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Abstract We present a new hybrid methodology for carrying out multiscale simulations of flow

problems lying between continuum hydrodynamics and molecular dynamics, where macro/micro

lengthscale separation exists only in one direction. Our multiscale method consists of an iterative

technique that couples mass and momentum flux between macro and micro domains, and is tested

on a converging/diverging nanochannel case containing flow of a simple Lennard-Jones liquid.

Comparisons agree well with a full MD simulation of the same test case.
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1 Introduction

The well established and traditional approach
to solving fluid dynamic problems is to use con-
tinuum models, such as the Navier-Stokes (NS)
equations (with no velocity slip at bounding
surfaces). The NS equations work remarkably
well for many cases, ranging from extremely
large systems, such as flows around subma-
rine hulls, right down to tiny systems, such
as flows through capillaries. However, when
the characteristic length-scale of the problem
approaches an atomistic scale, the physics of
the flow requires a more accurate molecular
approach, such as molecular dynamics (MD).
The major problem is that MD is too compu-
tationally intense to simulate reasonably large
length and time-scales (e.g. micro-scale). De-
spite this limitation, simple Newtonian liquids
at these scales show non-continuum phenom-
ena occur only in proximity to surfaces [1–3].
In the bulk, the NS equations can be safely
applied [4]. The problem in the last decade
has therefore been how to deploy a multiscale
physics methodology that bridges the gap be-
tween the micro and macro scales.

Hybrid methods can be loosely categorised
into: (a) domain-decomposition techniques [5–
8] and (b) heterogeneous multiscale method-
ologies (HMM) [9, 10], see Fig 1. Domain-
decomposition techniques divide the compu-
tational domain into micro and macro sub-
domains with an overlapping region at the two
interfaces that serves for mutual coupling. The
disadvantage of this approach is that it de-
couples length-scales, but not time-scales: the
micro sub-domain still needs to be integrated
over the same time-scale as the macro solver.
Larger systems imply longer integration times
to reach steady state, so the method is gener-
ally practical only for small systems in steady
state. The HMM approach aims instead to de-
couple both length-scales and time-scales by
distributing micro sub-domains on nodes of the
macro domain (which is the whole domain),
and running the micro and macro solvers on
different clocks. The HMM approach is well
suited to largely scale-separated systems.

In this paper we present a new multiscale ap-
proach similar to the HMM but with the dif-
ferences shown in Fig 2, in this case applied
to a converging/diverging nanochannel case.
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Figure 1: Schematics of (a) the domain decomposition method, and (b) the HMM.
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Figure 2: Illustration of our multiscale technique applied to a converging/diverging nanochannel
case. Scale-separation is exploited in the x−direction by distributing MD sub-domains with
a top and bottom wall (molecular type) and coupled in a multiscale framework by applying
hydrodynamic constraints.
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The method exploits directional scale separa-
tion (in the figure, denoted by the x−direction)
to simulate multiscale flows through channels
of generally long aspect ratios.

2 Simulation method

The multiscale method we present here is
for tested on an axially-periodic converg-
ing/diverging channel flow, driven by a
gravity-type force. The full MD simulation of
the case requires a constant force f ext = F n̂x

applied to all liquid molecules in the domain,
where n̂x is the direction vector in the axial x-
direction. Cyclic boundary conditions are ap-
plied at the inlet and outlet in order to impose
an axially repeating geometry.

The multiscale setup of this case is illus-
trated in Fig 2. There are Π MD sub-domains
defined in the multiscale simulation, each with
different xi−positions, where i (1,. . . ,Π) is an
arbitrary MD box. The length of the channel
is denoted by L and the separation between
MD sub-domains is ∆L(x). For purposes of
simplicity, we assume that the channel is sym-
metric so that Π only covers one side (converg-
ing or diverging) of the channel such that the
channel height of the ith MD simulation box is
given by:

hi = hthroat +
hthroat(i− 1)

Π− 1
, (1)

where hthroat is the height of the throat at
which the converging and diverging parts of
the channel meet.

