
PHYSICAL REVIEW E 85, 066308 (2012)
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We consider strongly confined, stably stratified shear flows generated as a lock exchange in a tube inclined at
an angle of θ = 45◦. This paper focuses on a transitional regime, in which the flow alternates between two distinct
states: laminar, parallel shear flow and intense transverse motion characteristic of turbulence. Laminar-turbulent
cycles were captured at Atwood numbers At ≡ (ρ2 − ρ1)/(ρ1 + ρ2) ranging from 2.45 × 10−3 to 4.0 × 10−3,
where (ρ1,ρ2) are the initial densities of the two fluids, with multiple cycles observed at At = 2.55 × 10−3. The
evolution of the density and velocity fields in these flows was measured simultaneously using laser-induced
fluorescence and particle image velocimetry. During each laminar-turbulent cycle, the axial velocity exhibits a
distinctive ramp-cliff pattern, indicating that the flow accelerates as it relaminarizes, then decelerates rapidly as
the Kelvin-Helmholtz billows break down. Within the range of experimental conditions, transverse stratification
does not directly determine the onset of instability. Instead, the data suggest that a necessary criterion for the onset
of instability is for the local Reynolds number to exceed 2200, with only a weak dependence on the Richardson
number.
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I. INTRODUCTION

Stably stratified shear flows are ubiquitous in the environ-
ment, as evidenced by observations in the atmosphere [1–5], in
oceans [6–8], in estuaries [9,10], and in lakes [11–13]. In such
flows, stratification and viscosity tend to stabilize the flow [14],
while the shear tends to destabilize it via Kelvin-Helmholtz
(KH) instability. Indeed, KH billows are well documented
in the atmosphere [1,2,5] and are regarded as the primary
precursor for turbulence in calm weather.

The stability of these flows is generally governed by the
gradient Richardson number and the Reynolds number. The
Richardson number characterizes the competition between
shear and stratification, while the Reynolds number charac-
terizes that between inertia and viscosity. Physical reasoning
suggests that there is a critical Reynolds number below
which the flow is stabilized by viscosity for all Richardson
numbers and, conversely, that there is a critical Richardson
number above which the flow is stabilized by buoyancy for all
Reynolds numbers [5,6,15]. Indeed, this framework has been
verified theoretically for stratified viscous shear flows confined
between parallel boundaries – a configuration similar to that
considered in the present paper [16,17].

However, while the theory may provide a necessary crite-
rion for instability, the conditions under which the instability
first becomes apparent in an experiment have been found to
deviate significantly. For example, Defina et al. [17] found
the onset of instability in flows generated by the classic
Thorpe-type tilting tank to occur over a wide range of
Richardson numbers and Reynolds numbers, with a Reynolds
number dependence opposite to that predicted by their stability
analysis. In this paper, we will also see that a single value of
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the Richardson number does not distinguish flows that subse-
quently exhibit turbulence from those that do not. More gener-
ally, quantitative descriptions of the evolution of the velocity
field and stratification in stratified shear flows are limited, with
existing literature focusing largely on conditions approaching
the onset of instability in simple, steady basic flows.

In the present study, we document quantitatively the
evolution of stratified shear flows that exhibit two distinct
states: near-parallel, laminar flow, and brief periods of rapid
fluctuations reminiscent of turbulence. We will refer to the
sequence of relaminarization, the eventual onset of instability,
and the subsequent breakdown of the parallel shear as a
laminar-turbulent cycle. Emphasis will be placed in a flow that
alternates repeatedly between the two states, reestablishing the
same magnitude of stratification and shear in each successive
cycle.

We consider specifically flows under strong confinement,
generated as a lock exchange in an inclined tube. Here, a long
tube is divided in half by a removable transverse partition.
The upper and lower halves of the tube are filled with denser
and lighter fluids, respectively. When the partition is removed,
the axial density gradient initiates an exchange flow, with the
heavier fluid propagating downward along the lower portion
of the tube cross section and the lighter fluid propagating
along the upper portion in the opposite direction. Unlike the
classic horizontal configuration (e.g., Ref. [18]), the inclined
lock exchange is driven by the axial component of gravity,
while the transverse component contributes primarily to
segregation [19].

