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Abstract

This thesis presents a study of multiple phenomena that exist within the solar corona.

The structures explored in this work cover a range of sizes from a small-scale X-ray

bright point (<10 Mm), to medium-scale coronal loops (10–100 Mm), and finally to

a large-scale prominence (>100 Mm). Observational data and numerical simulations

were utilised in order to investigate the structure and evolution of each type of feature.

A small-scale X-ray bright point (XBP) was investigated using complete Hinode obser-

vations in order to examine it over its entire lifetime (∼12 hours). The XBP was found

to be formed directly above an area of cancelling magnetic flux on the photosphere.

A good correlation between the rate of X-ray emission and decrease in total magnetic

flux was found. The magnetic fragments of the XBP were found tovary on very short

timescales (minutes), however the global quasi-bipolar structure remained throughout

the lifetime of the XBP. Electron density measurements wereobtained using a line ra-

tio of Fe and the average density was found to be 5±1x109cm−3 with the volumetric

plasma filling factor calculated to have an average value of 0.04±15%. Emission mea-

sure loci plots were then used to infer a steady temperature of log Te[K] ∼ 6.1±0.1. The

calculated Fe Doppler shifts show velocity changes in and around the bright point

of ±15 kms−1 which are observed to change on a timescale of less than 30 minutes.
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The results indicate that higher cadence spectroscopic measurements are required if the

velocity flows are to be related to corresponding changes in the magnetic field.

The next feature investigated was a 100 Mm multistranded coronal loop that was sim-

ulated in order to investigate how changing the various model parameters would affect

the resulting differential emission measure (DEM) distributions and intensity values.

Once the model was fully understood, it was used to test a DEM solver and quantify

the ‘goodness-of-fit’ that could be achieved. This allowed the limitations of the DEM

method to be understood. As the model parameter space was altered, a number of

changes in the resulting synthetic DEMs were observed. In most cases these changes

were subtle and could be explained by the changing physics ofthe system. The cooling

simulation showed the most unique changes where the total energy of the system could

be identified by examining the evolution of the intensity values and DEM shape. The

iterative solver solution XRTDEM iterative2 did an excellent job of reconstructing the

original model intensity values and DEM distributions in the majority of cases. The

only instance where the solver did not do well was when the synthetic DEM was very

narrow i.e., only covering a few temperature bins. This highlights the under-constrained

problem of using DEM solvers and shows that this particular solver works best when

the original DEM being reconstructed is smoother and more multithermal.

Finally, a large-scale prominence eruption was investigated using observations from two

points of view. The structure and evolution of the prominence material and cavity were

examined over the eruption process. Many possible initiation methods were investigated

to see if the cause of the prominence eruption could be pinneddown. It was found

that the polar-crown cavity could be defined as a density depletion sitting above denser

polar-crown filament plasma which has drained down from the cavity due to gravity.

The eruption of the polar crown cavity as a solid body can be decomposed into two

phases: a slow rise at a speed of 2±0.2 km s−1 , and an acceleration phase at a mean

speed of 15–25±0.6 km s−1 . The initiation of the prominence was concluded to be

caused by a combination of mass un-loading and a type of kink instability.
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Chapter 1

Introduction

This thesis presents results concerning the dynamics and evolution of various phenom-

ena of the solar corona. The features analysed cover a range of sizes from small-scale

(<10 Mm), to medium-scale (10–100 Mm), and finally to large-scale (>100 Mm). These

structures take the form of observations of an X-ray bright point, modelling of multi-

stranded coronal loops, and observations of a large prominence eruption. These three

features are different in terms of their scale, origin, evolution and dynamics but they all

form part of the corona - a highly complicated and interconnected region of the solar at-

mosphere. Similar use of satellite observations, data analysis techniques and evaluation

methods were employed in each investigation which allowed acommon thread to link

the different features.

This chapter gives a general introduction to the Sun, particularly the corona, while more

thorough introductory material is presented at the beginning of each of the main chap-

ters.
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1.1 The Sun

For the entire span of human history, mankind has been enraptured by the beauty and

complexity of the Sun. It has played an important role in the myths and religion of

many ancient civilisations, who viewed the Sun in awe. Todaywe know that the Sun

is the same as the millions of stars seen in the night sky - a sphere of hot ionized gas

powered by nuclear fusion that releases energy in the form ofelectromagnetic radiation.

A slightly less romantic description but one that many scientists have spent their lives

trying to understand further.

Figure 1.1:Left: Continuum image from the SDO/HMI instrument showing the surface
of the Sun with few sunspot groups taken on the 9 March 2012. Image credit: NASA.
Right: Small field-of-view image showing a different sunspot group on the 15 July
2002 by the Swedish 1-meter Solar Telescope. The distance between the tick marks is
1000 km.

The left panel of Figure 1.1 shows a familiar view of the Sun with a smooth yellow disc

and a couple of dark sunspot groups. The right panel shows an image taken with the

Swedish Solar Telescope of a close up of a similar sunspot group. To put these sunspots

in perspective, their sizes are on a par with the size of the Earth. The granulation pattern

seen in this image gives an indication that the surface of theSun is not as quiet as it

appears in the left-hand figure. The granulation is observational evidence of convective

motions at work in the upper part of the solar interior, and the sunspots are evidence of
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regions of intense magnetic field. This gives a glimpse at thecomplicated nature of the

Sun which is explained in more detail in the rest of this chapter.

1.1.1 Overview

The Sun is a spectral class G2V star meaning that it is on the main sequence and has a

surface temperature of around 5778 K. These features make the Sun an ‘average’ star

which is about half-way through its main sequence stage. TheSun was formed around

4.7 billion years ago and has an average diameter of 1.392 x 106 km making it 109 times

wider than the Earth. The Sun-Earth distance defines the unitof AU (astronomical unit)

and has a mean value of 149,600,600 km.

Figure 1.2: Series of full-disc images taken with the SoHO/EIT instrument in the
284Å waveband. As time progresses over the 11 year solar cycle it can be seen that the
activity levels on the Sun (indicated by the number and size of the active regions) goes
from a minimum value to a maximum (in 2001) and then back to a minimum again.

The internal dynamo mechanism of the Sun powers its complicated magnetic field. Un-

like the simple bipole-type magnetic field of the Earth, the differential rotation of the

Sun causes its field to wind up and intensify. The five stages ofthis process are described

by the Babcock-Leighton model (Babcock 1961; Leighton 1964).

The level of magnetic activity on the Sun (i.e., indicated bythe sunspot number) is not

3
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constant and varies on a cycle of around 11 years. Figure 1.2 shows observations of the

solar cycle by the SoHO satellite where the activity can be seen to go from a minimum

in 1996 to a maximum in 2001 and then back to a minimum.

1.1.2 Composition

The mass of the Sun is around 1.989 x 1030 kg which accounts for 99.86% of the total

mass in the solar system. Its chemical composition is made upof hydrogen (∼75%) and

helium (∼24%) with other metals making up less than 2% of the mass. Helioseismology

has allowed the complex internal structure of the Sun to be inferred (Leighton et al.

1962). The Sun is powered by nuclear fusion which takes placein the core. This core

extends out to about 0.25Rsun and the energy released is transported outwards firstly by

radiation (from 0.25–0.7Rsun) and then by convection to the solar ‘surface’ where it is

emitted from the photosphere (see e.g., Miesch 2005).

The atmosphere of the Sun is stratified into numerous layers that differ in terms of tem-

perature and density. The way in which the temperature of theatmosphere changes as

height increases above the surface is shown in Figure 1.3 where the photosphere, chro-

mosphere, transition region and corona are labelled as wellas the positions of various

observational wavelengths that are referred to throughoutthis work.

The Photosphere:

The photosphere is typically regarded as the visible ‘surface’ of the Sun as it is where the

bulk of the Sun’s energy is radiated and is the deepest layer that can be directly imaged

with observations. This layer has an average temperature of6000 K and is thought to

have a thickness value of 10s-100s of kilometers (see e.g., Solanki 1998).

The Chromosphere:

Above the photosphere lies the chromosphere which has an average temperature of
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Figure 1.3: Temperature change with height through the different layers of the solar at-
mosphere. The characteristic temperature and formation height of various observational
wavelengths are also noted. Image from Yang et al. (2009).
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around 10,000 K and a density that is typically around 104 times that of the photosphere.

Features seen at this height include spicules and the large-scale chromospheric network.

More details on the chromosphere can be found in Judge (2010)and references therein.

The Transition Region:

The transition region is the interface between the chromosphere and corona that encom-

passes the area of vast temperature difference between them (for more details see e.g.,

Peter 2001). This is clearly shown in Figure 1.3 where the drastic increase in temper-

ature can be seen as an almost vertical line connecting the chromosphere and corona.

The process or processes responsible for this sharp increase in temperature is one of the

most sought after answers in modern solar physics.

Figure 1.4 shows an illustration of these different layers and how they appear in obser-

vations. Some of the features described in this thesis (loops and prominences) are also

shown in the figure.

Figure 1.4: Illustration showing the different layers of the Sun as well as some of the
features that are described in this thesis. Credit: NASA/ESA.
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1.2 The Corona

1.2.1 Overview

The corona is the outermost layer of the Sun’s atmosphere andbegins at the transition

region, before extending outwards for hundreds of thousands of kilometres into inter-

planetary space. This layer consists of extremely hot, tenuous plasma with an average

temperature of 1-2 MK. The total radiation from the corona isonly a small fraction of

that outputted by the photosphere meaning that the corona can only be seen in white light

during an eclipse or with an occulting disc. Despite having significantly less radiative

output than the photosphere, the corona radiates in a much wider range of wavelengths

(i.e., from radio waves to gamma rays). This allows a wide range of observational tools

to be employed to investigate the corona and the various features that are formed there.

The high temperature of the corona is reached over a height ofonly one thousandth

of a solar radii (Golub 1996). This forms the basis of what is known as “the coronal

heating problem” which concerns the fact that as yet, no process has been identified that

can account for the sudden temperature change between the photosphere and corona.

The temperature of the corona has been inferred due to the presence of highly ionized

elements e.g., Fe which could only have been created in temperatures exceeding one

million degrees Kelvin (see e.g., Noci 2003, and referencestherein).

1.2.2 Features of the Corona

Before the advancements in rocketry of the 1950s and 60s, theonly way to view the

corona was with a coronagraph or during a solar eclipse. Figure 1.5 shows an image

taken of a total solar eclipse which allows the emission fromthe white light corona to

be seen. Magnetic structures such as large helmet streamerscan be seen as well as some

areas of open magnetic field. The white light portion of the corona is visible as scatted
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light and constitutes only a small part of the total coronal emission, with the bulk of the

radiation in the ultraviolet and soft X-ray region of the spectrum.

Figure 1.5: Image of a total solar eclipse showing the white-light corona. Credit: NASA

This type of emission cannot be viewed with ground-based instruments as the Earth’s

atmosphere absorbs them. Various rocket flights in the 1960sand 70s allowed scientists

to glimpse the hot X-ray corona for the first time. Using data from these rocket flights,

Vaiana et al. (1973b) classified the various features seen inthe X-ray corona. A brief

overview of these coronal features is given here.

Active Regions

Active regions appear throughout the solar cycle, first at high latitudes but then at pro-

gressively lower latitudes as the cycle progresses. Each hemisphere of the Sun has its

own active region belt (i.e., a strip of latitude where active regions are more likely to be

found/emerge) as shown in Figure 1.6.

The first dedicated mission to study active regions and the solar corona in general was

Skylab. Skylab (1973-1979) was the USA’s first space stationand provided the first

data on coronal active region loops. The station’s slitlessspectrometer was used to
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Figure 1.6: Image of the Sun taken with the SDO/AIA instrument in the 171Å wave-
length (T∼1MK) showing the northern hemisphere active region belt on the 1 Oct 2011,
Credit: NASA/SDO.

produce spectroheliograms that only provided partial information about the loops bright

footpoints (Vaiana et al. 1973a; Cheng 1980). This gave a rather incomplete view of

coronal loops although a baseline for the properties of these footpoints was established.

The in-depth study of coronal loops really began with the launch of TRACE (Transition

Region and Coronal Explorer; Handy et al. 1999) in 1998 as this satellite had high

spatial resolution. Before this, the delicate structure ofthe loops could not be accurately

resolved with the available instrumentation.

Active regions are composed of loop structures of varying sizes. Figure 1.7 shows two

examples of active region loops captured by the SDO/AIA satellite. Table 1.1 shows

the classification of different types of loop structure according to parameters such as

length, temperature and density. Many studies have been made to observe and analyse

coronal loops (see e.g., Reale 2010, for a review of subject). These studies highlight

the different methods used to measure physical parameters such as density, temperature,

and velocity flows. Some of the issues and methods involved inthis type of analysis are

detailed in Section 1.3 below.
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Figure 1.7: SDO/AIA images of active region loops in the 171Å channel.Left: post
flare loops seen on the Eastern limb.Right: active regions observed with two orienta-
tions - one straight on and one side on. Credit: NASA/SDO

Table 1.1: Typical X-ray coronal loop parameters. From Reale (2010).

Type Length Temperature Density Pressure
[109 cm] [MK] [109 cm−3] [dyne cm−2]

Bright points 0.1 – 1 2 5 3
Active region 1 – 10 3 1 – 10 1 – 10
Giant arches 10 – 100 1 – 2 0.1 – 1 0.1
Flaring loops 1–10 > 10 > 50 > 100
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X-ray Bright Points

X-ray bright points (XBP) are small, compact loop systems seen all over the solar disc.

Figure 1.8 shows an image from the Hinode/XRT instrument which highlights how

numerous these features are. Chapter 3 concerns work done onexamining a particular

XBP and so a fuller introduction to the topic is given there.

Figure 1.8: X-ray image of the solar disc showing a number of X-ray bright points over
the solar surface. The bright feature in the lower left of theimage would be classified as
a small active region and not a bright point. Bright points are typically around 10-15”
in size. Credit: Hinode/XRT.

Coronal Holes

Coronal holes are large areas of open magnetic flux on the Sun and are the origin of the

fast solar wind (Krieger et al. 1973). There are two types of coronal hole: polar, and

mid-latitude such as those seen in Figure 1.9. They appear inEUV images as large, dark

areas because they are cooler than the surrounding plasma.

Coronal holes change their position and size as the solar cycle progresses with polar

coronal holes being present and most prominent at solar minimum. At this time the
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Figure 1.9: Two mid-latitude coronal holes observed in the 193 Å channel of
SDO/AIA.Credit: NASA/SDO.

northern and southern polar coronal holes will have opposite magnetic polarities. As

the solar cycle progresses, these polar holes shrink and more mid-latitude coronal holes

appear - sometimes joining with a polar hole to create an equatorial extension coronal

hole (EECH). Towards solar maximum the polar holes disappear and then reappear

towards solar minimum with opposite polarities (Wang et al.1996).

Coronal Mass Ejections

Coronal Mass Ejections (CMEs) are large bursts of plasma that are released from the

corona and expand outwards into interplanetary space. Figure 1.10 shows a series of

images taken in white light by a coronagraph of an expanding CME. The black circle

is the occulting disc which covers 1.6 solar radii in order toblock out the intense light

from the disc to allow the faint CME to be seen. The release of plasma from CMEs can

lead to changes in the solar wind with the effects of an Earth-directed CME reaching us

in 3-4 days (Gilbert et al. 2000).
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Figure 1.10: Series of images of an expanding CME. The dark occulting disc is used to
allow the faint CME structure to be seen in white light. The three part structure of core,
cavity and front is clearly seen at 12.06. Credit: HAO/SMM.

This can have an effect on space weather with the high energy plasma potentiallycaus-

ing satellites to be affected. The origins of CMEs are not fully understood and they have

been linked with solar flares and prominence eruptions but nodefinitive link has been

established. This correlation between eruptive events is detailed further in Chapter 6.

Prominence/Filaments

Solar prominences are composed of plasma with chromospheric temperature and den-

sity values but which are found at coronal heights, suspended in the magnetic field.

Prominences and filaments are the same structure observed from different points of

view i.e., prominence is the term for the structure seen off the limb (as shown in Figure

1.11), while filaments are seen on the disc. Chapter 6 concerns the study of a particular

prominence where this topic is discussed in more detail.
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Figure 1.11: Series of images taken with SDO/AIA showing the eruption of a promi-
nence on the 15 September 2010. Credit: NASA/SDO.

Solar Flares

Solar flares are characterised by a sudden burst of energy on the Sun which is observed

as a release of radiation across the entire electromagneticspectrum (i.e., from radio,

through optical, up to X-ray and gamma-ray). Solar flares areassociated with active

regions and are therefore more numerous at solar maximum (Charbonneau et al. 2001).

The total energy released by a flare can vary widely with the occurrence of smaller

events being much higher than larger ones (Fletcher et al. 2011). The size of a flare

is denoted by its classification: A (for background level flares), followed by B, C, M

and X. Each level represents a flare with ten times more energythan the previous level.

Figure 1.12 shows observations from the SoHO satellite of the Sun on the 28 October

2003 when an X17 class flare was observed. The active region itoccurred in released

many flares around this time including the ‘Halloween’ flare which caused the aurora to

be seen at much lower latitudes than usual (Tsurutani et al. 2006). Studying solar flares
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Figure 1.12: Images from three of the SoHO instruments showing a solar flare on the
28 October 2003. Top image shows the resultant CME imaged by LASCO while the
bottom-left panel shows a continuum image from MDI showing the sunspot group the
flare originated from. The bottom-right image shows the saturation caused by the flare
in EIT. Credit: NASA/SoHO
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is an important area of research as they have a profound effect on space weather. Under-

standing the mechanisms responsible for them would allow more accurate predictions

to be made which would help to safeguard future space missions and satellites.

1.3 Measuring Coronal Parameters

Today, with the abundance of solar observations available to scientists, there are numer-

ous ways in which this data can be analysed in order to infer the physical parameters

of the plasma. This section briefly outlines the primary methods used to study coronal

features such as loops and various considerations that should be kept in mind.

1.3.1 Background subtraction:

Before analysis can begin on a coronal structure a suitable method of background sub-

traction is needed. This is due to the overlying intensity caused by other bright structures

lying along the line of sight of the observation and can be corrected in a number of ways.

Cirtain et al. (2007) used the standard approach where they defined a quiet area near

the loop they were studying and used the average value of intensity within this region

as their value for background emission. They also picked an area over some moss

structure (the area around loop footpoints) and defined thisas the maximum background

emission. Reale et al. (2000) decided against this method and instead picked a quiet

frame from their data set where the loop they were studying could not be seen and took

the value of each pixel to be the background value. A different approach was conducted

by Tripathi et al. (2009) where the background levels were found by following a path

alongside the loop being analysed in order to get accurate results for the background

levels at different heights throughout the plasma. Del Zanna (2003) also noted that the

effect of foreground and background emission was a greater problem for observations
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on the limb while on-disk measurements were less obstructed. This can be an important

consideration when choosing data or planning observations.

1.3.2 Density determination:

The density of coronal plasma can give a lot of information onthe structure and filling

mechanism of the loop. Throughout the literature the majority of authors have used the

same method: the line ratio method. This involves using datafrom a spectrometer (e.g.,

SoHO/CDS or Hinode/EIS) and using the ratio of the intensity values from a density

sensitive pair (described in detail in Young et al. 2007) in order to calculate the density.

An example of a coronal loop study which employed this methodis Tripathi et al.

(2009) who measured several density sensitive pairs (Mg 280/278, Si 258/261 and

Fe 186/195) along one specific loop. They found that electron density varied from

1010cm−3 at the footpoints to 108.5cm−3 higher up on the loop apex. They noted a vari-

ation within the density values from the three ratios that did not always fall within the

error range. This suggests it is worthwhile trying out a few different methods in order

to check the accuracy of the results. Results from other authors covering the topic of

density diagnostics can be found in Del Zanna & Mason (2005),Young et al. (2007),

and Tripathi et al. (2008).

1.3.3 Temperature determination:

One of the main issues surrounding the temperature determination of coronal loops is

whether or not the loops are isothermal or multi-thermal along the line of sight. It can

be difficult to differentiate between an isothermal distribution and a narrow distribution

measured by spectrometers due to limitations in the resolution of current instrumenta-

tion.
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Certain studies such as Warren et al. (2008) concluded that loops were not isothermal

in contrast to most of the literature. For example, Del Zanna(2003) and also Del Zanna

& Mason (2003) looked at active region loops using SoHO/CDS and TRACE in order

to accurately calculate density and temperature within loops and found that many pre-

viously published results were overestimated due to poor background subtraction meth-

ods. They also found the the ‘1 MK loops’ seen most clearly in TRACE 171Å were

nearly isothermal along their lengths with a constant density across the loop. They made

note of the poor diagnostic ability of TRACE for temperaturedetermination.

Accurately determining the temperature of coronal loops isan important area of re-

search as pinning down this factor will help to understand the heating mechanisms at

work. This is not an easy thing to do however, as direct measurements cannot be taken.

The information gathered by solar instruments is integrated along the line of sight so

contributions may be counted from other sources. Information from imagers and spec-

trometers can be used to infer a plasma temperature of a particular structure.

The five main diagnostic methods used to infer plasma temperature are:-

• Bandpass observations:where the temperature of the plasma is inferred by the

wavelength of the bandpass filter the feature appears in. This can be useful as

an indicator but cannot give an accurate measurement. Problems such as line-of-

sight effects and contributions from double-peaked instrument response functions

can cause inaccurate conclusions.

• Filter ratio: authors such as Noglik & Walsh (2007) and Aschwanden et al.

(2000b, 2001) used the ratio of intensities seen in TRACE EUVchannels to infer

plasma temperature. This method can be unreliable as it is compromised if one of

the filters has inherent inaccuracies.

• Line ratio: similar to the density determination described above, thismethod uses

the ratio of two temperature sensitive spectral lines to infer the thermal structure
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of the plasma. See Young & Landi (2009) for more details.

• Emission Measure Loci: the EML method (see e.g., Jordan et al. 1987; Del

Zanna et al. 2002) uses information from spectral lines of anobservation. This

method is very useful for determining isothermal plasmas but Landi et al. (2012b)

point out that this method fails at giving a measure of the uncertainty in the results.

This method is described in more detail in Section 3.3.1.

• Differential Emission Measure (DEM):this technique has a few different meth-

ods of reconstructing the thermal structure of coronal plasma i.e., iterative, direct

inversion (see Section 5). The distributions calculated bythis method give an in-

dication of the spread of the plasma over different temperatures and also allows

conclusions to be drawn about whether plasma is isothermal or multithermal. A

full description of this method is given in Section 4.1.3.

1.4 Remaining issues in solar physics

The incredible advances in solar physics over the last 50 years make it a very exciting

field to work in. With more and more data coming in of higher andhigher resolution,

scientists are in a unique position to try and tackle some of the remaining unknowns.

Aschwanden (2008) outlined the ten outstanding problems insolar physics over the past

60 years - only two of which have been solved.

The list includes remaining issues such as understanding the coronal heating problem,

magnetic reconnection processes, particle acceleration in flares, CME mechanics, and

the hydrodynamics of coronal loops to name just a few. This last point in particular is

very relevant to the work presented in the bulk of this thesis. The issue of whether coro-

nal loops are in hydrostatic equilibrium or not is one that isvery important to theorists

and observers alike.
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1.5 Synopsis of thesis

This thesis is arranged as follows. In Chapter 2 the solar observation satellites used

within this work are described with special attention paid to the particular instruments

utilised in the four main science chapters. These main science chapters (3-6) progress

from examining small-scale (<10 Mm) coronal features up through medium-scale (10–

100 Mm) and finally to large-scale (>100 Mm) ones in order to tie together the common

observational techniques and analysis methods used throughout this thesis.

Chapter 3 presents a case study of a small-scale coronal X-ray bright point (XBP).

Results concerning the evolution and plasma parameter changes observed within the

XBP over its entire lifetime are detailed and various science questions are addressed.

Findings concerning how the physical attributes of the bright point (e.g., temperature,

density, filling factor) change over time are used to infer its origins and track its evolu-

tion.

Chapter 4 explores the parameter space of a multi-stranded loop simulation in order to

achieve a number of goals: (i) to check the model is behaving in a physically realistic

way, (ii) to determine in what way the model ‘observables’ (e.g., DEM distribution and

intensity values) change due to the changing input parameters, and (iii) to see if these

changes constitute a ‘unique signature’ that could be useful for interpreting real data.

Chapter 5 tests the accuracy of applying an iterative DEM solver code to the results

already produced by the loop simulation. By comparing the DEM solutions of the

solver with the ‘true’ DEM the simulation has calculated, the applicability of the solver

to interpret real data can be tested. Firstly, a detailed case study is conducted to define

all the parameters relevant to determining the ‘goodness-of-fit’ of each DEM solution

to the original. Secondly, the solver is applied to various runs of the simulation in order

to see where it does and does not do well.

Chapter 6 moves on to study a large-scale coronal structure in the form of an erupting
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polar-crown prominence. The structure and evolution of theprominence material and

cavity are investigated over the course of the eruption. Themost likely trigger mecha-

nism of the eruption is also investigated using dual satellite observations.

Lastly, Chapter 7 summaries the final conclusions reached concerning the structure and

evolution of the various coronal features investigated. Various future directions that

each chapter could take (and the upcoming missions that willfacilitate this future work)

are also detailed.
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Solar Observations: Satellites and

Instrumentation

Observations of our nearest star underwent a serious transformation in the mid-20th

century due to the advancement in rocket technology. Beforethis time, ground based

observations were the only available source of informationon solar activity. The Earth’s

atmosphere and magnetic field help to ensure that high-energy radiation and particles

cannot reach the ground. This means that any instrument wishing to observe the solar

corona and the high energy phenomena that occur there need tobe placed into orbit.

The early solar observation programs of the 1960’s and 70’s laid the foundations for later

missions and uncovered the first views of the dynamic solar corona. Later missions

such as Skylab (1973–1979), the Solar Maximum Mission (1980–1989) and Yohkoh

(1991–2001) to name only a few, were instrumental in discovering and analysing many

different types of coronal phenomena.

Today, we are lucky to have many operational solar satellites, each contributing to the

vast knowledge base of observational solar physics. This chapter describes the main

missions and instruments associated with the work presented in this thesis, as well as a
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brief summary of some of the future missions to look forward to that would complement

and help to extend this work.

2.1 SoHO

The Solar and Heliospheric Observatory (SoHO) satellite (Domingo et al. 1995), launched

in 1995 and still operational today, has made an incredible contribution to the field of

solar physics due to both the large number of instruments it carries, and its location.

Figure 2.1:Left: artist’s impression of the SoHO satellite in space.Right: photograph
of the SoHO satellite being prepared for launch. The satellite dimensions are approx-
imately 4.3 x 2.7 x 3.7 metres with the solar arrays taking thewidth to 9.5m when
deployed.

SoHO orbits around the First Lagrangian Point (L1) which is located along the Earth-

Sun line at around 1.5 x 106 km from Earth. This allows the satellite to have an unin-

terrupted view of the Sun with no eclipse periods causing gaps in the data. The satel-

lite houses twelve different instruments, each capable of working together in order to

measure different observables. The names of these instruments are givenin Table 2.1.

SoHO has been operational for 17 years due to the number of extensions the mission has

been given. This has allowed the satellite to observe the Sunover an entire solar cycle.

The instruments onboard SoHO are still operational but a feware starting to have their

23



CHAPTER 2

operations scaled back due to newer satellites being launched with similar (but better

resolution) instruments.

Instrument Full name

CDS: Coronal Diagnostic Spectrometer
CELIAS: Charge, Element, and Isotope Analysis System
COSTEP: Comprehensive Suprathermal and Energetic Particle Analyzer
EIT: Extreme ultraviolet Imaging Telescope
ERNE: Energetic and Relativistic Nuclei and Electron experiment
GOLF: Global Oscillations at Low Frequencies
LASCO: Large Angle and Spectrometric Coronograph
MDI /SOI: Michelson Doppler Imager/Solar Oscillations Investigation
SUMER: Solar Ultraviolet Measurements of Emitted Radiation
SWAN: Solar Wind Anisotropies
UVCS: UltraViolet Coronograph Spectrometer
VIRGO: Variability of Solar Irradiance and Gravity Oscillations

Table 2.1: List of the instruments that make up the scientificpayload of the SoHO
satellite.

Two of the instruments onboard SoHO are described in more detail in the following

paragraphs as they have a bearing of some of the details of this work. Descriptions

of the other instruments onboard SoHO are outside the scope of this work but more

information can be found in Domingo et al. (1995).

2.1.1 EIT

The Extreme ultraviolet Imaging Telescope (Delaboudinière et al. 1995) observes the

full-disc of the Sun in four EUV wavelengths (171Å, 195Å, 284Å, and 304Å- shown in

Figure 2.2) allowing plasma from the transition region to the low corona to be viewed.

Table 2.2 gives more details of the particular temperaturesand observational targets that

each channel has.

EIT is currently on reduced operations (due to the launch of the improved imager

SDO/AIA, see below) but at its peak it took a full-disc image of theSun in each chan-

nel with spatial resolution of∼5 arcseconds approximately every 12 minutes. Since
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Figure 2.2: Images taken with the SoHO/EIT instrument in the four wavelength
channels available- 171Å (top-left), 195Å (top-right), 284Å (bottom-left), and
304Å (bottom-right).

Wavelength Ion Peak temperature Target observation

304 Å He 8.0 x 104 K chromospheric network; coronal holes
171 Å Fe- 1.3 x 106 K corona/transition region boundary;

structures inside coronal holes
195 Å Fe 1.6 x 106 K quiet corona outside coronal holes
284 Å Fe 2.0 x 106 K active regions

Table 2.2: SoHO EIT bandpass information. Adapted from Delaboudinière et al. (1995).
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August 2010, most of EIT’s telemetry bandwidth has been allocated to the LASCO

instrument with only a couple of EIT images being taken a day for synoptic purposes.

EIT provided almost 15 years of observations and revolutionised the way the corona was

viewed. Originally designed to provide context for the other instruments, its workload

was increased after the amazing imaging power of its four channels was seen. Many

major discoveries have been made with EIT. One example is thefirst observations of

travelling waves (Thompson et al. 1998), correspondingly named ‘EIT waves’.

2.1.2 MDI

The Michelson Doppler Imager (Scherrer et al. 1995) measures line-of-sight (los) mo-

tions on the solar surface as well as measuring the los magnetic field of the Sun. The

first measurement is very useful for solar oscillation studies while the second is cru-

cial for modelling the magnetic field of the Sun as well as interpreting coronal images.

Figure 2.3 shows an MDI magnetogram (left) and continuum image (right). The black

and white pattern on the magnetogram represents areas of positive (white) and negative

(black) polarity which can be thought of as magnetic field going out of and into the solar

surface respectively.

MDI magnetograms were used in this work primarily to give context to other smaller

field-of-view magnetograms (e.g., from Hinode/SOT, see below), as SoHO has very

accurate pointing and MDI has been well calibrated over the years. This allows cross-

calibration of coordinates and magnetic field strength levels to be made between instru-

ments. As of early 2011, MDI ceased normal science operations due to the launch of a

higher resolution magnetograph aboard SDO (see below). MDI’s spatial resolution of

4” (full-disc) and 1.2” (high resolution partial disc) has been surpassed as well as its

temporal resolution. MDI typically produced a full-disc magnetogram every 96 min-

utes (although it was also capable of making one per minute) so it is generally not very

useful for studying small-scale changes that occur on short(i.e., minutes) timescales.
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Figure 2.3:Left: SoHO/MDI magnetogram taken on the 22 July 1999.Right: contin-
uum image taken with MDI twelve hours later.

2.2 Hinode

The Hinode satellite is a joint mission between the space agencies of Japan, the US,

Europe and the UK. It was launched on the 22nd September 2006, under its development

name Solar-B, into a polar sun-synchronous orbit. This orbit was chosen to allow 9

months of continuous observation of the Sun with 3 months of eclipse seasons each

year.

The satellite observes the Sun at visible, EUV and X-ray wavelengths with its three

instruments: the X-Ray Telescope (XRT), the Solar Optical Telescope (SOT), and the

EUV Imaging Spectrometer (EIS). Hinode was designed for itsthree instruments to

work together as an observatory in order to observe solar phenomena from the photo-

sphere up through the chromosphere and transition region tothe corona. The left image

of Figure 2.4 shows the layout of the satellite’s instruments on the satellite test model.

The ‘FPP’ (Focal Plane Package) and ‘OTA’ (Optical Telescope Assembly) make up the

SOT instrument.
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Figure 2.4:Left: photograph of the Solar-B Mechanical Test Model which showsthe
relative position and scale of the instruments.Right: artist’s impression of the satellite
in orbit. Image credits: JAXA.

2.2.1 EIS

Hinode’s EIS instrument observes emission lines with wavelengths in the ranges 170–

210Å and 250–290Å (Culhane et al. 2007). The instrument can be used to measure

spectral line intensities, Doppler velocities, and line widths. These measurements can

then be used to calculate values of temperature and density within the plasma being

imaged.

Figure 2.5: The Optical Layout of Hinode EIS. S\SW and L\LW refer to the short (170-
210Å) and long (250-290Å) wavelength bands of the two CCDs. Image from Culhane
et al. (2007).

The instrument can observe plasma within a temperature range of 0.1MK up to 10MK

(Kosugi et al. 2007), has a spatial resolution of 2”, and can be used to measure plasma

velocity flows to an accuracy of±5kms−1 (Culhane et al. 2007). All these factors go

towards making the EIS instrument an improvement upon otherspectrometers such as
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the CDS (Coronal Diagnostic Spectrometer) aboard SoHO.

2.2.2 SOT

Hinode’s Solar Optical Telescope (Tsuneta et al. 2008) provides various information on

the magnetic field of the Sun. Unlike SoHO’s MDI, the SOT only has a partial field-

of-view of approximately 360x200 arcsec2 meaning that features up to the size of small

active regions can be viewed at any particular instance.

Figure 2.6: The Optical Telescope Assembly (OTA) for the SOTinstrument. The aper-
ture of the telescope is 50cm. Image credit: JAXA.

The instrument comprises of two parts: the OTA (Optical Telescope Assembly) and

the FPP (Focal Plane Package). The SOT’s instrument packagecontains three main

sub-systems:

• The Broad-band Filter Imager (BFI),

• The Narrow-band Filter Imager (NFI),

• The Spectropolarimeter (SP).
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The spatial resolution of the SOT is 0.25” (c.f. SoHO’s MDI which has a resolution of

∼1” for high resolution images and 4” for full-disc) and has a time cadence range from

tens of seconds (for NFI) to a few hours for a wide-field scan with SP (Tsuneta et al.

2008).

2.2.3 XRT

The X-Ray Telescope aboard Hinode images high temperature plasma and can be used

to study changes in the morphology and temperature of solar features. The XRT is a

grazing incidence telescope with an aperture of 50cm (see Figure 2.7). It focuses soft

X-rays from the Sun onto a CCD array and has nine X-ray analysis filters (of varying

thickness and material) which allows plasma of different energies to be viewed.

Figure 2.7: The Hinode XRT Instrument. Image from Golub et al. (2007).

The XRT instrument is able to image features with temperatures ranging from 6.1≤

LogT/K ≤ 7.5 and is able to discriminate between temperatures of LogT=0.2K (Golub

et al. 2007). The XRT has the highest resolution of any solar X-ray telescope to date

with the optical design and mirror quality allowing coronalplasmas to be images with

a resolution of 2” (Golub et al. 2007). The XRT has many improvements on previous

coronal imagers: it has the broadest temperature range to date which allows many dif-

ferent types of feature to be studied as well as a high data rate and image cadence to

allow the study of features that show rapid changes in structure and temperature.
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2.3 SDO

The Solar Dynamics Observatory was launched on the 11th February 2010 and is now

studying the solar atmosphere at high spatial and temporal resolution in multiple wave-

lengths simultaneously. The satellite comprises of three instruments: the Atmospheric

Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Ex-

treme Ultraviolet Variability Experiment (EVE). These instruments are described in

more detail below except for EVE which is outside the scope ofthis work. More details

on this instrument can be found in Woods et al. (2012).

The left panel of Figure 2.8 shows the satellite being prepared for launch and gives an

idea of the scale of the structure. The satellite measures 2.2 x 2.2 x 4.5 metres and the

solar arrays are 6.5 metres across when deployed. The right panel of this figure shows

an illustration of where the three instruments are located on the satellite.

Figure 2.8: Images of the SDO satellite.Left: photograph of the finished satellite before
being stowed for launch.Right: illustration of the satellite with the three instruments
highlighted.

The amazing stride forward that the AIA and HMI instruments represent in terms of

spatial and temporal resolution, is detailed below.
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2.3.1 AIA

The Atmospheric Imaging Assembly instrument (Lemen et al. 2012a) consists of four

telescopes that are designed to observe plasma in several narrow band passes in the EUV

range. Figure 2.9 shows two representations of the AIA instrument. The top image

shows a photograph of the telescopes during the testing phase of the mission while the

lower image shows exactly which of the telescopes produces each wavelength.

Figure 2.9:Top: photograph of the AIA telescopes taken during the satelliteintegration.
Bottom: Layout of the channels in the four telescopes. Telescopes 1,3 and 4 rely on
filter wheels to change between channels while telescope 2 employs an aperture blade
to select the different wavelength channels.
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Table 2.3 lists the different wavelengths imaged by AIA and the primary ions that con-

tribute to each particular channel. The characteristic temperatures that these ions repre-

sent are also noted. It can be seen that some channels have multiple contributions which

can create problems when trying to interpret observations from these channels.

Channel name Primary ion(s) Region of atmosphere Char. log(T)

4500 Å continuum photosphere 3.7
1700 Å continuum temperature minimum, photosphere 3.7
304 Å He chromosphere, transition region 4.7
1600 Å C+. transition region, upper photosphere 5.0
171 Å Fe quiet corona, upper transition region 5.8
193 Å Fe, corona and hot flare plasma 6.2, 7.3
211 Å Fe active-region corona 6.3
335 Å Fe active-region corona 6.4
94 Å Fe flaring corona 6.8
131 Å Fe, transition region, flaring corona 5.6, 7.0

Table 2.3: Information on the wavelengths imaged by AIA and the primary ions in-
cluded in each band pass. The target observation of each channel and its characteristic
temperature are also noted. Table from Lemen et al. (2012a).

Figure 2.10 shows a selection of images taken with the ten channels listed in Table 2.3.

As with all solar images, the false colours are indicative ofthe channel being used.

The main advantage that AIA has over previous coronal imagers is the very high spatial

and temporal resolution of the instrument. Although the TRACE satellite (Handy et al.

1999) had a similar high spatial resolution (close to 1”), itonly had a partial field-of-

view (8.5 x 8.5 arcminutes). TRACE also only took an image every minute (although in

certain studies it could take images much faster e.g., everyten seconds) and only imaged

in three EUV channels (at 171Å, 195Å, and 284Å) as well as at various continuum and

UV wavelengths.

SDO/AIA takes full-disc images of the Sun in six EUV channels every 10 seconds

making it a vastly superior imager compared to both TRACE andSoHO/EIT. The high

spatial and temporal resolution combined with its full-disc field-of-view, allows both

large and small-scale changes to be observed with an unprecedented level of detail. An
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Figure 2.10: Selection of SDO/AIA images taken in the ten channels listed in Table 2.3.
The wavelength and characteristic temperature of each channel are noted next to each
image. Image credit: Dan Brown, UCLan.

Figure 2.11: Comparison between the SoHO/EIT imager in the 171Å channel (left)
and the SDO/AIA imager in the same channel. The feature imaged is an active region
located towards the Western limb of the Sun on the 12 June 2010. The difference be-
tween EIT’s 5” spatial resolution and the 1” resolution of AIA is very apparent. The
field-of-view of each image is 260” x 220”.
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example of this is shown in Figure 2.11 where an active regionhas been imaged by

both SDO/AIA (right) and SoHO/EIT (left) in the 171Å channel. The improvement in

spatial resolution from EIT to AIA is very clear.

Figure 2.12 shows a quick-look comparison between SDO/AIA and the other major so-

lar imagers of the last decade. As mentioned previously, EITis now in semi-retirement

due to the launch of AIA. For the same reason, TRACE ceased operations in July 2010.

Figure 2.12: Comparison of traits of the five major coronal imagers of the past decade.
Image credit: K. Schrijver, LMSAL.

AIA Temperature Response:

The AIA wavelengths and characteristic temperatures listed in Table 2.3 indicate that

one or more of the channels may have contributions from multi-thermal plasma. The

effect of this is explored by looking at the temperature response of the instrument in the

six EUV channels dominated by iron emission. Figure 2.13 shows a plot generated from

the aiaget response.pro routine where each channel’s response is calculated from the

effective-area functions coupled with the solar emissivity calculated from the CHIANTI

(Dere et al. 1997; Landi et al. 2012a) model.

Since the satellite was launched, a number of issues with these response functions have

been raised. Aschwanden & Boerner (2011) detailed a problemwith the 94 Å channel
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Figure 2.13: Plot of the temperature response functions forthe six EUV channels. These
functions are generated using the aiaget response.pro routine within SSWIDL.
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where the effect of the lower temperature contribution was questioned. They noted

that the double peak in the temperature response function iscaused by the Fe lines

at log(T)∼6.1 and the Fe lines at log(T)∼6.8, but that the strong emission seen at

log(T)∼6.0 in 94 Å suggests that some of the Fe transitions are missing from the

CHIANTI (v7.0) atomic database code. They offer a correction factor of:

q94 = 6.7± 1.7 (2.3.1.1)

which should be applied to the data as follows,

R94(T)emp=























q94R94(T)nom for log(T) ≤ 6.3

R94(T)nom for log(T) > 6.3
(2.3.1.2)

Figure 2.14: Plot from Aschwanden & Boerner (2011) showing the empirical fix applied
to the nominal temperature response function in the 94 Å channel using the correction
factor given in Equation 2.3.1.1.
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As of February 2012, the aiaget response.pro routine included keywords to update the

emissivities to the newest version of CHIANTI (v7.0) as wellas offering an empirical

fix for the missing emission lines in the 94 and 131 Å channels.Figure 2.15 shows

the replotted temperature response curves (calculated with the /chiantifix keyword) as

dashed lines over the older values (solid lines). The work inthis thesis relating to the

AIA temperature response functions was begun before this empirical fix was available.

For consistency, all calculations were carried out using the temperature response curves

seen in Figure 2.13.

Figure 2.15: Plot of the temperature response functions forthe six EUV channels gen-
erated with aiaget response.pro routine and utilising the/chiantifix keyword. Dashed
lines are the corrected values with the solid lines representing the nominal responses.

