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Abstract We present a kinetic-theory derivation of second-order slip boundary conditions for a
plane isothermal pressure driven gas flowing through a microchannel. In the proposed approach,
the distribution function is expanded in terms of orthogonal polynomials and the system of mo-
ment equations in the expansion coefficients is analytically solved. The velocity slip coefficients,
as well as their Knudsen layer corrections, are obtained by evaluating the solution in the near
continuum limit. In comparison with other methods, the present approach is accurate and easy
to implement. The results are presented for the Bhatnagar-Gross-Krook-Welander (BGKW) ki-
netic model equation and Maxwell’s boundary conditions, but can be extended to more general
collision integral and different scattering kernels.
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1. Introduction where 3 is the coordinate normal to the plate,
5;,; is the tangential velocity component and
Aq, Ay are the first- and second-order veloc-
ity slip coefficients, respectively. It is worth
mentioning that a number of slip boundary
conditions different from Eq. (1) have been
proposed over the years but they will not
be considered here since they are either phe-
nomenological in nature (Bahukudumbi and
Beskok , 2003) or derived by means of heuris-
tic kinetic theory arguments (Shen et al. |,
2007). The first-order velocity slip coefficient,
Aj, has been calculated both theoretically and
numerically (Cercignani , 1988; Sone , 2002).
Determining the second-order velocity slip co-
efficient, As, has proven to be a significantly
harder task and most of the results obtained
so far are lacking in two respects. First, these
are usually determined under the hypothesis
of complete accommodation at the solid walls,
primarily because most engineering surfaces
are expected to satisfy this assumption. How-
ever, ascertaining the dependence of the ve-
locity slip coefficients from the accomodation
coefficient would be of practical importance in
analysing and interpreting experimental mea-
surements (Maurer et al. , 2003). Second,
when Kn > 0.1 the slip velocity profiles are
not very meaningful since they are expected
<o d2E, to be valid outside the Knudsen layers which,
i — AsA 42 (1) for this range of Knudsen numbers, comprise

Isothermal gas flows within channels with
small scale geometries have received con-
siderable attention in recent years, due to
their direct relevance to typical micro-electro-
mechanical systems applications (Gad-el-Hak
, 1999). Since in these flows, the mean free
path of the gas particles, ), is of the same or-
der as the characteristic geometric dimension
of the channel, I:, the conventional continuum
approach, namely the Navier-Stokes equa-
tions with stick boundary conditions, breaks
down and one should resort to a descrip-
tion based on kinetic theory (Cercignani |,
1988). However, for moderate Knudsen num-
bers, Kn = S\/IN/ < 0.1, a rigorous asymptotic
analysis of the Boltzmann equation shows
that the non equilibrium regions are confined
to thin regions close to solid surfaces, which
are referred to as Knudsen layers. The flow
field in the bulk, on the other hand, can be
obtained by solving the Navier-Stokes equa-
tions albeit subject to boundary conditions
which prescribe a slip velocity at the solid
walls (Sone , 2002; Hadjiconstantinou , 2006).
By assuming that the solid wall is a fixed plate
and the gas flow is isothermal, the slip bound-
ary condition takes the form

- ~de,
= A1\ §
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a large part of the channel. Slip solutions
may not yield reasonable results but for a few
quantities of engineering interest, such as the
average volume flow rate, as long as the effects
of the Knudsen layers are properly taken into
account (Sone , 2002). Unfortunately the pro-
cedure to correct the velocity slip coefficients
is approximated since it requires to integrate
numerically tabulated functions and, as a con-
sequence, it is often overlooked in engineering
analysis (Hadjiconstantinou , 2006).

