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Horn Antennas Loaded with Metamaterial for UWB Applications
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F. Benabdelaziz1, and S. M. R. Jones2

1Electronics Department, Skikda University, Algeria
2Mobile and Satellite Communication Research Centre, University of Bradford, Bradford, UK

Abstract— In this paper, a conical horn antenna has been designed for Ultra-Wideband ap-
plications by loading its section with a metamaterial. The work aims first to compare results
obtained by the wavelet-moment method to a simulation performed using HFSS. Secondly the
conical horn is loaded with a very thin layer of metamaterial to enhance the radiation pattern
and the bandwidth performance of the conical horn antenna and reduce the size of the antenna.
The operating bandwidth of the proposed antenna is in the range of 10–13 GHz. The results
obtained from HFSS and moment method are in good agreement.

1. INTRODUCTION

Artificial materials such as metamaterials and chiral media have recently been of great interest, both
theoretically [1, 2], and experimentally [3, 4]. Metamaterials, for instance, exhibit either negative
permittivity or negative permeability. If both of them are negative at a given frequency, the material
is characterised by an effective negative index of refraction, so it is often referred to as a left handed
metamaterial (LHMs). This type has interested many researchers, e.g., [5, 6]. The main objective
of research on LHMs is improvement of the radiation pattern, directivity and bandwidth, and
antenna size reduction. However in this paper a low index of permittivity is used to characterize
the metamaterial as introduced by [7].

Horn antennas loaded with dielectrics or ferrite materials [8], have desirable properties such
as increased directivity, reduced side lobe level, wide bandwidth, low loss, and ease of fabrica-
tion [9, 12]. These properties are particularly attractive for applications such as ultra-wideband
(UWB) ground penetrating radars (GPR) [13, 14]. However, the characterization of such antennas
with increasingly complex designs using analytical techniques is often not possible. On the other
hand, a numerical model can provide a virtual test bench to explore different design possibilities
before any costly prototyping. Although many numerical techniques can be used to model and
study the characteristics of such antennas, the moment method is well known to provide good
accuracy [15, 16]. In this paper, an improvement has been made by the introduction of wavelets.

This paper deals firstly with a comparison between an improved moment method and Ansoft’s
HFSS, then an observation is made of the effect of loading the horn antenna.

2. FORMULATION

2.1. Moment Method Formulation
2.1.1. Integral Equation
The Conical Horn is studied in 3D as shown in Figure 1, the construction of this horn is considered
to be from any type of material. Using the boundary conditions, the scattered field may be written
as an integral magnetic equation in two dimensions for a PEC structure as:

K(J(r)) =
1
2
J(r)− n̂×

∫

S
J(r′)×∇′G(r, r′) · ds′ = n̂×H i(r) (1)

Here G(r, r′) is Green’s function and J(r) is the current density, this can be expressed in terms
of the tangential components. Because the antenna is a body of revolution, the current may be
expanded as follow:

~J(t, ϕ) =
+∞∑

ν=−∞

[
Jt(t, ϕ) · t̂ + Jϕ(t, ϕ) · ϕ̂] · ejν·ϕ (2)

where (Jt, Jϕ) are the tangential components of the current on the surface of the antenna.
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Figure 1: Conical horn in 3D. Figure 2: Horn antenna designed by HFSS.

2.1.2. Moment Method
The Moment method is applied on the integral Equation (1), this is discritised by using sets of
basis and testing functions [13].

Let W and J denote testing and basis functions, respectively. The integral equation is projected
over the two tangential components using the expansion (2). This is done by applying the inner
product, denoted by the bracket in (3), to yield:

〈
~W, K(J(r))

〉
=

〈
~W, n̂×H i(r)

〉
(3)

2.2. Wavelets Expansion
2.2.1. Basis Functions
The basis and testing functions are presented as a superposition of wavelets at several scales and
include a scaling function. A Galerkin’s method is then applied to transform the integral equation
into algebraic equations in the expansion coefficients.

2.2.2. Wavelets Application
The wavelets are applied directly to the integral equation. The current density is expanded as
follows

Jt(t, ϕ) =
20−1∑

n=0

at
n · φt

j,n(t, ϕ) +
j∑

m=0

2m−1∑

n=0

ct
m,nψt

m,n(t, ϕ) (4)

Jϕ(t, ϕ) =
20−1∑

n=0

aϕ
n · φϕ

j,n(t, ϕ) +
j∑

m=0

2m−1∑

n=0

cϕ
m,nψϕ

m,n(t, ϕ) (5)