We emphasize that this paper is focused on the evolution of
the stratified shear flow that is established far downstream
of the propagating fronts, and not on the propagation speed
of the fronts or the profile of the interface. Such flows exhibit
three distinct regimes, which may be obtained by changing the
angle of incline to the vertical (θ ) and the Atwood number At ≡
(ρ2 − ρ1)/(ρ1 + ρ2), where ρ1 and ρ2(>ρ1) are the densities of
the two fluids prior to flow initiation [20,21]. At small θ � 30◦
and large At�O(4 × 10−3), the flow is uniformly turbulent;
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i.e., it does not exhibit slow variations in time or in x. At
large θ (>45◦) and small At(�10−3), the flow is permanently
laminar. Between these limits is the third regime, which
is associated with sustained laminar-turbulent alternation
[20–22].

In this paper, laboratory measurements of the density and
velocity fields in lock-exchange flows in a tube inclined at
θ = 45◦ at At ranging from 1.30 × 10−3 to 1.19 × 10−2 are
presented. These values of (θ,At) overlap with the transition
from laminar flow to uniform turbulence. Spatiotemporal
diagrams of the streamwise velocity and root-mean-square
(rms) value of the transverse velocity are presented, and
the observed dependence on At is discussed (Sec. III A). The
evolution of the streamwise velocity, the rms of the transverse
velocity, and the transverse density gradient in and between
consecutive laminar-turbulent cycles are described (Sec. III B).
Finally, the relevance of the Richardson and Reynolds numbers
as criteria for the onset of instability is explored (Sec. III C).

II. MATERIALS AND METHODS

Lock-exchange flows were generated in a d = 20 mm-
diameter Plexiglas tube consisting of two 1670 mm sections
separated by a transverse partition that can be opened or closed.
The tube was oriented at θ = 45◦ to the vertical for all runs
considered in the present paper. The Cartesian coordinates
(x,y,z) are defined as illustrated in Fig. 1. The x axis is aligned
with the tube axis, with the origin defined at the partition.

Prior to each experiment, the partition was closed. The
lower tube was filled with an aqueous solution of rhodamine
6G of concentration c1 = (161 ± 2) × 10−3 g m−3 and den-
sity ρ1 = 999 kg m−3. The upper tube was filled with an
aqueous solution of calcium chloride and rhodamine 6G of
density ρ2(>ρ1) and rhodamine concentration c2 of either
(201 ± 3) × 10−4 g m−3 or (215 ± 3) × 10−4 g m−3. The
density and temperature of the two fluids were measured using
a digital density meter (Anton Paar DMA35N, ±1 kg m−3,
±0.2 ◦C); the temperatures of the two fluids were equal within
the accuracy of the equipment in all experiments considered.
Both liquids were seeded with glass spheres (Sphericel R©

110P8) for particle image velocimetry (PIV).
An experiment began with the removal of the partition

at t = 0. The density gradient generated an exchange flow,
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FIG. 1. Central section of the experimental setup. Not to scale.

whereby the denser fluid propagated toward the bottom tube
preferentially along the lower section of the tube wall (z < 0),
and the lighter fluid propagated in the opposite direction along
the upper section (z > 0). Between the leading fronts of the
two currents, the fluid was stably stratified.