The main aim of the present paper is to ob-
tain an accurate expression of the first- and
second-order velocity slip coefficients. The
work is based on the kinetic model equa-
tion proposed by Bhatnagar, Gross and Krook
and, independently, by Welander (BGKW),
with Maxwell’s diffuse-specular boundary
conditions (Cercignani , 1988). The analysis
is carried out for an arbitrary accomodation
at the solid walls and includes also the correc-
tion of the velocity slip coefficients due to the
Knudsen layer structure. The remainder of
the paper is organized as follows. In Section 2,
we briefly introduce the kinetic theory formu-
lation of the Poiseuille flow problem between
two parallel plates. In Section 3, we present
details of the moment method of solution. In
Section 4, we show that the velocity slip coefli-
cients can be determined by direct inspection
of the near continuum solutions. In Section 5,
we develop the method for a given expansion
and we assess the results through comparison
with previously reported values. In Section 6,
we summarize our findings and comment on
the main results of the paper.

2. Poiseuille flow problem

The situation studied is that of an ideal
monatomic rarefied gas confined between two
parallel plates at rest located at § = if// 2.
The plates are fixed and kept at equal tem-
peratures Tp. A uniform gradient pressure,
—K, acts in the Z direction, and it is as-
sumed small enough that the flow can be con-
sidered isothermal and incompressible. The
channel is considered to be infinitely long such
that a full velocity profile can developed. We
choose L and (RTg)l/Z, with R the specific
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gas constant, to define a dimensionless posi-
tion 7 = #/L and velocity v = ©/(RTp), re-
spectively. Likewise the dimensionless time is
given by t = (RTp)"/2/Lt. Since the pres-
sure gradient is taken to be small, that is
K = f([:/ﬁo < 1 with py = ngRT), we are
justified to replace the collision integral of the
Boltzmann equation by the BGKW kinetic
model and write the kinetic equation in its
linearized form

oh 1 /r
—Ug + Uy@ = Kn\/;(2va:‘5m - h) (2)

where h(y,v) is a measure of the perturbation
of the molecular distribution function which
does not depend on the x and z coordinates
because of the symmetry of the problem (Cer-
cignani , 1988). In Eq. (2), the Knudsen
number is based on the mean free path A =
\/m% vV RT, /Do, with fip the gas viscosity
at the equilibrium, and the z-component of
the mean velocity is given by

—+00
& = / fohvado (3)

— 0o
where fo(v) is the unit density equilibrium
Maxwellian

1 2
fo= amp " )

At the solid walls in y = F1/2, we assume
the Maxwell’s scattering kernel (Cercignani ,
1988). Accordingly, the distribution function
of atoms emerging from walls has the follow-
ing expression

h(vg, £vy,v5) = —04\/277/ Johvydv
vy SO
+ (1 — a)h(vg, Foy,vz), vy, >0 (5)

where 0 < o < 1 is the accommodation coef-
ficient, which gives the fraction of molecules
which are diffusely reflected.

For later reference, we report here the volume
flow rate



3. Half-range polynomial solution

The solution of the linearized BGKW ki-
netic model equation subjected to Maxwell’s
diffuse-specular boundary conditions has the
form h(y,v) = v,0(y,vy) (Cercignani , 1988).
Equation (2) can thus be solved by expand-
ing ¢(y,vy) in a complete set of orthogonal
velocity polynomials with space varying coef-
ficients. The boundary conditions, Eq. (5),
however, implies a discontinuity of the dis-
tribution function, or some of its derivatives,
considered as a function of the velocity com-
ponent v,. If the distribution function were
expanded in continuous orthogonal polynomi-
als, it would be necessary to go to high order
to obtain an adequate representation of the
low pressure region and of the boundary con-
ditions. We thus consider the following expan-
sion of the perturbed distribution function

