
1

Role-Based Access Control in Retrospect
Virginia N. L. Franqueira, VF InfoSec Consulting

Roel Wieringa, University of Twente

Abstract—Role-Based Access Control (RBAC) has been a
success in terms of the amount of research that went into it,
its uptake in international standards, and its adoption by major
software vendors. Yet, RBAC remains complex to implement in
user organizations. In this paper we review the state of the art
of RBAC in terms of RBAC features, assumptions, strengths and
possible weaknesses, and review current developments to mitigate
these weaknesses. This review helps practitioners to assess the
applicability of RBAC to their organization and also indicates
where more research is needed to improve RBAC.

Index Terms—Access Control, Identity and Access Manage-
ment (IAM), RBAC, role engineering, role management, security
management.

I. INTRODUCTION

Since first introduced in the 90’s, the Role-Based Access
Control (RBAC) model evolved into probably the most dis-
cussed and researched access control model in academia [1,
Page 145]. A 2010 economic analysis of RBAC estimated that
“[in 2010] just over 50% of users at organizations with more
than 500 employees are expected to have at least some of
their permissions managed via roles” [2, Page ES-5]). It has
become the basis for hundreds of theoretical studies, research
prototypes, and textbooks. Especially after the RBAC standard
was officially approved by the American National Standards
Institute (ANSI) in 2004, RBAC features also gained a lot of
attention from high profile commercial vendors. For example,
the Microsoft Authorization Manager module provides RBAC
capabilities for Windows Server 2008 and 2003, SELinux
allows a RBAC layer of abstraction between the user and the
underlying type-enforcement model, and the NetWeaver Iden-
tity Management module, which can work integrated with the
SAP Business Suite, provides RBAC features. Finally, the use
of RBAC has also been recommended by security standards,
such as the Health Insurance Portability and Accountability
Act (HIPAA).

Despite this success, the RBAC model is also target of
critique. Some security experts suggest that most user orga-
nizations don’t implement RBAC [3]. Triggered by this and
other anecdotal comments, we aim to review what is known
about experience with using RBAC in practice. We structure
our review by means of the following questions.
Q1: What are the basic features of the RBAC model?
Q2: Which assumptions are implicit in the RBAC model?
Q3: What are the claimed strengths of the RBAC model?
Q4: Which phenomena, and deriving problems, observed in

practice limit the strengths of the RBAC model?
Q5: How are the elements uncovered by Q1–Q4 related to

each other?
First, we sketch a conceptual framework of the RBAC life
cycle.

II. RBAC LIFE CYCLE

Roles can be used to control access to information in at
least four types of applications: (i) support applications, with
coarse-grained Operating System-specific roles, (ii) stand-
alone business applications, with application-specific roles,
(iii) enterprise-wide applications, with roles shared among
several applications, and (iv) cross-enterprise applications,
with roles shared among several organizations. In any of
these types of applications, the life cycle of a role-based
application consists of the following three phases [4]:

Customization
This phase basically involves planning, software cus-
tomization, and role engineering: (i) design of roles, and
(ii) design of the role structure.
The design of roles can take a top-down approach from
the business point-of-view, a bottom-up approach from
the point-of-view of existing permissions, or a hybrid
approach that combines both [5]. There are commercial
products available for mining roles in a bottom-up
approach such as the SAM Role Miner [5].

Implementation
Implementation consists of (i) set-up of users’ need-to-
know policies, and (ii) assignments of users to roles and
of roles to permissions. It also involves activities related
to launching a role-based application in production.

Operation
The day-to-day operation of an RBAC application,
called role management, consists of keeping the role
structure, and assignments user-role and permission-role
up-to-date. According to Gallaher et al. [4], this is
the phase where the strengths of RBAC translate to
economic benefits.

We answer Q1–Q4 in Sections III–VI and only return to role
engineering and role management when we review phenomena
in Section VI.

III. BASIC RBAC FEATURES

We collected the following list of features of the RBAC
model from the RBAC ANSI/INCITS 359:2004 standard.

Core RBAC
Feature F1: Permissions are assigned only to roles, never
directly to users.
Feature F2: There is a many-to-many relationship be-
tween users and roles.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CLoK

https://core.ac.uk/display/9632533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Feature F3: There is a many-to-many relationship be-
tween roles and permissions.
Feature F4: Users do not need to have all their roles
always activated.
Feature F5: Users can have more than one role activated
at the same time.

Review functions for Core RBAC
Feature F6: It is possible to have an overview of all users
assigned to a specific role.
Feature F7: It is possible to have an overview of all roles
assigned to a specific user.

