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Abstract

KEYWORDS:
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The increasing variety of data mining tools offers a large palette

of types and representation formats for predictive models. Manag-

ing the models then becomes a big challenge, as well as reusing the

models and keeping the consistency of model and data repositories.

Sustainable access and quality assessment of these models become

limited to researchers. The approach for the Data and Model Gov-

ernance (DMG) makes easier to process and support complex solu-

tions. In this thesis, contributions are proposed towards ensembles

of models with a focus on model representation, comparison and

usage.

Predictive Toxicology was chosen as an application field to demon-

strate the proposed approach to represent predictive models linked

to data for DMG. Further analysing methods such as predictive mod-

els comparison and predictive models combination for reusing the
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models from a collection of models were studied. Thus in this the-

sis, an original structure of the pool of models was proposed to

represent predictive toxicology models called Predictive Toxicology

Markup Language (PTML). PTML offers a representation scheme for

predictive toxicology data and models generated by data mining tools.

In this research, the proposed representation offers possibilities

to compare models and select the relevant models based on different

performance measures using proposed similarity measuring tech-

niques. The relevant models were selected using a proposed cost

function which is a composite of performance measures such as

Accuracy (Acc), False Negative Rate (FNR) and False Positive Rate

(FPR). The cost function will ensure that only quality models be

selected as the candidate models for an ensemble.

The proposed algorithm for optimisation and combination of Acc,

FNR and FPR of ensemble models using double fault measure as

the diversity measure improves Acc between 0.01 to 0.30 for all toxi-

cology data sets compared to other ensemble methods such as Bag-

ging, Stacking, Bayes and Boosting. The highest improvements for

Acc were for data sets Bee (0.30), Oral Quail (0.13) and Daphnia

(0.10). A small improvement (of about 0.01) in Acc was achieved

for Dietary Quail and Trout. Important results by combining all

the three performance measures are also related to reducing the

distance between FNR and FPR for Bee, Daphnia, Oral Quail and

Trout data sets for about 0.17 to 0.28. For Dietary Quail data set

the improvement was about 0.01 though, but this data set is well

known as a difficult learning exercise. For five UCI data sets tested,
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similar results were achieved with Acc improvement between 0.10 to

0.11, closing more the gaps between FNR and FPR.

As a conclusion, the results show that by combining performance

measures (Acc, FNR and FPR), as proposed within this thesis, the

Acc increased and the distance between FNR and FPR decreased.
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Chapter 1

Introduction

This chapter gives a brief background to the current state of data

and predictive model governance. Moreover the research motivation,

research aims and objectives are laid out in order to give the reader

a glimpse of what inspired this research. The original contributions

and the thesis structure are also covered in this chapter.

The thesis will discuss solutions for getting a better prediction in

predictive toxicology problems by reusing classifiers from an exist-

ing collection. The collection of classifiers was represented using a

proposed Predictive Toxicology Markup Language (PTML). The collec-

tion of classifiers will be compared using the proposed Similarity of

Predictive Model (Sim) measure related to data sets, function prop-

erties and confusion matrix. Results from the comparison can be

grouped together based on their similarity, for example models built

using the same data set and producing the same confusion matrix

although having different function properties (classifiers) are simi-

lar models. The similar models with same confusion matrix will be

discarded before selecting the chosen models into the proposed en-

1
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semble. The relevant models are the remaining models which are

less similar to each other and thus introduce diversity to be used in

the ensemble construction.

In this thesis, the predictive model performance measures were

focused on Accuracy (Acc), False Negative Rate (FNR) and False Pos-

itive Rate (FPR). Acc is the proportion of correct predictions for all

classes, FNRate is the proportion of incorrect predictions for the

positive class and FPRate is the proportion of incorrect predictions

for the negative class (e.g. No). All three performance measures will

be combined as a ranking value that helps in selecting classifiers

from a collection of models using a cost function (which is a com-

posite of three performance measures: Acc, FNR and FPR) to build

a high quality and robust ensemble. The Optimisation of Classifiers

Ensemble Method (OCEM ) technique which applies to ensemble se-

lection was implemented to optimise selection of models and combi-

nation method. The method proposed was to optimise the ensemble

by ranking the models using the proposed ranking system known

as Classifier Ranking Value (CRV ). The ensemble models consist of

diverse classifiers that had been measured using diversity measures

such as disagreement measure and double fault measure. Simple

majority voting was applied to the combination of the models in the

ensemble as a decision fusion strategy to build upon the proposed

combined performance measure.

In this way the work done so far has contributed and establish

new pathways in applying for the first time DMG for ensembles of

classifier applied to predictive toxicology.
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1.1 Background

The steps to implement Knowledge Discovery in Databases (KDD)

include Selection, Preprocessing, Transformation, Data Mining, and

Interpretation or Evaluation (Fayyad et al. 1996). The processes can

be looped and iterated between them. Figure 1.1 is an overview of

the steps that compose the KDD processes. The process starts with

data cleaning (selection, pre-processing and transformation) before

carrying on to data mining. The data mining process is a process

where data will be analysed using a machine learning algorithm to

produce knowledge.

Figure 1.1: An Overview of the Steps of the KDD Process (Fayyad
et al. 1996).

The tuning process in finding optimum model parameters is im-

portant. Each model from the collection of models must be trained to

find the most relevant attributes and model parameters in produc-

ing a quality model. The tuning process involves selecting optimum

model parameters such as number of folds for cross validation and
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type of classifier. Selection of the optimum attributes from the data

set is also another step of the tuning process. This will be repeated

until the right combination of parameters is selected to generate the

best model.

In an environment where we have data set updates, predictive

models based on the older data set may become unreliable in terms

of new instances added to updated versions of the data set. This is

because with the new instances, a classifier may not learn accurately

based on current features selected for the new data set. Feature se-

lection process has to be applied again and retrain the model using

the whole data set, thus the model will be up-to-date for future use.

This evolution of training data sets always happens in application

domains such as banking where transactions are updated regularly,

and also in toxicology where experiment circumstances change and

new compounds are added. The iteration process of tuning and find-

ing the right combination of attributes and model parameters must

take these changes into account when generating new and reliable

predictive models for the updated data set. This makes it neces-

sary to revise the predictive model generation step for an up-to-date

model repository.

Models from a collection of models can be reused to speed up

predictive modeling. All the models in the collection were repre-

sented using proposed representation. A method of selecting and

comparing relevant models can be used to select the models from

the collection. This thesis proposes the method to select and com-

pare the models. The performance measures of the selected models
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can be improved by making a combination of them. The combina-

tion of models which is known as ensemble method was considered

and shown to improve the Acc as well as FNR and FPR (see the re-

sults in Chapter 6). This thesis also proposes an ensemble method

by composing quality candidates in ensemble using a cost function.

The cost function (CRV ) is a value to rank the best classifier from

a collection of models by giving a weight to each performance mea-

sures.

1.2 Motivation

The continuous process of KDD shows that there may be thousands

of data mining models related to a single data set shared among data

mining researchers, generating versions of predictive models on the

related data sets. Thus, monitoring and maintaining changes be-

tween data and models become more challenging. The issues arisen

when dealing with large collection of models are to find useful mod-

els, delete the useless models, identify the weaknesses of models,

and suggest repairing actions (Liu & Tuzhilin 2008). Sometimes, the

models become useless either being identical with existing ones or

when FPR equals to 1.00 and FNR equals to 0.00 (or vice versa), or

while Acc is poor. There is a need to define the relationship between

data and models, so that the iteration process of generating new

predictive models integrates consistently in the modelling framework

and this evolution also needs to be recorded. The repositories of data

mining models should keep information on historical developments



1.2 Motivation 6

which are also worthy of analysis.

Another challenge here is how to share those models between

researchers. Existing models are represented on various platforms

in formats such as text files, relational database or different internal

formats produced from data mining tools (e.g. .arff produced by

Weka and .fis produced by Matlab). XML is a key to the answer

where the models can be published through the web in a standard

form and can be accessed easily later. For that reason Chapter 4

proposes representations in XML as a flexible bridge and a solution

to deal with the current diversity of model representations.

The other challenge that arises here is whether available models

can be analysed and interpreted so that information they store can

be used later to generate a better performance measure of the pre-

dictive models. Since the information stored in the previous models

are available in repositories, there should be a possibility of selecting

the right or most suitable models from the collection of models based

on individual requirements and needs. Thus Chapter 5 proposes the

method for comparing the models.

This can be done in many ways such as searching the models

with different criteria, comparing the performance of existing models

or making a combination between models. These approaches have

often been proved to achieve better predictive performance compared

to producing a single predictive data mining model. Ensemble meth-

ods also offer better solutions compared to single models (Caruana

et al. 2004, Kuncheva 2004, Dietterich 2000). The issues related to

constructing ensembles suggested by Wang (2008) will be considered
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in this thesis.

The thesis proposes a method of comparing classifiers from a col-

lection of models. The collection of models were represented using

the proposed representation PTML). The method proposed is to op-

timise selection of models to be included in the ensemble method

by reusing and selecting diverse classifiers to make a combination

between them. The selection of candidate models in the ensemble is

done by using a cost function proposed (CRV ).

1.3 Problem Statement

The growing diversity of data mining tools offers a large palette of

types and representation formats for predictive models. The growing

diversity of data mining tools offers a large palette of types and rep-

resentation formats for predictive models. Various predictive models

that have been generated on the same or similar data sets are valu-

able assets that should be managed properly, to allow reusing these

models for further work. Such models could be recorded and re-

trieved for future classification tasks on the same domains. A num-

bers of processes can be done to the collection of models such as

searching of models, comparison between models and finding the

most suitable models in model repositories have become big chal-

lenges. Prediction of toxicology data is a critical issue where the

toxic instances should be precisely classified.

Furthermore, an ensemble method that focuses on a single per-

formance measure such as Acc may return biased classifiers on cer-
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tain classes. There is a need to produce a combination of other per-

formance measures such as FNR and FPR in order to have a more

generalised and better performance measure. Thus new methods for

selecting the most relevant predictive models and making combina-

tion between them to increase the prediction of toxic classes will be

considered in this research.

1.4 Research Framework and Scope

The research focuses on selecting the relevant classifier from a col-

lection of models to predict new chemical substance in classifying

the toxic or non toxic class of a chemical compound. The compar-

ison of models were done by calculating the similarity of predictive

model using the proposed technique. The relevant model obtained

from the comparison stage can be used as a single model or in com-

bination with other models in an ensemble for prediction of new

chemical substance.

By reusing the models from the collection, an ensemble method

can be applied in order to get better performance measures com-

pared to single models. Experiments were conducted using binary

classification models on predictive toxicology data sets. In addition

there are also experiments done on the data sets from UCI (UC Irvine

Machine Learning Repository, 2012).
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1.5 Research Aim and Objectives

The aim of this research is to come up with a new method for com-

paring and searching relevant classifiers from a collection of models

to be used as a model for predicting toxic classes of new chemical

substance. The relevant models will be combined together in or-

der to get the highest Accuracy (Acc) and lowest False Negative Rate

(FNR) and False Positive Rate (FPR) by giving a weight to each of the

performance measures. This is a specific problem in Predictive Tox-

icology, where predicting with good overall accuracy is not enough,

especially for a high FNR, e.g. a chemical is classified wrongly to

be not toxic, when actually it is toxic. The aim can be achieved by

following these objectives.

The objectives of this research are:

1. To construct a framework for data and model governance in

predictive toxicology.

2. To develop a knowledge representation for data and predictive

toxicology models.

3. To construct a new technique for comparing the similarity of

models from a collection of models based on Input (Training

Set), Function (Classifier Properties) and Output (Confusion

Matrix).

4. To construct a new technique for comparing the elements of

a predictive model which are similarity of Input (Training Set),

Function (Classifier Properties) and Output (Confusion Matrix).



1.6 Research Methodology 10

5. To construct a new technique for ranking the classifiers with

a composite of performance measures such as Acc, FNR and

FPR.

6. To develop a new algorithm for optimising the selection and

combination of classifiers.

From the objectives, a structured research methodology was de-

signed and will be discussed in the next section.

1.6 Research Methodology

Figure 1.2: The General Method for the Research Study

The research focuses on toxicology data sets where the problem

is to predict whether a chemical compound (test set) is toxic or non
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toxic to animals. The prediction can be done by testing the test set

against the training set. In this thesis, the model for prediction will

be selected from a collection of models.

Figure 1.2 depicts the process of predicting a new problem using

a pool of models. The pool of models is represented using a standard

format as proposed in Chapter 4. To access those models, a method

for comparing the relevant classifiers will be applied as proposed in

Chapter 5. The results from the comparison are the relevant models

that can be used to predict the toxicity.

To improve the prediction performance, the selected relevant mod-

els can be optimised by making a combination between them known

as ensemble method. The ensemble method proposes that the candi-

date models be selected using a cost function which is a composite

of three performance measures such as Acc, FNR and FPR. The

optimisation technique used was Genetic Algorithm (GA). Diversity

measures and a simple majority voting technique were applied in the

ensemble.

1.7 Research Contributions

The contributions of this research are:

• A new framework for data and model governance (Chapter 3).

• A new knowledge representation for predictive toxicology data

and models (Predictive Toxicology Markup Language - PTML)

(Chapter 4).
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• A novel technique to compare the similarity of models (Chapter

5).

– A technique to compare data sets (training set) (Data set

Similarity Coefficient - DSC)

– A technique to compare the similarity of functions’ property

used to generate the predictive models.

– A technique to compare the similarity of confusion matri-

ces.

– A technique to compare the similarity of multi class confu-

sion matrices.

• A technique using a cost function (composite of Acc, FNR and

FPR) to rank classifiers from a collection of models (Chapter 6).

• A new algorithm to optimise the selection and combination of

classifiers (Chapter 6).

• An Improved results of Accuracy, with minimise False Nega-

tive Rate and False Positive Rate for all data sets compared to

other ensemble method such as Bagging, Boosting and Stack-

ing (Chapter 6).

All contributions have been published in peer-reviewed confer-

ence papers as detailed above.

1.8 Outline of the Thesis

This thesis is divided into seven chapters. The first chapter gives an

overall picture of the thesis, aim and objectives of the research.
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Chapter 2 is about related work and literature review in the area

of study. Definition and some examples of the techniques used in

the study are also discussed in this chapter.

Chapter 3 discusses the proposed methodology of the research

and the concept of data and model governance. The chapter dis-

cusses briefly the process of model management.

Chapter 4 discusses the proposed standard representation for

model management called Predictive Toxicology Markup Language

(PTML). The PTML was used in the following chapter for model com-

parison and models combination.

In Chapter 5, a technique to compare predictive models is pro-

posed. The chapter starts with comparison of three elements of a

predictive model (Input, Function and Output) by calculating their

similarity. The similarity of models can be calculated by combining

all the three similarity measures. The results from the comparison

which is the relevant model, can be ranked using a proposed cost

function (CRV ) to find the best model. The model can be used as a

single model or combining them in the proposed ensemble.

Chapter 6 proposes an ensemble method by selecting models with

a composite of three performance measures (Acc, FNR and FPR).

The experiment shows that the prediction results from the ensemble

method was better compared to a single model. The optimisation of

the combination method is also proposed in this chapter.

Chapter 7 discusses and evaluates all the findings and outcomes

achieved in this research.

Lastly, in Chapter 8, the conclusions of the research will be dis-
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cussed. In order to improve the research in the future, some ideas

for further work are stated.

1.9 Summary

The awareness of the safety and health of products make modelling

toxicology model an important domain. All chemicals should be

tested to minimise their affect on living things such as humans and

animals, as well as the environment which must be kept safe. There

is a need to properly model the toxicology data carefully by applying

data mining processes.

Therefore in this thesis, a data and flexible model representation

was proposed in a more general framework towards data and model

governance. Within this thesis, the aim is to develop an ensemble

method that makes an improved prediction by reusing the quality

models from a collection of models.

The proposed method for comparing models from a collection of

models will help in optimising the ensemble process where only rel-

evant models to be included in an ensemble. For the ensemble pro-

cess, the ranking system will select the model using a cost func-

tion. The cost function which is defined as Classifiers Ranking Value

(CRV ) is a composite of three performance measures (Acc, FNR and

FPR). This will ensure that only best models will be included in

an ensemble. Based on the thesis objectives and the contributions

made, this thesis can be explored by others to enhance the knowl-

edge in the future.



Chapter 2

State of the Art

2.1 Introduction

This chapter aims to discuss the subjects, techniques and algo-

rithms covered within this thesis to provide an overview of compu-

tational toxicology approaches. Existing work related to the thesis

subject will be referred to and discussed. An overview of the machine

learning algorithms used in the experimental work to support this

thesis will also be introduced and briefly explained. The shortcom-

ings of existing approaches will be examined as a basis for justifying

the original merit of the work proposed in this thesis.

A classification model is a model that holds the information of a

function (classifier) that classifies the instances to targeted classes

(Tan et al. 2005). The results of the classified instances are stored

as a confusion matrix. The number of classes are differentiated

between binary classification model and multi class classification

model. The binary classification models have only two classes, nor-

mally represented as true and false class. For multi class classifica-

15
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tion models, the number of classes will be more than two.

The most useful performance measure for classification models is

the accuracy (Acc). There are other performance measures that can

be calculated using a confusion matrix for the binary classification

model such as True Negative Rate (TNR), True Positive Rate (TPR),

False Negative Rate (FNR) and False Positive Rate (FPR).

This chapter is structured as follows: Section 2.2 presents the

overview of Knowledge Discovery Process and model management.

Section 2.3 describes definition of predictive toxicology model, the

representation, the performance measures and data mining func-

tions applied. Related work on model comparison will be discussed

in Section 2.7. The taxonomy for model combination and ensemble

methods is discussed in Section 2.8. This chapter ends with genetic

algorithms and summary.

2.2 Knowledge Discovery Process

The processes of generating predictive models involve data prepara-

tion, checking of data quality, feature selection process, modelling,

prediction, and analysis of results. The whole process of data mining

is known as knowledge discovery. The steps of knowledge discovery

(shown as Figure 1.1) are described in Section 1.1.

There are many freeware data mining tools such as Weka (Waikato

Environment for Knowledge Analysis) (Witten et al. 1999, Bouckaert

et al. 2010) and KNIME (Konstanz Information Miner) (Berthold et al.

2009). Commercial tools are also available such as SPSS Modeler
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provided by IBM SPSS and Oracle Data Mining by Oracle allow sim-

ilar functionality in generating predictive models. For this thesis,

Weka was used as a data mining tool to generate the pool of models.

2.2.1 Model Management

Any collection of models generated using data mining tools needs

proper management. Liu & Tuzhilin (2008) studied the problem of

how to develop automated model base analysis tools. There is a

problem because of the amount of data that has been collected and

the real world problems studied have become more complex. Be-

fore this, a data mining application may have only required a few

models built to solve a problem. They raised the issues in model

management as follows:

1. Models building and storing

For example, how to automate the models generation and the

storage of the models.

2. Models reusing

The models stored in the repositories can be retrieved and fur-

ther analysed.

This research has moved toward the objective of generating col-

lection of models. The models can be selected by analysing how to

compare the models in the context of data and model governance.

The relevant models selected can be improved by making an ensem-

ble from them. The performance may be improved and an end user

may get benefits from the model management processes.
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2.3 Predictive Toxicology

A predictive model is a model that can be used to predict or estimate

the target values of future cases (Fayyad et al. 1996). Predictive

toxicology is the discipline of predicting the toxic effects of chem-

ical compounds against human, animal and environmental health

(Trundle 2008). The predictive model may predict whether a new

chemical compound is toxic or non toxic to living organisms.

In Predictive Toxicology, the goal is to describe the relations be-

tween chemical structure of a molecule and its biological and toxico-

logical processes (Neagu et al. 2005). The relation is used to predict

the behaviour of a new unknown chemical compound.

The toxicity level may vary from one organism to another. For ex-

ample a chemical compound may have greater toxic effect on some

animal species than others. In the production of products, for exam-

ple, the level of pesticides in a chemical compound is very important

because it can be harmful not only to living things but also to the

wider ecosystem.

2.3.1 Predictive Model Representations

Data mining tools have been developed to produce one model for a

single data set and the model produced is based on a single tech-

nique. In a real situation, there are many data and models available

in different sources. The main issue is how to manage the data

and the models. Two possible approaches are via the use of Object

Oriented Database (OODB) which can represent predictive models
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when it comes to huge amount of data because it can normalize and

represent the record by objects or classes. Another alternative is the

use of XML to map the data and the models.

The results from data mining processes can have different types

(such as class type or pattern) and models can be represented in

many ways. A standard representation of a predictive model is

needed to access these predictive models developed with different

resources. XML can be used as the basic format of representation

and provides a method to represent and describe the information.

The purpose of an integrative approach for data and model repre-

sentation is to visualize the model, extract the parameters of the

models, process and manage the models in relation to the available

data. More significant processing can be done further to the mod-

els, such as comparison, selection and combination between them to

respond to subsequent tasks. Languages that represent predictive

models based on XML are listed below:

• PMML (Predictive Model Markup Language) is a standard XML-

based language used to represent predictive models and allow

sharing of models to compliance applications. It was estab-

lished by the Data Mining Group (DMG) and has 4 components:

Data Dictionary, Mining Model, Transformation Dictionary and

Model Statistics (DMG 2012). PMML is still in the development

process. There is a workshop on PMML modeling held in year

2011 to discuss the issues and to enhance the representation.

• Chaves et al. (2006) developed a PMML compliant scoring en-

gine called Augustus. It is an open source PMML-compliant
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scoring engine designed and developed using Python. The stan-

dard components used by Augustus are from PMML and added

other new components such as data management component,

utilities for processing PMML files and run time support.

• PMQL (Predictive Modelling Query Language) is a specialized

query language for interacting with PMML documents. It is em-

bedded within DeVisa framework developed by Gorea (2008),

which provides functions such as scoring, model comparison,

model composition, model searching, statistics and administra-

tion through a web service interface.

• The Hybrid Intelligent Systems Markup Language (HISML) is a

XML proposal for knowledge representation, data exchange and

analysis of experimental data, based on a modular implicit and

explicit knowledge-based intelligent system It was proposed by

Neagu, Craciun, Chaudhry & Price (2007).

• ToxML is an XML database standard based on toxicity con-

trolled vocabulary for use in database standardization. It was

developed by scientists at Leadscope Inc. for application in ar-

eas such as genetic toxicity, carcinogenicity and chronic toxic-

ity (Leadscope 2012).

From all the representations, XML is used as a basis to represent

information in the standard format. The flexibility in defining tags

make it easy to construct. Furthermore, XML files can be published

through the Internet and become accessible. The proposed repre-

sentation to represent predictive toxicology models can be found in
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Chapter 4.

2.3.2 Retrieving XML Documents

XML file is a document containing information that is represented

in a standard format. Thus, it can be processed and manipulated

similar to a database. The following are technologies that can be

used to retrieve the information from an XML file.

2.3.2.1 XQuery : An XML Query Language

XML documents can be queried using an XML query language called

XQuery. XQuery is similar to Structure Query Language (SQL). The

flexibility of XML allows it to represent diverse sources of informa-

tion. XQuery also offers flexibility in retrieving and interpreting rep-

resented tags information.

The main features of the XQuery are:

• To extract and manipulate data from XML documents.

• To use SQL-like "FLWOR expression" which are FOR, LET,

WHERE, ORDER BY, RETURN.

• To provide syntax to construct new XML documents.

XQuery is still in the development process. It does not yet allow

the update of XML documents or databases and lacks full text search

capability. Figure 2.1 is an example of the XQuery language used to

retrieve a nameofemployee with salary more than £30 from an xml file

named employees.xml
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for $i in doc("employees.xml")/company/data
where $i/salary > 30

order by $i/name
return $i/name

Figure 2.1: An Example of XQuery Statement

In this thesis, all PTML models from the collection of models were

retrieved using XML parser. The flexibility of XML parser functions

such as allows to build XML documents, navigate XML structure,

and add, modify, or delete elements and content of an XML docu-

ments make it suitable for a large number of PTML models and its

structure.

2.3.2.2 XML Parser

An XML parser is a software that reads XML files and is able to

parse all the data from the files using tags defined. It is a language

that provides classes to process XML files. It is suitable for huge

documents and able to parse complex XML structures. It is under

the package of javax.xml.parsers. Figure 2.2 is an example of a func-

tion inherited from javax.xml.parsers to parse all information from an

XML file and store in variable tempEmp. The value in the tempEmp

can be saved into database or can be printed to the screen.
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public void endElement {
if(qName.equalsIgnoreCase("header")) {

myEmpls.add(tempEmp);
}else if (qName.equalsIgnoreCase("version")) {

tempEmp.setversion(tempVal.trim());
}else if (qName.equalsIgnoreCase("date")) {

tempEmp.setdate(tempVal.trim());
}else if (qName.equalsIgnoreCase("author")) {

tempEmp.setauthor(tempVal.trim());
}else if (qName.equalsIgnoreCase("source")) {

tempEmp.setsource(tempVal.trim());
}else if (qName.equalsIgnoreCase("comments")) {

tempEmp.setcomments(tempVal.trim());
}

}

Figure 2.2: An Example of XML Parser Statement

2.4 Confusion Matrices

Confusion matrix is the raw output generated from a classification

model. The output shows the correctly and incorrectly classified

of instances. Table 2.1 is a representation of confusion matrix for

binary class classifiers and Table 2.2 is a confusion matrix for multi

class classifiers. From the confusion matrix, various performance

measures can be calculated as discussed in the next section.

2.4.1 Binary Confusion Matrices

Kohavi & Provost (1998) defined a confusion matrix that contains in-

formation about actual and predicted classifications done by a clas-

sification model. Performance of such models is commonly evalu-
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ated using the data in the matrix (see Table 2.1). Table 2.1 shows

the confusion matrix for a binary class classifier.

Table 2.1: Confusion Matrix of Binary Classification: True Positive
(TP ), True Negative (TN ), False Negative (FN ) and False Positive
(FP ).

Actual
Positive Negative

Predicted Positive TP FP
Negative FN TN

TP is the number of correct predictions for positive output (e.g.