The details of the spectral lines included in each of the AIA channels has been looked at

in detail by O’Dwyer et al. (2010) and Del Zanna et al. (2011).O’Dwyer et al. (2010)

highlighted the dominant contributions to each filter and how they depend on the region

of the atmosphere being imaged (e.g., quiet sun, active region, coronal hole, or flaring
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region). They advised caution when using the channels to observe different types of fea-

ture as the dominant ion in each case can change. Del Zanna et al. (2011) extended this

work and noted that due to the unidentified lines in the 94Å, 171Å, and 211Å channels,

as well as the cross-talk identified between the 131Å and 335Åchannels, that care

should be taken when drawing conclusions from the data. The issue of the uncertainties

with the AIA temperature response functions will be furtherinvestigated and corrected

for in all future work.

2.3.2 HMI

The Helioseismic and Magnetic Imager (Scherrer et al. 2012)onboard SDO is designed

to investigate the Sun’s interior as well as measure variousaspects of the magnetic

activity. The instrument makes full-disc observations of the Sun in the Fe 6173 Å ab-

sorption line and can measure oscillations and the magneticfield on the photosphere.

The instrument was developed from the heritage of the SoHO/MDI instrument but has

significant improvements in terms of spatial and temporal resolution. HMI produces a

full-disc Doppler velocity, line-of-sight magnetic flux, and continuum image every 45

seconds. It also produces vector magnetic field maps every 90-135 seconds depending

on the observing run selected. The spatial resolution is∼1” compared to MDI’s 4”.

Another difference between the two instruments was noted by Fleck et al. (2011) who

concluded that the formation height of the spectral line utilised in HMI is slightly lower

(∼100km above the visible solar surface) than the spectral line used in the MDI instru-

ment (∼125km). The Fe 6173 Å line was chosen for HMI as it is more magnetically

sensitive than the Ni 6768 Å and is better at measuring the vector magnetic field (Nor-

ton et al. 2006).
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2.4 STEREO

Launched in October 2006, NASA’s STEREO (Solar TErrestrialRElations Observa-

tory) satellites are providing a unique view of the Sun from their two vantage points.

Launched as a pair, the nearly identical satellites orbit the Sun both ahead (STEREO-A)

and behind (STEREO-B) the Earth in order to offer a 3D view of the Sun and the Earth-

Sun line. The separation of the satellites is increasing over time (around 22◦ per year)

with the angle of separation between the Earth and each satellite at 116◦ on the 1st of

June 2012 (see Figure 2.16).

Figure 2.16: Image showing the positions of the STEREO A and Bsatellites relative to
Earth on the 1 June 2012.

The STEREO satellites carry a host of instrument packages identified in Figure 2.17.

These packages are named:

• SECCHI: Sun Earth Connection Coronal and Heliospheric Investigation, (Howard

et al. 2008)
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• SWAVES: STEREO/WAVES, (Bougeret et al. 2008)

• IMPACT: In-situ Measurements of Particles and CME Transients, (Luhmann et al.

2008)

• PLASTIC: PLAsma and SupraThermal Ion Composition, (Galvinet al. 2008)

Details of all these instruments can be found within the relevant references but most are

outside the scope of this work. Information on SECCHI/EUVI is detailed here as this

instrument was utilised in Chapter 6.

Figure 2.17: Images of the STEREO satellites.Left: schematic of the location of the
various instrument packages onboard STEREO-A and B.Right: artist’s impression of
the two satellite in orbit before they move apart.

EUVI

The Extreme Ultraviolet Imager (EUVI; (Wuelser et al. 2004)) forms part of the SEC-

CHI instrument package onboard both STEREO satellites. Thetelescope is designed to

image the surface of the Sun in four wavelength channels in order to view structures at

different temperatures - particularly areas where Coronal MassEjections are thought to

have initiated from. The wavelengths imaged by EUVI are the same as those seen by

SoHO/EIT i.e., He 304Å, Fe 171Å, Fe 195Å, and Fe 284Å.
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Figure 2.18: Image taken on 28 February 2010 of a prominence seen from the two
points-of-view of STEREO/EUVI in the 304Å channel.Left: view from the STEREO-
B EUVI instrument showing a rising prominence.Right: same-time image of the promi-
nence seen by STEREO-A EUVI revealing another perspective.This helps to show the
importance of a multi-viewpoint observation as the structure of the prominence is seen
differently by both satellites.

The instrument was a significant improvement on SoHO/EIT with higher spatial resolu-

tion and temporal cadence, as well as offering a unique dual-perspective of the full solar

disc. The spatial resolution of the instrument is∼3.2” (Aschwanden et al. 2008) com-

pared to the 5” resolution of EIT. The temporal resolution ofthe telescope is also higher

than EIT at 4 minutes (compared to 12 minutes). An example of the dual point-of-view

of the satellites is shown in Figure 2.18 where a prominence eruption is observed in the

304 Å channel. The apparent structure of the prominence is very different depending on

the viewing angle. This shows why the STEREO satellites are so useful for interpreting

the 3D morphology of coronal structures.

The temperature response functions for the four EUVI channels are shown in Figure

2.19 where it can be seen the imager covers temperatures between 4.5< logT(K) < 7.5

but that there is a lot of overlap between the each of the four functions (most of which

are also very wide). This suggests that the imager can be usedto infer temperature but

that robust calculations cannot be made based on the imager data alone.
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2.5 Future Missions

Our understanding of the solar atmosphere has advanced significantly in the last 10-15

years with observations reaching a higher level of precision every time a new mission

is launched. This progress is showing no signs of slowing, with many new and exciting

missions planned in the next ten years alone.

A feature a lot of the upcoming solar missions have in common is a shift towards study-

ing the chromosphere. This is an important layer that has been somewhat sidelined by

more high temperature observations in the past. The new generation of missions feature

instruments which aim to study the dynamic chromosphere/transition region in more de-

tail than ever before in order to study the flow of mass and energy between the different

layers of the Sun.

Several of the upcoming missions that are pertinent to the type of work discussed in this

thesis are described in Chapter 7 where relevant details of these missions are provided

as well as how they could help to facilitate the proposed future work on each topic.
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Figure 2.19: EUVI temperature response functions of the four channels. Legend notes
channel wavelengths in nm. Graph from Wuelser et al. (2004).
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X-Ray Bright Point work

The corona is an inhomogeneous and dynamic part of the solar atmosphere containing

a vast array of features. As previously mentioned, this thesis looks at coronal features

ranging from small (a few Mm), to medium (10–100 Mm) and to large (>100 Mm)

scale. This chapter showcases an example of a small-scale coronal feature called an X-

ray bright point. This work was written up and accepted for publication in January 2011

and all figures and text have been adapted from the article Alexander, Del Zanna, and

Maclean 2011. This article and the work presented in this chapter is a full re-analysis

and major extension of work begun in Alexander (2008). The latter work involved a

preliminary analysis of the XBP at one point in time. Much more detailed analysis,

covering a fuller range of topics, is presented in this chapter where the bright point has

been analysed over its entire lifetime to study its evolution.

3.1 Introduction

X-ray bright points (hereafter XBPs) were first observed by Vaiana et al. (1970) while

studying images of the X-ray corona taken during an Aerobee rocket flight in 1969.
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The first detailed study was from Golub et al. (1974) using data from Skylab. They

found that XBPs have an average lifetime of 8 hours, an average size of 30”, and are

composed of a diffuse aspect and a bright core. The enhanced X-ray emission that they

exhibit is due to their electron density being typically 2-4times higher than the coronal

average (around 5 x 108 cm−3). NIXT (Normal Incidence X-Ray Telescope), as well

as TRACE (Transition Region and Coronal Explorer) observations later showed that

XBPs are composed of multiple compact loops (see e.g., Brownet al. 2001a; Parnell

et al. 1994).

About one-third of bright points are associated with emerging ephemeral regions, while

two-thirds are associated with cancelling magnetic fragments (see e.g., Harvey 1985;

Brown et al. 2001b). The process of flux emergence and cancellation in connection with

XBP occurrence is quite complex, as shown by Harvey et al. (1994): XBPs can occur

from magnetic bipoles emerging, cancelling, emerging thencancelling, or even when no

visible bipole exists. They also stated that two thirds of all magnetic bipoles observed

have no corresponding XBP and that bright points only occur when the magnetic field

lines of the bipoles interact and reconnect with the overlying global magnetic field.

As in the general case of the solar corona, it is quite clear that the XBP emission is pow-

ered by the release of magnetic energy, however the details are elusive. Various models

have been put forward such as the Converging Flux Model (Priest et al. 1994) to explain

the interaction of the magnetic field and the creation of an XBP. The model consists of

three main stages: (1) “The Pre-interaction Phase” where the two unconnected areas

of opposite magnetic polarity approach one another, (2) “The Interaction Phase” where

energy is released as the fields of the two areas reconnect creating the XBP, and (3) “The

Cancellation Phase” where the fragments cancel each other and disappear. Another pos-

sibility is ‘stick slip’ magnetic reconnection, which should occur along separator field

lines and should be associated with sporadic energy releases, as proposed by Longcope

(1998).
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It is still not clear if XBPs are heated in a steady or impulsive way. For example, Nolte

et al. (1979) used X-ray imaging at about 90 seconds cadence for a period of 25 minutes

for a few XBPs to show that the emission appeared as steady, although rapid disappear-

ances were found, following brightening. Habbal & Withbroe(1981), on the other hand,

found evidence of variations of EUV emission in chromospheric, transition region and

coronal lines, on timescales as short as 5.5 minutes (the cadence of their Skylab obser-

vations). Some work based on SoHO/CDS and SUMER spectroscopic observations to

study XBPs at transition region temperatures followed (seee.g., Madjarska et al. 2003;

Ugarte-Urra 2004; Ugarte-Urra et al. 2005).

In this chapter, a case study of one particular X-ray bright point observed with the Hin-

ode satellite over a period of 12 hours is presented. All three instruments onboard

Hinode were utilised in order to investigate the measurablephysical characteristics

of the feature such as temperature, density, filling factor,Doppler velocities, cooling

timescales and magnetic field strengths over the entire lifetime of the XBP. Once these

measurements have been made, conclusions can be drawn aboutthe likely source of the

XBPs heating.

Measurements of EUV coronal line profiles and photospheric magnetic fields, together

with estimates of coronal magnetic fields are fundamental totest theories. A large liter-

ature exists, however a comprehensive study has been lacking. The suite of instruments

aboard Hinode (Kosugi et al. 2007) is extremely well suited to study XBPs for a variety

of reasons. First, XPBs small sizes and short lifetimes meanthat their entire evolu-

tion, from birth to disappearance, can be followed with the Hinode instruments. Indeed,

telemetry limitations and high temporal cadence normally constrain the FOV of the Hin-

ode instruments to be of the order of a few arcmin2, meaning that large regions cannot

be observed.

Second, the temporal cadence and spatial resolutions of theHinode X-Ray Telescope

(XRT) and the Solar Optical Telescope (SOT) are higher compared to what was available
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with previous instruments. XRT has a resolution of 2” (Golubet al. 2007) while SOT

provides imaging and spectropolarimetry at 0.32 and 0.16” resolution, i.e., far superior

than what was previously achieved with e.g., the SoHO/MDI instrument.

As described below, SOT data show that the rate of magnetic flux density emergence

and cancellation in quiet Sun areas, where most XBPs are formed, occur on timescales

much shorter (i.e., minutes) than previously thought (clearly seen in the SOT Movie

xbp sot.mov). Third, the Hinode EIS instrument (Culhane et al. 2007) is far superior

than any previous spectrometers flown on satellites in providing accurate measurements

of coronal densities and temperatures for XBPs. Also, for the first time it allows detailed

studies of line widths and Doppler-shifts in coronal lines,something that has already

added a new dimension into the problem of understanding how plasma is heated and

cools in active regions (see e.g., Del Zanna 2008b).

The entire Hinode database was surveyed to find a suitable well-observed case to be

studied. From the Hinode observations, described in Section 3.2, the physical properties

of an XBP such as density, temperature, velocity flows, magnetic field strengths were

obtained for its entire lifetime. Cooling times were also estimated. This is the first time

that such a complete set of physical parameters has been presented for the entire lifetime

of an XBP.

As regards measurements of electron temperatures, in most previous literature they were

obtained with broad-band filter ratios, which are inherently subject to large uncertain-

ties. A few more direct measurements using spectral lines exist, however this is the

first time that the emission measure loci (EML) method (see Section 3.3.1) is applied to

measure the temperature of an XBP at different times over the feature’s lifetime.

Few results exist in the literature regarding direct measurements of XBP electron den-

sities at coronal temperatures. In most cases, only measurements at one point in time

are provided, whilst here several measurements which span the lifetime of an XBP are

calculated.
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Figure 3.1: The top panel shows a negative image of full disc XRT Al poly/Open filter
showing the location of the XBP at 00:07:11 UT on 11 October 2007. The over-plotted
boxes show the EIS and SOT full fields of view. The lower left panel shows SOHO/MDI
data with the three magnetic source regions labelled as theyare referred to in the text.
The lower right panel shows same-time SOT/NFI data. The field-of-view of both lower
images is 100” x 85”.
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In most cases, estimates of cooling times have not been basedon direct measurements of

densities and temperatures. For example, Habbal et al. (1990) assumed the temperature

was the peak formation temperature of the lines, while the density was estimated from

an assumed constant pressure. Also, most previous estimates of radiative losses have

used power-law fits, whilst here the coronal radiative losses with the latest atomic data

(CHIANTI v.6) have been calculated.

In terms of Doppler-shifts, very few previous measurementsof XBPs exist in the lit-

erature. A few measurements from SoHO/SUMER (e.g., Madjarska et al. 2003) have

been published, but were limited to low-temperature lines.Brosius et al. (2007) pro-

vided Doppler measurements at ‘coronal’ temperatures during an EUNIS rocket flight,

but lacked spatial and temporal information.

Pérez-Suárez et al. (2008) presented one Dopplergram in Fe from a single observa-

tion, and found spatially-variable red and blue-shifts. Here, for the first time a complete

sequence of Dopplergrams of an XBP is presented. It has been unclear whether the ob-

served velocities are a direct measure of reconnection outflows or if they are signatures

of chromospheric evaporation, or something else entirely.

To gain an additional perspective on the processes at work, the similarity of the X-ray

structure of the XBP was compared to a potential field model. This work was done by

Dr Rhona Maclean (previously of the University of St. Andrews) and is presented in

Section 3.3.5 where the evolution of the coronal magnetic field with potential field ex-

trapolations is modelled, and Section 3.4.2 where a discussion is given on the energetics

and correlations between magnetic fields and coronal emission.
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3.2 Observations and data analysis

The online Hinode SDC Europe Archive was used to search for good observations of

XBPs. The criteria were that the XBP should be well within thefield-of-view of the

Hinode instruments and observed over many hours. Here, the results concerning one

such XBP are presented. The X-ray bright point studied here was observed with Hinode

between 2007 October 10 18:45 UT and 2007 October 11 07:17 UT.Figure 3.1 shows

the location of the XBP on the 11th October 2007, in a quiet Sunregion close to Sun

centre. This position makes line-of-sight analysis more accurate.

The Hinode observations consist of a long sequence of XRT, SOT and EIS observations.

The Hinode spacecraft in its normal mode tracks a solar feature, as the Sun rotates, so

in theory the FOV should be the same over time for the various instruments. However,

thermal changes along the orbit affect each of the instruments in different ways, creating

a considerable ‘jitter’ of a few arcseconds over short (minutes) time-scales. The fact

that the pointing of the instruments is not stable requires asignificant amount of extra

analysis, described below.

3.2.1 XRT

The XRT data considered here were taken with the Al-poly/Open filters and a FOV

of 384” x 256”. The XRT has a lower energy X-ray cut-off than the SXT (Soft X-

Ray Telescope) aboard Yohkoh meaning that the XRT can observe coronal plasma with

temperatures of 1 x 106 K or lower (Kosugi et al. 2007).

The data were processed using XRTPREP and the XRT jitter has been corrected for

by cross-correlating successive images. The pointing of the partial-frame images were

obtained by cross-correlating with available full-disc data. The pointing of the partial-

frame images is susceptible to error due to spacecraft movement. In order to correct
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Figure 3.2: Evolution of negative XRT images with co-aligned SOT contours overlaid.
Unfilled grey contours indicate negative magnetic flux and the filled grey contours rep-
resent positive flux (contours are at level±250 G). The FOV is 80” x 70”.

Figure 3.3: Hinode SOT/NFI Stokes V filtergram images of the bright point during
times corresponding to those of the X-ray XRT images of Fig. 3.2. The FOV is 80” x
70” and the range of the data is±350 Gauss.
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for this, each partial-frame image must be aligned with a similar full-disc image. The

pointing of the full-disc images can be trusted more due to the visible limb offering

context. In the case of XRT, each partial-frame image was compared to a same-time full-

disc XRT image (or a SoHO/EIT 195 Å image if no full-disc XRT was available). By

matching up the features, the partial-frame images can be corrected to full-disc pointing.

Figure 3.2 shows a sequence of XRT images (negative) over a time-span of 12 hours.

The XBP was composed of two main areas, a compact bright structure (size∼10 Mm)

and a secondary, fainter loop system to the East. The secondary one is clearly increasing

in brightness as the XBP evolves.

3.2.2 SOT

The SOT observed the XBP with both the Narrow-band Filter Imager (NFI) and the

Spectropolarimeter (SP). The NFI was used in the narrowband(NB) mode, where imag-

ing in the V, I Stokes parameters is performed in the Na line. The FOV was 276” x 164”

and the temporal cadence was about 1 minute. The filtergram (FG) data were processed

using the standard processing routine FGPREP. The Stokes I and V data were used to

obtain, as described below, line-of-sight (LOS) magnetic field density maps. The SOT

has an internal mechanism which can track solar features. Despite this, a considerable

‘jitter’ of a few arcseconds over short (minutes) time-scales is still present in both the SP

and FG data. This jitter in the FG data was corrected for by cross-correlating successive

images. Figure 3.3 shows a selection of these images with thesame FOV and timings

of the XRT images of Figure 3.2 for comparison.

As with the partial-frame XRT images, the SOT/FG Stokes V images are likely to have

slight errors in their pointing values. This can again be corrected for by aligning each

SOT magnetogram with a same-time SoHO/MDI LOS magnetogram which has more

accurate pointing values as it is full-disc. The pointing ofthe full-disc images was
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obtained by fitting the visible limb. The features of the bright point seen in each magne-

togram can easily be matched up in order to check how misaligned each partial-frame

image is and correct for it.

Figure 3.1 shows two near-simultaneous observations of SoHO/MDI and Hinode SOT/NB.

Notice the striking difference in resolution between the full-disc MDI and SOT/NB.

Once all the corrections were applied, and the FOV reduced, amovie of the SOT/FG V

images was made (see Movie xbpsot.mov). Notice in Figure 3.2 that the brightest part

of the XBP is associated with the largest magnetic fragment concentrations, which are

converging and cancelling over time. The fainter XRT loops connect the main negative

polarity (N1) with the fragments of positive polarity located NE of the main feature

(P2).

The SOT contours in Figure 3.2 are coloured to show the different polarities (unfilled

grey contours for negative flux, and filled grey contours for positive flux). It can be seen

that over time the main negative polarity splits into two segments: one that goes on to

cancel with the west positive fragments (P1), and one that moves towards the secondary

positive fragments in the east (P2). It can be seen that the bright point does not occur

exactly in-between the cancelling magnetic features as onewould expect. The XBP

seems to be concentrated over the central area of negative flux which is most likely due

to the influence of the secondary positive flux fragments. It may also be a line of sight

difference between the fragments which are observed on the photosphere and the XBP

on the corona.

The SP provides the line profiles in all Stokes parameters (I,Q, U, V) and is sensitive to

magnetic flux of 1-5 Gauss (longitudinal) and 30-50 Gauss (transverse) (Tsuneta et al.

2008). The SP performed various scans over the XBP, with the 0.16” slit over a FOV

of 157” x 162”. The data can provide vector magnetograms but there are drawbacks

in using the SP data: the long time (typically 30 mins - 1 hour)to scan an area means

fast-changing features are missed, and the thermal/orbital effects that exist are difficult
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Figure 3.4: Graph showing linear relation between SOT/SP data and SOT/NB data used
for calibration.

to correct for.

The SP data was processed in the standard way within SolarSoft. This processing makes

various corrections, including an approximate one for the instrument jittering, and pro-

vides apparent longitudinal and transverse magnetic field density maps. The SP longi-

tudinal maps were then used to calibrate the NFI data. A section of the SP longitudinal

map that passed over the XBP took approximately 15 minutes tobe rastered over. Aver-

aged FG V, I images were obtained during this time and used to obtain a calibration of

the FG data using the apparent SP longitudinal map. Firstly,the FG data were re-binned

to the same spatial scale as the SP data. Secondly, the two datasets were co-aligned, and

an area centred on the XBP selected. Then, a linear correlation between the SP density

and the V/I values was performed (see e.g., Chae et al. 2007). This linear relation can

be seen in Figure 3.4.

Small discrepancies between the SP and FG dataset are present, due to the different

scales and method of observations, as well as the fast temporal evolution of the magnetic
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fragments. The calibration leaves an uncertainty of the order of 10-20 Gauss. It was

found that the stronger magnetic fragments (i.e., the main polarity fragments labelled

P1 and N1 in Figure 3.1) have typical flux densities of 100–250Gauss.

3.2.3 EIS

Figure 3.5: Negative EIS intensity maps of the XBP in different spectral lines observed
on 11-Oct-2007 at 00.10.47 UT. The FOV is 70” x 70”.

The EIS instrument aboard Hinode observes emission lines with wavelengths in the

ranges 165–211Å and 246–291Å (Culhane et al. 2007). EIS is used to measure line

intensities, Doppler velocities (i.e., to show plasma flows), temperatures and densities

in the upper transition region and coronal part of the solar atmosphere. The spatial

resolution is only of the order of 3-4”, however the spectralresolution is very high and

allows measurements of Doppler-shifts of only a few km s−1.

The EIS observations were successive repetitions of an EIS study (CAM QS 2AS CONTEXT)

which was designed by Dr Giulio Del Zanna, as part of a campaign to observe the quiet
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Sun. This study included 32 spectral windows and lines formed over a range of tem-

peratures. The 2” slit covered a field of view of 120” x 360” with an exposure time of

30 seconds. The time between successive files was 30 minutes with a total of 22 rasters

being performed.

The SolarSoft routine EISPREP was used to process the raw data. Thecfit package

(Haugan 1997) was then used to fit Gaussian profiles to all the lines observed, using

custom-written programs to obtain intensity, position andwidth.

Ion λ(Å) Waveband Region log Tmax(K)
He 256.320 lw Chromosphere 4.9
O 192.910 sw TR 5.4
Fe 185.216 sw Low Corona 5.6
Si⋆ 275.35 lw Corona 5.8
Mg ⋆ 278.395 lw Corona 5.8
Fe⋆ 184.543 sw Corona 6.0
Fe 186.880 sw Corona 6.2
Fe⋆ 195.119 sw Corona 6.2
Si⋆ 261.056 lw Corona 6.2
Fe⋆ 202.044 sw Corona 6.2
Fe⋆ 284.160 lw Hot Corona 6.4
Fe⋆ 262.984 lw Hot Corona 6.8

Table 3.1: Some of the prominent EIS lines present in the CAMQS 2AS CONTEXT
study used. TR refers to the transition region while SW and LWrefer to the short and
long wavebands of the EIS CCDs. The approximate temperatureTmax of line forma-
tion is also shown.⋆ indicates that these lines were used in the Emission MeasureLoci
discussed in Section 3.3.1.

The line fitting produced information on 32 spectral lines and from these results, a

few lines were chosen to be looked at in more detail. These lines, along with their

wavelengths and approximate temperatures, are shown in Table 3.1. These lines show

how the features of the bright point change at different wavelengths and represent the

XBP from the chromosphere, through the transition region tothe corona.

The EIS instrument has a complex internal and external jittering to which only some

corrections can be applied. This was done by co-aligning themonochromatic EIS im-

ages in the hot lines with XRT images taken at similar times. The co-alignment is very
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accurate (1–2”), however the fast jittering of the EIS instrument while it scans means

that locations of EIS features can only be obtained with an accuracy of 3-4”.

As described in Del Zanna (2008a), one of the problems in the analysis of EIS data is the

offset in both N-S (18”) and E-W (2”) directions between the two channels. The offset in

the E-W direction means that observations in the two channels are not simultaneous nor

co-spatial however this only affects rapid variations and not the observations considered

here.

Figure 3.5 shows monochromatic images of a selection of EIS lines. The primary part

of the XBP is very compact in the hottest lines (e.g., Fe). The transition region lines

(e.g., Fe) and particularly the chromospheric He consistently show a bipolar struc-

ture in the main body of the XBP, which can be interpreted as the footpoint locations of

the (unresolved) system of hot loops. The strong He 256.32 Å line (seen in the top-left

panel of Figure 3.5) is blended with many coronal transitions, from Si, Fe, Fe,

and Fe at least, the dominant one being Si.

However, at the footpoints of coronal loops, the He emission is so bright that blending

with coronal lines can become negligible. Indeed the morphology of this line is similar

to that of lines formed in the transition region. This morphology is also similar to that

noticed by Kankelborg et al. (1996) in the high-resolution (1”) images obtained by the

MSSTA rocket. XBPs have associated very strong neutral hydrogen Lyα emission, often

resolved as a pair of footpoints. Fe 195.119 has the most intense emission suggesting

that the bright point has a maximum temperature within the range 6.1≤ log T/K ≤6.3

and very little plasma emitting above 3 MK. The secondary loop structure to the east of

the main bright point is also clearly shown in this image.
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3.3 Results

3.3.1 Temperatures

The temperature of the XBP was investigated using the emission measure loci (EML)

method (see e.g., Jordan et al. 1987; Del Zanna et al. 2002). Figure 3.6 shows an ex-

ample of one of the 22 plots that was made for each time-step. It was constructed

by plotting the ratio of the background-corrected intensity values of the bright point in

eight strong emission lines (see Table 3.1) with the calculated contribution function, and

plotting these against an array of temperatures as shown in the equation:

EM(λ,T) =
Iλ

G(λ,T)
(3.3.1.1)

where EM is the emission measure of a spectral line (at wavelengthλ) at a given tem-

perature (T), Iλ is the background corrected intensity measurement in that spectral line,

and G is the contribution function calculated for that spectral line over a range of tem-

peratures. See Del Zanna et al. (2002) for a more detailed discussion on the various

ways in which to define emission measure.

In order to determine the temperature where the greatest number of intersections oc-

curred, a simple histogram plot was made (Figure 3.6 lower panel). This histogram

has a bin size of log T/K = 0.05 and clearly shows that the specific temperature of log

T/K = 6.05 has the most intersections. This method was applied to each of the 22 EIS

files studied and it was found that over the time period (12 hours) the XBP was nearly

isothermal (i.e., each histogram was constricted to a narrow temperature range) with an

average temperature of 1.3 MK. The crossing point of the EM loci curves was found

to shift slightly from file to file meaning the indicated temperature varied from 1.2-1.7

MK. The ionization equilibrium values of Mazzotta et al. (1998) were used, together
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with elemental abundances of Grevesse & Sauval (1998).

Figure 3.6: Example Emission Measure Loci curves of the XBP for temperature analysis
made with information from eight EIS spectral lines. The lower plot shows a histogram
of the location of the intersections of the loci curves. Thisexample indicates the plasma
is near-isothermal at log T/K = 6.05. The degree of isothermality is inferred from the
tight distribution of the histogram over the temperature range.

The EML method is a direct and accurate way of determining theplasma thermal dis-

tribution, although it still relies on the accuracy of the atomic calculations and on the

validity of ionization equilibrium in a low-density plasma. One important result of the

EML method is that the XBP was nearly isothermal during its entire lifetime. It should
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be noted that the assumption that a plasma’s temperature canbe inferred from the char-

acteristic temperature of the spectral line in which it can be seen is not consistent with

the data here. In this case the temperature of the bright point is found to have an av-

erage value of 1.3 MK even though it can be seen in much hotter lines such as Fe

262.98 Å which is formed around 2.5 MK. This point is made to advise caution when

interpreting temperature results.

3.3.2 Electron densities and spectroscopic filling factors

The CHIANTI (v6) package (Dere et al. 1997; Landi et al. 2006)was used to calculate

the density of the central part of the bright point using the Fe (186.854+ 186.887 Å)

/ (195.119+ 195.179 Å) line intensity ratio, with the values of intensity corrected for

background emission. The variation of this line ratio with density is shown in Figure

3.7.

This calculation was done for each of the 22 EIS rasters. The density of the bright point

was found to have an average value of 5±1 x 109cm−3, although it did decline by around

40% in the last hour of the data set (see Table 3.2), when the main part of the XBP

became faint. It should be noted that the Fe lines used here often produce densities

higher than other ions (see e.g., Young & Landi 2009), when densities are of the order

of 1010cm−3 or more, so it is possible that the XBP electron densities areslightly over-

estimated here.

The XBP densities are, however, similar to those found in theliterature. For exam-

ple, Ugarte-Urra (2004) used various instruments on-boardSoHO to observe two bright

points. For one of the XBPs they used the Si (349.86/345.10) line ratio to calculate a

density value of∼5 x 108 cm−3 which they found to be in agreement with the result of

Del Zanna & Mason (2003) for a similar bright point.

Ugarte-Urra et al. (2005) measured electron densities for six bright points observed
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Fe XII line ratio relative to 195.119+195.179 Å
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Figure 3.7: Plot showing the variation of the Fe ratio (186.854+ 186.887 Å) /
(195.119+ 195.179 Å) with plasma density. This plot was generated using the CHI-
ANTI (v7.0) DENS PLOTTER procedure.
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with SoHO/CDS, obtained with a range of ions. Values ranged between 109 and 109.9

cm−3. Pérez-Suárez et al. (2008) found values around 109.5 cm−3 for one XBP using

Hinode/EIS lines from Fe and Fe. Tian et al. (2008) found values around 109.4

cm−3 for one XBP using a few Hinode/EIS line ratios. Dere (2008) and Dere (2009)

used the Fe ratio to provide densities for several XBPs which were also in-line with

these values.

Using the densities calculated from the Fe line ratio together with the calibrated in-

tensity seen with EIS Fe 195.119 Å, an estimate of the spectroscopic filling factor for

the bright point in each EIS raster can be made. The average filling factor for this bright

point was found to be 0.04. This is in excellent agreement with the results of both Dere

(2008) and Dere (2009) who studied various quiet sun coronalbright points using EIS.

The filling factor was found using the equation:

I = 0.86G(Tmax) N2
e f w (3.3.2.1)

whereI is the intensity (ergs cm−2 s−1 sr−1) of the Fe 195.119 Å, G is the contribution

function (ergs cm3 s−1 sr−1), Ne is the electron density (cm−3), f is the filling factor, and

w is the width of the XBP along the line of sight (cm). Approximating that the depth of

the bright point is equal to the observed width, this width atdifferent times was found

by using the method described by Dere (2008). This defines thewidth of the XBP as

the width of the feature at half the maximum intensity (see Figure 3.8).

In Dere (2008) an average density of 4x109 cm−3 and an average filling factor of 0.015

was found. Dere (2009) used the better spatial resolution ofTRACE to recalculate the

bright point widths of the same data set (plus an additional EIS raster) and found a lower

average density of 3x109 cm−3 and an average filling factor of 0.04.

Table 3.2 shows a summary of the values of filling factor foundfor the bright point over

the time series as well as listing information on how the other plasma parameters of the
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XBP changed over time.

File Time Iλ195 Ne log Te w f

(∆I=0.1I) (∆Ne=0.2Ne) (∆logTe/K=0.1) (∆w=2) (∆f=0.15f)
1 18:45:27 1201 3.89x109 6.15 11 0.094
2 19:17:11 978 3.89x109 6.15 10 0.102
3 19:48:56 999 3.89x109 6.14 12 0.077
4 20:20:40 1026 5.01x109 6.08 13 0.049
5 20:52:24 1498 6.31x109 6.08 12 0.038
6 21:24:08 1173 6.31x109 6.17 14 0.031
7 21:55:52 947 6.31x109 6.08 16 0.025
8 22:27:36 1023 6.31x109 6.17 12 0.032
9 22:59:19 856 5.01x109 6.23 13 0.029
10 00:10:47 1126 1.00x 1010 6.15 12 0.016
11 00:42:31 866 6.31x109 6.09 7 0.038
12 01:14:15 922 5.01x109 6.08 8 0.060
13 01:45:59 867 6.31x109 6.11 9 0.040
14 02:17:43 902 3.89x109 6.13 13 0.051
15 02:49:28 705 3.89x109 6.12 10 0.055
16 03:21:11 744 5.01x109 6.10 14 0.024
17 03:52:55 580 5.01x109 6.07 15 0.023
18 04:24:39 506 3.89x109 6.08 15 0.025
19 04:56:23 452 5.01x109 6.08 14 0.019
20 05:28:07 362 3.89x109 6.12 15 0.023
21 06:32:27 216 2.51x109 6.14 16 0.031
22 07:04:11 165 1.99x109 6.07 15 0.034

Table 3.2: Values calculated for the 22 EIS files observed over the 10-11 October 2007.
Intensities (Iλ195) observed in the Fe 195.119Å line are in ergs cm−2 s−1 sr−1, densities
Ne in cm−3, temperaturesTe in K, and widths (w) of the XBP observed by EIS (see
Figure 3.8) are given in arcseconds. The filling factor (f) for each time is also shown.

The errors calculated for each measurement are also given inthis table. The error on the

Intensities (Iλ195) observed in the Fe 195.119Å line were estimated at 10% due to the

level of background noise in the data. This uncertainty is carried forward into the density

calculation which is based on the ratio of two values of intensity (so therefore has an

uncertainty of 20%). The uncertainty in the temperature measurements was estimated as

the size of two temperature bins in log T space where the location of the EM loci curves

was evaluated. The temperature bins were log∆ T/K = 0.05 in size so the uncertainty

on each temperature estimate is±0.1 log T/K. The uncertainty in the width of the XBP

was estimated as one EIS pixel which is 2”. Since the average width of the XBP was
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15” this was approximated as an error of 15%. These percentage uncertainties were then

combined to find the uncertainty in the filling factor which isbased on measurements of

intensity, density squared and width. The resulting uncertainty for the filling factor was

found to be 12%.

Figure 3.8: Example showing how the width of the XBP was calculated. The left figure
shows an EIS Fe 195.119 Å image with a cross-section taken through the middle of
the bright point. The right figure is the intensity plotted along this cross-section. A fit
of the curve was made and the FWHM of this curve was determinedto be the width.

3.3.3 Timescales of energy losses

With the information already calculated it is trivial to calculate the timescales of energy

losses within the XBP. This will give a more thorough view of the processes at work

within the XBP. The timescale for radiative losses is given by the following equation:

τR =
3Ne kB T0

N2
e Λ(T0)

(3.3.3.1)

This timescale represents how long a feature should last if its primary method of energy

loss is through radiation. In the equation,Λ(T0) stands for the radiative loss function

(ergs cm3 s−1). This was calculated using the CHIANTI RADLOSS procedure. Also

in the equation, T0 represents the measured temperature, kB represents Boltzmann’s

constant, and Ne is the measured electron density.
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The equation to calculate the timescale of the bright point if its primary method of

energy loss is through conduction is given by the following equation:

τC =
3Ne kB T0

Kc T−7/2
0 L−2

(3.3.3.2)

In this equationKc represents the coefficient of classical heat conductivity and has a

value of 8 x 10−7 ergs cm−1s−1 K−7/2. The L represents the approximate size of the

bright point in centimetres and was valued at 1.09 x 109cm for a bright point of 15”

size.

The results of these timescale calculations at three instances over the XBP observations

are given in Table 3.3. An additional entry is shown in order to compare these cooling

timescales with a similar bright point studied by Ugarte-Urra (2004).

Ion: source Ne (cm−3) Λ(T0) (ergs cm3 s−1) T0(K) τR (s) τC (s)

Mg : Ugarte-Urra (2004) 1.6x109 2.1x10−22 1.3x106 2000 377
Fe: 10-Oct-07 18.45.27 3.95x109 3.365x10−22 1.39x106 408 1002
Fe: 11-Oct-07 00.10.47 9.00x109 3.365x10−22 1.41x106 155 2636
Fe: 11-Oct-07 05.28.07 3.72x109 3.365x10−22 1.31x106 323 1263

Table 3.3: Density and temperature values and corresponding timescales for radiative
and conductive processes. Ne is the calculated electron density,Λ(T0) stands for the
radiative loss function, T0 represents the measured temperature,τR is the timescale of
energy loss due to radiation, andτC due to conduction.

The various cooling timescales calculated for the XBP in Table 3.3 range from 6–43

minutes which are very short compared to the lifetime of the bright point which is

observed to be around 12–15 hours. The fact that the XBP liveslonger than the cooling

times suggests that some kind of heating factor is present within the bright point.
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3.3.4 Velocities

Changes in the Doppler-shifts and line widths were also examined. As described in Del

Zanna (2008a), a strong (75 km s−1) orbital variation of the wavelength scale is present

in EIS data. This variation is non-reproducible and is different for the two bands. It

has been corrected for (with custom-written software) by obtaining an average time-

dependent wavelength scale for the two bands using the brightest lines and the standard

wavelength-to-pixel calibration. Rest wavelengths were obtained from a quiet Sun area

far away from the XBP. Count rates were such that Doppler-shifts in only a few stronger

lines could be measured. The best measurements are those from the strongest line in the

EIS wavelengths, the Fe 195.12 Å self-blend.

The line widths do not vary significantly over time and in the XBP location, however

Doppler-shifts do. The velocity flows in and around the bright point were studied over

a 12 hour period at intervals of 30 minutes (the minimum time between the rasters).

Figure 3.9 shows a time series of the red-shifts and blue-shifts that were observed. It can

be seen that even on the relatively short timescale of 30 minutes, changes are observed in

the strength and structure of the velocity flows suggesting that these flows are occurring

on timescales smaller than the observations available here.

It can be clearly seen that initially there are blue-shifts observed in the boundary be-

tween the two loop systems as well as on the other side of the cooler loop system (i.e.,

above the magnetic area P2). It can also be seen that there is apersistent red-shift

observed in the main part of the XBP which also corresponds tothe area where the

polarities N1 and P1 are meeting and cancelling. Figure 3.9 shows that these red and

blue-shifts are changing in strength and position from one image to another. As the

cancellation of the XBP magnetic fragments progresses, it can be seen that a new area

of red-shift has emerged in the secondary loop area. This is most likely due to the mi-

gration of part of N1 that splits off and moves towards P2 at around 03.00 UT. This new

red-shift indicates that a secondary cancellation is occurring.
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Figure 3.9: Sequence of Dopplergrams of area around XBP from18:45 on the 10-
October-2007 every 30 minutes until 06:32 on the 11-October-2007. The numbers in
the bottom-left of each image correspond to their entries inTable 3.2 (NB file 22 is not
shown in this plot but is very similar to file 21). Velocities were found using EIS Fe
195.119 Å . The velocities shown are between±20 km s−1and are over-plotted with
intensity contours. The field-of-view of each box is 70” x 70”.
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3.3.5 3D magnetic field structure

This section was written by a coauthor of the paper this chapter is based on. Dr Rhona

Maclean contributed a potential magnetic field extrapolation in order to investigate the

similarity of this extrapolation to the X-ray structure of the bright point. Her work

(this section and also section 3.4.2) and figures (3.10 and 3.11) are included here for

completeness as her work is necessary for full conclusions to be drawn.

The coronal magnetic field near the bright point was reconstructed from the SOT/NFI

data which had already been calibrated. By identifying the strong photospheric mag-

netic features, tracking them in time, and modelling them aspoint magnetic sources, a

sequence of potential magnetic fields for the solar atmosphere close to the bright point

were extrapolated.

This was useful for the analysis because the 3D magnetic topological structure of these

fields could then be calculated. Such a topology consists of magnetic null points (where

the magnitude of the magnetic field is zero, Parnell et al. 1996) and their associated field-

lines: spines, separatrix surfaces, and separators (a goodreview is given by Longcope

2005). These elements together make up the topological skeleton of the magnetic field,

and they are prime locations for magnetic reconnection (Priest et al. 2005). As the

heating of the bright point could have been caused by magnetic reconnection (Brown

et al. 2001b), it makes sense to use topological analysis to determine where the likely

reconnection sites are and how they change in time. These canbe compared with the

observed heating/brightening locations (from XRT) to determine the role of magnetic

reconnection in heating the bright point.

In order to take advantage of the simultaneous observationsavailable for this bright

point, XRT and SOT/NFI data taken as close to the EIS file times as possible were

chosen for the extrapolation. The SOT/NFI data were analysed using the YAFTA feature

tracking algorithm (Welsch et al. 2004), which was set to detect and track magnetic
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Figure 3.10: Figure by Dr Rhona Maclean showing two examplesof our comparison be-
tween the X-ray emission seen in XRT and the similarities to the potential field model
we applied. The two figures on the left show negative XRT images overlaid with the
photospheric footprints of the calculated topological structure of the extrapolated mag-
netic field. Positive magnetic sources are labelled as⊕, negative magnetic sources as
⊗, positive null points asH, negative null points asN, spines as solid curves, and the
intersections of separatrix surfaces with the photosphereas dashed curves. It is pos-
sible to form a good impression of the whole 3D magnetic field structure, given that
each null point’s associated 3D separatrix surface must close via spine field-lines in the
photosphere in cases where its own two separatrix traces do not terminate at the same
source. No field-line can cross a separatrix surface or a spine. The two figures on the
right show the same XRT images after being put through an edge-detection process (by
CEA). These images have then been overlaid with field-lines (in green) generated by
the potential field model to identify any structural similarities

.
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features with a minimum magnetic flux density of 250G in each pixel, and a minimum

size of 20 pixels. Ten or more strong magnetic features were detected in all frames.

The tracked features were then modelled as point magnetic sources, with magnetic field

strengths and (flux-weighted) locations determined by their parent features. MPOLE

(Longcope & Klapper 2002) was used to extrapolate a potential magnetic field for each

time-frame and calculate its topological skeleton. Figure3.10 (left column) shows the

photospheric footprints of the topological skeletons of the magnetic fields, superim-

posed on the XRT emission, for two representative time-frames within the observation

period. The photospheric footprint of the topological skeleton means that only those

parts of the skeleton that lie in the photospheric plane are shown; magnetic sources, null

points, spines, and the intersections of the separatrix surfaces with the photosphere. The

right-hand column in Figure 3.10 shows the same XRT images after being processed

with edge-detection software. Over-plotted on these figures are example field-lines

based on the calculated topological skeleton. This is to look for similarities between

the observed loop structure and that predicted by the potential field model.

