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SYMMETRIC PRESENTATIONS OF COXETER GROUPS
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Abstract We apply the techniques of symmetric generation to establish the standard presentations of
the finite simply laced irreducible finite Coxeter groups, that is, the Coxeter groups of types An, Dn

and En, and show that these are naturally arrived at purely through consideration of certain natural
actions of symmetric groups. We go on to use these techniques to provide explicit representations of
these groups.
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1. Introduction

A Coxeter diagram of a presentation is a graph in which the vertices correspond to involu-
tory generators and an edge is labelled with the order of the product of its two endpoints.
Commuting vertices are not joined and an edge is left unlabelled if the corresponding
product has order 3. A Coxeter diagram and its associated group are said to be simply
laced if all of the edges of the graph are unlabelled. Curtis has noted [8] that if such a
diagram has a ‘tail’ of length at least 2, as in Figure 1, then we see that the generator
corresponding to the terminal vertex, ar, commutes with the subgroup generated by the
subgraph G0.

We slightly generalize the notion of a ‘graph with a tail’ and, in doing so, provide
symmetric presentations for all the simply laced irreducible finite Coxeter groups with
the aid of little more than a single short relation. These in turn readily give rise to natural
representations of these groups.

Presentations of groups having certain types of symmetry properties have been consid-
ered since at least Coxeter’s work [7] of 1959 and they have proved useful for providing
natural and elementary definitions of groups and also for having great computational use.
In [11] Curtis and Fairbairn used one kind of symmetric presentation for the Conway
group ·0 obtained by Bray and Curtis in [2] to represent elements of ·0 as a string of at
most 64 symbols and typically far fewer. This represents a considerable saving compared
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Figure 1. A Coxeter diagram with a tail.

with representing an element of ·0 as a permutation of 196 560 symbols or as a 24 × 24
matrix (i.e. as a string of 242 = 576 symbols). More in-depth discussions of symmetric
generation more generally may be found in [8,10,13].

The presentations given here, while not new, do provide an excellent example of how the
techniques of symmetric generation may be used to arrive at very natural constructions
of groups. These presentations may in turn lead to highly symmetric representations
of these groups. While recent results of Fairbairn and Müller [14] generalize our main
theorem to a wider class of Coxeter groups, the symmetric presentations there are not
well motivated (indeed, it is the results presented here that provide the main motivation
for the results of [14]), may not be arrived at as naturally as those presented here and
do not easily lead to explicit representations (the matrices we are naturally led to for the
representations of the groups considered here being strikingly simple in nature).

For the basic definitions and notation for Coxeter groups used throughout this paper,
we refer the reader to [15]. Throughout we shall use the standard Atlas notation for
groups found in [6].

This paper is organized as follows. In § 2 we outline the basic techniques of involu-
tory symmetric generation. In § 3 we state our main theorem and the barriers to further
extension. In § 4 we show how general results in symmetric generation naturally lead us
straight to the presentations considered in this paper. In § 5 we perform a coset enu-
meration that is necessary for proving our main theorem. In § 6 we use the symmetric
presentations of the main theorem to construct real representations of the groups con-
cerned and, in doing so, complete the proof. In § 7 we construct Z2-representations from
our real representations in the En cases to identify these groups as Z2 matrix groups.

2. Involutory symmetric generation

We shall describe here only the case when the symmetric generators are involutions
as originally discussed by Bray et al . [3]. For a discussion of the more general case,
see [10, § III].

Let 2�n denote the free product of n involutions. We write {t1, . . . , tn} for a set of
generators of this free product. A permutation π ∈ Sn induces an automorphism of this
free product π̂ by permuting its generators, i.e. tπ̂i = tπ(i). Given a subgroup N � Sn,
we can form a semi-direct product P = 2�n : N where, for π ∈ N , π−1tiπ = tπ(i). When
N is transitive, we call P a progenitor. We call N the control group of P and the ti the
symmetric generators. Elements of P can all be written in the form πw with π ∈ N and w

is a word in the symmetric generators, so any homomorphic image of the progenitor can
be obtained by factoring out relations of the form πw = 1. We call such a homomorphic
image that is finite a target group. If G is the target group obtained by factoring the



Symmetric presentations of Coxeter groups 671

progenitor 2�n : N by the relators π1w1, π2w2, . . . , we write

2�n : N

π1w1, π2w2, . . .
∼= G.