Yes),

FP is the number of incorrect predictions for the negative output

(e.g. No),

FN is the number of incorrect prediction for the positive output, and

TN is the number of correct predictions for the negative output.

2.4.2 Multi Class Confusion Matrices

The confusion matrix for multi class classifiers is shown in Table

2.2. The intersection of the first column (Class A) with the first row

is the True Positive (TP ) value for Class A. True positives for second,

third and forth columns are the diagonal values of the confusion

matrix.
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Table 2.2: Confusion Matrix for a Multi Class Classifier.

Class A Class B Class C Class D
Class A TPAA(1,1) eAB(1,2) eAC(1,3) eAD(1,4)

Class B eBA(2,1) TPBB(2,2) eBC(2,3) eBD(2,4)

Class C eCA(3,1) eCB(3,2) TPCC(3,3) eCD(3,4)

Class D eDA(4,1) eDB(4,2) eDC(4,3) TPDD(4,4)

2.5 Classifier Performance Measure

Performance measures for binary class classifiers can be calculated

using Accuracy (Acc), False Negative Rate (FNR), False Positive Rate

(FPR), True Positive Rate (TPR) and True Negative Rate (TNR). The

performance measures applied within this thesis will be discussed

in the following section.

2.5.1 Binary Class Performance Measures

The performance measures can be calculated as follows (Kohavi &

Provost 1998, Fawcett 2004):

TPRate =
TP

(TP + FN)
(2.1)

FPRate =
FP

(FP + TN)
(2.2)

FNRate =
FN

(FN + TP )
(2.3)

TNRate =
TN

(TN + FP )
(2.4)
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Acc =
TP + TN

(TP + FP + FN + TN)
(2.5)

TPRate is the proportion of correct predictions for positive class

(e.g. Yes),

FPRate is the proportion of incorrect predictions for the negative

class (e.g. No),

FNRate is the proportion of incorrect prediction for the positive class,

TNRate is the proportion of correct predictions for the negative class,

and

Acc is the proportion of correct predictions for all classes.

2.5.2 Multi Class Performance Measures

The classification accuracy of a multi class classifier is the ratio of

the sum of the principal diagonal values to the total of values in

the confusion matrix. If C indicates the confusion matrix, Prasanna

et al. (2007) defined the classification accuracy Acc as follows:

AccC =

( ∑N
i=1 Cii∑N

i=1

∑N
j=1 Cij

)
(2.6)

where:

N is the number of classes,

i refers to the row index, and

j refers to the column index for the confusion matrix C.

The Error Rate (ER) for the classifier is the complement of the
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Acc. Error rate can be calculated as follow:

ErrorRate = 1− Acc (2.7)

2.6 Generating Predictive Models

2.6.1 Weka

Weka (Waikato Environment for Knowledge Analysis), is a Java based

tool that incorporates many well known machine learning algorithms

for data mining (Witten et al. 1999, Bouckaert et al. 2010). The tasks

offered in this tool are data pre-processing, classification, regression,

clustering, association rules, and visualization (Witten. et al. 2011).

The tools are able to make predictions using the interface provided

or as a package in a Java development environment. Detail of func-

tions used within this research will be explained in Section 3.5.

2.6.2 Feature Selection Algorithms

Feature selection is a technique to identify the most relevant fea-

tures or attributes which are used to generate predictive models on

a training data set. By using a raw data set (with no feature se-

lection), the model will have to learn from all the features available.

For data sets that have hundreds of features such as toxicology data

sets, the Acc of the models may be lower because most of the features

have no relationship to target classes (see Table 5.22) and the Acc is

improved when the feature selection algorithms are applied (Neagu,

Guo, Trundle & Cronin 2007). It is because the model learns better
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about the data using the relevant attributes selected using a fea-

ture selection algorithm, while irrelevant features do not enter noise

anymore during the learning stage. Trundle (2008) has studied the

importance of feature selection in toxicology data sets. The feature

selection process can reduce noise and insignificant attributes in the

training data set and this will be improved the classification accu-

racy (Luukka 2011). In this thesis, the feature selection algorithms

chosen are briefly explained in Section 3.5.

2.6.3 Classification Algorithms

Weka offers collection of machine learning algorithms and function-

ality of classification algorithms. The classification algorithms were

used within this thesis are listed below.

• K-Nearest neighbors classifier (weka.classifiers.lazy.IBk)

• Decision trees (weka.classifiers.trees.J48)

• Numerical prediction (weka.classifiers.rules.JRip)

• Naive Bayes (weka.classifiers.bayes.NaiveBayesUpdateable)

• Multilayer Perceptron

(weka.classifiers.functions.MultilayerPerceptron)

• Bagging (weka.classifiers.meta.Bagging)

• Boosting (weka.classifiers.meta.AdaBoostM1)

• Stacking (weka.classifiers.meta.StackingC)

• Ensemble Selection (weka.classifiers.meta.EnsembleSelection)
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• Random Forest (weka.classifiers.trees.RandomForest)

The description of each classification algorithm will be discussed

in Section 3.

2.7 Predictive Model Comparison

Comparison of predictive models can be accomplished by measuring

the similarity between them. Similarity and distance metrics are

complementary to each other. For example the Hamming distance is

one of the distances used to calculate the dissimilarity between two

strings (Hamming 1950). Todeschini et al. (2004) proposed a new

measure to calculate a distance between two models using hamming

distance.

Choi et al. (2010) surveyed similarity of 76 binary similarity and

distance measures. They had grouped the similarity and distance

techniques using hierarchical clustering to estimate the similarity

among the measures. Researchers can refer to a group for selecting

the appropriate similarity measure to be applied, depending on the

data.

Lesot et al. (2009) explored the similarity measures of different

data types. They found that the nature of data is the main factor

when deciding which similarity measure is to be applied. In that

paper, they studied similarity measures for binary and numerical

data.

Sequeira & Zaki (2007) explored similarities across data sets us-

ing a two step solution: constructing a condensed model of the data
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set and identifying similarities between the condensed models. Their

technique is limited to finding similar subspaces based on the struc-

ture of the data set alone, without sharing the data sets.

In this thesis the similarity of predictive models was proposed by

comparing the element of predictive models that will be discussed in

Chapter 5.

2.8 Predictive Model Combination

The technique of model combination has appeared under various

names such as hybrid method, decision combination, multiple ex-

perts, mixture of experts, classifier ensembles, cooperative agents,

opinion pool, decision forest, classifier fusion, and combinational

systems (Parvin et al. 2009).

2.8.1 Model Ensemble

The idea of a model ensemble is to have more expertise (predictive

models) involved in decision making rather than a single model used

in predicting the output (Rokach 2009). It is more effective to use

a collection of predictive models for large data sets, or for data sets

which are diverse to select the relevant predictive model in the col-

lection of models. Diverse data sets can be produced by applying

different feature selection algorithms as explored in Chapter 5.
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Figure 2.3: Approaches to Building Classifier Ensembles (Kuncheva
2004)

2.8.2 Ensemble Methods

Figure 2.3 shows that an ensemble classifier has to go through a

number of the processes (Kuncheva 2004). At the data level (Level

D), different subsets of data set are created in order to make inde-

pendent classifiers. Each classifier will be used for the next step

in Level B. Diversity of an ensemble model can be obtained by us-

ing different subsets of feature selection (Level C) and different base

classifiers (Level B). Finally, Level A represents the different ways of

combining classifier decisions. The final predictive model from the

ensemble learning has proved to be a better performance compared

to single predictive model (Woloszynski & Kurzynski 2011). Thus,

this technique will often increase the performance of a predictive

model (Dietterich 2000).
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Wang (2010) implemented strategies for selecting the models to

be included in an ensemble based on performance measures such

as Acc, Sensitivity and Specificity, and/or diversity. Sensitivity is

similar to FNR and specificity is similar to FPR. This thesis applied

model selection strategies using a cost function that is a composite

of Acc, FNR and FPR. With the composite of Acc, FNR and FPR,

the ensemble constructed will be improved in a specific class. Thus,

the strategies may be useful for unbalanced data or the number of

misclassifying the samples of assigned class is higher than the other

(Wang 2010).

There are many studies which have implemented various tech-

niques to construct an ensemble (Sirlantzis et al. 2008). The diver-

sity measure and decision strategy are most important factors that

effect the accuracy of an ensemble. Table 2.3 summarises the stud-

ies that have been done for constructing an ensemble.

Table 2.3: Techniques Use for Constructing an Ensemble.

Author Diversity Decision Fusion Performance
Measures Strategy measures

Masisi et al. (2008) Kohavi-wolpert Variance Voting Acc
Mehmood et al. (2010) Error Rate Weight Majority Voting Acc
Wang (2010) Coincident Failure Voting Acc,

Diversity (CFD) Sensitivity,
Specificity

Khakabimamaghani et al. (2010) Disagreement Measure Thresholded Voting Acc
Nabiha et al. (2011) Correlation Coefficient, Voting, Acc

Q Statistics, Weighted Voting
Disagreement Measure

2.8.3 Ensemble Learning Algorithms

There are many ensemble learning techniques discovered and im-

plemented by researchers. Every technique has its own pros and
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cons but the performance of ensemble technique always give a high

impact to the performance of predictive model generated.

Ensemble methods have been applied in many applications such

as Arabic handwritten recognition (Nabiha et al. 2011), classify-

ing spam email (Wang 2010), dynamic signature authentication (Al-

Muhanna & Meshoul 2011), human face and voice recognition (Xi-

aoyan et al. 2009). All the studies agreed that the accuracy improved

when applying an ensemble method compared to a single classifier

(Chitra & Uma 2010, Bakar et al. 2011).

Polikar (2006) suggested that all ensemble systems consist of two

main processes. The first process is related to diversity of ensemble

and the second process is related to combining the outputs of indi-

vidual classifiers in an ensemble. For the first process, the strategy

to generate the most diverse classifiers is important. There are dif-

ferent parameters that can be used to generate diverse classifiers

such as different feature selection and machine learning algorithms.

The second process is related to the decision fusion strategy such

as majority voting and weighted majority voting. The established

ensemble methods will be discussed in the following section.

2.8.3.1 Bagging

Bagging takes each model in the ensemble and gives it an equal

weight. It trains each model in the ensemble using a randomly-

drawn subset of the training set in order to promote model variance

and diversity. As an example, to achieve very high classification

accuracy, the random forest algorithm combines random decision
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trees with this algorithm (Breiman 1996). Majority voting is used

as the decision strategy. Normally, bootstrap aggregating is often

abbreviated as bagging.

2.8.3.2 Boosting

Boosting is different from bagging. It focuses on the instances for

data set that are used to generate predictive models. Boosting is a

general method for improving the performance of any learning algo-

rithm (Freund & Schapire 1996). In theory, boosting can be used

to significantly reduce the error of any "weak" learning algorithm

that consistently generates classifiers which need only be a little bit

better than random guessing. Additionally, this algorithm involves

incrementally building an ensemble by training each new model in-

stance to emphasize on the training instances that previous models

mis-classified. Sometimes, this technique will be more likely to over

fit the training data but it has proved to get better accuracy than

bagging. Boosting shares similar decision fusion strategy to bagging

which is majority voting.

2.8.3.3 Stacking

Stacking assumes that the model generated is adequately flexible to

represent any of the ensemble algorithms. The flexible model gen-

erated from stacking starts by giving training to a master model to

make a final decision based on the decisions of another collection of

models. The idea is to combine multiple models in a different way by

introducing the concept of a meta learner. The meta learner uses the
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output from a base classifier as an input to make the final decision.

The base classifiers are trained with a different training set Polikar

(2006).

2.8.3.4 Bayes Optimal Classifier

The Bayes Optimal Classifier is generally considered to be the prin-

ciple ensemble among ensemble learning algorithms. It is because

this classifier is an ensemble that takes all hypotheses in the hy-

pothesis space. A vote proportional is given for each hypothesis to

the possibility that the training data set would be sampled from a

system if that hypothesis was true. The vote of each hypothesis is

also multiplied by the prior probability of that hypothesis (Parvin

et al. 2009).

2.8.3.5 Hybrid Intelligent System

Hybrid intelligent systems involve a combination of local and global

models as ensemble experts by mixing technologies in hybrid sys-

tems. The objective of this approach is to improve the prediction

accuracy, and also to provide reasonable training response time by

using parallel processing (Neagu, Craciun, Chaudhry & Price 2007).

Santos & Sabourin (2011) proposed a hybrid search algorithm to

select a population of classifier ensemble.

2.8.3.6 Ensemble Selection from Library of Models

The method of ensemble selection from a library of models was pro-

posed by Caruana et al. (2004). The library is a collection of mod-
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els generated using different learning algorithms and parameter set-

tings. They used forward stepwise selection for adding the models

into the ensemble to maximise the performance. The performance

measures were focussing on accuracy, cross entropy, mean preci-

sion, and receiver operating characteristic (ROC).

The ensemble selection procedure proposed by (Caruana et al.

2004) is as follow:

1. Start with the empty ensemble and a library of models.

2. Add to the ensemble the model in the library that maximises

the ensemble’s performance to the error metric on a hillclimb

(validation) set.

3. Repeat Step 2 for a fixed number of iterations or until all the

models in the library have been used.

4. Return the ensemble from the nested set of ensembles that has

maximum performance on the hillclimb (validation) set.

The method combines all possibilities of models in collection and

does not consider a diversity measure. In this thesis, the ensembles

were optimised by selecting relevant models using a cost function

(composite of Acc, FNR and FPR) and combining the classifiers us-

ing a diversity measure such as disagreement measure and double

fault measure.
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2.9 Diversity Measures

Diversity measure is important in an ensemble. One of the issues

in building an ensemble is to have diverse models in an ensemble.

There are no rule to indicate which diversity is suitable for certain

problems or data sets (Polikar 2006).

There are many definitions about the diversity of models, but they

are all grouped into two categories which are pair wise and non pair

wise (Kuncheva 2005). The agreement for a relationship between

two binary classifiers i and k is presented in table 2.4.

Table 2.4: Relationship Between a Pair of Classifiers

Dkcorrect(1) Dkwrong(0)
Dicorrect(1) N11 N10

Diwrong(0) N01 N00

where:

N11 is the number of correct predictions made both classifiers i and

k,

N10 is the number of correct predictions made by classifier i and in-

correct predictions made by classifier k,

N01 is the number of correct predictions made by classifier k and

incorrect predictions made by classifier i,

N00 is the number of incorrect predictions for both classifiers i and k,

The diversity measures considered in this proposed ensemble was

summarised from Kuncheva & Whitaker (2003) as well as Bian &

Wang (2007). The diversity can be grouped into two groups: pair

wise and non pair wise measures. The diversity of pair wise measure
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can be calculated between two base leaners in an ensemble. For an

ensemble, the diversity can be calculated by averaging all the values

from each pair of classifiers. Non pair wise diversity measures the

diversity by averaging all the performance measures such as Acc of

all base learners in the ensemble.

Bian & Wang (2007) had studied and investigated the diversity

measures. They grouped the similar diversity measures into three

groups as follow:

• Group 1 : consists of Disagreement Measure, Kohavi-Wolpert

Variance and Entropy Measure.

• Group 2 : consists of General Diversity and Coincident Failure

Diversity.

• Group 3 : consists of Double-fault Measure, Q Statistic, Cor-

relation Coefficient, Measure of Difficulty and Interrater Agree-

ment Measure.

The diversity of classifiers in the ensemble may produce better re-

sult in prediction giving higher accuracy compared to a single clas-

sifier (Kuncheva & Whitaker 2003).

2.9.1 Disagreement Measure

The Disagreement measure is to calculate the diversity between two

classifiers which are a base classifier and a complimentary classifier.

It is the ratio of correctly classified samples between two classifiers

for both classes. The Disagreement Measure between two classifiers

is as follows:
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Disi,k =
N01 +N10

N11 +N10 +N01 +N00
(2.8)

2.9.2 Double-fault Measure

The Double-fault measure calculates the diversity between classi-

fiers to find which classifiers are least related to a base classifier. It

is the ratio of incorrect predictions by both classifiers. The Double-

fault measure between two classifiers is as follows:

DFi,k =
N00

N11 +N10 +N01 +N00
(2.9)

In this thesis, the diversity measures applied in ensemble are

from two different groups as suggested by Bian & Wang (2007). The

diversity measures are disagreement measure from Group 1 and

double-fault measure from Group 3. Chapter 6.2.1 will discuss the

implementation of diversity measures that were applied in the en-

semble proposed.

2.10 Decision Fusion Strategies

Decision fusion strategies give an important impact to the final pre-

diction results of an ensemble of classifiers. Ghosh et al. (2011) dis-

cussed the decision fusion strategies available and classified them

into two methods. The methods are:

• Utility-based

Utility-based methods provide the function to combine the deci-
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sion based on the output generated from each classifier. It does

not consider any knowledge or evidence from previous predic-

tions. Some of the methods included are simple average and

voting techniques.

• Evidence-based

Evidence-based is, in contrast to utility-based, that decision

needs knowledge or evidence from previous prediction of output

generated from each classifier. Some of the methods included

are Bayesian and the Dempster-Shafer methods.

This thesis applies simple majority voting because of the critical-

ity in predicting a toxic class. Use of predictive toxicology models

with high confidence rely on low FNR. Thus the decision fusion

strategy must carefully predict the toxic class. The decision of the

voting technique to predict a chemical’s toxicity has to be fifty per-

cent or more to vote the chemical compound as toxic while less than

fifty percent will be non toxic. The results of the prediction may give

a high confidence in predictive toxicology. The methods for simple

majority voting applied in this thesis will be discussed in Section

6.2.3.

2.11 Optimisation Technique

The process of constructing an ensemble of models requires compu-

tational time because of the complex processes such as generation

of models, selection of models, combination of models and perfor-

mance evaluation (see Figure 2.3). The optimisation technique plays
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an important role in optimising the selection of relevant models from

a collection of models to be included in constructing an ensemble.

At the same time, optimisation technique will maintain the objective

of ensemble in getting higher Acc compared to a single classifier.

The main objective of optimisation technique is to choose the

most relevant parameters in order to get the best results. In this

case, the relevant parameters are:

• the most relevant models,

• the most diverse classifier,

• the highest Acc, and

• the optimum number of candidates in ensemble.

The value of parameter depends on the situation and the prob-

lem. Thus, the value of the objective function in this case can be to

maximise or minimise the value of the objective function. For exam-

ple in this thesis, the proposed optimisation technique will maximise

the performance measures (Acc, FNR and FPR) and minimise the

number of candidates in an ensemble to speed up the ensemble pro-

cess as discuss in Chapter 6.

2.11.1 Genetic Algorithms

The Genetic Algorithm (GA) is a technique to find the optimum solu-

tion by applying the principle of evolutionary biology. The technique

tries to mimic the same biology processes of generating human ge-

netic. The method of selection, recombination and mutation, and

reproduction will be repeated to find a solution to a problem.
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There are many studies that apply GA in their ensemble con-

struction such as Khakabimamaghani et al. (2010), Mehmood et al.

(2010), Musehane et al. (2008) and Masisi et al. (2008). In this the-

sis, GA was proposed as the optimisation technique applied in the

ensemble . Section 6.4 will discuss further on the proposed optimi-

sation that has been implemented in this research.

2.12 Summary

In this chapter the methods and techniques that are relevant to im-

proving the computation of predictive toxicology models were dis-

cussed. The literature review starts with a predictive toxicology def-

inition, the performance measures and techniques to calculate the

similarity of models. Methods to solve the problem in selecting the

most relevant models in a collection of models and make them into

an ensemble were briefly stated and reviewed. The detailed process

and issues in ensemble building were reviewed carefully.

The methods used within this research were justified in this chap-

ter. In the following chapters, all the proposed methods implemented

will be introduced and discussed.



Chapter 3

Methodology and Proposed

Framework for Data and

Model Governance

3.1 Introduction

The increasing variety of data mining tools offers a large palette of

types and representation formats for predictive models. Managing

the models then becomes a big challenge, as well as reusing the

models and keeping the consistency of model and data repositories

because of the lack of an agreed representation across the models.

The flexibility of XML representation makes it easier to provide solu-

tions for Data and Model Governance (DMG) and support data and

model exchange. Predictive Toxicology was chosen as an application

field to demonstrate the proposed approach to represent predictive

models linked to data for DMG.

43
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In this chapter, the framework of data and model governance will

be discussed. Furthermore the detailed methods of the research

design are briefly explained. All the data sets and data mining tools

used in the research will also be explained. The contribution for this

chapter is a new framework for data and model governance.

3.2 Methodology and Research Design

The objectives of this research can be accomplished by implementing

a structured research design. This research follows the methodology

proposed as shown in Figure 3.1. The main research problem is

to find the relevant predictive model to be used as an expertise to

predict new chemical compound.

Figure 3.1: The Method Followed by the Research Study
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Collections of classifiers are available from different sources and

in many formats. Some of them are in standard format such as

PMML, PToxML and PMQL. Others were generated using lots of avail-

able data mining tools such as Weka or data mining functions from

Matlab. Usually, the models generated will have their own format

and not be in a standard format.

A standard representation is needed in order to access those valu-

able models. In this research, a standard representation in the from

of Predictive Toxicology Markup Language (PTML) was proposed. The

representation will be explained in Chapter 4. It uses Extensible

Markup Language (XML) as a representation and can be used to

represent any predictive models. The models will be represented

with minimal tags that are necessary to describe the models and

for further analysis. Using the PTML, a collection of models can be

accessed and manipulated.

Before the models can be selected, comparison of the classifiers

is important as only the relevant models should be selected for a

certain problem. In Chapter 5, the method of classifiers comparison

is proposed to compare the similarity of predictive models from the

collection of models. The similarity method proposed considers three

elements of a predictive model such as Input (training set), Function

(classifier properties) and Output (confusion matrix). Chapter 5 will

demonstrate with experiments that the method is able to find the

relevant models for any problem. The similarity method is also able

to compare the binary and multi classes models.

For the last part of the research, the selected relevant models can
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be optimised for better performance in prediction. In predictive tox-

icology, the important performance measure is False Negative Rate

(FNR). A lower FNR tells us that the model is able to correctly pre-

dicted toxic class. That is very critical performance measure to be

aware of compared to False Positive Rate (FPR) where FPR is a per-

formance measure related to prediction of non-toxic class. The core

performance measure of a predictive model is Acc.

Ensemble methods have been shown to achieve better accuracy

compared to a single classifier (Bakar et al. 2011). Most ensembles

focus on accuracy as their main performance measure. For this re-

search, the domain of predictive toxicology requires that the toxicity

of a chemical compound be predicted correctly. Thus FNR is impor-

tant to be considered and the models should be able to predict with

lower FNR.

With this objective in mind, the proposed ensemble was developed

and will be discussed in Chapter 6. The proposed ensemble was op-

timised and able to predict the new chemical compounds with lower

FNR and lower FPR thus increasing the accuracy of the models.

The optimisation technique used was a Genetic Algorithm (GA) and

a simple majority voting technique was used as a decision making

strategy.

In order to find the ensemble candidates, the models were ranked

by using a cost function that combines Acc, FNR and FPR as a

composite performance measure. Diversity measures such as dis-

agreement measure and double fault measure were applied in con-

structing the ensemble method. By combining all the methods pro-
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posed, the results of the prediction for all experiments conducted

outperform other ensemble techniques such as Bagging, Boosting,

Stacking and Bayes.

3.3 Data and Model Governance

The processes of generating predictive models involve data prepara-

tion, checking of data quality, reduction, modelling, prediction, and

analysis of results. Each benchmark model is trained to find which

attributes and model parameters are most important to producing a

quality model. The tuning process involves selecting optimum model

parameters such as the number of fold-cross validation and classi-

fier type. Selection of the optimum attributes from the data set is

another step of the tuning process. This will be iterated until the

optimum combination of parameters is found to generate a better

quality model.

In the case of data set updates, predictive models related to the

older data set become unreliable. To generate new and reliable

predictive models for the updated data set, the iteration process

of tuning and finding the most relevant combination of attributes

and model parameters must take these changes into account. This

makes it necessary to recall the predictive model generation step for

an up-to-date model repository.

This continuous process shows that there may be thousands of

data mining models related to a single data set shared among data

mining researchers, generating versions of predictive models and re-
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lated data sets. Thus, to monitor and maintain changes between

data and models becomes even more challenging. There is a need to

define the relationship between data and models, so that the itera-

tion process of generating new predictive models integrates consis-

tently in the modelling framework and this evolution also needs to

be recorded. These repositories of data mining models should keep

information on historical developments which are also valuable for

analysis.

The models were reused from a repository of existing models as

a more efficient way of choosing the relevant models and reusing

existing knowledge in the field of predictive toxicology. In predic-

tive toxicology, there is a great emphasis paid to the development

of QSARs (Quantitative Structure Activity Relationship) validated by

some experts and used to specific tasks e.g. recommended by regu-

latory bodies for testing chemical from a particular class of chemical

compounds. Such models are used at different times but currently,

there is not a consolidated approach on maintaining them for future

use, and this gap motivates some of our research. Development of

such models requires expertise and time consuming procedures for

validation and are later reported for use by industry and regulatory

bodies. In this work we presume such models are part of the collec-

tion of models we make use of.

Existing models are represented in various platforms, for exam-

ple text files, relational database or different internal format pro-

duced from data mining tools (e.g. .arff produced by Weka and .fis

produced by Matlab). The challenge is how to share those models
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between researchers. One of the solutions is to represent the model

in XML format where the models can be published through the web

in standard form and can be accessed easily later. For that reason

the representation in XML was proposed to be a bridge and a flexible

solution to deal with the current diversity of model representations.

Searching the best model from a collection of models can be done

with a selection of criteria. Further analysis of the model is focussed

on comparing the performance of existing models or creating a com-

bination between models. Caruana et al. (2004) found that these ap-

proaches have often been proved to achieve better predictive perfor-

mance compared to producing a single predictive data mining model.

3.3.1 Data and Model Governance Framework

Data quality management (DQM) focuses on collecting, organising,

storing, processing and presenting high quality data to the stake-

holders for organization. For data governance, it is part of DQM

which specifies the framework for decision rights and accountabili-

ties (Wende 2007).