3.4 Discussion and conclusions

3.4.1 Energy timescale

It can be seen in Table 3.3 that the average results for the bright point for bothτR and

τC are different to the values calculated for a similar bright point studied by Ugarte-

Urra (2004). This is due to the slight differences in density and temperature of the two

bright points as well as having a more up-to-date figure for the radiative loss function

Λ. The size of the bright point in the study was also smaller so the timescales involved

could differ due to factors such as the bright point containing less magnetic flux which

would affect the temperature and overall lifetime of the XBP. The figures calculated for
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our bright point indicate that the corona cools via conduction in around half an hour

whereas energy is lost via radiative methods over a manner ofminutes. This illustrates

that there must be a continuous heating method present in theXBP for it to last longer

than these timescales.

3.4.2 Magnetic Topology

This section was written by Dr Rhona Maclean to analyse her work on the potential field

extrapolation she performed.

The fundamental large-scale structure of the bright point’s magnetic field is two sets

of magnetic loops sitting next to each other length-ways, and orientated approximately

east-north-east to west-south-west on the Sun. These loopsspring from three main

regions of strong magnetic field on the photosphere; a central negative region (N1)

flanked by positive regions to both west (P1) and east (P2), ascan clearly be seen in

Figure 3.1 (lower panels).

Early on, the strongest brightening in XRT issues from the loops joining N1 to P1; this

can be considered as the main bright point. However, fainterloops can also be seen

joining N1 to P2 (seen clearly in Figure 3.2). As time goes on,the brightening in the

N1-P1 loops become more concentrated close to N1, and eventually dims to about the

same level as the N1-P2 loops, which remain faint but distinct throughout.

Figure 3.11(a) shows how the magnetic fluxes of N1 (solid curve), P1 (dot-dot-dashed

curve) and P2 (dashed curve) varied over time. After 23:00 UT, the fluxes of N1 and P1

are both clearly decreasing, suggesting that magnetic cancellation took place between

the two main bright point sources at least from 23:00 to 07:00UT.

The distances between N1 and P1 (solid curve) and between N1 and P2 (dashed curve)

can be seen in Figure 3.11(b). This graph shows that both pairs of sources moved closer
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together during the observational period, although the change was more steady and

significant for N1 and P1. So we have a pair of sources moving closer together while

their magnetic fluxes are decreasing; both indications of magnetic cancellation. Finally,

topological model of the bright point’s magnetic field was used to calculate the changing

amounts of flux joining each pair of sources. This is shown in Figure 3.11(c), with the

flux joining N1 to P1 shown as a solid curve, and the flux joiningN1 to P2 shown as a

dashed curve. The magnetic connection between N1 and P1 steadily weakens over the

whole observation period. After 23:00 UT, the magnetic connection between N1 and

P2 also weakens. This weakening must be due to magnetic cancellation between both

source pairs.

3.4.3 Relation between photospheric fields and coronal signatures

Several authors have found it useful to study the magnetic field of an area of coronal

activity and use the extrapolated field lines to look for similarities in the coronal emis-

sion. Pérez-Suárez et al. (2008) used SoHO/MDI to compare the extrapolated field lines

of an XBP with what they saw in XRT images. They found that the bright point X-ray

structure was very similar to that predicted by the potential field model used.

It is very clear that the XRT brightenings join the two pairs of magnetic source regions.

As can be seen in Figure 3.10, the XBP shows a good agreement between the positions

and angles of the observed magnetic loops and the extrapolated magnetic field-lines of

the potential-field model. This implies that the potential field model used does a good

job of capturing the large-scale features of the XBPs 3D magnetic field for most of its

observed lifetime.

The Hinode/XRT observations of the XBP do not show significant variations on short

timescales (the same was found by Nolte et al. 1979 with X-rayimaging). This is in

disagreement with the ‘stick slip’ magnetic reconnection model proposed by Longcope
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Figure 3.11: From top to bottom: (a) Evolution of the magnetic flux of each source
region. N1= solid curve, P1= dot-dot-dashed curve, P2= dashed curve. (b) Evolution
of the distances between the source regions. N1-P1= solid curve, N1-P2= dashed
curve. (c) Evolution of the magnetic flux joining the pairs ofsource regions. N1-P1=
solid curve, N1-P2= dashed curve. Figure by Dr Rhona Maclean.
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(1998). This of course does not mean that impulsive heating does not occur, but if it

does, it does on very short time-scales (seconds) and/or sub-resolution spatial scales.

It is interesting to look for correlations between the X-rayemission and the total mag-

netic flux density over time. An area around the main polarityof the XBP was selected

(areas P1 and N1 in Figure 3.1), and the light curve of the XRT count rates obtained.

This is shown in Figure 3.12 which shows the evolution of the magnetic flux and the

X-ray emission over time.

It can be seen that the positive (blue triangles) and negative (black squares) magnetic

flux of the bright point show a significant decrease after around 00:30 UT which indi-

cates that the XBP is indeed formed over an area of cancellingmagnetic flux. What is

interesting to note is that the XRT data shows a significant variation up until this time af-

ter which the count rates decrease in intensity then level out to background levels. This

correlation between the start time of the cancellation and the sharp increase in X-ray

output can be interpreted as evidence of magnetic reconnection.

In Figure 3.11, both the positive and negative SOT fluxes showthe same gradual de-

crease after 00.00 UT suggesting this is when the cancellation begins. Figure 3.11(a)

also shows that the greatest loss of magnetic flux joining P1 and N1 takes place between

23:00 UT and 01:00 UT, which suggests that the midnight spikein the XRT intensity

is due to energy release from this magnetic cancellation event. There are two or three

significant peaks seen in the XRT intensities before the cancellation begins which we

cannot fully explain. These are most likely due to heating orreconnection events that

can’t be linked to motions of the magnetic fragments.

The fact that the magnetic field of the XBP is quite close to being potential means

that the energy powering the XRT spikes should come from physical cancellation of

the magnetic fields rather than from magnetic reconnection converting stored magnetic

energy to heat.
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Figure 3.12: Comparison between the changing magnetic and X-ray flux of the area of
the XBP over time.Top: plot showing how the total positive magnetic flux (designated
as P1 in Figure 3.1) changes over time.Middle: similar plot showing how the absolute
values of the total negative magnetic flux (N1) changes over time as the cancellation pro-
gresses.Bottom:plot showing how the total count rate of the XBP observed by the XRT
instrument changes over time. The initial variations in theX-ray flux peak around 00:30
UT which coincides with the time both magnetic fluxes start tosignificantly decrease
i.e., at the start of the cancellation. This could be a signature of magnetic reconnection.
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3.4.4 Relation between magnetic field and observed plasma velocity

flows

The Dopplergrams clearly indicate a variable pattern. Thisis somewhat puzzling, con-

sidering that the overall intensity pattern does not changeso rapidly. Similar patterns of

blue and red-shifts were found in active regions (see e.g., Del Zanna 2008b), but they

were stationary over long time periods. It seems unlikely that the Doppler motions are

related to reconnection outflows. Also, the flow patterns do not support the idea of ‘stick

slip’ magnetic reconnection, which should occur along separator field lines.

It is quite possible that the Doppler-motions are related tochromospheric evaporation

(blue-shifts) and subsequent draining (red-shifts) following cooling. However, Brosius

et al. (2007) suggested the possibility that, if outflows areconnected to chromospheric

evaporation, they would likely decrease in time, somethingthat is not observed.

This work found no clear correlation between the Doppler-motions and the coronal

magnetic field as obtained from the extrapolations, and can give no clear explanation

of the observed velocity flows. Higher cadence observationswith EIS will better reveal

the pattern and links between what we see in the magnetic structure on the photosphere

and the corresponding changes in the plasma velocities observed in the corona. Possible

future work on this topic is detailed in Section 7.1.
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Impact upon the Differential Emission

Measure of evolving multistranded

loops

4.1 Introduction

The internal structure of coronal loops and the heating processes that take place within

them is an area of intense research. By understanding these two important aspects,

progress can be made towards answering one of the most important questions in solar

physics: how is the corona heated? The heating of coronal loops is an important part

of this question, and progress has been made in both observations and theory to try and

answer it.

The idea that nanoflares contribute a large portion of the energy needed to heat the

corona was first suggested by Parker (1988). In this discussion the term nanoflare refers

to a discrete, localised impulsive burst of energy of the order of 1024 ergs. Combining

this power source with the idea that loops are composed of many sub-resolution strands
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forms the basis of the loop simulation that is explored and then utilised in this chapter.

The aim is to use a multi-stranded hydrodynamic model in conjunction with Differential

Emission Measure (DEM) analysis to examine three main areas. Firstly, the parameter

space of the model is explored to see how varying the simulation inputs affects the

resulting DEM. Secondly, the simulated loop is used alongside the temperature response

function of the SDO/AIA instrument in order to create synthetic values of intensity.

These values are then used to test the accuracy of various DEMsolvers. Lastly, actual

SDO/AIA data are examined to see if the model produces results which are consistent

with what is observed on the Sun.

The combination of simulation and observation is the key element of this study. It is

important for any model to generate observables as these canhelp to interpret real solar

data. By varying the parameters of the model we can observe how the physics of the

system affects the observables and this in turn can help to put limits onthe model.

The investigation of DEM solvers is another important aspect e.g., how consistent is

the synthetic DEM generated from the model compared to the DEM generated by the

solver on the same data? In that regard, how well can we trust the solver to interpret real

observations?

4.1.1 Heating and Structure of Coronal Loops

The explanation behind the relatively high temperature of the corona is probably one of

the most sought after solutions in modern solar physics. Reaching a conclusive answer

to this question is no easy feat however, and a comprehensivereview of the problems

and current theories is given by authors such as Klimchuk (2006), Reale (2010), Priest

et al. (2000), and Aschwanden et al. (2007).

Out of the many proposed methods put forward to explain how plasma within coronal

loops is heated, only one method will be concentrated on in this chapter: nanoflare
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heating. The goal of this chapter is not to prove that nanoflares heat the corona, but to

explore the viability of the nanoflare concept within the confines of a simulation.

The term nanoflare can be misleading as it does not refer to a specific type of solar flare.

In this discussion “nanoflare” is used the same way as Parker (1988) who use the term

to describe an energy release (of the order 1024 ergs) that occurs on very small spatial

scales and is in the form of many localised impulsive bursts.

The source of these nanoflares comes from the fast-moving andcomplicated movement

of the photosphere which causes the magnetic field running through it to become twisted

and braided. This results in multiple small-scale magneticreconnections occurring to

dissipate the stored energy. The timing of these nanoflares is impulsive (as photospheric

motions would not cause a steady rate of reconnections to occur) and they occur on

small spatial scales (i.e., on the order of flux tube width) sonanoflare heated loop models

are generally also multi-stranded. Many authors have explored nanoflare models with

encouraging results (see e.g., Taroyan et al. 2006; Walsh etal. 1997; Tripathi et al.

2011).

The ability of nanoflare models to accurately predict/explain the behaviour of real coro-

nal loop observations would help to uncover thefrequencyof heating events in the

corona. This would allow constraints to be put on the coronalheating mechanism

(Winebarger et al. 2012). The debate over whether this mechanism is low-frequency

(i.e., impulsive) or high-frequency (quasi-steady) is still ongoing but the detection of

high temperature plasma would help to decide matters. High-frequency heating should

keep plasma at a relatively constant temperature as the loopmaterial doesn’t have time

to cool and drain in between heating events. Low-frequency heating, however, would

allow the plasma to drain and cool to a greater extent as thereis more time between

heating events. This would mean that higher temperatures could be achieved due to the

changes in density that are caused by the draining.

Klimchuk (2009) found that both high and low-frequency heating could reproduce the
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observed intensities and velocities of active region loopsso definitive evidence of a hot

component would go a long way in supporting nanoflare heating. Evidence for this hot

component has been reported by Schmelz et al. (2009b,a) and Reale et al. (2009) who

have both used X-ray observations such as XRT and RHESSI. However, care should be

taken when interpreting observations as Winebarger et al. (2012) detailed that current

instrumentation has problems imaging high temperature plasma that has a low emission

measure. They used a combination of Hinode EIS and XRT and found that the two in-

struments were insensitive to plasma above 6 MK (logT/K=6.8) which had an emission

measure of less than 1027cm−5.

However, a recent study by Testa & Reale (2012) used a combination of Hinode/EIS

with SDO/AIA and concluded that the hot component could be seen in active regions.

They used a combination of three AIA channels (171Å, 335Å, & 94Å) to highlight

the location of hot plasma and also observed it with observations in the EIS Ca

line. If this result is confirmed by other studies it would mean that evidence for the hot

component could be identified now rather than having to wait for the next generation of

instruments.

Observations show that solar flares obey a power law for theirenergy distribution with

a slope of aboutα=-1.8 (see e.g., Drake 1971; Dennis 1985). Hudson (1991) examined

this further and concluded that for nanoflares to power the corona, they would have to

obey a power law with a more negative slope ofα<-2. This relationship is shown in

equation 4.1.1.1 where W refers to the nanoflare energy.

dN
dW
∼W−α (4.1.1.1)

No conclusive evidence has been found to find in favour of nanoflares based on power

law observations as both steeper and shallower gradients have been observed (see e.g.,

Aschwanden & Parnell 2002).
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Other models

Most authors agree that the combination of observations with theory is the best way in

which to progress our understanding of the physics of the solar corona. This can be

done by either using observations as inputs to fine tune models or by using models to

generate ‘observables’ which are compared to real data.

The model used in this chapter is described in detail in the next section but there are

also many other models available, each with their own advantages and disadvantages.

Simulation speed, resolution and parameter inputs are all issues that need to be consid-

ered when writing or utilising a particular model. The more detailed 3D models will

take longer to run and more space to store while 1D models are quicker and take up less

storage space but will contain less dimensional information on the plasma properties of

the loop.

Many authors have successfully matched observations of coronal loops with multi-

stranded static models (see e.g., Reale & Peres 2000; Aschwanden et al. 2000a; Winebarger

et al. 2003a). At the same time other work has shown equally positive results using hy-

drodynamic codes such as Ugarte-Urra et al. (2006), and the 0D hydrodynamic code

introduced by Cargill (1994). This code was later modified and used further by Cargill

& Klimchuk (1997, 2004) and Klimchuk & Cargill (2001). In their multistrand model

each strand is represented by a single temperature and density and undergoes impulsive

nanoflare heating. This allows the loop to cool via conduction and then by radiation.

The model calculates the parameters of many strands in orderto draw conclusions about

a “global loop”.
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4.1.2 Multistranded Hydrodynamic Loop Model

The coronal loop simulation explored in this chapter is based on the 1D hydrodynamic

loop model first presented in Arber et al. (2001) and subsequently explored by Sarkar &

Walsh (2008, 2009). The model consists of a loop composed of anumber of individual

strands that are modeled independently by a one-dimensional hydrodynamic simula-

tion. The simulated loop is heated by localised, discrete energy bursts in the form of

nanoflares which occur along individual strands.

Hereafter this simulation shall be referred to as the MSHD model (multi-stranded hy-

drodynamic) rather than a 1D hydrodynamic model as it is the multistrandedness that

is the most important aspect. This model is not truly 1D (although each strand is 1D)

as the simulation can be used to look at parameters across theloop width by studying

the evolution of all the strands together. In this context 1Drefers to the ability of the

model to study parameters along the length of the loop i.e., parallel with the magnetic

field. The hydrodynamic nature of the model means that changes in time can also be

studied. Throughout this work the term ‘strand’ is used to refer to individual flux tubes

containing plasma while ‘loop’ refers to the type of structures imaged by observations

that are an amalgamation of these filamentary strands.

MSHD model description:

The MSHD model is very flexible so it is straightforward to change the various input

parameters in order to see how the physics of the system is affected. The variable input

parameters include:-

• the loop length,

• the number of individual strands,

• the total energy going into the loop,
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• the number of bursts (i.e. nanoflares) in each strand,

• the energy and timescale of each burst,

• the location of the bursts i.e., apex, footpoint or uniform distribution (see Figure

4.1),

• the duration of the simulation,

• the proportion of the loop designated as the chromosphere and transition region,

In each case, the loop is modelled as a semi-circular shape asopposed to some models

(e.g., Winebarger & Warren 2004), where only half the loop ismodelled (i.e., foot-

point to apex). The MSHD model simulates the entire length inorder to study how the

different parameters change at each footpoint.

In this work, the loop modelled is 100 Mm in length and is anchored in the model chro-

mosphere and transition region which account for 5 Mm at eachfootpoint. The length

of the loop means that the height of the loop apex above the solar surface is∼32 Mm.

This means the loop does not extend beyond one pressure scaleheight (∼47 Mm As-

chwanden et al. 2001) which simplifies the pressure and gravitational constraints. In the

future if larger loops were modelled this assumption would have to be revisited.

At the beginning of the simulation, the plasma within the loop has a temperature set at

the chromospheric value of 10,000 K which increases sharplyas the nanoflares begin

to heat the loop. As mentioned in the list of model inputs above, the position along

the loop where these nanoflares are deposited can be defined inthree ways. Figure 4.1

shows the heating profiles where the nanoflares are spread uniformly along the loop

length (green), or constrained to the apex (red) or footpoint areas (blue).

The data on this graph is plotted from -50 Mm to+50 Mm but it can be seen the

nanoflare distribution is only between± 45 Mm. This is the previously mentioned 5 Mm
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Figure 4.1: Example of how the distribution of the nanoflarescan be changed to be
confined to a specific area of the loop in the MSHD model.

at either end of the loop that is designated to be the chromosphere/transition region area

and no nanoflares are located there.

The plasma within each individual strand is modelled according to the following time-

dependent 1D differential equations of mass, momentum and energy conservation:

Dρ
Dt
+ ρ
∂

∂s
v = 0 (4.1.2.1)

ρ
Dv
Dt
= −
∂p
∂s
+ ρg+ ρν

∂2v
∂s2

(4.1.2.2)

ργ

γ − 1
D
Dt

(
p
ργ

) =
∂

∂s
(κ
∂T
∂s

) − n2Λ(T) + H(s, t) (4.1.2.3)
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p =
R
µ̃
ρT (4.1.2.4)

D
Dt
≡ ∂
∂t
+ v · ∂

∂s
(4.1.2.5)

whereρ, p, n, v and T represent the mass density, pressure, particledensity, velocity and

temperature of the plasma, s is the spatial coordinate whichindicates the position along

the strand, g is the component of gravity along the loop (assumed to be constant),γ is the

adiabatic index (assumed to be 5/3),κ is the conductivity of the plasma (= 9.2×10−7T5/2

erg s−1 cm−1 K−1), R the molecular gas constant (8.3× 107 erg mol−1K−1), andµ̃ is the

mean molecular weight with ˜µ = 0.6 mol−1. ν is the coefficient of kinematic viscosity

(assumed to be uniform),Λ(T) is the optically thin radiative loss function, and H(s,t)

is the coronal heating term. This has the form of Cook et al. (1989) which is shown

in Figure 4.2 alongside various other forms of the radiativeloss function. The MSHD

model can be adapted to accept any of these functions.

Model resolution and grid spacing:

The MSHD model is relatively quick to run (∼ few hours) and provides information on

the temperature, density and velocity evolution of the loopplasma along each individual

strand at each timestep of the simulation. The spatial resolution of the simulation (i.e.,

how many grid spaces are defined along the length of the 100 Mm)as well as the time

resolution (i.e., how many seconds one timestep represents) are user defined to adapt the

model to the type of observable required (e.g., simulation of a small-scale rapid change

or large-scale, slowly-evolving type of observation). A balance must be found between

the resolution requirements and the simulation run-time inorder to get the best result

from the model.

In this work, the spatial resolution chosen was of the same order as an SDO/AIA pixel,
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Figure 4.2: Compilation of different radiative loss functions which result from different
choices of elemental abundances. The work in this thesis hasbeen done using the Cook
et al. (1989) function. Figure from Aschwanden et al. (2003).

and the time resolution was set at one second per timestep. Figure 4.3 shows a rep-

resentation of the 100 Mm loop where the zoomed-in section shows a subset of five

individual strands that make up the loop. The marked length segments refer to the grid

size of the model where each section has its own value of temperature and density for

every timestep.

The grid size in this case is 0.164 Mm but this is not uniform along the loop. Figure

4.4 shows how this factor changes along the length of the loopi.e., that the grid size

is much smaller in the chromosphere and transition region portions than in the corona.

This needs to be kept in mind when selecting portions of the loop for analysis. Care

must be taken not to take data from the TR/chromosphere section unless the change in

resolution is accounted for.

The grid size is used for calculating how many sections of length to consider in order to

represent a particular observable. For example, if the MSHDloop was to be compared
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Chromosphere

100Mm
Multistranded

Loop

N number of subresolution
strands with grid spacing

0.164 Mm

Transition Region

Corona

Figure 4.3: Representation of the MSHD model showing the multistrandedness and the
way in which individual strands are divided up into segmentsaccording to the model
grid size.

Figure 4.4: Graph showing how the 100Mm loop simulation is composed and how the
sizing of the pixels/length segments in each region differs.
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to 1 AIA pixel (which has a resolution of∼1” which is approximately 0.725 Mm on the

Sun) then data from∼4 length segments should be analysed as 0.725 Mm/0.164 Mm

≈4.4≈4.

4.1.3 Differential Emission Measure Description

As discussed in Section 1.3, there are various ways to investigate the temperature and

density distribution of coronal plasma. The filter ratio andEM Loci methods rely on

the assumption that the plasma along the line-of-sight is isothermal, but this could be

quite a crude approximation. A more complete analysis may begained from using a

Differential Emission Measure (DEM) distribution which describes the variation of the

plasma emission within a particular temperature range.

The DEM investigates plasma along a certain line-of-sight and gives the contribution

from radiation between defined temperature (T) intervals (∆T). The DEM is only a

function of temperature so information on how the plasma temperature varies along the

line-of-sight (i.e., at different atmospheric heights) is not available. This is due to the

fact the emission is optically thin in the corona so plasma atdifferent positions along

the line-of-sight that share a certain temperature range will all contribute to the DEM.

Subsequently, the emission measure (EM) of a plasma can be defined as a summation

of the DEM over all temperatures as shown in Equation 4.1.3.1whereρ is the density

of the plasma and dh is the line-of-sight element. T is the temperature and∆T is the

defined temperature interval.

EM∆T(T) =
∫ T+(∆T/2)

T−(∆T/2)
DEM(T) dT

DEM(T) =
∫

ρ2 dh
dT

(4.1.3.1)
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Observationally the DEM can be calculated from measurements of spectral lines (e.g.,

from SoHO/CDS or Hinode/EIS) or from imaging instruments (e.g., Hinode/XRT or

SDO/AIA). When using observations taken from imaging instruments to construct a

DEM, it is important to keep in mind the fact that these filtershave multiple contribu-

tions over a given temperature range.

The intensities measured from these observations can be used to construct a DEM by

using an inversion technique. Equation 4.1.3.2 demonstrates this issue as the left-hand

side of the equation (where Iλ is the intensity at a particular wavelength/filter) is known

but the DEM(T) portion on the right-side is what is to be calculated. In this equation

Gλ represents the instrument response function of a specific imager at a particular wave-

length. In the case of spectra being used, this function would be replaced by the element

abundance multiplied by the contribution function of the specific line being used.

Iλ =
∫

Gλ(T) DEM(T) dT (4.1.3.2)

In this chapter, synthetic DEM distributions are constructed directly from the plasma

temperature and density parameters as the MSHD model provides these values over the

time and length-scales of the simulation. Using Equation 4.1.3.1, the DEM can be cal-

culated from the model outputs. This DEM can further investigate the model parameters

by using Equation 4.1.3.3 and folding this DEM through the SDO/AIA temperature re-

sponse function in order to obtain synthetic intensity values. In this equation Ic is the

intensity seen in a particular AIA channel (DN), t is the ‘exposure time’ of the synthetic

observation (i.e., the length of simulation time it is constructed from in seconds), and

∆T is the width of the temperature bin the DEM is based on (in degrees Kelvin).

Ic =
∑

DEM(T) Gc t ∆T (4.1.3.3)
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Only the Fe AIA channels (e.g., 94Å, 131Å, 171Å, 193Å, 211Å, and 335Å) have been

selected to investigate synthetic intensities in order to avoid abundance issues. Addi-

tionally, only simulated data with log T≥ 5.5 have been included as below this is where

the solar atmosphere becomes more optically thick and optical thinness is an important

assumption of DEM analysis.

4.2 Exploration of model parameter space

The flexibility of the MSHD model allows a full examination ofhow the physical system

reacts to changes to its input parameters. It is straightforward to perform different runs

of the simulation where parameters such as loop length, number of strands, number of

nanoflares per strand, energy of each nanoflare, and the distribution of the nanoflares

in space and time can be altered. Table 4.1 shows a list of the four main parameters

investigated for a 100 Mm length loop of fixed radius (2 Mm).

Investigation Description

A The effect of changing the number of strands (Nstrand) within the loop

B The effect of changing the location of the nanoflares along the loop

C The effect of changing the energy balance:
i - Changing the Etot of the system by increasing the Eburst

ii - Changing the number of nanoflares whilst keeping Etot the same

D Investigating the effect of turning off the heating after a
prescribed period of time on the loop system

Table 4.1: List of the various investigations of the MSHD model parameter space.

The purpose of altering these parameters is to investigate how changes in the inputs of

the model affect the resulting values of temperature and density which are investigated

using DEM analysis. Table 4.2 gives a full list of the different simulations that were run

to investigate the parameter space of the model.
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Simulation No. of No. of Heating Energy Eaverage Total Energy
No. strands bursts/strand Location Class burst (ergs) in loop

1 16 64 U 1024 5.20x1025 5.32x1028

2 32 64 U 1024 2.57x1025 5.28x1028

3 64 64 U 1024 1.25x1025 5.13x1028

4 128 64 U 1024 6.28x1024 5.14x1028

5 128 64 A 1024 6.16x1024 5.04x1028

6 128 64 F 1024 6.26x1024 5.13x1028

7 128 64 U 1023 6.28x1023 5.14x1027

8 128 64 U 1025 6.28x1025 5.14x1029

9 128 64 A 1023 6.16x1023 5.04x1027

10 128 64 A 1025 6.16x1025 5.04x1029

11 128 64 F 1023 6.26x1023 5.13x1027

12 128 64 F 1025 6.26x1025 5.13x1029

13 128 64 U C 1023 6.28x1023 5.14x1027

14 128 64 U C 1024 6.28x1024 5.14x1028

15 128 64 U C 1025 6.28x1025 5.14x1029

16 128 16 F – 2.49x1025 5.10x1028

17 128 640 F – 6.32x1023 5.17x1028

Table 4.2: Table showing all simulations run of a 100Mm loop and the important pa-
rameters involved. The fourth column details where along the loop the majority of the
nanoflares were distributed. ‘U’ is a uniform distribution,‘A’ is an apex dominated
distribution, ‘F’ is a footpoint dominated distribution, and ‘U C’ refers to a uniform
distribution of nanoflares which was allowed to cool after the heating had been stopped.
The fifth column ‘Energy class’ is a designation to quickly show the nanoflare energy
mean where 1024 ergs is considered as the standard value. Energies that wereof an order
of magnitude either side were also explored. This designation is used on various figures
to differentiate between the simulations.
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Each simulation produces arrays of temperature and densityvalues that vary by strand

number, location along each strand, and in time. The spatialand temporal resolution

of the model is chosen to reach a balance between simulation run time and producing a

dataset that is comparable to observations so that small-scale changes can be seen. The

high resolution of the MSHD model, although advantageous for looking at small-scale

changes, can lead to some computational difficulties if the full scope of what the model

shows is to be examined.

For example, if one wishes to have a temperature and density value for every time-step,

along every strand, at each grid spacing along the loop, thiscan lead to arrays with di-

mensions of T/ρ (s,t,N)=[1002,17250,128] for the case where there are 128 strands in

the loop over the whole 17250 second simulation whilst looking at all 1002 length sec-

tions of the loop (including the chromospheric and transition region parts of the loop as

well as the coronal part). This leads to two arrays with 2.2 x 109 double-precision ele-

ments which can cause some memory and CPU usage problems whenrun on a standard

computer.

These problems can be overcome technically for example, by splitting the calculations

over numerous processors/storage drives, but it is equally practical to cut down these

massive data sets to something more physically useful. For example, the chromospheric

and transition region portions of the loop need not be considered when constructing

DEMs as these sections of the loop contain no nanoflares and are only present to set

up the initial and boundary conditions for the coronal part of the loop. These areas are

also not optically thin so are not suitable for DEM analysis.In terms of the time range

of the simulation, this too can be cut down to something more realistic. Although it is

important to look at the entire evolution of the plasma properties of the loop (to check it

is running as it should and to explain any abnormalities), when constructing DEMs and

examining the synthetic emission of the simulation it is more realistic to pick a fixed

portion of time. The time period considered should fulfill certain criteria, namely:
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(a) The time section begins after the initial start-up perturbations caused by the simu-

lation evolving from the initial conditions to some quasi-steady equilibrium,

(b) Is comparable to the time resolution of real imager observations i.e., anywhere from

the 3 second exposure time of SDO/AIA up to 1 or 2 minutes to average out short-

scale anomalies,

(c) Or is longer than the acoustic travel time in order the smooth over the effects of

individual nanoflare energy dissipation. This allows for any possible longer-scale

general trends to be examined.

With these factors in mind, a variety of ‘cuts’ were performed on the temperature and

density arrays (named in Table 4.3). Hereafter, the term ‘cuts’ will refer to a specific part

of the simulation that has been trimmed down to a certain timerange and section length.

These cuts in space and time were picked to try and cover a variety of scenarios i.e., Cut

1 is designed to match what SDO/AIA would view and has been cut to cover the spatial

resolution of one AIA pixel (i.e., equivalent to 1”∼725 Km on the Sun) over the average

AIA exposure time of∼3 seconds. Cuts 2 and 3 cover the equivalent of 4 AIA pixels (in

order to average over any spatial anomalies) but are taken atdifferent positions along

the loop. Cut 2 is taken from the very apex of the loop while Cut3 is taken from data

on the ‘leg’ of the loop. In this case ‘leg’ refers to the area on the loop that is closest to

the transition region but is still part of the coronal portion of the loop (i.e., so not quite

at the loop ‘footpoint’ but as close as the simulation allows). These cuts are designed

to explore the differences going on in different portions of the loop and are averaged

over 500 seconds to smooth out the temporal effects of the nanoflare energy dissipation

and just look at the differences caused by location. Cuts 4, 5 and 6 include data taken

from the entire coronal length of the loop over a number of different timescales in order

to look at more ‘global’ trends and differences between the simulations. These various

cuts are also shown in Figure 4.5.
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Cut No. Equivalent length Time sections Position
(AIA pixels) (secs) Taken

1 1 3 apex
2 4 500 apex
3 4 500 leg
4 120 100 whole loop
5 120 1000 whole loop
6 120 2000 whole loop

Table 4.3: Table showing temporal and spatial cuts of the simulations that were exam-
ined. Each cut was designed to show a different aspect of the simulated loop. Cut 1
represents 1 AIA pixel size that is cut to 3 seconds which is the approximate exposure
time for AIA. This is expanded in cut 2 where the same area at the apex of the loop is
increased in length and duration in order to smooth out any fluctuations in the data. This
same cut is examined in cut 3 but the location of the cut is moved to the ‘leg’ of the loop
i.e., an area closer to the transition region of the loop. Cuts 4, 5 and 6 are taken over the
whole length of the coronal part of the loop simulation and isexamined over 100, 1000
and 2000 seconds in order to examine ‘global’ trends and differences in the data.

100Mm
Multistranded
Loop

Cut 1=[N ,4,3]strand

Cut 2=[N ,18,500]strand

Cut 3=[N ,18,500]strand

Cut 4 =[N ,525,100]strand

Cut 5=[N ,525,1000]strand{ }
Cut 6=[N ,525,2000]strand

CH
TR

Temperature= [Nstrand, Nseg, Ntime]
Density= [Nstrand, Nseg, Ntime]

Figure 4.5: Sketch showing how the coronal part of the 100Mm loop has been cut into
various sections of differing spatial and temporal sizes.
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Once the simulations are run and the data has been cropped to various length and time-

scales, the physical parameters outputted by the model can be extracted and examined.

The main output of each simulation is an array of temperatureand density which gives

a single value of these quantities at each length section along each strand at each time-

step. Looking at the temperature alone is not a good indicator of the plasma behaviour

as density also needs to be considered. That is why an emission measure weighted

temperature (as given in Equation 4.2.0.1) is the best way tocharacterise the overall

temperature trend of the plasma. In this equation the effect of the temperature (T) and

the density (ρ) along the length of the loop (s) and over time (t) is summed upover the

number of strands in the loop (Nstrand). Theδl factor is the grid resolution which in the

coronal part of the loop is 0.16 Mm as shown in Figure 4.4.

TEM =

∑Nstrand
i=1 ρ2

i (s, t) δl(s) Ti(s, t)
∑Nstrand

i=1 ρ2
i (s, t) δl(s)

(4.2.0.1)

By examining the trend of the emission measure weighted temperature (hereafter EMT),

the broad characteristics of the plasma can be observed. These characteristics can be

further examined by constructing differential emission measure plots (DEMs). General

differences and unique signatures in these plots can be searchedfor between the different

variations of the simulation. The purpose of doing this is toexamine the way in which

changing the physical parameters of the loop will influence the characteristics of the

DEM (i.e., in terms of width, height, shape etc.). This is both a test that the MSHD

model is behaving in a physically realistic way and also to put limits on what the DEM

analysis can tell us about the model i.e., if some parameter is changed can it be detected

just from looking at the DEM? This issue becomes very important later in this chapter

when real SDO/AIA data is incorporated into the analysis. Ultimately the aim is to show

that this model is valid because it can produce observationsthat are physically sensible

and are consistent with what is seen on the Sun.
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4.2.1 Investigation A: Effect of Changing Strand Number

The MSHD simulation can be used to investigate the effect of multi-strandedness by

changing the number of individual strands within the fixed volume of the model loop.

The effect this has on the subsequent DEM and synthetic SDO/AIA intensities can then

be examined and explained by looking at the physical parameters of the model which

have changed as a result of increasing/decreasing the number of strands.

The number of strands within the 100 Mm loop of fixed volume (1.26 x 1021 m3) was

increased from 16, to 32, 64, and 128 strands to measure this effect. This was done

whilst keeping the radius of the overall loop the same (2 Mm) as well as the total energy

that is deposited in the loop over the simulation timescale.However, this means that

the radius of the individual strands decreased as strand number increased. The number

of nanoflares per strand was also kept the same (64 bursts/strand) but this in turn meant

that the energy of each nanoflare decreased as strand number increased in order for the

total energy to remain the same in accordance with the equation:

ETOT = (EburstxNburst)xNstrands (4.2.1.1)

This investigation aims to quantify the changes caused by increasing the strand number

which consequently causes strand radius and nanoflare energy to decrease. The aim is

to see if this change in model parameters causes a measurableeffect on the outputted

synthetic DEM and intensity measurements.

Comparison of general traits of simulations

As mentioned above, in each of the four simulations (of 16, 32, 64 and 128 strands)

the number of bursts per strand was kept the same (64 nanoflares/strand) and each burst

deposited its energy at a random time during the simulation.The size of these nanoflares
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was scaled according to their number in order to keep the total energy deposited in the

loop roughly the same at around 5.1 - 5.3 x 1028 ergs.

Strand Tot. No. Cross-sect. Total Ave. Burst Power Average
No. Bursts Area Energy Energy Law EMTa

(cm2) (ergs) (ergs) (Log T/K)

16 1024 8x1015 5.32x1028 5.20x1025 2.35 6.561
32 2048 4x1015 5.28x1028 2.57x1025 2.39 6.562
64 4096 2x1015 5.13x1028 1.25x1025 2.46 6.561
128 8192 1x1015 5.14x1028 6.28x1024 2.57 6.561

Table 4.4: Model Parameters for changing strand number. EMTstands for the emission
measure weighted temperature (see Equation 4.2.0.1). The cross-sectional area refers to
the cross-sectional area of an individual strand in each case.

The basic parameters of the four simulations are given in Table 4.4 where it can be seen

that the total energy of each simulation is around this value. It could not be exactly fixed

due to the random nature employed to determine the size and timing of each specific

nanoflare event. This slight difference in the total energy and also in the power law is

to be expected and does not significantly impact the outcome.The columns in Table

4.4 describing how the average emission measure weighted temperature (EMT) of the

loop changes between the simulations is based on the outputsof the model and is not

a predefined value. This data is included to help explain the various changes in the

calculated DEMs and also to show that the EMT values are almost exactly the same in

each case.

The spatial distribution of the nanoflares along the loop wasalso kept the same in each

case with the nanoflares being distributed practically uniformly over the length of the

100 Mm loop. These distributions are shown in Figure 4.6 where it can be seen that in

each case nanoflares occur from -45 Mm to+45 Mm. This is due to the 5 Mm at the two

ends of the 100 Mm loop being designated as the transition region/chromosphere where

no nanoflares are located. As strand number increases, so toodoes the total number of

nanoflares occurring within the loop. This increase leads tothe spatial distribution of

nanoflares becoming more smooth.
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Figure 4.6: Figures showing the spatial distribution of thenanoflares along the length
of the loop. It can be seen the distribution of nanoflares is uniformly spread along the
length of the loop but grows more smooth as strand number increases. This is due to the
number of bursts per strand remaining the same so as strand number increases there is a
more uniform distribution due to more bursts going off.

Figure 4.7: Figures showing the temporal distribution of the nanoflares over the time-
length of the simulation. It can be seen the distribution smoothes as strand number
increases.
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Figure 4.7 shows how the nanoflares in each simulation are distributed over the simula-

tion time. In each case they are spread over the 17,250 seconds fairly well.

Figure 4.8: Figures showing how the power law changes as strand number increases. It
can be seen that the slope in each case remains roughly the same with the distribution
moving upwards (due to the number of nanoflares increasing with increasing strand
number) and to the left. This shift to lower temperatures is due to the average energy
per nanoflare decreasing as strand number increases.

The relationship between the number of nanoflares and the energy per nanoflare is

shown in Figure 4.8 where the value ofα from Equation 4.1.1.1 is given on each plot.

The slope of each graph remains roughly the same but the plot moves upwards and to the

left as strand number increases. The upward motion is due to the increase in the number

of nanoflares occurring within the loop as strand number increases and the movement

towards lower energies is due to the average energy of each nanoflare decreasing in ac-

cordance with Equation 4.2.1.1. The variation in the slope of each graph is within the

bounds of what is acceptable i.e., the standard deviation ofthe power law as the strand

number increases is only 0.1. Only changes of greater than 1 will significantly affect the

simulation as shown by Sarkar & Walsh (2008).

Figure 4.9 shows the evolution of the EM weighted temperature (EMT) over time for

each of the four simulations. It can be seen that the variation in the EMT becomes
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less extreme as strand number increases. The reaction of thestrand plasma to the

nanoflare heating in the different simulations can be related back to the ratio of the

cooling timescale of each nanoflare burst to the burst frequency.

The burst frequency is the same in each simulation but the time taken for a strand to

cool back to its equilibrium temperature following a nanoflare is dependant on the size

of the nanoflare energy. For example, a strand will have a morevaried temperature

evolution if the time between heating events is longer than the time taken for the strand

to cool. Higher energy bursts cool faster (as conduction time is related to T5/2) so the

EMT for the 16 strand simulation (which has the highest Eburst size) is much more varied

compared to the 128 strand model.

Another factor that will influence how the plasma behaves after a heating event is the

volume each nanoflare is concentrated in. The individual strand volume decreases as

strand number within the loop increases (see Table 4.4 wherethe cross-sectional area

of the strands in each simulation is listed). The plasma within a low volume strand

will have a more dramatic reaction to a particular heating event than would be seen in

a higher volume strand (providing the energy burst is the same size). This effect is not

seen in this investigation as both strand volume and nanoflare energy go down together

as strand number increases. The effect of changing the volume of a strand while the

energy bursts stay the same size is discussed further in Section 4.2.4.

The outputs from each simulation can further be used to investigate the plasma prop-

erties of the modelled loop by calculating the differential emission measure of each

simulation based on particular time/space cuts of the data (as described in Table 4.3).

The DEM distribution is expected to smooth out as strand number increases i.e., show

less variation from temperature bin to bin.

This smoothing occurs mainly because the size of the model dataset (that goes into

creating the DEM for each simulation) doubles each time the strand number does (as

loop length and grid spacing along each strand is fixed) so it is statistically more likely
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Figure 4.9: The emission measure weighted temperature of each simulation as strand
number is increased.

that there will be plasma covering a wide range of temperatures centred around some

average value.

The DEM of each simulation was explored over the various datacuts in order to see if

any unique signatures of multi-strandedness were observed. Such signatures could be

ideal indicators of multi-strandedness present in real observations. The veracity of this

idea is explored in this section.

Issues with cropping/cutting MSHD model outputs

One of the aims of this chapter is to apply what the MSHD model indicates about chang-

ing plasma parameters to a real SDO/AIA data set. With this in mind, the logical tem-

poral and spatial cut of the model would be equivalent to one AIA pixel resolution for

the average exposure time of an AIA image.

Figure 4.4 showed the coronal part of the simulation has a uniform grid size of 0.164 Mm.

From this the number of grid sections required to represent an AIA pixel of ∼1” can be
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calculated as follows:

1” = 725 Km= 0.725 Mm

0.725/0.164= 4.4∼ 4 length segments

The simulation duration is chosen to be 17,250 seconds long in each case but this gen-

erates a lot of output i.e., one value of temperature and density for every length section

along every strand at every time-step. Picking just three ofthese time-steps is compu-

tationally advantageous and also represents a similar viewto what would be seen by

SDO/AIA which has an average exposure time of 3 seconds (Lemen et al. 2012b). As

mentioned previously, this cut of the data (i.e., four length sections from all strands over

three seconds) is designated as Cut 1 (see Table 4.3) and although it is comparable to

what would be seen with SDO/AIA, there are inherent drawbacks in using such a small

cut of the data to produce DEMs.

The DEMs in Figure 4.10 and 4.11 are examples showing the widevariation in the

DEM profile that results from choosing a different three second window in the simula-

tion. The 32 and 64 strand DEMs show a similar variation and illustrate that although

the variations smooth out slightly as strand number increases (i.e., seen by comparing

the size of the variations between Figures 4.10 and 4.11), the variations are not com-

pletely eliminated and therefore the choice of three seconds will not give an adequate

representation of the simulation properties. Based on this, cuts of the simulation data

that are averaged over a larger portion of space and time are primarily used to assess

real changes in the DEM that are a result of the changing plasma properties and not just

a temporal distortion.

Leg vs. Apex

An advantage of the MSHD model generating temperature and density values along the

entire length of the loop is that changes in the DEM can be observed along this length
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Figure 4.10: 16 strand simulation synthetic DEMs based on Cut 1 (1 AIA pix, 3 seconds)
taken at different start times.