Hierarchical RBAC
Feature F8: Roles can be organized in hierarchies,
allowing inheritance of permissions.

For references see sidebars Core RBAC and Advanced
RBAC.

IV. RBAC ASSUMPTIONS

RBAC relies on the principle that users should not acquire
permissions because of individual attributes. It assumes that
users share profiles depending on, e.g., responsibilities, duties,
job functions, qualifications, or authority in accordance with
the organizational structure. These roles determine the set of
permissions that users should have. Therefore, changing the
permissions of a role impacts a (possibly large) set of users,
and assigning a new user to roles automatically grants this
user a complete set of needed permissions. User turnover and
function changes become a matter of removing assignments or
performing reassignments user-role. One implicit assumption
of RBAC is that the role structure and role-permission as-
signments in an organization are mature, and therefore stable,
and that the set of users and user-role assignments are very
dynamic. Seta’s marketing survey [6] confirms that the benefits
of RBAC increase if there is a large number of users, a high
turnover rate, little change of roles, and a stable organizational
structure.

RBAC is flexible in terms of role semantics. This represents
a strength if assumed that those semantics are well understood
and agreed on among those involved with role engineering and
management [7]. However, such assumption is particularly un-
certain in enterprise-wide applications and in cross-enterprise
applications (see Section II).

Furthermore, RBAC assumes there are no unknowns in-
volved in granting access. However, this is not always true.
For instance, in Web-based applications the identity of users
is usually not known in advance. In this case, the Web server
must first establish trust in the requesting user before finding
the mapping from the user to her authorized roles [8]. The
same may happen with permissions; they may be unknown
until the actual need arises (see Section VI).

Summarizing, RBAC makes the following assumptions.
Assumption A1: Users should not acquire permissions
because of individual attributes; they share profiles which
determine their roles.
Assumption A2: The number of roles is much smaller
than the number of users to be granted permissions.

Assumption A3: The role structure and the set of per-
missions assigned to each role are stable; what changes
a lot is the set of users and their assignments to roles.
Assumption A4: There is agreement about the semantics
of roles between those people involved with their role
engineering and management.
Assumption A5: Users’ identity and permissions are
known in advance, before the RBAC system decides
either to grant or deny access.

V. RBAC STRENGTHS

In cases where the assumptions listed in the previous section
are true, RBAC has several strengths.

1) Efficient Access Management
If A1–A3 are true, administering permissions in terms of
roles (included executing review features F6 and F7) is
efficient in terms of time and effort. Role management
basically involves frequent deletion of assignments or
reassignments user-role, eventual updates to assignments
permission-role and rare updates to the role structure.
This efficiency directly translates to economic bene-
fits [2], [4].

2) Effective and Efficient Enforcement of Need-to-know
An important internal control principle used to assure
a satisfactory level of security is the principle of
least privilege, also known as need-to-know. It aims
at assuring that users are neither under-entitled nor
over-entitled. This means that users should not have
less permissions than they need to perform their duties
(otherwise this can affect productivity and encourage
users to circumvent the problem, causing security
risks [2]) but no more than that. RBAC is a effective
and efficient way to enforce the need-to-know principle
since the assignment of users to roles (the need part)
and the assignment of roles to permissions (the know
part) jointly establish such connection.

3) Simplified Regulatory Compliance
RBAC facilitates auditing; it is a very convenient way
to manage and document users’ permissions since
it provides visibility of all permissions that a user
has by means of the roles assigned to that user. As
a consequence, RBAC is effective to demonstrate
compliance to security requirements established
by regulations such as the HIPAA, the Gramm-
Leach-Bliley Act, the Sarbanes-Oxley Act, and to
industrial standards such as the Payment Card Industry
Data Security Standard (PCI DSS). While HIPAA
explicitly recommends the use of RBAC, others require
organizations to show that adequate internal controls
are enforced or that access control policies are in place
to safeguard data [4]. Although it is always possible
to comply with these requirements with, e.g., Access
Control Lists and groups, this tends to be more time
consuming and error prone compared to the RBAC
model. This happens because in such cases permissions
are assigned directly to users, and are not necessarily

2

constrained within groups.