Ny—1
h = v, Z [hy H + hfH (7)
1=0

where hif(y) and H (v,) are the unknown ex-
pansion coefficients and the half-range Her-
mite polynomials, respectively (Gross et al. |
1957; Frezzotti et al. , 2009). Expansion (7)
allows to exactly satisfy the boundary condi-
tions, Eq. (5), for every value of N, and it is
quickly convergent even in the early transition
regime. Substituting Eq. (7) into Egs. (2),
multiplying by fo(v)H;E(vy) and integrating
in velocity, we obtain a set of N coupled
non homogeneous ordinary differential equa-
tions for the IV space varying coefficients, with
N = 2N,. The system of moment equations
written in matrix form reads

dh 1

Ad—y — EBh =a (8)
where h is the NV column vector composed of
the coefficients hii, A is the N x N tridiag-
onal matrix whose entries are the recurrence
coefficients of the half-range Hermite polyno-
mials and B is a N x N nearly identity ma-
trix except for two extra-diagonal coefficients
that couple the moment equations for the neg-
ative and positive half-range (Frezzotti et al.
, 2009). Likewise, the boundary conditions,
Egs. (5), can be rewritten as
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Ch=0 (9)

where C is a N x N sparse matrix whose
entries depend on the accommodation coeffi-
cient. Since Eq. (8) is a linear system of differ-
ential equations with constant coefficients, its
solution can be achieved by assuming a par-
ticular solution of the non homogeneous equa-
tion and then coupling the solution of homo-
geneous equation. The homogeneous equation
is solved by looking for exponential solutions
in the form h = exp (Ay)w where A and w
are constants. This leads to the eigenvalue
problem

Kn

where I is the identity matrix of size N x N.
It is possible to prove that Eq. (10) admits
two zero eigenvalues and N/2 — 1 pair of real
eigenvalues with opposite sign (Huang and
Giddens , 1967). Therefore the complemen-
tary solution exhibits a quadratic form in ad-
dition to the (N — 1)/2 pairs of exponential
solutions. Since the non homogeneous term is
constant, the particular solution is seeked in
polynomial form h, = u1 + usy + uzy?. The
vectors w1, us and ws can be determined by
solving the three systems of linear equations
which are obtained by substituting the partic-
ular solution into Eq. (8) and equating to zero
the terms which multiply 1,y and y2. Overall,
the solution of Eq. (8) may thus be written in
the form

[A_IB - )\I] w=0 (10)

h = uy + ugy + uzy® + bopy + comoy+
N/2-1

Aiy —Aiy
; [blpi exp (Kn) + ¢;m; exp < K )]
(11)

In Eq. (11), \; are the positive eigenvalues,
{p;,m;} are the eigenvectors associated to
the positive and negative eigenvalues, respec-
tively, whereas {py, mo} are the generalized
eigenvectors corresponding to the zero eigen-
value of multiplicity two. Likewise, {b;,¢;}
with ¢ = 0,...,N/2 — 1 are N arbitrary con-
stants which can be determined by the bound-
ary conditions, Eq. (9).




Figure 1: Profile of the mean velocity, &;, through
the half-channel for different values of the accomoda-

tion coefficient, . Solid line: closed form solution,
Eq. (12). Solid symbols: numerical results reported
in (Barichello and Siewert , 1999). § =2; K = 1.

4. Velocity slip coefficients

The substitution of expansion (7) into
Eq. (3), with the expansion coefficients as
given by Eq. (11), yields the x-component of
the mean velocity

T 1
& = K{\/;Knyz + do+

Eq. (12) is an even function of y in accordance
with the symmetry of the problem. The coef-
ficients d;(Kn, o) are rational functions of ex-
ponentials which depend on both the Knudsen
number and the accommodation coefficient.
However, after some algebra, it is possible to
show that when Kn — 0, they asymptotically
behave as

do ~ qo+roKn (13)