Figure 4.11: 128 strand simulation synthetic DEMs based on Cut 1 (1 AIA pix, 3 sec-
onds) showing the difference in the DEMs due to picking a different time in the simula-
tion to take the 3 second cut. For this reason, DEMs taken overa longer time period are
considered as these have less drastic variations.
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e.g., to compare the apex and footpoints of the loop. Figure 4.12 shows a comparison

between DEMs constructed from data taken from the simulation apex compared to the

leg. In this case ‘leg’ refers to the area of the simulation that is closest to the transition

region but still part of the coronal portion of the loop. It can be seen that for each case of

changing strand number, the DEMs exhibit a similar behaviour with the leg based DEM

being wider and taller compared to the apex DEM. As strand number increases it can

also be seen that the DEMs increase in height but this point will be covered in Section

4.2.1. The reason behind the shift in the ‘Leg vs. Apex’ DEMs becomes apparent when

the spread of the data that the plots are based on is examined.

Figure 4.12: Figure showing comparison between DEMs taken from apex vs. leg of
simulation for different strand lengths.

Figure 4.13 shows an example of the distribution of the temperature and density at

different areas of the simulated loop. This plot was made by taking each value of the

temperature and density contained in Cuts 2 and 3 (i.e., leg and apex) over four length

segments and 500 seconds for the 128 strand loop, and plotting them against each other

to get an indication of the spread of the data. Although this particular plot is taken from

the 128 strand simulation, it is representative of what the other lower strand number

plots demonstrate. It can be seen that the temperature and density of the data taken from
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Figure 4.13: Temperature and density distribution of area of 128 strand loop at apex
(green) and on the leg (red).

the apex (green) of the loop is contained within a narrower region than data taken from

the leg of the loop (red). This accounts for the apex DEMs being distributed over a

narrower temperature range than the leg DEMs. The increase in the DEM values of the

leg data compared to the apex is also explained as it is clear the legs of the loop have a

higher density than the apex which is to be expected.

Impact on DEM of changing strand number

In order to see the overall trend exhibited by increasing thestrand number of the sim-

ulations, a longer time period needs to be examined to iron out any fluctuations caused

by individual nanoflare energy dissipation.

Figure 4.14 shows the four simulations of increasing strandnumber overplotted on each

other with the topmost plot showing the comparison with temperature bins of Log T/K

= 0.1 while the lower plot shows a more detailed view where the temperature bins

have been refined to Log T/K = 0.025. A clear trend is seen where the DEM increases

in height as strand number increases. The width of the DEM also seems to increase

slightly. This widening is due to an increase in the statistical significance of the data set
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Figure 4.14: DEMs of changing strand number based on data from whole loop averaged
over 2000 seconds.Top: DEMs with temperature bins of Log T= 0.1. Bottom: Same
DEMs but calculated over finer temperature bins of Log T= 0.025 to highlight small-
scale differences.
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that each subsequent DEM in based on as strand number increases i.e., as strand number

doubles so does the number of temperature and density valuesthat the DEM is based

on.

The increase in the height of the DEMs as strand number increases can be directly

related to the corresponding decrease in the strand diameters. As Table 4.4 indicates,

the doubling of the stand number in each subsequent simulation causes the individual

strand diameters to decrease by a factor of 1/
√

2. Since the DEM calculation includes

a line-of-sight factor which is approximated as the thickness of one strand in each case,

this change in strand diameter causes the DEM to increase by acorresponding factor

of
√

2. This scaling factor is clarified below where AL is the cross-sectional area of

the whole loop, As is the cross-sectional area of an individual strand, RL and Rs are the

corresponding loop and strand radii (where RL is kept constant), and Ns is the strand

number.

AL ≈ As Ns

πR2
L ≈ πR2

s Ns

Rs ≈
RL√
Ns

16strands=⇒ R16s ≈
RL√
16
=

RL

4

32strands=⇒ R32s ≈
RL√
32
=

1
√

2

RL

4

64strands=⇒ R64s ≈
RL√
64
=

1
√

2
√

2

RL

4

128strands=⇒ R128s ≈
RL√
128
=

1
√

2
√

2
√

2

RL

4

It can be seen that doubling the strand number in each case causes the strand radius to

decrease by a factor of
√

2. This will have a direct result on the DEM in each case as
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the line-of-sight element for the DEM calculation is approximated as the diameter of a

strand. Therefore this LOS element will change by a factor of1/
√

2 as strand number

doubles, directly impacting on the DEM.

Figure 4.15 shows this scaling clearly as the real DEM valuesare plotted (in black and

in non-log form) while the values of the 128 strand DEM (scaled down by
√

2 in each

case) have been overplotted in red. It can be seen that this approximation reproduces

the majority of the observed increase in the DEM values suggesting that this is just an

inherent effect of the simulation. The slight disparity between the DEM values (black)

and their scaled counterparts (red) is due to the particularsnapshot in time this plot is

based on.

Figure 4.15: DEM values from Figure 4.14 (lower) plotted on anon-log scale in black
with the 128 strand values scaled down by

√
2 overplotted in red. It is a close visual fit

suggesting that the majority of the DEM rise is due to the
√

2 factor from the change in
strand diameter.

Impact on SDO/AIA intensity due to changing strand number

By using the calculated DEMs and folding them through the temperature response func-

tion of the SDO/AIA imager, simulated intensities can be calculated and examined for

unique signatures. These intensities are shown in Figure 4.16 where it can be seen that
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the intensities seen in each channel follow the same patternas strand number increases

but with a different scaling. Once again the difference in the scaling is
√

2 and is due

to the change in the strand diameter as strand number increases. As the DEMs (seen

in Figure 4.14) cover approximately the same temperature range as the strand number

increases, it is expected that the emission would follow thesame pattern in each case.

A difference in the ordering of the dominant intensity channels would only be expected

if there was a clear shift to higher or lower temperatures seen in the DEMs.

Figure 4.16: SDO/AIA simulated intensities changing as strand number increases
(black). Note that these values are not continuous and are only plotted this way to
indicate the general trend of each intensity set. The valuesof each intensity are plotted
as∗. The red lines represent the intensity values of the 32 strand loop that have been
scaled up/down by

√
2 to show that changes in intensity as loop number increases are

mostly due to the strand diameter changing in each case.

Discussion

In order to study the effect of changing the strand number within a 100 Mm loop of

fixed radius and fixed total energy input, loop simulations of16, 32, 64 and 128 strands

have been run and the measurable outputs examined.

By changing the strand number (and correspondingly changing the strand diameter and

average nanoflare energy in order to keep the overall loop radius and total energy the
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same), the result is an increase in the calculated DEM and intensity (per pixel per sec-

ond) values as strand number increases. These increases arecharacterised by a scaling

of
√

2 which can be traced back to the changing strand diameter. The
√

2 scaling seen is

a result of the strand number doubling in subsequent simulations e.g., the scaling would

be
√

N if the strand number had increased by a factor N each time.

The DEMs also become more smoothed as strand number increases. This is because

increasing the strand number leads to many more nanoflares (of lower energy) going off

along the loop which creates a smoother DEM as there is less variation in the tempera-

tures reached.

Apart from this scaling there is no clear unique signature that would allow an identifi-

cation of increasing strand number to be made. The same increase in DEM value could

also be attributed to a scenario where the density of one loopwas higher than another

giving the same result. A larger multi-strandedness signature would be of use when

looking for evidence of subresolution strands within real data sets.

4.2.2 Investigation B: Changing the Location of the Nanoflares

As previously mentioned, the location of each nanoflare along a particular strand and the

time of its initiation are randomised factors in the simulation. However, the distribution

of these nanoflares can be confined to a particular area of the loop such as the apex

region, footpoint region, or having a uniform distributionalong the loop length. In

order to examine what effect, if any, this factor plays in the MSHD simulation, all three

cases have been examined.

Three simulations were undertaken that kept all parametersbasically unchanged except

the distribution of the nanoflares along the length of the loop. Some of the basic parame-

ters are given in Table 4.5. The average energy of each nanoflare in the three simulations

was set to be around 1024 ergs but this is only a guide value as the simulations vary the
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Strand Heating Total Ave. Burst Power Average EMTa

No. Location Energy Energy Law EMTa range

128 Uniform 5.14x1028 6.28x1024 2.57 6.562 6.537–6.628
128 Apex 5.04x1028 6.16x1024 3.07 6.606 6.580–6.636
128 Footpoint 5.13x1028 6.26x1024 2.87 6.522 6.462–6.591

Table 4.5: Model Parameters for changing nanoflare location. EMT strands for the
emission measure weighted temperature (see Equation 4.2.0.1).a at apex.

heat deposition around by a randomised amount. Due to this randomisation factor the

total energy going into each simulation is slightly different (third column of Table 4.5).

However, these variations are not large enough (∼2% difference) to cause any substan-

tial effects so we can be confident any changes detected in the model outputs are due to

the nanoflare spatial distribution alone.

The exact differences in the nanoflare spatial distribution between the three simulations

can be seen in Figure 4.17. In all figures in this section the designation ‘Apex’ refers

to apex localised heating, ‘Footpoint’ to heating localised at the footpoints of the loop,

and ‘Uniform’ to heating spread uniformly over the length ofthe loop. Although the

distribution of the nanoflares in space is very different between the three simulations,

Figure 4.18 shows that the nanoflares are distributed evenlythroughout the simulation

time.

Figure 4.19 shows the energy power law for each of the three simulations. The slight

variation in theα value of the Apex Heating can be traced back to the slightly lower

value of total energy that this simulation has compared to the other two. As mentioned

in Investigation A, this slight variation causes no major effects and any influence it does

have is greatly overshadowed by the effect of changing the distribution of the heating.

In order to examine how changing the spatial distribution ofthe nanoflares affects the

outputs (e.g., temperature and density) of the MSHD model, various plots can be made.

The first factor to examine is how the average emission measure weighted temperature

(EMT) of each simulation changes over time. This can be seen in Figure 4.20 where the
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Figure 4.17: Figures showing the spatial distribution of the nanoflares over the length
of the 100 Mm loop.
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Figure 4.18: Figures showing the temporal distribution of the nanoflares over the time
length of the simulation.
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Figure 4.19: Figures showing the relationship between the number of nanoflares and the
nanoflare energy in each simulation as a power law.
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data is based on a region taken at the topmost portion of the loop over all strands and

all time. The EMT is calculated using Equation 4.2.0.1 and itcan be seen that there is

a modest difference in log scale in the average EMT value between simulations. The

extent of the variation in the EMT seems to be comparable in each case but the average

value from the apex heated simulation is clearly the highestfollowed by the uniform

distribution and lastly the footpoint heated case. Although Figure 4.20 is based on a

section of the data at the top of the loop, this trend is seen when looking at positions at

other points along the loop. The reason for this shift can be further explored by looking

at the unweighted model temperature and density values as a function of loop position.

Figure 4.20: The emission measure weighted temperature of each simulation. The data
for this plot has been taken from the apex of the loop simulation but is representative of
what would be seen in the whole loop.

As described by other authors (Priest et al. 2000, e.g.,) there is an observable difference

in the resulting long-duration temperature and density values depending on the location

of the heat input. Figure 4.21 shows the variation of the temperature and density (aver-

aged over all strands over 1000 seconds) along the length of the 100 Mm loop for each

type of heating distribution.

The density values for the footpoint heating case are seen tobe higher than for the
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uniform and apex heating cases. This is because more mass is evaporated from the

model chromosphere into the loop when the heating is focusedat the footpoints. This

higher density means that radiation dominates the energy dissipation throughout the

loop and conduction is low. This low conduction is responsible for the flat temperature

profile seen for the footpoint heating case. The temperatureprofile for the apex heating

case is more sharply peaked around the loop apex as the plasmadensity in this scenario

is lower meaning that conduction can dominate over radiation to dissipate the nanoflare

energy.

Figure 4.21: Average temperature and density over loop length for different heating
profiles. Values averaged over 1000 seconds of model data over all strands.

A major advantage of studying the outputs of the MSHD model isthe level of detail
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available in terms of temperature and density values. Thesevalues can be put to a more

practical use by using them to calculate a DEM distribution for each simulation to look

for unique signatures and/or any trends observed.

Figure 4.22: Comparison of DEMs at cuts 2 (top), 3 (middle), and 5 (bottom) (see Table
4.3 for cut specifications) for∆ Log T =0.1 and 0.025 (K) showing three simulations
with the nanoflares distributed uniformly (green), at the loop apex (red) and close to the
footpoints (blue).

Figure 4.22 shows DEMs for the three simulations listed in Table 4.5 based on three dif-

ferent cuts (cuts 2, 3 and 5 as described in Table 4.3) of the data. The left column shows

the DEMs made with a bin size of∆ Log T =0.1 while the right column shows a finer

binning of∆ Log T =0.025. This was done in order to examine any fine-scale changes

that may be averaged over in larger temperature bins and it can be seen that much more

detail is revealed in the finer DEMs. One such example is the peak at Log T=6.0 seen in
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Figure 4.23: Plot showing the distribution of the temperature and density values used to
create the topmost DEM in Figure 4.22. The point of this plot is to explain the erroneous
DEM contribution at Log T= 6.0 for the footpoint heating distribution. This part of the
DEM is created from the data within the circled area of the graph and is only due to
the behaviour of one strand. This effect is magnified in Figure 4.22 as it is plotted on a
log-scale.

the top and middle right-hand plots for the footpoint heatedsimulation (blue). This fea-

ture is an erroneous contribution to the DEM caused by the behaviour of one particular

strand.

Figure 4.23 shows the distribution of the temperatures and densities of the model plasma

for each heating case with the circle at Log T=6.0 highlighting the strand in question.

The log-scale of the DEM plots in Figure 4.22 have exaggerated the contribution of this

strand to the overall DEM and should not be over-interpreted. This feature is not seen

in the lower DEM plots as these graphs are made from a much larger cut of the data (in

space and time) and so have averaged out this feature to create a much smoother DEM

i.e., there is much less variation from temperature bin to bin.

The top and middle rows show the DEMs created from data at the loop apex and on

the loop leg respectively. A similar trend to the one seen in Investigation A is observed

with the leg DEMs being taller than the apex DEMs. This is again due to the increased

density in the loop legs compared to the apex.
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Figure 4.24: DEMs of the three simulations plotted on non-log scale. This data is based
on cut 5 of the data and is the same as the lower-right plot of Figure 4.22 i.e., based on
data from the whole loop over 1000 seconds. The residuals between the uniform data
and the apex/footpoint data are shown in the lower panel.
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The main feature to note from these DEM plots is the slight offset between the three

heating distribution DEMs in each case. The apex and footpoint heated DEMs appear

on either side of the uniform DEM with footpoint shifted towards lower temperatures

and apex towards higher temperatures. This shift is seen more clearly in Figure 4.24

where the DEM from the lower-right panel of Figure 4.22 has been replotted on a non-

log scale. The residuals between the apex and footpoint heated DEMs compared to the

uniform heated case are also shown in the lower panel to highlight this offset.

The peaks and troughs of the residuals plot can be explained by considering the apex and

footpoint heating cases compared to the uniform case. The small peak in the apex DEM

residual seen at Log T= 6.75 highlights the shift in the DEM to higher temperatures

compared to the uniform case. This can be related back to Figure 4.21 where it can be

seen that the apex heated loop reaches higher temperatures than the other two heating

distributions. This means that more of the plasma in the apexheated simulation is at

a higher temperature leading to the DEM shifting to the right. The main peak in the

footpoint heating residuals is due to the fact that the plasma in this simulation has a

lower average temperature (as seen in Figure 4.21) but a higher average density than the

uniform and apex heated simulations. This lower average temperature accounts for the

shift to lower temperatures in the DEM and the higher averagedensity leads to the DEM

having an increased height compared to the other two simulations. This shift between

the three heating distributions is not substantial and would be hard to detect in some

reduced versions of the dataset.

These DEMs can then be folded through the temperature response of the SDO/AIA

instrument in order to investigate how the intensity evolves as the parameter space of the

model changes. Figure 4.25 shows that the three simulationsdisplay the same intensity

pattern but with the footpoint heated distribution (blue) having the highest values. This

can be explained by noting that the footpoint heated DEM is the largest out of the three

due to this simulation having a higher overall density (see Figure 4.21).
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Figure 4.25: Synthetic SDO/AIA intensity changes calculated from each simulation.
Note: the intensity values are not continuous and are markedwith a∗ symbol. The lines
are to show the changing intensity value trend between simulations.

In summary, changing the spatial distribution of the nanoflares causes a shift in the

subsequent DEM. This difference is more obvious when intensity values are considered.

In order to detect any obvious trend in the DEMs, long timescales (1000s) had to be

considered in order to average over the temporal and spatialfluctuations. This suggests

that this effect would not be measurable in real SDO/AIA data unless a long time series

was considered. However, this would pose certain difficulties as real observations of

coronal loops are generally not stable for this length of time.

The very slight shift in the DEMs is perhaps too subtle to be considered a unique sig-

nature as such shifts could easily be caused by general changes in the plasma properties

of the loop.
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4.2.3 Investigation Ci: Changing the Etot of the system by increas-

ing the Eburst

An important check to perform is making sure that changing the total energy of the

system shows a clear effect in the corresponding DEM. This has been investigated by

running simulations 4, 7 and 8 from Table 4.2 where the average size of each nanoflare

increases by an order of magnitude. Table 4.6 provides further details of the differences

between these three simulations. In each case the loop length is the same (100 Mm),

there are 128 strands with 64 nanoflares per strand, and thesenanoflares are distributed

evenly along the loop length and throughout the simulation time (see Figures 4.26 and

4.27).

Strand Total Ave. Burst Power Average EMTa

No. Energy Energy Law EMTa range

128 5.14x1027 6.28x1023 2.57 6.276 6.252–6.318
128 5.14x1028 6.28x1024 2.57 6.562 6.537–6.628
128 5.14x1029 6.28x1025 2.57 6.849 6.820–6.895

Table 4.6: Model Parameters for changing total energy input. EMT strands for the
emission measure weighted temperature (see Equation 4.2.0.1).a data taken at loop apex.

Figure 4.26: Figure showing the spatial distribution of thenanoflares over the length
of the 100 Mm loop. This plot shows the distribution over the length of the loop for
the Eburst=1024 erg case but is identical of the distribution seen in the other two energy
cases.

Figure 4.28 shows the relationship between the number of nanoflares in each simulation
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Figure 4.27: Figure showing the temporal distribution of the nanoflares over the time-
length of the simulation. Again, this plot shows the nanoflare distribution over time for
the Eburst=1024 erg case but is identical of the distribution seen in the other two energy
cases.

(8192 in each case) and the size of each nanoflare energy. The slope of this power law

is exactly the same in each case as the nanoflare energy has been increased by a factor

of ten in each case, resulting in the power law merely shifting to higher energies.

Once again the temperature and density outputs of the MSHD model can be combined

into an average emission measure weighted temperature (EMT) using Equation 4.2.0.1

in order to quickly assess the plasma behaviour over time in each simulation. A measure

of this EMT at the loop apex over the entire simulation time isshown in Figure 4.29

where it can be seen that changing the average nanoflare energy (and hence the total

energy going into each simulation) has a dramatic effect on the loop plasma with the

average EMT doubling each time the total energy is increased.

Making further use of the raw temperature and density valuesallows various DEM plots

to be constructed. Figure 4.30 shows a selection of DEM plotsfrom the three simula-

tions based on various cuts of the model data. The top and middle DEMs are based on

cuts of the data taken at the loop apex and leg respectively and show the same overall

pattern. The only difference is a slight shift to lower temperatures seen in the legDEM

which is to be expected as the lower portion of the loop does not reach as high a temper-

ature as the apex section. The bottom set of DEMs are based on data averaged over the
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Figure 4.28: Figures showing the relationship between the number of nanoflares and the
nanoflare energy in each simulation as a power law.
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Figure 4.29: The emission measure weighted temperature of each simulation of increas-
ing nanoflare energy.

whole coronal loop length for 100 seconds and shows a much more even distribution of

plasma over the temperature bins. Each DEM plot shows the same clear trend with the

higher energy simulation (red) being shifted towards higher temperatures compared to

the ‘standard’ energy simulation (green) and the lower energy simulation (blue) being

shifted towards lower temperatures. This is an obvious result but serves as both a check

that the simulation is performing as expected, and also as a gauge to see how far the

DEMs shift when the total energy is changed. This allows restrictions on the total en-

ergy going into the simulation to be made as energies that give unphysical results (e.g.,

the majority of the plasma over Log T= 7.0) can be adjusted to sensible levels.

Once again the DEMs with a smaller size of temperature bin (right column of Figure

4.30) highlight various instances where the spread of the DEM is less uniform (i.e., the

variation from temperature bin to bin is not an even progression). This is seen most

clearly in the Eburst=1025erg case (red) at around Log T= 6.4. These variations are

the same as those seen in Investigation B where the evolutionof one or two strands

happens to be further away from the strand average in terms oftemperature and density

distribution. These variations have mostly evened out in the lower plots of Figure 4.30
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Figure 4.30: Various DEM plots of the three simulations taken at different cuts in space
and time and with two temperature bin sizes.Top: DEMs based on data from the loop
apex averaged over 500 seconds.Middle: DEMs based on the same 500 seconds but
taken lower on the loop towards the footpoints.Bottom:DEMs based on data averaged
over the whole loop length for 100 seconds. In each case the left column shows DEMs
with temperature bins of Log∆T/K = 0.1 while the right column shows a more detailed
view with Log∆T/K = 0.025.
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as this is based on the whole loop rather than just a small section.

An interesting difference between the simulations can be seen by computing the syn-

thesised SDO/AIA intensities by folding the lower DEM in Figure 4.30 through the

instrument response function. The intensity seen in each AIA filter by each simulation

is shown in the top plot of Figure 4.31. Unlike investigations A and B where the re-

sulting intensity values were simply scaled differently between simulations, here there

is actually a change in which is the dominant highest intensity channel in each case.

This is due to the shifting to higher temperatures as the total energy in the simulation is

increased by a factor of ten.

The middle panel of Figure 4.31 re-plots the DEM created fromdata over the whole

loop length over 100 seconds and is plotted above the normalised temperature response

functions of SDO/AIA (bottom panel). The position of the DEM peaks in conjunction

with the sensitivity peaks of AIA can be used to help interpret the different intensity

values seen. In each channel the highest intensity seen is from the simulation whose

DEM peak is closest to that channel’s maximum sensitivity.

As total energy increases, the DEMs are seen to rise in heightand also widen across the

temperature range covered. The increase in DEM height is dueto the density increasing

in each case as more plasma is evaporated up into the loop as the total energy increases.

The change in width of the DEM can be attributed to the differences between the plasma

properties in each case seen in Figure 4.29 where the EMT of the Eburst=1025 is seen to

be the highest and most varied. The increase in DEM height also affects the synthetic in-

tensity values as intensity values will be higher when the corresponding response curve

peaks within one of these larger DEMs.

This investigation has shown that changing the energy inputby an order of magnitude

creates a large variation in the corresponding DEM and intensity values. These simu-

lated observables allow the validity of each input energy tobe tested (i.e., is it physically

realistic?) and could set higher and lower bounds on what could possibly be observed
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Figure 4.31: Synthetic intensity changes seen by SDO/AIA as total simulation energy
changes. Note: the intensity values are not continuous and are marked with a∗ symbol.
The lines are to show the changing intensity value trend between simulations. DEM
position (middle) compared to SDO/AIA instrument response function (bottom) in order
to quantify changes in intensity seen.
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in real coronal loops.

4.2.4 Investigation Cii: changing the number of nanoflares per strand

The energy balance within each simulation is based on the number of nanoflares per

strand (Nnano f lares) and the individual energy in each of these nanoflares (Enano f lare). The

total energy in the simulation will be equal to the sum of all these individual nanoflares.

Investigation Ci has shown that large differences are observed between simulations

where the Enano f larehas been increased whilst keeping the Nnano f laresper strand the same.

This had the effect of changing the total energy going into the loop and had a clear sig-

nature in the DEM.

A more subtle change to the energy equation can be investigated by keeping the total

energy going into the system the same but changing its constitution. This section in-

vestigates the effect of changing the number of nanoflares per strand (and subsequently

changing the energy per nanoflare) and the effect that this has on the MSHD model

outputs and synthetic DEM and intensity values.

General simulation traits

Table 4.7 lists some of the important parameters of the threesimulations designed to test

the effect of changing the number of nanoflares per strand. Each one is a 100 Mm loop

consisting of 128 strands with the heating distributed primarily towards the footpoints.

The total energy of each simulation is kept around the same value of 5 x 1028 ergs but

there is a little variation around this figure due to the random elements in the simulation.

The nanoflare distribution along the loop is concentrated atthe footpoints as shown in

Figure 4.32 and their distribution over the simulation timeis seen in Figure 4.33 to be

evenly spaced.
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Strand Heating No. Bursts Total Ave. Burst Power Average EMTa

No. Location per strand Energy Energy Law EMTa range

128 FP 16 5.10x1028 2.49x1025 2.97 6.522 6.456–6.645
128 FP 64 5.13x1028 6.26x1024 2.87 6.522 6.492–6.591
128 FP 640 5.17x1028 6.32x1023 3.03 6.510 6.488–6.558

Table 4.7: Model Parameters for changing nanoflare number per strand. EMT strands
for the emission measure weighted temperature (see Equation 4.2.0.1).a calculation
based on data from the loop apex.

Figure 4.32: Figures showing the spatial distribution of the nanoflares over the length
of the 100 Mm loop.
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Figure 4.33: Figures showing the temporal distribution of the nanoflares over the time-
length of the simulation.

The power law of each simulation is seen to have a slightly different slope in each case

(Figure 4.34) but this is just an effect of changing the number of nanoflares per strand

and the corresponding average nanoflare energy. This variation of∼0.1 does not greatly

influence the outcomes of each simulation.

The behaviour of the loop plasma in each case can be more accurately characterised by

plotting the average emission measure weighted temperature from Equation 4.2.0.1 of

each simulation over time. This gives a more realistic view of the plasma behaviour as

it considers both temperature and density values. This EMT for the three simulations

is shown in Figure 4.35. It is clear the 16 burst/strand simulation (green) shows the

greatest temperature variation with the 64 burst/strand (red) and the 640 burst/strand

(blue) smoothing out as burst number increases.

The large variation in EMT of the 16 burst per strand simulation is due to the associated

increase in each nanoflare’s energy. Large, infrequent bursts heat the plasma up to more

extreme values and the long time between heating episodes allows the strand plasma to

cool creating the variation seen in Figure 4.35. The averagevalue of EMT for the 16
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Figure 4.34: Figures showing the relationship between the number of nanoflares and the
nanoflare energy in each simulation as a power law.
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and 64 burst simulations is very similar at around Log T/K=6.522 but the value for the

640 burst simulation is slightly lower at Log T/K=6.510 as this simulation can simply

not reach this temperature with its frequent small bursts.

Figure 4.35: Average emission measure weighted temperature profile of the simulations
over time based on data from the apex of the loop.

Impact on DEM

Figure 4.36 shows a selection of DEM plots made from different cuts of the three simu-

lations examining the effect of changing nanoflare number. It can be seen that a similar

trend is present in all three time/space cuts. The DEM based on the simulation with 16

flares/strand is very wide in each case while the DEM becomes narrower as nanoflare

number per strand increases (i.e., also as average nanoflareenergy decreases). This can

be traced back to the results from the EMT plots in Figure 4.35which show that a much

wider variation in temperature is reached when there are fewer, larger bursts than if

there are many small bursts going off in the loop. This accounts for the difference in the

spread of the DEMs.

Once again the DEM with smaller temperature bins highlightssome non-uniform fea-

tures in the distribution. The 64 burst/strand simulation (red) is the same one that was
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Figure 4.36: DEM plots based on different cuts of the data for changing nanoflare num-
ber. Top: DEM plots (at different temperature bin size) based on data from the apex of
the loop averaged over 500 seconds. Middle: DEMs based on thesame 500 seconds
but taken from the leg of the loop model. Bottom: DEMs based ondata from the whole
coronal section of the loop averaged over 100 seconds.
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studied in Investigation B where this footpoint heated model was compared to apex and

uniform heating distributions. As was shown previously, the peak at Log T= 6.0 can be

traced back to the behaviour of one particular strand as shown in Figure 4.23.

Factors affecting DEM width

The extreme width of the 16 burst/strand simulation DEM seen in Figure 4.36 justified

further investigation. It was previously assumed that the main factor determining the

width of a DEM from these simulations was the size of the average nanoflare energy.

However, in Investigation A the four DEMs made from simulations of increasing strand

number did not show a significant change in width despite the fact that the burst size

covered a number of values as strand number changed. The onlysmall change in width

observed was due to the increasing strand number increasingthe number of temperature

and density elements being used to calculated the DEM.

No. of Cross sec. No. of bursts Total bursts Ave. nanoflare Reheating
strands strand area per strand per loop energy Timescale

(cm2) (ergs) (sec)

16 8.00x1015 64 1024 5.20x1025 649.41
32 4.00x1015 64 2048 2.58x1025 644.53
64 2.00x1015 64 4096 1.25x1025 626.22
128 1.00x1015 64 8192 6.27x1024 627.44

128 1.00x1015 16 2048 2.49x1025 2490.23
128 1.00x1015 64 8192 6.26x1024 626.22
128 1.00x1015 640 81920 6.31x1023 63.11

Table 4.8: Comparison between simulations undertaken to investigate changing strand
number and changing nanoflare number. The first four rows showdetails of the Inves-
tigation A simulations in comparison to the three simulations run for Investigation Ci.
The two entries in bold show two simulations where the total number of bursts in the
loop are the same as is the average nanoflare energy. The main difference between these
two is the strand number and hence the strand volume. The reheating timescale refers to
the required time between nanoflares if this heating mechanism is to power the corona.

Table 4.8 lists some details of the four simulations from Investigation A as well as

the three simulations from Investigation Cii. To investigate the large width of the 16
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burst/strand simulation seen in Figure 4.36 the 32 strand simulation from Investigation

A was chosen for comparison. Each of these simulations has the same total number of

bursts within the loop, the same average energy per burst, and the same total energy

going into the simulation. The heating distribution of eachsimulation is different with

the 16 burst/strand simulation being footpoint heated while the 32 strand simulation is

uniformly heated. This difference can be overlooked as Investigation B showed that

these two heating profiles lead to a very slight shift in the resulting DEMs. As long as

this is kept in mind other, more significant changes can be studied.

The other differences between the two simulations are the number of burstsper strand

and the number of strands within the loop. Since the average energy of each nanoflare

is the same, the emission measure weighted temperature evolution of each simulation is

expected to be similar. This is indeed the case as is shown in the top panel of Figure 4.37

where the variation of the EMT is similar in each case. As was shown in Investigation

B, the footpoint heated simulation (16 burst/strand) has a lower average EMT than the

uniform heated one (32 strands) but the variation in both cases is of a similar magnitude.

The 16 burst/strand EMT variation is 10% larger than that exhibited by the32 strand

one. This is quite a small difference as other simulation EMTs vary by much larger

values e.g., the temperature variation of the 640 burst/strand EMT is 6 times smaller

than the variation of the 16 burst/strand EMT (Figure 4.35).

Despite this similarity in EMT variation, the DEMs producedfrom these two simula-

tions are very different as is seen in the lower panel of Figure 4.37. The reason for this

can be traced back to the different strand number in each simulated loop which results

in different strand volumes in each case. The cross-sectional areaof a strand in the 32

strand loop (with 64 bursts/strand) is four times larger than that of a strand from the

16 burst/strand simulation (due to it having 128 strands in total). Since the burst size

remains the same it is this change in area/volume that causes the large difference in the

distribution of the plasma temperatures. Considering one strand in each simulation:
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• 16 burst/strand sim.: this strand has 16 bursts of energy E going into a volume

V.

• 32 strand sim.: this strand has 64 bursts of energy E going into a volume 4V.

Even though the 32 strand simulation has more energy bursts per strand, the higher vol-

ume the energy is being deposited into means that the plasma will not reach as high

temperatures as the 16 burst/strand simulation. The higher number of bursts also means

that the time between heating events is less which constrains the plasma to a narrower

temperature range as opposed to the 16 burst/strand case where the plasma has much

longer to cool in between heating episodes leading to the very wide temperature distri-

bution seen in the DEM.

Now that the reason for the different widths of these DEMs is known, the other synthetic

observables relating to the three simulations exploring nanoflare number per strand can

be investigated.

Impact on intensity values

The synthetic observations of these three simulations exploring nanoflare number per

strand can be further investigated by taking the DEM from thebottom-right of Figure

4.36 and folding it through the SDO/AIA temperature response function to get out syn-

thetic intensity values. Figure 4.38 shows the variation inthese intensity values as well

as accounting for the differences seen in each case.

The top plot in Figure 4.38 shows how the values of intensity rise and fall from chan-

nel to channel for each simulation (NB the intensity values are not continuous and are

marked by the asterisks). In the 131Å, 171Å, 193Å and 94Å channels the same pattern

persists with the 16 burst/strand simulation having the highest intensity followed bythe

64 and then the 640 burst/strand ones. The reason for this can be seen in the middle
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Figure 4.37:Top: plot showing that the variation in the two simulations’ EMT is around
the same size. The horizontal lines mark the maximum and minimum EMT’s of each
simulation with the 16 burst/strand variation being 10% larger that the one seen in the
32 strand simulation. The 16 burst/strand simulation has a lower average EMT as this
simulation is footpoint heated compared to the uniformly heated 32 strand simulation.
This shift was observed in Investigation B but only caused a slight shift in the corre-
sponding DEM.Bottom: the DEMs calculated for each simulation have very different
widths despite the similarities highlighted in Table 4.8.
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plot which shows the DEM the intensities were calculated from plotted with a non-log

y-axis. Overplotted on this figure are the approximate temperature peaks of the AIA

response curves seen in the bottom plot. These peak positions are plotted as different

coloured asterisks (at an arbitrary y-axis value) in order to explain the intensity values

seen in the top plot. The 640 burst/strand DEM (blue) is much higher than the other

two as all the plasma in this simulation is constrained to a narrow temperature region

meaning it will have a high density within these temperaturebins.

The 16 bursts/strand (green) intensity is higher than the other two in mostchannels as the

DEM values where these channels have their peak sensitivityis simply higher than the

other two. In the 211Å channel the order changes with the 64 burst/strand (red) intensity

being the highest followed by the 16 and 640 burst/strand values respectively. This is

due to the red DEM in the middle panel beginning to rise withinthe 211Å temperature

response curve.

A similar result is seen in the 335Å channel where for the firsttime the 640 burst/strand

simulation has the highest intensity value. This is due to the 640 burst/strand DEM

(blue) rising within the temperature range of the 335Å response peak. The narrowness

of the 640 burst/strand DEM is the reason why it has such low intensity values in most

channels. There is simply less sensitivity in AIA at the temperature the DEM peaks

around (Log T∼ 6.5). If the total energy going into this simulation was higher or lower

this would cause the DEM to slide up/down the temperature range and its corresponding

values in intensity would drastically change.

4.2.5 Investigation D: Investigating the impact of allowing the loop

simulation to heat then cool

It is possible that coronal loops undergo many instances of heating and cooling over

their lifetimes so it is important to be able to identify signatures of such processes in
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Figure 4.38:Top: change in intensity seen in each AIA channel in each simulation.
The ordering of these values is explained in the middle and bottom plots. Middle:
DEM values from the three simulations plotted on a non-log scale. The large asterisks
symbols indicate at what approximate temperature each AIA channel has its main peak
at. Bottom:SDO/AIA normalised temperature response curves.

141



CHAPTER 4

any model. By understanding what a cooling loop looks like interms of its DEM and

intensity measurements, real instances of these cooling processes may be detected and

related back to the physical mechanisms explained by the model. In order to study the

various effects of cooling on the MSHD loop simulation, three runs were undertaken

where all the nanoflare energy release was confined to the firstquarter of the simulation.

Table 4.2 lists these simulations as numbers 13, 14 and 15 where it can be seen the only

difference is the total energy going into the loop (see also Table4.9). In each case this

total energy has been increased by an order of magnitude. This means that the cooling

profile can be looked at in three different energy scenarios.

General traits of different cooling simulations

Table 4.9 lists the general traits of the three simulations undertaken to explore loop

cooling. In each simulation the loop length was 100 Mm, the strand number was 128

and the number of bursts per strand was 64. The total energy going into the loop was

increased by an order of magnitude each time to see what effect this had on the cooling

process. Table 4.9 shows this energy change, note that the resulting power law has the

same slope in each case (Figure 4.40). The average emission weighted temperature

(EMT) of each simulation before the cooling starts is also noted as well as the time

taken for each simulation’s EMT to drop to its minimum value.This will be discussed

further in the following sections.

Figure 4.39 shows the nanoflare distribution along the loop length (left) and over the

17250 second time length of the simulation (right). The figures plotted are for the

Eburst∼1024 case (i.e., the middle entry in Table 4.9) but are identical to the other dis-

tributions. The right plot of Figure 4.39 illustrates how these simulations can be used

to study loop cooling. All the nanoflares have been constrained to the first quarter (i.e.,

between t=0 and t=4312 seconds) of the simulation after which there is no source of
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Strand Total Ave. Burst Power Average Cooling
No. Energy Energy Law EMTa Time

(ergs) (ergs) (K) (s)

128 5.14x1027 6.28x1023 2.57 6.46 3728
128 5.14x1028 6.28x1024 2.57 6.75 4205
128 5.14x1029 6.28x1025 2.57 7.04 4706

Table 4.9: Model Parameters for changing total energy inputin a cooling loop i.e., one
in which all the nanoflares occur in the first quarter of the simulation. EMT strands for
the emission measure weighted temperature (see Equation 4.2.0.1).a data taken at loop
apex and refers to average EMT before the heating was stopped. The cooling time is the
approximate time taken for the simulation to reach its temperature minimum once the
heating was stopped.

heating within any of the strands. Naturally the loop will begin to cool over the re-

maining simulation time and the MSHD model will continue to track the corresponding

temperature and density values. This will allow the evolution of the strands after the

heating has stopped to be examined.

Figure 4.39: Left: spatial distribution of the nanoflares over the loop length showing
that they are uniformly distributed. Right: temporal distribution of the nanoflares over
the entire simulation time showing that they are all confinedto the first quarter of the
simulation in order to investigate loop cooling. These two plots are for the Eburst∼1024

case but are identical to the two other energy scenarios investigated.

Figure 4.40 shows the changing power law associated with thethree simulations ex-

amined in this section. The slope of each plot is the same (as total nanoflare number

remains the same) but the peak of the plot moves to higher energies as the energy per

nanoflare is increased. This is the same movement that was observed in Investigation Ci

where the energy was also increased by a power of ten in each case.

The temperature and density evolution of each multi-stranded loop can be summarised
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Figure 4.40: Figures showing the relationship between the number of nanoflares and the
average nanoflare energy in each simulation as a power law.
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by plotting the average emission measure weighted temperature (Equation 4.2.0.1) as it

changes over the simulation timescale. Figure 4.41 shows two versions of this plot: one

with a Log temperature scale and one without. It can be seen that from t=0 until t=4312

seconds the EMT remains more or less stable for each energy scenario. In this time

range the three simulations are clearly defined by their average EMT which is stratified

according to the total energy input in each case. Each plot shows that after this time

period (represented as a vertical dashed line), the averageEMT starts to decline due to

the absence of nanoflare heating.

Figure 4.41: Left: plot showing the evolution of the emission measure weighted tem-
perature (Log EMT) from a stable value for each energy case which starts to decline at
∼4312 seconds (vertical dashed line) after the nanoflares have ended. Each energy sce-
nario reaches a minimum value after which the simulation tries to adjust itself leading
to the ‘bounce’ in values. This is just a computational effect and so values after this
bounce will not be considered. The effect is also exaggerated in this plot due to the log
scale. Right: the same plot but plotted in MK units (i.e., noton a log-scale) to show that
this ‘bounce’ is really a tiny perturbation.

In the left-hand plot it can be seen that the EMT declines in each case until it reaches a

minimum value after which each plot is seen to ‘bounce’. Thisis a numerical overshoot

by the simulation as it tries to reach an equilibrium temperature and does not necessarily

reflect a physically accurate interpretation of how the plasma would behave. The right-

hand-side plot shows the same values but plotted on a non-logtemperature scale. The

point of this is to show that the size of this ‘bounce’ is exaggerated in the log plot and

is in fact only a small perturbation.
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The slope of the decline in each energy scenario’s EMT is an interesting feature to note.

It is clear that the higher energy simulation (Eburst∼1025) declines much more steeply

than the Eburst∼1024 case which is turn is also steeper than the lower energy (Eburst∼1023)

case. The relationship between the emission measure weighted temperatures and the

unweighted temperature values is shown in Figure 4.42 whereit can be seen the two

quantities are very closely related.

Figure 4.42: Plot showing the relation between the emissionmeasure weighted temper-
atures and the unweighted temperature values (red) over thecourse of the loop cooling.
It can be seen the two values are very closely related.

Figure 4.43 shows how the temperature evolution of the cooling simulations corresponds

to the changing density values in each case. The three vertical dashed red lines indicate

the times at which the temperature of one simulation equals another. Even though at

these points the simulations have equal temperatures, the EMT of each simulation con-

tinues to decline at a unique slope as the density values are very different (i.e., an order

of magnitude different). After the strands have stopped being heated, they will cool by

radiation. The rate of the radiative cooling is heavily density dependant (i.e.,τrad ∝ ρ2)

which is why each simulations cool at a different rate.
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Figure 4.43: Plot showing that even when the three cooling simulations reach a common
temperature (denoted by the vertical dashed red lines), they still have widely different
log density values (around an order of magnitude different) leading to the different pro-
gression of the EMT values.
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Impact on DEM as loop cools

In order to relate the MSHD model outputs to possible ‘real’ observations, the temper-

ature and density values over the entire simulation (for each energy case) can be used

to calculate synthetic DEMs. Although the entire simulations is 17250 seconds in du-

ration, Figure 4.41 considers the loop evolution between t=2000s and t=10000s. These

8000 seconds include the point at which the heating is removed (t= 4312s) and follows

the resulting cooling until a minimum value of EMT is reachedin each case. By divid-

ing this 8000s into sections of 100 seconds, 80 DEM plots can be made which follow

the behaviour of the simulation. The change in these DEMs over time can be seen in

the movies listed in Table 4.10.

Movie name Energy Loop position
case (ergs) examined

DEM e23c4.mov Eburst∼1023 whole coronal loop
DEM e23 legapex.mov Eburst∼1023 leg vs. apex

DEM e24c4.mov Eburst∼1024 whole coronal loop
DEM e24 legapex.mov Eburst∼1024 leg vs. apex

DEM e25c4.mov Eburst∼1025 whole coronal loop
DEM e25 legapex.mov Eburst∼1025 leg vs. apex

Table 4.10: List of movie names and the energy scenario they refer to. A distinction
is also made between the behaviour of the DEM based on the entire coronal part, and
ones made from data concentrated at the loop apex and leg to see if these areas evolve
differently.