In keeping with the now traditional notational conventions used in works discussing
symmetric generation, we write N both for the control group and its image in G and
refer to both simply as ‘the control group’. Similarly we shall write ti both for a symmetric
generator and its image in G and we shall refer to both as a ‘symmetric generator’.

To decide whether a given homomorphic image of a progenitor is finite, we shall perform
a coset enumeration. Given a word in the symmetric generators, w, we define the coset
stabilizing subgroup of the coset Nw to be the subgroup

N (w) := {π ∈ N | Nwπ = Nw} � N.

This is clearly a subgroup of N and there are |N : N (w)| right cosets of N (w) in N

contained in the double coset NwN ⊂ G. We will write [w] for the double coset NwN

and [�] will denote the coset [idN ] = N . We shall write w ∼ w′ to mean [w] = [w′]. We
can enumerate these cosets using procedures such as the Todd–Coxeter Algorithm, which
can readily be programmed into a computer. The sum of the numbers |N : N (w)| then
gives the index of N in G, and we are thus able to determine the order of G and, in doing
so, prove it is finite.

In particular, if the target group corresponds to the group defined by a Coxeter diagram
with a tail, then removing the vertex at the end of the tail provides a control group for
a symmetric presentation with the vertex itself acting as a symmetric generator.

A family of results suggest that this approach lends itself to the construction of groups
with low index perfect subgroups. For instance, we have the following.

Lemma 2.1. If N is perfect and primitive, then |P : P ′| = 2 and P ′′ = P ′.

Corollary 2.2. If N is perfect and primitive, then any image of P possesses a perfect
subgroup of index at most 2. In particular, any homomorphic image of P satisfying a
relation of odd length is perfect.

For proofs of these results, see [9, Theorem 1, p. 356].
The next lemma, while easy to state and prove, has turned out to be extremely powerful

in leading to constructions of groups in terms of symmetric generating sets, most notably
a majority of the sporadic simple groups [10].

Lemma 2.3.
〈ti, tj〉 ∩ N � CN (StabN (i, j)).

Given a pair of symmetric generators t1 and t2, Lemma 2.3 tells us which permuta-
tions π ∈ N may be written as a word in t1 and t2, but gives us no indication of the
length of such a word. Naturally, we wish to factor a given progenitor by the shortest
and most easily understood relation possible. The following lemma shows that, in many
circumstances, a relation of the form πt1t2t1 is of great interest.
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Lemma 2.4. Let G = 〈T 〉, where T = {t1, . . . , tn} ⊆ G is a set of involutions in G

with N = NG(T ) acting primitively on T by conjugation. (Thus, G is a homomorphic
image of the progenitor 2�n : N .) If t1ti ∈ N , t1 �∈ N for some i �= 1, then |G| = 2|N |.

For proofs of these results, see [10, pp. 58–59].

3. The main theorem

Using the notation of the last section we will prove the following.

Theorem 3.1. Let Sn be the symmetric group acting on n objects and let W (Φ)
denote the Weyl group of the root system Φ. Then

(i)
2�(n

1) : Sn

(t1(12))3
∼= W (An),

(ii)
2�(n

2) : Sn

(t12(23))3
∼= W (Dn) for n � 4,

(iii)
2�(n

3) : Sn

(t123(34))3
∼= W (En) for n = 6, 7, 8.

In case (i) the action of Sn defining the progenitor is the natural action of Sn on
X := {1, . . . , n}, in case (ii) the action of Sn defining the progenitor is the action of Sn

on the 2-element subsets of X, and in case (iii) the action of Sn defining the progenitor
is the action of Sn on the 3-element subsets of X.

