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Abstract

This paper describes initial results from a novel low
dimensional surface parameterisation approach based on
a modified Iterative Closest Point (ICP) registration pro-
cess which uses vertex based Principal Component Analy-
sis (PCA) to incorporate a deformable element into regis-
tration process. Using this method a 3-D surface is repre-
sented by a shape space vector of much smaller dimension-
ality than the dimensionality of the original data space vec-
tor. The proposed method is tested on both simulated 3-D
faces with different facial expressions and real face data.
It is shown that the proposed surface representation can
be potentially used as feature space for a facial expression
recognition system.

1. Introduction

Surface representation, modelling and manipulation
have been for many years of great interest to computer
graphics community, where they have been developed and
used primarily in computer aided design as well as for effi-
cient representation and rendering of generic scenes. More
recently these techniques have been adopted by computer
vision community to help solve problems related to re-
verse engineering, image base rendering, human appear-
ance modelling , volume segmentation and object recogni-
tion. This paper proposes a novel approach to low dimen-
sional surface parameterisation based on principal compo-
nent analysis (PCA) and iterative deformable surface reg-
istration. The low dimensional surface parameters can be
considered as intrinsic features for 3-D surface classifica-
tion including facial expression recognition.

The objective of surface modelling is to model the data
by different surface representations. Surface representation
methods can be mathematically classified into three cate-
gories: implicit surfaces, explicit surfaces and parametric
surfaces [12]. Implicit surfaces are often used in com-
puter vision and computer graphics to model evolving in-

terfaces. Explicit surface are axis dependent and cannot ad-
equately represent multiple-valued functions. In compari-
son the parametric surfaces, such as radical basis functions,
spherical harmonics functions, Bezier and B-spline func-
tions, are extremely flexible, axis independent, and can rep-
resent multiple-valued functions.

The purpose of registration of 3-D surfaces is to find
transformation which aligns two or more surfaces. Accord-
ing to the choice of transformation model the registration
can be classified as rigid or deformable. Based on the simi-
larity criterion, the registration can be: feature, point, model
or global similarity based. Feature-based methods attempt
to register surfaces based on a set of features which pro-
vide a compact description of the surface shape, such as
principal curvatures, local peaks, pit and saddle points [5].
However, most of the feature-based methods can only work
when the deformation between surfaces is very small or
there is no deformation at all. Point-based methods regis-
ter surfaces using relatively dense data sets. An example of
such method is the iterative closest point (ICP) method [6]
used to register surfaces by iteratively minimizing a global
cost function. Chui et al [8] modified the ICP methods by
using a non-rigid transformation model, such as affine and
thin-plate spline, instead of rigid body transformation, to
achieve the deformable surface registration. The basic idea
of model-based methods is to physically model an object
by using internal and external virtual forces [11]. It is often
used to track deformations of surfaces over time. Global
similarity methods use the spin image [10] or shape context
[4] but they are not well suited for surface registration with
large deformation.

The method proposed in this paper uses a shape space
parametric representation to model surface deformations.
The shape space is constructed using principal component
analysis (PCA) computed for typical surfaces represented in
a training data set. The shape space is closely linked to so
called Point Distribution Model (PDM) which is pioneered
by Cootes et al [9]. A modified ICP is used to calculate cor-
respondence, for dense set of points defined for each sur-
face, and subsequent surface registration with deformations
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defined by the constructed shape space. The authors con-
sider the use of the shape space to incorporate a deformable
element into the ICP registration as an original contribution.
The remainder of the paper is organised as follows: Sec-
tions 2 briefly describes the surface shape space; Sections 3
describes the modified ICP and the registration procedure;
This is followed by evaluation of the method in Section 4.

2. Surface Model

In order to achieve a low dimensional surface parame-
terisation, the statistical surface model is built first. The
model is learnt from a training data set of 3-D sim-
ulated surfaces representing human faces generated by�������
	�����������
�������
�

[13]. Using a standard PCA [3],
each 3-D surface can be approximately represented in a low
dimensional feature or shape vector space [7] instead of the
original high dimensional data vector space. Given a train-
ing data set of � surfaces, �������! #"%$'&'&'&�$(�*) , each con-
taining


points on its surface ����+-,/.10 , where ��� are

vertices of the �3254�6 surface, and assuming that vertices
on each surface ��� are in correspondence. The first step of
PCA is to construct the mean shape vector � for the training
data set. �� "� 78 � 9;: ��� (1)

Let < be defined as the covariance matrix calculated from
the training data set<= "� 78 � 9;: �>���?2 ��)��>���@2 ��)BA (2)