A global view of predictive modelling must involve data and mod-

els. Thus this valuable combination of data and models needs proper

management. Data Governance is defined by IBM as the quality

control discipline for assessing, managing, using, improving, moni-

toring, maintaining, and protecting organizational information (IBM

2012).

The process of generating predictive models involves Data Prepa-

ration, Feature Selection, Data Modelling and Prediction, Evaluating
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and Validating the Model, and Implementing and Maintaining the

Model. The process of predictive modelling needs to be properly

managed and controlled because of the consequences in the deci-

sion making. This research is moving towards Data and (predictive)

Model Governance. DMG is defined as the set of quality control pro-

cesses for assessing, managing, using, improving, monitoring, main-

taining, and protecting data and (predictive) model information.

(Fu et al. 2011) studied data governance issues and proposed a

framework for data governance related to data storage management

for example accuracy, completeness and integrity. Besides data gov-

ernance, models should also be the main assets that needs to be

managed properly. The governance process complements the man-

agement process. The management process focuses on the decision

and implementation to be made within the organisation, but in the

governance process, the most important is the accountability of the

decision made by the management process (Khatri & Brown 2010,

DGI 2010).

From the view of predictive modelling governance, the data and

model have to be properly managed to achieve quality prediction.

In this research, the accountability of the model selection and com-

bination is refered to the user’s requirement. For example a user

may want a model with high Acc and low FNR, so the selection of

models and ensemble proposed in this thesis will follow the user’s

request. The proposed framework for data and model governance

can be depicted as Figure 3.2.

Figure 3.2 represents data and model governance framework for
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Figure 3.2: Data and Model Governance Framework

predictive modelling. From the framework, it shows that the whole

process of predictive modelling involves governance tasks at every

single stage for predictive modelling. Furthermore the framework

emphasizes that the process of quality checking must be engaged at

every task involved in predictive modelling.

The reuse of models from a collection of models will be categorised

as model governance. The relevant classifiers from a collection can

be chosen by making comparison between them. The methods was

proposed to select and compare the classifiers from the collection.

The detailed technique for the proposed classifiers comparison can

be found in Chapter 5. Later the process will make a combination

between them. Chapter 6 will discusses the ensemble method pro-
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posed.

3.4 Data Sets

This research is focus on predictive toxicology models. The data sets

used were five real data sets freely available from Demetra Project

(Demetra). Data sets from UCI repository were also used in the

experiments as a benchmark before the methods proposed can be

applied to the real toxicology application.

3.4.1 Demetra Data Sets

The five data sets were used repeatedly throughout the experiments

and the results are reported within this thesis. Trundle (2008) had

used the same data sets and they are formally defined as:

1. Trout is defined as the acute toxicity for Rainbow Trout (On-

corhynchus mykiss) measured as a LC50 over 96-hours of ex-

posure.

2. Daphnia is defined as the acute toxicity for Water Flea (Daphnia

Magna) measured as a LC50 over 48-hours of exposure.

3. Oral Quail is defined as the acute oral toxicity for Bobwhite

Quail (Colinus virginianus) measured as a LD50 over 14-days

of exposure.

4. Dietary Quail is defined as the dietary toxicity for Bobwhite

Quail (Colinus virginianus) measured as a LD50 over 8-days

of exposure.
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5. Bee is defined as the acute contact toxicity for Honey Bee (Apis

melifera) measured as a LD50 over 48-hours of exposure.

Table 3.1 shows basic information on each of the endpoints: the

number of instances indicating how many chemicals are included

in each data set; the number of classes indicating how many dif-

ferent target classes exist for each endpoint (with numerical target

values being discretised according to the Global Harmonisation Sys-

tem); and the class distributions indicating the number of instances

belonging to each class overall, and in the training and testing sets

(GHS 2012). Note that for the Demetra source, there is an overlap in

the chemical instances in each of the endpoints i.e. a chemical may

have a recorded toxicity value for more than one of the endpoints.

Table 3.1: Summary of the Five Demetra Data Sets Used in the
Experimental Work Presented within this Thesis.

Data set No. of No. of No. of Class
Instances Features Classes Distribution

Trout 282 250 3 129:89:64
Oral Quail 116 255 4 4:28:24:60
Daphnia 264 184 4 4:28:24:60
Dietary Quail 123 256 5 8:37:34:34:10
Bee 105 254 5 13:23:13:42:14

3.4.2 UCI Data Sets

There is a repository of data sets maintained by University of Califor-

nia Irvine (UCI) to facilitate research in data mining and knowledge

discovery (Bay et al. 2000). This open archive consists of a wide va-

riety of data types and application areas. For this research, the UCI
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data sets were used to verify and validate the methods proposed

within this thesis. We have selected five data sets also reported

by other researchers and similar (to Demetra data sets) in terms

of number of classes and coming from a medical domain.

Table 3.1 is the distribution of the UCI data sets (UCI 2012).

Table 3.2: Summary of the Five UCI Data Sets Used in the Experi-
mental Work Presented within this Thesis.

Data set No. of No. of No. of Class
Instances Features Classes Distribution

Blood Transfusion 748 5 2 178:570
Breast Cancer 699 11 2 458:241
Hepatitis 155 20 2 32:123
Liver Disorder 345 7 2 145:200
Pima Indian Diabetes 768 9 2 500:268

3.4.3 Collection of Predictive Models

The research aim was to find relevant models from a collection of

models and to use them alone or as part of ensemble for predictions

on new problems. To presume the collection of models, this section

will describe the methodology used to generate the collection of mod-

els. All the predictive models were generated automatically based on

PTML representation.

The collection of models was generated using numbers of classi-

fiers to make the model diverse. Thus, the construction of an en-

semble using those models will ensure that the ensemble is hetero-

geneous. Wang (2010) found that results and reliable classifications

improved the Acc significantly when using a heterogeneous ensemble

compared to other single model and ensemble filters.
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The steps taken to automate the generation of PTML based on

representation for predictive models are as follows:

1. Data Preparation

The important step in the data mining process to generate a

predictive model is data preparation. The huge amount of data

is normally checked for mistakes, out of range values or impos-

sible data combinations. Results can be misleading if the data

is not properly prepared.

2. Model and Parameter Settings Selection

Different combinations of input settings will be used to generate

predictive models. The settings such as type of classifier and

number of folds may affect the performance of the generated

models.

3. Model Generation and Performance Test

In this case, Weka, a Java based data mining tool, has been

used to generate the data mining models but many other model

generation tools may be also used (e.g. Oracle Data Mining and

SAS Analytics). From the input given (data and model param-

eters), models are generated automatically and tested against

test sets. These models are stored in text files of internal for-

mat (e.g. Weka Generated Model with file extension .model).

4. XML Model Generation

The internal storage representation has to be converted into

XML format for later processing and analysis. Predictive Toxi-

cology Markup Language will be a bridge between various model
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formats.

5. Model Representation Testing

Models in XML form will be tested by retrieving the model using

an XML Parser to check there are no syntactical errors in their

representation.

6. Models Publishing

The XML model can be published and stored in the repository

for further processing tasks. In this case, the PTML model is

used for data and model repositories.

3.5 Weka’s Functions

Weka is a data mining tool that offer lots of functions related to

knowledge discovery and data mining processes. The tool can be

integrated in a Java based environment to make it flexible to devel-

opers. The Weka package can be included in Java sources and runs

on various platforms. For the end users, Weka has a Graphical User

Interface (GUI) with the user manual that makes it easy to use.

In this research, all the models generated were using Weka pack-

age being called into a Java program. Functions that were used in

this research were select attribute (feature selection) and classify.

Feature selection functions are used for finding the most significant

attributes to be used for prediction. Classify functions are machine

learning functions that will use to classify classes of the new prob-

lem. The output of the prediction are performance measures (Acc,

FNR, FPR) and confusion matrix.
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Following are the functions used for attribute evaluation (feature

selection) within this research:

• CfsSubsetEval

Evaluates the worth of a subset of attributes by considering

the individual predictive ability of each feature along with the

degree of redundancy between them.

• Classifier subset evaluator

Evaluates attribute subsets on training data or a separate hold

out testing set.

• ConsistencySubsetEval

Evaluates the worth of a subset of attributes by the level of

consistency in the class values when the training instances are

projected onto the subset of attributes.

All the attributes were searched using these algorithms:

• BestFirst

Searches the space of attribute subsets by greedy hillclimbing

augmented with a backtracking facility.

• Genetic Search

Performs a search using the simple genetic algorithm.

• Greedy Step Wise

Performs a greedy forward or backward search through the

space of attribute subsets.

For the machine learning algorithms, the classifier functions ap-

plied within this thesis were as follows:
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• K-Nearest neighbors classifier (weka.classifiers.lazy.IBk)

K-nearest neighbours classifier. Can select appropriate value of

K based on cross-validation. Can also do distance weighting.

• Decision trees (weka.classifiers.trees.J48)

Class for generating a pruned or unpruned C4.5 decision tree.

• Numerical prediction (weka.classifiers.rules.JRip)

This class implements a propositional rule learner, Repeated

Incremental Pruning to Produce Error Reduction.

• Naive Bayes (weka.classifiers.bayes.NaiveBayesUpdateable)

Class for a Naive Bayes classifier using estimator classes. This

is the updateable version of NaiveBayes.

• Multilayer Perceptron

(weka.classifiers.functions.MultilayerPerceptron)

A Classifier that uses backpropagation to classify instances.

This network can be built by hand, created by an algorithm or

both. The network can also be monitored and modified during

training time.

• Bagging (weka.classifiers.meta.Bagging)

Class for bagging a classifier to reduce variance. Can do classi-

fication and regression depending on the base learner.

• Boosting (weka.classifiers.meta.AdaBoostM1)

Class for boosting a nominal class classifier using the Adaboost

M1 method. Only nominal class problems can be tackled. Often

dramatically improves performance, but sometimes overfits.



3.5 Weka’s Functions 59

• Stacking (weka.classifiers.meta.StackingC)

Implements StackingC (more efficient version of stacking).

• Ensemble Selection (weka.classifiers.meta.EnsembleSelection)

Combines several classifiers using the ensemble selection method

(see Section 2.8.3.6).

• Random Forest (weka.classifiers.trees.RandomForest)

Class for constructing a forest of random trees.

Figure 3.3: Weka Data Set Preparation Screen

Figure 3.3 is a screen shot from Weka. The screen is the first

screen used to select a data set and display the information of a

data set such as number of attributes, number of instances and all

the attributes with the values.

After loading the data set as in Figure 3.3, the feature selection

algorithms can be applied to find the most significant attributes of
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Figure 3.4: Weka Attribute Evaluator Screen

the data set. There are numbers of algorithms can be selected. The

screen is depicted in Figure 3.4.

The screen (Figure 3.5) is the modelling of the data that had been

selected. Here a large number of updated machine learning algo-

rithms can be selected. The attribute selection mode such as 10-fold

cross validation and classifiers can be selected. The results of the

generated models will appear in the classifier output box. The main

results are performance measures and confusion matrix.

3.6 Summary

Generated predictive models are valuable assets to the user because

they can be used to predict new problems based on current training
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Figure 3.5: Weka Classifier and Prediction Results Screen

data set. They are most valuable if the models offer the possibil-

ity to be analysed for knowledge and are manageable. With proper

representation using a PTML representation, these models can be

processed further by selecting, comparing and combination of the

classifiers which will be discussed in the following chapters. This

thesis is moving toward data and model governance where there are

huge amounts of data and large numbers of models to be stored

and maintained. The proposed representation, selection, compar-

ison and combination of models will be discussed in the following

chapters.
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Classifiers Representation

4.1 Introduction

Currently there are emerging solutions for data governance, but

there is no consistent approach to a sustainable data and related

model governance framework. The lack of an agreed representation

across data mining tools for models makes difficult to analyse and

interpret them. Extensible Markup Language (XML) structure has

the potential to describe this information about data and associated

models.

In this chapter, Predictive Toxicology Markup Language (PTML),

an original structure for representing predictive toxicology model is

proposed. It offers a representation scheme for predictive toxicology

data and models generated by data mining tools. The representation

also offers possibilities to compare the models by calculating their

similarity using the proposed models comparison technique that will

be introduced and discussed in Chapter 5. The objective of PTML

is to store the main information that needs to be captured so that

62
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further processes of comparison and combination of classifiers can

be implemented. The contribution of this chapter is a new knowledge

representation for predictive toxicology data and models (Predictive

Toxicology Markup Language).

The lack of a standard representation means that attributes are

not consistent. The success of the model comparison depends on

the standard naming of attributes. A pool of classifiers was gener-

ated from a data set produced using software called Dragon. Other

software may produce different attributes for the same data set. Dif-

ferent names of attributes with the same meaning can be mapped

using ontology. The ontology process is not considered in this re-

search.

4.2 Model Structures for PTML

The main objective of standard representation for predictive models

is to make it easier to process and understand. In this thesis, the

representation is based on XML. All the predictive models (PTML) can

be stored in a database. Thus, the basic process of Database Man-

agement System (DBMS) can be manipulated against the models.

The DBMS processes are query, searching, add, delete and update.

This section will briefly explain the proposed model representa-

tion for Data and Model Governance in Predictive Toxicology. The

model representation proposed is called Predictive Toxicology Markup

Language (PTML) it represents predictive models generated from dif-

ferent data mining tools. The representation is part of the whole
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research for Data and Model Governance. From the representation,

further processing can be done to the predictive models in order to

find the most relevant models from a collection of models.

The proposed Predictive Toxicology Markup Language is an ex-

tension to the model proposed by Neagu, Craciun, Chaudhry & Price

(2007) to provide solutions in data and model representation for tox-

icology data. PTML represents data mining models in a standard

format and can be simply manipulated for searching and compar-

ing. It also describes predictive toxicology data and the associated

model generated by data mining processes.

PMML (Predictive Model Markup Language) is a standard XML-

based language used to represent predictive models and allow shar-

ing of models to compliant applications. PMML is still still under

development because it is attempting to represent the complete in-

formation of data mining processes. That is why there are other

parties building on PMML models such as representations proposed

by Chaves et al. (2006) and Gorea (2008).

Chaves et al. (2006) developed a PMML compliant scoring engine

called Augustus. Augustus used components from PMML and added

other new components such as a data management component, util-

ities for processing PMML files and run time support. Gorea (2008)

proposed PMQL (Predictive Modelling Query Language), a special-

ized query language for interacting with PMML documents. It is

embedded within DeVisa framework which provides functions such

as scoring, model comparison, model composition, model searching,

statistics and administration through a web service interface for the
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PMML. Both agents rely on the PMML to have a pool of models and

cannot be used with other models.

The difference with the proposed PTML is that it can be a bridge

to models that are represented differently. The difference with other

representations are as follows:

• Simpler representation but yet able to hold predictive models

information,

• Integrative approach for data and model representation, and

• Process and manage the models in relation to the available

data.

The next section will discuss further the functions and elements

of PTML.

Weka and Java are the two main tools used in this thesis in

generating predictive models and converting them to PTML repre-

sentation. Java functions that was developed within this research

are called generateWekaModel and used to retrieve output from Weka

while PTMLTranslation is used to translate the output from Weka to

PTML structure.

The generateWekaModel function will invoke Weka and generate

predictive models with diverse feature selection algorithms and clas-

sifiers as discussed in Section 3.5. The hundreds of models gener-

ated for all Demetra data sets were stored in Weka’s standard repre-

sentation (.model).

The Weka’s models generated (.model) then will be translated and

represented in PTML format using PTMLTranslation which was de-
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veloped as part of this thesis research. The conversion to PTML is

based on the proposed representation as discussed in this section.

The PTML models that have XML tagging can be used later for model

comparison and combination.

PTML was proposed to make predictive models easier to anal-

yse and interpret. This section gives an overview and explanation

of the components of the PTML (Predictive Toxicology Markup Lan-

guage) model. The PTML structure currently consists of 6 elements:

Model Description, Model Parameter, Model Attributes, Model Per-

formance, Class Attribute and Confusion Matrix (See Figure 4.1).

Document Type Definition (DTD) for PTML can be found in Appendix

A.1. The DTD is an XML schema that allow different format of pre-

dictive models to be imported using PTML standard.

1. Model Description

This section describes the general information of the predictive

model. Attributes such as the date when the model was gener-

ated, descriptions of model and file name for Weka model type

can be found in this section. (see Figure 4.2).

2. Model Parameter

Another important part regarding the generation of a predic-

tive model is the parameter settings. Information such as type

of classifier, number of folds and seed are used to distinguish

between models. This information is useful for describing or

regenerating predictive models. (see Figure 4.3).
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<dataMiningModel>
<modelDescription>
:
</modelDescription>
<modelAttributes>
:
</modelAttributes>
<modelParameter>
:
</modelParameter>
<modelPerformance>
:
</modelPerformance>
<classAttribute>
:
</classAttribute>
<ConfusionMatrix>
:
</ConfusionMatrix>

</dataMiningModel>

Figure 4.1: The PTML Document Structure

<modelDescription>
<Name>DM</Name>
<Date>25-12-2008</Date>
<Version>Ver1.1</Version>
<Author>Mokhairi</Author>
<Description>Testing Autogenerated

Model From Weka
</Description>
<wekaModel>wekaModel20.model</wekaModel>

</modelDescription>

Figure 4.2: Model Description
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<modelParameter>
<option Classifier=
"weka.classifiers.trees.J48">
</option>
<option TrainingType>
10fold-cross-validation</option>
<option Fold="10"></option>
<option Seed="1"></option>

</modelParameter>

Figure 4.3: The PTML Model Parameter

3. Model Attributes

This section describes the data set and attributes used for the

generation of the predictive model. The information includes

file name of data set the model is generated from, number of

instances and number of attributes. Without these, the pre-

dictive model cannot be generated or used to make predictions

(see Figure 4.4). The representation emphasizes the inclusion

of the data source into the model representation, thus further

operations to compare models by the source data can be de-

fined for model comparison.

4. Model Performance

The element of model performance is a wrapper around various

elements that can illustrate the overall quality of the model.

This element holds related results generated from a specific
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<modelAttributes>
<DataSet>APC_Recon-(C)Mallard_Duck-

Raw_Data-Training.arff
</DataSet>
<FeatureSelectionAlgorithm>

CfsSubsetEval
</FeatureSelectionAlgorithm>
<FeatureSearchMethod>

BestFirst
<FeatureSearchMethod>
<TotalNumberInstances>

24.0
</TotalNumberInstances>
<NumberOfAttributes>

184
</NumberOfAttributes>
<NumberOfAttributesSelected>

7
</NumberOfAttributesSelected>
<Features>

<Name>Del(Rho)NA5</Name>
<Type>Numeric</Type>

</Features>
:

</modelAttributes>

Figure 4.4: Model Attributes
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data set although it is possible to regenerate and recalculate

the model. Statistical performances for the model generated

are shown in this section such as correctly classified instances,

mean absolute error and root mean squared error. From the

performance, conclusions can be made about the model’s qual-

ity. (see Figure 4.5).

<modelPerformance>
<modelType>

Classification
<modelType>
<CorrectlyClassifiedInstances>20.0
</CorrectlyClassifiedInstances>
<IncorrectlyClassifiedInstances>4.0
</IncorrectlyClassifiedInstances>
<Accuracy>83.33</Accuracy>
<Kappa>0.71</Kappa>
<MeanAbsoluteError>0.15
</MeanAbsoluteError>
<RootMeanSquaredError>0.33
</RootMeanSquaredError>
<RelativeAbsoluteError>40.77
</RelativeAbsoluteError>
<RootRelativeSquaredError>76.59
</RootRelativeSquaredError>

</modelPerformance>

Figure 4.5: Model Performance

5. Class Attribute

Further performance for each class attribute is stated in this

section. The information included for each class are true pos-
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itive rate, false positive rate, precision, recall and receiver op-

erating characteristic (ROC) area (see Figure 4.6). This perfor-

mance is based on newest test set.

<classAttribute>
<Name>contact-lenses</Name>
<Class>soft</Class>

<Details>
<TPRate>1.0</TPRate>
<FPRate>0.053</FPRate>
<Precision>0.833</Precision>
<Recall>1.0</Recall>
<FMeasure>0.909</FMeasure>
<ROCArea>0.947</ROCArea>

</Details>
<Class>hard</Class>

:
:

</classAttribute>

Figure 4.6: Class Attribute

6. Confusion Matrix

The confusion matrix is the most important element in generat-

ing classification models. It can give an overview of correct and

incorrect classifications to the class attribute. (see Figure 4.7).
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<ConfusionMatrix>
<Array> Class1 Class2 </Array>
<Array> 5 0 Class1 </Array>
<Array> 0 3 Class2 </Array>

</ConfusionMatrix>

Figure 4.7: Confusion Matrix

4.3 Generated Predictive Models

The method of generating a collection of predictive models was de-

scribed in Chapter 3. The automatic generation of predictive models

is well addressed in the literature mainly in the work related to Hy-

brid Intelligent Systems (Neagu et al. 2005). One of the main motiva-

tions is the tuning of generated models and adapting them to further

problems is not an easy task.

Caruana et al. (2004) addressed model generation for use in en-

sembles of models. They generated diverse sets of models by using

seven different algorithms. About 2000 models were trained using

these algorithms and applied to test sets. All algorithms used had

different parameter settings. The algorithms they used were:

• Support Vector Machines (SVMs)

• Artificial Neural Nets (ANNs)

• Memory based Learning algorithms: k-NN

• Decision Trees (DT)

• Bagged Decision Trees (BAG-DT)
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• Boosted Decision Trees (BST-DT)

• Boosted Stumps (BST-STMP).

For this research, collections of models were generated by using

different algorithms implemented in Weka such as:

• K-Nearest neighbors classifier (weka.classifiers.lazy.IBk)

• Decision trees (weka.classifiers.trees.J48)

• Numerical prediction (weka.classifiers.rules.JRip)

• Naive Bayes (weka.classifiers.bayes.NaiveBayesUpdateable)

• Multilayer Perceptron

(weka.classifiers.functions.MultilayerPerceptron)

• Bagging (weka.classifiers.meta.Bagging)

• Boosting (weka.classifiers.meta.AdaBoostM1)

• Stacking (weka.classifiers.meta.StackingC)

• Ensemble Selection (weka.classifiers.meta.EnsembleSelection)

• Random Forest (weka.classifiers.trees.RandomForest)

The description of each classification algorithm was discussed in

Chapter 3.

Figure 4.8 shows the generated PTML models in XML format. The

models were a collection of models that can be accessed and manip-

ulated for prediction. The models were linked to their training data

sets as shown in Figure 4.9. The comparison methods will access
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and retrieve those PTML files and select the relevant models to be

used for prediction.

Figure 4.8: Example of the PTML Models Collection.

Figure 4.9: Example of the Collection of Training Data Sets Linked
to PTML Models
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4.4 Retrieving PTML Models

The generated models as shown in Figure 4.8 can be retrieved using

a suitable technique. As discussed earlier in Section 2.3.2, there

are a few technologies that can be used to retrieve the XML docu-

ments. In this research, all generated PTML models were retrieved

using XML parser. The XML parser is a class built for Java and is

suitable for a large number of PTML models and their structure. To

further speed up the processing of the models, all the retrieved PTML

documents were stored in a structured database (MS Access).

The relevant PTML models from the collection are retrieved using

the proposed techniques that will be discussed in the next chapter.

The model will be compared based on the element of predictive model

(input, property and output). The steps of retrieval process are as

follows:

1. Read new data set (attributes, instances).

2. Compare the attributes and instances of new data set with the

models from the pool using methods proposed in Chapter 5.

3. Sort the models with the highest similarity.

4. Return the relevant models.

The method proposed for the comparison of the new data set uses

Data set Similarity Coefficient (DSC). It uses a measure of the sim-

ilarity of two-dimensional data sets to generate predictive models.

The method based on DSC would measure the overall similarity of

data sets between predictive models. Hence, the relevant models
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related to the new problem will be retrieved from the collection of

models.

4.5 Limitations

In this chapter, the PTML representation proposed focused on clas-

sification models with three element of Input (data set properties),

Function (classifier properties) and Output (Confusion Matrix). The

thesis may be developed by extending the representation to apply re-

gression model in the future. In addition, the representation may be

enhanced by including other elements and properties of predictive

model such as quality factors.

4.6 Summary

In this chapter, an original representation of predictive toxicology

models structure is presented. An implementation of the structure

using real toxicity data has been generated and represented in the

PTML format. The models were stored in the repository for easier

sharing that allows faster access and simpler formalised structured

format.

The representation of models also offers the possibility of auto-

mated searching and retrieval of classifiers based on some specific

criteria. The criteria will be based on the comparison between the

collection and the problem. The comparison technique will be pro-

posed in the next chapter.

In the next chapter, the collection of models in the repository
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is used throughout the thesis, with the aim of comparing relevant

classifiers and use in an ensemble to make predictions.



Chapter 5

Proposed Method for

Classifiers Comparison

5.1 Introduction

Generating predictive models by applying machine learning and model

ensembles techniques has become an easy task when facilitated by

development of more user-friendly data mining tools. However, such

progress raises issues related to model management: once devel-

oped many classifiers for example become accessible in collections

of models. Choosing the relevant model from the collection may be a

faster task: calculating the similarity of predictive models is the key

to rank them, which may improve model selection or combination.

Furthermore, calculating the similarity of predictive models helps

to characterize the model diversity and to identify relevant models

from a collection of models. The relevant models are considered

based on their performance which is calculated using their confu-

78
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sion matrix.

This chapter will introduce a methodology to measure the simi-

larity of classifiers by comparing their data sets, functions and con-

fusion matrices. The results show that the methodology proposed

performs well in measuring model similarity from a collection of clas-

sifiers.

The contributions in this chapter are:

• A technique to compare the similarity of classifiers.

– A technique to compare data sets (training set) (Data set

Similarity Coefficient - DSC)

– A technique to compare the similarity of functions used to

generate the predictive models.

– A technique to compare the similarity of confusion matri-

ces.

– A technique to compare the similarity of multi class confu-

sion matrices to solve binary class problem.