As the exchange flow propagated, a pulsed laser sheet
of wave length λ = 532 nm (Continuum MINILITE-PIV,
Electro-Optics, Inc.) illuminated the vertical x-z plane passing
through the axis of the tube (Fig. 1). In this plane, the
tube walls are at z̃ ≡ z/d = ±1/2. In this paper,˜denotes
a nondimensionalized parameter; the characteristic length and
density used for normalization are d and ρ2 − ρ1, respectively.
The laser sheet was approximately 2 mm thick. To reduce
optical distortion from the cylindrical geometry, a large section
of the upper tube was encased in a transparent, square cell
oriented so that two sides were parallel with the laser plane.
The space between the upper tube and the square cell was filled
with water. A long-pass dichroic mirror was used to separate
the laser-induced fluorescence (LIF) of rhodamine 6G (peak
λ = 555 nm) from the incoming laser light and the reflection
of the light by the seeding material (λ = 532 nm). One CCD
camera (Roper Scientific, 1392 pix × 1040 pix) captured the
LIF of rhodamine 6G, and a second CCD camera (LaVision
Flowmaster, 1280 pix × 1024 pix) imaged the seeding
particles. The two cameras were positioned so that their fields
of view coincided to within 3 pix within the 65 × 20 mm
rectangular region of interest centered between x = 323 mm
and x = 360 mm from the partition. The resolution of the
captured images varied between 19.0 and 19.4 pix mm−1

across different runs. The two cameras captured images
simultaneously at 3.9 frames per second. The experiment was
terminated when disturbances associated with the arrival of
the fronts at the ends of the tube reached the imaging region.

From the images of seeding particles, the local longitudinal
(x) and transverse (z) velocity components, u and w, were de-
termined by PIV using the software DaVis (LaVision GmbH).
From the images of LIF, the instantaneous concentration of
rhodamine 6G, c(x,z,t), was determined using a third-order
polynomial fitted to the recorded fluorescence intensity for five
known concentrations in the range c2 � c � c1. The density,
ρ(x,z,t), is related to rhodamine concentration by

ρ(x,z,t) − ρ1

ρ2 − ρ1
= c1 − c(x,z,t)

c1 − c2
. (1)

Six experimental runs, with At ranging from 1.30 × 10−3

to 1.19 × 10−2, are considered in the present paper (Table I).
The Schmidt number remained approximately constant at
Sc = ν/Dm ≈ 3400 − 3500, where the molecular diffusion
coefficient is taken to be Dm = 3 × 10−6 cm2 s−1 (Ref. [24],
Fig. 18.10), and the kinematic viscosity ν is interpolated from
values for aqueous calcium chloride reported in Ref. [25].
The corresponding global Reynolds number, Ret = 2Vtd/ν,
defined using the inertial velocity scale Vt = √

g cos θAtd,
where g is gravitational acceleration, ranges from Ret = 530
to 1540. Alternative combinations of variables may also be
used to characterize the flow; the Rayleigh number, Ra =
2Atgd3/(νDm), may be of particular interest. However, Ra
can be written in terms of the parameters defined above as
Ra ≡ Sc Re2

t /(2 cos θ ).
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TABLE I. Experimental conditions. τN is the period corresponding to the global Brunt-Väisälä frequency [Eq. (4)]. Vf is the equilibrium
(long-time) front velocity as interpolated from measurements reported in Refs. [20] (runs A–D) and [23] (runs E, F).

ρ1 ρ2 Vf

Run At [kg m−3] [kg m−3] Ret τN [s] [cm s−1]

A 1.30 × 10−3 998.9 1001.5 530 6.6 1.11
B 2.45 × 10−3 999.0 1003.9 730 4.8 1.23
C 2.55 × 10−3 998.8 1003.9 740 4.7 1.24
D 4.0 × 10−3 998.6 1006.6 920 3.8 1.36
E 1.19 × 10−2 998.8 1022.9 1540 2.2 1.55
F 1.19 × 10−2 998.9 1023.0 1540 2.2 1.55

III. EXPERIMENTAL RESULTS AND DISCUSSION

The dominant temporal and spatial scales in flows that
alternate between laminar and turbulent states are those of
turbulent fluctuations and those associated with the laminar-
turbulent alternation. In this paper, quantitative analyses are
in terms of properties averaged over the streamwise span of
the imaging region, denoted by 〈〉x . Further, these variables
are temporally averaged over t ± 0.5 s. These averaging
windows are much smaller than the characteristic scales of
laminar-turbulent alternation and longer than those of the
turbulent fluctuations.