Case (i) of Theorem 3.1 has been noted by various authors [10, Theorem 3.2, p. 63],
but we include it here for completeness.

More suggestively, we can express these symmetric presentations as Coxeter diagrams
as given in Figure 2. (Note that, from the presentations given in this theorem, without
even drawing any Coxeter diagrams, the exceptional coincidences of D3 = A3 and E5 =
D5 are immediate since

(3
2

)
=

(3
1

)
and

(5
3

)
=

(5
2

)
.)

We remark that the natural pattern of applying the relation (t1,...,k(k, k + 1))3 to the
progenitor 2�(n

k) : Sn to produce a finite image does not extend further. In [4], Bray et
al . prove the symmetric presentation

2�(n
4) : S8

(t1234(45))3, t1234t5678
∼= W (E7) ∼= S6(2) × 2.

The second relation, which simply identifies a 4-element subset with its complement so
that the symmetric generators correspond to partitions of the eight points into two fours,
is necessary for the coset enumeration to terminate; hence the pattern does not continue
when the control group is the full symmetric group. However, using a control group
smaller than the full symmetric group can resolve this problem. In [2] Bray and Curtis
prove that

2�(24
4 ) : M24

πtabtactad

∼= ·0,
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An:

� � �

�

� �

(1, 2) (2, 3) (3, 4) (n − 1,n)

t1

Dn:

� � �

�

� �

(1, 2) (2, 3) (3, 4) (n − 1,n)

t1,2

En:

� � �

�

� �

(1, 2) (2, 3) (3, 4) (n − 1,n)

t1,2,3

Figure 2. Symmetric presentations as Coxeter diagrams.

where M24 denotes the largest of the sporadic simple Mathieu groups, where a, b, c

and d are pairs of points, the union of which is a block of the S(5, 8, 24) Steiner system
on which M24 naturally acts [6, p. 94], where ·0 is the full cover group of the largest
sporadic simple Conway group [6, p. 180] and where π ∈ M24 is the unique permutation
of M24 set-wise fixing the sextets defined by each of the symmetric generators whose use
is motivated by Lemma 2.3.

The proof of Theorem 3.1 is obtained as follows. In § 5 we enumerate the double cosets
NwN in each case to verify that the orders of the target groups are at most the orders
claimed in Theorem 3.1. In § 6 we exhibit elements of the target groups that generate
them and satisfy the additional relations, thereby providing lower bounds for the orders
and verifying the presentations.

4. Motivating the relations of Theorem 3.1

In this section we will show how the relators used in Theorem 3.1 may be arrived at
naturally by considering the natural actions of the control group used to define the
progenitors appearing in the main theorem.

Given Lemma 2.3 it is natural to want to compute CSn(StabSn(1, 2)). In the An case
we find

StabSn(1, 2) =

{
〈id〉 if n ∈ {2, 3},

〈(3, 4), (3, . . . , n)〉 if n � 4.

Calculating CSn(StabSn(1, 2)) thus gives us

CSn(StabSn(1, 2)) =

⎧⎪⎨
⎪⎩

〈(1, 2)〉 if n = 2 or n � 5,

〈(1, 2), (1, 2, 3)〉 if n = 3,

〈(1, 2), (3, 4)〉 if n = 4.
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For n � 5 we see that 〈t1, t2〉 ∩ N � 〈(1, 2)〉. Lemma 2.4 now tells us that the shortest
natural relator worth considering is (1, 2)t1t2t1, which we rewrite more succinctly as
(t1(12))3. We are thus naturally led to considering the factored progenitor

2�(n
1) : Sn

(t1(12))3
.

Recall that Sn is the symmetric group acting on n objects. The high transitivity of
the natural action of Sn on n objects enables us to form the progenitors

P1 := 2�(n
1) : Sn, P2 := 2�(n

2) : Sn, P3 := 2�(n
3) : Sn.