The rest of the chapter is structured as follows: Section 5.3 presents

the concept of predictive toxicology models comparison and motiva-

tion to compare classifiers with a composite similarity metric. Sec-

tion 5.4.1 defines the technique of comparison of (toxicology) input

data sets. The similarity measure of Predictive Model Functions is

proposed in Section 5.4.2. Section 5.4.3 introduces and exempli-

fies the technique to compare the output of predictive models rep-

resented by their confusion matrices. A composite measure of the
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similarity of predictive models is proposed in Section 5.5. Experi-

ments and results are discussed in Section 5.6.

5.2 Classification Models

For each classification model, the number of classes will differentiate

between binary and multi class models. Classification models can

be grouped into two:

1. Binary Classification Models

Binary classification models have only two classes which are

first class and second class which normally represent true and

false classes. The important performance measure is Acc. Other

critical performance measures related to binary models are TNR,

TPR, FNR and FPR. As mentioned earlier, in the toxicology do-

main the most critical issue in prediction is to find whether the

chemical compound is toxic or non toxic. Thus, the prediction

should have high confidence in FNR.

2. Multi class Classification Models

In multi class classification models, the number of classes will

be more than two. The important performance measure will be

Acc as described in Section 2.5.2. For the same target, which is

to have models with low FNR, the thesis proposed that the con-

fusion matrix of multi class classification models be re-grouped

into binary class in order to solve the binary class problem.

This is because, in predictive toxicology, the chemical com-

pound predicted using multi class classifiers can be categorised
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by toxic level such as class1, class2, class3 and classn. All the

classes can be grouped into toxic or non toxic classes.

Through this chapter, experiments were conducted on both bi-

nary classification and multi class classification models to solve bi-

nary problem. The objective is to find the relevant model from the

collection of models that will be chosen to make a new prediction.

5.2.1 Classifier Elements

The proposed definition of predictive model structure that consists

of Input, Function and Output can be found in Chapter 4. The Input

consists of data collections used by machine learning algorithms to

get the prediction output (see Figure 5.1). The Output is obtained by

using the model confusion matrix, in the case of classification mod-

els. Function represents the machine learning algorithm properties

used to generate predictive model. Information such as classifiers,

feature selection algorithms, number of folds and seed are used to

distinguish between models. This information is useful for describ-

ing or regenerating predictive models. The performance of the clas-

sification models is related to correctly classified instances. Such

information can be found from the model confusion matrix which is

useful for classifier performance evaluation.

In this thesis, a methodology was proposed to measure the sim-

ilarity of classifiers as predictive models by comparing their input

data sets, functions and confusion matrices. In this work, to assure

the compatibility of a model selection and combination, the models

were compared with the models built on similar input data sets.
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Figure 5.1: Predictive Modelling Framework

The confusion matrix provides information on the performance

of each class for a trained classifier. However, in order to measure

the similarity of predictive models as a whole, there is a need to

measure the similarity of predictive model elements (Input, Function

and Output) independently.

For the first structure element (Input) of the predictive model, the

Data set Similarity Coefficient (DSC), a measure of the similarity of

two-dimensional data sets used to generate predictive models, was

proposed. The method based on DSC would measure the overall

similarity of data sets between predictive models.

Similarity of Predictive Model Function (SimF ) method was also

proposed to measure similarity of algorithms applied in generating

the predictive models.

For the last structure element (Output), the Similarity of Output

(SimO) method to measure the similarity of confusion matrices be-

tween compared predictive models was also proposed. Performance

measures such as Accuracy or False Negative Rate can be derived

from the confusion matrix, which can also be used to derive further

metrics.

Thus, to calculate the Similarity of Model (Sim), similarities of
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each predictive structure (DSC, SimF and SimO) were combined to-

gether. To give more flexibility to the users to calculate the similarity

of predictive models, the Sim method allows the user to select which

structure is important in this composite metric. For the performance

measures, the study was focused on the importance of False Nega-

tive Rate (FNR) for predictive toxicology models, which is an impor-

tant metric for the application domain: low value of the FNR means

the predictive model is able to predict the toxicity of chemical com-

pounds in a safer way.

5.3 Classifiers Comparison

Predictive models comparison helps in finding how similar models

are. However, relying on only standard performance indicators such

as accuracy may not give much clue on the overall or specific quality

of a predictive model. Sometimes, the accuracy might be biased for a

certain class and this may not provide a good indication of the over-

all performance of the predictive model (Khoussainov et al. 2005).

In this case, the accuracy is not necessarily the only measurement

for predictive models, whereas the confusion matrix is still the most

valuable source of performance indicators from classifiers to be an-

alyzed.

The motivation of this thesis is given by the need to analyse the

multi class classifier models for selected classes. In toxicology, users

are mostly interested in the toxic class being predicted correctly.

Using the confusion matrix as the information source of classifiers
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performance, users can derive more useful measurements related to

their objective. The classifiers can either be binary class or multi

class models.

The technique proposed for comparing classifiers can be used for

both binary class and multi class classifiers. But the solution re-

quires much effort in converting data sets to new binary class sets

and retraining the models with the new data sets. Since there maybe

thousands of models in a collection of models, to be practical, the

proposed technique to transform the multi class confusion matrices

into binary confusion matrices is done without updating the data

sets and re-generating the models. This means that the Acc, FNR

and FPR can be calculated using current confusion matrices for

multi class predictive models. This will confirm that the original

structures and information the predictive models learned remain

unchanged. It is done by combining the multi class data set into

a new data set with only binary classes of toxic and non-toxic out-

put and re-generating new predictive models related to the new data

sets.

Comparison of predictive models is different to other similar-

ity domains such as sequence similarity in bio-informatics or in-

formation retrieval. Todeschini et al. (2004) used variable cross-

correlation matrix to find the relationship of features and reduce

the similar features in order to find simpler models. They modified

the Hamming distance technique to calculate the distances between

predictive toxicology models.

In real cases, data sets are constantly updated. The changes in
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data sets will make previously generated predictive models obsolete

if not updated to the current content. This situation will have to

be considered when comparing predictive models to calculate their

similarity. The changes of instances could play a crucial role when

finding similar models because it would affect the performances of

learning models. Consequently, the big challenge is to measure

model similarity in a collection of models. There are four cases of

data set update to be considered:

1. Different sets of records (instances) and similar variables (de-

scriptors).

2. Different sets of records (instances) and different variables (de-

scriptors).

3. Similar sets of records (instances) and similar variables (de-

scriptors).

4. Similar sets of records (instances) and different variables (de-

scriptors).

From the current literature, there are no comparisons of classi-

fiers that calculate their similarity by incorporating the Input, Func-

tion and Output values in order to rank the classifiers from a col-

lection of models. Many studies have been done by comparing the

confusion matrices properties in ensembles of models such as those

by Prasanna et al. (2007) and Freitas et al. (2007). However, a more

integrated approach to consider model development (training data

and function) is still necessary to improve model management and

reuse for related tasks.
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5.4 Similarity of Predictive Models’ Element

This section will describe the method for calculating the similarity

for each predictive model element (Input, Function and Output).

5.4.1 Similarity of Toxicology Data Sets

This section introduces the technique to compare similarity of data

sets from a collection of models. The models are generated using

Weka based on the four cases introduced above. The aim is to anal-

yse if similar models would predict similar results.

In this research, the data sets are composed of rows (chemical

compounds) and columns (descriptors): the descriptors are calcu-

lated values to describe the chemical compound properties, whereas

the outputs are toxicity values obtained from testing chemical com-

pounds against in vivo or in vitro end points.

Simpler predictive models can be generated by following a feature

selection process, which is applied to find the most relevant descrip-

tors of the data set. For the evaluation of the similarity between the

two sets, the Jaccard Similarity Coefficient (JSC) can be used. It is

defined as the size of the intersection divided by the size of the union

of the sets A and B:

JSC (A,B) =
|A
∩
B|

|A
∪
B|

(5.1)

where, A = {ai} and B = {bi} containing i = 1..n tuples. In the

data sets, there were two-dimensional sets (see Table 5.1 to Table

5.4 for examples), which cannot be measured using JSC. This study
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addresses the cases where the values for the same descriptors and

chemical compounds are the same (data quality check having been

previously done) for all the data sets experimented on.

The new method proposed was Data set Similarity Coefficient

(DSC) to measure the similarity of two-dimensional data sets used

to generate predictive models. The DSC between Model a (Ma) and

Model b (Mb) data sets is:

DSC(Ma,Mb) =
|CMa

∩
CMb ||RMa

∩
RMb|

|CMa

∪
CMb ||RMa

∪
RMb|

(5.2)

where:

CMa is the set of all descriptor names (columns) for the data set used

in Model a,

CMb is the set of all descriptor names (columns) for the data set used

in Model b,

RMa is the set of all chemical compound attributes (rows) for the data

set used in Ma,

RMb is the set of all chemical compound attributes (rows) for the data

set used in Mb.

Equation 5.2, DSC(Ma, Mb) is a Data set Similarity Coefficient used

to measure similarity of Input data set for Model a (Ma) and Model b

(Mb).

To exemplify the use of the proposed DSC: consider four models

with their particular data sets which are DS1, DS2, DS3 and DS4 (see

Table 5.1 to Table 5.4). Data set DS1 is the main data set whereas

the other data sets are subsets of DS1. There are seven descriptors
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(ID, D1, D2, D3, D4, D5 and Class) in the data set.

Table 5.1: Example of Data Set DS1

ID D1 D2 D3 D4 D5 Class
1 9.5 7.5 10 7.5 21.5 Yes
2 1.1 2 4.1 10 20 No
3 7 10 11 10.6 20.5 Yes
4 10 15 20 15 20 Yes
5 9 14 19 14 10 N0

Table 5.2: Example of Data Set DS2

ID D1 D2 Class
1 9.5 7.5 Yes
2 1.1 2 No
3 7 10 Yes

Table 5.3: Example of Data Set DS3

ID D2 D3 Class
3 10 11 Yes
4 15 20 Yes
5 14 19 No

Table 5.5 shows the similarity coefficient matrix of data sets DS1,

DS2, DS3 and DS4 which were calculated by using DSC: DS2 seems

to be most similar to DS1, followed by DS3 and DS4. For example,

the similarity between Modela (Ma) and Modelb (Mb) that used data

sets DS1 and DS2 is:

DSC(Ma,Mb) =
|2 || 3|
|5 || 5|

=
6

25
= 0.24 (5.3)

DSC may provide an effective measure in calculating the similar-

ity of data sets used in predictive models. The data set similarity for
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Table 5.4: Example of Data Set DS4

ID D4 D5 Class
2 10 20 No
3 10.6 20.5 Yes
4 15 20 Yes

Table 5.5: Data Set Similarity Coefficient Matrix of Data Set DS1,
DS2, DS3 and DS4

DS1 DS2 DS3 DS4
DS1 1.00 0.24 0.24 0.24
DS2 0.24 1.00 0.06 0.00
DS3 0.24 0.06 1.00 0.00
DS4 0.24 0.00 0.00 1.00

two predictive models will give us an indication of what the predictive

model may derive from similar data sets.

5.4.2 Similarity of Predictive Model Functions

This section introduces the similarity measure for the second ele-

ment of the predictive model, the Function F . Using this method,

the models generated with similar functions can be searched. The

method proposed was to apply the Jaccard Similarity Coefficient

(JSC) to calculate the similarity for F ; it is defined as the size of

the intersection divided by the size of the union of the set FMa and

set FMb:

SimF(Ma,Mb) =
|FMa

∩
FMb|

|FMa

∪
FMb|

(5.4)

For consistency the method assumes all parameter names of pre-

dictive models come from the same representation such as Predic-
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tive Toxicology Markup Language (PTML) or Predictive Model Markup

Language (PMML). For example, given two models Model a (Ma) and

Model b (Mb):

FMa = { "Decison Tree", "10-Folds, "classification" } and

FMb = { "NeuralNet", "10-Folds","classification" }.

The similarity of the two properties of learning functions is,

SimF(Ma,Mb) =
|2|
|3|

= 0.67 (5.5)

The result for SimF (Ma,Mb) shows 67% intersection between the

function sets of the two models.

5.4.3 Similarity of Confusion Matrices

In this section, a novel technique was proposed to compare predic-

tive models performance based on their confusion matrices. The

confusion matrix stresses the raw results of the classification gener-

ated by the classification algorithm. The result contains information

on correct and incorrect classification determined by the machine

learning algorithm to predict the output.

5.4.4 Similarity of Confusion Matrices for Binary Clas-

sifiers

5.4.4.1 Binary Class Confusion Matrices

Kohavi & Provost (1998) defined a confusion matrix that contains

information about actual and predicted classifications by a classifi-

cation model. Table 2.1 shows the confusion matrix for a two class
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classifier. The performance measures for two class classifiers can be

calculated from the confusion matrix as follows: sensitivity or TPR =

TP/(TP+FN ) is the rate of correct predictions for the positive output

(e.g. Yes or True), FPR = FP/(FP+TN ) is the rate of incorrect pre-

dictions for the positive output (e.g. No or False), specificity or TNR

=TN/(TN+FP ) is the rate of correct predictions for the negative out-

put, and the rate of incorrect predictions for the negative output is

FNR = FN / (TP+FN ). Acc = (TP+TN ) / (TP+FP+FN+TN ) measures

the correct predictions for all classes.

Table 5.6: Example of Confusion Matrix for Model M1.

Actual Actual
Yes No

Predicted Yes 1 2
Predicted No 3 4

Table 5.7: Example of Confusion Matrix for Model M2.

Actual Actual
Yes No

Predicted Yes 3 4
Predicted No 1 2

Table 5.8: Example of Confusion Matrix for Model M3.

Actual Actual
Yes No

Predicted Yes 2 3
Predicted No 2 3

For example, consider the confusion matrices for three models

M1, M2 and M3 (shown in Table 5.6 to Table 5.8) with the same

binary output classes from the same input data set. The following
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confusion matrices resulted from the classifiers learning whether a

chemical compound is toxic (class "Yes") or non-toxic (class "No").

All models show the same accuracy value (see Table 5.9) although

the confusion matrices are different. The first classifier (ModelM1

in Table 5.6) successfully classifies 5 out of 10 cases. However, an

alarming 3 chemical compounds will be given the all clear when they

are actually toxic. Also, the 2 chemical compounds said to be toxic

despite being non-toxic will be rejected although it is incorrect.

Table 5.7 shows the confusion matrix for the second classifier

(Model M2). This time the model classifies well the class "Yes" but

worse the class "No". Overall, it correctly classifies 50% of all cases

and shows a very different confusion matrix compared to Model M1.

The confusion matrix of the model M3 shows a more balanced

behavior than the first two classifiers, according to the TP , FP , FN

and TN values. However its accuracy is the same as M1 and M2.

This shows that comparing models may require a more detailed and

composite performance measure, since accuracy alone does not de-

fine fully the predictive models performance.

5.4.4.2 Similarity of Confusion Matrix for Binary Classifiers

The confusion matrices help to evaluate classifiers in a more de-

tailed way than just using the accuracy score and also can provide a

tool to compare models’ performance. Following is the method pro-

posed to compare confusion matrices. Table 5.9 contains Acc, TPR,

TNR, FNR and FPR values for models M1, M2 and M3, calculated

from their confusion matrices: although accuracy is the same for
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all models, it fails to describe differences in their performance. The

other four performance indicators (TPR, TNR, FNR and FPR) help

providing detailed performance for each class and are more realistic

tools for comparing the performance of the predictive models.

Table 5.9: Performance Measures (Acc, TPR, TNR, FNR and FPR)
for Models M1, M2 and M3.

Models Acc TPR TNR FNR FPR
M1 0.50 0.25 0.67 0.75 0.33
M2 0.50 0.75 0.33 0.25 0.67
M3 0.50 0.50 0.50 0.50 0.50

The Euclidean Distance was used to calculate the difference be-

tween performances of the two models. In this example TPR and

TNR were chosen to measure the distance between the models per-

formances. For the performance measures in Table 5.9, the nota-

tions k1...kn were used. In this case k1 is TPR, k2 is TNR, where

n equals 2. The following steps illustrate the calculation of the dis-

tance between the confusion matrices of two predictive models.

Step 1: Save the selected performance measure/s in a 1-dimension

(vector) format.

The selected model’s performance measures were saved into

two rows vectors. The vectors of performance measures for M1

and M2 where k1 is TPR and k2 is TNR are: VMa = (0.25, 0.67)

and VMb = (0.75, 0.33). From the vectors VMa and VMb, the dis-

tance between them can be calculated by using the distance

technique.

Step 2: Calculate the distance between the vectors.
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The distance is calculated using the Euclidean Distance:

dij =

√√√√ n∑
k=1

(xik − xjk)
2 (5.6)

The distance O (Output) between Model A (Ma) and Model B

(Mb) is the average of distances between the confusion matrix

elements:

DisO(Ma,Mb) =


√∑n

k=1 (VMak − VMbk)
2

n

 (5.7)

Similarity and distance measures complement each other. In

this case, the similarity of output O (SimO) between two models

will be:

SimO(Ma,Mb) = 1−


√∑n

k=1 (VMak − VMbk)
2

n

 (5.8)

where:

k is the index of performance measures selected, n equals to

number of k, V (Ma) is the vector for Model A (Ma), and V (Mb)

is the vector for Model B (Ma).

The value for SimO(Ma,Mb) in the example above is 0.70. Table

5.10 contains the values for SimO(Ma,Mb) related to the simi-

larity of the three classifiers using TPR and TNR. The models

might have learned from identical data sets but were generated

using different classification algorithms.
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Table 5.10: Similarity Matrix for Model M1, M2 and M3

M1 M2 M3
M1 1.00 0.70 0.85
M2 0.70 1.00 0.85
M3 0.85 0.85 1.00

5.4.5 Similarity of Confusion Matrices for Multi Class

Classifiers

5.4.5.1 Multi Class Confusion Matrices

Sometimes, multi class classification problems can still be solved

with binary classifiers. Such a solution may divide the original multi

class data set into two class subsets, learning a different binary

model for each subset. These techniques are known as binarisa-

tion strategies (Hashemi et al. 2009, Liu & Zheng 2005). Galar

et al. (2011) reported that there are three main approaches: One-

vs-All (OVA), One vs-One (OVO), and Error Correcting Output Codes

(ECOC).

All of these techniques decompose a complex multi class to a sim-

pler binary class problem. Hence this strategy may improve the per-

formance because the classifiers have an easier task to distinguish

between only two classes rather than many classes.

The experiment in this chapter focused on multi class classifiers

for toxicology applications. The performance measures of confusion

matrices of multi class classifiers are regrouped into a binary clas-

sification problem. Such an approach may result in selecting multi

class classifiers with lower False Negative Rate (FNR) for example.

Consequently, the methodology for model comparison based on the
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similarity of confusion matrices provides a working method to select

models from a collection of classifiers.

5.4.5.2 Reducing Multi Class to Binary Classification Problems

In this section, the aim was to investigate whether there are any dif-

ferences in performance between binarisation strategies by regener-

ating new binary classifiers from multi class classifiers. It was done

by calculating the performance measures using multi class classi-

fiers confusion matrices without retraining new binary classifiers.

In the next section, the discussions will be on the performance

measures related to binary classification classifiers and proposal of a

methodology to reduce multi class problems to a binary version while

calculating the performance measures of the multi class classifiers

with a focus on lower False Negative Rate (FNR) for example, as

required in toxicity prediction problems.

5.4.5.3 Performance Measures and Confusion Matrix for Multi

Class Classifiers

The confusion matrix for a multi class classification problem is a

generalization of the binary case. The properties and the perfor-

mance measures derived from a multi class confusion matrix will

be discussed below. Table 5.11 is an example of a multi class con-

fusion matrix. For the first column (Class A) the intersection with

the first row is the True Positive (TP ) value for Class A. The sum of

values from remaining cells of the column is the False Negative (FN )

value for Class A. True positives for second and third columns are
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the diagonal values of the confusion matrix.

Table 5.11: Confusion Matrix for a 3-Class Classifier.

Actual
Class A Class B Class C

Class A TPAA(1,1) eAB(1,2) eAC(1,3)

Predicted Class B eBA(2,1) TPBB(2,2) eBC(2,3)

Class C eCA(3,1) eCB(3,2) TPCC(3,3)

The classification accuracy of a multi class classifier is the ratio

of the sum of the principal diagonal values to the total of values in

the confusion matrix. If C indicates the confusion matrix, Prasanna

et al. (2007) defined that the classification accuracy Acc is as follow:

AccC =

( ∑N
i=1 Cii∑N

i=1

∑N
j=1 Cij

)
(5.9)

where:

N is the number of classes,

i refers to the rows index and,

j refers to the columns index for the confusion matrix C.

The Error Rate (ER) for the classifiers is the complement of the ac-

curacy: ER = (1− Acc).

Beside the Acc and the (ER), other performance measures can be

derived and used to measure the performance of multi class classi-

fiers. Moreover the performance measures of the two-class classifi-

cation problem can be applied by regrouping the multi class confu-

sion matrix into two-class classification measures.

In predictive toxicology applications, the interest is more on the

false negative rate (FNR) measurement in the case where the model

fails to correctly classify the instances to the appropriate classes. To
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give more flexibility for such applications for multi class classifiers

comparison, the thesis proposed that the positive (toxic) class and

negative (non-toxic) class to be selected by regrouping them into a

two class problem. Freitas et al. (2007) and Prasanna et al. (2007)

found that this technique is also highly recommended in classifier

ensembles where good combination of classes and models will make

the binary prediction more accurate.

The performances measures for the positive (toxic) class in pre-

dictive multi class classifiers are described below. Consider the se-

lected toxic classes are Class A (e.g. Very Toxic, column 1) and Class

B (e.g. Toxic, column 2) in Table 5.11. The selected class indexes

are stored into the one-row vector V . Thus V = (1, 2). The proposed

TPR, FNR, FPR and TNR measures for the selected classes are as

follow:

TPRSelectedMa =

(∑C
x=1,j=Vx

∑C
y=1,i=Vy

Rij∑C
x=1,j=Vx

∑N
i=1 Rij

)
(5.10)

FNRSelectedMa =

(∑C
y=1,j=Vx

∑N
y=1,i̸=Vy

Rij∑C
x=1,j=Vx

∑N
i=1 Rij

)
(5.11)

where:

N is the number of samples of all classes in the confusion matrix R,

C is the number of selected class samples for the confusion matrix

R,

i is the row index in the confusion matrix R,

j is the column index in the confusion matrix R,

x and y are counters for columns and rows, and,
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V is a vector of selected class indexes.

TNRSelectedMa =

(∑C
y=1,j=Vx

∑N
y=1,i ̸=Vy

Rij∑C
x=1,j=Vx

∑N
i=1 Rij

)
(5.12)

FPRSelectedMa =

(∑C
x=1,j=Vx

∑C
y=1,i=Vy

Rij∑C
x=1,j=Vx

∑N
i=1 Rij

)
(5.13)

The performance measures for the non-toxic class, False Positive

Rate (FPR) and True Negative Rate (TNR), can be derived by adapt-

ing Equation 5.12 and Equation 5.13. The vector V for non-toxic

class is 3 because there is only one non-toxic class in column 3,

thus, V = (3) and C = 1.

Table 5.12: Confusion Matrix (MA) for Model A.

Actual
Class A Class B Class C

Class A 10AA(1,1) 21AB(1,2) 33AC(1,3)

Predicted Class B 24BA(2,1) 53BB(2,2) 26BC(2,3)

Class C 17CA(3,1) 18CB(3,2) 19CC(3,3)

Consider that Model A produced a confusion matrix MA (see Table

5.12). Referring to the Equation 5.10 to 5.13, the next equation

demonstrates how to calculate the TPR, FNR, FPR and TNR of

toxic classes. For these examples, two classes were selected as toxic

classes (Class A and Class B). The index for Class A is 1 and the

index for Class B is 2. Thus the vector for V = (1, 2). For example by

using the values from Table 5.12, the performance measures TPR,

FNR FPR and TNR are as follows:

TPRMA =
(10 + 24) + (21 + 53)

(10 + 24 + 17) + (21 + 53 + 18)
= 0.76 (5.14)
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FNRMA =
(17) + (18)

(10 + 24 + 17) + (21 + 53 + 18)
= 0.24 (5.15)

TNRMA =
(19)

(33 + 26 + 19)
= 0.13 (5.16)

FPRMA =
(33) + (26)

(33 + 26 + 19)
= 0.76 (5.17)

From the results above, TPR and FNR complement each other

in the confusion matrix. In the next section the methodology to

measure the similarity between confusion matrices for multi class

classifiers will be demonstrated.

5.4.5.4 Similarity of Confusion Matrices for Multi Class Classi-

fiers

In this section, the same technique as Section 5.4.4.2 is proposed

and applied to compare multi class classifiers’ confusion matrices.

For example, three predictive models generated by different classi-

fiers using the same data set. The model M1 generates the confusion

matrix MA (see Table 5.12), the model M2 generates the confusion

matrix MB (see Table 5.13), and the model M3 generates confusion

matrix MC (see Table 5.14).

Table 5.13: Confusion Matrix (MB) for Model B.

Actual
Class A Class B Class C

Class A 24AA(1,1) 18AB(1,2) 33AC(1,3)

Predicted Class B 10BA(2,1) 53BB(2,2) 19BC(2,3)

Class C 17CA(3,1) 21CB(3,2) 26CC(3,3)
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Table 5.14: Confusion Matrix (MC) for Model C.

Actual
Class A Class B Class C

Class A 34AA(1,1) 4AB(1,2) 9AC(1,3)

Predicted Class B 10BA(2,1) 80BB(2,2) 10BC(2,3)

Class C 7CA(3,1) 8CB(3,2) 59CC(3,3)

Table 5.15 shows the performance measures TPR, FNR and Acc

calculated using Equation 5.9, 5.11 and 5.10. The values of per-

formance measures were calculated by grouping the selected toxic

classes A and B. Thus, V = (1, 2). From the results depicted in Table

5, model M3 is the best model compared to M1 and M2: TPR is the

highest value and FNR is the lowest value for model M3.