Ai
d; ~ N K — 14
[gi + riKn] exp ( 2Kn> (14)

where gi(a) and ri(«), with £ =0,...,N/2—
1, depend only on the accommodation coef-
ficient, a. By virtue of Egs. (13) and (14),
in the limit of a vanishing Knudsen number,
Eq. (12) yields
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| 1 (1 9
ngK\/g[Kn <4‘y > *
A + QKHAQ] (15)

where Aj(a) and As(a) are rational func-
tions of the accommodation coefficient. It is
worth noticing that the exponential terms in
Eq. (12) do not directly contribute to the bulk
velocity profile given by Eq. (15). As a matter
of fact, they are expected to disappear when
Kn — 0 since they represent the Knudsen
layer correction to the continuum solution. In
Eq. (15), A; and Az may be identified with
the first- and second-order velocity slip coef-
ficients. In fact, Eq. (15) is also the solution
of the linearized Navier-Stokes equation

d2§x: K EL
dy? 2 Kn

(16)

subjected to the slip boundary conditions
Eq. (1) which, in dimensionless form, reads

2

£ = :FAlKanfy"” — AyKn? ‘fl;;
at y = £1/2. Both Egs. (16) and (17) have
been written using the dimensionless unit in-
troduced in Section 2.
In order to account for the structure of the
Knudsen layer, the velocity slip coefficients
should be evaluated on the basis of the vol-
ume flow rate instead of the velocity profile.
By substituting Eq. (12) into Eq. (6) and tak-
ing Kn — 0, we obtain

(17)

1 /r 1
~ =K [ — +64
@~ 133 <Kn+6 i

12KnA, — 12Kn2A3) (18)

where As(a) and Asz(a) are rational func-
tions of the accommodation coefficient. The
first three terms in Eq. (18) can also be ob-
tained by integrating the velocity profile as
deduced by the linearized Navier-Stokes equa-
tion, Eq. (16), subjected at y = £1/2 to the
boundary condition given by Eq. (17) with
A in place of Ay. Hence Ay may be iden-
tified with the second-order velocity slip coef-
ficient corrected to account for the structure
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a=0.5 a=10.8 a=1.0
4] Eq. (12) | Ref. [1] | Eq. (12) | Ref. [1] | Eq. (12) | Ref. [1]
0.10 | 3.22401 | 3.22187 | 1.91371 | 1.91466 | 1.43194 | 1.43734
0.30 | 2.67287 | 2.67178 | 1.58928 | 1.58729 | 1.20661 | 1.20383
0.50 | 2.50618 | 2.50625 | 1.48637 | 1.48653 | 1.13246 | 1.13269
0.70 2.43062 | 2.43080 | 1.44135 | 1.44163 | 1.10216 | 1.10251
0.90 | 2.39269 | 2.39277 | 1.42065 | 1.42075 | 1.09010 | 1.09022
1.00 | 2.38166 | 2.38169 | 1.41550 | 1.41554 | 1.08798 | 1.08801
2.00 2.38764 | 2.38760 | 1.44352 | 1.44348 | 1.12777 | 1.12774
5.00 | 2.66893 | 2.66890 | 1.72411 | 1.72409 | 1.40770 | 1.40769
7.00 | 2.89075 | 2.89073 | 1.94181 | 1.94179 | 1.62277 | 1.62276
9.00 | 3.11849 | 3.11848 | 2.16621 | 2.16619 | 1.84503 | 1.84502

Table 1: Volume flow rate, Q, versus the rarefaction parameter, § = y/7/(2Kn), for different values of the accom-

modation coefficient, . Ref [1]: (Loyalka et al. , 1975).

of the Knudsen layer. By virtue of Egs. (13)
and (14), all the exponentials in Eq. (12) con-
tribute terms of order Kn and Kn? to the
volume flow rate when integrated along the
width of the channel. The first-order veloc-
ity slip coefficient is thus the same regard-
less of whether Eq. (15) or (18) is used. It
is worth noticing that by adding the term
A3Kn3d?¢, /dy? to the boundary condition it
would be possible to achieve a volume flow
rate which is second-order accurate in the
Knudsen number. This third-order velocity
slip coefficient, A3, however, has not a physi-
cal meaning, and its only rationale is to pro-
vide a term to match the volume flow rate
given by Eq. (18) at the second order in the
Knudsen number.