As will be shown in Sec. III C, u undergoes large,
slow oscillations during relaminarization. These oscillations
preclude the Reynolds decomposition of u and, consequently,
the calculation of the turbulent kinetic energy. Instead, we
take advantage of the low values of the temporal average of
the transverse velocity and use its rms, 〈w2〉1/2

x (z,t), as a proxy
for the strength of turbulence.

A. The transition between laminar, intermittent turbulence,
and uniform turbulence regimes

We first examine the basic features of the flow at different
At. Figure 2 presents, at four At, spatiotemporal diagrams of u

at the middle of the imaging region and 〈w2〉1/2
x . At the smallest

At = 1.30 × 10−3, only slow, weak variations can be seen in
u, with the exception of the passage of the front and a weak
disturbance at t = 90–100 s. Similarly, 〈w2〉1/2

x remained near
zero, indicating laminar flow [Fig. 2(a) and 2(e)].

At At = 2.55 × 10−3, extended periods of low 〈w2〉1/2
x

and predominantly parallel shear flow were interspersed by
distinct, brief periods of large 〈w2〉1/2

x and small u [Fig. 2(b)
and 2(f)]. These two states are interpreted as relaminarized
flow and turbulent bursts, respectively. The alternation between
the two states was regular, and three relaminarization-turbulent
cycles can be readily identified [Fig. 2(f)].

At At = 4.0 × 10−3, distinct periods of low 〈w2〉1/2
x can still

be identified, but they were brief and infrequent [Fig. 2(g)].
Similarly, rapid fluctuations in u can now be discerned
during most of the time series [Fig. 2(c)]. Finally, at
At = 1.19 × 10−2, u fluctuated rapidly with no apparent peri-
odicity and 〈w2〉1/2

x remained high at all times, characteristic
of uniform turbulence [Fig. 2(d)].

The above discussion segregates flow regimes by At,
which quantifies the initial density contrast. Under sufficiently

turbulent conditions, however, the local density contrast at
the fronts decays over time, causing the fronts to decelerate
[22,26]. It seems likely that such flows evolve from turbulent to
intermittent, provided that the tube is sufficiently long. Such
a transition was captured at At = 4.0 × 10−3. As described
above, early times were dominated by elevated 〈w2〉1/2

x and
rapid fluctuations of u. At t � 150 s, however, extended
periods of suppressed 〈w2〉1/2

x emerged [Fig. 2(g)].
The transition from laminar flow to uniform turbulence is

often parameterized by the turbulent fraction γ , defined as the
fraction of time during which the flow is turbulent. During
each relaminarization phase, the rms of w at the tube axis,
〈w2〉1/2

x (z = 0,t), taken as the mean 〈w2〉1/2
x over |̃z| < 0.05,

decayed to � 0.1 cm s−1. This limit serves as a convenient
threshold against which flow at a given time may be classified
as turbulent or laminar. γ may then be calculated as the
temporal average of the function

I (t) =
{

1 if 〈w2〉1/2
x (0,t) > wc

0 otherwise
, (2)

where wc is the threshold.
Figure 3 presents γ for wc = 0.12 cm s−1 as a function of

At. γ increases monotonically with At and reaches its upper
limit, γ = 1, at At �4 × 10−3. Note that a ±10% change in
wc, depicted by the vertical bars, does not alter the qualitative
dependence of γ on At. The sharp increase in γ suggests that
the intermittent regime investigated in this paper occurs, at
least for θ = 45◦ considered presently, only within a relatively
narrow range of At.