Table 5.15: Performance Measures (TPR and FNR) for Models M1,
M2 and M3).

Models TPR FNR Acc
M1 0.76 0.25 0.37
M2 0.73 0.27 0.47
M3 0.90 0.10 0.78

For the similarity measurement, in this example FNR was chose

to measure the distance between the models’ performances. For

the performance measures in Table 5.15, the notations k1...kn were

used. In this case k1 is FNR. The following steps illustrate the

calculation of the distance between the confusion matrices of two

predictive models:

Step 1: Save the selected performance measure/s in a 1-dimension

(vector) format.

Save the selected performance measures into two rows vectors;
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in this case the vectors for M1 (VMA) and M2 (VMB) have just 1

element: VMA = (0.25) and VMB = (0.27).

Step 2: Calculate the distance between the vectors.

The distance between the vectors VMA and VMB is calculated us-

ing the Euclidean Distance. The distance O (Output) between

model A (MA) and model B (MB) is the average of distances be-

tween the confusion matrix elements. Similarity and distance

measures are complementary. In this case, the similarity of

output O (SimO) between two models will be:

SimOSelectedClass(Ma,Mb) = 1−


√∑n

k=1 (VMak − VMbk)
2

n

 (5.18)

where: k is the order of performance measures selected, n

equals to number of k, VMA is the index vector for model A

(MA), and VMB is the index vector for model B (MB). The value

for SimO(MA,MB) in the example above is 0.98. Table 5.16

contains the values for SimO(MA,MB) related to the similarity

of the three classifiers using FNR. The result shows that the

similarity of confusion matrices between models M1 and M2 is

0.98.

Table 5.16: Similarity Matrix for Models M1, M2 and M3.

Models M1 M2 M3
M1 1.00 0.98 0.85
M2 0.98 1.00 0.83
M3 0.85 0.83 1.00
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5.5 Similarity of Predictive Models

In the previous sections, the proposal was to evaluate the similarity

of a predictive model based on the similarity of input (I) data sets, the

performance measured by the Confusion Matrix as the output (O),

and the similarity of the functions (F ). To calculate the similarity

between classifiers, Table 5.17 is the example with the similarity

value for I (DSC), F (SimF ) and O (SimO) for models M1, M2 and

M3.

Table 5.17: Value of I, F and O for Model M1, M2 and M3.

Models M1 M2 M3
M1 - I=0.0,F=1.0,0=0.3 I=0.9,F=0.2,0=0.2
M2 I=0.0,F=1.0,0=0.3 - I=0.0,F=0.9,0=0.7
M3 I=0.9,F=0.2,0=0.2 I=0.0,F=0.9,0=0.7 -

To find the similarity between models, the idea is to combine

all similarity values for Input (I), Function (F ) and Output (O) ac-

cording to the definition of the predictive models’ structure. To pro-

vide more flexibility in calculating the similarity of predictive models,

each structure of a predictive model has its own weight α, β, γ. The

proposed Similarity of Models:

Sim(Ma,Mb) =
α× I(Ma,Mb) + β × F(Ma,Mb) + γ ×O(Ma,Mb)

α+ β + γ
(5.19)

where:

I(Ma,Mb) is the Data set Similarity Coefficient (DSC(Ma,Mb)) be-

tween Model A (Ma) and Model B (Mb),
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F (Ma,Mb) is the Similarity of Function (SimF (Ma,Mb)) between Model

A (Ma) and Model B (Mb),

O(Ma,Mb) is the Similarity of Confusion Matrix (SimO(Ma,Mb)) be-

tween Model A (Ma) and Model B (Mb), and

α, β, γ ∈ [0, 1] are real numbers and their sum is between 0 to 3.

The values of α, β or γ can be handled depending on the priority

given to the predictive model’s elements. Consider the weight value

for I (α=1), F (γ =0) and O (β=1). The similarity (Sim(Ma,Mb)) be-

tween models is shown in Table 5.18 where models M1 and M2 are

less similar than models M2 and M3.

Table 5.18: Similarity Values of Models M1, M2, M3 Given I (α =1),
F (γ =0) and O (β =1)

Models M1 M2 M3
M1 1 0.15 0.55
M2 0.15 1 0.85
M3 0.55 0.85 1

5.6 The Implementation of Proposed Clas-

sifiers Comparison Method

This section will show the experiments and results for conducting

the proposed classifier comparison method. The experiments were

done on both binary class and multi class models. The predictive

models were applied to various toxicology data sets as described in

Chapter 3.
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Table 5.19: The Mapping of the Old Classes to the New Binary
Classes in Each Data Sets.

Data sets Old Classes New Classes Instances
(Multi classes) (Binary Classes)

Trout Class1, Class2 Yes (Toxic) 218
Class3 No (Non-toxic) 64

Oral Quail Class1, Class2,Class3 Yes (Toxic) 56
Class4 No (Non-toxic) 60

Daphnia Class1, Class2 Yes (Toxic) 187
Class3,Class4 No (Non-toxic) 77

Dietary Quail Class1, Class2,Class3 Yes (Toxic) 101
Class4,Class5 No (Non-toxic) 22

Bee Class1, Class2,Class3,Class4 Yes (Toxic) 76
Class5 No (Non-toxic) 29

5.6.1 The Study on the Binary Class Data Set

Every data set had originally more than two classes to predict the

toxicology levels for every compound. The mapping multi class to

binary class is a technique to solve general problem (see Table 5.19).

The models were generated from a group of predictive toxicology data

sets whereby each group of data set was run through data prepara-

tion and reductions processes. The data sets had been grouped into

3 segments which were raw data set (100%), training data set (70%)

and testing data set (30%). The group of data sets were divided in

the first 70% as training set and remaining 30% as test set order

by chemical ID. The feature selection algorithms were applied to the

data sets to find sets of attributes that are highly correlated with the

target classes. Each data set was run using Weka with 10-fold cross

validation and various classifiers as discussed in Chapter 3).
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5.6.1.1 The Implementation of Similarity of Predictive Model

(Sim) to All Demetra Data Sets.

The objective of this experiment is to calculate the proposed simi-

larity of predictive models using (Sim(Ma,Mb)). with the values of I (α

=1), F (β =0) and O (γ =1); this means that the similarity was focused

on the data sets and confusion matrices. False Negative Rate (FNR)

was set in the (Sim(Ma,Mb) ) to justify the importance of it from the

viewpoint of toxicology data sets, where the aim was to have a model

with low FNR. This means that the models were chosen on the ba-

sis of minimum FNR. For example in Table 5.20, similar data sets

are likely to predict similar FNR although using different machine

learning algorithms, such as Model1 and Model151, and Model4 and

Model154. In Table B.1 to Table B.4 (see Appendix B) similar results

were obtained for other toxicity data sets (Daphnia, Dietary Quail,

Oral Quail and Trout).



5.6 The Implementation of Proposed Classifiers Comparison
Method 107

T
ab

le
5
.2

0
:

R
es

u
lt

s
of

M
od

el
S

im
il
ar

it
y

fr
om

B
ee

D
at

a
S

et

M
ac

h
in

e
IB

K
J
4
8

L
ea

rn
in

g
F

ea
tu

re
N

on
e

C
F

S
N

on
e

C
F

S
S

el
ec

ti
on

S
p
li
t(

%
)

1
0
0

7
0

3
0

1
0
0

7
0

3
0

1
0
0

7
0

3
0

1
0
0

7
0

3
0

M
od

el
ID

1
2

3
4

5
6

1
5
1

1
5
2

1
5
3

1
5
4

1
5
5

1
5
6

1
1

0
.8

4
0
.6

2
0
.4

6
0
.4

8
0
.4

4
0
.9

7
0
.8

4
0
.6

4
0
.4

5
0
.4

6
0
.4

9
2

0
.8

4
1

0
.4

8
0
.4

3
0
.4

7
0
.4

3
0
.8

0
0
.9

9
0
.5

0
0
.4

4
0
.4

4
0
.4

8
3

0
.6

2
0
.4

8
1

0
.4

5
0
.4

5
0
.4

1
0
.5

9
0
.4

7
0
.9

8
0
.4

2
0
.4

3
0
.4

6
4

0
.4

6
0
.4

5
0
.4

3
1

0
.8

3
0
.6

3
0
.4

9
0
.4

6
0
.4

5
0
.9

9
0
.8

4
0
.6

2
5

0
.4

8
0
.4

7
0
.4

5
0
.8

3
1

0
.4

6
0
.4

9
0
.4

8
0
.4

7
0
.8

2
0
.9

8
0
.4

9
6

0
.4

4
0
.4

3
0
.4

1
0
.6

3
0
.4

6
1

0
.4

7
0
.4

4
0
.4

3
0
.6

4
0
.4

8
0
.9

5
1
5
1

0
.9

7
0
.8

0
0
.5

9
0
.4

9
0
.4

9
0
.4

7
1

0
.8

1
0
.6

1
0
.4

8
0
.4

9
0
.4

7
1
5
2

0
.8

4
0
.9

9
0
.4

7
0
.4

6
0
.4

8
0
.4

4
0
.8

1
1

0
.4

9
0
.4

5
0
.4

5
0
.4

9
1
5
3

0
.6

4
0
.5

0
0
.9

8
0
.4

5
0
.4

7
0
.4

3
0
.6

1
0
.4

9
1

0
.4

4
0
.4

4
0
.4

8
1
5
4

0
.4

5
0
.4

4
0
.4

2
0
.9

9
0
.8

2
0
.6

4
0
.4

8
0
.4

5
0
.4

4
1

0
.8

4
0
.6

1
1
5
5

0
.4

6
0
.4

4
0
.4

3
0
.8

4
0
.9

8
0
.4

8
0
.4

9
0
.4

5
0
.4

4
0
.8

4
1

0
.4

6
1
5
6

0
.4

9
0
.4

8
0
.4

6
0
.6

2
0
.4

9
0
.9

5
0
.4

7
0
.4

9
0
.4

8
0
.6

1
0
.4

6
1



5.6 The Implementation of Proposed Classifiers Comparison
Method 108

5.6.1.2 The Implementation of Data Set Similarity Coefficient

(DSC) to All Demetra Data Sets.

The objective of the this study is to find the similarity of data sets

between five end points. The five Demetra data sets are Bee, Daph-

nia, Dietary Quail, Oral Quail and Trout. For this experiment, I (α

=1), F (γ =0) and O (β =0). From the result (see Table 5.21), all data

sets share over 50% similar descriptors and chemical compounds:

the highest data set similarity is 63% between Daphnia and Trout,

while Bee and Oral Quail have about 48% chemical compounds in

common.

Table 5.21: Results of Similarity for All Data Sets

Data sets Bee Daphnia Dietary Quail Oral Quail Trout
Bee 1.00 0.54 0.59 0.48 0.58
Daphnia 0.54 1.00 0.59 0.53 0.63
Dietary Quail 0.59 0.59 1.00 0.56 0.59
Oral Quail 0.48 0.53 0.56 1.00 0.50
Trout 0.58 0.63 0.59 0.50 1.00

5.6.1.3 The Comparative Study of Feature Selection Algorithms

Applied to Demetra Data Sets.

This experiment was designed to show that the performance of mod-

els rely on the functions used to generate the predictive models. This

experiment compares the results if the models using feature selec-

tion algorithms with different classifiers (see Table 5.22).

From Table 5.22, generally the accuracy of the models increased

when a feature selection algorithm was used. This experiment used

the Correlation-based Feature Selection (CFS) as the feature selec-
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Table 5.22: Results of the Accuracy (Acc) and the False Negative Rate
(FNR) for All Data Sets.

Data set Bee Daphina Dietary Quail Oral Quail Trout
Feature None CFS None CFS None CFS None CFS None CFS
Selection

IBK
Model M1 M4 M31 M34 M61 M64 M91 M94 M121 M124
Acc 82.85 88.57 73.11 74.62 76.42 81.3 67.24 63.79 78.72 80.49
FNR 0.12 0.04 0.19 0.2 0.19 0.15 0.32 0.38 0.14 0.12
J48

Model M151 M154 M181 M184 M211 M214 M241 M244 M271 M274
Acc 86.67 89.52 74.62 78.41 74.8 82.11 67.24 73.28 74.11 81.92
FNR 0.06 0.02 0.19 0.12 0.2 0.13 0.36 0.3 0.17 0.07

tion algorithm. From the toxicology point of view, the interest is

on the FNR, whether the models are able to minimise the error in

predicting the toxic class. From the results, models with feature se-

lection and using J48 classifier seem have the right combination in

correctly predicting the toxicity class.

5.6.2 The Study on the Multi Class Data Sets

In this study the models were generated using multi class Deme-

tra data sets. The predictive models were generated using different

combinations of data sets, algorithms, and model parameters. The

feature selection algorithms were applied to the original full data sets

as discussed in Chapter 4. Each data set was generated using Weka

with 10-fold cross validation and the same classifiers.

5.6.2.1 The Similarity of Confusion Matrices for Multi Class

Classifiers.

This experiment was conducted to make sure the proposed method

for binarisation will solve the binary problem as discussed in sec-
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tion 5.4.5. The multi class confusion matrices were compared using

Similarity of Confusion Matrices.

In Table 5.23, the confusion matrix for a decision tree was applied

to the Bee data set with the 5 classes provided. Considering the

fusion of Class1, Class2, Class3 as toxic classes and Class4, Class5

as non toxic classes. By applying the method proposed to calculate

TPR and FRN in Section 5.4.5.3, the performance for a randomly

chosen model M154c are shown in Table 5.24. From the results it

shows that, Equation 5.9, 5.12 and 5.11 are correct.

Table 5.23: A Confusion Matrix Generated Using Multi Class Data
Set With Feature Selection (CFS), 10-fold Cross Validation and Using
Classifiers (weka.classifiers.trees.J48).

Class1 Class2 Class3 Class4 Class5
Class1 7 4 2 3 0
Class2 4 7 4 8 2
Class3 0 2 1 4 0
Class4 2 10 4 23 4
Class5 0 0 2 4 8
Total Instances 13 23 13 42 14

Table 5.24: Performance Measures Calculated Based on the Confu-
sion Matrix Using Table 5.23.

Performance Measures Results
TPRate (All Classes) and Accuracy
(See Eq. 5.9 and Eq. 5.12) 0.44
Error Rate (All Classes) 0.56
FNRate
(selected toxic class; Class1,Class2,Class3,Class4)
(See Eq. 5.11) 0.07
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5.6.2.2 The Comparative Study on Error Rate and FNR for

Demetra Data Sets.

This experiment was designed to compare the use of error rate for all

classes vs. false negative rate for selected toxic classes in multi class

classifiers. The data sets had been grouped into 3 segments which

were raw data set (100%), training data set (70%) and testing data

set (30%) order by chemical ID. For Table 5.25 (ER vs. FNR results

were measured using the selected classes) it shows that models with

similar ER Rate can exhibit a range of FNR values:

Table 5.25: Error Rate (ER) and FNR of Multi Class Classifiers Ap-
plied to the Demetra Data Sets.

Data sets Toxic Classes All Classes Toxic Classes All Classes
(Lowest FNR) (ER) (Highest FNR) (ER)

Bee 0.04 - M304c 0.60 - M304c 0.12 - M1c 0.61 - M1c
Daphnia 0.07 - M334c 0.56 - M334c 0.20 - M31c 0.56 - M31c
Dietary Quail 0.19 - M364c 0.59 - M364c 0.25 - M211c 0.61 - M211c
Oral Quail 0.30 - M91c 0.60 - M91c 0.52 - M244c 0.61 - M244c
Trout 0.12 - M271c 0.51 - M271c 0.17 - M274c 0.52 - M274c

5.6.2.3 The Comparative Study of FNR for Multi Class Demetra

Data Sets.

This study will investigate how the relationship of the numbers of

toxic classes will affect the performance of the classifier. In this

experiment, toxic classes were mapped into two categories: binary

class (Toxic and Non-toxic) and multi class (class A, class B .. class

N). More than 500 models were selected from the collection based

on their lowest FNR for each data sets and classifiers. The models

shown in Table 5.26 were IBK, J48 and JRip classifiers that applied

feature selection algorithms (CFS) or without feature selection algo-
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rithm to compare the FNR between them. They were chosen having

lowest FNR and the missing models in the collection had higher

FNR. From the results shown in Table 5.26 it can be concluded

that:

• Data sets with feature selection algorithms (such as CFS) ap-

plied are better in FNR performance measurement compared

to data sets with no feature selection. Example of such models

are M4a and M1a.

• The classifiers performance are highest in Bee data set and low-

est in Oral Quail data set.

• Some performance (FNR) of models with selected class for more

than 1 toxic class (e.g. M4c) is poor compared to binary model

with only 1 toxic class (e.g. M4a), but in contrast some of the

multi class classifiers are better than binary classifiers (e.g.

M34c vs. M34a and M271c vs. M271a).

• On average, models that applied binarisation strategies (models

named ended with ’a’) are better than multi class classifiers that

apply calculation of FNR to their confusion matrices (models

named ending in ’c’). This proved that multi class classifiers

for Daphnia data sets such as M334c are better than binary

classifiers (e.g. M331a). For Oral Quail data set, both binary

and multi class had the same performance (0.30) of FNR (e.g.

M91c vs. M244a).

From the results shown in Table 5.26, if the objective is to dis-

criminate between two binary classes, in this case Toxic and Non-
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toxic, then the classifiers with binary class format have better per-

formance compared to multi class classifiers. For some models, re-

grouping classes in a single toxic class may increase the accuracy

as compared to re-generating binary class classifiers.

Table 5.26: Results of FNR for All Data Sets with Feature Selection
Algorithms (CFS) and Without CFS Generated (None) Using Classi-
fiers (IBK, J48 and JRip).

Algorithms IBK J48 JRip
Data sets FNR - ModelID FNR - ModelID FNR - ModelID
Bee 0.12 - M1a 0.06 - M151a 0.06 - M301a
(None) 0.12 - M1c 0.09 - M151c 0.04 - M301c
Bee 0.04 - M4a 0.02 - M154a 0.04 - M304a
(CFS) 0.11 - M4c 0.07 - M154c 0.04 - M304c
Daphnia 0.19 - M31a 0.19 - M181a 0.10 - M331a
(None) 0.20 - M31c 0.20 - M181c 0.11 - M331c
Daphnia 0.20 - M34a 0.12 - M184a 0.12 - M334a
(CFS) 0.16 - M34c 0.14 - M184c 0.07 - M334c
Dietary Quail 0.19 - M61a 0.20 - M211a 0.23 - M361a
(None) 0.19 - M61c 0.25 - M211c 0.24 - M361c
Dietary Quail 0.15 - M64a 0.13 - M214a 0.20 - M364a
(CFS) 0.19 - M64c 0.15 - M214c 0.19 - M364c
Oral Quail 0.32 - M91a 0.36 - M241a 0.54 - M391a
(None) 0.30 - M91c 0.34 - M241c 0.62 - M391c
Oral Quail 0.37 - M94a 0.30 - M244a 0.47 - M394a
(CFS) 0.36 - M94c 0.52 - M244c 0.61 - M394c
Trout 0.14 - M121a 0.17 - M271a 0.10 - M421a
(None) 0.16 - M121c 0.12 - M271c 0.09 - M421c
Trout 0.12 - M124a 0.07 - M274a 0.05 - M424a
(CFS) 0.14 - M124c 0.17 - M274c 0.12 - M424c

5.6.2.4 The Implementation of Similarity of Predictive Model

(Sim) to Multi Class Demetra Data Sets

In this experiment, models from Table 5.26 were selected to cal-

culate their similarity. From the results in Table 5.27, it shows

that the models have a large spread of performance value of FNR.
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The similarity values between confusion matrices shows that simi-

lar FNR values between models indicate similar performance among

them although using different classifier algorithms. Example of such

models are models M4a, M304a, M31c and M181c.

However, the results only show a single element of the similar-

ity evaluation for predictive models’ performance. In order to have

more accurate results of the similarity of predictive models, the com-

parison of multi class confusion matrices can be applied using the

proposed methodology for calculating the similarity of binary predic-

tive models.

Table 5.27: Similarity Matrix for Models (M4a, M304a, M151c and
M154c).

Models M4a M304a M151c M154c
M4a 1.00 1.00 0.95 0.97

M304a 1.00 1.00 0.97 0.97
M151c 0.95 0.97 1.00 0.98
M154c 0.97 0.97 0.98 1.00

5.7 Limitations

In this thesis, the classifier comparison was proposed by comparing

their similarity. The comparison consists of three elements which

are Input (data set properties), Function (classifier properties) and

Output (confusion matrix). The comparison of input was based on

one to one matching assuming that the descriptor names and chem-

ical compounds had already gone through a quality check. The the-

sis can be improved by considering predictive models from different

sources by integrating an ontology in matching criteria so that more
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models from different sources can be included in the pool of mod-

els. In addition, the element of functions also can be enhanced by

further analysing their properties rather than by making a simple

comparison.

5.8 Summary

This study shows that comparing predictive models is an important

issue since it can help users to minimise the cost of generating new

predictive models by reusing an existing ones. The comparison of

models from huge repositories of models would help to find rele-

vant and good quality models based on comparison algorithms. The

confusion matrix provides a more useful quality indicator for the

performances of predictive classifier models. The analysis and un-

derstanding of their relationships will make the classifier selection

more reliable.

The comparison of models from large repositories of models would

help to find the relevant model based on optimisation of comparison

functions. The experiments show that the similarity of models will

help in classifying models for further analysis and customised selec-

tion and combination of the relevant model according to the user’s

needs.

This study also shows that comparing predictive models’ con-

fusion matrices will help users to choose similar models based on

FNR as a performance measure. From the experiments presented,

regrouping multi class classifiers’ confusion matrices to binary is
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another solution to analyse and categorise the performance of multi

class classifiers from a collection of models. This methodology can

be integrated in ensembles of classifiers by further analysing the di-

versity of classes of selected models which will be discussed in the

next chapter.



Chapter 6

Proposed Method for

Optimisation of Classifier

Ensemble

6.1 Introduction

Ensembles of classifiers have proved their potential in getting higher

accuracy compared to a single classifier (Santos & Sabourin 2011,

Al-Muhanna & Meshoul 2011, Bian & Wang 2007). High diver-

sity in an ensemble may improve the performance results signif-

icantly. This chapter proposes an ensemble approach which has

diversity calculated using measures of classification output such as

disagreement measure and double fault measure. A Classifier Rank-

ing System (CRS) is introduced for the selection of relevant clas-

sifiers. The Optimisation of Classifiers Ensemble Method (OCEM )

technique which applies to the ensemble selection was implemented

117
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to optimise selection of models and combination method. The re-

sults show that the proposed method performs well in selecting the

relevant ensemble model to improve the prediction from a collection

of classifiers.

Wenjia (2010) and optimised in selecting the member of candi-

dates in ensemble by balancing the FNR and FPR to minimise the

error.

This thesis addresses two possible scenarios during the stage of

generating predictive toxicology models to be stored in a collection of

models as follows:

• Domain experts developed as good as possible models based on

the data sets (offline approach)

• Models are developed during data study (online approach)

The ensemble method proposed was not focused on generating

models during training because the input is complex and the added

value of domain experts may be lost. Thus, the thesis proposed a

way to construct an ensemble by reusing an existing collection of

models. The collection of models is presumed that all models come

from the same scenarios. Some such models are unbalanced in pre-

diction performance results, e.g. FNR=0.00 and FPR=1.00 or vice

versa although with high Acc. Thus there is a need to combine and

balance the performance measures FNR and FPR while maintain-

ing highest Acc. In this chapter the ensemble methods were devel-

oped by considering ensemble diversity issues suggested by Wang

(2010) and optimised in selecting candidates by balancing the FNR

and FPR to minimise the ensemble error.
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The contributions in this chapter are:

• A technique using a cost function (combination of Acc, FNR

and FPR) to rank classifiers from the pool of classifiers.

• A new algorithm to optimise the selection and combination of

classifiers.

• Improved results of overall Accuracy, False Negative Rate and

False Positive Rate for all data sets.

The process of generating quality models can use many data min-

ing tools, but the management and selection of relevant models from

a pool of classifiers is still an open issue. Some models are useful

with a test set but might be worse in another domain or with other

test sets. To speed up the process of generating predictive models,

the models will be selected from a collection of models. The relevant

models have to be chosen from a previously built collection of models

to work on new problems.

The application used to demonstrate the advantages of the method

proposed is to find a better solution for predicting whether a chemi-

cal compound is toxic or non-toxic. The prediction is made by select-

ing relevant classifiers from a collection of existing classifiers. The

issue arising from this is how to find the relevant classifiers, to rank

them and then use them individually or to combine the models in

an ensemble for better prediction results. In order to have better

results in performance measures, the selections of classifiers from

the collection are based on three performance measures (Accuracy,

False Negative Rate and False Positive Rate). The classifiers then
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will be combined as an ensemble to meet the performance measures

criteria.

The rest of the chapter is structured as follows : Section 6.2

presents the concept of model diversity, model selection, model rank-

ing and decision fusion strategy. Section 6.3 will describe the pro-

posed method to rank the classifiers from a pool for model selection.

Section 6.4, introduces and exemplifies the technique to optimise

the ensemble method of classifiers. The implementation of the pro-

posed method for optimisation of the classifier ensemble method will

be discussed in Section 6.5.

6.2 Classifier Ensemble Method

Selection of classifiers can be done in many different ways. The main

objective of classifier selection is to get the most accurate model for a

given new data set (Sewell 2011). A model ensemble is a well known

technique to improve accuracy. Many ensemble methods have been

developed for different applications: such as bagging (Breiman 1996)

and boosting (Schapire & Freund 1998). The aim of those techniques

is to improve only the accuracy. Better performances have been re-

ported by researchers combining the classifiers in hybrid ensembles

(Neagu et al. 2005) and (Wang et al. 2001).

Also, systems for predictive models management that offer on-

line services such as scoring, model composition, model compari-

son, search and statistics exist (Gorea 2008). The high-quality of

predictive model management systems that allow users to get differ-
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ent performance measures (such as FNR and FPR) can be devel-

oped by considering several issues of model representation, model

comparison and model ensemble.