4) Scalable Inheritance of Permissions via Role Hierar-
chy
In the absence of role hierarchy, there are two alterna-
tives for the assignment of many-to-many permissions
to users.
The first alternative is to duplicate permissions assign-
ments among roles. For example, if managers should
have the permissions of programmers, this is represented
in a flat structure of roles by assigning to the role “man-
ager” permissions specific to managers plus permissions
specific to programmers. Apart from a substantial in-
crease on the number of role-permission assignments,
inconsistencies may arise.
The second alternative is to not duplicate permissions
across roles, but let users accumulate permissions via
assignment to several roles. In this strategy, managers
should be assigned both to roles “manager” and “pro-
grammer” to perform their duties. This increases the
number of user-role assignments and becomes specially
problematic to avoid violations of need-to-know.
In an hierarchical RBAC model by contrast, the
inheritance of permissions achieved via role hierarchy
turns the assignment of permissions to users a scalable
task, potentially representing a major strength of RBAC.

5) Flexible Semantics of Roles and Permissions
No restrictions are imposed by the RBAC model regard-
ing the semantics of roles and permissions. Therefore,
semantics must be defined in the process of role engi-
neering, and differs by type of applications (Section II).
For example, in case RBAC is applied to Operating
Systems, roles tend to be coarse-grained and usually
refer to classes of users with semantics agreed among
network administrators. In an university context, roles
at this level could be “academic staff”, “administration
staff” and “students”. The flexibility of roles becomes
increasingly apparent when RBAC is applied to stand-
alone business applications, enterprise-wide applications
and cross-enterprise applications. In such cases, roles
can be used to assign a set of permissions shared,
e.g., by all users of a specific location, department or
organization. Roles can also be defined at a lower level
of abstraction, if created at the level of tasks. Even
more, roles can represent business or technical roles.
This strength only materializes, however, if roles are
organized in hierarchies, and if consensus is reached
about the semantics of roles.
The lack of predefined semantics for permissions also
provides flexibility. For instance, permissions related to
roles regarding database are typically fine grained and
involve operations like “insert”, “delete” and “append”
applied to objects like records and tables. While per-
missions related to roles regarding business applications
may involve operations like “place” and “manage” ap-
plied to objects like purchase orders.

Summarizing, we found the following strengths claimed for
RBAC.

Strength S1: Efficient management of large scale users’
permissions, both in terms of time and effort.
Strength S2: Effective and efficient enforcement of the
need-to-know access control principle, achievable by the
assignment of users to roles and by the assignment of
roles to permissions.
Strength S3: Simplified auditing of users’ permissions
for regulatory compliance.
Strength S4: Scalable assignment of permissions via
inheritance of permissions in role hierarchies.
Strength S5: Flexible semantics of roles and permissions.

VI. PHENOMENA LIMITING RBAC STRENGTHS

This section reviews phenomena observed in practice, as
reported in the literature, which may limit the strengths of
RBAC.

1) Role Explosion (a role engineering problem)
There are two main causes of role explosion, described
next.
Complexity of Users Attributes.:
Individuality.: Different users belonging to a same
functional role may have different sets of permissions,
i.e. may need to perform different types of operations
on different or even the same objects, depending on
specific circumstances. The only way to accommodate
such individualities in RBAC is to create one role for
each set of permissions. For example, role “teller-at-
probation” has more restrictive permissions than role
“teller-not-at-probation” [9], and role “part-time-health-
care-assistant” has more restrictive permissions than
role “full-time-health-care-assistant [10].

Locality.: Different users belonging to the same
functional role may have different sets of permissions
depending on their geographic location. For example, a
role “teller” may have different permissions for tellers
located on A and B [9]; potentially giving rise to roles
“teller-A” and “teller-B”. Using hierarchy does not solve
the problem, since role “teller” would have permissions
common to A and B, inherited by roles “teller-A” and
“teller-B” which would need extra permissions to cope
with specifics of locality.

Particularity.: Different users belonging to a same
functional role may be permitted to perform the same set
of operations but on different objects. This again means
that several roles must be created to accommodate
different sets of permissions. For instance, doctors
should only have permissions to perform operations on
their own patients’ data. This means that doctors cannot
be given permissions to the whole container of patients
data, otherwise they become over-entitled, violating
the need-to-know principle. Such situation in a pure
implementation of RBAC may give rise to a number of
roles of the type doctor-X with permission to perform

3

operations on objects of the type patients-of-X.

Dynamic context-dependent constraints.: Constrained
RBAC (see sidebar Advanced RBAC) recognizes the
need to impose constraints either on the assignment of
users to roles (to deal with static separation of duties) or
of sessions to roles (to deal with dynamic separation of
duties). However, there are dynamic context-dependent
constraints that are important when granting permissions
to users, apart from roles, such as the need for temporal
constraints [9]. In practice, we often see situations in
which a user should have permissions only during a
certain period of time. This means that the activation of
roles during a session should comply with time-based
restrictions.
Factors like individuality, location, particularities and
dynamic context-dependent constraints can increase the
number of roles to a point where there is an impractical
number of roles and, in extreme cases, more roles
than users. The fact that all assignments of users to
permissions need to be granted via roles can be both
a strength and a limitation because the number of roles
easily explodes.