For simplicity, these 80 DEMs have been averaged and condensed into the eight plots

seen in Figures 4.44, 4.45, and 4.46. In each figure, two versions of the DEM progress

have been plotted. The left-hand plots in each case show how the DEM evolves based

on the entire coronal portion of the loop (black) while the right-hand plots show this

same progression but distinguish between the DEMs based on data from the loop apex

(green) and leg (red) in order to see if they evolve differently.

Each energy scenario shows the same effect seen in Investigation Ci where the DEM
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shifts to higher temperatures as the total energy depositedwithin the simulation in-

creases. The first plot (t=2500s) of each figure illustrates this point with all the DEMs

moving up the temperature scale from one energy scenario to the next. A widening of

the DEMs as energy increases is also observed and is due to thevariation in the EMT

becoming larger as the average nanoflare energy increases. After the heating stops (at

t=4312s), the DEMs in every case are observed to move to lower temperatures and even-

tually disappear as the plasma goes below Log T= 5.5. This is due to the combination

of the plasma temperature reducing as well as the loop plasmadraining back down into

the model chromosphere causing the density to reduce.

Figure 4.44: DEM changes observed in cooling loop with average Eburst∼1023. Left:
DEMs over time for whole coronal loop. Right: DEMs over time for areas based on
loop apex position (green) and loop leg (red). Time increased from top to bottom.

An interesting feature to note is seen in the right-hand plots in each figure which exam-

ines how the DEMs based on the loop leg and loop apex differ. Initially the leg DEM

(red) is observed to be peaked at a lower temperature compared to the apex DEM (green)
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Figure 4.45: DEM changes observed in cooling loop with average Eburst∼1024. Left:
DEMs over time for whole coronal loop. Right: DEMs over time for areas based on
loop apex position (green) and loop leg (red). Time increased from top to bottom.
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Figure 4.46: DEM changes observed in cooling loop with average Eburst∼1025. Left:
DEMs over time for whole coronal loop. Right: DEMs over time for areas based on
loop apex position (green) and loop leg (red). Time increased from top to bottom.
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due to the loop legs being denser and having a lower average temperature. Over time

however, the apex DEMs are seen to move to lower temperaturesand disappear faster

than the leg DEMs. By t=7500s in each case the leg DEMs (red) have swapped places

with the apex DEMs and persist for longer.

This is because the cooling of the loop represents a ‘draining’ of plasma from the coronal

part of the loop back into the chromospheric section and naturally the last section of the

loop to retain plasma dense enough to contribute to the DEM will be in the legs.

Figure 4.47: Plot showing the peak temperature of the DEM foreach energy case as it
cools over time (coloured lines) compared to the average emission measure weighted
temperature values for each simulation over time. It can be seen that the peak DEM
temperature follows very closely the EMT values in each case.
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The way in which the DEMs change as the cooling takes place is explored further in

Figure 4.47. The temperature at which each of the 80 DEMs (calculated for each simu-

lation) peaks at is plotted as it changes over time. It can be seen that before the heating

stops each DEM has its peak temperature at a value similar to the calculated EMT for

that energy scenario. As the cooling begins, each simulation shows a very good agree-

ment between the peak temperature of the DEM (coloured lines) and the corresponding

EMT values from Figure 4.41 which are overplotted.

This suggests a very interesting observational advantage i.e., that by observing how a

loop cools and computing its DEM changing over time, the physical temperature and

density values of the plasma can be inferred even when the DEMis quite broad. The

simulation results show that based on the steepness of the falling EMT/peak DEM tem-

perature over time, estimates on the average nanoflare energy can be made.

It is likely this result is tied into the multi-stranded nature of the simulation as a mono-

lithic loop (i.e., one that is essentially one large strand)would show a much larger

variation in EMT that the DEM may not follow the same trend. This is a topic that will

be explored in future work (see Section 7). The trend seen here for different total energy

input could be used as a basis for comparison with real observational data. The rate of

the decline in the peak DEM temperature could be used to see which of the energy sce-

narios it is most similar to. If the cooling behaviour of all the simulations was studied

(i.e., cooling loops with different strand numbers and heating location etc.) more robust

conclusions could be drawn about the real observation’s similarity/dissimilarity to the

MSHD model.

Impact on synthetic intensity values

Using the DEMs calculated over the timescale of the simulation, the possible intensity

that would be observed by SDO/AIA as the loop cools can be measured. By folding

each DEM through the instrument’s temperature response functions the intensity in each
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channel over time for each energy scenario can be generated.These response curves are

shown in Figure 4.48 where each curve has been normalised relative to its maximum

value. This allows easy identification of where each channelhas its peak temperature

sensitivity and in what order these peaks occur in as temperature is increased.

Figure 4.48: SDO/AIA temperature response curves from the AIAget response.pro.

Figure 4.49 shows how the intensity of the loop changes within each AIA channel as

the cooling progresses for the three simulations. These plots represent intensity values

calculated from looking at a section at the apex the loop. Similar plots were made for

the whole coronal part of the loop and just the leg but very similar results were achieved

and thus are not included here. It is quickly seen that by changing the total energy going

into each simulation, observable changes in the resulting intensity are created.

Each channel’s intensity peaks at a different time and displays different rise and fall

profiles leading to some channel peaks looking ‘wider’ than others. In each case these

patterns can be explained by referring to each simulation’sEMT over time as well as

154



CHAPTER 4

Figure 4.49: Graphs of intensity change over time. The dashed line indicates when the
heating stopped. Each plot is made from simulated data from the apex part of the loop
where the total energy deposited in the loop increases by a factor of ten from top to
bottom.
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looking at the instrument response functions. In order to make sure the intensity changes

observed are fully understood, each channel shall be lookedat in turn. The intensity

changes seen in the AIA 94Å, 131Å, and 171Å channels are seen in the left column of

Figure 4.50 while Figure 4.51 investigates channels 193Å, 211Å, and 335Å.

For each channel the left plot shows how the intensity in thischannel varies between

the three different simulations of increasing total energy over time. Theright-hand plot

for each channel tries to explain these different intensities by plotting two quantities.

Firstly, the average emission measure weighted temperature for each energy scenario is

plotted as it changes over time (black solid, dashed and dotted lines). This allows the

combined effect of the temperature and density changes in the plasma to beseen. In

addition to this, the normalised instrument temperature response curve for each channel

is overplotted. This coloured curve (filled area) has nothing to do with the lower x-axis

(time) but shows where the peaks of the sensitivity in this channel are along the y-axis

(temperature). This allows the two factors to be directly compared and results in the

differing intensity values being easily explained.

94Å intensity changes:

The topmost two plots in Figure 4.50 show both the changes in the intensity values seen

in the 94Å channel by each simulation (red lines in left plot), and also a plot to ex-

plain the differences in these intensity values (right plot). Before the heating stops (at

t=4312s where the vertical dashed line indicates) it can be seen that the dashed red line

(Eburst∼1023) has the highest intensity followed by the e24 and e25 cases (henceforth

the notation of ‘e24’ will refer to the simulation with the average nanoflare energy of

Eburst∼1024 etc.). By looking over at the right plot, this pattern can be understood. The

red filled plot shows the normalised AIA 94Å temperature response curve overplotted

with each energy scenario’s EMT profile. It can be seen that before the heating stops,

the dashed line (i.e., the e24 case) lies closest to the peak of the channel sensitivity at
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around Log T=6.8. As the cooling begins, the intensity plots show that thee25 case

has a sudden peak at t=4500s. This is because the corresponding EMT line in the right

plot (solid line) has crossed the peak of the channel’s sensitivity. The intensity peaks

occurring at around t=6000s are the result of the EMT lines crossing the 94Å sec-

ondary sensitivity peak at LogT=6.0. Although the e25 and e24 intensity peaks look

relatively small compared to the e23 one at this time, it is important to remember that

these intensity values have been normalised with respect totheir maximum values.

131Å intensity changes:

The intensity changes seen in the three simulations in the 131Å channel can also be

explained by looking at the EMT behaviour in relation to the instrument’s response

function for this channel. The e25 intensity is much higher than the other two while

the heating is still in progress as the EMT for this energy is right in the middle of the

high energy sensitivity peak for this channel. All the intensity values then fall as the

EMT values cross a temperature range in which this channel has low sensitivity. At

around t=7000s all three simulations peak as at this time the EMT values have fallen

to a temperature range in which the 131Å channel has its main sensitivity. It can be

seen that the e23 case has the widest intensity peak at this time. This is due to the

EMT for this simulation having a less steep decline comparedto the other two and so

this simulation spends a longer time within the temperaturerange the 131Å channel is

sensitive to.

171Å intensity changes:

This AIA channel has only one main sensitivity peak at aroundLogT=5.8 so the inten-

sity changes over time in each simulation also peak at one particular time. The timing

of these intensity peaks is determined by the time the corresponding EMT values reach

the temperature range that this channel is sensitive to. This occurs at around t=6500s
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but the exact time of the peak and also the width of the peak differs for each energy case.

The effect of the different gradients in the decline of the EMT in each energy case (i.e.,

the gradient of the EMT decline increases with higher energy) can also be seen more

clearly here. The order in which each EMT line reaches the peak of the channel sen-

sitivity is reflected in the timings of the intensity peaks (i.e., e23, followed by e25 and

e24). The width of each intensity peak is also clearly different. As energy increases the

width of each intensity peak is narrower due to the corresponding increase in the gradi-

ent of the EMT decline. The high energy case (e25) simply spends less time within the

temperature range the channel is sensitive to resulting in the intensity rising and falling

over a shorter time span.

193Å intensity changes:

Figure 4.51 shows that the intensity values seen in the 193Å channel show a similar

pattern to that seen in 171Å as the temperature response curve is peaked around one

main temperature value. In this channel that peak occurs at around LogT=6.2 (slightly

higher than the 171Å peak) so the calculated intensity values will peak sooner. The

intensity changes for the three simulations are seen to peakat around t=6000s with the

order of the peaks corresponding to the order the EMT values reach the temperature the

channel is most sensitive to. Again the width of the intensity peaks is affected by the

gradient of the EMT changes in each case.

211Å intensity changes:

Again a similar pattern is seen in the intensity changes overtime for each simulation.

The peak of the 211Å sensitivity is at around LogT=6.3 so the peaks in intensity occur

slightly sooner than in the last two channels. Once again theordering of the intensity

peaks and the widths of the rises can be explained by seeing how the EMT values move

through the response curve temperature range.
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Figure 4.50: Plots showing both the intensity behaviour of the cooling loops in channels
94Å, 131Å, and 171Å (left column) and the corresponding EMT evolution over time
(black lines) in relation to each channels temperature response function (filled coloured
section).
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335Å intensity changes:

The 335Å channel is not as simple as some of the others as it hascontributions from

a wider range of temperatures. This is seen in the bottom-right plot of Figure 4.51

where the filled green area represents the normalised temperature response curve in this

channel. The fact that this response curve covers a wider range of temperatures is the

reason why the corresponding intensity curves are wider andshow more variation in

their declining phase as the EMT values move from one sensitive temperature range to

the next.

The main thing to take away from this analysis is that the calculated intensity values

in each channel and how they change over time can be preciselyexplained by referring

to the behaviour of the emission measure weighted temperature of each simulation in

relation to the instrument response functions. This has allowed the MSHD model to

explore a cooling loop but in terms of real observations these results can also be useful.

When observing a real coronal loop with SDO/AIA the intensity of that loop in each

channel can be recording over time. If a cooling pattern is observed (i.e., the intensity

rising and falling in a certain order) then by using the temperature response curves some

conclusions about the loop (in terms of its energy, density and temperature) can be made.

For example, the rate at which the intensity rises and falls (i.e., the width of the intensity

profiles) is an indication of the gradient of the decline in the EMT which is in itself an

indication of the average nanoflare energy in each case.

A similar study was conducted by Viall & Klimchuk (2011) who used the EBTEL 0D

model to see how their simulated loop cooled through the AIA channels over time and

compared these results to real observations. In terms of themodel results, they found a

very similar pattern of intensity peaks. Figure 4.52 shows their results for two energy

cases. The left-hand plot shows the resulting intensity changes after a heating event of

size E while the right-hand plot shows the intensity changesoccurring after a heating

event ten times greater i.e., 10E.
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Figure 4.51: Plots showing both the intensity behaviour of the cooling loops in channels
193Å, 211Å, and 335Å (left column) and the corresponding EMTevolution over time
(black lines) in relation to each channels temperature response function (filled coloured
section).

161



CHAPTER 4

Figure 4.52: Figure from Viall & Klimchuk (2011) showing theintensity peaks seen in
a cooling loop simulated with the EBTEL code. The right graph(a) shows the cooling
after a 500s heating of energy E while the left graph (b) showsa cooling after a 500s
heating event of energy 10E.

In the first case (a) the results from their study are almost identical to the intensity values

found for the e23 case from the MSHD model (top plot of Figure 4.49) suggesting that

the total energy going into each simulation is around the same value. However, when

looking at their results for the order of magnitude higher energy case (b) a different set

of results is seen. The clustering of the 335, 211, 193 and 171Å peaks is very similar

to the MSHD e24 case (middle plot of Figure 4.49) but the 131Å peak occurs at both

the start and the end of the cooling whereas it is only observed in the latter stages of the

MSHD cooling. This suggests that their higher energy scenario is halfway between the

e24 and e25 energy levels explored in this chapter. By looking at the middle-right plot

of Figure 4.50 it can be seen that in order for the 131Å intensity values to show two

equal rises, the EMT has to be higher than the e24 case but not as high as the e25 case

or the resulting plot would be too similar to the lower plot ofFigure 4.49.

It is also not clear how the 131Å intensity changes seen in their higher energy case

(Figure 4.52 (b)) manages to get three intensity rises over the course of the cooling.

The sensitivity of 131Å only peaks at two temperatures (LogT∼5.7 and 7.0) as seen in

Figure 4.48, so in order for three rises to be observed the plasma must undergo some

additional heating i.e., causing it to dip back into the peaksensitivity of the channel after

cooling through it once already. Additional work on this issue and details of further
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examination of the cooling MSHD simulation is detailed in Chapter 7 in the Future

Work section.

4.2.6 Summary

The MSHD model has proved to be a reliable and flexible tool forsimulating a coronal

loop. As the parameter space of the model has been explored itis clear that the model

responds as it should in a physically realistic way. Each investigation of the parameter

space (A-D) has shown a unique result with the resulting DEM changing in a way that

can be explained by the particular model outputs. A summary of the main results from

each investigation is given in Table 4.11 where the unique DEM and intensity changes

observed are noted.

The changes observed in each case could be used to explain similar signatures observed

in the DEMs of real data. However, care should be taken when applying the model

results to real data as in most cases, the changes observed inthe DEMs as the parameter

space is altered are very small. Therefore these signaturesare not unique in that there

could be multiple reasons for the changes seen.

The results from the cooling simulation do show a unique signature in that the total

energy of the system can be determined by looking at the pattern of the intensity values

and DEM peak temperature as they change over time. The intensity values in each

channel were observed to peak in a particular order depending on the total energy of the

simulation. Additionally, the rise/fall time of each peak was found to be related to the

energy with the higher energy simulation having much shorter rise/peak timescales than

the low energy simulation. The temperature that the maximumof the DEM occurs in

was also found to follow a particular pattern based on the total energy of the simulation.

As the cooling progressed, the temperature bin where the DEMpeaks was found to

follow the evolution of the emission measure weighted temperature very closely.
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Investigation Unique signatures/key results

A
√

2 scaling observed in DEM and intensity values. This is due to
(strand no.) the line-of-sight element changing (i.e., the strand diameter).

→ This will not be taken further as this result is not a true unique
signature and is just a result of the LOS assumption.

B Slight shift between DEMs observed. This is explained by the
(heat loc.) temperature and density profiles of each simulation.

→ This shift is clear but not large enough to be thought of as a
unique signature.

Ci Large shift to higher temperatures observed in the DEM as
(tot. energy) total energy is increased. Each simulation is observed to have a

different channel of peak intensity as the DEM moves up the
temperature range to other channel sensitivities.
→ This result was expected but is useful to show that the model
is behaving in a physically realistic way and serves to put reason-
able limits on the model energy inputs.

Cii Large change observed in the width of the DEMs.
(nanoflare no.) → This study showed that the width of a DEM is determined by a

combination of factors such as the energy of each nanoflare, the
time between subsequent nanoflares, and the volume in which the
nanoflares are deposited. This means an observed change in DEM
width is not a unique signature as it can be caused by more than
one parameter.

D DEMs are observed to cool and drain over time once nanoflare
(cooling loop) heating has stopped. DEM peak temperature change over time is

consistent with the change in the emission measure weighted
temperature. This decline has a unique slope which is related to the
total energy of the simulation. The intensity in each AIA channel
over time (for each of the three cooling simulations with different total
energy) also show a unique pattern. The order and rise/fall times of the
intensities can be directly linked to the decline rate of theEMT and how
it relates to the instrument response functions.
→ The DEM result is unique and could potentially be used to infer
the temperature and total energy of observations of real coronal loops.
The intensity changes can also compared with real data to infer the
energy of the loop system based on the order in which the AIA
channels peak.

Table 4.11: Summary of the main results of the parameter space investigation of the
MSHD model. The unique results in each case (or lack thereof)are also noted for each
investigation.
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The results of the exploration of the MSHD model are intriguing and will be looked

at in more detail in future work. It would be interesting to compare the model results

with real AIA data but before doing that, the ability of a particular DEM solver code to

reconstruct the model DEM is explored. This will allow real data to be interpreted by

the solver with a greater degree of confidence.
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Testing DEM Solvers

Now that the parameter space of the MSHD model has been explored, and the reaction

of the synthetic DEMs and intensities to various changes hasbeen understood, the next

step is to try and relate the MSHD model to real coronal loop observations. However,

before this can be done, the method by which real observations are interpreted in terms

of their differential emission measure distribution has to be examined.

The MSHD model allows the exact plasma temperatures and densities used to construct

a particular DEM to be known and can track how these values change in time. Using

the model as a ‘synthetic’ observation is an ideal way in which to test various DEM

solver codes. By providing the solver code with the six values of intensity ‘observed’

by AIA when interpreting the model, the similarity between the DEM the solver has

fitted and the true DEM built by the temperature and density elements of the model can

be compared.

Figure 5.1 shows a flowchart describing the steps involved inthis comparison. If the

solver code can reconstruct a DEM representing the physicaldistribution of plasma

temperatures and densities based only on the six MSHD intensity values it is provided

with, a greater level of confidence can be applied to the solver results concerning real
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1D HD Multi-stranded
Nanoflare heated Loop(s,t)

No. strands
EtotEburstLength

No. bursts

Heating
profile

Density(s,t)
Temperature(s,t)

Imagers:
Hinode/XRT, SDO/AIA

Loop intensity
values

DEM solver e.g. iterative,
Convex-Hull, etc.

Set of DEM
solutions

‘Full-solution’ DEM

Comparison

Instrument response function

Figure 5.1: Flowchart of process involved in comparing the MSHD model outputted
DEM to one reconstructed from a DEM solver code.
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observations. The solver code tested in this section is named XRT DEM iterative2.pro

(Weber et al. 2004; Golub et al. 2004) and although it was written to deal with Hin-

ode/XRT data, it can be adapted to take in SDO/AIA data values.

There are a wide variety of other solver codes available, each with their own advantages

and disadvantages. Two particular types of code will be described here (with more in-

formation found within given references) but the analysis will be confined to the results

from XRT DEM iterative2.pro.

5.1 How the solver codes work

A DEM solver code is designed to take in values of plasma intensity counts (measured

by an imager or spectrometer) and find a DEM solution which gives the minimum error

for these values i.e., a DEM solution which when folded back through the appropriate

instrument response function will give out values of intensity with a minimumχ2 value

compared to the original values.

Iλ =
∫

DEM(T) Rλ(T) dT (5.1.0.1)

Equation 5.1.0.1 shows how the intensity seen in a certain channel (Iλ) is related to

the DEM and the temperature response function of that channel (Rλ(T)) in a particular

instrument. In principle, the DEM could be found by inverting this equation but prob-

lems arise as the response functions overlap at certain temperatures (Weber et al. 2004).

There are two main methods (and two types of solver code) thatare used to solve this

inversion problem: iterative methods and direct inversionmethods.
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5.1.1 Iterative methods:

An iterative solver starts with an initial guess (based on the intensity values provided)

and performs a least-squares fit which is represented by a spline with evenly spaced

knots in logT space. These knots are adjusted at each iteration in order to reduce the

χ2 fit of the real observations to the predicted observations. At each iteration the real

observations given to the solver are randomly adjusted to a value within the errors given.

This allows the local minimum solution to be found. This method is described in further

detail in Weber et al. (2004) and Golub et al. (2004).

Schmelz et al. (2007) used an MCMC (Markov-chain Monte-Carlo; Kashyap & Drake

1998) based DEM reconstruction available in the PINTofALE analysis software to study

the temperature distribution of coronal loops seen in threeTRACE channels. They noted

that the MCMC iterative method draws its fits from the posterior probability distribution

function which gives a more accurate measure of the statistical uncertainty. However,

this method (as with most solvers) does not include an estimate of the errors due to the

choice of emissivity, elemental abundances or assumptionsof non-equilibrium ioniza-

tion that the DEM reconstruction makes. This is a point to keep in mind if conclusions

are to be drawn from any DEM solver. They further caution against relying on data

which does not adequately constrain the DEM distribution athigh and low temperatures

i.e., by using a low number of filters.

Warren et al. (2011) also used the MCMC emission measure algorithm from PINTo-

fALE to determine the distribution of temperatures in the short, hot loops observed at

the core of an active region. They used intensities taken with Hinode EIS and XRT

and found that the DEM solver returned values of intensity that were mostly consis-

tent (to within 25%) with the observations. They note that the thicker filters of XRT

help to constrain the high temperature end of the DEM but thatthe broad nature of the

corresponding response functions means that there is stillsome uncertainty regarding

the high temperature slope of the DEM. The low temperature end of the distribution is
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less constrained so the authors note that the values here should be considered an upper

bound on the emission measure.

Schmelz et al. (2009b) used two types of iterative solver, XRT DEM iterative2.pro and

MCMC, to study the emission from active region cores. They found that the two solvers

showed excellent agreement with the results falling within1-2σ of each other. They

also noted that better fits were achieved when more XRT filterswere utilised and that

the solvers performed better when reconstructing multi-thermal distributions as opposed

to spiked isothermal ones. This is because jagged or more isothermal DEMs are not

reconstructed well by the spline fitting of the iterative code.

One of the disadvantages of using an iterative solver compared to a direct inversion

method is that iterative solvers tend to be slower. This was discussed by Weber et al.

(2004) and is something to keep in mind if a large number of calculations have to be

made.

5.1.2 Direct Inversion methods:

Inversion algorithms use the inverted form of Equation 5.1.0.1 written in matrix form:

DEMT Rλ,T = Iλ (5.1.2.1)

in order to solve them as a set of linear equations. However, this can lead to some

unphysical solutions with negative DEM values in some temperature bins. Additional

assumptions can be applied to the solutions in order to get out the most physically realis-

tic values e.g., by disregarding negative solutions or onlyallowing smooth distributions

over the logT space. Singular value decomposition (SVD) canalso be used to solve

Equation 5.1.2.1 and reduce the inversion problem to a square system of equations with

a principle solution. A more detailed explanation of these calculations is given in Weber
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et al. (2004) and Plowman et al. (2012).

The SDO/AIA instrument has provided scientists with a previously unknown level of

spatial and temporal resolution. In order to carry out analysis on a large area (e.g., an

entire active region or the whole solar disc), codes to reconstruct the DEM must be very

fast in order to process the vast amount of data generated by the instrument every few

seconds. Weber et al. (2004) compared the run-times and accuracy of three types of

solver: one iterative, and two types of direct inversion. They found that run-times were

reduced by 2-4 orders of magnitude when using a direct inversion method as opposed

to an iterative one.

The Convex-hull solver is a new form of SVD direct inversion method written by Dr

Mark Weber. This code solves an intensity vector and finds a series ofχ2=0 solutions,

which are each composed of six isothermal components (i.e. each solution has six non-

zero temperature bins).

The Convex-hull method allows all of the globally best solutions to be found so one

must apply some a priori knowledge or judgement to reduce theset of solutions down

to a single representative solution. This is in contrast to iterative solvers which can only

find the locally best solution. Some initial work using this solver in conjunction with

the MSHD model is presented in the future work chapter.

Now that some of the basics behind various DEM solvers have been discussed, a fuller

exploration of the iterative solver code can be made. In order to examine the abil-

ity of this solver to reproduce plasma parameters, comparisons can be made between

the DEMs already constructed from MSHD model and the varioussolutions from this

solver.

MSHD model data for various time/space cuts of each of the 17 simulations listed in

Table 4.2 are available for reconstruction and subsequent comparison. In order to detail

the various issues involved in using this DEM solver, particular attention is paid to one
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example which is used as a case study. After all the intricacies of comparing the solver

solution to the real solution have been highlighted, the success/failure of the solver to

reconstruct the other variations of the MSHD model is investigated. Subsequently it

can be investigated whether the solver is able to distinguish between the results outlined

in Section 4.2 where changes in the parameter space of the model resulted in specific

differences in the DEMs.

5.2 Testing the iterative solver: example case study

The XRT DEM iterative2 solver can be used as a ‘black box’ i.e., one can put in values

of intensity and get out a DEM reconstruction, without having to know exactly how the

fit was achieved. However, there are various keywords which allow the user to gain a

better understanding of how ‘good’ the fit is. This section aims to quantify the goodness-

of-fit of the solver’s DEM to the original model DEM and describe what factors go into

determining this.

The case study in this section focuses on one of the time/space cuts of one of the MSHD

simulations which was chosen to showcase the details and considerations of applying

the solver to a modelled dataset. The dataset chosen is made from information from the

apex of the 16 strand loop simulation where the DEM and intensity values were shown

in Investigation A of the previous section. This particulardataset was chosen as the

modelled plasma had an even spread over temperature which resulted in a uniformly

smooth DEM distribution.

As the name suggests, the XRTDEM iterative2 solver was designed to reconstruct

DEMs based on Hinode/XRT data. It can be adapted to work for AIA intensities by

defining the instrument temperature response using the AIAget response procedure

rather than the corresponding XRT one. Once this has been implemented, values of in-

tensity the six Fe AIA channels (94Å, 131Å, 171Å, 193Å, 211Å,and 335Å) calculated
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from the MSHD model are passed to the solver along with an estimate of the error on

these intensity values.

For this study an error of 10% in the intensity values was employed in each case; note

however that other authors (e.g., Schmelz et al. 2009b) haveused a much lower value

(3%). The error value chosen here was set at this higher levelto reflect the various

sources of uncertainty and noise that are present in any dataset. It also serves as a

cautious first estimate that can be revised if the solver DEM solutions are found to be

too widely spread.

After inputting (i) the model intensity values (referred toasI orig in the rest of this sec-

tion), (ii) the error on these values, and (iii) the appropriate instrument temperature

response in the solver code, the programme will run for a specified number of iterations

(N=100 in this case) before outputting the following:-

• I obs: 101 sets of intensity values for each channel. The first value is that of Iorig

with the next 100 being values based on the original that has been perturbed within

the allowed errors. These form the starting point that the 101 DEM solutions are

based on i.e., they are treated as a series of ‘observations’.

• DEM out: 101 DEMs over 26 temperature bins each fitted from the correspond-

ing iteration of Iobs according to the reconstruction technique of the solver.

• I gen: 101 sets of ‘generated’ intensity values which come from putting the DEMout

solutions back through the temperature response. These values are the closest

match the solver can get to the Iobs values for each iteration.

• Chisq: 101 measurements of how close Igen gets to Iobs for each iteration. Thisχ2

value, as well as an alternative, are discussed further in the following section.

A visual representation of the input and output values of thesolver is shown in Figure

5.2. The Iobs and Igen values outputted by the solver serve to explain how the DEM
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Figure 5.2: Representation of the way the input and output values of the solver are tied
together. The initial input intensity from the MSHD model (Iorig) is used alongside the
given errors to create a set of input intensities (Iobs) from which each DEM solution
is generated. Putting each DEM solution back through the instrument temperature re-
sponse gives a series of generated intensities (Igen). These outputted intensity values do
not exactly match the ones the DEM was reconstructed from andthe solver keyword
CHISQ measures on how close the values are.

solutions are obtained and also how the solverχ2 value is calculated (see below).

5.2.1 Selecting the best iterative solution based on intensity recon-

struction

The intensity values of Iobs and Igen do not need to be examined in order to use the solver

DEM solutions, but they can provide an interesting perspective on how the given error is

interpreted by the solver and can also potentially indicatewhich solution is the best i.e.,

which iteration’s DEM is the closest match to the real DEM produced by the model. In

this case study the MSHD model values of intensity and DEM areused in conjunction

with the outputs of the solver listed above in order to try andquantify how well each

solver DEM matches up to the real DEM.

As discussed above, the solver outputs a value of Chi-squarewhich indicates how well

the Igen matches the Iobs values. This section aims to quantify if this measure alone is
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enough to determine which solver solution should be used concentrated on and desig-

nated the ‘best’ fit.

The reason for this extra analysis can be explained by considering using the solver

to analyse real observational data. In that scenario the intensity values measured are

the only information available so it would be reassuring to know that a good solution

can be found (i.e., one with a DEM that accurately representsthe distribution of plasma

temperature) by relying on some type of Chi-square fit of the Igen to the Iobsvalues. In the

case of real data, there is no full-solution ‘real’ DEM to compare the solver solutions to

whereas in this case study this information is available. This means the solution(s) with

the highest goodness-of-fit measure can be compared to the real temperature distribution

of the model DEM.

Before examining the Chi-square that the solver outputs, the spread of the various values

of intensity is examined. Figure 5.3 shows the original intensity values plotted as a

red solid line with the 10% error indicated. This figure also has the 100 values of

Iobs overplotted as blue dotted lines. As with other intensity plots in this chapter, the

continuous lines are meant to illustrate the overall pattern between channels and are not

a suggestion that the intensity values are anything other than discrete.

It can be seen that many of the Iobs values lie outside the error bars of the original inten-

sity values. This is because the solver uses the specified error to construct a Gaussian

distribution of intensity values where the mean is the Iorig and theσ is the error value

given. Each value of Iobs will fall within the Gaussian but not all within 1σ of the mean.

This is shown in Figure 5.4 where the distribution of the Iobs and Igen values in each

channel have been plotted. It can be seen that in a lot of casesthe values of Iobs and Igen

fall within 1σ but there are many values that do not. In some cases values even fall in

the extreme wings of the distribution (e.g., see the 335Å case).

This is another factor that needs to be considered when evaluating the various solver

solutions. Only iterations where the Iobs and Igen both fall within 1σ of the mean will
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Figure 5.3: Spread of Iobs values (blue) around the Iorig values (red) with 10% errorbars
added. All 101 values of Iobs are overplotted. Values of intensity are plotted with lines
rather than symbols to show the general trend, not to suggestthat these values are con-
tinuous. This spread is due to the solver taking the inputtederror values as the sigma of
a Gaussian distribution with mean=Iorig in order to calculate the values of the perturbed
Iobs values.

be considered further. In this case study only 11 out of the 101 iterations fulfilled this

criteria. This set of solutions can be further cut down by examining the Chi-square more

closely.

The solver outputs a value ofχ2 for each of the solutions (of which there are 101 in this

example) which is hereafter designated asχ2
obs2gen and is calculated from the equation:

χ2
obs2gen[N] =

5
∑

λ=0

(Iobs,λ[N] − Igen,λ[N])2

σ2
(5.2.1.1)

where N is the number of iterations performed (i.e., number of DEM solutions calcu-

lated),λ refers to which of the six EUV Fe channels the intensity (I) ismeasured in.

This value is a measure of how well the Igen matches the Iobs value for each iteration. It

is a measure of how close the intensity being fitted (i.e., I going in) is to the solution
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Figure 5.4: Gaussian distribution of Iobs (�) and Igen (∗) values where the distribution
mean is Iorig and theσ is 10% of the Iorig. It can be seen that although lots of values are
within 1σ of the mean, many are not. The values plotted are to show the overall trend
of the Iobs and Igen values and do not indicate the relationship between the two values in
each iteration. This is addressed later on.
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intensity (i.e., I going out).

The solutions can be sorted according to this measure with the minimum value repre-

senting the iteration where the Iobs and Igen are closest in value and where the maximum

indicates that the values are very far apart and therefore the fit has not been ideal. How-

ever, using only theχ2
obs2gen value as a measure of the goodness-of-fit neglects the

earlier point made that some values are outside the 1σ of the distribution. An iteration

that has the minimumχ2
obs2gen value only shows that the Iobs and Igen are a good match

to each other but does not indicate how close to Iorig the values are i.e., the Iobs and Igen

could be out at the wings of the distribution.

Another version of the Chi-square is given in the equation:

χ2
gen2orig[N] =

5
∑

λ=0

(Iorig,λ[N] − Igen,λ[N])2

σ2
(5.2.1.2)

which is the same as the previous calculation except the comparison is between the

original values of intensity and the outputted Igen values (designated asχ2
gen2orig). This

test shows how well each iteration’s solution intensity value (Igen) matches the original

intensities (Iorig). This is a useful second test as an ideal solution would havea DEM

which, when folded back through the instrument temperatureresponse, would produce

intensities as close as possible to the original values the solver was given.

Each Chi-square calculation gives a measure of the goodness-of-fit of each iteration

where the best fit is the one with the lowest value ofχ2. The two Chi-square measure-

ments can be used together to indicate (i) which solutions have the best fit of Iobs to Igen

values, (ii) and also lie as close as possible to the mean of the distribution.

Figure 5.5 shows the range of values ofχ2
gen2orig (⋄ symbols) andχ2

obs2gen (∗ symbols)

for the 101 iterations of the solver. It can be seen that most values lie under 20 but a few

values exceed this with a clear outlier at iteration 77.
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Figure 5.5: Plot showing the distribution of Chi-square foreach iteration of the solver.
For each iteration two values are plotted based upon the goodness-of-fit between the
outputted solver intensities (Igen) and (i) Iobs(∗ symbols) and (ii) Iorig, the original MSHD
model intensities (⋄ symbols).

Looking more closely at the solutions with the minimum and maximum values of the

two Chi-square measurements can help to illustrate exactlywhat they represent. The

maximum value of eachχ2 calculation occurs in the 77th iteration where it can be seen

theχ2
gen2orig=60 andχ2

obs2gen=85 (Figure 5.5). This case is examined further in Table

5.1 where the differences in the intensity values are listed. Figure 5.6 showsthese

differences more clearly where the the Gaussian distribution ofthe intensities around

the original values are shown.

This figure illustrates why the ratio values listed in Table 5.1 are so bad (i.e., not close

to unity in many cases), particularly in channel 335Å where the Igen value is at the very

limit of what the errors allow. The values of Igen and Iobs are not close in any channel

except 193Å which is where the best ratio values therefore occur.

Now that the worst intensity fit has been examined, solutionswith the minimum Chi-

square values from Equations 5.2.1.1 and 5.2.1.2 can be looked at. The solution with

the best fit between values of Iobs and Igen is at iteration 98 (in this example), while the
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Figure 5.6: Examination of the Iobs (�) and Igen (∗) values for iteration number 77
compared to the Gaussian distribution around the mean valueof Iorig in each channel.
This iteration has the maximum value of Chi-square in both methods and is therefore
the worst fit. This is clear as the Igen values are neither at the peak or near the Iobs values.
The x-axis of the plot is 7σ to either side of the mean.

Channel Iorig Iobs Igen Ratio (Igen/Iobs) Ratio (Igen/Iorig)

94Å 17.40 20.24 12.75 0.630 0.733
131Å 8.30 6.53 11.52 1.763 1.388
171Å 166.87 145.58 162.49 1.116 0.974
193Å 465.35 447.49 486.21 1.087 1.045
211Å 421.61 375.52 314.04 0.836 0.745
335Å 70.96 67.21 31.12 0.463 0.439

Table 5.1: Table showing the intensity values relating to iteration number 77 which
yields the highest Chi-square value. The two calculations of ratio show that both com-
parisons are poor in this case.
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solution whose Igenmost closely matches the Iorig is iteration 0. The intensity distribution

for each of these cases is shown in Figures 5.7 and 5.8.

Figure 5.7: Gaussian distribution around the original intensity values for each AIA
channel in the 0th iteration. In this example Iobs = Iorig so these values lie at the peak
of the distribution. The intensity values from the generated DEM solution Igen are also
plotted to show how close these are to the original.

It can be seen that in both iterations (0 and 98) that the values of Iobs and Igen fulfill both

criteria of being (i) close to each other in value and (ii) both occurring within 1σ of

the Iorig mean. Table 5.2 gives more details about these two solutions. The ‘gen2orig’

columns show the values of intensity in each channel from theoriginal MSHD model

values (Iorig) compared to the solver’s modelled intensity values (Igen) and the ratio of

these two values. The ‘It.’ value refers to the number of the iteration where the minimum

Chi-square value occurred.

Below these rows is the Chi-square value of each solution as well as a measure of

the standard deviation and average of the ratio values. The ‘obs2gen’ column shows

the same set of numbers for the iteration where there is a minimum Chi-square value
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Figure 5.8: Gaussian distribution around the original intensity values for each AIA
channel in the 98th iteration. In this example Iobs = Iorig plus some random error. The
intensity values from the generated DEM solution Igenare also plotted to show how close
these are. This solution has the closest match of Iobs to Igen.
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comparing the input intensities (Iobs) to the outputted solver intensities (Igen). It is clear

that theχ2
obs2gen is more successful that theχ2

gen2orig as the value is much lower (i.e.,

3 orders of magnitude smaller) and the intensity ratio is closer to unity. Again the

only point to note is the differences between the original intensity values and the ones

calculated from the solver. These values are within the error chosen so if they look like

too large a departure it is an indication to reduce theσ value given to the solver to less

than 10% of Iorig.

AIA gen2orig, It.=0 obs2gen, It.=98
Channel Iorig Igen Ratio Iobs Igen Ratio

94Å 17.40 17.45 1.0024 17.16 17.16 1.0001
131Å 8.30 8.39 1.0118 8.75 8.75 0.9997
171Å 166.87 168.05 1.0071152.65 152.51 0.9991
193Å 465.35 453.82 0.9752466.95 467.17 1.0005
211Å 421.61 431.38 1.0232460.28 460.41 1.0003
335Å 70.96 69.46 0.9788 64.60 64.61 1.0002

χ2 0.1794 χ2 0.0001
Std. Dev(R) 0.0189 Std. Dev(R) 0.0005
Average(R) 0.9997 Average(R) 0.9999

Table 5.2: Values relating to the two cases where the Chi-square is minimised in each
variation of theχ2 from Equations 5.2.1.1 and 5.2.1.2. The two solutions are named
‘gen2orig’ - where the comparison is between the best fit of the outputted intensity
values (Igen) and the original MSHD model intensities (Iorig); and ‘obs2gen’ where the
best fit between one of the variations in input intensity (Iobs) and the corresponding
solver output intensity (Igen) is found. ‘It.’ refers to the iteration number of the particular
solution.

As mentioned previously, having a minimum Chi-square valuein either calculation does

not necessarily mean that that solution is the best. For example, a solution with a min-

imum value ofχ2
gen2orig would be close to the original intensity values (i.e., within 1σ)

but does not necessarily reflect a good fit as the Igen value may be far from the value the

solver was given to fit (Iobs). Also, a solution with a minimumχ2
obs2gen value suggests a

good fit between Iobs and Igen but does not mean it occurs within 1σ of the mean.

This is shown clearly in the solution from iteration 96 whichhas the second lowest

value ofχ2
obs2gen but is in the worst 30% of theχ2

gen2orig values. Figure 5.9 illustrates
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Figure 5.9: Gaussian distribution around the original intensity values for each AIA
channel in the 96th iteration. This solution has the second best measure of Iobs to Igen

values but only the 72nd (out of 101) best value of Igen to Iorig. The reason for this is that
the 94Å and the 193Å values are not within 1σ of the mean. This shows that although
theχ2

obs2gen test gives this solution a good rating, theχ2
gen2orig test highlights it is not as

good a solution as it first seemed.
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this where it can be seen that although there is a very good match between the Iobs and

Igen values, they occur more than 1σ from the original values in channel 94Å and 193Å.

The point of this is to show that relying on the solver output value of Chi-square does

not necessarily give a true indication of the best solution if the user explicitly wants the

values within 1σ. However, if they are happy with any solution DEM which reproduces

intensity values that lie anywhere within the Gaussian distribution then each solution can

be considered equally good. If the distribution is considered too wide this can easily be

altered by the user choosing a smaller error to give to the solver.

As previously mentioned, the solutions with the ‘best’ fits of intensity can be found

by calculating the two Chi-square measurements and deciding on a way to use infor-

mation from both to cut down the number of solutions. However, picking only the

minimum value from each calculation means that some potentially good solutions are

thrown away. For example, when the values ofχ2
obs2gen andχ2

gen2orig are sorted accord-

ing to their value, it is not clear if the iteration with the minimum value is the best by a

long way or if there are other solutions that also have a very similar values and would

therefore be just as valid a choice.

Figure 5.10 shows the Chi-square values from each calculation plotted with the solutions

ordered according to their value. In each case the solid lineshows that there are a couple

of values at the minimum end, then the values increase and to along series of values

which get incrementally larger. At the end of each series thevalues jump up again for

the few values with the maximum Chi-square. Overplotted on each graph is the position

in the ranking (i.e., out of 101) of the iterations with the minimum Chi-square in each

case (i.e., iterations 0 (∗) and 98 (♦)). Also overplotted with△ symbols are the eleven

previously mentioned solutions which have both Iobs and Igen within 1σ of Iorig. Using

these eleven solutions as a set of ‘best’ solutions and then ranking them according to

how well they do in each of the two Chi-square tests can help toshow where the best

solutions are.
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Figure 5.10: Comparison between the two Chi-square measurements ranked according
to their value. The overplotted symbols show where certain solutions lie in the ranking.
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Table 5.3 shows the details of this ranking. The first and third columns list the iteration

numbers which have values within 1σ of Iorig ranked according to their Chi-square value

in each method. As was already known, iteration 0 and 98 come out at the top solution

in each method but what is also seen is that iteration 98 is last in the ranking based

on theχ2
gen2orig values i.e., out of the 11 best solutions, its value of Igen is the furthest

from the mean in the distribution. This suggests that it is best to focus only on iteration

number 0 which ranks highly in theχ2
obs2gen test too. Iteration number 92 also ranks

highly in both tests and can be considered the second best intensity solution.