This thesis proposed an ensemble technique which intends to im-

prove model performance in three aspects: ER = (1−Acc), false neg-

ative rate (FNR) and false positive rate (FPR). The similarity tech-

niques proposed in Chapter 5 are applied to classify the similarity

models by their Input (data set), Function (classifiers properties) and

Output (confusion matrix). From the similarity of models, we can get

diversity of models, where similar models were grouped together. To

rank the classifiers, the Classifier Ranking System (CRS) proposed

in Section 6.3.1 was used. The flexibility of the selection models in

an ensemble using a composite of three performance measures by

applying a weight to Acc, FNR and FPR were produced better quality

prediction models. The following issues should be considered when

implementing ensemble learning.

6.2.1 Classifiers Diversity

The main objective of having diverse classifiers in an ensemble is to

ensure that the classifiers selected would not make the same (com-

mon) mistake. Wang (2008) studied the problem and listed the fac-

tors that affect the accuracy of an ensemble. The factors studied

include the accuracy of individual models, the diversity among the

individual models in an ensemble, the decision making strategy, and

the number of members used for constructing an ensemble.

The diversity measures considered in this proposed ensemble
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were the disagreement and double fault measure. Following are the

equations to calculate both diversity measure. The notation of the

equations are refer to Table 2.4. The Disagreement measure is as

follows:

Disi,k =
N01 +N10

N11 +N10 +N01 +N00
(6.1)

and the Double Fault measures is as follows:

DFi,k =
N00

N11 +N10 +N01 +N00
(6.2)

6.2.2 Classifiers Selection

Currently few studies on choosing the relevant models from a pool

of models exist. This research considers that classifiers were trained

and stored in a collection of models using standard representation

such as PTML. From the collection, the most relevant models based

on user’s requirements can be selected. This is generally an opti-

mization problem aiming to find the model with higher Acc, lower

FNR, and lower FPR for a given new problem.

The models were reused from a pool of existing models as a more

efficient way of choosing the relevant models and reuse existing

knowledge. To rank the classifiers, the performance measures used

were Acc, FNR and FPR. However, this solution is open to criti-

cism when it comes to the decision on which classifier to be applied

and chosen from a collection of classifiers. In prediction problems,

classifiers built upon a good ensemble combination performed better

compared to a single classifier. One of the methods to rank the clas-
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sifiers is to calculate the similarity of models as proposed in Chapter

5.

Aho et al. (2008) proposed a ranking method for models selection

from a pool of models. They proposed ranking selection by com-

paring the training distributions of classifiers with the input distri-

bution. Instead, this research proposes CRV to rank the relevant

classifiers to be selected in the final ensemble because the models

selected were based on a combination of three performance mea-

sures of Acc, FNR and FPR.

6.2.3 Decision Fusion Strategy

The final output of an ensemble method of classifiers will depend on

the decision fusion strategies. Ghosh et al. (2011) summarised in

their paper that approaches for decision fusion can be categorised

into two classes, which are utility-based and evidence-based. The

utility-based techniques include simple average, voting techniques,

and their variants. These techniques are the simplest way to fuse

decisions and do not utilize any prior knowledge or evidence from

previous prediction. For the evidence-based approach, the decision

to be made will incorporate a priori information from the past pre-

dictions.

In this study, simple majority voting was used in predicting the

chemical compound toxicity for ensemble classifiers. In simple ma-

jority voting the chemical compound will be predicted as toxic if the

vote is 50% or more, to give a high confidence in predicting toxic

class. Following is the simple majority voting technique applied in



6.3 Proposed Classifiers Ranking System 124

this study.

SMV otingi =
Ci

∑n
1

n
(6.3)

where:

i is the index of Instances in a classifier,

n is number or classifiers in an ensemble,

C is classifier.

If the value of SMV otingi ≥ 0.5 then the predicted class will be toxic

and if SMV otingi < 0.5 the predicted class will be non toxic.

Consider Table 6.1 where simple majority voting for two classi-

fiers is demonstrated. To simplify the calculation of simple majority

voting as Equation 6.3, the toxic class which is "Yes" was mapped to

a value of 1 and non toxic class which is "No" was mapped to a value

of 0.

The last column (New Predictive Classes) of the table show the

new prediction of the classes obtained. The new toxic class was

predicted whenever only one output from a classifier predicted toxic.

This means, in a pair of classifiers, to predict non toxic class, both

classifiers have to predict "No" to get a non toxic class. If one of the

classifier predicts "Yes", then the final result will be "Yes" or toxic

class.

6.3 Proposed Classifiers Ranking System

The method proposes that the classifiers can be selected based on

their performance measures such as Acc, FNR, FPR, True Negative
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Table 6.1: Simple Majority Voting for Two Classifiers

C1 C2 SMV oting New Predictive
InstancesID Output output V alues Classes
1 1 1 2/2 = 1.0 1 ("Yes")
2 0 0 0/2 = 0.0 0 ("No")
3 1 0 1/2 = 0.5 1 ("Yes")
4 0 1 1/2 = 0.5 1 ("Yes")

Rate (TNR) and True Positive Rate (TPR). The most critical per-

formance in predictive toxicology is classifier with low FNR. The

selected classifiers were resulted from the composite performance

measures. Selecting relevant classifiers from the pool of models can

be done by comparing the classifiers and selecting the right perfor-

mance measures.

6.3.1 Classifiers Ranking Value

A well known method to predict future outcome with higher accuracy

for classification problems is an ensemble method. The system will

allow the models to be chosen among the diversity of models and

make a combination of techniques to make it hybrid. The literature

proved that this technique is able to successfully predict the truth

and achieve very high accuracy compared to single classifiers.

Diversity of classifiers in an ensemble may produce better predic-

tion models. A process of constructing ensembles starts with data

manipulation, model generation, selection of models and selection of

decision fusion strategy (Wang 2008, Bian & Wang 2007).

This study proposed that to select the most relevant classifier to

be a member of an ensemble, a classifier rating system should be
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used. The performance measures of Acc, FNR and FPR may be

included in the classifiers selection in the ensemble. The weight can

be assigned to all of the performance measures. In Equation 6.4, the

user can use the weights of performance measures by embedding

them in the Classifier Ranking Value (CRV ):

CRV = (w1 ∗ (1− Acc)) + (w2 ∗ FNR) + (w3 ∗ FPR) (6.4)

where:

CRV is a ranking value for a classifier,

w1, w2 and w3 are the weights for Acc, FNR and FPR, respectively.

The values of w1 , w2 and w3 are between 0 and 1.

The sum of (w1 + w2 + w3 ) equals to 1.

The method proposes the classifier rating system by giving a clas-

sifier rating value to each classifier in the pool of classifiers. Using

the CRV , the best classifiers can be selected and consequently have

diversity of classifiers in the ensemble for their combination. The

combination technique will be introduced in the next section by opti-

mising the diversity of classifiers. This approach can also be applied

to ensemble classifiers. Of course, before the CRV for an ensemble

is calculated, the classification output must be combined by certain

aggregator, such as simple majority voting.
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6.4 Proposed Ensemble Method

In this section, the optimisation of the hybridisation of the classi-

fiers in an ensemble will be discussed. The aim is to combine the

best classifiers against the most relevant and diverse classifier in

the pool. The optimisation technique of ensemble process applied

was similar to GA in three phase:

• Initialisation

In the first phase, the classifiers from a collection were com-

pared using the proposed Similarity Measure (Sim). The objec-

tive of this is to eliminate any similar models, thus it can speed

up the ensemble process. The CRV will apply to all the diver-

gent models related to problems to be predicted. The lowest

CRV will be initialised as a base classifier.

• Selection

In the second phase, selection will be applied to find the most

diverse classifier from the base classifier. The most divergent

will be paired with the base classifier. The pair will be fused

together to find the new combination output. The results of the

combination will be compared with the base CRV . If the results

improve the previous CRV , the pair will be selected and if it

does not improve the CRV , the process will start with mutation.

In this case, another divergent classifier will be a paired with

the base classifier.

• Reproduction

The last step is the repetition process. The process of finding
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a suitable pair will be repeated until it improve the previous

CRV . The first and second steps will be repeated until the new

ensemble attained the minimum CRV .

This study presumes that a pool of classifiers with different pa-

rameter settings has been generated previously. The parameters

of classifiers were generated using feature selection algorithms and

machine learning algorithms. The pool of classifiers were diverse

where there are no similar models in the pool calculated using Sim

as proposed in Chapter 5. The pool had gone through clean up

process using the proposed Sim in previous chapter. This will en-

sure that the selected classifiers are diverse and there are no similar

models in the pool.

The selection of the classifiers that are to be included in an en-

semble from a large set of classifiers requires high computational

complexity. For example more models to be added in the ensemble

will lead to more processing time in making combinations of them.

To optimise the selection, the method presumed that the best classi-

fier (lowest CRV ) is an initial classifier (C1). By measuring the diverse

of C1 from other relevant classifiers (Ci where i = 1, 2, ... , n), we can

find the best complement of C1 that can be combined in the ensem-

ble in order to achieve optimal performance measures (Acc, FNR and

FPR). This study developed an ensemble of complementary classi-

fiers initially in order to optimise their diversity.
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Figure 6.1: The OCEM Algorithm
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6.4.1 The OCEM Algorithm

The algorithm developed is as depicted in Figure 6.1. Given a set of

classifiers, a pool of diverse classifiers is selected by eliminating the

similar ones. This is achieved by the Sim technique proposed in the

Chapter 5.

The algorithm starts by calculating CRV for all the selected clas-

sifiers in the pool which correspond to a set M . The model with the

lowest CRV will be assigned as a base model Ck (line 3). To improve

the performance measure of the base classifier, it will be combined

with the most diverse of relevant classifiers. Thus in line 6, to find a

divergent classifier against the base classifier, the diversity between

Ck and M using classifiers diversity Disi,k will be calculated.

There will be a repetition to find good ensemble classifiers by

combining the base classifier with the diverse classifier and calculat-

ing the performance of the combined classifiers. If the performance

measures of the ensemble improve the CRV of the ensemble, then

the classifiers will be retained in the ensemble. If the CRV is not im-

proved, the next diverse classifier will be added into the ensemble.

In particular, a temporary stack (S) is utilised to host the remain-

ing classifiers in the pool in descending order for convenience. The

classifier with the highest diversity value will always pop out first

to tentatively combine with the existing ensemble to examine if the

combination produces higher CRV values. The last step is selecting

the ensemble that obtains the highest performance measures.

For this study, collections of models were generated using a se-

ries of algorithms implemented in Weka, such as:
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• k-nearest neighbours classifier (weka.classifiers.lazy.IBk),

• decision trees (weka.classifiers.trees.J48),

• numerical prediction (weka.classifiers.rules.JRip),

• random forest (weka.classifiers.randomforest) and

• neural network (MultilayerPerceptron).

For the ensemble classifiers, bagging, boosting (adaboostM1), stack-

ing (StackingC), and Bayes were used.

The predictive models were applied to various toxicology data

from the Demetra project and also to the UCI data sets. More than

1000 predictive models were generated with different combinations

of data sets, algorithms, and model parameters. The models were

generated from a group of predictive toxicology data sets whereby

each group of data sets was run through data preparation and re-

ductions processes. All the models were validated using 10-Folds

Cross Validation.

Feature selection was used to find sets of attributes that are

highly correlated with the target classes. The feature selection al-

gorithms applied to the data sets were Correlation-based Feature

Selection (CFS), CfsSubsetEval, ClassifierSubsetEval and Consisten-

cySubsetEval with the BestFirst, GeneticSearch and GreedyStepwise

as searching methods using Weka. The following studies were con-

ducted to implement the proposed OCEM algorithm.
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6.5 The OCEM Applied to Demetra Data Sets

This section studies the performance of OCEM applied to Deme-

tra data sets with the aim to achieve the highest Acc and at the

same time minimise the FNR and FPR to give the ensemble pro-

duced more balance in predicting both classes. The experiment

of Demetra data sets with Bagging, AdaBoost, Stacking and Bayes

will be a benchmark to evaluate the performance of OCEM . The

main objective of the OCEM is to optimise the combination of three

performance measures (Acc, FNR and FPR) so that the ensemble

constructed will have minimal but balance between FNR and FPR

and maintain the highest Acc. The CRV s were assigned individual

weights such as w1 for Acc, w2 for FNR and w3 for FPR. For the di-

versity measures, the disagreement measure were denote as OCEMD

and double fault measure as OCEMDF .

The investigations were divided into 3 subsections as follows:

1. Applied OCEM with a single performance measure where:

• w1=0.0, w2=1.0 and w3=0.0 (focused on FNR) denote as

CRV 1.

• w1=0.0, w2=0.0 and w3=1.0 (focused on FPR) denote as

CRV 2, and

• w1=1.0, w2=0.0 and w3=0.0 (focused on Acc) denote as CRV 3,

2. Applied OCEM by combining two performance measures where:

• w1=0.5, w2=0.5 and w3=0.0 (focused on Acc and FNR) de-

note as CRV 4, and
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• w1=0.0, w2=0.5 and w3=0.5 (focused on FNR and FPR) de-

note as CRV 5.

3. Applied OCEM by combining three performance measures where:

• w1=0.3, w2=0.5 and w3=0.2 (focused on more weight to

FNR followed by Acc and FPR) denote as CRV 6, and

• w1=0.6, w2=0.2 and w3=0.2 (focused on more weight to Acc

but considered to minimised the FNR and FPR) denote as

CRV 7.

6.5.1 The Comparative Study on Ensembles Meth-

ods (Bagging, Boosting, Stacking and Bayes)

Table 6.2: Acc, FNR and FPR for Bagging, AdaBoost, Stacking and
Bayes.

Data Set Bagging AdaBoost Stacking Bayes
Bee Acc = 0.90 Acc = 0.90 Acc = 0.86 Acc = 0.90

FNR = 0.01 FNR = 0.00 FNR = 0.00 FNR = 0.02
FPR = 0.70 FPR = 0.75 FPR = 1.00 FPR = 0.65

Daphnia Acc = 0.81 Acc = 0.81 Acc = 0.71 Acc = 0.77
FNR = 0.07 FNR = 0.09 FNR = 0.00 FNR = 0.20
FPR = 0.45 FPR = 0.45 FPR = 1.00 FPR = 0.29

Dietary Acc = 0.87 Acc = 0.84 Acc = 0.63 Acc = 0.85
Quail FNR = 0.10 FNR = 0.11 FNR = 0.00 FNR = 0.07

FPR = 0.20 FPR = 0.28 FPR = 1.00 FPR = 0.30
Oral Acc = 0.71 Acc = 0.68 Acc = 0.42 Acc = 0.69
Quail FNR = 0.42 FNR = 0.51 FNR = 0.80 FNR = 0.48

FPR = 0.13 FPR = 0.13 FPR = 0.20 FPR = 0.14
Trout Acc = 0.82 Acc = 0.80 Acc = 0.77 Acc = 0.77

FNR = 0.06 FNR = 0.08 FNR = 0.00 FNR = 0.00
FPR = 0.49 FPR = 0.55 FPR = 1.00 FPR = 1.00

The well known ensemble methods (Bagging, AdaBoost, Stacking
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and Bayes) focused on getting highest Acc. From the results (see Ta-

ble 6.2), it really shows that Bagging is the best method compared

to AdaBoost, Stacking and Bayes. Adaboost and Bayes are aver-

age methods to classify Dametra data sets. The worst method was

Stacking where it can not classify most of the non toxic class for 4

data sets (Bee, Daphnia, Dietary Quail and Trout) e.g. FNR=0.00,

FPR=1.00.

Although Bagging performs best on the Acc for all data sets, the

huge distances between its FNR and FPR are still an important

issue. For example, Bagging has difference between FNR and FPR

for data set Bee 0.69, Daphnia 0.38 and Trout 0.37. This shows that

the classifier was biased in certain classes.

To overcome the big distances between FNR and FPR, an en-

semble proposed should be able to close the gap. Thus, the follow-

ing sections will study different combinations of CRV weights to give

different results to Acc, FNR and FPR.

6.5.2 The Implementation of OCEM on a Single Per-

formance Measure)

Table 6.3 show results for 3 different parameters given to OCEM .

OCEMD is using disagreement and OCEMDF is using double fault

as diversity measures.

From the results, CRV 1 given w1=0.0, w2=1.0 and w3=0.0, the

OCEMDF using double fault measure is able to achieve the lowest

FNR compared to OCEMD for data sets Bee (see columns CRV 1).

The same results were achieved for Daphnia, Dietary Quail and
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Table 6.3: OCEM that Focused on Single Performance Measures.

Diversity OCEMD OCEMDF OCEMD OCEMDF OCEMD OCEMDF

CRV s CRV 1 CRV 1 CRV 2 CRV 2 CRV 3 CRV 3
Bee Acc = 0.86 Acc = 0.86 Acc = 0.88 Acc = 0.87 Acc = 0.92 Acc = 0.92

FNR = 0.03 FNR = 0.00 FNR = 0.06 FNR = 0.08 FNR = 0.01 FNR = 0.01
FPR = 0.79 FPR = 1.00 FPR = 0.50 FPR = 0.43 FPR = 0.50 FPR = 0.62

Daphnia Acc = 0.71 Acc = 0.71 Acc = 0.55 Acc = 0.57 Acc = 0.88 Acc = 0.84
FNR = 0.00 FNR = 0.00 FNR = 0.61 FNR = 0.59 FNR = 0.07 FNR = 0.09
FPR = 1.00 FPR = 1.00 FPR = 0.07 FPR = 0.05 FPR = 0.36 FPR = 0.35

Dietary Acc = 0.63 Acc = 0.63 Acc = 0.85 Acc = 0.82 Acc = 0.85 Acc = 0.85
Quail FNR = 0.00 FNR = 0.00 FNR = 0.12 FNR = 0.13 FNR = 0.11 FNR = 0.09

FPR = 1.00 FPR = 1.00 FPR = 0.20 FPR = 0.31 FPR = 0.23 FPR = 0.29
Oral Acc = 0.78 Acc = 0.78 Acc = 0.67 Acc = 0.70 Acc = 0.84 Acc = 0.84
Quail FNR = 0.09 FNR = 0.09 FNR = 0.60 FNR = 0.20 FNR = 0.16 FNR = 0.16

FPR = 0.47 FPR = 0.47 FPR = 0.07 FPR = 0.50 FPR = 0.17 FPR = 0.17
Trout Acc = 0.78 Acc = 0.78 Acc = 0.65 Acc = 0.66 Acc = 0.84 Acc = 0.84

FNR = 0.00 FNR = 0.00 FNR = 0.42 FNR = 0.41 FNR = 0.08 FNR = 0.08
FPR = 1.00 FPR = 1.00 FPR = 0.10 FPR = 0.10 FPR = 0.50 FPR = 0.46

Trout using both diversity measures, disagreement and double fault

measure. The drawback here is when focused on certain perfor-

mance, in this case FNR (CRV 1), the error can be minimised but

the error of other performance measures will be increased. For ex-

ample the Acc is not optimum and FPR up to 1.0 for most of the

data sets.

When we focused on FPR given w1=0.0, w2=0.0 and w3=1.0, the

lowest FPR was achieved, but the Acc and FNR were not optimum

for example data set Daphnia (see columns CRV 2).

The same problem was found when we focused on Acc given w1=1.0,

w2=0.0 and w3=0.0, FNR and FPR are not minimised and the dif-

ferent between them is noticeable (see columns CRV 3). All the Acc

for five data sets were maximised but there is a big gap between

FNR and FPR. Thus, there is motivation to combine performance

measures to close the gap between FNR and FPR but maintain the

highest Acc. The optimised results by combining performance mea-

sures will be discussed in the following sections.
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6.5.3 The Implementation of OCEM on Two Perfor-

mance Measures)

Table 6.4: Results by Combining Two Performance Measures

Diversity OCEMD OCEMDF OCEMD OCEMDF

CRV s CRV 4 CRV 4 CRV 5 CRV 5
Bee Acc = 0.91 Acc = 0.91 Acc = 0.92 Acc = 0.93

FNR = 0.00 FNR = 0.00 FNR = 0.01 FNR = 0.01
FPR = 0.64 FPR = 0.64 FPR = 0.62 FPR = 0.43

Daphnia Acc = 0.81 Acc = 0.81 Acc = 0.82 Acc = 0.75
FNR = 0.06 FNR = 0.06 FNR = 0.12 FNR = 0.32
FPR = 0.51 FPR = 0.51 FPR = 0.32 FPR = 0.08

Dietary Acc = 0.82 Acc = 0.85 Acc = 0.86 Acc = 0.80
Quail FNR = 0.09 FNR = 0.09 FNR = 0.09 FNR = 0.13

FPR = 0.32 FPR = 0.29 FPR = 0.23 FPR = 0.37
Oral Acc = 0.78 Acc = 0.84 Acc = 0.79 Acc = 0.73
Quail FNR = 0.09 FNR = 0.16 FNR = 0.12 FNR = 0.34

FPR = 0.47 FPR = 0.17 FPR = 0.38 FPR = 0.21
Trout Acc = 0.83 Acc = 0.83 Acc = 0.74 Acc = 0.75

FNR = 0.03 FNR = 0.05 FNR = 0.30 FNR = 0.29
FPR = 0.63 FPR = 0.63 FPR = 0.13 FPR = 0.13

Table 6.4 shows results with different weights of w given to OCEM .

OCEMD is using disagreement and OCEMDF is using double fault as

diversity measures.

From the results, CRV 4 given w1=0.5, w2=0.5 and w3=0.0, the

OCEMD using disagreement measure is able to achieve the lowest

FNR and high Acc compared to OCEMDF for most of the data sets.

The problem here is when focused on two performance measures

in this case Acc and FNR, the other performance measure will be

higher. For example the FPR for data sets Bee, Daphnia and Trout

were over 0.5 (see first column of CRV 4).

The same problem was found when we focused on FNR and FPR
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(see columns CRV 5 given w1=0.0, w2=0.5 and w3=0.5), FNR and

FPR were minimised and the difference between them is lower and

improved but the Acc is not optimal for all data sets accept Bee (see

last column). Thus, to give more balance and robust ensemble per-

formance, the combination of all performance measures to close the

gap between FNR and FPR but maintain the highest Acc were to

be considered. The next section will demonstrate the results for the

combining Acc, FNR and FPR into CRV .
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6.5.4 The Implementation of OCEM to Combine the

Three Performance Measures)

Table 6.5: Results by Combining Three Performance Measures

Diversity OCEMD OCEMDF OCEMD OCEMDF

CRV s CRV 6 CRV 6 CRV 7 CRV 7
Bee Acc = 0.92 Acc = 0.92 Acc = 0.92 Acc = 0.93

FNR = 0.00 FNR = 0.01 FNR = 0.01 FNR = 0.01
FPR = 0.51 FPR = 0.50 FPR = 0.50 FPR = 0.43

Daphnia Acc = 0.85 Acc = 0.84 Acc = 0.82 Acc = 0.82
FNR = 0.07 FNR = 0.09 FNR = 0.12 FNR = 0.12
FPR = 0.36 FPR = 0.35 FPR = 0.32 FPR = 0.32

Dietary Acc = 0.85 Acc = 0.85 Acc = 0.86 Acc = 0.88
Quail FNR = 0.11 FNR = 0.09 FNR = 0.09 FNR = 0.11

FPR = 0.23 FPR = 0.29 FPR = 0.23 FPR = 0.20
Oral Acc = 0.78 Acc = 0.84 Acc = 0.84 Acc = 0.84
Quail FNR = 0.09 FNR = 0.16 FNR = 0.16 FNR = 0.16

FPR = 0.47 FPR = 0.17 FPR = 0.17 FPR = 0.17
Trout Acc = 0.82 Acc = 0.82 Acc = 0.82 Acc = 0.83

FNR = 0.12 FNR = 0.12 FNR = 0.12 FNR = 0.12
FPR = 0.38 FPR = 0.38 FPR = 0.38 FPR = 0.37

Table 6.5 shows the results for combining all the performance

measure. From the results, CRV 6 was given w1=0.3, w2=0.5 and

w3=0.2 to improved on FNR followed by Acc and FRP (see columns

CRV 6). Although it achieved the lowest FNR and high Acc using

disagreement measure (OCEMD) for data sets Bee, Daphnia and Oral

Quail, the gap compared to the FPR is still high.

The gaps were improved where FPR were lowest for those data

sets by adjusted the weights given w1=0.6, w2=0.2 and w3=0.2 (see

CRV 7). This shows that the performance measures were optimise

for all data sets using the weights given and double fault measure

as diversity measure.
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The proposed algorithm for optimisation and combination of Acc,

FNR and FPR of ensemble models using double fault measure as

the diversity measure improves the Acc between 0.01 to 0.30 for all

toxicology data sets compared to other ensemble methods such as

Bagging, Stacking, Bayes and Boosting. The highest improvements

for Acc were for data sets Bee (0.30), Oral Quail (0.13) and Daphnia

(0.10). A small improvement in Acc was achieved for Dietary Quail

and Trout of about 0.01. The most important results in this find-

ing by combining all the three performance measure were able to

reduce the distance between FNR and FPR for Bee, Daphnia, Oral

Quail and Trout data sets between 0.17 to 0.28. The Dietary Quail

improved for about 0.01 though, but this data set is well known as a

difficult learning exercise (Neagu, Guo, Trundle & Cronin 2007). For

five UCI data sets tested, similar results achieved with Acc improve-

ment between 0.10 to 0.11 and were closing more gaps between FNR

and FPR.

Figure 6.2 is a chart that used data from Table 6.5. The chart

combined the error rate of each performance measures. It can be

seen that the most stable and balance performances of ensemble

constructed for all Demetra data sets is OCEMDF and CRV 7. It

was given weight of w1=0.6, w2=0.2 and w3=0.2 to get highest Acc

and lowest FNR and FPR using double fault measure as diversity

measures. The OCEMDF and CRV 7 (OCEMDFCRV 7) will be used

as the most optimise ensemble for Demetra data sets to be com-

pared with other ensemble methods. The next section will compare

(OCEMDFCRV 7) with other well know ensemble methods such as
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Bagging, Boosting, Stacking and Bayes.