Arguments similar to those used in the case P1 may be applied in the other two cases,
naturally leading us to consider the factored progenitors

2�(n
2) : Sn

(t12(23))3
for n � 4 and

2�
(
n
3

)
: Sn

(t123(34))3
for n � 6.

In all three cases the exceptional stabilizers and centralizers encountered for small
values of n can be shown to lead straight to interesting presentations of various finite
groups [12, § 3.8], but we shall not make use of these results here.

5. Coset enumeration

To prove that the homomorphic images under the relations appearing in Theorem 3.1
are finite, we need to perform a double coset enumeration to place an upper bound on
the order of the target group in each case.

The orders of all finite irreducible Coxeter groups, including those of types An, Dn

and En, may be found listed in Humphreys [15, Table 2, p. 44].

5.1. An

For P1 we enumerate the cosets by hand. Since titj = (ij)ti for i, j ∈ {1, . . . , n},
i �= j, any coset representative must have length at most one. Since the stabilizer of a
symmetric generator in our control group S

(t1)
n clearly contains a subgroup isomorphic

to Sn−1 (namely the stabilizer in Sn of the point 1), we have that

|Sn : S(t1)
n | � n and |Sn : S(�)

n | = 1,

so the target group must contain the image of Sn to index at most n + 1.

5.2. Dn

We shall prove the following.

Lemma 5.1. Let

G :=
2�(n

2) : Sn

(t12(23))3
for n � 4.
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The representatives for the double cosets SnwSn ⊂ G with w a word in the symmetric
generators are

[�], [t12], [t12t34], . . . , [t12t34 . . . t2k−1,2k],

where k is the largest integer such that 2k � n. We thus have |G : Sn| � 2n−1.

We shall prove this by using the following two lemmata.

Lemma 5.2. For the group G as above, the double coset represented by the word
tab · · · tij · · · tik · · · tcd may be represented by a shorter word (i.e. if two symmetric gener-
ators in a given word have some index in common, then that word can be replaced by a
shorter word).

Proof. The relation immediately tells us t12t13 = (23)t12 and so [t12t13] = [t12]; thus,
we can suppose our word has length at least 3. Using the high transitivity of the action of
Sn on n points, we may assume that our word contains a subword of the form t12 · · · t34t15
with no other occurrence of the index ‘1’ and no other repetitions appearing anywhere
between the symmetric generators t12 and t15 of this subword. Now,

t12 · · · t34t15 = t12 · · · t34t213t15
= t12 · · · ((14)t34)((35)t13)

= (14)(35)t24 · · · t45t13,

and so the repeated indices can be ‘moved closer together’. Repeating the above, the two
symmetric generators with the common index can eventually be placed side by side, at
which point our relation immediately shortens this word since t12t13 = (23)t12. Since our
word has finite length, we can easily repeat this procedure to eliminate all repetitions. �

Lemma 5.3. t12t34 ∼ t13t24.

Proof.

t12t34 = t12t34t
2
24 = t12(23)t34t24 = (23)t13t34t24 = (23)(14)t13t24 ∼ t13t24.

�

Proof of Lemma 5.1. By Lemma 5.2, the indices appearing in any coset represen-
tative must be distinct. By Lemma 5.3, the indices appearing in a word of length 2 may
be reordered. Since the indices are all distinct, it follows that the indices appearing in a
coset representative of any length may be reordered. The double cosets must therefore
be [�], [t12], . . . , [t12 · · · t2k−1,2k], where k is the largest integer such that 2k � n. There is
therefore no more than one double coset for each subset of {1, . . . , n} of even size and so
|G : Sn| � 2n−1. �
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Table 1. The coset enumeration for E6.