2) Unexpected Side-effects of Role Hierarchy (a role
engineering & management problem)
Although according to the RBAC standard a role hier-
archy could support arbitrary hierarchies, any hierarchy
should comply with the bottom-up rule of inheritance
(see sidebar Advanced RBAC). This means that structur-
ing and maintaining hierarchies require a clear under-
standing of the consequences of inheritance, otherwise
side-effects of over-entitlement or under-entitlement
may happen [11]. Since real-world hierarchies are com-
plex, their management requires expertise beyond the
knowledge base of existing staff in many companies,
compared with less sophisticated mechanisms such as
Access Control Lists [4]. This has economic implica-
tions, since these more skilled staff are likely to be more
expensive.
Furthermore, in practice, exceptions to the RBAC model
bottom-up inheritance rule happen. For instance, at
first glance it is quite straightforward that role “project
manager” should be higher in the role hierarchy than
role “programmer”, therefore managers would inherit
programmers’ permissions. However, a project manager
may not need to have update permission over the
production directory, as a programmer does, because
managers may not have the technical skills to deploy
executable code live [9].

3) Interoperability Issues (a role engineering & manage-
ment problem)
Ambiguous Semantics.: As already mentioned, the
RBAC standard does not impose any specific semantics
on roles. In order to fill this semantic gap, a consensus
must be reached among parties involved in terms
of: (i) terminology (e.g., what will be the meaning
of role “manager”?), and (ii) permissions (e.g., what

should be the set of permissions assigned to role
“manager”?). However, reaching such agreement is not
trivial in practice [7], and may lead to errors in granting
access [11].

Multiple Interpretations of the RBAC Model.: The
RBAC standard is itself complex and raises debates
about its interpretation. It is under scrutiny by the
research community [12] and may evolve over time. In
contrast, the concept of role is intuitive and it becomes
easy to adopt the idea of RBAC in general, without
being adherent to the standard, i.e., without fulfilling the
core features F1–F5 of RBAC. Therefore, in practice,
we often find numerous interpretations of the RBAC
model, resulting in no interoperability between them.

4) Rigidity in the Face of Modern Business Dynamics
(a role management problem)
The dynamics of current enterprises may turn the task
of role management, specially in the presence of role
hierarchies, overwhelming. Thus, business changes,
such as merges, splits, outsourcing and business
partnerships, may all affect the role structure and the
assignments user-role and role-permission.

Need-to-know Versus Need-to-share.: Enterprises are
facing two conflicting requirements: the need-to-know,
from the security and compliance perspectives, and
the need-to-share, from the business perspective [3].
Therefore, on the one hand, there is a push to restrict
access to information to the minimum necessary for the
business to meet growing security constraints and, on
the other hand, there is a push to increase access to
information to the maximum possible for the business
to meet growing economic constraints.
The need-to-share increases the spectrum and diversity
of permissions to be granted. For example, it is not
unusual that users from third-parties need permissions
to perform operations on objects in a similar way
as employees need. However, it is harder to fit them
into roles since their responsibilities, job functions and
qualifications, most of the times, are not visible to the
organization granting these permissions. As a result,
either roles have to be created to accommodate these
users on an almost one-to-one basis or these users have
to fit into an average set of roles that may grant them
more permissions than needed to perform their duties.
The dynamics of current organizations make need-
to-share hard to manage. As a consequence, it may
not be known upfront which permissions users should
have until the need actually arises [3]. When this need
arises, the situation falls under the same circumstances
as discussed above, i.e., either new roles are created
or there is a risk of over-entitlement via assignment to
existing roles.

Rigid model.: The RBAC model results in two possible
access decisions: allow access or deny access. However,

4

this binary decision does not cope with unforeseen situa-
tions (such as emergencies) or temporary responsibilities
(such as in downsizing periods [11]), and presupposes
that permissions are known in advance. In practice,
specially in some domains like health care, these as-
sumptions do not always hold and a way to securely
apply exceptions becomes important.

Summarizing, each item in this list presents a phenomenon
and the problem that it causes.