Figure 6.2: Optimised CRV Values

6.5.4.1 The Study on Number of Members in the Ensemble for

Demetra Data sets

The objective of this study is to find the optimised number of mem-

bers in an ensemble. Obviously fewer members in an ensemble will

lead to faster processing to find the optimised performance mea-

sures. In this study, the voting strategy used is simple majority

voting.

Figure 6.3 is graph of CRV values calculated from Table 6.5 (see

column OCEMDF and CRV 7). The results show that the optimum

number of members in an ensemble with highest performance mea-

sures of Acc, and lowest FNR and FPR is between 2 to 6 members.

The Acc dropped, while FNR and FPR increased when the number

of members in an ensemble is more than 6 for Demetra data set us-

ing the double fault measure. As a conclusion 2 or more member
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improves other performance measures.

Figure 6.3: The CRV values given w1=0.6, w2=0.2 and w3=0.2 for All
Data Set for OCEMDF up to 10 Member in an Ensemble
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6.5.5 Comparative Study between OCEM and other

Ensemble Methods

Figure 6.4: OCEM Performance Compared to other Ensembles
Methods

This section will study the methods to optimise the three perfor-

mance measures using proposed OCEMDFCRV 7 compared to other

ensemble methods such as Bagging, Boosting, Stacking and Bayes.

The bar graph shows CRV values for OCEMDFCRV 7 and data from

Table 6.2 calculated given w1=0.6, w2=0.2 and w3=0.2. Figure 6.4

shows OCEMDFCRV 7 consistently getting lowest CRV that opti-

mise the Acc, FNR and FPR for all Demetra data sets. The diversity

measure used was double fault measure.
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6.5.6 The Implementation of OCEM to Different Group

of Demetra Data Sets

This study was conducted on the Demetra data sets that had been

divided into different groups. The objective is to investigate whether

OCEM algorithm performed well on the different groups of data sets.

Original data sets were divided into four groups (Set A, Set B, Set C

and Set D). Sun (2005) also divided data sets into groups during

training. The portion of every group of data sets was as depicted in

Figure 6.5). The OCEM applied Disagreement Measure as a diversity

measure and Set B, Set C and Set D were used during training.

Figure 6.5: Groups of Demetra Data Set
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6.5.7 Performance of OCEM to Data Sets Split into

Training and Testing Sets

There were studies conducted on data sets that had been divided

into a training set (70%) and a testing set (30%). The results show

similar conclusions as obtained in previous experiments. The detail

results can be found in Table B.5 to Table B.8.

Table 6.6: Acc, FNR and FPR for Different Ensemble Methods for
Training and Testing Sets.

Data Set Bagging AdaBoost Stacking Bayes OCEMDF OCEMD

Bee Acc = 0.90 Acc = 0.90 Acc = 0.87 Acc = 0.78 Acc = 0.73 Acc = 0.96
FNR = 0.07 FNR = 0.03 FNR = 0.00 FNR = 0.17 FNR = 0.69 FNR = 0.00
FPR = 0.25 FPR = 0.50 FPR = 1.00 FPR = 0.50 FPR = 0.13 FPR = 0.25

Daphnia Acc = 0.62 Acc = 0.83 Acc = 0.62 Acc = 0.83 Acc = 0.97 Acc = 0.88
FNR = 0.10 FNR = 0.06 FNR = 0.00 FNR = 0.26 FNR = 0.04 FNR = 0.14
FPR = 0.30 FPR = 0.33 FPR = 1.00 FPR = 0.00 FPR = 0.01 FPR = 0.06

Dietary Acc = 0.62 Acc = 0.62 Acc = 0.62 Acc = 0.62 Acc = 0.88 Acc = 0.97
Quail FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.14 FNR = 0.00

FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 0.11 FPR = 0.07
Oral Acc = 0.60 Acc = 0.57 Acc = 0.48 Acc = 0.65 Acc = 0.54 Acc = 0.82
Quail FNR = 0.38 FNR = 0.55 FNR = 1.00 FNR = 0.55 FNR = 0.81 FNR = 0.16

FPR = 0.41 FPR = 0.29 FPR = 0.00 FPR = 0.11 FPR = 0.22 FPR = 0.17
Trout Acc = 0.82 Acc = 0.82 Acc = 0.82 Acc = 0.82 Acc = 0.76 Acc = 0.91

FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.17 FNR = 0.04
FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 0.37 FPR = 0.26

This experiment was conducted to study the performance of OCEM

compared to other ensemble methods by generating the collection of

models based on training set and testing set. The training sets, 70%

sequential splits of each Demetra data set. The remaining instances

(30%) were the test sets. The process of generating the models to be

saved in the collection follows previous methods. From the results

(see Table 6.6), the accuracy of OCEM using disagreement measure

(OCEMD) outperform other ensemble methods. The OCEM using

double fault (OCEMD) did not perform well in training and test sets.

This is because the number of instances in the Demetra data sets
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were small and splitting them into training sets makes the data sets

much smaller for classifier to learn from.

For Oral Quail’s data set, OCEM outperforms other ensemble

methods. The OCEM result for disagreement measure can be found

in column OCEMD and column OCEMDF is for double fault mea-

sure. The Acc is improved using disagreement measure compared to

double fault measure. The most significant results were obtained for

Oral Quail: highest Acc and lowest FNR. For data sets Bee, Daph-

nia and Dietary Quail, Acc is highest while FNR lowest compared to

other ensemble methods by using OCEMDF . The improvement of the

FNR is the main objective which means that this method is able to

minimise the ER of predicting the toxic class. So as a conclusions,

for Demetra data sets that split into training and test set should ap-

plied disagreement measure as a diversity measure and given weight

of w1=0.6, w2=0.2 and w3=0.2 to the CRV .
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6.5.8 Performance of OCEM to by Partitioning Train-

ing Sets

Table 6.5 shows the results that different performance measures ob-

tained by giving different weights to each performance measure. By

giving more weight to certain measures, that performance could be

increased. In this study, the most optimised were the combination

of w1=0.6, w2=0.2 and w3=0.2, the ensemble has reached a highest

Acc and lowest FNR and FPR using disagreement measures. The

Acc for all data sets improved and outperforms all other ensemble

methods. This scenario shows that the OCEM method is able to

gain higher accuracy for the data sets (see Table 6.7).

Table 6.7: Acc, FNR and FPR for Different Ensemble Methods for
Different Partition Data Sets.

Data Set Bagging AdaBoost Stacking Bayes OCEMD

Bee Acc = 0.87 Acc = 0.78 Acc = 0.87 Acc = 0.81 Acc = 0.96
FNR = 0.03 FNR = 0.17 FNR = 0.00 FNR = 0.14 FNR = 0.00
FPR = 0.75 FPR = 0.50 FPR = 1.00 FPR = 0.50 FPR = 0.25

Daphnia Acc = 0.85 Acc = 0.87 Acc = 0.62 Acc = 0.85 Acc = 0.90
FNR = 0.10 FNR = 0.10 FNR = 0.00 FNR = 0.22 FNR = 0.08
FPR = 0.23 FPR = 0.16 FPR = 1.00 FPR = 0.03 FPR = 0.13

Dietary Acc = 0.89 Acc = 0.89 Acc = 0.62 Acc = 0.91 Acc = 1.00
Quail FNR = 0.08 FNR = 0.17 FNR = 0.00 FNR = 0.13 FNR = 0.00

FPR = 0.14 FPR = 0.00 FPR = 1.00 FPR = 0.00 FPR = 0.00
Oral Acc = 0.74 Acc = 0.71 Acc = 0.48 Acc = 0.74 Acc = 0.82
Quail FNR = 0.44 FNR = 0.50 FNR = 1.00 FNR = 0.44 FNR = 0.16

FPR = 0.05 FPR = 0.05 FPR = 0.00 FPR = 0.05 FPR = 0.17
Trout Acc = 0.88 Acc = 0.87 Acc = 0.82 Acc = 0.82 Acc = 0.91

FNR = 0.04 FNR = 0.02 FNR = 0.00 FNR = 0.00 FNR = 0.01
FPR = 0.46 FPR = 0.06 FPR = 1.00 FPR = 1.00 FPR = 0.40



6.6 The Implementation of OCEM to UCI Data Sets 147

6.6 The Implementation of OCEM to UCI

Data Sets

For this study, collections of models were generated using the same

technique and algorithms as applied to Demetra data sets. All the

models were validated using 10-Folds Cross Validation. The objec-

tive of this study is to see if the proposed ensemble method (OCEM)

perform well to the benchmark data sets from UCI repositories. The

results validate that the propose ensemble slightly improve the Acc

but lowest FNR and FPR compared to other ensemble method (Bag-

ging, Boosting, Stacking and Bayes).

6.6.1 The Study to Improve Acc and Minimise FNR

and FPR

From this experiment, it shows that the Acc for Breast Cancer, Hep-

atitis, Liver Disorder and Pima Indian Diabetes improved and out-

performs all other ensemble methods given w1=0.6, w2=0.2 and w3=0.2

using double fault as diversity measure. The Acc for Blood Transfu-

sion slightly improved by 0.01 compared to other ensembles (see

Table 6.8). For the UCI data sets, to have an improvement in a cer-

tain performance, more weight has to be given to that performance

measure such as results obtained in Table 6.8 to improve Acc.

As a conclusion, the similar result with Demetra data sets also

obtained for UCI data sets where the ensemble constructed were

able to get highest Acc and minimise FNR and FPR compared to

Bagging, Boosting, Stacking and Bayes. The results also show that
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the OCEM proposed by given w1=0.6, w2=0.2 and w3=0.2 and double

fault as diversity measure can also be applied to other domain and

data sets.

Table 6.8: Acc, FNR and FPR for Different Ensemble.

Data Set Bagging AdaBoost Stacking Bayes OCEMD OCEMDF

Blood Acc = 0.75 Acc = 0.75 Acc = 0.75 Acc = 0.71 Acc = 0.76 Acc = 0.76
Transfusion FNR = 1.00 FNR = 1.00 FNR = 0.90 FNR = 1.00 FNR = 0.69 FNR = 0.13

FPR = 0.00 FPR = 0.00 FPR = 0.00 FPR = 0.09 FPR = 0.13 FPR = 0.69
Breast Acc = 0.95 Acc = 0.94 Acc = 0.65 Acc = 0.96 Acc = 0.97 Acc = 0.97
Cancer FNR = 0.03 FNR = 0.03 FNR = 0.00 FNR = 0.03 FNR = 0.01 FNR = 0.01

FPR = 0.05 FPR = 0.09 FPR = 1.00 FPR = 0.08 FPR = 0.03 FPR = 0.03
Hepatitis Acc = 0.80 Acc = 0.83 Acc = 0.80 Acc = 0.87 Acc = 0.94 Acc = 0.94

FNR = 1.00 FNR = 0.57 FNR = 1.00 FNR = 0.48 FNR = 0.03 FNR = 0.07
FPR = 0.00 FPR = 0.08 FPR = 0.00 FPR = 0.11 FPR = 0.07 FPR = 0.03

Liver Acc = 0.53 Acc = 0.53 Acc = 0.57 Acc = 0.56 Acc = 0.59 Acc = 0.59
Disorder FNR = 0.73 FNR = 0.73 FNR = 1.00 FNR = 0.80 FNR = 0.90 FNR = 0.90

FPR = 0.17 FPR = 0.17 FPR = 0.00 FPR = 0.22 FPR = 0.10 FPR = 0.10
Pima Acc = 0.74 Acc = 0.75 Acc = 0.65 Acc = 0.74 Acc = 0.76 Acc = 0.76
Indian FNR = 0.17 FNR = 0.16 FNR = 0.00 FNR = 0.17 FNR = 0.17 FNR = 0.17
Diabetes FPR = 0.39 FPR = 0.40 FPR = 1.00 FPR = 0.29 FPR = 0.37 FPR = 0.37

6.7 Limitations

In this chapter, the ensemble method proposed was optimised on

their performance measures using CRV . The diversity measures

studied were disagreement measure and double fault measure. The

method can be improved by considering other diversity measures.

In addition the decision fusion strategy applied was simple majority

voting. It can be broadened to other decision fusion strategy such

as weight voting technique.

6.8 Summary

In this chapter, a method to optimise the selection of classifiers from

a pool of models and make an ensemble between the classifiers to
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obtain higher performance in Acc, FNR and FPR was proposed. The

selection process involves selecting the relevant and diverse classi-

fiers by ranking them using a proposed Classifier Rating System

(CRS) and calculates their diversity. The experiments show that an

ensemble approach is better than a single classifier for predicting

the toxic class of chemical compounds. It proved that the method

proposed for Optimising Classifier Ensemble Method (OCEM ) out-

performs other four ensemble methods such as bagging, stacking,

bayes and boosting.

The results show different performance measures obtained by

giving different weights to each performance measures. By giving

more weight to certain measures, their performance could be in-

creased. With the combination of w1=0.6, w2=0.2, w3=0.2, the en-

semble has reached a optimal Acc, FNR and FPR.

Different results obtained using double fault measure (see Table

6.5). Refer to the table, the results performed well for three data sets

such as Bee, Daphnia and Oral Quail. As conclusions, the highest

Acc obtained using the double fault measure as a diversity mea-

sure and with the combination of w1=0.6, w2=0.2, w3=0.2 applied in

OCEM .



Chapter 7

Evaluation and Discussion

7.1 Introduction

This chapter will evaluate and discuss the research outcomes within

this thesis. The problems of reusing models from collections of mod-

els to predict the toxicity of new classes of chemical compounds were

the main aims of this research. The work conducted was divided into

four main chapters.

Chapter 3 discussed the proposed methodology of the research

and the concept of data and model governance. Chapter 4 discussed

the proposed standard representation for model management called

Predictive Toxicology Markup Language (PTML) that were used in

Chapter 5 and Chapter 6 for model comparison and models com-

bination. In Chapter 5, a technique to compare predictive models

was proposed by calculating their similarity. The model can be used

as a single model or by combining them in the proposed ensemble.

Chapter 6 proposed an ensemble method by selecting models with a

combination of three performance measures (Acc, FNR and FPR) to

150
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improved the performance.

The outcomes of the chapters will be evaluated and discussed in

the following sections below within the context of a framework for

model and data governance.

7.2 Methodology and Proposed Framework

for Data and Model Governance

The research starts from the availability of models that have been

trained by the domain experts. The models can be selected to be

used as a single model or in combination to predict new toxicology

problems. The research process followed the structured methods

as discussed in Chapter 3 and shown in Figure 3.1. There are 3

main processes that integrate together toward getting a quality pre-

diction by reusing a collection of predictive toxicology models. The

processes are model representation, model comparison and ensem-

ble construction of models.

The models were assumed to be generated by domain experts

and stored in a collection of models. The model comes from different

ways of representation developed using various data mining tools.

The collection of models needs a proper management system to keep

the models updated and corrected so that it can be accessed when

needed to be used for new predictive toxicology problems.

As discussed in Chapter 3, from the view of predictive modelling

governance, the data and models have to be properly managed to

achieve higher prediction. Liu & Tuzhilin (2008) raised the issues in
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model management of how to automate the models generation, and

the storage of the models. Another issue raised is how the reposi-

tories can be retrieved and further analysed. (Fu et al. 2011) also

studied data governance issues and proposed a framework for data

governance related to data storage management, for example accu-

racy, completeness and integrity. Besides data governance, models

should also be the main asset that needs to be managed properly.

Thus, there is a need to define the data and model governance frame-

work.

From that, a new framework for data and model governance was

proposed and defined in section 3.3.1. The framework was defined

as Data and Model Governance (DMG). It is a set of quality control

processes for assessing, managing, using, improving, monitoring,

maintaining, and protecting data and (predictive) model information

(see Figure 3.2). By defining DMG, the models have to be represented

in a standard format so that the quality control process for DMG is

possible and will be discussed in the next section.

7.3 Proposed Classifiers Representation

As discussed earlier in Chapter 4, the proposed representation of

predictive toxicology models was called Predictive Toxicology Markup

Language (PTML). PTML represents data mining models in a stan-

dard format using XML and can be simply manipulated for searching

and comparing. It also describes predictive toxicology data and the

associated model generated by data mining processes. There were
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model representations proposed but there are limitations with them

as follows:

• PMML (Predictive Model Markup Language) is a standard XML-

based language used to represent predictive models and allow

sharing of models to compliant applications. PMML is still un-

der development because it is attempting to represent the com-

plete information of data mining processes.

• Chaves et al. (2006) developed a PMML compliant scoring en-

gine called Augustus. Augustus used components from PMML

and added other a new components such as data management

component, utilities for processing PMML files and run time

support.

• Gorea (2008) proposed PMQL (Predictive Modelling Query Lan-

guage) is a specialized query language for interacting with PMML

documents. It is embedded within DeVisa framework which

provides functions such as scoring, model comparison, model

composition, model searching, statistics and administration

through a web service interface for the PMML.

That is why there are other parties building on PMML models

such as representations proposed by Chaves et al. (2006) and Gorea

(2008). Both rely on the PMML models to have a collection of models

and cannot be used with other models.

The difference with proposed PTML is that it can be a bridge

to different models that represented in various ways depends on the

data mining tools. The difference of PTML with other representations
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are as follows:

• Simpler representation but yet able to hold predictive models

information,

• Integrative approach for data and model representation, and

• Process and manage the models in relation to the available

data.

The PTML structure currently consists of 6 elements: Model De-

scription, Model Parameter, Model Attributes, Model Performance,

Class Attribute and Confusion Matrix (See Figure 4.1). Document

Type Definition (DTD) for PTML can be found in Appendix A.1. The

DTD is an XML schema that allows different formats of predictive

models to be imported using PTML standard. All the models gen-

erated were stored in the collection using proposed PTML. All the

studies and experiments from Chapter 5 and Chapter 6 used collec-

tions of models stored based on PTML structures.

The PTML representation proposed focused on classification mod-

els with three element of Input (data set), Function (classifier prop-

erties) and Output (Confusion Matrix). The representation can be

extended to apply regression model in the future. In addition, the

representation may be enhanced by including other elements and

properties of predictive model such as quality factors.

The next process of data and model governance is models com-

parison and models combination discussed in the next sections.
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7.4 Proposed Method for Classifiers Com-

parison

Chapter 5 discussed the method proposed for models comparison

from a collection of models. By comparing the models, the models

can be selected and reused for prediction. This is a model gover-

nance process. Choosing the relevant model from the collection may

be a easier task: calculating the similarity of predictive models is

the key to rank them, which may improve model selection or com-

bination. Furthermore, calculating the similarity of predictive mod-

els helps to characterize the model diversity and to identify relevant

models from a collection of models.

Comparison of predictive models can be accomplished by mea-

suring the similarity between them. Similarity and distance metrics

are complementary to each other. Todeschini et al. (2004) proposed

a new measure to calculate a distance between two models based

in training sets. The proposed representation of predictive model

(PTML) consist of Input (data set), Function (classifier properties)

and Output (confusion matrix). From the definition, that is why the

proposed models comparison were integrated to compare output and

models properties as well.

The proposed models comparison consists of three elements as

follows:

• For the first element of PTML which is input, a novel technique

to compare data sets (Data set Similarity Coefficient - DSC) was

proposed in Section 5.4.1. Using this technique, the models
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based on similar data sets can be found or relevant models to

the test set (problem) can be searched.

• The second element of PTML is function. The comparison tech-

nique for this element was proposed in Section 5.4.2 to find the

models that used similar functions.

• The last part of PTML structure is the confusion matrix. To

compare the confusion matrices, performance measures such

as Acc, FNR and FPR were used. The method was proposed in

section 5.4.3. From this method, performance of similar models

can be grouped together.

To compare predictive models as a whole, the similarity of each

PTML element will be combined as proposed in Section 5.5. The

method can be used to compare the similarity of models or to find

the relevant models related to new problems.

The outcomes from the studies and experiments conducted were

as follows:

• The flexibility of using weight of α, γ and β. To calculate the

proposed similarity of predictive models using (Sim(Ma,Mb)) with

the values of I (α =1), F (β =0) and O (γ =1). False Negative Rate

(FNR) was set in the (Sim(Ma,Mb) ) to justify the importance of it

from the viewpoint of toxicology data sets, where the aim was to

have a model with low FNR. This means that the models were

chosen on the basis of minimum FNR. The detailed results

were shown in Section 5.6.1.1.

• The weight can be modified to calculate the similarity of data
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sets used between two models. The experiment in Section 5.6.1.2

was to find the similarity of data sets between five end points.

The five Demetra data sets are Bee, Daphnia, Dietary Quail,

Oral Quail and Trout. For this experiment, I (α =1), F (γ =0)

and O (β =0). From the result (see Table 5.21), all data sets

share over 50% similar descriptors and chemical compounds:

the highest data set similarity is 63% between Daphnia and

Trout, while Bee and Oral Quail have about 48% chemical com-

pounds in common.

• From Table 5.22, generally the accuracy of the models increased

when a feature selection algorithm was used. The use of the

Correlation-based Feature Selection (CFS) as the feature selec-

tion algorithm and using J48 classifier seem to have the right

combination in correctly predicting the toxicity class with low

FNR.

• The binarisation strategies were discussed in Sections and the

outcomes were as follows based on results on Table 5.26 and it

can be concluded that:

– Data sets with feature selection algorithms (such as CFS)

applied are better in FNR performance measurement com-

pared to data sets with no feature selection.

– The classifiers performance are highest in Bee data set and

lowest in Oral Quail data set.

– Some performance (FNR) of models with selected class for

more than 1 toxic class (e.g. M4c) is poor compared to
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binary model with only 1 toxic class (e.g. M4a), but in

contrast some of the multi class classifiers are better than

binary classifiers (e.g. M34c vs. M34a and M271c vs.

M271a).

– On average, models that applied binarisation strategies

(model names ended with ’a’) are better than multi class

classifiers that apply calculation of FNR to their confusion

matrices (models names ending in ’c’). This proved that

multi class classifiers for Daphnia data sets such as M334c

are better than binary classifiers (e.g. M331a). For Oral

Quail data set, both binary and multi class had the same

performance (0.30) for FNR (e.g. M91c vs. M244a).

• From the results shown in Table 5.26, if the objective is to dis-

criminate between two binary classes, in this case Toxic and

Non-toxic, then the classifiers with binary class format have

better performance compared to multi class classifiers. For

some models, regrouping classes in a single toxic class may in-

crease the accuracy as compared to re-generating binary class

classifiers.

The comparison proposed consists of three elements which are

Input (data set), Function (classifier properties) and Output (confu-

sion matrix). The problem for this method is the comparison of in-

put was based on one to one matching assuming that the descriptor

names and chemical compounds had already gone through a quality

check. Improvements can be done by considering predictive models

from different sources by integrating an ontology in matching crite-
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ria so that more models from different sources can be included in

the pool of models. In addition, the element of functions also can

be enhanced by further analysing their properties rather than by

making a simple comparison.

7.5 Proposed Method for Optimisation of Clas-

sifier Ensemble

The last process in model governance is to combine the relevant

models to improve three performance measures (Acc, FNR and FPR).

The proposed ensemble method was discussed in Chapter 6. Most

ensemble methods proposed such as by Masisi et al. (2008), Mehmood

et al. (2010), Khakabimamaghani et al. (2010) and Nabiha et al.

(2011) were focused only on the Acc. In this thesis, there are exper-

iments that demonstrated to focused on single performance mea-

sures (see 6.5.2). The drawback here is when focused on certain

performance in this case FNR (CRV 1), the error of the single perfor-

mance measure can be minimised but the error of other performance

measures will be increased. For example the Acc is not optimum and

the worst FPR values are up to 1.0 for most of the Demetra data sets

when focusing on minimising FNR . To overcome the big distances

between FNR and FPR, an ensemble proposed by combining all the

performance measures was able to close the gap.

Table 6.5 shows the results for combining all the performance

measures. From the results, CRV 6 was given w1=0.3, w2=0.5 and

w3=0.2 to improved on FNR followed by Acc and FRP (see columns
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CRV 6). Although it achieved the lowest FNR and high Acc using

disagreement measure (OCEMD) for data sets Bee, Daphnia and Oral

Quail, the gap compared to the FPR is still high.

The gaps were improved where FPR were lowest for those data

sets by adjusted the weights given w1=0.6, w2=0.2 and w3=0.2 (see

CRV 7). This shows that the performance measures were optimised

for all data sets using the weights given and double fault measure

as diversity measure.

Figure 6.2 is based on data from Table 6.5 and shows the er-

ror rate for each performance measures. It can be seen that the

most stable and balance performances of ensemble constructed for

all Demetra data sets is OCEMDF and CRV 7. It was given weight

of w1=0.6, w2=0.2 and w3=0.2 to get highest Acc and lowest FNR

and FPR using double fault measure as diversity measures. As a

conclusion, the most optimised parameter for OCEM is OCEMDF

and CRV 7 (OCEMDFCRV 7) for Demetra data sets to be compared

with other ensemble methods. A study using those parameters was

done and compared with other ensemble methods such as Bagging,

Boosting, Stacking and Bayes. The results from Figure 6.4 shows

that OCEMDFCRV 7 consistently getting lowest CRV that optimise

the Acc, FNR and FPR for all Demetra data sets. The diversity mea-

sure used was double fault measure.

A study was conducted on the Demetra data sets that had been

divided into different groups. The objective is to investigate whether

OCEM algorithm performed well on the different groups of data sets.

Original data sets were divided into four groups (see Section 6.5.6).
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The portion of every group of data sets was as depicted in Figure

6.5). From the results the most optimised performance measures

were the combination of w1=0.6, w2=0.2 and w3=0.2. The ensemble

constructed has reached a highest Acc and lowest FNR and FPR

using disagreement measures. The Acc for all data sets improved

all other ensemble methods. This scenario shows that the OCEM

method is able to gain higher Acc for the data sets (see Table 6.7).