Iteration # ranked χ2 Iteration # ranked χ2

by χ2
gen2orig by χ2

obs2gen

0 0.179414 98 0.000112200
92 0.669801 92 0.0135059
59 0.736685 0 0.179414
43 0.786560 56 0.194839
29 0.894557 32 0.221115
40 1.31491 2 0.375522
56 1.90670 29 0.515670
32 1.91065 84 0.589432
84 1.91629 40 0.695767
2 2.04058 59 0.777968
98 2.70281 43 0.830463

Table 5.3: Details of the iteration numbers of the eleven best intensity solutions and their
ranking according to the different Chi-square tests. It can be seen that the 0th iteration
rates highly on both rankings whereas the 98th iteration is first inχ2

obs2gen but last in
χ2

gen2orig. The values of each iteration’s Chi-square is also given to show the magnitude
of the differences between subsequent iterations.

Based on this ranking, the best intensity solution for this example is the one from it-

eration number 0. This solution will now be used to look for further goodness-of-fit

measurements calculated between the DEM from the model and all 101 DEM solutions

from the solver.

It will be interesting to note if the iterations with the bestDEM solutions are the same, or

at least similar to, those identified in Table 5.3. This wouldshow that intensity matching

alone is indicative of a good DEM match.
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The ranking in Table 5.3 is a good starting point for finding the best solutions, but only

indicates that there is a good match between the simulation and solver intensity values.

Figure 5.11 shows that the various iterations of Iobs (which are all technically within

the allowed intensity errors) can produce DEM distributions that have widely different

shapes. It is clear that making a good match between the intensity values is not enough

to conclude that the solver can interpret the spread of plasma properties that is actually

there. A measure of the goodness-of-fit between the various solver DEM and the ‘real’

DEM from the simulation also has to be quantified. Henceforththe DEM built from the

MSHD simulation will be referred to as the DEMsim.

5.2.2 Selecting the best iterative solution based on the DEMgoodness-

of-fit

Figure 5.11: MSHD model DEM (red) overplotted with the 101 DEM solutions from
the solver (black dotted lines). The black solid line is the DEM solver solution from
iteration 0.

Now that the origin of the DEM solver solutions has been established, the 101 DEM

reconstructions can be compared to the DEM made directly from the MSHD model

outputs. This comparison is shown in Figure 5.11 where the DEM sim is overplotted as
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a thick red line over the solver solutions. The thick black line shows the first value of

DEM out and relates to the solution which has the lowestχ2 value of Iobs compared to

Iorig (i.e., iteration number 0 in this example, as discussed above).

At first glance it can be seen that the various solver solutions fit around the DEMsim

well, but that they each have components in temperature binsnot occupied by the orig-

inal. The spread of the solutions seen in these lower and higher temperature bins (i.e.,

5.50<LogT<6.15 and 6.85<LogT<8.00) can be considered a measure of the uncertainty

that the solver has at these temperatures. This is a reflection of the DEM solution be-

ing under-constrained and could be improved by the additionof other data (e.g., Hin-

ode/EIS, XRT) which has more sensitivity at these temperatures.

Figure 5.12: DEM plot showing the original DEM from the MSHD model outputs (red)
compared to the DEM solution from the solver at iteration 0 (where the Chi-square of
the Igen compared to the original intensity values is minimised). The y-axis range is 15
orders of magnitude so to accurately compare the fit a closer look has to be taken.

Figure 5.12 shows the DEMsim (red) compared to the solver DEMout solution from

the 0th iteration which was the best solution for reconstructing the intensity values. It

can be seen that both DEMs have a different shape overall, but that the solver solution

seem to follow the shape of the DEMsim in the temperature bins that it occupies. The
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y-axis extends over 15 orders of magnitude and was picked to show the overall pattern

of the DEM solution. In order to quantify the goodness-of-fitbetween the DEMsim

and this solution (as well as the fit of all the other solver solutions), a closer look is

necessary.

5.2.3 Determining an importance rating for temperature bins to fo-

cus DEM goodness-of-fit investigation

Before examining how well the DEMsim is reconstructed in the seven temperature bins

it is distributed over, the importance of each temperature bin can be quantified. In the

MSHD model, the intensity in each channel is worked out per temperature bin before

being summed to get one value of intensity per channel. This means the distribution of

each channel’s total intensity can be examined to see which temperature bins contribute

the most. This is important as when comparing DEMs, the focusshould be on where

the match is successful in bins that ‘matter’ rather than in bins that aren’t important to

any of the channels i.e., bins that don’t significantly contribute to the intensity.

Figure 5.13: Contribution of each temperature bin to the total intensity seen in each
channel for this particular model dataset.
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Figure 5.13 shows the breakdown of each channel’s total intensity across the different

temperature bins. The values are plotted as a percentage of the total intensity seen in

that channel. This means that equal consideration is given to channels that have much

lower counts (DN s−1) compared to others.

An important choice to make is how to combine this information to allow for the extrac-

tion of one importance rating per temperature bin. It is important to note that although

each channel has one particular temperature bin that contributes the maximum of the

intensity, in most cases there are other bins that should also be considered ‘important’

i.e., bins that contribute above 10% for example.

Figure 5.14: Summary plot showing the distribution of all the channel intensities over
temperature overplotted on one another. This allows a clearview of the spread of tem-
peratures important to the channels as well as showing whichchannel is the most im-
portant to each bin.

Figure 5.14 shows a plot where all the individual intensity distributions from Figure 5.13

have been overplotted in order to show which bins contributethe most to the intensity.

The purpose of plotting it this way (as opposed to taking an average in each bin) is to

demonstrate that if a temperature bin is important to one channel, it should be considered

important overall i.e., not 1/6 as important if it happens to not be crucial to the other
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channels.

Another way to interpret Figure 5.14 is that although some bins are only important to

one channel (i.e., LogT=6.7 is primarily important to 94Å (red)) and should thus given

a high importance rating, some temperature bins are very important to more than one

channel. This is seen in LogT=6.4 and 6.5 where multiple channels have 20-50% of

their total intensity.

These two ways of assigning temperature bin importance can be summarised as:

• Method 1: the importance of each temperature bin relies on a combination be-

tween how important each bin is for all the channels i.e., thecontribution in each

bin is summed then normalised (not averaged) to weigh the importance according

to how many bins rely on it.

• Method 2: the importance of each temperature bin relies only on whether that

bin is important to any one channel i.e., the importance weighting is based on

the normalised shape of Figure 5.14 and does not take into account contributions

from multiple bins.

Each method gives a different importance weighting to the various temperature binsas

can be seen in Figure 5.15. The left hand plots show the overall shape and importance

rating per bin while the corresponding right-hand plots have had each bin coloured

according to this importance. It can be seen that in Method 1,the rating of two of the

temperature bins that are designated very important in Method 2 have been significantly

reduced.

This case study has considered two methods of determining the importance of each

temperature bin. For the rest of this section, Method 2 will be used to determine this

weighting. This method was chosen because it gives more weight to a temperature bin

which is important even for only one channel which should be adequate for it to be
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Figure 5.15: Comparison of two different ways investigated to assign an importance
rating to each temperature bin.Top: Method 1 shape and values (left) and the same
shape with bins coloured according to their importance rating (right). Bottom: same
plots using Method 2. Note these plots are not DEMs - they onlyshow the importance
rating of each temperature bin.

considered important overall.

5.2.4 DEM goodness-of-fit considerations

This weighting of temperature bin importance can be appliedto the DEM comparison,

thus indicating where it is more important for bins to have a ‘good’ match between

DEM values. Figure 5.16 shows the goodness-of-fit between the DEM sim and the se-

lected 0th iterative solution which was found to be the best solution for reconstructing

the intensity values. The top plot shows the DEMsim (black solid line) plotted with

the important temperature bins coloured according to Method 2 as described above,

overplotted with the solver solution DEMout[0]. The range of the plot has also been

decreased from 15 orders of magnitude (as shown in Figure 5.12) to two in order to take

a closer look at the comparison. However, this plot is on a logy-scale which means
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comparisons between the value of the DEMs in each temperature bin can be mislead-

ing. For example, the difference between the DEMsim and the solution DEMout[0] at

LogT=6.5 looks less than the difference at LogT=6.2 but this is not a real result. Look-

ing at the middle plot of Figure 5.16, the same DEM comparisonis made but plotted on

a non-log y-scale. This shows that the comparison in some of the temperature bins is

not actually as close a fit as it appears in the top plot. The lower plot shows the residual

values between the solver solution and the DEMsim in each temperature bin. This has

been plotted to show what percentage of the DEMsim is represented by the residual

value.

This figure gives a first look at the goodness-of-fit between the solver solution at itera-

tion=0 and the DEMsim. It can be seen that the largest residual value (123% difference)

occurs at logT=6.3. This particular bin has only a 35% importance rating so this large

deviation is not an issue. The fit in the four most important temperature bins (i.e., those

coloured in red) have much lower residual values which is an encouraging sign.

This example only showcases the difference between the 0th solver solution and the

DEM sim but it is possible that a better solution exists. By quantifying the goodness-of-

fit between all 101 DEM solver solutions to the original modelDEM, the best matches

can be found. These can then be compared to the best solutionsoutlined above (see

Table 5.3) which most accurately reproduce the intensity values. If the same iterations

that give accurate intensity values also accurately reproduce the DEM distribution, this

would be encouraging for using the solver with real observations where there is no ‘real’

DEM to compare the solutions with.

There are many ways in which the goodness-of-fit between the solver DEM solutions

and the original DEMsim can be quantified. The four options explored in this section

involve calculating:-

• Thedifferencebetween the DEM values of the DEMsim and each DEMout[N]
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Figure 5.16: Plots showing the first goodness-of-fit analysis between the DEMsim and
the two selected iterative solutions.Top: misleading plot of DEMsim (coloured by bin
importance) overplotted with the selected solver solution. The comparison between this
solution and the DEMsim looks better in some bins that others but this is misleading
as this plot is on a log-scale.Middle: same DEM comparison but on a non-log scale
to highlight the difference between the two DEMs.Bottom: Plot of residual values
between the two solutions. It can be seen that the ‘important’ temperature bins (i.e.,
those coloured red) have residual values of less than 20% in 3/4 bins which is interpreted
as indicating a good fit in this case.
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in the four important bins. The value in each bin is then summed to get a value

per iteration. N refers to the number of the iteration.

• The ratio i.e., DEM sim[Ti]/DEM out[N,Ti]. For each iteration (N), the amount

that the ratio in each of the important temperature bins (Ti) deviates from unity is

measured and summed to get a value per iteration.

• A measure of theChi-square fit of the DEMs (χ2
DEM) is also made which is

outlined in Equation 5.2.4.1. Theσ value in this case is taken as 30% of the

DEM sim values but this value is somewhat arbitrary in this studyas it is the

ranking of the solutions (from minimum to maximumχ2
DEM) that is sought af-

ter. This remains the same regardless of the error given. Theonly difference is the

scaling up and down of theχ2
DEM values when the error is decreased and increased

respectively. In this equation N refers to the number of DEM solutions produced

by the solver (i.e., the iteration/run number) and Ti refers to the particular temper-

ature bins that have been designated as ‘important’ in this example.

χ2
DEM[N] =

Ti
∑

i=0

(DEM out[N,Ti] − DEM sim[Ti])2

σ2
(5.2.4.1)

• A measure of the DEMout values in thenull temperature bins is also made where

the term ‘null’ refers to the bins not covered by the DEMsim that have contribu-

tions in each of the DEM solver solutions. The ideal solver solution would have a

minimum contribution in these bins as that brings it closer to the DEM sim distri-

bution. The effect of a large contribution in these null bins is also looked at i.e., at

what point does the contribution from these null bins significantly affect the corre-

sponding intensity values when the DEM is folded back through the temperature

response?

The first three of these calculations (i.e., difference, ratio, andχ2
DEM) should give very

similar results for the ranking of the iterations by best value in each case. This is because
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they are all based around the comparison between the solver and ‘real’ DEM values in

each important temperature bin. These three calculations are performed only for the

four temperature bins determined to be ‘important’ as it is the fit in these bins that it is

most important to quantify.

The iterations that rank in the top eleven values of these three goodness-of-fit mea-

sures are listed in Table 5.4 alongside the ranking of the fourth goodness-of-fit measure

(null bin contribution) and the order of the ‘best’ iterations based on the intensity fit

discussed earlier. The two rankings (of iteration with bestintensity fit) from Table 5.3

were combined into one ranking of the best iterations by evenly weighing each of the

eleven solutions by where each one occurred in the ranking ofeach criteria i.e., ordered

by position inχ2
gen2orig andχ2

obs2gen.

It can be seen that the order of the goodness-of-fit in the three similar DEM criteria (i.e.,

difference, ratio, andχ2
DEM), have a similar ranking. However, the solutions ordered by

the iterations with the minimum contribution in the null temperature bins show a very

different pattern. Also, the iterations identified as ‘good’ fitsfor intensity (2nd column)

don’t seem to feature heavily at the top of the various DEM rankings.

Table 5.4 also shows the five lowest rankings for the DEM goodness-of-fit tests. It can

be seen that iteration 77 does the worst at fitting the DEM as itdid with fitting the Igen

values to the Iobs and Iorig.

The solution with the highest amount of material in the null temperature bins occurs

in iteration 14 with the lowest value occurring in iteration37. The importance of each

temperature bin has already been discussed but if a significant proportion of a solution’s

intensity value comes from plasma in the null bins this suggests the solution is not

ideal. Figure 5.17 explores this idea by plotting the DEM solution for the best and worst

iteration (top row) with the ‘null’ temperature bins coloured in green.

Below each plot is the corresponding breakdown of intensityvalues where the black
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Order Sols ordered Sols ordered Sols ordered Sols ordered Sols ordered
No. by intensity fit by difference by ratio by Chi-square by null bins

0 0 9 9 9 37
1 92 4 48 48 26
2 56 80 4 4 7
3 29 56 23 23 54
4 98 20 11 11 83
5 32 48 40 56 55
6 59 40 56 40 96
7 40 15 30 30 57
8 43 11 80 82 90
9 2 23 93 27 46
10 84 41 82 93 5
. . . . .
. . . . .
. . . . .
. . . . .
↓ ↓ ↓ ↓ ↓
95 42 83 37 77
96 14 14 96 25
97 12 7 45 45
98 39 45 66 100
99 66 37 14 22
100 77 77 77 14

Table 5.4: Table showing the top eleven and bottom five iteration numbers ranked ac-
cording to how well they do in each of the four goodness-of-fittests.
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line shows the ‘full’ intensity values (i.e., that are calculated by folding the entire DEM

solution back through the temperature response), the red line shows the intensity calcu-

lated by using just the ‘main’ temperature bins (i.e., thosecovered by the DEMsim),

and the green line which shows the intensity values calculated when the DEM using

only the null temperature bins is used.

Figure 5.17: The two iterations with the best and worst (i.e., lowest and highest) con-
tributions in null temperature bins to the DEM solver solution. The top plots show the
DEM solver distribution for the best (left) and worst (right) results. The null temper-
ature bins are coloured green in each case. The lower plots show the corresponding
breakdown of intensity values which occur when the DEM solution is (i) kept whole
(black line) (ii) cut to only the bins the DEMsim occupies (red line) and (iii) cut to
only the null bins (green line). In the left-hand plots, it isclear that the null bins con-
tribute a very small percentage of the total intensity whereas in the right-hand plots, the
contribution from the null bins is clearer.

The left-hand plots (iteration=37) show that the null bins contribute a very small per-

centage of the total intensity i.e., most of the intensity isgenerated from temperature

bins 6.2<LogT<6.8. However, in the right-hand plots (iteration=14) it can be seen that

the higher contribution in the null bins has resulted in an increase in the intensity that
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these bins produce. The intensity values of the ‘main’ and ’null’ bins as a percentage

of the total intensity are given in Table 5.5. This table shows the results for the best and

worst examples of null bin contributions, but also for the 0th iteration as this solution

was found to be the best fit of intensity.

AIA Channel 94Å 131Å 171Å 193Å 211Å 335Å

Iteration=37: lowest null contribution
% of Igen[37] from main part 98.36 95.89 99.21 99.73 99.97 99.95
% of Igen[37] from null part 1.64 4.11 0.79 0.27 0.03 0.05

Iteration=14: highest null contribution
% of Igen[14] from main part 97.48 76.41 97.49 85.55 99.54 99.77
% of Igen[14] from null part 2.52 23.59 2.51 14.45 0.46 0.23

Iteration=0:
% of Igen[0] from main part 99.26 95.03 83.48 95.92 99.57 99.82
% of Igen[0] from null part 0.74 4.97 16.52 4.08 0.43 0.18

Table 5.5: Information on the null temperature bin contributions to intensity for three
solutions (i) iteration=37 which is the best solution in terms of null contributions,(ii)
iteration=14 which is the worst, and (iii) iteration=0. This last solution is also examined
to see where it lies in relation to the best and worst case. TheIgen values for the three
cases looked at are plotted as a percentage of the total. Values of percentage contribution
in bold are those found to be too high.

As expected, the contribution of the null bins in iteration=37 to the intensity is minimal

with all values contributing under 5%. Iteration=14 also has some good results but the

intensity is much higher in the 131Å (∼24%) and 193Å (∼14%) channels due to the

higher contribution from the null bins at high temperature values. Iteration=0 shows a

low contribution in most channels from the null bins except in the 171Å channel where

the contribution to the total is∼17%. This is within 2σ of the Igen value so does not

mean that the 0th iteration is dominated by plasma in the null bins.

Examining the null temperature bin contributions has shownthat even the solution with

the highest contribution (i.e., the ‘worst’ iteration in this ranking) does not significantly

affect the resulting intensity measurements. Table 5.5 has illustrated that the intensity

values generated from the null bins in iteration=14 contribute a maximum of∼24% in

the 131Å channel which means the intensity from the main binsis still within 3σ of
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the total. Therefore, in this case study the contribution from null temperature bins will

not influence the choice of best solver solution. For other cases (i.e., other time/space

cuts of other runs of the MSHD simulation) this calculation may be more important so

it will still remain a test of goodness-of-fit. In this case a lower contribution from the

null bins is still considered ‘better’ as solutions with less plasma at temperatures not

represented by the DEMsim give a truer indication of the real temperature distribution

of the plasma.

Figure 5.18 groups the four goodness-of-fit tests for the DEMsolver solutions together

to show how each one differs over the number of iterations. This gives an indication of

whether there a few ‘good’ iterations in each case followed by a series of less good ones,

or if all the iterations have a similar value suggesting thatany of them could be classed

as a good fit. As suspected, the pattern in the difference, ratio, and Chi-square tests for

the DEM (plots (a), (b) and (c)) have the same shape. The position of the 0th iteration is

also very similar in each case as well as where the eleven bestintensity solutions lie.

The fourth plot shows the iterations ordered according the DEM out values in the null

bins follow a gentle increase for the best∼55 solutions but then the values increase

sharply. Two of the eleven best values (iterations 92 and 32)fall in this second region

but since it has been shown that even the worst iteration is within what is considered a

reasonable solution, this is not a problem.

By combining the ranking of the best DEMout solutions for the difference, ratio, and

Chi-square test (which are very similar anyway) a final goodness-of-fit ranking can be

calculated. Focusing on the eleven solutions which fit the intensity the best, the position

that these iterations lie in the best DEM fit ranking can be checked. Table 5.6 shows

the ranking of these solutions according to their goodness-of-fit to the intensity values,

and also their goodness-of-fit to the original DEMsim. For example, iteration=0 is the

best choice for reconstructing the original intensity values and is the 26th best choice of

DEM solution.
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(a) (b)

(c) (d)

Figure 5.18: DEM solver solution goodness-of-fit tests. Each plot shows the calculated
value of each test plotted according to its ranking i.e., theiteration ranking from the full
version of Table 5.4 is used to order the values of difference, ratio, Chi-square, and null
tests. Overplotted on each test is the location of where the 0th iteration occurs in the
ranking (♦) as well as the positions of the eleven best solutions for intensity (△). These
have been annotated with their iteration number to identifywhich solutions do best in
each case. It can be seen that the ordering in the difference, ratio, and Chi-square plots
is very similar.
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Iteration Ranking of iteration Ranking of iteration
number (N) in fit to intensity in fit to DEM

0 1 26
2 2 42
29 3 27
32 4 21
40 5 6
43 6 10
56 7 3
59 8 16
84 9 56
92 10 37
98 11 62

Table 5.6: Ranking of best eleven solutions in terms of how well they fit the original
intensity and DEM values e.g., iteration 0 produces a DEM solution which is the best
at accurately reconstructing the original intensity values and is the 26th best solution at
matching the MSHD DEM.

The ranking of these eleven solutions in terms of how the corresponding DEMout so-

lution matches the DEMsim (column 3) shows quite a spread of values. There are six

values that fall within the first quarter of the best solutions while there are also some

that less ideal e.g., the 98th iteration being only the 62nd best DEM fit. In this example,

the choice of iteration 0 as the solution which best reconstructs both the input intensities

and the ‘real’ DEM distribution, is considered a good one.

The 0th solution of the solver being ranked 26th best in DEM goodness-of-fit doesn’t

sound ideal but when this position is checked in Figure 5.18 (♦ symbol) it can be seen

that in each test it lies in a region where the values have onlyincreased slightly from their

lowest value. Iteration 56 and 40 would perhaps be better choices as they rank highly

on both measures in Table 5.6 but since their values in the various DEM goodness-of-fit

tests are in a similar range to the 0th one, iteration 0 is considered to be a good choice. If

real observations were being used, the secondary test of measuring the goodness-of-fit

of the DEM solutions against the ‘real’ DEM could not be measured so there would be

no way to know which of the eleven solutions identified earlier is best. It is reassuring

to know that picking the best solution for intensity reconstruction is also a good solution
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for reconstructing the original DEM distribution.

In this case study, care has been taken to try and address the various goodness-of-fit

issues that exist when trying to compare a model DEM with possible solutions. By

firstly calculating which solutions best reproduce the intensity values given to the solver,

the solutions which then best fit the model DEM distribution can also be found and

compared. In this example, the eleven solutions of good intensity fit do a good job of

identifying solutions which also describe the DEM distribution well.

Now that the various issues in determining whether or not thesolver can accurately

reconstruct the MSHD model DEM have been looked at, other time/space cuts of the

various simulations can be looked at to see (i) where the solver does well/badly, and

(ii) if the best solver solutions can follow the various changes that were observed in the

model DEMs when specific changes were made to the model parameter space.
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5.3 Testing the iterative solver: solver strengths/weak-

nesses

Now that the intricacies of comparing the MSHD model DEM to the various iterative

solver solutions have been thoroughly discussed, the various calculations to measure

goodness-of-fit can be applied to the other data-sets. Table4.2 in Section 4.2 listed all

the simulations of the MSHD model that were run, each with different model param-

eters (e.g., strand number, total energy etc.). Using the same methods as in the case

study described above, a selection of these simulation cutswere then used alongside the

iterative solver in order to:-

1. see how well the solver solutions fit the original intensity values,

2. see if the ‘best’ solution(s) for reconstructing the original intensity values are also

good at reconstructing the original DEM distribution,

3. see if the ‘best’ solution overall is clearly identifiableearly on i.e., is it iteration 0

or one with a minimum Chi-square value?

4. if the best solution isnot identifiable without the real DEM for comparison (i.e.,

treating this like a real observation), how different is this solution to the one iden-

tified as best for intensity reconstruction? Are both solutions equally good or

totally different?

The goodness-of-fit of the iterative solver DEM solutions were measured for simula-

tions that cover all the investigations described above in Section 4.2 i.e., investigations

A-D. In most cases the solver did very well and produced a DEM solution that accu-

rately matched the original model DEM distribution as well as the original intensity

values. This section describes the comparisons between theoriginal DEMs and the

corresponding solver DEMs in more detail.
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5.3.1 DEM smoothness investigation:

Figure 4.10 back in Section 4.2.1 showed the large variationin DEM shape that could

occur when the simulation dataset the DEM was based on was very small. By increasing

the size of this dataset the DEM became more smoothed out i.e., distributed more evenly

across the temperature bins. This increase in smoothness isshown in the top four plots

of Figure 5.19 where the top two plots (cut 1a and 1b) are basedon model outputs

(temperature and density) from an area representing 1 AIA pixel that has been exposed

for 3 seconds. 1 AIA pixel is approximately 4 grid spaces in the model so the number of

temperature and density elements involved in calculating these DEMs for the 16 strand

loop is 4 x 3 x 16=192.

The next plot is based on ‘cut 3’ which involves data from a larger area (4 AIA pixels)

and a longer time duration (500 seconds) so this DEM is based on 128,000 temperature

and density elements. It can be seen the DEM has a much more uniform shape than the

top two. Lastly, data from a ‘cut 6’ of the model (4 AIA pixels over 2000 seconds) is

shown as a DEM in the lower right panel. This DEM is made from 512,000 temperature

and density elements and it can be seen it has an even more uniform shape. The inten-

sity values based on these four DEMs were then passed to the iterative solver to see if

increasing the size of the dataset each DEM is based on would result in an increase in

the goodness-of-fit of the solver solution.

The lower four plots of Figure 5.19 show the same four model DEMs (this time in

red) overplotted with their corresponding iterative solver DEM solutions with the ‘best’

iteration represented as a solid black line. It can be seen that the fit of the solver DEMs to

the original DEM becomes closer as the model dataset size increases. This is quantified

in Table 5.7 which shows details of the fit in the four data cutsin terms of the various

measures of the Chi-square. The best solver solution identified in each case is iteration

0 apart from cut 1b where iteration 12 is found to be better at reconstructing both the

intensity values and DEM distribution of the original. The Chi-square values of the
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Figure 5.19: Top four plots show the model original DEM from cuts of the 16 strand
loop. The dataset each DEM is based on increases from a minimum in the top two plots
(cuts 1a and 1b) to a maximum in the lower right plot (cut 6). The set of four plots at
the bottom of the figure show these same DEMs (red) with the iterative solver solutions
overplotted. The thick black line in each case represents the solution that was found to
be the best fit overall to matching the model intensity and DEMdistribution.
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‘best’ solution to the original model values in terms of intensity (both to the Iorig and Iobs)

and DEM are also noted. It can be seen that these Chi-square values reduce significantly

as the dataset size increases.

cut 1a cut 1b cut 2 cut 6

Best sol. 0 12 0 0
χ2

gen2orig 1.285 0.953 0.179 0.023
χ2

obs2gen 1.285 0.954 0.179 0.023
χ2

DEM 9.88 5.14 4.12 0.053

Table 5.7: Comparison of the goodness-of-fit improvement measured with different chi-
square values for DEM reconstructions where the MSHD model data-set size has in-
creased in size as the cut number increases.

The iterative solver does very well at reconstructing the original model DEM in most

cases. The goodness-of-fit between the solution determinedas the ‘best’ and the original

DEM is found to be best in cases where the DEMsim has a more uniform distribution

over several temperature bins. The solver does less well in the case where the DEMsim

has a significant contribution in one particular temperature bin (such as in the top-left

plot of Figure 5.19) or if the DEMsim is very narrow. This suggests that care should be

taken when using this solver to interpret AIA data based onlyon one exposure. Ideally,

a number of files should be averaged in time and over more than one pixel in order

to smooth out small-scale variations. Although the solver is good at reconstructing

intensity values, for the true shape of the original DEM to bemost accurately recovered

a smoother dataset needs to be supplied.

5.4 Testing the iterative solver: tracking the changes of

different simulations

The different simulations run to explore the model parameter space displayed certain

signatures as each particular parameter was changed:-

208



CHAPTER 5

• Investigation A:- the
√

2 rise in the DEM as strand number doubled,

• Investigation B:- the slight shift between DEMs of different heating locations,

• Investigation Ci:- the large shift between DEMs as total energy was increased

• Investigation Cii:- the narrowing of the DEM observed as nanoflare number per

strand increased,

• Investigation D:- the order and timescale of intensity peaks in each AIA channel,

as well as the change in the DEM position as loops of different total energy were

allowed to cool after a period of nanoflare heating.

The solver solutions should also display these signatures if the fit in each case has been

successful. The ability of the best solver solutions in eachcase to reproduce these results

are examined to see where the solver does well and where it does not.

5.4.1 Following Investigation A changes: increasing strand number

Figure 5.20 shows the original DEMsim (red line) for the four cases of increasing

strand number overplotted with their corresponding iterative solver solutions. In each

case the solution determined to be the ‘best’ (using the analysis described in the case

study above) is highlighted (solid black line). As in the case study it can be seen that

the cloud of solutions seems to match the original DEMsim well although the values

diverge at lower and higher temperatures due to a lack of constraints.

A closer examination of the solver fit to the original DEM can be seen in Figure 5.21

where the range of the y-axis has been reduced to three ordersof magnitude. This

zoomed in view shows that the solver solution in each case (black dashed line) matches

the original DEM solution (red line) very well. The Chi-square value of the chosen

solver solution in matching the original intensity and DEMsim values is also given in
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Figure 5.20: Plots showing the model DEMsim (red) overplotted with the 101 iterative
solutions (black) for increasing strand number. Top-left plot shows the 16 strand number
case, followed by 32 strand (top-right), the 64 strand case (bottom-left) and the 128
strand case (bottom-right).

each plot. These values in each case are very low (i.e., between 0-3) which shows the

fit to both intensity and DEM distribution is good.

The next step is to see if the best iterative solutions for fitting the DEMs of increasing

strand number also show the
√

2 increase observed in the model data. Since Figure

5.21 shows that the solutions do a very good job of fitting the original DEMs (especially

in terms of their peak position), it is very likely the DEM solutions will also show

this trait. Figure 5.22 shows the DEMout solutions (black) for each strand number

compared to data from the 128 strand case which has been scaled by
√

2 in order to see

if the solutions follow this pattern. It can be seen that the solution DEMs also show the
√

2 scaling displayed by the original data in Figure 4.15.
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Figure 5.21: Plots showing the fit between the original DEM for increasing strand num-
ber (red line) and the best iterative solution in each case (dashed black line). Each plot
also notes the Chi-square values of the fit to the DEM and the original intensity values.
The fit in each case is considered to be very good.

Figure 5.22: DEMout solutions plotted on a non-log scale in black with the 128strand
values scaled down by

√
2 overplotted in red. It is a close visual fit showing that the

solutions are able to match the observed scaling from the model.
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5.4.2 Following Investigation B changes: changing location of heat-

ing

Changing the location of the nanoflare heating within the simulated 128 strand loop

resulted in a small shift between the different DEMs. This was observed as a slight shift

towards lower temperatures in the footpoint heating case compared to the uniform case,

and the apex heated DEM being shifted towards higher temperatures. This shift was

very small (∼ 1 temperature bin either way) so it will be interesting to seeif the solver

solutions can pick it up. Particularly because the iterative solutions tend to have higher

contributions at low and high temperatures which could cause the shift to be masked if

it only occurs within the central temperature bins.

The results of the individual comparisons between the original DEM sim and the solver

solutions for each heating scenario are shown in Figure 5.23. It can be seen that the fit

in each case looks good although at higher temperatures the difference between the two

DEMs in each case becomes more apparent. The Chi-square for the DEM fit in each

case is good (0.33, 1.34, 0.04 for apex, uniform and footpoint heating respectively)

despite this difference at higher temperatures, as the fit is based on the important bins

within the DEM sim only.

Figure 5.24 shows the shift between the solver solution DEMsfor the different heating

locations. The slight shift between the DEMs is observed butis most clearly seen in

the lower panel of the plot which shows the difference between the apex and uniform

case, and the footpoint and uniform case very clearly. This match coupled with the low

Chi-square values for the three fits shows that the solver hasdone very well at matching

the model in this situation.
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Figure 5.23: Plots showing the fit between the original (red)and solver DEM (black)
for different heating locations.
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Figure 5.24: Plot showing the shift between the solution DEMs of different heating lo-
cation. The top panel shows the three DEMout solver solutions for the different heating
locations while the lower plot shows the differences between the apex and footpoint case
in comparison to the uniform case. The shift between the DEMsis clearly seen in the
difference plot.
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5.4.3 Following Investigation Ci changes: increasing total energy

Increasing the total energy of each simulation by an order ofmagnitude resulted in

a very clear shift of the DEMsim to higher temperatures. This result is also clearly

observed in the solver solutions chosen as the best fit to the original DEMs.

Figure 5.25: Plot showing the comparison between the original (solid lines) and solver
solution (dashed lines) DEMs for increasing total energy.

Figure 5.25 shows the original DEMs for the three energy scenarios plotted (solid lines)

with the corresponding solver solution DEMs overplotted (dashed lines). It can clearly

be seen that the solver solutions match the peaks and widths of the original DEMs very

well. The various Chi-square measurements of the fits are given in Table 5.8 where

it can be seen that the values are all reasonably low and do notshow any particular

improvement either way as the total energy is changed.

This is due to the fact that the three original DEMs have the same level of smoothness

and cover the same width in log(T) space meaning they are equally well reconstructed

by the solver. The iterative solver does a very good job of reconstructing the DEM

distribution and overall pattern in this case.
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E=1023 E=1024 E=1025

Best sol. 1 70 0
χ2

gen2orig 0.4233 0.7358 0.3383
χ2

obs2gen 1.1388 3.4612 0.3383
χ2

DEM 0.008627 0.9184 0.5199

Table 5.8: Comparison of goodness-of-fit improvement for DEM reconstruction of sim-
ulations of different total energy.

5.4.4 Following Investigation Cii changes: increasing number of

nanoflares per strand

So far, the iterative solver has done an excellent job of following the various changes

observed in the MSHD model DEMs as the parameter space is altered. In investigation

Cii, changing the number of nanoflares per strand, whilst keeping the total energy of the

simulation the same, resulted in the original DEMsim significantly changing its width

(see Figure 4.36). Many low-energy nanoflares per strand resulted in a very narrow

DEM whilst a low number of high-energy nanoflares resulted ina very wide DEM.

Figure 5.26 shows the original DEM in each case overplotted with the best solver so-

lution. It can be seen that the solver does quite well at matching the values of the 16

burst/strand and the 64 burst/strand scenarios although the Chi-square values are higher

in the 16 b/s case than is ideal. However, for the 640 burst/strand case the solver solution

DEM only matches the original DEM well in one bin. The original DEM is much taller

and thinner than the solution DEM making it a poor match. Thisis also illustrated in

the Chi-square values which are the highest values seen so far.

The extremely high Chi-square value of the fit between the original intensity and the

solver intensity can be explained by looking at the Igen values compared to the Iobs and

Iorig. Figures 5.27 and 5.28 show the intensity distribution for the iterations which min-

imise theχ2
gen2orig andχ2

obs2gen value respectively. Even though these are the best solu-

tions for intensity it can be seen that the values of Iobs and Igen are far from each other

and the mean in each case. This shows that this particular case has not been fitted well
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Figure 5.26: Plots showing the comparison between the original DEM (red) and the best
solver solution (black) for increasing the number of nanoflares per strand.
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as the value of Igen is within 6σ rather than 1. This illustrates that the iterative solver

doesn’t perform as well when the DEM distribution being fitted only covers a few tem-

perature bins. This is because there are less constraints available to shape the solver

DEM and also because in this case the peak of the model DEM is atlogT=6.5 which is

a temperature where none of the AIA channels has a particularly strong sensitivity.

5.4.5 Following Investigation D changes: effect of heating loop then

allowing to cool

Solver intensity values

By allowing the loop simulation to cool after a period of nanoflare heating, the intensity

of the loop seen in each channel was seen to follow a specific pattern over time as the

loop cooled through the various temperature sensitivitiesof the six AIA channels. By

taking the Igen values of the best solver solution at each timestep, the ability of the solver

solutions to recreate this intensity pattern is investigated.

Figure 5.29 shows the results of this comparison where the intensities over time from the

best solver solutions are plotted as dashed lines and compared to the original intensity

values (solid lines). It can be seen that the solver solutions accurately match the peaks

and rise/fall timescales for each channel.

Solver DEM distribution

As discussed in the case study, just because the intensity values match well does not

mean that the DEMs will necessarily be a good match too. Figure 5.30 shows the match

between the original model DEM (red line) and the best solution of the iterative solver

(black line) at eight timesteps over the course of the loop cooling time. Note that the

time the heating stops is t=4310s after which the DEMs are observed to move to lower

temperatures as the plasma cools and drains. Movies of the evolution of the model DEM
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Figure 5.27: Gaussian distribution of intensity values forthe 640 burst/strand scenario.
Showing results for iteration 28 which has the minimumχ2

gen2orig value. It can be seen
that even though this is the example with the best fit of Igen (∗) to the original intensity
values (peak of distribution), the values of Igen do not fall within 1σ of this peak.

Figure 5.28: Gaussian distribution of intensity values forthe 640 burst/strand scenario.
Showing results for iteration 6 which has the minimumχ2

obs2gen value. This iteration
represents the case where the Iobs and Igen values are the closest to each other. However,
it can be seen that they do not match one another well.

219



CHAPTER 5

Figure 5.29: Figure showing the comparison between the original intensity values (solid
lines) in each channel and how they change as the loop cools over time, and the intensity
from the best solution of the solver (dashed lines). This plot is for the E=1023 ergs
energy scenario but is representative of the other two energy cases which show a similar
comparison.
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compared to the corresponding set of solver solutions are listed in Table 5.9.

Movie name Energy Loop position
case (ergs) examined

DEM sol e23.mov Eburst∼1023 whole coronal loop
DEM sol e24.mov Eburst∼1024 whole coronal loop
DEM sol e25.mov Eburst∼1025 whole coronal loop

Table 5.9: List of movie names and the energy scenario they refer to. Each movie
depicts how the MSHD model DEM compares to the calculated setof iterative solver
solutions as the loop cools over time.

Figure 5.30: Figure showing the comparison between the original DEM (red) and the
solver DEM (black) at eight timesteps as the loop cools over time.

It can be seen that the solver DEMs closely follow the movement of the original DEMs

but that in some cases there are differences in the solver DEMs width and high temper-

ature contribution. This peak is most apparent in the t=5500s plot in the bottom-left

corner of Figure 5.30. It should be noted that this contribution is exaggerated due to the

log plot on the DEM scale and is in fact two orders of magnitudelower than the DEM

peak.
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In Investigation D, the peak temperature position of the original DEMs was seen to

closely match the emission measure weighted temperature asthe plasma cooled (see

Figure 4.47). This change is also seen when the peak temperature position of the solver

solution is tracked over time as shown in Figure 5.31.

Figure 5.31: Temperature position of solver DEMout peaks compared to the original
DEM sim. Both values are seen to closely match.

This plot shows the decline of the peak temperature positionof the DEM over time for

both the original DEMsim (coloured lines for the three different energy scenarios), and

the solver DEMout (black lines with different styles for the different energy scenarios).

It can be seen that the solver solutions match the original values very closely and would

therefore also follow the emission measure weighted temperature decline. This shows

that the solver DEMs can be trusted to accurately follow the declining temperature of

the plasma in a cooling loop. The DEMsim’s in this case are based on cuts of the

model data of 100 seconds (although over the entire length ofthe loop) which suggests

that one need not necessarily have to average over 1000’s of seconds of data in order to
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get a good fit from the solver code.

5.5 Summary

This chapter has looked in detail at the issues involved in comparing simulation outputs

(in terms of intensity and DEM distribution) with the solutions offered by an iterative

DEM solver code.

The detailed case study performed has highlighted the various ways in which the goodness-

of-fit can be defined and used to find the best solver solution. This is a step forward in

terms of quantifying how good one DEM fits another and illustrates that simply plotting

one over the other and looking at the visual fit is not good enough.

It has also showed that the ‘best’ solution in terms of intensity and DEM reconstruction

was in general neither the first solution (i.e., iteration 0)or the iteration with the min-

imum value of Chi-square (as defined by the solver output keyword). This reinforces

the importance of calculating the various goodness-of-fit measures described in the case

study.

Using the different versions of the MSHD model as a series of synthetic observations,

the effectiveness of the iterative solver was tested. In the majority of cases the solver was

found to provide solutions which very closely reconstructed the original model intensity

and DEM values. The best solution in most cases was also easily identifiable at an early

stage i.e., when comparing the reconstructed intensity values. There were no examples

where the best solutions for reproducing intensity did a poor job at reconstructing the

DEM distribution. Each of the solutions identified as the best for intensity also did a

good job at fitting the DEM.

This suggests that using the solver and picking the best solution based on the method

described in the case study, will give an accurate reflectionof the true DEM distribution.
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The only case where the solver did not manage to accurately reconstruct the original

intensity values or DEM distribution was the case where the model DEM was very

narrow. This suggests that the solver is best suited to observations that are not isothermal

i.e., have contributions from multiple wavelengths representing a range of temperature.
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Investigation of an Erupting

Polar-Crown Prominence

This chapter explores a different type of coronal feature to other chapters - solar promi-

nences. A case study of an eruptive polar-crown prominence observed by SDO and

STEREO is analysed with particular focus paid to the possible eruption onset mech-

anisms. This chapter aims to investigate the structure and pre-eruptive rise of the

prominence and its associated cavity by using observationsfrom two points-of-view

(SDO/AIA and STEREO-A/SECCHI/EUVI). Following this, the eruption itself is stud-

ied and various potential “trigger” mechanisms explored.

The first part of this work was done in collaboration with Stephane Régnier and was

published in Régnier, Walsh & Alexander, 2011 (see Appendix for a copy of the paper).

Réngnier was the lead on this paper and his work involved theinitial observations with

AIA where the structure of the prominence was studied, and a basic measure of the

prominence eruption speed. This chapter takes this work further by including STEREO

observations, a more accurate measure of the eruption velocity and an investigation of

the eruption initiation methods. Any figures taken or adapted from the paper have been

clearly identified as such.
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6.1 Introduction to Solar Prominences

One of the most important areas of solar physics research today concerns the nature of

solar eruptions. Observationally, these eruptions manifest as solar flares, prominence

eruptions, and coronal mass ejections (CMEs) and are seen todiffer in structure and

duration (see Section 1.2.2). However, much work has been done to identify the as-

sociation between these features as they are believed to be physically related. Munro

et al. (1979) used the white-light coronagraph on Skylab to investigate 77 CMEs and

their associated solar activity over the period 28 May 1973 -3 Feb 1974 (during solar

minimum). The associations of these CMEs with flares and eruptive prominences (EPs)

is presented in Table 6.1. Out of the 77 CMEs observed, 34 could be associated with

surface phenomena on the solar disc but the remaining 43 could not. Assuming that

half (∼38) of the observed CMEs originate from the far-side of the Sun, this suggests

that a very high percentage of near-side CMEs are associatedwith surface phenomena

(i.e., 34/38= ∼90%). The majority of these surface phenomena have an eruptive promi-

nence component (∼70%) which supports the idea that prominences are the pre-eruption

component of CMEs and not a separate class of eruptive event.