Role Explosion
Phenomenon P1: Aspects such as users’ individuality,
locality and particularity give rise to roles with a few
members; coping with this contributes to role explosion.
Phenomenon P2: There may be many dynamic context-
specific attributes which affect users’ permissions; coping
with this contributes to role explosion.

Unexpected Side-effects of Role Hierarchy
Phenomenon P3: Structuring and managing role hier-
archies require a clear understanding of the inheritance
of permissions; lack of this understanding causes unex-
pected side-effects resulting in under-entitlement or over-
entitlement of users.

Interoperability Issues
Phenomenon P4: The meaning of roles (in terms of ter-
minology and permissions) across different departments,
branches, or business partners has to be shared for RBAC
to be effective; reaching agreements about the semantics
of roles across departments and enterprises may not be
trivial, giving rise to interoperability problems.
Phenomenon P5: The RBAC standard is complex and
evolves. In contrast, the concept of role is intuitive and the
idea of RBAC in general becomes easy to adopt without
compliance to the standard (i.e., with at least the core
features F1–F5). This results in numerous interpretations
of the RBAC model in practice, causing interoperability
problems.

Rigidity in the Face of Modern Business Dynamics
Phenomenon P6: Growing need-to-share information
in B2B relationships creates a situation where changes
affecting users’ permissions happen frequently; access
management based on roles may become either an over-
whelming task or may lead to violations of need-to-know
policies.
Phenomenon P7: It may not be known in advance which
permissions users should have until the need actually
arises, and there are emergency situations or temporary
responsibilities which fall outside users’ normal roles;
RBAC cannot deal with such dynamics.

VII. CONCLUSION

Taking the perspective of the ANSI/INCITS 359:2004
RBAC standard, our analysis provides a thorough, yet concise,
overview of the relationship between the strengths of RBAC
which will only materialize if the assumptions about its context
of use are satisfied. This is illustrated in Figure 1(a). Our
analysis also connects phenomena that can happen in the

RBAC context of use to problems that are expected to arise,
as illustrated in Figure 1(b).

These two diagrams are useful for practitioners when im-
plementing RBAC in organizations in two ways: (1) they can
check if assumptions and phenomena of RBAC context of use
apply to their organizations, therefore anticipating strengths
and problems to expect, and (2) they can diagnose possible
reasons for unsuccessful use of RBAC. We complement this
analysis in sidebar Addressing Phenomena P1–P7 by pointing
out initiatives that aim to avoid or reduce phenomena P1–P7.

REFERENCES

[1] R. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, 1st ed. John Wiley & Sons, Inc., 2001.

[2] A. C. O’Connor and R. J. Loomis, “2010 Economic Analysis of Role-
Based Access Control,” NIST, Tech. Rep. RTI Project Number 0211876,
December 2010.

[3] B. Schneier and M. Ranum, “Schneier-Ranum Face-Off: Is Perfect
Access Control Possible?” 03 September 2009, Information Secu-
rity Magazine, http://searchsecurity.techtarget.com/magazineFeature/0,
296894,sid14 gci1365957 mem1,00.html, accessed Jan 2010.

[4] M. P. Gallaher, A. C. O’Connor, and B. Kropp, “The Economic Impact
of Role-Based Access Control,” NIST, Tech. Rep. RTI Project Number
07007.012, March 2002.

[5] M. Kuhlmann, D. Shohat, and G. Schimpf, “Role Mining - Revealing
Business Roles for Security Administration using Data Mining Tech-
nology,” in SACMAT’03: Proc. of the 8th ACM Symposium on Access
Control Models and Technologies. ACM Press, 2003, pp. 179–186.

[6] C. L. Smith, E. J. Coyne, C. E. Youman, and S. Ganta, “A Marketing
Survey of Civil Federal Government Organizations to Determine the
Need for RBAC Security Product,” Report prepared by Seta Corporation
for NIST, http://csrc.nist.gov/groups/SNS/rbac/documents/cost benefits/
seta.ps, accessed Oct 2011, July 1996.

[7] A. H. Karp, H. Haury, and M. H. Davis, “From ABAC to ZBAC:
The Evolution of Access Control Models,” Information Systems Security
Association Journal, vol. 8, no. 4, pp. 22–30, April 2010.

[8] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-Based Access
Control. Norwood, MA, USA: Artech House, Inc., 2003.

[9] B. Hilchenbach, “Observations on the Real-world implementation of
Role-based Access Control,” in Proc. of the 20th National Information
Systems Security Conference, October 1997, pp. 341–352.