Lastly the ensemble method proposed (OCEM ) tested to the bench-

mark data sets from UCI repositories. The results validate that the

proposed ensemble slightly improve the Acc but lowest FNR and

FPR compared to other ensemble method (Bagging, Boosting, Stack-

ing and Bayes). From the experiment in Section 6.6, it shows that

the Acc for Breast Cancer, Hepatitis, Blood Transfusion and Pima

Indian Diabetes improved all other ensemble methods given w1=0.6,

w2=0.2 and w3=0.2 using double fault as diversity measure (see Ta-

ble 6.8).

As a conclusion, the similar result with Demetra data sets also

obtained for UCI data sets where the ensemble constructed were

able to get highest Acc and minimise FNR and FPR compared to

Bagging, Boosting, Stacking and Bayes. The results also show that

the OCEM proposed by given w1=0.6, w2=0.2 and w3=0.2 and double

fault as diversity measure can also be applied to other domain and

data sets.
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7.6 Summary

This chapter concludes the process of models ensemble building to-

ward data and model governance as discussed in Chapter 3. The

relevant models to be included in the ensemble were selected from

a collection of models. The models from the collection were repre-

sented using proposed PTML representation as discussed in Chap-

ter 4. The PTML models were compared to find the similarity with

test sets using proposed similarity measuring techniques as demon-

strated in Chapter 5. The ensemble processes combining Acc, FNR

and FPR were demonstrated in Chapter 6. As a conclusion the inte-

gration of all methods show that the Acc improved and the FNR and

FPR were minimised compared to Bagging, Boosting, Stacking and

Bayes.

The ensemble method improves the Acc between 0.01 to 0.30 for

all toxicology data sets compared to other ensemble methods. The

highest improvements for Acc were for data sets Bee (0.30), Oral

Quail (0.13) and Daphnia (0.10). A small improvement in Acc was

achieved for Dietary Quail and Trout of about 0.01. The most impor-

tant results in this finding by combining all the three performance

measure were able to reduce the distance between FNR and FPR

for Bee, Daphnia, Oral Quail and Trout data sets between 0.17 to

0.28. The Dietary Quail improved for about 0.01 though, but this

data set is well known as a difficult learning exercise (Neagu et. al.

2007). For five UCI data sets tested, similar results achieved with

Acc improvement between 0.10 to 0.11 and were closing more gaps

between FNR and FPR. As a conclusion, the results show that by
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combining performance measures (Acc, FNR and FPR), as proposed

hereby the Acc increased and the distance between FNR and FPR

decreased.



Chapter 8

Conclusions and Future Work

This chapter will conclude the research activities within this the-

sis. The first section will summarise the research method while the

second section will discuss the original contribution of the thesis

followed by some limitations of the methods proposed. The last sec-

tion will suggest future work that can be considered to extend the

research.

8.1 Introduction

There are lots of available models generated in different formats by

a number of data mining tools. All of these models can be used for

prediction of new unknown situations. From the scenario, the re-

search starts with the problem of how to represent those models in

a structured format. Later, the models were represented using the

proposed XML standard format and were able to be analysed for fur-

ther processing such as comparison and combination between mod-

els. General aims and objectives of this research were implemented

164
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in the domain of predictive toxicology.

At the beginning of the thesis, the aim of this research was to

establish a new method for searching relevant classifiers from a col-

lection of models and make an ensemble out of them. The aim was

achieved by meeting the objectives as stated in section 1.5.

The objectives of this research were:

1. To construct a framework for data and model governance.

2. To develop a knowledge representation for data and predictive

toxicology models.

3. To construct a new technique for comparing the similarity of

models from a collection of models.

4. To construct new techniques for comparing the elements of a

predictive model which are similarity of Input (Training Set),

Function (Classifier Properties) and Output (Confusion Matrix).

5. To construct a new technique for ranking the classifiers with

a composite of performance measures such as Acc, FNR and

FPR.

6. To develop a new algorithm for optimising the selection and

combination of classifiers.

From the aim and objectives outlined, the research was designed

to follow a structured methodology of research as discussed in sec-

tion 3.1. The methods were carefully designed and split into chap-

ters and contributions.
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The research moved toward the management of the predictive

models and how to make a comparison between them. When there

is a new problem to be predicted, the relevant classifiers from a col-

lection of models will be selected by comparing all the models. In

this stage, the research developed a proposed similarity measure to

compare predictive models from a collection of models. The results

show that the technique was able find the most relevant model for

prediction. The prediction measures were focused on the Acc, FNR

and FPR.

As discussed earlier, FNR plays an important indicator in predic-

tive toxicology performance where low FNR means that the model is

able to predict toxic class in a safer way. This was the motivation

that made the research move forward on how to improve the pre-

diction with the combination of three performance measures of Acc,

FNR and FPR. A novel ensemble method was proposed in this stage

which applies a composite of the performance measures in order to

get the highest quality ensemble models. The other issues related

to ensemble construction such as diversity measure and classifier

ranking were included as well as optimising the ensemble process.

The whole research process followed the structured methods as

shown in Figure 8.1. It shows that there are 3 main processes that

contribute toward getting a quality prediction by reusing a collec-

tion of predictive toxicology models. The processes are model repre-

sentation, model comparison and ensemble construction of models.

The original contributions to the fields of predictive toxicology and

machine learning made by the author within the thesis will be dis-
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Figure 8.1: The Method Followed for the Research Study

cussed in the next section. The last section will discuss the future

directions of how this research can be expanded.

8.2 Original Contributions of the Thesis

This section discusses the contributions in detail and how the aims

and objectives were fulfilled.

• A new framework for data and model governance was proposed

and defined in section 3.3.1. The framework was defined as

a Data and Model Governance (DMG). DMG is defined as a

set of quality control processes for assessing, managing, us-

ing, improving, monitoring, maintaining, and protecting data

and (predictive) model information. The collection of models
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need a proper management system to keep the models updated

and corrected so that it can be accessed when needed to be

used for predicting new problem. The proposed framework was

published by the author in (Makhtar et al. 2010): Makhtar,

M., Neagu, D. C. and Ridley, M. J. (2010), Predictive Model

Representation and Comparison: Towards Data and Predictive

Models Governance, in Proceedings of the 10th Annual Work-

shop on Computational Intelligence (UKCI2010), IEEE Xplore,

pp. 1-6.

• By defining the DMG, the models have to be represented in a

standard format so that the quality control process for DMG

is possible. A new knowledge representation for predictive tox-

icology data and models called Predictive Toxicology Markup

Language (PTML) was proposed in Chapter 4. The PTML was

constructed based on the elements of predictive models (input,

function and output). The representation was published by the

author in (Makhtar et al. 2010): Makhtar, M., Neagu, D. and

Ridley, M. J. (2010), Predictive Model Representation and Com-

parison: Towards Data and Predictive Models Governance, in

Proceedings of the 10th Annual Workshop on Computational

Intelligence (UKCI2010), IEEE Xplore, pp. 1-6.

• Relevant models can be searched from the collection of models.

The searching methods were proposed in Chapter 5 by compar-

ing the predictive models. The flexibility of the comparison is

that the similarity measure is grouped into three elements of

the PTML (input, function and output). Thus, the comparison
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was proposed for each element of PTML as discussed in Chap-

ter 5. The comparison techniques was published by the author

in (Makhtar et al. 2011a): Makhtar M., Neagu D. and Ridley

M.J. (2011): "Binary Classification Models Comparison: on the

Similarity of Datasets and Confusion Matrix for Predictive Tox-

icology Applications", in Proceedings of the 2nd International

Conference on Information Technology in Bio and Medical In-

formatics (ITBAM 2011), Springer LNCS 6865, pp. 108-122.

• For the first element of PTML which is input, a novel technique

to compare data sets (Data set Similarity Coefficient - DSC) was

proposed in Section 5.4.1. Using this technique, the models

with similar data set can be calculated or relevant models to

the test set (problem) can be searched.

• The second element of PTML is function. The comparison tech-

nique for this element was proposed in Section 5.4.2 to find the

models that used similar functions.

• The last part of PTML structure is the confusion matrix. To

compare the confusion matrices, performance measures such

as Acc, FNR and FPR were used. The method was proposed in

section 5.4.3. From this method, performance of similar models

can be grouped together.

• In this research, the study was conducted to solve the binary

problem with the multi class models. The comparison was pro-

posed in Section 5.4.5 by regrouping the multi class to binary

class. The comparison technique of multi class classifiers was
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published in (Makhtar et al. 2011b) : Makhtar M., Neagu D.

and Ridley M.J. (2011): "Comparing Multi Class Classifiers: On

the Similarity of Confusion Matrices for Predictive Toxicology

Applications", in Proceedings of the 12th International Confer-

ence on Intelligent Data Engineering and Automated Learning

(IDEAL 2011), Springer LNCS 6936, pp. 252-261.

• To compare predictive models as a whole, the similarity of each

PTML element will be combined as proposed in Section 5.5. The

method can be used to compare the similarity of models or to

find the relevant models for new problems.

• The last part of the research is the method to improve the per-

formance measures by making a combination of models as pro-

posed in Chapter 6. In order to get a quality model, the ranking

technique was proposed in Section 6.3 by using a composite

of three performance measures (Acc, FNR and FPR). This will

ensure that the models in the ensemble were highest Acc and,

minimise FNR and FPR.

• An algorithm was developed to optimise the ensemble methods

by optimising the number of candidates in the ensemble and

selecting the ensemble using a cost function. The algorithm

was discussed in section 6.4. The algorithm was published in

(Makhtar et al. 2012): Makhtar M, Yang L, Neagu D. and Rid-

ley M. (2012): "Optimisation of Classifier Ensemble for Predic-

tive Toxicology Application", in Proceedings of the 14th Interna-

tional Conference on Modelling and Simulation (UKSim2012),
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IEEE, pp 236-241.

• The ensemble methods proposed lead to the achievement of im-

proved results of Accuracy and minimise False Negative Rate

and False Positive Rate for all data sets compared to other en-

semble methods such as Bagging, Boosting and Stacking. The

results were briefly discussed in Chapter 6.

As a summary, the contributions of this research were:

• A new framework for data and model governance (Chapter 3).

• A new knowledge representation for predictive toxicology data

and models (Predictive Toxicology Markup Language - PTML)

(Chapter 4).

• A novel technique to compare the similarity of models (Chapter

5) which includes:

– A technique to compare data sets (training set) (Data set

Similarity Coefficient - DSC)

– A technique to compare the similarity of functions’ property

used to generate the predictive models.

– A technique to compare the similarity of confusion matri-

ces.

– A technique to compare the similarity of multi class confu-

sion matrices.

• A technique using a cost function (composite of Acc, FNR and

FPR) to rank classifiers from a collection of models (Chapter 6).
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• A new algorithm to optimise the selection and combination of

classifiers (Chapter 6).

• An improved results of Accuracy, with minimise False Nega-

tive Rate and False Positive Rate for all data sets compared to

other ensemble method such as Bagging, Boosting and Stack-

ing (Chapter 6).

Although this research contributes to the domain of knowledge,

it can still be improved in the future. The next section will give an

outline of some of the limitations of the proposed methods which can

be enhanced.

8.3 Research Limitations

The contributions listed and the results presented previously show

that the thesis contributes to the domain of the knowledge. However,

the research has some limitations which are highlighted as follow:

• The PTML representation proposed was focussing on classifi-

cation models with three element of Input (data set proper-

ties),function (classifier properties) and Output (Confusion Ma-

trix). Other elements and properties of predictive model such

as quality factors may be added to the representation. The rep-

resentation should consider other types of data mining model

such as regression model.

• The classifier comparison was proposed by comparing the sim-

ilarity of them. The comparison consists of three elements
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which are Input (data set properties),function (classifier prop-

erties) and Output (confusion matrix). The comparison of input

was based on one to one matching assuming that the descrip-

tor names and chemical compounds had already gone through

quality checks. Ontology can be added to give more flexibility

in the comparison method.

• Only two diversity measures were studied which are disagree-

ment measure and double fault measure. The decision fusion

strategy applied was simple majority voting. This can be broad-

ened to other methods in the future.

8.4 Recommendations for Further Research

• In Chapter 4 the PTML representation proposed focused on

classification models. The thesis may be improved by consid-

ering applying a regression model to the representation in the

future. In addition, the representation may be enhanced by in-

cluding other elements and properties of predictive model such

as quality factors. The ontology may be considered when com-

paring the predictive models.

• The one to one matching in comparison method assumes that

the descriptor names and chemical compounds had already

gone through quality checks. The work can be improved by

considering predictive models from different sources by inte-

grating an ontology in matching criteria so that more models

from different sources can be included in the pool of models.
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In addition, the element of functions can also be enhanced by

further analysing the properties of models rather than making

a simple comparison.

• The diversity measure techniques is one of the issues that should

be considered in ensemble methods. The method can be im-

proved by considering other diversity measure. In addition, the

decision fusion strategy applied was simple majority voting. It

can be broadened to other decision fusion strategies such as

majority voting and weight voting technique.

• The research was focussing on binary class classifiers. In the

future the methods such as diversity measure, decision fusion

strategy and comparison of classifiers can be applied to en-

hance multi class classifiers.

• Although the work is promising, the approach can be improved

in several directions. The weight (w1, w2 and w3) allocated to

each performance measure (Acc, FNR and FPR) is done man-

ually. It is interesting to investigate how to automate this pro-

cess.

Lastly, the aims and objectives outlined were carried out by fol-

lowing the structured research design proposed. From that, meth-

ods were proposed for each objective and related studies and exper-

iments were conducted. The listed contributions show that the aim

and objectives were fulfilled. Apart from that, there are some limita-

tions that may be improved in the future with regards to continuing

this research domain.
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DTD and PTML Model

A.1 DTD for PTML Models

Following is an example of PTML model

A.2 An Example of PTML Model

Following is an example of PTML model.
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Table A.1: The DTD for PTML Document Structure

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- definition of modelDescription -->
<xs:element name="Classifier">

< xs:element ref = "Name" type="xs:string"/>
< xs:element ref = "Date" type="xs:Date"/>
< xs:element ref = "Author" type="xs:string"/>
< xs:element ref = "Description" type="xs:string"/>
< xs:element ref = "WekaModel" type="xs:string"/>

</xs:element>

<!-- definition of modelParameter -->
<xs:element name="Classifier">

< xs:element ref = "ClassifierName" type="xs:string"/>
< xs:element ref = "Fold" type="xs:Integer"/>
< xs:element ref = "Seed" type="xs:Integer"/>

</xs:element>

<!-- definition of modelAttributes -->
<xs:element name="DataSet">

< xs:element ref = "DataSet Name" type="xs:string"/>
< xs:element ref = "TotalNumberInstances" type="xs:Integer"/>
< xs:element ref = "NumberOfAttributes" type="xs:Integer"/>
< xs:element ref = "FeatureSelectionAlgorithm" type="xs:string"/>
< xs:element ref = "FeatureSearchMethod" type="xs:string"/>
< xs:element ref = "NumberOfAttributesSelected" type="xs:Integer"/>
< xs: Features >

<xs:element ref="FeatureName" type="xs:string"/>
<xs:element ref="Type" type="xs:string"/>

</xs:sequence>
</xs:element>

<!-- definition of modelPerformance -->
<xs:element name="ClassificationModelPerformance">

< xs:element ref = "CorrectlyClassifiedInstances" type="xs:Integer"/>
< xs:element ref = "Accuracy" type="xs:Decimal"/>
< xs:element ref = "MeanAbsoluteError" type="xs:Decimal"/>
< xs:element ref = "RootMeanSquaredError" type="xs:Decimal"/>
< xs:element ref = "RelativeAbsoluteError" type="xs:Decimal"/>

</xs:element>

<!-- definition of classAttribute -->
<xs:element name="ClassName">

< xs:element ref = "TPRate" type="xs:Decimal"/>
< xs:element ref = "FPRate" type="xs:Decimal"/>
< xs:element ref = "FNRate" type="xs:Decimal"/>
< xs:element ref = "TNRate" type="xs:Decimal"/>

</xs:element>

<!-- definition of ConfusionMatrix -->
<xs:element name="Class">

< xs:element ref = "ClassName" type="xs:String"/>
< xs:element ref = "Value" type="xs:Integer" />

</xs:element>
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Table A.2: The PTML Document Structure

<?xml version="1.0" encoding="UTF-8"?>
<PTML>

<modelDescription><Name>DM</Name>
<Date>25-12-2008</Date>
<Version>Ver1.1</Version>
<Author>Mokhairi</Author>
<Description>Testing Autogenerated Model From Weka</Description>
<wekaModel>wekaModel13.model</wekaModel>
</modelDescription>

<modelData>
<DataSetName>CFS_APC_Recon-(C)Mallard_Duck-Raw_Data.arff</DataSetName>
<LastUpdatedDate>10/01/2010</LastUpdatedDate>
<AttributeEvaluator>CfsSubsetEval</AttributeEvaluator>
<SearchingMethod>BestFirst</SearchingMethod>
<SplitType>100%</SplitType>
<TotalNumberInstances>60.0</TotalNumberInstances>
<NumberOfAttributes>6</NumberOfAttributes>

<DataSetAttributes>
<Attributes><Name>Del(Rho)NA4</Name><Type>Numeric</Type></Attributes>
<Attributes><Name>PIP6</Name><Type>Numeric</Type></Attributes>
<Attributes><Name>FPIP12</Name><Type>Numeric</Type></Attributes>
<Attributes><Name>Class</Name><Type>Nominal</Type></Attributes>
</DataSetAttributes>
</modelData>

<modelParameter>
<Classifier>weka.classifiers.lazy.IBk</Classifier>
<Fold>10</Fold>
<Seed>1</Seed>
</modelParameter>

<modelPerformance>
<CorrectlyClassifiedInstances>18.0</CorrectlyClassifiedInstances>
<PctCorrectlyClassifiedInstances>30.0</PctCorrectlyClassifiedInstances>
<IncorrectlyClassifiedInstances>42.0</IncorrectlyClassifiedInstances>
<PctIncorrectlyClassifiedInstances>70.0</PctIncorrectlyClassifiedInstances>
<Kappa>0.057</Kappa>
<MeanAbsoluteError>0.352</MeanAbsoluteError>
<RootMeanSquaredError>0.572</RootMeanSquaredError>
<RelativeAbsoluteError>94.515</RelativeAbsoluteError>
<RootRelativeSquaredError>132.55</RootRelativeSquaredError>
</modelPerformance>
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<classAttribute><Name>Class</Name>
<Class>I</Class>
<Details><TPRate>0.824</TPRate>
<FPRate>0.116</FPRate>
<TNRate>0.884</TNRate>
<FNRate>0.176</FNRate>
<Precision>0.737</Precision>
<Recall>0.824</Recall>
<FMeasure>0.778</FMeasure>
<ROCArea>0.854</ROCArea>
</Details>
<Class>II</Class>
<Details><TPRate>0.0</TPRate>
<FPRate>0.341</FPRate>
<TNRate>0.659</TNRate>
<FNRate>1.0</FNRate>
<Precision>0.0</Precision>
<Recall>0.0</Recall>
<FMeasure>0.0</FMeasure>
<ROCArea>0.33</ROCArea>
</Details>
<Class>III</Class>
<Details><TPRate>0.188</TPRate>
<FPRate>0.295</FPRate>
<TNRate>0.705</TNRate>
<FNRate>0.812</FNRate>
<Precision>0.188</Precision>
<Recall>0.188</Recall>
<FMeasure>0.188</FMeasure>
<ROCArea>0.446</ROCArea>
</Details>
<Class>IV</Class>
<Details><TPRate>0.091</TPRate>
<FPRate>0.184</FPRate>
<TNRate>0.816</TNRate>
<FNRate>0.909</FNRate>
<Precision>0.1</Precision>
<Recall>0.091</Recall>
<FMeasure>0.095</FMeasure>
<ROCArea>0.454</ROCArea>
</Details>
</classAttribute>
<ConfusionMatrix>
<Array>I II III IV </Array>
<Array>14 1 0 2 I </Array>
<Array>3 0 9 4 II </Array>
<Array>1 9 3 3 III </Array>
<Array>1 5 4 1 IV </Array>
</ConfusionMatrix>
</PTML>
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B.2 The Study of OCEM to Demetra Data

Sets Using Training Set (70%) and Test-

ing Set (30%)

The study were conducted for training set and testing set for all

Demetra data set using disagreement measure as a diversity mea-

sure. The results were as follows:

Table B.5: FNR for Different Ensemble.

Data Set Bagging AdaBoost Stacking Bayes OCEM
Bee Acc = 0.90 Acc = 0.90 Acc = 0.87 Acc = 0.78 Acc = 0.93

FNR = 0.07 FNR = 0.03 FNR = 0.00 FNR = 0.17 FNR = 0.00
FPR = 0.25 FPR = 0.50 FPR = 1.00 FPR = 0.50 FPR = 0.50

Daphnia Acc = 0.62 Acc = 0.83 Acc = 0.62 Acc = 0.83 Acc = 0.62
FNR = 0.10 FNR = 0.06 FNR = 0.00 FNR = 0.26 FNR = 0.00
FPR = 0.30 FPR = 0.33 FPR = 1.00 FPR = 0.00 FPR = 1.00

Dietary Acc = 0.62 Acc = 0.62 Acc = 0.62 Acc = 0.62 Acc = 0.62
Quail FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00

FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00
Oral Acc = 0.60 Acc = 0.57 Acc = 0.48 Acc = 0.65 Acc = 0.51
Quail FNR = 0.38 FNR = 0.55 FNR = 1.00 FNR = 0.55 FNR = 0.05

FPR = 0.41 FPR = 0.29 FPR = 0.00 FPR = 0.11 FPR = 0.94
Trout Acc = 0.82 Acc = 0.82 Acc = 0.82 Acc = 0.82 Acc = 0.82

FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00
FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00
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Table B.6: FPR for Different Ensemble.

Data Set Bagging AdaBoost Stacking Bayes OCEM
Bee Acc = 0.90 Acc = 0.90 Acc = 0.87 Acc = 0.78 Acc = 0.90

FNR = 0.07 FNR = 0.03 FNR = 0.00 FNR = 0.17 FNR = 0.07
FPR = 0.25 FPR = 0.50 FPR = 1.00 FPR = 0.50 FPR = 0.25

Daphnia Acc = 0.62 Acc = 0.83 Acc = 0.62 Acc = 0.83 Acc = 0.63
FNR = 0.10 FNR = 0.06 FNR = 0.00 FNR = 0.26 FNR = 0.58
FPR = 0.30 FPR = 0.33 FPR = 1.00 FPR = 0.00 FPR = 0.00

Dietary Acc = 0.62 Acc = 0.62 Acc = 0.62 Acc = 0.62 Acc = 0.97
Quail FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00

FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 0.07
Oral Acc = 0.60 Acc = 0.57 Acc = 0.48 Acc = 0.65 Acc = 0.48
Quail FNR = 0.38 FNR = 0.55 FNR = 1.00 FNR = 0.55 FNR = 1.00

FPR = 0.41 FPR = 0.29 FPR = 0.00 FPR = 0.11 FPR = 0.00
Trout Acc = 0.82 Acc = 0.82 Acc = 0.82 Acc = 0.82 Acc = 0.62

FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.45
FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 0.00

Table B.7: Acc for Different Ensemble.

Data Set Bagging AdaBoost Stacking Bayes OCEM
Bee Acc = 0.90 Acc = 0.90 Acc = 0.87 Acc = 0.78 Acc = 0.96

FNR = 0.07 FNR = 0.03 FNR = 0.00 FNR = 0.17 FNR = 0.00
FPR = 0.25 FPR = 0.50 FPR = 1.00 FPR = 0.50 FPR = 0.25

Daphnia Acc = 0.62 Acc = 0.83 Acc = 0.62 Acc = 0.83 Acc = 0.88
FNR = 0.10 FNR = 0.06 FNR = 0.00 FNR = 0.26 FNR = 0.14
FPR = 0.30 FPR = 0.33 FPR = 1.00 FPR = 0.00 FPR = 0.06

Dietary Acc = 0.62 Acc = 0.62 Acc = 0.62 Acc = 0.62 Acc = 0.97
Quail FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00

FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 0.07
Oral Acc = 0.60 Acc = 0.57 Acc = 0.48 Acc = 0.65 Acc = 0.82
Quail FNR = 0.38 FNR = 0.55 FNR = 1.00 FNR = 0.55 FNR = 0.16

FPR = 0.41 FPR = 0.29 FPR = 0.00 FPR = 0.11 FPR = 0.17
Trout Acc = 0.82 Acc = 0.82 Acc = 0.82 Acc = 0.82 Acc = 0.91

FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.04
FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 1.00 FPR = 0.26
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Table B.8: Acc, FNR, FPR of OCEM Given Different Weight of w

Data Set w1=0.5, w2=0.5 w1=0.0, w2=0.5 w1=0.3, w2=0.5 w1=0.6, w2=0.2
w3=0.0 w3=0.5 w3=0.2 w3=0.2

Bee Acc = 0.96 Acc = 0.90 Acc = 0.90 Acc = 0.90
FNR = 0.00 FNR = 0.07 FNR = 0.07 FNR = 0.07
FPR = 0.25 FPR = 0.25 FPR = 0.25 FPR = 0.25

Daphnia Acc = 0.87 Acc = 0.88 Acc = 0.88 Acc = 0.88
FNR = 0.04 FNR = 0.14 FNR = 0.10 FNR = 0.14
FPR = 0.26 FPR = 0.06 FPR = 0.13 FPR = 0.06

Dietary Acc = 0.97 Acc = 0.97 Acc = 0.97 Acc = 0.97
Quail FNR = 0.00 FNR = 0.00 FNR = 0.00 FNR = 0.00

FPR = 0.07 FPR = 0.07 FPR = 0.07 FPR = 0.07
Oral Acc = 0.80 Acc = 0.82 Acc = 0.82 Acc = 0.82
Quail FNR = 0.11 FNR = 0.16 FNR = 0.16 FNR = 0.16

FPR = 0.29 FPR = 0.17 FPR = 0.17 FPR = 0.17
Trout Acc = 0.91 Acc = 0.91 Acc = 0.91 Acc = 0.91

FNR = 0.00 FNR = 0.04 FNR = 0.04 FNR = 0.04
FPR = 0.46 FPR = 0.26 FPR = 0.26 FPR = 0.26
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