By building a matrix C of “centered” shape vectors with���;2 � as the �D2E4�6 column of matrix C , the covariance
matrix < is defined as <� 5CGF'C A (3)

where matrix < has H  rows and columns. Since the num-
ber of surfaces � in the training data set is smaller than the
size of data vector, the eigen decomposition of matrix < is
performed by finding eigen decomposition of matrix <�ID C A C . The first � largest eigenvalues JK�(���L M"%$'&'&'&�$(�*)
and eigenvectors NO�(���P Q"%$'&'&'&�$(�*) of the original covari-
ance matrix < are then determined respectively byJR�; -J I� (4)NK�� CGF�NKI�S CGF�N I� S (5)

where JRI� and NKI� are respectively eigenvalues and eigenvec-
tors of matrix </I . By using these eigenvalues and eigen-
vectors, each shape in the training data set can be approxi-
mately represented using a linear model of the formT���; 5U�VW�KX � (6)

where the so called “Shape Matrix” UY [Z N@:
$'&'&'&'$�NK\^] isH `_ba
matrix of

a
eigenvectors associated with the firsta

largest eigenvalues, “modes of variation”, of matrix < .
The shape space vector V������c d"%$'&'&'&�$(�*) controls the con-
tribution of each mode of variation in the approximation
surface [7].

Figure 1. First 20 training faces

Figure 2. 5 eigenfaces and mean face

In order to obtain a correct statistical model, points on
each surface from the training data set must be in corre-
spondence. This is essential, since incorrect correspon-
dence can either introduce too much variation or lead to
illegal instances of the model. As

�������
	�����������
���������
provides the correspondence information for the training-
faces, therefore its estimation for simulated data set is



not needed. The database consisted of 100 3-D faces
with various expression from the same individual. Fig-
ure 1 shows the first 20 faces in the database produced by�������
	�����������
�������
�

. Figure 2. shows the mean face and
five other faces obtained as a superposition of the mean face
and five largest eigenfaces. These five largest eigenfaces
capture about e%fg& h�i of the variation of the facial structure
in the database

3. Modified ICP Registration

The ICP was first proposed by Besl and McKay [6], and
it is most widely used point-based surface matching algo-
rithm. In the proposed method, a modified ICP registration
process is used to establish the correspondence between a
new surface and the statistical model built using the method
described previously. Two major phases are involved in the
modified ICP, which are initial and fine alignment.jlknm�kcoqpsr�t�r>u�v�wxvnr>yzps{}|Op;t

In this step, the classical ICP method is used to achieve
initial alignment between the new surface and the mean
shape of the statistical model. The whole procedure iter-
atively refines the alignment by alternately choosing corre-
sponding points and finding the best similarity transforma-
tion that minimizes a cost function based on the distance
between the corresponding points. The cost function is de-
fined by ~  78 � 9;: � N I� 2��>�D,sNK�RX���) ��� (7)

where NKI� ���� G"%$'&'&'&�$(�*) is the corresponding points in the
new surface which are associated with the mean shape of the
statistical model, and NO�(���D �"%$'&'&'&�$(�*) is the mean shape of
statistical model (here, NOI� and NK� are considered as H _ " vec-
tors). , is a H _ H rotation matrix, � is a translation vector��H _ " column matrix) and � is a scaling factor. According
to the algorithms in [2][14], , , � and � are calculated as
follow:

1. From the point sets, �(NO��� and �(NKI� �����b �"%$'&'&'&�$(�*) ,
compute the mean vectors, N and N I , using

Nb "� 78 � 9;: NK� (8)

N I  "� 78 � 9;: N I� (9)

2. Calculate �'� and ��I� ���z ="%$'&'&'&�$(�*) using�� �NK�?2 N (10)� I  �N I� 2 N I (11)

3. Calculate the matrix � using

�� 78 � 9;: �'�>� I A� (12)

4. Find the SVD of � �� }���l��A (13)

5. Calculate C� }���/A (14)

6. Compute the rotation matrix using,� ����l��A (15)

�x ���� If
��� 4���C�)l }X�"� � �%� �B"%$'&'&'&W$'"%$'2�"
) If
��� 4���C�)l �2�"

(16)

7. Find the translation vector and scaling factor using�- N I 2x, N (17)

�x 4 � ��U�U�I A ,�)4 � ��U�U A ) (18)

where U� �Z N A : $'& & & $�N A7 ] A and U�I@ �Z NKI A: $'& & & $�NKI A7 ] A areH _ � matrix.

The result of the initial alignment of a new face and the
mean shape is shown in Figure 3. Figure 3(a) shows the
shape of the new surface which has extreme fear expression,
and the mesh in the middle of the figure indicates the mean
shape of the statistical model. Figure 3(c) illustrates the new
surface and transformed mean shape. Although they are lo-
cally misaligned, due to different facial expressions (see the
mouth and eyes regions), they are globally well aligned.