2.1 Molecular dynamics

The micro simulations are described by molec-
ular dynamics [11, 12]. We use mdFoam [13–
15], a parallelised non-equilibrium MD solver
that is open-source and available to down-
load from [16]. Molecule positions rk(t) =
(xk, yk, zk), and velocities vk(t) = (uk, vk, wk)
evolve according to Newton’s equation of mo-
tion:

d

dt
rk = vk(t), (2)

mk
d

dt
vk = fk + f ext, (3)

where k = (1, . . . , N) is an arbitrary molecule
in the system, mk is the molecule mass, f ext is
an external force, and fk is the total force due
to interacting molecule neighbours:

fk =
N∑

j=1(6=k)

∇U(rkj). (4)

The interaction potential U(rkj) between
liquid-liquid and solid-liquid molecules governs
the physics of the flow. In this paper we sim-
ulate monatomic liquid argon using the 12-6
Lennard Jones (LJ) potential:

U12−6(rkj) = 4ε

[(
σ

rkj

)12

−
(
σ

rkj

)6
]
, (5)

where ε = 1.6568 × 10−21J and σ = 0.34 ×
10−9m are the potential’s characeristic energy
and length scales, and rkj = |rk − rj| is the
separation of two arbitrary molecules within a
cut-off radius rcut = 4σ.
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Figure 3: MD simulation box.

The MD simulation boxes for the multi-
scale method (see Fig 3) are of identical sizes
(∆X = ∆Z = 20σ) except the cross-channel
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height, which varies according to Eqn. (1). The
walls of thickness, 6σ are modelled as ‘frozen’
wall molecules that interact with the liquid us-
ing the same LJ parameters. Periodic bound-
aries are applied in the x− and z−directions
of the simulation box, and an external force
f ext = f extn̂x applied to all liquid molecules
drives the desired flow. A Berendsen thermo-
stat [17] is imposed on the MD box that sets
the temperature at T = 87K, in order to re-
move heat generated by the work done by ex-
ternal forces.

2.2 Hybrid approach

There are three macroscopic conditions that
constrain the micro MD simulations:

1. periodicity,

2. continuity, and

3. momentum conservation.

2.2.1 Momentum conservation

For the steady and incompressible case we are
considering in this paper, the conservation of
momentum equation is:

ρFnx = −∇p+∇ · σ, (6)

where F is the axial applied force, ρ is the num-
ber density, p is the pressure and σ is the shear
stress.

In the MD micro elements the momentum
balance is:

ρf ext = ∇ · σ. (7)

The pressure gradient term in Eqn. (6) does
not feature in Eqn. (7) due to the streamwise
periodicity of the micro MD domains. It is
highly complex to prescribe such a pressure
gradient directly, and so here we impose it in-
directly through the external forcing:

ρf ext = ρF n̂x +∇p. (8)

Substituting Eqn. (8) into Eqn. (7) yields the
desired momentum Eqn. (6). If we integrate
Eqn. (8) over the channel length, the pressure

gradient term is removed (because we have im-
posed periodicity at inlet and outlet), and we
are left with a convenient constraint on the ex-
ternal force, f ext:

1

L

∫ L

0

f extdx = F n̂x = F, (9)

where L is the length of the channel. Equation
(9) states that the spatial mean of the compu-
tational forces in each micro simulation, must
be kept equal to the physical gravity force,
F = f̄ ext.

2.2.2 Continuity

Continuity requires that the mass flow rate, ṁ,
must be the same for all the micro elements.
This can be enforced by appropriately modify-
ing the axial variation of f ext(xi) (while ensur-
ing that the mean value of the force is equal to
F , in accordance with above).

Since force is roughly proportional to mass
flow rate, a simple proportional estimator for
the correct axial variation can be used, which
we outline in the multiscale algorithm de-
scribed next.

2.3 Multiscale procedure

The solution to the multiscale problem is an
iterative one, which involves solving the con-
tinuity and momentum conservation equations
across all the detached MD sub-domains. The
iterative procedure is outlined in the following
steps:

1. Assign an initial force f
(n=0)
i = F to all Π

micro simulations. (Note the direction of
the force points in the x-direction: f exti =
finx).

2. Simulate all Π simulations for τm molec-
ular time-integration steps, until steady-
state is reached.

3. Measure the mean mass flow rates ṁi over
S statistical number of samples:

ṁi =
1

S∆X

S∑
t=1

Ni∑
k=1

mkvk(t) · nx, (10)
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where Ni are the number of molecules in
the ith MD simulation, mk,vk(t) are the
molecules mass and instantaneous velocity
respectively and ∆X is the x−direction
size of the MD box.

4. Take the mass flux from the smallest chan-
nel height and set it as the target mass
flux, ṁT = ṁs(hs ≤ hi).

5. At the new iteration step, n = n+1, com-
pute the new forces that satisfy mass and
momentum conservation:

f ∗i = f
(n)
i

ṁT

ṁi

, (11)

∆F = F − 1

L

∫ L

0

f ∗i dx, (12)

f
(n+1)
i = f ∗i + ∆F, (13)

where L is the length of the channel and
∆F is a measure of the global force con-
vergence.