[10] AHIMA/HIMSS HIE Privacy & Security Joint Work Group, “The
Privacy and Security Gaps in Health Information Exchange,” Healthcare
Information and Management System Society (HIMSS), http://www.
himss.org/content/files/201106 AHIMA HIMSS.pdf. Accessed 1 Nov
2011., April 2011.

[11] K. D. Gordon, J. E. Michelman, B. Waldrup, and R. D. Slater,
“Accounting Data Security at JEA,” 2011, presented at the American
Accounting Association Annual Meeting on 10 August in Denver, Col-
orado/U.S. Abstract can be found at http://aaahq.org/AM2011/abstract.
cfm?submissionID=2382.

[12] N. Li, J.-W. Byun, and E. Bertino, “A Critique of the ANSI Standard on
Role-Based Access Control,” IEEE Security and Privacy, vol. 5, no. 6,
pp. 41–49, 2007.

ABOUT THE AUTHORS

Virginia Nunes Leal Franqueira received her Ph.D. in Computer
Science from the University of Twente (The Netherlands), where
she also held a postdoc position. Currently, she is an independent
researcher, based in the UK, providing consultancy related to
Information Security.
Contact her at virginia.franqueira@vf-infosec.com.

Roel J. Wieringa is chair of the Information Systems group
and Head of the Computer Science Department at the University
of Twente, the Netherlands.
Contact him at r.j.wieringa@ewi.utwente.nl.

5

http://searchsecurity.techtarget.com/magazineFeature/0,296894,sid14_gci1365957_mem1,00.html
http://searchsecurity.techtarget.com/magazineFeature/0,296894,sid14_gci1365957_mem1,00.html
http://csrc.nist.gov/groups/SNS/rbac/documents/cost_benefits/seta.ps
http://csrc.nist.gov/groups/SNS/rbac/documents/cost_benefits/seta.ps
http://www.himss.org/content/files/201106_AHIMA_HIMSS.pdf
http://www.himss.org/content/files/201106_AHIMA_HIMSS.pdf
http://aaahq.org/AM2011/abstract.cfm?submissionID=2382
http://aaahq.org/AM2011/abstract.cfm?submissionID=2382

A1: No permissions due to individual
 attributes - users share profiles
A2: Number of roles is much smaller
 than number of users

S1: Efficient management of users'
 permissions
S2: Effective and efficient
 enforcement of need-to-know

S3: Simplified auditing for regulatory
 compliance

A3: Role structure and permissions
 assigned to roles are stable
A5: Users' identity and permissions
 are known in advance

Core RBAC

Core RBAC +
Core Review
Functions

S4: Scalable assignment of
 permissions via role hierarchy

Core +
Hierarchical
RBAC

A4: There is agreement about
 semantics of roles

S5: Flexible semantics of roles and
 permissions

Core RBAC

(a) Assumptions under which the claimed strengths of RBAC materialize.

P1: Users' individuality, locality and
 particularity give rise to roles
 with few members
P2: Dynamic context-specific
 attributes affect users permissions

Problem 1: Role explosion

Problem 2: Unexpected side-effects
of role hierarchy

P3: Lack of understanding of
 inheritance of permissions

Core RBAC

Problem 3: Interoperability issues

Core +
Hierarchical
RBAC

P4: Lack of agreement about meaning
 of roles within and across
 organizational boundaries
P5: Differences in interpretation of
 the RBAC model

Problem 4: Rigidity in the face of
modern business dynamics

Core RBAC

P6: Need-to-share information cause
 assignments user-role and role-
 permission to change frequently
P7: Required set of permissions may
 emerge dynamically

Core RBAC+
Core Review
Functions

(b) Phenomena of RBAC context of use that cause problems.

Fig. 1. Core RBAC consists of features F1–F5, core review functions consists of features F6–F7 and hierarchical RBAC consists of feature F8 (see Section III).

6

CORE RBAC
The Role-Based Access Control (RBAC) model, introduced by
seminal work by Ferraiolo and Kuhn [1] and by Sandhu et al. [2],
became an official access control model when the standard proposed
by Sandhu, Ferraiolo and Kuhn [3] evolved into a proposal [4] that
was subsequently modified to become the ANSI/INCITS 359:2004
RBAC standard [5].
Central to the RBAC model is the concept of role. “A role is a job
function within the context of an organization with some associated
semantics regarding the authority and responsibility conferred on the
user assigned to the role” [5]. The fundamental rationale of RBAC
is the fact that a role is an intermediate element between users and
permissions. Therefore, users are directly assigned to roles (many-
to-many assignments), permissions are also directly assigned to
roles (many-to-many assignments) and, this way, users get indirectly
assigned to permissions.
According to the standard [5], “the permissions available to the
user are the permissions assigned to the roles that are currently
active across all the users sessions”. A user is regarded as a human
being although it could be a process, a machine, or a network. A
permission is an approval to perform an operation on objects,
where operation is an action, function or task that can be invoked by
an user, and object can either refer to information containers (files,
directories, database tables) or resources (printers, network drivers,
computers).
A session is a mapping between a user and a set of roles assigned to
this user during a session (one-to-many user-session and many-to-
many session-role assignments). This means that RBAC requires the
ability for a user to actually activate multiple roles simultaneously in