Figure 3. Result for initial alignment: (a) new
face, (b) mean Shape, (c) alignment of mean
shape and new face



Figure 4. Closest distance distribution before
alignment

Figure 5. Closest distance distribution after
alignment

The closest points distance distribution before and after
the initial alignment are shown in Figure 4 and Figure 5, re-
spectively. It can be seen that the maximum closest dis-
tance between the new surface and mean shape is reduced
from around �%�q�b� (prior to the initial alignment) to "��q�b�
(after initial alignment), and the average closest distance is
reduced from h��%�b� to �q�b� .jlk��zkc �rnp¡|5wxvnr>yzps{}|Op;t

Due to the existing deformation between the new sur-
face and the mean shape, the classical ICP can only pro-
vide an initial alignment. The fine alignment performs

least squares projection of the new surface onto the low-
dimensional shape space. The ICP and the least squares
projection are preformed iteratively in turn till the align-
ment error can not be reduced any more. Effectively this
process is equivalent to correspondence search. The details
of the fine alignment algorithm are explained below.

1. Starting with the initial alignment, the similarity trans-
formation and the corresponding points between new
data and the mean shape are calculated by classical
ICP.

2. �Y+=,/.10 is a vector of


3-D points representing
new face which is projected onto the shape space. The
mean vector � and shape matrix U are obtained from
Equation 1.The new shape space vector V is calculated
using the least-squares method.

Vc 5U A �>��2 ��) (19)

3. A deformed new surface is generated using Equation 6.

4. Repeat above steps until the rate of change for RMS
distance of closest points falls below a preset threshold¢ .

The fine alignment achieves the deformable registration be-
tween the new surface and the mean shape which is shown
in Figure 6. It shows that the mean shape is deformed in Fig-
ure 6(b) and well aligned with the new surface not present
in the training set in Figure 6(c). The corresponding dis-
tribution of the closest point distance is shown in Figure 7.
After fine alignment maximum closest distance is just above£ �b� with average closest distance of "%& £ �%�b� .

Figure 6. Result for fine alignment: (a) new
face, (b) aligned mean shape, (c) alignment
of mean shape and new face



Figure 7. Closest distance distribution for
fine alignment

4. Experiment and Results

Two types of data are used in the experiments.
The first one is the simulated data generated by�������
	�����������
�������
�

containing various facial expression
for the same individual. The second is the measured data of
a face with neutral expression captured by a H ���¤!� [1]
3-D scanner.¥¡knm�k�¦lrn{5§sv>u?t%|K¨d©�u?t%u

The simulated test data consists of "�� faces from the
same individual and divided into 4 different groups of ex-
pression which are anger, disgust, fear and smile. Figure 8
illustrates these various expressions. The statistical model
used is described in Section

£
, the eigenfaces and the mean

face are shown in Figure 2. After modified ICP registration,
the shape space vector of each face is given. Each shape
space vector contains 5 coefficients V�:
$'&'&'&�$1VWª . In order to
graphically represent the obtained shape space vectors, the
first 3 coefficient V�: , V � and V . are plotted in Figure 9 and
Figure 10. It can be seen that the first three elements of the
shape space vectors for different expressions occupy well
defined disjoint parts of the space and are approximately lo-
cated on the same line defined by the expression type. This
is an indication that shape space vectors can be potentially
used for classification of facial expressions.¥¡k��zk^«¬|Ku@%§¡®�|O{}|Op;tx©�u?t%u

In order to test that the proposed method can also be used
with real measurement data, a human face with neutral ex-
pression has been captured using the H ���¤ scanner. The

acquired data is shown in Figure 11(a). This time, the statis-
tical model is built using 100 faces of different individuals
with all having neutral facial expressions. As before the
data is generated by the

�������
	�����������
���������
software.

Figure 11 illustrates the result of applying the modified ICP
to real data. Figure 11(e) ¯ (i) show the spatial distribution
of points based on the value of the corresponding closest
distance. The average closest distance from the registered
mean shape to the measurement data is around �q�b� . The
average closest distance between the mean shape and the
initially aligned real data is about "�eq�b� .

Figure 8. Simulated test faces

Figure 9. Representation of the first three el-
ements of the shape space vector for test
faces from Figure 8(a) V': Vs V � , (b) V � Vs V . ,
(c) V . Vs V':
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Figure 10. All three elements of vector V from
Figure 9 displayed on 3D graph

Figure 11. Results for real measurement data:
(a) texture of real data, (b) surface of real
data, (c) mean shape, (d) registered mean
shape, (e) closest distance ° £ �b� , (f) °±�%�b� ,
(g) °��q�b� , (h) °²fq�b� , (i) °�"��q�b�

5. Conclusions

Initial results from a novel low dimensional surface pa-
rameterizations method have been described. The method
is based on combination of the iterative closest point (ICP)
method and projections onto the shape space defined by the
principal component analysis (PCA). The proposed method
is capable of efficiently representing a surface using a small

number of coefficients in a shape space vector rather than
a large number of data points. The shape space vector is
shown to provide the features that can be used for clas-
sification of facial expression. Further improvements of
the method include building a hierarchical system for face
recognition where firstly face type is decided upon and
subsequently the facial expression is searched using shape
space extracted from the facial expression database con-
structed for a specific face type. Additionally instead of
using directly data points (surface vertices) to build the face
space, the use of control points of the B-spline surface rep-
resentation in construction of the shape space will be inves-
tigated.
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