Here (ψt
m,n, ψϕ

m,n) and (φt
j,n, φϕ

j,n) are the mother and the scaling wavelets, respectively. The corre-
sponding expansion coefficients are at

m, ct
m,n and aϕ

n, cϕ
m,n. Using equations (4) and (5) in (3), the

following matrix equation is obtained:
[
Ztt

m,n Ztϕ
m,n

Zϕ·t
m,n Zϕϕ

m,n

]
·
[
ct
m,n

cϕ
m,n

]
=

[
H1

H2

]
(6)

The terms at
m, aϕ

n are considered very small, thereby they are neglected. The matrix elements are
expressed as follow:

Ztt
pq =

∫

t

1
2
·W t

qJ
t
pρ · dt−

∫

t

∫

t′
W t

qJ
t
p · ϕ̂× t̂′ · IG · ρρ′dt′dt (6a)

Here, IG =
∫ 2π
0 ∇G(r, r′) · ejv·ϕ′dϕ′.



3

In more detail, this is given as an integral over the interval [0, 1]:

Ztt
pq =

〈
ψp,

〈
ψq,

1
2
− T (t, t) · Ω(t, ξ)

〉〉
(7)

where T (t, t) is the term under the double integral of the second part of Equation (6a). In the same
manner the other components are given.

Zϕϕ
pq =

〈
ψp,

〈
ψq,

1
2

+ T (ϕ,ϕ) · Ω(t, ξ)
〉〉

(8)

Zϕ·t
pq = 〈ψq, 〈ψp, T (ϕ, t) · Ω(t, ξ〉〉 (9)

Ztϕ
pq = −〈ψq, 〈ψp, T (t, ϕ) · Ω(t, ξ〉〉 (10)

where Ω(t, ϕ, ξ) is the calibration of the changing variables, and D(ξ) = |dt/dξ|. The other elements
can be written in the same manner. Similarly for the excitation the matrix elements are also
expressed as an inner product by:

H1 =
〈
ψq, HtIG2 · Ω(t, ξ)

〉
(11)

H2 = −〈ψq, HϕIG2 · Ω(t, ξ)〉 (12)

where IG2 = 1
2π

∫ 2π
0 e−jv·ϕdϕ.

The unknowns [ct
m,n, cϕ

m,n] should be calculated from Equation (6). The current density and the
radiation pattern may then be obtained.

3. NUMERICAL RESULTS

In the moment method, the wavelet employed is constructed from the Haar orthogonal wavelet with
vanishing moment N = 7, the lowest resolution level is chosen Since 128 wavelets are involved, a
system of matrices (of 128× 128 elements) is generated.

The surface of the taper of the horn is a metamaterial, considered to be an isotropic low index
type, in a very thin layer of 1 mm thickness. The permittivity and permeability are respectively
εr = 0.5, µ = 1. The horn loaded with metamaterial as designed by HFSS is shown in Figure 2.
The results obtained by the wavelet-based moment method are in good agreement with the results
obtained by HFSS in all the figures of the radiation pattern except the reflection coefficient figure.

The radiation pattern in H-Plane given in Figure 3 and E-Plane in Figure 4 show a slight
reduction of the side lobe in the H-plane, and almost no change in the E-plane. A very remarkable
reduction in the cross polarization in Figure 5, this is more then 20% of reduction in the side lobes.
The directivity and the gain are presented in Figure 6 and Figure 7, the antenna is more directive
and better gain when loaded with metamaterial than without.

Figure 3: Radiation pattern H-Plane with and with-
out metamaterial at frequency F = 10 GHz.

Figure 4: Radiation pattern E-Plane with and with-
out metamaterial at frequency F = 10 GHz.
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Figure 5: Cross polarisation radiation pattern, effect
of the metamaterial, εr = 0.5, thickness d = 1 mm,
F = 10 GHz.
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Figure 6: Radiation pattern without metamaterial
at frequency F = 10 GHz.
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Figure 7: Radiation pattern with metamaterial at
frequency F = 10 GHz.

Figure 8: Reflection coefficient with and without
metamaterial.

The reflection coefficient in Figure 8 shows a slight displacement of the bandwidth to the lower
frequencies, from 9.6GHz to 10 GHz, i.e., about 10%. This means that one can produce small
antenna designs with a reduction in size of about 10%, or simply the bandwidth is enhanced of
10%.

4. CONCLUSIONS

A horn antenna for ultra-wide band (10–13 GHz) has been designed and tested using HFSS and
compared to the moment method. The results obtained are in good agreement. The horn loaded
with the metamaterial has shown a slight change in the radiation pattern and bandwidth of about
10%, but there is a remarkable effect on the directivity of the antenna. Some antenna miniatur-
isation is observed but the choice of metamaterial parameters could be further optimized in this
respect.
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