B. Laminar-turbulent cycles

We now consider the temporal evolution of the streamwise
velocity, the turbulence intensity, and the strength of the strati-
fication during laminar-turbulent cycles. For convenience, the
discussion is in terms of variables that only vary with time.
Specifically, the streamwise flow is characterized by

�U (t) = 〈u〉x( z̃+(t),t) − 〈u〉x( z̃−(t),t), (3)

where z̃−(t) and z̃+(t) are the transverse coordinates cor-
responding to minimum and maximum 〈u〉x , respectively.
Turbulence is characterized by 〈w2〉1/2

x (0,t) and the strati-
fication by the transverse density gradient at z̃ = 0. Such
gradients are denoted by ∂/∂z|0 and are estimated as the
gradient of the line of best fit over z̃−/2 < z̃ < z̃+/2. Time is
nondimensionalized by the period corresponding to the global
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FIG. 2. (Color) The temporal evolution of u [cm s−1] at selected x (a)–(d) and 〈w2〉1/2
x [cm s−1] (e)–(h). From top to bottom, the figures

show runs [(a), (e)] A, [(b), (f)] C, [(c), (g)] D, and [(d), (h)] E in order of increasing At. The horizontal axes each extend from t = 10 to 260 s.
The same color map is used for (a)–(d) and (e)–(h), which is displayed to the right of (a) and (e).

Brunt-Väisälä frequency [5],

τN = 2π√
2gAt sin θ/d

, (4)

and denoted by t̃(=t/τN ).
For conciseness, the following discussion will be restricted

to run C, which exhibits multiple, distinct laminar-turbulent
cycles and is thus convenient for the identification of salient
features. The evolution of the parameters within the one
laminar-turbulent cycle observed in runs B and D is quali-
tatively the same.

1. Ramp-cliff pattern of mean streamwise velocity

Figure 4(a) illustrates the characteristic ramp-cliff pattern
of the temporal evolution of the axial flow during each
relaminarization-turbulent cycle. Following the arrival of
the front in the imaging region at t̃ = 5.4, three ramp-
cliff cycles can be readily identified, during which �U (t)
[Eq. (3)] increases gradually from its local minimum of 2 to
3 cm s−1 to �U = 14 to 16 cm s−1, then decreases rapidly to
the subsequent local minimum. Interestingly, the local minima

correspond to �U ≈ 2Vf , suggesting that the front velocity
is governed primarily by the low �U periods. The increase
in �U initiated at t̃ = 43.4 does not develop into a ramp.
This is interpreted as an arrest of the ramp development
due to interference from the return flow initiated when the
propagating fronts reach the ends of the tube. This is consistent
with the reduction of u at the end of the run [t > 210 s,
Fig. 2(b)] and implies that the number of laminar-turbulent
cycles was limited by the length of the tube.

Each “cliff” phase begins with the onset of the breakdown of
billows, at t̃ = (̃t 1

c ,̃t
2
c ,̃t

3
c) = (18,29,40.4), which is depicted

by a sharp rise in 〈w2〉1/2
x (0,t) to its local maximum [Fig. 4(b),

dashed line]. As the billows continue to break down into finer
structures, 〈w2〉1/2

x (0,t) begins to decrease. The cliff phase
ends, i.e., �U drops to its local minimum (dotted line),
while 〈w2〉1/2

x (0,t) is still above levels observed in laminar
states. The elevated 〈w2〉1/2

x (0,t) is consistent with the visual
observation of turbulent mixing and reflects the conversion of
mean kinetic energy into turbulent kinetic energy. 〈w2〉1/2

x (0,t)
broadly decays to � 0.1 cm s−1 during the “ramp” phase,
consistent with observations of flow relaminarization. Further,
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FIG. 3. Turbulent fraction γ [Eq. (2), wc = 0.12 cm s−1] as a
function of At. The temporal average of I (t) was taken over 50 <

t < 200 s. The dashed line is intended only as a guide to the eye. The
upper and lower limits of the vertical bars correspond to wc = 1.08
and 1.32 cm s−1, respectively. Where bars are not visible, the variation
is smaller than the marker. The two data points at At = 1.19 × 10−2

coincide exactly and cannot be distinguished in the figure.

we determined from a frame-by-frame inspection of the
velocity field that, in each cycle, the onset of shear-induced
instability leading to turbulence (dash-dotted line) occurs at
t̃ = (̃t 1

b,̃t
2
b,̃t

3
b) = (16,28,39), i.e., before �U reaches its local

maximum. These observations indicate that flow acceleration
occurs concurrently with relaminarization, and that the stream-
wise flow is suppressed by the breakdown of billows and
subsequent turbulent motion at the scale of the tube diameter.