Label [w] Coset stabilizing subgroup |N : N (w)|

[�] N 1

[t123] N (t123) ∼=S3 × S3 20

[t123t145] N (t123t145) ∼=S4 since 30
t123t145 = t123t

2
124t145 ∼ t123(25)t124

∼ t135t124

[t123t456] N (t123t456) ∼=S3 × S3 since 20
[t123t456t124] = [t356t245] t123t456t124 = t123t456t

2
145t124

= t123(16)t456(25)t145
∼ t356t245t145
∼ t356t245

[t123t456t123] N (t123t456t123) ∼=S6 since 1
t123t456t123 = t123(34)t456t356t123

∼ t123(34)t456t356t2235t123
= t124t456(26)t356(15)t235
= t456t124t136t235
= t456t

2
146t124t136t235

= (15)t456(62)t146t136t235
= t245t146t136t235
= t245(34)t146t235
∼ t235t146t235

5.3. E6

The coset enumeration in this case may also be performed by hand. We list the cosets
in Table 1. Not every case is considered in this table; however, all remaining cases may be
deduced from them as follows. Since t123t145 ∼ t124t135, the S4 permuting these indices
ensures that, for any three-element subset {a, b, c} ⊂ {1, . . . , 6}, the word t123t145tabc will
shorten. Since the only non-collapsing word of length 3 is of the form t123t456t123 and
t123t456t123 ∼ t124t356t124, the S6 permuting these indices ensures that, for any three-
element subset {a, b, c} ⊂ {1, . . . , 6}, the word t123t456t123tabc will shorten and so all
words of length 4 shorten.

From this double coset enumeration we see that |W (E6) : S6| � 1+20+30+20+1 = 72.
Our target group must therefore have order at most 72 × |S6| = 51 840.

5.4. E7

Since we expect both the index and the number of cosets to be much larger in this case
than in the E6 case (and in particular to be too unwieldy for a ‘by hand’ approach to
work), we use a computer, and in particular the algebra package Magma [5], to determine
the index.
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> S:=Sym(7);
> stab:=Stabilizer(S,{1,2,3});
> f,nn:=CosetAction(S,stab);

Here we have defined a copy of the symmetric group S7 (now named ‘nn’) in its
permutation representation defined by the action on the

(7
3

)
= 35 subsets of cardinality

3 via the natural representation, and a homomorphism f from a copy of S7 that acts on
seven points to our new copy nn.

> 1ˆf(S!(3,4));
22

The computer has labelled the set {1, 2, 3} 1 and, to find the label the computer has
given to the set {1, 2, 4}, we find the image of 1 under the action of the permutation
f((1,2)) ∈ nn, finding that, on this occasion, the computer has given the set {1, 2, 4}
the label 22.

> RR:=[<[1,22,1],f(S!(3,4))>];
> CT:=DCEnum(nn,RR,nn:Print:=5,Grain:=100);

Index: 576 = Rank: 10 = Edges: 40 = Status: Early closed = Time: 0.150

The ordered sequence RR contains the sequence of symmetric generators t123t124t123 and
the permutation (34) that we are equating with this word to input our additional relation
into the computer. The command DCEnum simply calls the double coset enumeration
program of Bray and Curtis as described in [1].

The computer has found there to be at most 10 distinct double cosets and that |W (E7) :
S7| � 576. Our target group must therefore have order at most 576 × |S7| = 2 903 040.

5.5. E8

Again, we use the computer to determine the index, with each of the Magma com-
mands below being the same as those used in the previous section.

> S:=Sym(8);
> stab:=Stabilizer(S,{1,2,3});
> f,nn:=CosetAction(S,stab);
> 1ˆf(S!(3,4));
28
> RR:=[<[1,28,1],f(S!(3,4))>];
> CT:=DCEnum(nn,RR,nn:Print:=5,Grain:=100);
Index: 17280 = Rank: 35 = Edges: 256 = Status: Early closed = Time: 0.940

We see that |W (E8) : S8| � 17 280. Our target group must therefore have order at
most 17 280 × |S8| = 696 729 600.
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6. Representations

In this section we use the symmetric presentations of Theorem 3.1 to construct represen-
tations of the target groups and in doing so we verify that we have the structures that
we claim. In the An and Dn cases this is sufficient to show that the groups are what we
expect them to be.