Event % of CMEs associated with event

EP only ∼50
EP with flare ∼20
Flare only ∼20
No event ∼10

Table 6.1: CME association with other solar activity. Basedon results from Munro et al.
(1979). EP - eruptive prominence.

Webb & Hundhausen (1987) followed up this work by observing 58 CMEs with the

HAO Coronagraph on the Solar Maximum Mission satellite during the period between

March - August 1980 (during solar maximum). This work studied the same associations

at a different point in the solar cycle and confirmed the previous result. They noted that

the high incidence of CMEs associated with EPs is most likelyunderestimateddue to

difficulties in observing eruptive prominences compared to flares. This underestimation
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also comes from the inability of both studies to correct for ‘backside’ CME associations

i.e., CMEs being released from the opposite side of the Sun will be included in the sur-

vey, but any prominence component present will not be observable whereas associated

flares are more likely to be detected as unresolved X-ray emission. Webb & Hundhausen

(1987) also disagreed with the idea that isolated CMEs i.e.,those where no prominence

or flare component is observed (such as the 10% in Table 6.1), are a separate class of

CME as was suggested by Wagner (1984). Webb & Hundhausen (1987) propose that

CMEs designated as “isolated” are either too low in energy for a clear association to be

observed or are misplaced backside events.

CMEs are the main drivers of space weather so understanding their onset mechanisms

and how to predict them by observing the pre-eruption coronais of great importance.

Eruptive prominences have proved to be a vital component of most, if not all, CMEs

and offer a clear view of the beginning of these eruptions. An understanding of the

structure and dynamics of solar prominences is therefore necessary in order to gain a

fuller understanding of solar eruptions.

(a) Filaments observed on the solar disc (b) Eruption of a solar prominence

Figure 6.1: Figure (a) shows an image of the solar disc taken with an Hα filter1. The dark
lines on the disc indicate the locations of various filamentswhile Figure (b) shows one
of SDO’s ‘firstlight’ images of an erupting prominence takenwith the AIA instrument
in the 304 Å channel.

Solar prominences are long structures, suspended within the solar atmosphere, that are

1Amateur image taken with an Hα filter. Credit Jack Newton, Arizona Sky Village.
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characterised by relatively cool, dense material which is held in place by the magnetic

structure surrounding it. Some authors consider the material alone to be the “promi-

nence” but here the term prominence refers to both the material and its surrounding

magnetic field structure. They are an interesting coronal phenomenon as they are typ-

ically 100 times cooler and denser than the surrounding corona (Labrosse et al. 2010).

The term “prominence” can be used interchangeably with the term “filament” as both

refer to the same feature seen from different points of view. Filaments are observed

projected against the solar disc where they are primarily seen in certain absorption lines

such as Hα (see Figure 6.1(a)). Prominences, on the other hand, are thesame feature

when observed above the solar limb and can be observed in manywavelengths. In par-

ticular, the He line at 304 Å allows us to examine prominences very well in EUV(as

shown in Figure 6.1(b)) as it has aLogTmax(K) = 4.9 which is close to the characteristic

prominence temperature of T= 104 K (Labrosse et al. 2010).

The term prominence is quite general and can be used to describe a range of differ-

ent structures. As well as distinguishing between line-of-sight effects (“prominence”

vs “filament”), the term prominence can be further constrained by the dynamics of the

structure leading to the terms stable, eruptive, active, and a sub-type known as “dispara-

tion brusque” (sudden vanishing) which refers to a type of prominence eruption where

the structure breaks up and is no longer identifiable. The different prominence classifi-

cations are discussed by Gilbert et al. (2000) who went on to clearly define the different

between “active” and “eruptive” prominences. They make it clear that a prominence

can be active without erupting and define an erupting prominence to be one in which all

or some of the prominence material is observed to be ejected outwards and to escape

the Sun’s gravitational field. Active prominences, on the other hand, are described as

having notable motions but do not result in any part of the prominence escaping the

solar atmosphere.

A distinction is also made using the location of the prominence to describe them as

either active-region or quiet-region prominences. A common trait that all prominences
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share is that they are nearly always found over Polarity Inversion Lines (PIL). This is

defined as a region where the magnetic field direction changesfrom one polarity to

another i.e., between areas of neighbouring positive and negative polarity. Such areas

are found in active regions, around Sunspots, and around theareas of open magnetic

field at the polar regions. Quiescent prominences are long-lived (days to months) and

tend to be found in quiet-Sun areas. These prominences are usually larger than ones seen

around active regions and have typical dimensions of 60–600Mm in length, 15–100 Mm

in height above the chromosphere, and are 5–15 Mm thick (Tandberg-Hanssen 1995).

Active region prominences tend to be smaller (of order 10Mm), are found lower in the

atmosphere (<10Mm) and can usually be found threaded through or curved around an

active region (Mackay et al. 2008). They are observed to haverapid flows along the

structure and can change in structure dramatically over short periods of time (minutes-

hours) compared to their quiescent counterparts.

6.1.1 Formation and Structure

It is safe to say that although these types of prominence differ in size, dynamics and

location, they share a common composition. Material of chromospheric temperature

and density being located at coronal heights has been a challenge to explain, particularly

the structure of the magnetic field supporting these structures.

The basic structure of a prominence consists of a long spine structure which runs paral-

lel to the solar surface. Protruding from this central structure are features called barbs

which appear to link (or tether) the prominence to the chromosphere and are observed to

be composed of multiple threads (see Figure 6.2). Some prominences, most commonly

large quiescent prominences, are also observed with a coronal cavity component such

as that seen in the right panel of Figure 6.3. Cavities can be defined as areas of depleted

density in the corona and are also associated with CMEs in theclassical three-part struc-

ture of core, cavity, and front, shown in the left panel of Figure 6.3. These cavities are
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Figure 6.2: Prominence barbs seen in Swedish Solar Telescope high resolution Hα im-
age (from Lin et al. 2005). The barbs are the thread-like darkstructures seen in the
middle of the image.

often modelled as the centre of a magnetic flux rope which is subject to some sort of

instability causing it to rise up and be ejected. In CME models it is not clear if this

flux rope exists in the pre-eruption corona or if it is formed during the eruption process.

Quiescent flux ropes can be used to explain prominence and cavity observations from a

theoretical point of view and are supported by observation.

The magnetic structure of prominences is a key question thatboth observers and the-

orists are trying to solve. Many models (such as Kuperus & Raadu 1974) represent

the internal structure of the prominence as a flux rope which remains stable within an

overlying magnetic field due to the balance between the upward acting magnetic tension

(due to the curvature of the field lines) and the gravitational force acting downwards on

the mass of the prominence material. This material is shown in Figure 6.4 where the

prominence configuration can be seen from two points of view.The twisted magnetic

flux rope seen in the lower panel of the figure, supports the prominence material in the

dips of the field lines. The prominence should remain in equilibrium until some internal

or external factor causes one force to win out over the other leading to the prominence

2Left image taken with High Altitude Observatory/Solar Maximum Mission coronagraph. Middle
image taken at National Center for Atmospheric Research/High Altitude Observatory Newkirk White-
Light Coronal Camera (WLCC) telescope.
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Figure 6.3: Image from Gibson et al. (2006) of two coronal cavities seen in white light
coronographs2. The left image shows the three-part structure of an expanding CME with
its bright core, dark cavity and bright front, while the middle image shows a quiescent
prominence and its surrounding cavity. This structure is explained in the right panel
which shows a cartoon of the prominence cavity structure (Forbes 2000).

erupting or draining back to the chromosphere.

The way in which prominences form is another issue currentlystill under debate (Mackay

et al. 2010). It is generally accepted that there are two mainways in which prominence

material can be found in the corona: either cool material is injected upwards or coronal

material condenses towards the surface. Observations of flows from the chromosphere

up to the corona are well established (see e.g., Chae et al. 2000, and references within)

and thus find in favour of the idea that prominences are formedby mass injection driven

by chromospheric evaporation. On the other hand, proponents of the coronal conden-

sation theory interpret the existence of a cavity as evidence that this area is the now-

evacuated location of the coronal material that has cooled and settled in the magnetic

field dips. This debate is still ongoing and only observing the magnitude and direc-

tion of these mass flows using high-cadence, multi-wavelength observations will settle

it either way.
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Figure 6.4: Sketch of prominence material and magnetic fieldline location. Top image
shows cross-section through a prominence while bottom image shows the length of a
prominence seen from the side.
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6.2 Eruption of Prominences

Solar eruptions may be well observed, but their initiation processes and evolution are

still not fully understood. Eruptions (in the form of CMEs, flares and prominences) can

occur across the solar disc and are more numerous during times of increased magnetic

activity i.e., around one CME every other day is observed at solar minimum compared

with several per day at solar maximum (Gopalswamy 2006).

6.2.1 Energetics

A range of models exists to try and explain the varied set of observations there are of

eruptive events. A leading model that encapsulates a lot of current ideas is named the

CSHKP model (Carmichael 1964; Sturrock 1966; Hirayama 1974; Kopp & Pneuman

1976) after the authors that inspired it. The main components of this model are shown

in Figure 6.5. This figure shows the magnetic consequences ofa rising prominence at

the start, maximum and end of an eruption. Figure 6.5(a) setsout the configuration of a

rising prominence within an overlying magnetic field. The reason for the upward move-

ment of the prominence (which is seen as a cross-section in this panel) is not vital to the

model and can assumed to be due to one of the various trigger mechanisms described

in Section 6.2.2. When the prominence comes into contact with the overlying field,

magnetic reconnection will occur causing collapse from allsides. This reconnection

occurs at the X-point marked on Figure 6.5b which is where therelease of magnetic

energy causes heating and particle acceleration to take place. This heat flows down to

the chromosphere where it brightens and evaporates material. If the magnetic energies

are high enough this process can cause a flare to be released. Otherwise the process will

continue in the same way and the prominence will be accelerated upwards (Figure 6.5b’

shows the side-view of the prominence eruption). Once the prominence is ejected the

evaporated material can flow back down the loops legs as shownin Figure 6.5c. This
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Figure 6.5: Cartoon depicting the main stages in the CSHKP model for eruptive events
(Hirayama 1974). Panel (a) shows shows the initial stage where a flux rope is rising
amongst overlying magnetic field. Panels (b) and (b’) show the rising prominence from
two points-of-view with magnetic reconnection occurring at the X-point in (b). Panel
(c) shows the reorganisation of the magnetic system after the prominence has erupted.

is often referred to as the “standard model” as it explains various observations of so-

lar flares and can also be applied to CMEs and prominence eruptions (see e.g., Shibata

1999, and references within).
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Theoretical studies have suggested that when prominences become eruptive, the in-

crease in velocity causes their radiative output to decrease (Labrosse et al. 2010) due to

the Doppler dimming/brightening effect (Hyder & Lites 1970). Labrosse & McGlinchey

(2011) have investigated this phenomena to see if this process can be used to investigate

the plasma parameters of erupting prominences. They investigated four such promi-

nences (one of which is the focus of Section 6.4) and found that in three cases they were

able to measure a decrease in intensity with increasing velocity. However, when using

their non-LTE model to explore this phenomenon further, they found that plasma condi-

tions within the prominence (most particularly temperature and mass) play as important

a role in changing intensity values as the velocity does, so their initial result may be

misleading.

6.2.2 Onset Mechanisms

Most authors agree that a prominence eruption is caused whena flux rope experiences

a perturbation leading to a loss of stability. The nature of this perturbation is still an

open question with many mechanisms being put forward. Some of these “triggers” are

discussed here.

Mass-Loading

Mass loading and off-loading are processes of mass transfer to or from a prominence

and can both be eruption mechanisms. Changes in the total mass of the prominence

material will undoubtedly lead to changes in its stability due to the force of gravity

increasing or decreasing. For the mass loading scenario Wolfson & Dlamini (1997) and

Wolfson & Saran (1998) found that an increase in prominence mass contributed to the

stored magnetic energy of the structure, in some instances giving it enough energy to

overcome the gravitational force keeping it down and erupt.
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Alternatively, if the mass of the prominence decreases, this will compromise the balance

between gravity and magnetic tension meaning that the prominence may start to move

upwards. This motion will continue until the forces reach equilibrium again or, if too

much mass as been lost, the prominence erupts outwards (Kuperus & Raadu 1974).

Such a case was observed by Seaton et al. (2011) who measured material flowing down

from a prominence structure that later erupted and caused a CME. They concluded that

mass loss caused an initial rise of the prominence which in turn lead to reconnection

which caused the structure to be accelerated upwards and ejected. In this case the mass

loss was the eruption trigger but the authors note that they cannot comment on why the

mass loss began in the first place.

Tether Release

Prominence “tethers” can be identified as overlying magnetic field lines which, along-

side gravity, help to keep the prominence stable and combat the buoyancy of magnetic

flux rope containing the prominence material. They are usually observed as barb struc-

tures such as those described in Section 6.1.1. There are various ways in which the loss

of these tethers can lead to the eruption of a prominence. Firstly there is what is termed

“tether-cutting” which is where the magnetic tethers are severed from the prominence

due to magnetic reconnection below i.e., due to a flare or newly emerged magnetic flux

(see e.g., Moore et al. 2001). Tether-cutting should be identifiable by observing the sig-

natures of reconnection alongside evidence that the timingof this reconnection (such as

a flare) coincides with the beginning of the upward motion of the prominence. In low

energy events (such as one observed by Sterling & Moore 2003)the heating signature

of reconnection may be lost in the background intensity. In this case the only evidence

is in the timings of events but this will only support the tether-cutting model and not

confirm it.

Another mechanism of eruption caused by tether activity is when a major tether no
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longer holds down the prominence causing a loss-of-equilibrium which causes the other

tethers to snap. This separate process of tether “straining” or “snapping” is used to refer

to the instance where the tethers break due to the increase inthe upward magnetic pres-

sure. For example, if a tethered prominence experiences mass off-loading (as described

above), the upward motion caused by the increase in buoyancywill increase the strain

on the tethers causing them to lengthen and then snap.

Kink Instability

Eruption caused by a kink instability in the magnetic flux rope containing a prominence

is a popular idea which has been well modeled and also observed. The left column of

Figure 6.6 shows an observation of an erupting filament that has the signature helical

shape observed in models of a twisted magnetic flux rope undergoing a kink instability.

The right column shows a model by Török & Kliem (2005) whichshows a remarkable

similarity to the observations (Williams et al. 2005). Hood& Priest (1981) showed that

a kink instability will occur when the twist of a flux rope (i.e., how tightly wound the

magnetic field lines are) exceeds a critical value of around 2.49π. Once this occurs, the

flux rope will rise exponentially (Török & Kliem 2004) as the kink expands outwards.

Observationally, a kink could be induced in a flux rope due to the twisting motion of the

prominence footpoints or a change in the intensity of the fluxrope’s electric current.

Other trigger mechanisms

The solar atmosphere does not consist of isolated structures. The inter-connectivity at

work suggests that no system is unaffected by nearby activity (see e.g., Schrijver &

Title 2011). This interaction of external factors can play apotential role in prominence

eruptions. Nearby eruptions or active region activity could reasonably cause instabilities

that could activate the rise of a previously steady prominence. This idea is explored in

more detail in Section 6.5.3.
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Figure 6.6: Series of images showing kink instability seen in both observations (left) of
TRACE 195 Å and in a simulation of a kink-unstable flux rope (Figure from Török &
Kliem 2005).

It is generally agreed that magnetic reconnection is necessary for the acceleration and

release of most eruptive events. This does not seem to be the case for the polar-crown

prominence discussed in Section 6.4 as no signatures of reconnection are observed.

However, in a large number of other examples of eruptive events, reconnection plays a

key part. It is unclear whether it can be the sole trigger of aneruption or if some other

trigger (such as those described above) can upset the equilibrium which then goes on to

cause reconnection and eruption.

In most cases it seems likely there is not a single trigger, but a combination of factors

that leads to eruption. The trigger mechanisms described above are not extensive and
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there are many more release methods in the literature e.g., the magnetic breakout model,

photospheric shearing of the magnetic field, and MHD instability to name just three.

The mechanisms discussed in this section are those thought to be important for the case

study of an eruptive prominence investigated in Section 6.4. Evidence for and against

the trigger mechanisms described above are presented in Section 6.5.

6.3 EUV Waves

The phenomena termed “EUV waves” may seem like a departure from the discussion

of prominences but a short description is given here as thesefeatures are pertinent to the

following sections.

Figure 6.7: Example of EUV wave expansion seen in a running difference image.
Adapted from Gallagher & Long (2011) and based on work by Thompson et al. (1998).

The Extreme ultraviolet Imaging Telescope (EIT) onboard SoHO first brought to light

the existence of large-scale propagating intensity enhancements that were subsequently

dubbed “EIT waves”. These features are associated with flaring active regions and

CMEs and are observed as nearly circular intensity disturbances moving outwards from

their source over the solar surface (see Figure 6.7). The velocities of these prop-

agations cover a wide range and have been observed to have values between 100–

700 km s−1 (Gallagher & Long 2011).

The term “EIT wave” has been replaced with “EUV wave” as they can be seen by any
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EUV imager. As the name suggests, these features are mostly seen in 1-2 MK pass-

bands although they have been associated with a chromospheric counterpart observed

in Hα (Moreton & Ramsey 1960) and named “Moreton waves”. Biesecker et al. (2002)

studied the correlation between CMEs and EUV waves and foundthat all 173 waves

they observed had an associated CME. This relationship was further cemented by Chen

(2006) who studied examples of strong flares that had no CME component. They found

that in these cases no EUV wave was produced suggesting a strong case for EUV waves

being a CME-only phenomena.

The origin of EUV waves and their connection with CMEs has been a serious topic

of debate in recent years with the various explanations falling into either wave or non-

wave categories (see a review by Wills-Davey & Attrill (2009) and references within).

A popular wave-based interpretation is that the eruption ofa CME creates a fast mode

MHD wave while the main pseudo-wave explanation suggests that the observed bright

“wave” is created by magnetic reconnection from the expanding CME edges with the

solar atmosphere. Patsourakos & Vourlidas (2009) disagreewith this interpretation as

they investigated an EUV wave using STEREO and found that thedual points-of-view

and high cadence helped them to separate the CME component from the wave compo-

nent. This allowed them to observe that both components evolve separately and thus that

EUV waves are most likely a fast mode MHD wave phenomenon. This debate is still

ongoing with strong proponents on both sides. Only high-cadence, multi-wavelength

observations from multiple points of view will settle it either way.

6.4 13 June 2010 Prominence

As previously mentioned, prominences and filaments are the same structure observed

from different points-of-view. Different types of observation (i.e., white light, Lyman-α,
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Hα, Ca H and K, and EUV filters such as He 304 Å) can reveal different morpholo-

gies. It is advantageous to observe a prominence both on-disc and off-limb in order to

fully investigate its structure. In the past this had to be done by waiting for the structure

to rotate from the East limb to the centre of the disc or from the disc out to the Western

limb. This rotation can take up to a week so crucial details inthe fast evolving structure

are lost.

The launch of the STEREO satellites in 2006 opened up a new wayof viewing the Sun

by giving scientists two new points-of-view: three when combined with instruments

at Earth and the L1 point e.g., SDO, SoHO and ground based observations. These

satellites, in combination with SDO, allow us to view prominences on-disc and on-limb

simultaneously. Unfortunately STEREO lacks a magnetograph or the ability to image in

Hα (items crucial for a full analysis of a prominence) but its two EUVI instruments can

observe in four passbands that are comparable with AIA. The cadence and resolution

have lower values (see Chapter 2) but the data can still give important information about

the structure and evolution of the prominence.

By combining observations from SDO and STEREO we can take advantage of the dif-

ferent perspectives they offer and use a data set that is unprecedented in terms of cover-

age and spatial resolution, in order to study an erupting prominence in detail.

6.4.1 Observations of the polar-crown prominence

This section presents a case study of an eruptive polar-crown prominence, such as those

discussed in Section 6.1. The data set examined here were taken on the 13 June 2010

utilising both STEREO-A/SECCHI/EUVI and SDO/AIA.
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Figure 6.8: SDO/AIA 171 Å full-disc full-resolution negative intensity image showing
the beginnings of the prominence eruption. The polar-crownprominence area is in Box
A where the prominence barbs and an unusual U-shaped configuration of plasma can
be observed more closely in Figure 6.9. Box B contains an areaof nearby activity (AR
11081 and a second prominence P2) which is discussed furtherin Section 6.4.2. Box
C shows an area of the Southern hemisphere where two side-by-side active regions are
seen. This area is discussed in Section 6.4.2 and 6.5.2.
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SDO/AIA multithermal observations

The prominence was observed on the North-West limb of the Sunas seen by SDO/AIA

(see Figure 6.8) where it was identified as a polar-crown prominence with an associated

cavity. Over the hours 00:00 to 12:00 UT this prominence was observed to slowly rise

before erupting outwards as part of a CME. Over this time period, full-resolution data in

four of the AIA passbands were utilised at a reduced time cadence of 3 minutes (instead

of the high cadence 12 second data). This reduction was made to make the data-handling

more manageable.

Figure 6.9: Off-limb close-up of the prominence structure observed by SDO/AIA in dif-
ferent wavelengths (a) 304 Å (b) 171 Å (c) 193 Å (d) 211 Å with the different structures
labelled (negative image). The field of view is that of Box A inFigure 6.8. Figure from
Régnier, Walsh & Alexander, 2011.

243



CHAPTER 6

The structure of the prominence during the eruption can be seen in Figure 6.9 where the

four passbands reveal different parts of the structure. Figure 6.9(a) shows cooler chro-

mospheric material in He at 304 Å (T∼50,000 K) where the mass of the prominence

above the solar limb is clearly seen. The top of this materialhas a slight U-shaped cur-

vature that is confirmed in Figure 6.9(b) which shows Fe at 171 Å (T∼0.6 MK). The

structure of the cavity is now clearly apparent with the prominence material lying along

the dipped magnetic field lines, leaving a cavity above. Thisarea of depleted density,

as well as two barb structures seen connecting the prominence to the solar limb, are

also seen in Figures (c) and (d) which show Fe at 193 Å (T∼1.6MK) and Fe at

211 Å (T∼2MK) respectively. The temperatures stated here are based on the instrument

response function (shown in Figure 2.13).

Due to the observation date of 13 June 2010, only Level 1 “test” series data were avail-

able. This means that the data were corrected for bad pixels,spikes, jitter and pointing

effects but the calibration was an early approximation. This shortcoming does not af-

fect this study as the AIA data here have been used to study structure and not to make

quantitative analyses of the intensity.

STEREO-A/EUVI observations

Whilst the SDO/AIA data set of the eruption event is high in both resolution and ca-

dence, the single point-of-view of the SDO spacecraft can lead to difficulties when

trying to interpret the 3D evolution of the structure located on the limb. With this in

mind the position of the STEREO-A spacecraft was checked andfound to be in a good

vantage point for the eruption at this time (see Figure 6.10). Only EUVI data in the

passbands 304 Å and 195 Å were abundant over the time range of the eruption and even

then the time cadence was reduced compared to SDO (at around 5minutes). The spatial

resolution of these data is 3.2” (Aschwanden et al. 2008) compared with the superior

∼1” resolution of AIA. The STEREO data was processed within the standard SSWIDL
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Figure 6.10: Sketch showing the relative positions of STEREO-A and B to the Earth
and the Sun on the 13 June 2010 at 00:00 UT. The Ahead satelliteis at a 74◦ separation
from Earth while the Behind satellite is at a 69◦ angle.

routines using SECCHIPREP.

STEREO-B was located round the other side of the Sun and only observed the very end

of the prominence eruption when the material could be seen rising up over the Northern

limb. Observations from STEREO-B will therefore not be discussed.

Previous observations

An additional perspective can be gained by going back seven days and viewing the

prominence as it appeared at the disc centre (as would be the only option if no STEREO

data was available). Figure 6.11 shows three full-disc images of the Sun on the 6 June

2010 in Hα (Big Bear Solar Observatory), and SDO/AIA 304 Å and 193 Å. The Hα

image shows that this feature is indeed located along the polar-crown area and that it

seems to have quite a fragmented structure. It is also seen inthe AIA channels as a

dark feature along this position. Figure 6.11 gives an indication of the length of the

prominence and also confirms that the feature seen in Figure 6.9 is a rising prominence
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and not some other magnetic field aberration.

Figure 6.11: Images of the prominence seen from Earth seven days before the eruption
when it was on-disc. The prominence can be clearly seen in allthree images in the
northern polar crown region. Left panel is a BBSO Hα image, an SDO/AIA 304 Å
image is in the middle and the right shows an SDO/AIA 193 Å image.

6.4.2 External influences on polar-crown prominence

Figure 6.8 showed the polar-crown prominence within the context of the full solar disc.

Boxes B and C highlight some other areas of interest that showlots of activity over the

12 hour observation window chosen. The Northern hemisphereincludes an active region

(AR 11081) and a secondary prominence (hereafter P2). The Southern hemisphere

contains two close-by active regions (AR 11080 and 11079) which seem to be linked

to the Northern hemisphere by a trans-equatorial loop. These features and the possible

influences they have over the polar-crown prominence eruption are discussed here.

Northern Hemisphere activity

The West limb of the Sun on the 13 June 2010 had a number of interesting and dynamic

features. The features of the Northern hemisphere are shownin Figure 6.12 and shows

the major changes the area undergoes. Movie prom5.mov shows the dynamic evolution

of these features over the twelve hour data set. P2 is seen in the top-left of each image

where it is observed to be a large quiet-sun prominence that remains very stable. It is

observed to be magnetically connected to the nearby AR 11081and shows brightenings
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Figure 6.12: Time series of AIA 171 Å partial Sun images focusing on the active region
(AR 11081) and second prominence (P2) seen in the Northern hemisphere. P2 is iden-
tified in the topmost image which remains stable but is observed to experience flows
related to activity in the nearby active region. A section ofthis prominence and is seen
to rise and twist over the course of the observation. This figure is a close up of the area
labelled Box B from the full-Sun image in Figure 6.8.
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associated with mass flow (Figure 6.12 middle panel) from theactive region. The West-

ern end of P2 is then seen to rise and twist in relation to activity in the active region.

None of this activity however is seen to correlate with the motion of the polar-crown

prominence.

Southern Hemisphere activity

Box C in Figure 6.8 highlights an area in the Southern hemisphere on the Western limb

which shows a lot of activity. This area contains two active regions (AR 11080 and

11079) which are shown from a different perspective in Figure 6.13. This figure shows

a full-disc STEREO-A/SECCHI/EUVI image in the 195 Å channel at 03:45 UT with

the two ARs highlighted and enlarged. Figure 6.14 shows the AIA view of these active

regions at the same time and also two hours later. The left image at 03:42 UT shows

the active regions and also highlights the bottom of the trans-equatorial loop seen in the

full-disc image (Figure 6.8). The right panel of Figure 6.14shows the same region two

hours later after a significant change has taken place. An M1 flare located in the further

West active region (AR 11079) goes off at 05:33 UT leading to a CME (see Section

6.5.2).

The location of the flare and the front of the emerging CME are highlighted with a full

account of the aftermath of this flare given in Section 6.5.2.

6.4.3 Analysis of polar-crown prominence eruption

Structural Evolution

The prominence cavity is observed in all four of the AIA channels shown in Figure 6.9.

In 171 Å (b) it is seen as a collection of U-shaped structures with little material seen in

the centre of the cavity. This paucity of material is also seen at different temperatures
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Figure 6.13: Full Sun STEREO/SECCHI/EUVI 195Å with highlighted and enlarged
image of the Southern hemisphere active regions NOAA 11080 on the left and 11079
on the right. The ’X’ indicates the site of the M1 flare which creates the EUV wave
observed.
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Figure 6.14: SDO/AIA 171 Å images of the Southern hemisphere active regions at
03:42 and 05:39 UT on the 13 June 2010. The white arrow on the left image highlights
a curious trans-equatorial loop (discussed in the Future Work Section 7.3). The white
’X’ on the right image indicates the site of an M1 flare that occurred at 05:33 UT causing
a CME. The expanding front of this CME is also highlighted. The field of view in this
image is the same as Box C in Figure 6.8.

suggesting that the prominence material lies along the lower edge the cavity i.e., in the

dips of the magnetic field of the flux tube. Material seen “inside” the cavity in Figure

6.9 (c) and (d) is most likely foreground or background material along the line of sight.

Figure 6.15 shows that the U-shaped structure seen in 171 Å ismaintained throughout

the eruption giving credence to the idea that we are looking along the axis of an erupting

flux rope (such as depicted in Figure 6.4). During the eruption it can be seen that

the prominence splits into two separate structures as labelled in Figure 6.15: (1) that

moves upwards with some material falling down after the maineruption and (2) part

that doesn’t erupt but seems to interact with the falling material later on. This movement

can be more clearly seen in Movie prom1.mov.

The prominence barbs are also highlighted in Figure 6.9 where they are seen as bright

strands underneath the prominence. These are most clearly seen in 171 Å and 193 Å

where they are seen in absorption against the bright limb. The two main barbs are shown

more clearly in Figure 6.16 where a time series of images shows how they change over

time. The top-left image (at 00:03 UT) shows the initial structure of the barbs with
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Figure 6.15: Series of four instances during the prominenceeruption showing SDO/AIA
304 Å and 171 Å at times (a) 00:03:12 UT, (b) 03:24:11 UT, (c) 06:51:11 UT and
(d) 09:00:11 UT. The arrows indicate the direction of the plasma motion during the
eruption. Labels (1) and (2) identify the parts of the plasmathat evolve differently over
time. See Movie prom1.mov for details of evolution. Image from Régnier, Walsh &
Alexander, 2011.

two clear parts that seem to connect the base of the prominence to the solar surface.

Over time the integrity of the barbs is seen to diminish as theprominence rises. There

is also some twisting/un-twisting motion seen in the foremost barb that is shown in

Movie prom 2.mov. It is unclear if this motion is a genuine un-twisting or just the

apparent motion of the plasma. Unfortunately the structureis too close to the limb for

magnetogram data and Hinode/EIS was not observing this region. Without magnetic or

spectroscopic data being analysed the real motion is difficult to confirm.

The way in which the barbs and cavity evolve over time can be explored by plotting a

time-distance graph over the course of the 12 hour observation window. This is shown

in Figure 6.17 where cuts through the barb and cavity region are shown next to their

corresponding time-distance plots. For the barb evolutionit can be seen that there are

two clear structures at the base of the prominence although it is difficult to determine

where they lie in relation to one another along the line of sight. It is likely that the more

Western barb lies further into the plane of the image i.e., they are not side-by-side. Both

barbs undergo a dramatic change over the course of the observations and are seen to

fragment and then decrease in intensity at different times. The evolution of the barbs

and their possible role as an eruption trigger is discussed further in Section 6.5.1.
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Figure 6.16: Sequence of images showing the evolution of theprominence barbs over
time. See Movie prom2.mov to see the evolution more clearly.

The STEREO-A/EUVI data set was used to add another perspective to the observation

of the prominence. EUVI 304 Å added very useful information and can be seen in

Figure 6.18 where AIA and EUVI images are shown side-by-side. This time series

shows the 304 Å at 06:56, 08:06, and 09:26 UT i.e., after the eruption is well under

way. Before this time the prominence was not identifiable in the STEREO images due

to a combination of background and line-of-sight effects, and was only seen once it had

risen higher in the atmosphere. The white dashed lines in theFigure 6.18 represent the

basic shape of the prominence as it rises (this can be seen in Movie prom6.mov). It is

observed that the West side of the prominence lifts off first - a detail that would not be

seen by just using SDO/AIA. This factor, along with the almost “flipped” nature of the

prominence material seen in the lower panel of Figure 6.18 will help to discover what

the more likely trigger mechanism of this prominence is (seeSection 6.5.3).

The EUVI 195 Å data set did not clearly show the prominence eruption (as the material

in this passband is too hot at around LogT∼6.2) but another interesting feature was seen
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Figure 6.17: Top panel shows three cuts through the prominence cavity and how they
evolve over time. The time-distance plots of each cut is shown on the right of the top
panel with the calculated velocity of the cavity shown in themiddle plot. The lower
panel shows a similar examination of the prominence barbs with time-distance plots of
three cuts shown in the right panel. Figure adapted from Régnier, Walsh & Alexander,
2011. Movies prom3.mov and prom4.mov show more details of these changes over
time.
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Figure 6.18: Series of same-time 304 Å images from SDO/AIA (left) and STERE-
O/SECCHI/EUVI (right) showing the evolution of the ejected material from two per-
spectives. The dotted white lines indicate where the movingmaterial is located with
arrows showing the direction of movement. See Movie prom6.mov.
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and is discussed in Section 6.5.2.

Dynamics

The wealth of SDO/AIA data for this eruption allow an accurate measure of the velocity

of the cavity rise to be calculated. Looking at the middle plot on the right of Figure

6.17, the slope of the lower edge of the rising cavity has beenused to approximate

the velocity which appears to have at least a two-part trajectory. To begin with the

prominence appears quite stable and has a slow rise of 0.6 km s−1 from 00:00 UT until

around 03:00 UT. This is followed by a rapid acceleration as the eruption gets underway.

The speed of the latter part of the eruption is measured to be 25 km s−1. This is much

less than the local sound speed (which is typically around 100–200 km s−1 (Gallagher

& Long 2011)) but is of a similar value to velocities measuredby other authors for the

final ejection speed of a slow rising prominence. For example, Sterling & Moore (2003)

studied a similar polar-crown prominence that was stable before it underwent a slow

rise of∼1 km s−1 followed by a fast rise of∼10 km s−1.

Over the course of the twelve hour observation, a radical change in the structure of the

prominence is seen as it rises and is ejected. An interestingeffect to note is the various

flows that occur over short timescales - especially after themain phase of the eruption.

Some of these can be seen in panel (d) of Figure 6.15 and also inMovie prom1.mov and

prom 5.mov. These flows from the prominence back down to the surface indicate that

the prominence is still magnetically connected throughoutthe corona, even after it has

erupted as a CME (shown in Figure 6.19 at three times). This suggests that mass-loss

could play an important role in the prominence eruption.

255



CHAPTER 6

Figure 6.19: Series of SoHO/LASCO/C2 images showing the evolution of the CME
that results from the polar-crown prominence eruption seenon the North-West limb.

6.5 Exploration of initiation methods

Section 6.2.2 describes the details of various ways in whichan eruptive event can be trig-

gered. The polar-crown prominence being investigated herewas a very stable structure

until it erupted on the 13 June 2010. It was observed in Hα to be quiescent in the polar-

crown area for at least one solar rotation prior to eruption.This indicates that some kind

of trigger mechanism is likely to be responsible. This section explores the more likely

mechanisms, namely: tether cutting, perturbation by EUV wave, mass un-loading, and

kink instability, and presents evidence to support or rule out these possibilities.

6.5.1 Barb Evolution - tether cutting and straining

As discussed in Section 6.2.2, the evolution of prominence barbs/tethers can play a

crucial role in the eruption process. In the case of the 13 June 2010 polar-crown promi-

nence, dynamic changes in the structure of the barbs were observed and could poten-

tially give clues about what triggered the eruption. Initial observations of the barbs were

introduced in Section 6.4.3 with the changes over time detailed here.

If we consider the clearer of the two prominence barbs (the one located at 30Mm on the

time-distance plots in the lowest panel of Figure 6.17), thestructure is seen to move in

256



CHAPTER 6

an almost oscillatory fashion before becoming more thread-like at around 03:00 UT and

disappearing completely at around 09:00 UT. This possible oscillation was investigated

by making another time-distance plot of this barb along the position shown in Figure

6.20. This time-distance plot can be seen in the lower panel of Figure 6.21 where the

oscillatory motion has been picked out by fitting a line to themotion using the highest

intensity of the barb at each timestep. This fit is seen as a white line along the dark

barb (this line ended at 06:00 UT when the background noise became to high to follow

the barb any further). This fit was smoothed and the general trend of peaks and troughs

were marked as dashed and dotted red lines respectively. Table 6.2 shows the times

of these features and indicates that the times between thesehalf-cycles changes from

an average of 33 minutes in the slow-rise phase of the eruption to 16 minutes as the

eruption accelerates. The point at which this change occursis marked on Figure 6.21

by the red line at 02:54 UT which extends upwards to the top panel showing the cavity

velocity change. This position does seem to identify where the gradient of the cavity

velocity changes from a slow rise to something steeper - perhaps indicating a relation

between the barb’s oscillation and the eruption velocity ofthe cavity. However, the

motion is not perfectly periodic and only covers 4-5 cycles so it is hard to tell if the

barb’s motion is a result of a real oscillation, a twisting/untwisting of the barb, or simple

plasma motions along the line of sight. A clearer case of oscillation in a similar barb

structure was observed by Isobe & Tripathi (2006) who measured a clear oscillation

with a period of 120 minutes and concluded that the oscillations were indicative of a

destabilising/restoring motion.

Additionally, due to the lack of reconnection signatures such as increased emission in

the hotter AIA channels at the site of the barbs, it is unlikely that the trigger mechanism

is tether-cutting. Additional evidence for this conclusion can be found by noting that in

Figure 6.21 the cavity is seen to rise before any major changes in the barbs are observed.

This may make a case for tether-straining as based on the various timings, the breaking

up of the barbs could be attributed to the rise of the cavity. Unfortunately, this would

give no clues as to the trigger mechanism itself as this straining is just a consequence of
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Event Timestep Duration of
(T-trough, P-peak) (UT) half-cycle (mins)

Start Time 00:11:10 -
T 00:36:11 25a

P 01:18:11 42
Tb 01:48:11 30
P 02:21:11 33
T 02:54:11c 33
P 03:12:11 18
T 03:24:11 12
P 03:36:11 12
T 03:54:11 18
P 04:12:11 18

Flare in AR 11079 05:33:00 -
EUV wave arrival time 06:20:00 -

Table 6.2: Table relating to Figure 6.21 showing the timingsof the peaks and troughs of
the initial oscillation seen in the prominence barb.Times of the M1 flare in the southern
hemisphere and the calculated arrival time of the EUV wave are also shown.aThis may
not be an accurate period as this assumes the peak of this half-cycle is at the start time.b

This feature is a trough even though in Figure 6.21 it is a small peak. The general trend
here is that of a trough.c This time indicates when the duration between peaks and
troughs jumps from an average of 33 to 16 minutes. This time can also be associated
with a change in velocity of the cavity.
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Figure 6.20: Close up of prominence barbs seen by SDO/AIA 171 Å showing the slice
where the time-distance plot in Figure 6.21 is taken from.

the eruption and not the cause.

6.5.2 EUV Wave

While examining the STEREO-A/SECCHI/EUVI 195 Å data set over the time period of

the Northern polar-crown prominence eruption, another interesting event was observed.

At around 05:30 UT an M1 class flare is seen to go off in the Southern hemisphere active

region (AR 11079 in Figure 6.8) and a clear EUV wave is seen to propagate outwards

from it. It is possible the interaction of this EUV wave with the prominence is the reason

why it suddenly erupts after such a long time being stable. Figure 6.22 shows a series

of nine running difference images of the STEREO-A/EUVI 195 Å data. The EUV wave

is clearly seen to start and then dissipate within a timescale of 20 minutes.
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Figure 6.21: An examination of the barb oscillation and relation to cavity eruption
speed. The lower plot shows a close up of the clearer of the twoprominence barbs
identified by the line in Figure 6.20. This time-distance plot shows the motion of the
barb and the white line indicates the maximum intensity along this barb. The peaks and
troughs have been marked with red dashed and dotted lines respectively. The top panel
shows the same-time evolution of the prominence cavity in order to compare timings.
Additional events such as a Southern hemisphere flare and EUVwave arrival time are
marked.
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Figure 6.22: Series of full Sun running difference images from STEREO-
A/SECCHI/EUVI 195 Å showing the expansion of the EUV wave over time fromthe
active region in the Southern hemisphere. Movie prom8.mov shows this expansion
more clearly.
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Figure 6.23:Left: full-Sun STEREO-A/EUVI 195 Å image showing the location of
the various active regions and the polar-crown prominence under investigation. The M1
flare that causes the EUV wave is located in AR 11079 and the path along which its
velocity is measured is indicated by the blue arrow.Right: time-distance plot created
to measure the EUV wave speed. A clear diagonal motion is observed and has been
highlighted by the dotted blue line. This line has been extended downwards to identify
the initiation time of the EUV wave and agrees very well with the M1 flare time of 05:33
UT indicating the events are linked.

By taking a time/distance slice along the propagation path of the EUV wave, a time-

distance plot was constructed (Figure 6.23). The left side of this figure shows a negative

intensity image of the full Sun as seen by STEREO-A/EUVI in the 195 Å channel at

05:33 UT. The blue line represents the vector along which thespeed was measured. The

prominence is located further North in the polar-crown area(where the arrow indicates)

but this vector was chosen as the propagation in this direction (i.e., towards AR 11081)

was the most easily observed and so was more clearly seen in the time-distance plots.

The left panel shows an example time-distance plot where a diagonal motion can clearly

be seen. The gradient of this line was taken to be the velocityof the EUV wave and was

calculated to be 330±50 km s−1. The high uncertainty is due to the limited time cadence

of the STEREO/EUVI data which made calculating the slope of the line difficult.

This speed is backed up by a study from Patsourakos et al. (2010) who studied the

CME that was associated with the flare and EUV wave from AR 11079 using the same
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combination of SDO/AIA and STEREO/SECCHI/EUVI. They measured the eruption

speed of the CME and their results are seen in Figure 6.24 where the average speed of

the CME front is around 300 km s−1. This result ties in nicely with our measurement

of the speed of the expanding EUV wave as it would be expected that the speeds have a

similar magnitude.

Figure 6.24: Results for Southern Hemisphere CME speed fromPatsourakos et al.
(2010).

With the measured EUV wave velocity of 330±50 km s−1, the time taken for the wave

to reach the Northern polar-crown area is 50±12 minutes meaning it would arrive at

around 06:20 UT. This arrival time and the timing of the flare have been marked in

Figure 6.21 as two solid red lines that extend over the two time/distance plots. It can

be clearly seen that the eruption is well under way by the timethe EUV wave would

arrive. Thus, this EUV wave is likely to not have triggered the eruption as it arrives

too late. It is also unlikely that a chromospheric counterpart of this EUV wave e.g., a

Moreton wave, could have arrived early enough to perturb theprominence as the flare

that created this wave occurs at 05:33 UT while the prominence is seen to start to rise

about 90 minutes before this time.