a single session [3], although not all roles need to be activated [6].
Sessions represent a fundamental mechanism to implement the
core RBAC model which support many-to-many user-permission
assignments [6]. Also part of the core RBAC component are two
functions to review: (i) the set of users assigned to a given role, and
(ii) the set of roles assigned to a given user. Other review functions
are “advanced”, implying that they are not mandatory [5].

REFERENCES

[1] D. F. Ferraiolo and D. R. Kuhn, “Role-Based Access Controls,” in Proc.
of the 15th NIST-NCSC National Computer Security Conference, 1992,
pp. 554–563.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
Based Access Control Models,” IEEE Computer, vol. 29, no. 2, pp.
38–47, 1996.

[3] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST Model for Role-Based
access control: towards a unified standard,” in RBAC’00: Proc. of the
Fifth ACM Workshop on Role-based Access Control. ACM Press, 2000,
pp. 47–63.

[4] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST Standard for Role-Based Access Control,”
Transactions on Information and System Security (TISSEC), vol. 4, no. 3,
pp. 224–274, 2001.

[5] ANSI/INCITS 359:2004, “Information Technology - Role Based Access
Control,” American National Standards Institute (ANSI), International
Committee for Information Technology Standards (INCITS), February
2004.

[6] D. Ferraiolo, R. Kuhn, and R. Sandhu, “RBAC Standard Rationale:
Comments on “A Critique of the ANSI Standard on Role-Based Access
Control”,” IEEE Security and Privacy, vol. 5, no. 6, pp. 51–53, 2007.

ADVANCED RBAC

Hierarchical RBAC adds the concept of hierarchy of roles to Core
RBAC. “Hierarchies are a natural means of structuring roles to
reflect an organization’s lines of authority and responsibility” [1].
A hierarchy of roles supports inheritance of permissions, avoiding
duplication of permissions that are common to two or more roles.
Permissions are inherited bottom-up. This means that towards the
top of the hierarchy we have more senior roles and towards the
bottom we have more junior roles. Hierarchy in the RBAC model
comes in two flavors: (i) limited role hierarchies, which allows single
inheritance, and (ii) general role hierarchies, which allow multiple
inheritance too. In general, tree-shape hierarchies allow aggregation
of permissions, while inverted-tree-shape hierarchies allow sharing
of permission [2].
Constrained RBAC is another addition to Core RBAC, compatible
with Hierarchical RBAC, which addresses conflicts of interest among
roles via static and dynamic separation of duty.
Static separation of duty (SSoD) constrains user-role assignments to
ensure that a user do not acquire permissions to perform operations
over protected objects which exceed her need-to-know, facilitating

security breaches [2]. Determining SSoD conflicts require a pairwise
analysis of roles from the role set [1]. If roles are hierarchically
structured, possible inherited permissions should be taken into
account to determine conflicting roles.
Dynamic separation of duty (DSoD) is much more flexible than
SSoD. It applies to session-role assignments, restricting the activa-
tion of roles within or across a user’s sessions [1]. Thus, instead
of restricting the entire roles’ space of permissions, it restricts the
users’ space of permissions. This way, a user can be assigned to
conflicting roles but cannot activate them simultaneously. DSoD also
applies when roles are hierarchically structured.

REFERENCES

[1] ANSI/INCITS 359:2004, “Information Technology - Role Based Access
Control,” American National Standards Institute (ANSI), International
Committee for Information Technology Standards (INCITS), February
2004.

[2] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST Model for Role-Based
access control: towards a unified standard,” in RBAC’00: Proc. of the
Fifth ACM Workshop on Role-based Access Control. ACM Press, 2000,
pp. 47–63.