6. Repeat from 2, until convergence (i.e.
∆F = 0, and ṁi = ṁT ). For practicality,
convergence is assumed when ∆F varies
between ±0.02× 10−12N over several iter-
ations.

3 Results

For the purpose of this paper we consider
a nano-scale converging/diverging channel of
length L = 60σ. The multiscale simulation
consists of 5 streamwise distributed MD sub-
domains, which are reduced to 3 because the
converging/diverging channel is symmetric at
the throat; only channel heights from inlet
to throat are taken. The channel heights of
the micro-simulations are 8σ, 6σ and 4σ re-
spectively, which are separated uniformly by a
spacing of ∆L = 15σ.

A full MD simulation of the same test case
is also carried out in order to validate the mul-
tiscale simulations, see Fig. 5. A gravitational-
like force, f ext = 1.22 × 10−12N is applied to
generate flow across the full MD system. Five

measurement planes are placed in the stream-
wise channel, with same 15σ spacing as in the
multiscale simulation, for direct measurements
of mass flux. The net mass flow rate at a
plane is measured by averaging the number
of molecules which cross it over a prescribed
time period; molecules which cross in the pos-
itive x−direction are counted as positive and
those which cross in the opposite direction are
counted as negative. The average mass flow
rate was calculated to be (67.81 ± 1.5×)10−12

kg/s.
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Figure 4: Convergence results from the mul-
tiscale procedure: (a) global force variations
and (b) mass fluxes from i MD boxes, against
iteration number n.

Results from the multiscale simulation show
that convergence is obtained over a very short
number of iterative steps (n ∼ 3−4), as seen in
Fig. 4(a) for the force term, ∆F in Eqn. (12).
Figure 4(b) also verifies that the mass flux in
the three individual MD boxes converge to the
value calculated in the full MD simulation.

We plot the spatial variation of forces and
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mass fluxes in the streamwise direction of the
converging/diverging channel in Fig. 6. We
see that the mass fluxes converge to a uniform
value in all streamwise xi positions, coinciding
with the planar flux measurements from the
full MD simulation. Furthermore, Fig. 6(b)
shows the converged non-uniform axial force
distribution f ext(xi) for enforcing continuity in
all micro elements.

To assess the computational advantage of
our multiscale method over full MD we con-
sider the following criteria based on spatial
and temporal decoupling. Separation of spa-
tial scales will yield a computational advan-
tage if ∆L/L � 1 (i.e. the spacing of mi-
cro simulations relative to the total length
of the channel), ∆X/∆L � 1 (overlapping
micro simulations in the x−direction), and
2∆Z(hinlet − hthroat)/L � 1 (the rate of vari-
ation of channel cross sectional area). In our
test case we get the following values respec-
tively, 0.25, 1.33 and 0.42.

Time-scale separations may be assessed by
evaluating the relaxation time of the flow to
reach steady-state after the external force is
imposed. The basic criteria should then be
τmicron/tmacro � 1. For the full MD simulation
tmacro ∼ 1.3ns, while for the small MD boxes
τmicro ∼ 0.1ns (and another 0.1ns to achieve
the necessary statistics when computing mass
flux). The value for time-scale separation is
0.46.

Although most of the scale-separation val-
ues are below 1 (except the criteria for over-
lapping micro simulations), they are still not
much less than 1, to achieve desirable speed
up. We expect that by increasing the chan-
nel length L and keeping the height at the in-
let/outlet and throat the same, we would get
much larger scale separations, and therefore
much larger computational savings using our
multiscale approach.

4 Conclusions

We have presented a new multiscale iter-
ative algorithm for coupling hydrodynamics
and molecular dynamics through constraints

of continuity and momentum. The iterative
scheme was tested on an axially-periodic con-
verging/diverging nanochannel, with a flow
driven by a gravity-type force. The axial mass
flow rate in the multiscale simulation agreed
well with measurements taken from a full MD
simulation of the same test case. Although
small computational savings were observed for
the small case considered in this paper, it is
predicted that the full potential of this tech-
nique will be seen in larger (more realistic) sys-
tems, where substantial scale separations exist.
The application of the method on GPUs

The multiscale method described in this pa-
per is applicable to arbitrary-shaped nano-
channels, so long that there exists spatial scale
variation in one direction. The method may
be used to study the fast transport of water
in micro-scale long carbon-nanotubes of nano-
scale diameters [18], or to study bifurcation
laws for designing micro- and nano-fluidic de-
vices [19].
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