6.1. W (An)

Since these groups are most naturally viewed as permutation groups we shall construct
the natural permutation representation. The lowest degree of a permutation represen-
tation in which the control group, Sn, acts faithfully is n, so the lowest degree of a
permutation representation in which the target group acts faithfully is n. Since the con-
trol group already contains all possible permutations of n objects, the target group must
be a permutation group of at least n+1 objects. A permutation corresponding to a sym-
metric generator must commute with its stabilizer in the control group, namely Sn−1.
There is only one such permutation satisfying this: ti = (i, n + 1). Since this has order 2
and satisfies the relation, we must therefore have that our target group is isomorphic to
Sn+1 ∼= W (An).

6.2. W (Dn)

We shall use our symmetric generators to construct an elementary abelian 2-group
lying outside our control group and thus to verify that our target group has structure
2n−1 : Sn.

Lemma 6.1. t12t34 = t34t12.

Proof.

t12t34t12 = t12t34t
2
13t12

= t12(14)t34(23)t13
= (14)(23)t34t24t13
= (14)(t34t24)t24t13
= t34.

�

Lemma 6.2. The elements eij := (ij)tij for 1 � i, j � n generate an elementary
abelian 2-group.
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Proof. Each of the elements eij have order 2 since the symmetric generators have
order 2. If i, j /∈ {k, l}, then by Lemma 6.1, eijekl = ekleij . Suppose i = l; then

eijeikeijeik = (ij)tij(ik)tik(ij)tij(ik)tik
= (ij)(ik)(ij)(ik)tiktijtjktik

= (ij)(ik)(ij)(ik)(jk)tiktjktik

= (ij)(ik)(ij)(ik)(jk)(ij)

= idSn

�

Lemma 6.3. If eij is as defined in Lemma 6.2, then eijeik = ejk for i �= j �= k �= i.

Proof.

eijeik = (ij)tij(ik)tik
= (ij)(ik)tjktik

= (ij)(ik)(ij)tjk

= (jk)tjk

= ejk.

�

We have thus shown that there is an elementary abelian group of order 2n−1 lying
outside the control group: the elements eij defined in Lemma 6.2 each have order 2 (since
the symmetric generators each have order 2), by Lemma 6.2 any two of the elements
eij commute and by Lemma 6.3 the subgroup generated by these elements is clearly
generated by the n − 1 elements e12, e13, . . . , e1n.

It is natural to represent the elements eij as diagonal matrices with −1 entries in the
i and j positions. Using the natural n-dimensional representation of Sn as permutation
matrices, we have been naturally led to

t12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
−1

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The control group naturally acts on the group generated by the elements eij by per-
muting the indices. In particular, recalling from the double coset enumeration of § 5.2
that N has index at most 2n−1 in the target group, the above lemmas together show
that our target group is isomorphic to the group 2n−1 : Sn

∼= W (Dn).
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6.3. W (E6)

In the case of E6, we shall construct a six-dimensional real representation in which
the control group acts as permutation matrices. In such a representation, the matrix
corresponding to the symmetric generator t123 must

(i) commute with the stabilizer of t123,

(ii) have order 2,

(iii) satisfy the relation.

By condition (i) such a matrix is of the form

t123 =

(
aI3 + bJ3 cJ3

c′J3 a′I3 + b′J3

)
,

where I3 denotes the 3 × 3 identity matrix and J3 denotes a 3 × 3 matrix, all the entries
of which are 1. Now, condition (ii) requires

(aI3 + bJ3)2 + 3cc′J3 = (a′I3 + b′J3)2 + 3cc′J = I3,

implying that

c(a + a′ + 3b + 3b′) = c′(a + a′ + 3b + 3b′) = 0,

a2 = a′2 = 1

and

2ab + 3b2 + 3cc′ = 2a′b′ + 3b′2 + 3cc′ = 0.

