior is observed 
for the flow through the short channels of 
length L = 5 and 10. Starting from the 
upstream conditions density and temperature 
gradually decrease inside the channel while the 
velocity increases. All values tend to their 
downstream conditions. The axial velocity, far 
upstream is equal to zero. It should be noticed 
that for large pressure ratio pe/p0 = 0.1, as 
shown in Fig. 4, the flow demonstrates more 
complex behavior after the slit due to the 
transonic flow structures.  
 It can be seen that coupled results are 
always closer to NS ones, especially for small 
pressure ratio 0.1. The largest difference is 
observed for velocity distribution. It seems 
that the influence of the NS model on kinetic 
one by imposing the incoming Chapman–
Enskog distribution function fCE on the 
coupling interface ΓK is dominant and defines 
the solution of hybrid solver. For moderate and 
large pressure ratios the results obtained by all 
solvers are close to each other.  
 

 

 

 
Fig. 4. Distributions of density, velocity and 
temperature along the symmetry line for 
pe/p0=0.1: empty symbols, coupled solutions; 
filled symbols, BGK ones; lines, NS ones. 
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Fig. 5. Distributions of density, axial velocity 
and temperature along the symmetry line for 
pe/p0=0.5: empty symbols, coupled solutions; 
filled symbols, BGK ones; lines, NS ones. 

 

 

 
Fig. 6. Distributions of density, axial velocity 
and temperature along the symmetry line for 
pe/p0=0.9: empty symbols, coupled solutions; 
filled symbols, BGK ones; lines, NS ones. 
 
 In case the flow through the slit the mass 
flow rates obtained by all methods are very 
close to each other (see Fig. 7). Nevertheless, 
for smallest pressure ratio 0.1 the maximal 
difference from NS is 9%, while from BGK 
the difference is only 3%. The same trend 
keeps for other cases. For pe/p0 = 0.1 the 
difference between coupling and NS remains 
small, approximately 6%, for both length of 
the channel but deviation from BGK results 
drastically increases (50% for L = 5, 70% for 
L = 10). For moderate pressure ratio pe/p0 = 0.5 
the NS mass flow rates almost coincide with 
hybrid ones and the difference with BGK ones 
is 13%. Under large pressure ratio pe/p0 = 0.9 
all methods give close values. 

 
Fig. 7. The dimensionless mass flow rate vs. 
pe/p0: empty symbols, coupled solutions; filled 
symbols, BGK solutions; lines, NS solutions.  
 
3. Conclusions 
 
A hybrid algorithm based on the direct 
numerical solution of the BGK kinetic 
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equation coupled to a NS model was 
presented. The coupling was achieved by 
matching half fluxes at the interface of the 
kinetic and NS domains, taking care of the 
conservation of momentum, energy and mass 
through the interface. We have demonstrated 
the capability of the hybrid code for pressure 
driven gas flow through a short microchannel 
for relatively large rarefaction parameter 
δ = 10. It was found that influence of NS 
model on kinetic one via imposing Chapman 
Enskog distribution function is dominant 
resulting in hybrid solver results are close to 
NS one. Thus, further investigation of hybrid 
cod is necessary.  
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