6.5.3 Mass Off-loading

Another possible trigger mechanism that is supported by theobservations is mass off-

loading. This is a possible mechanism due to the down-flows ofmaterial that are ob-

served in the four AIA channels, particularly at 304 Å. Figure 6.25 shows two in-

stances where mass flows from the prominence down to the solarsurface are seen with
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SDO/AIA 304 Å. Downward mass flows are seen to occur throughout the12 hour

observation window with a lot of activity seen before the prominence erupts. Movie

prom 1.mov shows this is greater detail.

Figure 6.25: Images of of the prominence as seen by SDO/AIA 304 Å at two different
times. The areas highlighted by the arrows are major mass flows that are observed (see
Movie prom 1.mov) to flow from the prominence down towards the solar surface.

As mentioned in Section 6.2.2, the reduction of the prominence mass would lead to

the magnetic tension force increasing, causing the structure to rise. This would cause

increased strain on the barbs/tethers that connect the prominence with the lower atmo-

sphere. This can be seen in Figure 6.21 where the barbs start to decrease in intensity

after the prominence cavity has started to rise. Based on these observations it is likely

that mass loss plays a significant role in the eruption of the prominence.

6.5.4 Kink Instability

Another mechanism that could be a contributing factor to theprominence eruption is a

kink instability. Evidence for this process is seen in two ways: the near exponential rise

of the prominence cavity, and the restructuring of the magnetic field post-eruption.
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Rise of prominence cavity

As detailed in Section 6.2.2, an MHD instability in a magnetic flux tube (caused by some

perturbation such as an increase in magnetic field line twist) implies an exponential

rise over time (Schrijver et al. 2008). In order establish how likely a mechanism kink

instability is for the case of the 13 June 2010 prominence, the nature of the cavity rise

over time has to be quantified. This has been done by examiningthe time-distance plot

made of a slice through the centre of the cavity (such as line 2in Figure 6.17) which rises

over time. The left section of Figure 6.26 shows a trimmed version of this time-distance

plot where the edge of the cavity has been approximated by thesolid black line. This

edge was identified using a combination of image processing and user-defined selection

with the mouse cursor. The error on this edge was estimated asthe square root of the

height of the prominence and has been plotted as two dashed lines above and below the

defined edge. The edge of the cavity in this time-distance plot was not easy to define and

these values of uncertainty represent a good visual fit of thedata. In order to investigate

whether or not the cavity rise was exponential, the logarithm of the cavity height over

time was plotted. This is seen on the top-right panel of Figure 6.26 where the dotted line

represents the best linear fit to the data. It can be seen the data is not a perfectly straight

line (as you would expect if the rise was purely exponential). In order to quantify the

fit more accurately, the rise was split into two time sections(00:00 UT - 04:51 UT and

04:51 UT - 06:57 UT) and a linear fit was applied to each section. The lower-right panel

of Figure 6.26 shows these linear functions as a pink dashed line (Fit 2a) and a dot-

dashed black line (Fit 2b). It is clear that Fit 2a is a good approximation of the height

rise of the cavity in the first five hours but misses the final phase of the cavity rise. This

is closely approximated by Fit 2b which gives a very good fit tothe final two hours but

is not a good fit to the rest of the data.

The right panel of Figure 6.26 has shown that the cavity rise over time can be loosely

approximated by a single exponential function but is even better approximated by two

exponential functions representing different time periods. The goodness of these fits is
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Figure 6.26: Left: scaled and trimmed time-distance plot ofthe rising prominence cavity
with the edge defined by the black solid line. The two dashed lines show the uncertainty
in this edge and have valuesδ=H±

√
H. Right: Two graphs showing the Log of the

cavity height (H) and a best linear fit (top) and a two-part linear fit (bottom). It can be
seen that two linear functions fit the cavity edge better thanone.
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shown in Figure 6.27 which shows how well these one and two-component fits match

the data. The black solid line in each of the upper plots represents the edge of the cavity

as defined previously. The left plot shows this edge over-plotted with an exponential

function based on Fit 1 (black dashed line). The lower-left plot shows the residuals

between the cavity edge and Fit 1 where the dashed lines represent the upper and lower

limits of the uncertainty. It can be seen that initially (in the first 3.5 hours), this function

does a good job of reproducing the cavity rise. However, it fails to accurately represent

the latter part of the eruption. In order to combat this, Fit 2a and 2b were investigated to

see how well a dual fit could recreate the data. The right panelof Figure 6.27 shows the

cavity edge over-plotted with the two exponential functions based on Fit 2a and 2b. This

clearly shows that the dual-exponential fit manages to follow the cavity rise throughout

the 7 hour time period. The residuals for Fit 2a in the first fivehours are very low and

those for Fit 2b are within the acceptable errors.

Figure 6.27: This graph follows on from Figure 6.26 and showsthe cavity edge (solid
black line in two upper plots) overplotted with an exponential fit based on the best single
linear fit (left - Fit 1), and the two-part linear fit (right - Fit 2a and 2b). The residuals
between these fits and the cavity edge are plotted below the two methods. The dashed
lines on these plots represent the error values on the location of the cavity edge.
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Clearly the cavity rise over time cannot be approximated as asingle exponential func-

tion. A combination of Fits 2a and 2b give the most accurate fitto the data and reinforce

our earlier statement about the cavity rise having two distinct velocity profiles. Other

authors have noted that prominence eruption profiles can also be characterised by rise

profiles such as a power law, constant acceleration, or linearly increasing acceleration

(such as Williams et al. 2005), but that an exponential rise supports the idea that an

instability is behind the rise. The validity of these additional rise profiles will be ex-

plored in Alexander, Régnier, & Walsh, 2012, (in prep), butit can be clearly seen that

the prominence cavity rise is a two-part exponential suggesting that a kink instability is

a likely eruption mechanism in this case.

Figure 6.28:Left: close up of the time period when Fit 2b takes over from Fit 2a as
the best representation of the cavity rise.Right: Velocity profiles of the cavity based on
Fits 1, 2a and 2b. The dotted vertical lines highlight the half hour where none of the
fits accurately follows the cavity rise and therefore the velocity measurements are less
accurate.

These exponential fits can be used to infer a more accurate velocity of the cavity rise

over time by plotting the differential of the height over time fits. Figure 6.28 shows these

calculated velocities (right panel) and also a closer look at the point in time in which the

two exponential fits diverge from the cavity edge they have been fitted to. A time period

of around 30 minutes where neither Fit 2a or 2b is an accurate fit to the data is shown as

two dotted lines on each plot in Figure 6.28.
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In order to investigate this further, another measure of velocity derived straight from the

observed rise profile is calculated. This was found by measuring the change in distance

over time of the cavity edge (defined in the left plot of Figure6.26) for every fifteen

minute period over the seven hour observation time. The values of velocity derived from

this method are shown in Figure 6.29 as a green line and compared to the velocity values

calculated from Fit 2a and 2b. It can be seen that this profile agrees with Fit 2a (pink)

very well for the first three quarters of the observation time. The initial deceleration

seen can be attributed to the poorly defined cavity edge at this time caused by the high

level of background intensity near the solar surface.

The velocity profiles in Figure 6.29 show that the cavity has an initial rise of 2±0.2 km s−1

(based on Fit 2a and the Fit from obs.) which increases over time to give a final eruption

speed of 15–25±0.6 km s−1 (based on Fit 2b). The errors on the velocities of the ex-

ponential fits were brought forward from the errors in determining the cavity edge and

look to have been underestimated for this cavity rise for Fits 2a and 2b. The errors in de-

termining the height (H) of the cavity where therefore increased from∆H =
√

H to∆H

= 10% H for the ‘Fit to obs.’ case as this value more accurately reflects the uncertainty

in defining the cavity edge.

The crossing point where Fit 2b takes over from Fit 2a in the right panel of Figure 6.27

occurs at 05:03 UT. It can be seen in Figure 6.28 that at this time there is quite a large

disparity between the two velocities indicated by Fit 2a and2b. Due to this difference

in velocity, only velocity values in the initial rise phase (00:00 - 03:00 UT) and the final

eruption (05:30 - 07:00 UT) can be stated with accuracy.

Post-eruption motions

Observations from STEREO-A/EUVI 304 Å (Figure 6.18) provide another clue to the

origin of the prominence eruption. If we designate the end ofthe prominence seen by

SDO/AIA as the ‘East’ end, and the end that is anchored further West than STEREO-A
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Figure 6.29: Further comparison of velocity profiles. The green line shows the cavity
rise velocity calculated directly from the height over timeobservations of the cavity
edge while the pink (Fit 2a) and black (Fit 2b) lines show the values obtained from the
differential of the exponential fit curves fitted to the data. The error on the green curve
has been estimated at 10% of the velocity.

270



CHAPTER 6

can view (where West means towards the right hand side on eachimage) as the ‘West’

end, then it can be observed that the West end of the prominence begins to rise upwards

before the East. A possible ‘kink’ shape is also seen after the eruption as the magnetic

field reorganises itself. This is highlighted in the lower panel of Figure 6.18 where the

plasma is observed to have a similar structure to that of a classic kink unstable flux

rope as seen in Figure 6.6. Movie prom7.mov shows this apparent ‘flip’ of the plasma

more clearly although it is possible that this motion is simply caused by the remaining

prominence material interacting with pre-existing coronal material. It is hard to be

definite as the background intensity is comparable to the prominence intensity making

it hard to pick out the exact plasma motions.

6.6 Conclusions

Using the dual perspectives of SDO and STEREO-A, the structure and evolution of

a quiescent polar-crown prominence was investigated as it underwent a slow-rise and

subsequent eruption. This study represents the most comprehensive observations of an

eruptive prominence to-date as the full-disc, high temporal and spatial resolution of

SDO/AIA, when coupled with the secondary point-of-view of STEREO-A reveal the

most comprehensive 3D representation of the event.

The polar-crown prominence consists of a clear cavity component which is interpreted

as a density depletion. The polar crown prominence materialsits at the bottom of this

cavity indicating the existence of a magnetohydrostatic equilibrium. The structure was

observed to go from a stable state that was in this equilibrium, to an unstable state re-

sulting in an eruption. The reason for this change has been explored by investigating

various eruption triggers. There are several physical mechanisms that could be respon-

sible for the prominence eruption and the extensive data setavailable can help to impose

constraints on the possibilities. By ruling out certain mechanisms and finding evidence
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to support others, the most realistic interpretation of events can be reached.

Based on the observations, the interaction of the EUV wave generated in the Southern

AR 11079 did not trigger the polar-crown prominence eruption as its calculated arrival

time was too late. Other external influences from the nearby Northern AR 11081 and

secondary prominence were also not a factor in the eruption as none showed any corre-

lated activity with the eruption timings. The motion of the prominence barbs have also

been ruled out as triggers for the eruption. The oscillationseen in one of the barbs is

most likely due to the effect of the rising of the prominence due to some other factor or

combination of factors. It is also possible that this is not atrue oscillation at all and is

just an effect of plasma motions along the line-of-sight. Regardless of whether this mo-

tion is oscillatory, the barbs are seen to decrease in intensity and disappear as a result of

the cavity rising suggesting that what we are seeing is tether-straining not tether-cutting.

The observations suggest that the most likely cause of the eruption is a combination of

mass off-loading and some kind of instability (most likely a kink instability). The clear

mass motions from the prominence towards the solar surface observed by SDO/AIA

would cause the balance between gravity and magnetic tension to move away from

equilibrium, leading to the prominence rising. This may be enough to cause the eruption

or there may also be a contribution from a kink instability inthe prominence flux rope.

The prominence was observed over two solar rotations so it ispossible that accumulated

magnetic stress could have built up over time. Photosphericmotions could also have led

to the increase in twist in the magnetic field lines of the prominence flux rope. Without

magnetogram data the only evidence to support the idea of kink instability being present

is the near-exponential rise of the prominence cavity alongwith the observations of a

kinking motion in the reorganisation of the magnetic field post-eruption.

The evidence for the eruption being caused by a combination of mass off-loading and

kink instability is persuasive but it is also possible that the observations cannot reveal

the real trigger. As mentioned previously, the ‘West’ end ofthe prominence is seen
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to rise first so it is possible that some unknown process (beyond the field-of-view’s of

STEREO-A and SDO) occurred which triggered the eruption. Ifthis is the case we

are just seeing the effects of the eruption and not the trigger itself. This investigation

emphasises that it is not always clear why an eruption has occurred and that in most

cases, a combination of factors may be at work.

Future work would expand this study by looking at other examples of eruptive polar-

crown prominences to see if the same signatures are seen. Ideally these additional ex-

amples would have the same type of dual point-of-view observations and have accom-

panying magnetogram and spectrometer data. This would allow the investigation of

prominence structure, evolution and triggering mechanisms to be studied as thoroughly

as current instrumentation allows. See Chapter 7 for more details.
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Final Conclusions and Future Work

This thesis has analysed and discussed multiple features ofthe corona from small to

large-scale, but there is still scope for each topic coveredto be taken further in the

future. This chapter summarises the conclusions of each investigation and also outlines

the particular actions and directions any future work couldtake and the future missions

that could facilitate this.

7.1 XBP observations

Complete Hinode observations of an X-ray bright point observed on the 10th to the 11th

of October 2007 were analysed over the entire lifetime of theXBP. Plasma parame-

ters such as temperature, density, filling factor, cooling timescales, and magnetic field

strength were calculated over the lifetime of the XBP to examine how they changed

over time. The XBP was observed to exist over an area of cancelling magnetic field

with the X-ray structure of the bright point having a good visual fit to the potential field

extrapolation.

The temperature of the bright point was found to remain steady at around log T/K = 6.1
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over the course of the cancellation suggesting that it was near isothermal. It was further

concluded that the calculated temperature of the bright point was not necessarily the

same as the peak formation temperature of the spectral linesin which it was observed.

This reinforces the importance of carrying out detailed temperature analysis. The den-

sity of the bright point was calculated using the line ratio method and was found to have

an average value of 5±1 x 109cm−3 which was found to decrease by 40% over the course

of the cancellation.

Doppler velocity changes of±15 km s−1 in and around the bright point were observed

to change on timescales shorter than could be observed. The time between consecutive

EIS rasters was 30 minutes but even this relatively short time period was too long, with

the corresponding Doppler velocity images showing large differences between files. The

changes in the velocity flows could not be correlated with changes in the magnetic field

for this reason.

Future expansion of this work could be achieved in two ways: further analysis of the

XBP already studied, and including other bright points in the study for comparison and

corroboration of results. These two options are detailed inthe following sections.

7.1.1 Further morphology study

Using the various instruments onboard Hinode, the XBP’s structure was examined at

different atmospheric heights. The magnetic configuration of the upper photosphere was

examined by looking at SOT/NFI Na I D line magnetograms, while the XBP’s structure

at coronal heights was investigated by looking at the various spectral lines imaged by

EIS as well as the XRT imaging the bright point in several filters.

The comparison between the SOT Na I D 589.6Å magnetogram and the SoHO/MDI

Ni I 6768Å magnetogram gave an additional perspective as thetwo spectral lines have

different formation heights. Although the exact heights are still debated, it is thought
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the MDI Ni I 6768Å line forms at around 125 km above the visiblesolar surface while

the SOT Na I D 589.6Å line forms higher up between 300-500 km. No difference in

the XBP shape from these two observations was detected due tothe large difference

in resolution between the two instruments. However, relying on magnetograms and

coronal observations leaves an important portion of the atmosphere out - namely the

chromosphere/transition region. The EIS He II 256.32Å line (Tmax∼4.9) gives an im-

portant glimpse of the structure of the bright point in the chromosphere and showcases

the bipolar structure interpreted as the footpoints of the XBP.

This study could be taken further by utilising other spectral regions that can be im-

aged by the SOT. As described in Section 2.2.2, these observations cover a number of

wavelengths relating to photospheric and chromospheric heights. By combining obser-

vations from different instruments, we can follow the structure of the XBP from the

photosphere, up through the chromosphere and transition region to the corona. Figure

7.1 shows a series of images taken at a particular instance inthe observation period

(11-Oct-2007 06.15 UT) progressing from low photospheric/chromospheric heights up

to high coronal regions.

The top row shows three examples from SOT: (a) the Na I D chromospheric magne-

togram showing the ongoing cancellation of the positive andnegative polarities of the

XBP, (b) the G-band 4305Å line showing the granulation pattern of the photospheric

network with the outline of the two polarities overplotted,(c) the Ca II H 3968Åline

also with the polarity contours overplotted. There are brightenings observed in both the

G-band (around the granules) and Ca II H images in the areas outlined by the magnetic

contours suggesting that strong magnetic fields are locatedin the same areas throughout

the lower atmosphere.

The next two images (panels (d) and (e)) have been taken with EIS and show the XBP

observed in He II 256.32 (log T/K = 4.9) and Fe XII 195.12 (log T/K = 6.2) lines,

representing the chromosphere and corona respectively. Itcan be seen the XBP structure
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Figure 7.1: Series of images of the XBP at increasing atmospheric heights imaged with
Hinode. The G-band and Ca II images have previously not been included in the analysis.

changes as the atmospheric height increases - in He II the bipolar structure of the XBP

can be clearly seen but is not visible in Fe XII. Image (f) is taken with the Hinode

X-ray Telescope (XRT) Al-poly/open filter and represents the hot coronal component

of the bright point. Again the contours of the SOT/NB magnetic fragments have been

overplotted to show the overall relation between the location of structures at the highest

and lowest atmospheric heights observed.

Figure 7.1 shows a quick glance at the different structure of the bright point at vari-

ous heights but this could be taken further by looking at how these different structures

change over time as the magnetic field cancellation proceeds. This would allow the

structure to be tracked from the photosphere up to the coronaand could provide some

additional information on how the velocity flows relate to the underlying material.

7.1.2 Widening the scope of this work

Expand study to include many more examples

Although the investigation into the structure and evolution of the XBP observed on the
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11-Oct-2007 was thorough, it only involved one example and is therefore a case study

rather than a full exploration of general XBP traits.

The launch of the Solar Dynamics Observatory has opened up the possibility of perform-

ing large-scale (possibly automated) surveys of XBPs. The high spatial and temporal

resolution of the AIA instrument means that the emergence, lifetime and disappearance

of XBPs could be studied to get a more statistically accuratepicture of their structure and

evolution. Although measurements of the bright point’s temperature, density and veloc-

ity flows would not be possible without spectroscopic information, a lot of information

on XBP morphology in relation to the magnetic field (measuredusing SDO/HMI) could

be gathered.

Figure 7.2: Full Sun image taken with the 193Å AIA channel showing a central coronal
hole with many XBP visible all over the disc.

Figure 7.2 shows an example full-disc image taken in the SDO/AIA 193Å channel

where many example of XBPs can be seen all over the disc. Thereeven seems to be an

example within the central coronal hole. Examining different types of XBP (both from

cancelling and emerging magnetic fields) and also XBPs formed in different environ-

ments (e.g., quiet Sun, near active regions, and within the open field of coronal holes)
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would allow for a fuller survey to be conducted. SDO can observe all these scenarios

and study the entire evolution of many bright points as they move across the solar disc.

Deeper exploration into link between small-scale Doppler-motions and magnetic

field

The investigation into the 11-Oct-2007 XBP could not link the Doppler motions ob-

served to coronal magnetic field changes as these changes were observed to occur on

timescales shorter than the EIS rasters could image. In order to investigate this further,

additional XBP examples need to be observed either with specially designed EIS studies

that will cover the area faster, or with one of the planned future spectrometers.

These include IRIS (Interface Region Imaging Spectrograph) which is to be launched

in December 2012, and the spectrographs onboard Solar-C which has its provisional

launch date set for Winter 2019. IRIS will be particularly good for examining flows

especially in cooler lines and will be able to perform rapid raster scans with a cadence of

10 seconds. In combination with EIS it will be able to providespectral information over

all atmospheric heights. Solar-C will also image spectral lines from the photosphere

up to the corona and will do so with a larger field-of-view and higher spatial resolution

than IRIS. It is clear that the investigation of flows within XBPs will continue to be an

interesting and viable research topic for many years to comeand thus this work could

easily be extended.

7.1.3 Relevant Future Missions for XBP work

There are numerous upcoming space missions that could facilitate the extension of the

XBP work detailed above. In particular, the idea of exploring the structure and for-

mation of XBP at lower atmospheric heights could be exploited by missions such as

IRIS and CLASP which are designed to study the chromosphere and transition region.

Solar-C will also be ideal for XBP work as it will contain similar but higher resolution
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(in time/space) instruments than Hinode, allowing for the same type of case study to be

performed in more detail than ever before.

IRIS

The Interface Region Imaging Spectrograph (IRIS) is an upcoming mission designed

to obtain UV spectra and images that focus on the chromosphere and transition region.

The satellite will obtain very high quality images with a spatial resolution of∼0.33” and

temporal cadence of∼1 second. This would allow the fast evolving structure of XBPs

in the lower atmosphere to be studied in much greater detail.

The main scientific objectives of IRIS are to study chromospheric features that are at the

time/space resolution limit of current instrumentation. This will allow the structuring

and dynamics of the chromosphere to be understood in more detail which will lead to

progress in understanding how the magnetic field, and the mass and energy flows change

at different atmospheric heights. The mission is expected to be launched in December

2012 and is a perfect complement so current missions such as SDO and Hinode.

CLASP

The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP, (Narukage et al. 2011))

is a sounding rocket experiment designed to measure the linear polarisation profiles of

the Lyman-alpha line. The results from these measurements will allow the magnetic

field in the upper chromosphere/transition region to be studied in detail for the first

time.

This experiment is expected to be launched in Summer 2014 andwill help to fill in

the gaps of our current instrumentation. CLASP will be idealto study the small-scale

magnetic structure of XBPs in the chromosphere and could be used in combination with

Hinode/SOT and SDO/HMI in order to track the magnetic field of an XBP throughout

the solar atmosphere.
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Solar-C1

The Solar-C mission is planned as a follow up to the highly successful Yohkoh (Solar-

A) and Hinode (Solar-B) missions. Hinode has demonstrated the powerful combination

that imaging and spectroscopic measurements can achieve soSolar-C has been designed

to utilise the same combination of observables but at higherresolution. Gaps in the

temperature coverage (particularly in the chromosphere/transition region) that current

missions suffer from also aim to be addressed.

The satellite will fly three instruments:

• SUVIT: Solar UV-Visible-IR Telescope.This instrument will measure the chro-

mospheric magnetic field by making intensity and spectro-polarimetric measure-

ments of photospheric and chromospheric spectral lines. Itwill have 0.1”-0.2”

spatial resolution and a cadence of 0.1-1 second for imagingand 1-20 seconds

for SP. The field-of-view of the instrument is 180” x 180” which is comparable to

Hinode/SOT. Figure 7.3 shows the main ways in which the two instruments differ.

• EUVS/LEMUR: EUV /FUV High Throughput Spectroscopic Telescope.This

instrument will measure the intensity, velocity, temperature and density of so-

lar plasma by analysing spectral lines in the wavelength range 17-21nm and 46-

128nm. The instrument will have a spatial resolution of 0.28” and temporal res-

olution of<10 seconds (for 0.28” steps) and<1 second (for 1” steps). Figure 7.4

shows a comparison between this instrument and current UV spectrometers. This

instrument would be ideal to address the issue found in Chapter 3 and detailed

above in future work i.e., that Hinode/EIS could not track the plasma velocities

quickly enough to observe the changes as they occurred within the XBP. This new

instrument has much higher cadence so it is possible it wouldbe possible to tie

the velocity changes to the magnetic field changes.
1Information on Solar-C and its instruments as well as Figures 7.3 and 7.4 were found at

http://hinode.nao.ac.jp/SOLAR-C/Documents/Solar-Ce.pdf
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Figure 7.3: Comparison between Solar-C/SUVIT, Hinode/SOT and SDO/HMI in terms
of magnetic sensitivity and the size of the features they canimage. SUVIT will clearly
take observations into new levels of detail. Image credit JAXA.

Figure 7.4: Comparison of Solar-C EUVS/LEMUR to current instrumentation. Image
credit JAXA.

• XIT: X-ray Imaging Telescope. This instrument comprises of two parts - the

Photon Counting Imaging Spectroscopy Soft X-ray Telescope(XIT-PC), and the

Ultra High Spatial Resolution Normal Incidence EUV Telescope (XIT-NI). The

XIT-PC will conduct the first x-ray imaging spectroscopic observations of the
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corona allowing coronal structures across a wide range of temperatures to be stud-

ied. The XIT-NI will perform large field-of-view (400” x 400”) imaging of the X-

ray corona at very high spatial resolution (0.2-0.3” compared to the Hinode/XRT’s

2” resolution.)

The provisional launch date for Solar-C is set for Winter 2019 which gives time for

the observations gathered by other missions such as IRIS andCLASP to be thoroughly

studied. Solar-C will help to bridge any remaining gaps in the observations and enable

scientists to study the whole solar atmosphere at high resolution. This will hopefully

allow fundamentals about heating and mass/energy flows to be uncovered and move our

understanding of the Sun forward another step.

7.2 Work on DEMs with the MSHD simulation

The work described in Chapter 4 involved the investigation of the parameter space of

the MSHD simulation and how changes in various parameters affected the resulting

DEM distributions and intensity values. As the model parameter space was altered, a

number of changes in the resulting DEMs were observed. In most cases these changes

were subtle and could be explained by the changing physics ofthe system. The cooling

simulation showed the most unique changes where the total energy of the system could

be identified by examining the evolution of the intensity values and DEM shape.

The results from the various investigations of parameter space were then used to mea-

sure the effectiveness of a particular DEM solver code. The iterative solver code XRT

DEM iterative2.pro was examined for a number of the simulationsand it was found that

in the majority of cases it did an excellent job of reconstructing the original model in-

tensity values and DEM distribution. The only instance where the solver did not do well

was in the case where the model DEM was very narrow i.e., only covering a few tem-

perature bins. This highlights the under-constrained problem of using DEM solvers and
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shows that this particular solver works best when the original DEM being reconstructed

is smoother and more multithermal.

There are a number of ways in which this work could be taken forward in the future

which are described in the following sections.

7.2.1 Exploring the cooling simulation further

Section 4.2.5 detailed the investigation into a subset of the simulations that had had

their nanoflare energy releases moved into the first quarter of the simulation rather than

uniformly over the entire simulation time. This allowed thebehaviour of the loop as it

cooled to be observed and described in terms of the corresponding intensity and DEM

distribution changes.

This type of ‘cooling’ simulation was only performed for three cases where the total

energy going into each simulation was the variable factor i.e., strand number, number of

bursts, and location of heating was kept the same, while the total energy was increased

by an order of magnitude each time by increasing the average nanoflare energy by the

same order.

In future work, it would be very interesting to observe the cooling behaviour of the other

simulations which explore additional model parameters. Viall & Klimchuk (2011) also

studied a simulated cooling loop and found a similar result to that presented in Section

4.2.5 where the total energy going into the simulated loop had a unique effect on the

order of the intensity peaks in each channel. Additional authors such as Winebarger

et al. (2003b), Aschwanden et al. (2000b), Schrijver (2001), and Landi et al. (2009)

have also studied observations of cooling plasma so it wouldbe interesting to compare

their observations to the results of the cooling MSHD model to test the validity of the

model further.
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7.2.2 Testing other DEM solvers - a first look

Chapter 5 described the comparison between the results fromthe MSHD model and

the outputs of the iterative solver XRTDEM iterative2.pro. In the majority of cases

the iterative solver was able to provide a solution that matched the model intensity and

DEM distribution well. It was only in cases where the model DEM was particularly

narrow that the solver was less effective.

Another type of solver that was described in Section 5 is called the Convex-hull solver

and is a direct inversion method as opposed to an iterative method. This solver runs

much faster than the iterative one so it would be interestingto see if it matches the model

DEM and intensity values just as well. Figure 7.5 shows some preliminary results based

on giving the solver code the intensity values from the MSHD model case study data.

The top two plots show two example DEM solutions out of the hundreds that were

calculated by the Convex-hull solver. They show that even though both solutions are

equally valid (in that they can both reproduce the original model intensity values when

folded back through the temperature response), their distribution over the temperature

bins can be very different. The bottom-left plot shows all the Convex-hull DEM solu-

tions overplotted on one another and is useful to give a first indication of which bins

are the most important to the fit. These are the bins in which many of the solutions

have a contribution and can be identified by the high-number of plots creating a darker

line as in LogT=6.2. The bottom-right plot shows these solutions overplotted with the

original DEM from the case study. It can be seen that the solver seems to match the

DEM distribution in many of the bins.

The goodness-of-fit between the Convex-hull solutions and the original MSHD DEM is

harder to quantify than with the iterative solver. As shown in the top two plots of Figure

7.5, the Convex-hull solutions are not spread evenly over all the temperature bins. Each

DEM solution has a non-zero component in six temperature bins which varies from
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Figure 7.5: Example of results from Convex-hull solver. Topplots show two example
solutions. Bottom-left plot shows all the valid solutions overplotted while the bottom-
right plots shows these solutions overplotted with the original MSHD DEM from the
case study these solutions are based on.

solution to solution.

The case study in Section 5.2 detailed how to identify which temperature bins are most

important for the model DEM and based on this, many of the Convex-hull solutions

can be eliminated i.e., only solutions with non-zero contributions in the important bins

could be considered further. Figure 7.6 shows a more detailed comparison between the

solver solutions and the model DEM. This plot shows the 20 Convex-hull solutions out

of the 123 calculated, that fulfill this criteria. They are overplotted on the MSHD model

DEM which has been coloured according to temperature bin importance. It can be seen

that in the most important bins (coloured red), the solver solutions come close to the

real values in many cases.

Future work would aim to quantify this fit and come up with a definitive way to identify

the best solution out of the series the Convex-hull solver produces. As with the inves-

tigation of the iterative solver, conclusions on the Convex-hull solver’s applicability to

real data would have to be quantified i.e., if no ‘real’ DEM is available for comparison,
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Figure 7.6: Plot showing the MSHD model DEM coloured according to temperature
bin importance overplotted with the 20 Convex-hull solutions (out of 123) which had
non-zero contributions in the four most important bins.

how would the best solution be identified?

7.2.3 Application to real observations

In order to properly tie together (i) the work on investigating the parameter space of the

MSHD model and (ii) the investigation of the ability of the iterative solver to reconstruct

the model values, real examples of SDO/AIA data should be looked at. Future work on

this topic will cover a number of examples of loops with similar lengths/widths to the

model i.e., either by looking for 100Mm long loops in the dataor adjusting the model

length/width to match the observations.

Figure 7.7 shows an example of a loop observation taken with SDO/AIA in the six

channels used by the DEM solvers. The small box in each plot represents an area

of the loop footpoint where the intensity in each channel wasaveraged over 9 pixels.

The large box in the 211Å channel shows the area used to measure the background
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intensity in each channel. This loop region is perhaps not the best example to use due

to the complicated structure of the loops within the active region. The footpoint region

highlighted was chosen as there seemed to be many overlying loops whose appearance

varied from channel to channel i.e., in this case there was not a clear loop to pick whose

position was the same in each channel.

The six values of intensity from this observation were then passed to the Convex-hull

and iterative solvers to see what they would interpret. Figure 7.8 shows the results of the

solver fits. The top plot shows the collection of solver solutions from the Convex-hull

code, the middle plot shows the solutions from the iterativesolver code, and the bottom

plot shows the two sets of solutions overplotted for comparison.

It can be seen that the overall pattern displayed by both solver solutions is very different.

However, this does not infer that the two solvers have interpreted the data differently as

these plots show all 101 solutions of the iterative solver and all 1878 solutions of the

Convex-hull solver. The case study in Section 5.2 outlined how to cut the number of

iterative solvers down to the set of ‘best’ solutions and so future work would aim to do

the same for the Convex-hull solutions.

However, these solutions cannot be cut down to a smaller sample size based on how

well they reconstruct the original intensity values as eachsolution does an equally good

job. Perhaps one way to cut down the solutions would be to keepthe ones that have

the smoothest progression across temperature (i.e., not the solutions with the ‘picket-

fence’ type distribution seen in the top-left plot of Figure7.5) or solutions that don’t

have contributions at less physically likely temperaturesi.e., over logT=7. This cut off

would obviously be scaled depending on the type of target being analysed i.e., quiet Sun

compared to active region or flare site.

Future work will involve (i) processing data of similar examples of long-lived loop

structures observed with AIA (ideally at least 15-20 examples), (ii) calculating the

background-corrected intensity values observed along theloop (ideally averaging over
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Figure 7.7: SDO/AIA observations of loops within an active region in the six channels
required for reconstruction by DEM solver. The small box in each case shows the pixels
chosen to be examined while the large box in the 211Å frame shows the location of the
area chosen to represent the background intensity levels.
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Figure 7.8: First look at results with solver codes applied to real AIA data. Top plot
shows the collection of solver solutions from the Convex-hull code, the middle plot
shows the solutions from the iterative solver code, and the bottom plot shows the two
sets of solutions overplotted for comparison.
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several pixels and multiple exposures to avoid erroneous fluctuations), (iii) using these

intensities in conjunction with the two DEM solvers in orderto get an idea of the tem-

perature distribution of the plasma, (iv) finding an accurate way to reduce the number of

Convex-hull solver solutions to the most physically likelyones, and (v) tying the MSHD

model into the real observations by using the AIA data to constrain the model.

The under-constrained nature of the solvers will also be addressed by including data

from other instruments in order to try and constrain the highand low temperature re-

gions. The inclusion of spectra from Hinode/EIS in the analysis would allow a more

accurate determination of the limits of the DEM. Plotting EMloci curves in conjunc-

tion with a DEM distribution created from imager data would help to constrain the shape

of the DEM as the characteristic temperature of the spectraldata is much more accurate

than using imager temperature response functions which caninclude multiple spectral

lines. EIS can image a large number of spectral lines over a wide range of formation

temperatures while the thicker filters of XRT can provide additional information on the

behaviour of the hotter plasma. The inclusion of data from both these instruments (EIS

and XRT) as well as using AIA data would allow the most accurate spread of plasma

temperature to be concluded.

7.2.4 Relevant Future Missions for Loop work

As well as being ideal for XBP analysis, future missions suchas IRIS, CLASP and

Solar-C (detailed above), will provide high quality data that could be used to extend

the loop/DEM work presented in Chapters 4 and 5 in a number of ways. The improved

accuracy of the spatial resolution of these instruments will make the multi-stranded

nature of the corona much clearer and comparison with multi-stranded models more

applicable. The higher quality spectra Solar-C will obtainwill also be ideal to help

further constrain the DEM of observed plasma.
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A very recent mission named The High Resolution Coronal Imager (Hi-C)2 was

launched on the 11th of July 2012 on a NASA sounding rocket from the White Sands

Missile Range in New Mexico.

The mission has been a collaborative effort between NASA, UCLan and the Harvard

Smithsonian Astrophysical Observatory and aims to observethe solar corona with the

highest spatial resolution ever achieved. The rocket flightwill allow the telescope to

observe a partial view of the Sun in 193 Å for a total of∼10 minutes before coming

back down to Earth to be collected. This will produce around 6images per minute with

a spatial resolution of 0.2-0.25” (i.e., 5 times better thanSDO/AIA).

The aims of this mission are to (i) observe very fine-scale structures in the corona to

see if the multi-stranded nature of coronal feature can be quantified, and (ii) to test out

the imager technology for the next generation of solar imagers. This first objective ties

in very well with the multi-stranded work already performedand would allow future

work on the MSHD model to be compared to observations that best illustrate the multi-

stranded nature of coronal loops.

7.3 Prominence work

The work carried out to examine the eruption of the polar-crown prominence observed

on the 13 June 2010 observed the structure of both the prominence and its overlying

cavity in multiple wavelengths as the structure evolved over time. The cavity was found

to be an area of depleted density above the main prominence material. The eruption of

this structure was observed as a slow rise followed by an acceleration phase which led

to the release of a coronal mass ejection. The eruption was observed by SDO/AIA and

STEREO-A/EUVI with the dual points-of-view of the two instruments providing a very

2Information on Hi-C was attained from various online resources such as the NASA press release at
http://www.nasa.gov/centers/marshall/news/news/releases/2012/12-064.html
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useful perspective on the changing structure of the prominence.

Many possible initiation methods were looked at to see if thecause of the prominence

eruption could be pinned down. An EUV wave originating in thesouthern hemisphere

was found to have no connection to the eruption as it arrived at the polar-crown area

after the eruption was well underway. Tether-cutting of theprominence barbs was also

ruled out as the prominence is observed to rise before the barbs undergo any ‘cutting’.

It is concluded that the most likely cause of the eruption is acombination between mass

un-loading (due to the flows of material observed to move fromthe prominence to the

solar surface) and a form of kink-instability (inferred dueto the exponential nature of

the cavity rise observed).

This section outlines the ways in which the investigation ofthe erupting polar-crown

prominence could be expanded upon in the future.

7.3.1 Expansion of work done so far

The investigation of the prominence eruption on the 13 June 2010 had many compo-

nents. The eruption was not observed in isolation as there were numerous regions of

activity on the Sun at the time which may or may not have been interlinked. The in-

vestigation looked into various trigger mechanisms and concluded that the most likely

causes were a combination of mass un-loading and some type ofkink instability. Future

work on this subject could look into a number of details more closely.

Barb Oscillation Investigation

The behaviour of the prominence barbs was studied and a periodicity was observed to

be present before the prominence erupted. This motion is notnecessarily indicative that

the barb structures are oscillating - the same motion could be observed when looking at

the the barb being stretched upwards and untwisting. Whatever the cause, identifying
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if the motion is truly present can be confirmed by the use of wavelet analysis. This

is a type of Fourier analysis which allows the time dependence of existing periods to

be studied. Figure 7.9 shows the first results of running the oscillation pattern seen in

Figure 6.21 through a wavelet analysis code (figure providedby Mike Marsh, UCLan).

Figure 7.9: Wavelet power spectrum for the prominence oscillation highlighted in Fig-
ure 6.21. The curved solid lines represent the cone of influence within which the data
can be relied upon. The power shown at the 4000s period mark suggests an oscillation
is present.

The curved line in the plotting area represent the cone of influence and indicate that only

data within this area should be relied upon. The x-axis refers to the time range the data

is over while the y-axis gives the corresponding period detected. A fuller explanation

of this type of plot can be found in Marsh et al. (2002, 2003). This shows that there is

a clear signal (dark grey area) at around 4000 seconds which ties into the∼60 minute

period described in Table 6.2. This first look demonstrates that oscillations are present

and will be investigated further to see what it can add to the discussion of the changing

barb structure in relation to the eruption.
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Further investigation of associated phenomena

As stated previously, there are a lot of different structures/events occurring on the Sun

around the time of the eruption. In particular, the trans-equatorial loop seen in Figures

6.8 and 6.14 is a factor that was not fully explored in Chapter6.

Figure 7.10 shows the western limb of the Sun as seen by SDO/AIA in 171Å. The

trans-equatorial loop connecting the southern and northern hemispheres can be seen in

both the difference image (left) and the normal 171Å image (right). This loop is long-

lived and indicated that the two hemispheres are magnetically linked. The magnetic

connection of the loop appears to change after the EUV wave passes by it on its way

North. It is possible that this magnetic connectivity between the two hemispheres could

allow information on the SH flare to run ahead of the EUV wave meaning that the

prominence eruption could at least be influenced by the wave even if it was not the

cause. This is purely speculative so future work could look more closely at any possible

flows along the trans-equatorial loop and investigate its magnetic connectivity in more

detail.

CME associated with prominence eruption

After the prominence eruption, a large coronal mass ejection is observed. This is shown

in Figure 7.11 where it is observed by SoHO/LASCO C2 and C3. This could form

another aspect to the investigation of the eruption as the structure and speed of the CME

could be linked back to the prominence shape and eruption speed.

7.3.2 Expansion of work into other examples

As with the XBP work, the study of the erupting prominence observed in the polar-

crown on the 13 June 2010 was thorough but only included one example. In order to
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Figure 7.10: Figure showing the Western edge of the Sun wherea trans-equatorial loop
is seen. The left-hand plot shows a difference image of the loop seen in SDO/AIA
171Å while the right-hand plot shows the original image.
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Figure 7.11: SoHO/LASCO images of the CME resulting from the prominence eruption
seen in C2 (left) and C3 (right).

fully investigate the cause of the eruption, similar cases of polar-crown prominence/-

cavity eruptions could be investigated.

With SDO in place, prominence cavities are more easily observed. Previously instru-

ments such as SoHO/EIT also observed cavities but these were harder to see due tothe

reduced resolution of the instrument. Figure 7.12 shows a comparison of the full-disc

Sun seen at 171Å in EIT (left) and AIA (right). The AIA image shows the promi-

nence cavity and barbs much more clearly suggesting that AIAwould be able to detect

(perhaps automatically) many more of these structures for comparison.

The improvement of AIA over EIT is further shown in Figure 7.13 where a close up of

the prominence can be seen in both 171Å (right) and 304Å (left). The AIA images

show the fine detail of the U-shaped structure of the prominence material much more

clearly than EIT.

Additional studies of prominence eruptions would ideally have concurrent spectroscopic

and magnetic observations as well as thorough coverage by SDO and one of the STEREO

satellites. This would allow for a 3D interpretation of the eruption to be viewed.

Once many examples observed with multiple instruments havebeen analysed, this in-

formation could be used alongside various models in order toexamine the structure and
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Figure 7.12: Comparison between full-disc SoHO/EIT 171Å (left) and SDO/AIA
171Å (right) for identification of the prominence cavity. The cavity and barbs are
seen more clearly in the AIA image due to its higher resolution.

possible release mechanisms more closely.

7.3.3 Relevant Future Missions for Prominence work

Chapter 6 outlined the importance of combining observations when analysing promi-

nence eruptions, particularly the importance of two points-of-view. In the future, STEREO

may not be available to offer an additional perspective as the angular separation of both

satellites from Earth will be too large to complement Earth/L1 bound satellite observa-

tions (although some instruments may be turned back on once the pair have returned

from the far-side of the Sun). No follow up is currently planned for STEREO so fu-

ture missions will have to improve upon current prominence observations by utilising

the increased imaging and temporal resolution that missions such as IRIS, CLASP and

Solar-C (detailed above) will provide. This will allow the small-scale and fast evolving

features of prominence eruption to be studied in more detaili.e., the evolution of the

barb structures and the possible flow of mass to and from the prominence.
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Figure 7.13: Top: Close up of prominence with SDO/AIA in 304Å (left) and
171Å (right). Bottom: same field-of-view observed with SoHO/EIT in the same chan-
nels.
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List of published articles from this

work

Copies of the published journal articles written during thecourse of this work are in-

cluded in this section:

1. Alexander et al. (2011), ‘Hinode observations and 3D magnetic structure of an

X-ray bright point’.

Available at: http://adsabs.harvard.edu/abs/2011A%26A...526A.134A

2. Régnier et al. (2011), ‘A new look at a polar crown cavity as observed by SDO/AIA.

Structure and dynamics’.

Available at: http://adsabs.harvard.edu/abs/2011A%26A...533L...1R
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The End
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