5. Results and discussion

The number of expansion polynomials in
Eq. (7) has to be selected to reflect accuracy
needs. Unless otherwise stated, we have set
Ny =8.

We first assessed the accuracy of the velocity
profile given by Eq. (12). Figure 1 shows a
comparison of the mean velocity profile, &;,
through the half-channel for different values
of the accommodation coefficient and § = 2,
being 6 = /m/(2Kn) the rarefaction parame-
ter. Solid lines are the closed form solutions
given by Eq. (12) whereas solid symbols are
the results obtained by numerically solving
the linearized BGKW kinetic model equation

with a discrete ordinate method (Barichello
and Siewert , 1999). The agreement is fairly
good even close to the solid wall where the
polynomial solution is expected to converge
slowly because of the presence of the Knud-
sen layer. In order to proceed with a more
detailed comparison, in Table 1 we show the
volume flow rate obtained by using Eq. (12)
in Eq. (6) and the numerical predictions re-
ported in (Barichello and Siewert , 1999).
Here and in the following, all the results have
been rescaled in order to use the same defi-
nition of mean free path and units as in the
present work. The agreement at best is five
significant figures, but, for the higher Knud-
sen numbers, we have only three figures of
agreement. It is clear that results can be im-
proved to any desired degree of accuracy by
increasing the number of expansion polyno-
mials, N,. However, since we are interested
in evaluating the velocity profiles in the near
continuum limit, i.e., Kn <« 1, the solutions
obtained with IV, = 8 may be considered suf-
ficiently accurate. In any case, it has been
verified that the velocity slip coefficients vary
only a few percent upon increasing the num-
ber of expansion polynomials.

The first- and second-order velocity slip co-
efficients, as given by Eq. (15), are reported
in Table 2 for several values of the accommo-
dation coefficient, . In order to assess the
reliability of the proposed approach, we also
list the values of A; and Ay as deduced by
the numerical, (Loyalka et al. , 1975), and



8rd Micro and Nano Flows Conference
Thessaloniki, Greece, 22-24 August 2011

Ay Ag

a | Eq. (15) | Ref. [1] | Ref. [2] | Eq. (15) | Ref. [2]

0.1 | 19.2989 | 19.2988 | 19.2596 | 0.67273 | 0.66845

0.2 | 9.28085 | 9.28081 | 9.24592 | 0.70835 | 0.70028

0.3 | 5.92979 | 5.92976 | 5.89892 | 0.74348 | 0.73211

0.4 | 4.24569 | 4.24566 | 4.21859 | 0.77812 | 0.76394

0.5 | 3.22853 | 3.22851 | 3.20493 | 0.81228 | 0.79577

0.6 | 2.54498 | 2.54496 | 2.52460 | 0.84594 | 0.82761

0.7 | 2.05216 | 2.05215 | 2.03475 | 0.87912 | 0.85944

0.8 | 1.67865 | 1.67864 | 1.66394 | 0.91181 | 0.89127

0.9 | 1.38476 | 1.38474 | 1.37250 | 0.94401 | 0.92310

1.0 | 1.14666 | 1.14665 | 1.13662 | 0.97572 | 0.95493
Table 2: First- and second-order velocity slip coefficient versus the accommodation coefficient, a.. Ref. [1]: (Loyalka
et al. , 1975); Ref. [2]: (Loyalka and Hickey , 1989).
variational, (Loyalka and Hickey , 1989), so- 14 4 “‘(‘t\)) AR
lutions of the linearized BGKW kinetic model a5 |
equation, which we refer to as Ref. [1] and 136 I
Ref. [2], respectively. Asrevealed by the table, 3 -
the first- and second-order velocity slip coef- 132 r
ficients provided by the different approaches © 250 7
compare quite well. In particular, the first- 128 2; |
order velocity slip coefficient given by Eq. (15) i -
provides the best agreement with the numer- 124 15+ -
ical predictions reported in (Loyalka et al. | i
1975). The results for the second-order ve- 2o Kn‘l eI Kn‘l

locity slip coefficient show larger deviations.
However, we point out that, in the complete
accommodation case, our prediction of As
agrees up to four significant figures with its ac-
curate numerical estimate (Sone , 2002). Low
order Padé approximants of A1, Ay and Ay, A3
are given by