7

ADDRESSING PHENOMENA P1–P7
The Cyber Security committee (CS1.1) from the InterNational
Committee for Information Technology Standards (INCITS) is a
Task Group addressing public comments on the Draft INCITS 459
RBAC Implementation and Interoperability Standard (RIIS) [1],
studying updates to the ANSI/INCITS 359:2004 RBAC standard,
and launching a next generation RBAC standard (http://csrc.nist.gov/
groups/SNS/rbac/, expected to be released in 2012).
RIIS defines RBAC interaction functions for syntactic and semantic
exchange of RBAC information, allowing system-to-system offline
interoperability [2]; this approach, to be incorporated to the new
RBAC standard, addresses phenomena P4 and P6. Furthermore,
RIIS specifies “how to design RBAC products to conform to
INCITS 359” [2], aiming an increase in consistency among RBAC
implementations, therefore, contributing to address phenomenon
P5.
A change the CS1.1 committee is currently implementing to the
RBAC standard is described in [3]. The new RBAC model will
incorporate dynamic attributes (related to phenomenon P2) which
will constrain the role structure, expressing a set of more static
attributes (related to phenomenon P1). Access will be granted
based on the intersection of P and R [3], where P is the set
of permissions from roles active in a session (RBAC), and R is
the set of permissions from attribute-based rules (ABAC [4]). This
change to the RBAC standard aims to address phenomena P1–P2
and, indirectly, phenomenon P7. Another approach to address these
phenomena is the use of dynamic roles [5]. In this case, access is
granted based on object and user profiles, including static roles and
attributes, and based on environmental status, both used to determine
the set of permissions of a user.
Moreover, Ferreira et al. [6] propose dealing with phenomenon P7
by an RBAC model that allows users to have permissions granted
on an exceptional basis, given that a justification is provided and
logged.
Phenomenon P3 materializes in implementations of RBAC and,
therefore, is dealt with (to some extent) in different ways. For

instance, in the SAP NetWeaver Identity Management module, role
hierarchy is established by means of single and derived roles, and
authorization checks are available to adjust these derived roles. This
phenomenon has also been dealt with in the context of implementing
RBAC with the OASIS standard XACML language to promote
portability of access policies and interoperability among different
applications, therefore, addressing phenomenon P4. Stepien et
al. [7] propose a rule inheritance mechanism in their non-technical
XACML notation that simplifies assessing the effect of role inheri-
tance.
Future experiences will learn to which extent all this work will
effectively address phenomena P1–P7.

REFERENCES

[1] “Role-Based Access Control Implementation Standard,”
Int’l Committee for Information Technology Standards
(INCITS), proposed standard, 2007, draft INCITS 459 RBAC,
http://csrc.nist.gov/rbacdraft-rbac-implementation-std-v01.pdf, accessed
Oct 2011.

[2] E. Coyne and T. Weil, “An RBAC Implementation and Interoperability
Standard: The INCITS Cyber Security 1.1 Model,” IEEE Security and
Privacy, vol. 6, pp. 84–87, 2008.

[3] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding Attributes to Role-
Based Access Control,” Computer, vol. 43, pp. 79–81, 2010.

[4] A. H. Karp, H. Haury, and M. H. Davis, “From ABAC to ZBAC:
The Evolution of Access Control Models,” Information Systems Security
Association Journal, vol. 8, no. 4, pp. 22–30, April 2010.

[5] R. Fernandez, “Enterprise Dynamic Access Control Version 2
Overview,” Prepared for NIST, 2006, http://csrc.nist.gov/rbac/
EDACv2overview.pdf, accessed Oct 2011.

[6] A. Ferreira, D. Chadwick, P. Farinha, R. Correia, G. Zao, R. Chilro,
and L. Antunes, “How to Securely Break into RBAC: The BTG-RBAC
Model,” in ACSAC’09: Proc. of the 2009 Annual Computer Security
Applications Conference. IEEE Press, 2009, pp. 23–31.

[7] B. Stepien, S. Matwin, and A. P. Felty, “Advantages of a Non-Technical
XACML Notation in Role-Based Models,” in PST’11: 9th Annual Conf.
on Privacy, Security and Trust. IEEE Press, 2011, pp. 193–200.

8

http://csrc.nist.gov/groups/SNS/rbac/
http://csrc.nist.gov/groups/SNS/rbac/
http://csrc.nist.gov/rbacdraft-rbac-implementation-std-v01.pdf
http://csrc.nist.gov/rbac/EDACv2overview.pdf
http://csrc.nist.gov/rbac/EDACv2overview.pdf

	Introduction
	RBAC Life Cycle
	Basic RBAC Features
	RBAC Assumptions
	RBAC Strengths
	Phenomena Limiting RBAC Strengths
	Conclusion
	References
	References
	References
	References