If our control group acts as permutation matrices, then condition (iii) implies that the
determinant of the matrix for the symmetric generators must be −1. This requires that

(a + 3b)(a′ + 3b′) = −1.

From these relations we are naturally led to matrices of the form

t123 =

(
I3 − 2

3J3
1
3J3

03 I3

)
.

The representation of the control group we have used is not irreducible and splits
into two irreducible representations: the subspace spanned by the vector v := (16) and
the subspace v⊥. The above matrices do not respect this decomposition since they map
v to vectors of the form (03, 13). Consequently, the above representation of W (E6) is
irreducible.
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6.4. W (E7)

Using arguments entirely analogous to those appearing in the previous section there is
a seven-dimensional representation of W (E7) in which the control group acts as permu-
tation matrices and we can represent the symmetric generators for W (E7) with matrices
of the form

t123 =

(
I3 − 2

3J3
1
3J3×4

04×3 I4

)
,

which is again irreducible.

6.5. W (E8)

Again using arguments entirely analogous to those used in the E6 case, there is an eight-
dimensional representation of W (E8) in which the control group acts as permutation
matrices and we can represent the symmetric generators for E8 with matrices of the
form

t1,2,3 =

(
I3 − 2

3J3
1
3J3×5

05×3 I5

)
,

which is again irreducible.

7. Z2-representations of the groups W (En)

In this section we use the matrices obtained in § 6 for representing the Weyl groups of
types E6, E7 and E8 to exhibit representations of these groups over Z2 and, in doing so,
we identify the structure of the groups in question.

7.1. W (E6)

Multiplying the matrices for our symmetric generators found in the last section by 3
(≡ 1 (mod 2)) we find that these matrices, working over Z2, are of the form

t123 =

(
I3 J3

03 I3

)
.

These matrices still satisfy the relation and the representation is still irreducible for
the same reason as in the real case, as is easily verified by Magma. Consequently, we see
the isomorphism W (E6) ∼= O−

6 (2) : 2 since all of our matrices preserve the non-singular
quadratic form

∑
i �=j xixj .

7.2. W (E7)

Similarly, we obtain a representation of 2 × O7(2) in the E7 case, accepting that the
central involution must clearly act trivially here. In this case, the matrices preserve the
non-singular quadratic form defined by xJ7y

T.
From [16, p. 110] we see that there is no irreducible Z2 representation of O7(2) in

seven dimensions, and this is precisely what we find here. The matrices for the symmetric
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generators and the whole of the control group fix the vector v := (17). The space v⊥ thus
gives us a six-dimensional Z2-module for this group to act on. It may be easily verified
with the aid of Magma that this representation is irreducible.

Since the above form is symplectic when restricted to this subspace, we immediately
recover the classical exceptional isomorphism O7(2) ∼= S6(2).

(It is worth noting that in both the E6 and E7 cases the symmetric generators may
be interpreted as ‘bifid maps’ acting on the 27 lines of Schläfli’s general cubic surface
and Hesse’s 28 bitangents to the plane quartic curve, respectively. See [6, pp. 26, 46] for
details.)

7.3. W (E8)

Similarly, we obtain a representation of 2·O+
8 (2) in the E8 case, again accepting that

the central involution must clearly act trivially. As in the E6 case, the matrices preserve
the non-singular quadratic form

∑
i �=j xixj .

Note that working in an even number of dimensions removes the irreducibility problem
encountered with E7, since the image of (18) under the action of a symmetric generator
is of the form (03, 15).

Remark 7.1. Here we have focused our attention on the simply laced Coxeter groups.
Analogous results may be obtained for other Coxeter groups, but are much less enlight-
ening. For example,

2�2n : W (Bn−1)
(t1(12)(n + 1, n + 2))3

∼= W (Bn),

2�n : Sn

(t1(12))5
∼= W (Hn) for n = 3, 4.
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