_ 2 —

Ar=A ~27% 1~ a+1.14660) (19)
(6]

Ay =~ —0.0244202 + 0.36352c + 0.63662  (20)

Ay ~ o (—0.04892cx + 0.72716) (21)

Az ~ a (—0.08645c + 1.6204) (22)

Although approximate, Eqgs. (19)-(22) are of
interest in that they readily provide results
which deviate less than 0.1% from the analyt-
ical solutions. Figure 2 shows a comparison
of the volume flow rate versus the Knudsen
number for two different values of the accom-
modation coefficient, o = 0.1 (a) and a = 1.0
(b). Solid line is the closed form solutions ob-
tained by using Eq. (12) in Eq. (6) whereas

Figure 2: Volume flow rate, @, versus the Knudsen
number, Kn, for @« = 0.1 (a) and o = 1.0 (b). Solid
lines: closed form solutions obtained by using Eq. (12)
in Eq. (6). Dashed line: Eq. (18) with A3 = 0. Dot-
dashed line: Eq. (18).

dotted and dashed-dotted lines are the vol-
ume flow rate given by Eq. (18) without and
with the term containing Az. As it is clearly
shown, slip solutions match the volume flow
rate up to about Kn=0.2, whereas, for higher
Knudsen numbers, they quickly deviate.

6. Conclusion

First- and second-order velocity slip coef-
ficients, A; and A, as well as the Knud-
sen layer correction of the latter, Ay, have
been obtained by solving the plane isother-
mal Poiseuille flow problem on the basis of
the linearized BGKW kinetic model equation,



Eq. (2), and the Maxwell’s scattering kernel
with an arbitrary accomodation at the wall’s
surfaces, Eq. (5). The velocity slip coeffi-
cients have been obtained by firstly expand-
ing the distribution function in terms of half-
range Hermite polynomials in order to explic-
itly account for the discontinuity induced by
the solid walls, Eq. (7). By taking weighted
averages over the particles velocity, the lin-
earized BGKW kinetic model equation is then
reduced to a system of linear ordinary differ-
ential equations in the expansion coefficients,
Eq. (8), which is solved by finding the eigen-
values and eigenvectors of the coefficient ma-
trix. Finally, the velocity profile and the vol-
ume flow rate are evaluated in the near con-
tinuum limit, Eqgs. (15) and (18). The velocity
slip coefficients are obtained by direct inspec-
tion of these asymptotic solutions. In particu-
lar, Eq. (18) has suggested to introduce beside
the first- and second-order velocity slip coef-
ficients, a third coefficient, A3, by means of
which it is possible to achieve a volume flow
rate which is accurate to the second order in
the Knudsen number. Low order Pade ap-
proximants of the dependence of the velocity
slip coefficients from the accommodation co-
efficient are then determined. The main re-
sults are summarized by Egs. (19)-(22). In
comparison with previous studies on this sub-
ject, the current approach provides the veloc-
ity slip coeflicients with a good accuracy in
the entire range of the accommodation coeffi-
cient. The difficulties encountered by umeri-
cal studies in evaluating the second derivative
of the tangential velocity in the normal direc-
tion to the surface are avoided as well as the
need to integrate numerically tabulated func-
tions to include the contribution of the Knud-
sen layer. Moreover, it is not necessary to
determine suitable test functions as requested
by variational methods. The results obtained
encourage to further developments. In par-
ticular the extension of the present approach
to the Boltzmann equation and more general
gas-surface scattering kernels is currently un-
der investigation.
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