In cycles 2 and 3, the cliff phase is not followed imme-
diately by a ramp phase of the subsequent cycle, but by a
period of decaying turbulence. During this period, transverse
velocity fluctuations, 〈w2〉1/2

x (0,t), and the density gradient,
− ∂〈ρ̃〉x/∂z̃|0, decay to their respective minima, while �U

remains at its minimum value. We believe that this phase did
not take place at the end of cycle 1 because the ramp phase
in the second cycle was initiated exactly at the end of the cliff
phase, i.e., t̃

2
a = t̃

1
d .

This period of decaying residual turbulence ends with the
arrival of pockets of fluid of concentration near that of the
original, unmixed fluid. These pockets take on, at the local
scale, the canonical profile of a gravity current head, with
billows attached to its wake (see, e.g., Ref. [27]). The arrival of
these current heads was identified visually at t̃ = t̃

2
a = 20.2,

t̃
3
a = 32.4, and t̃

4
a = 43.4 [Fig. 4(a)] and is associated with

a sudden, sharp increase in 〈w2〉1/2
x (0,t) and �U , caused by

the displacement of well-mixed, relatively slow fluid upstream
of the front. 〈w2〉1/2

x (0,t) is maintained above laminar-phase
levels for some time by the billows trailing behind the head,
then decays once again. The simultaneous, abrupt increase
in − ∂〈ρ̃〉x/∂z̃|0 reflects the arrival of relatively unmixed fluid
into fluid that is well mixed having just undergone the turbulent
phase. This reestablishment of the stratification during each
relaminarization phase [Fig. 4(d)], despite its having been
eroded during the preceding turbulent phase, gives rise to the
most striking feature of Fig. 4: the apparent absence of a global
decay in the maximum shear and stratification over successive
ramps.

The evolution of �U discussed above is reminiscent of the
ramp-cliff spatial variation of the temperature in unbounded
stably stratified shear flows [3,4] and of the peak streamwise
velocity in uniform pipe flows, which alternate between
laminar and turbulent states at Reynolds numbers between
2300 and 2600 [28]. The resemblance is interesting, given
that the associated physical phenomena in the latter are
fundamentally different. In unbounded flows studied in Refs.
[3,4], a ramp is a signature of a KH billow at an early stage of
overturning and a cliff represents the region between adjacent
billows. In contrast, in pipe flows and in flows considered
presently, the ramps and cliffs occur largely in the absence of
KH billows.

2. Transverse profiles of mean velocity and density

Figure 5 compares the transverse profiles of streamwise
velocity and density in laminar and turbulent states in run
C to those of permanently laminar (run A) and uniformly
turbulent flows (run E), respectively. To facilitate the com-
parison between the differences in flow speed and absolute
densities observed at different At, we focus on the normalized
streamwise velocity, 〈u〉x(z,t)/�U (t), and the density relative
to its value at z = 0 and normalized by the original density
contrast,

〈ρ̃〉x(z,t) − 〈ρ̃〉x(0,t), (5)

where

〈ρ̃〉x(z,t) = 〈ρ〉x(z,t) − (ρ1 + ρ2)/2

ρ2 − ρ1
. (6)

〈ρ̃〉x(0,t) in Eq. (5) is estimated as the average of 〈ρ̃〉x over
|̃z| < 0.05. Specifically, Fig. 5 presents these profiles at the
end of two flow relaminarization phases (̃t = 28.1,39.2) and
during the subsequent turbulent decay phase (̃t = 30.9,43.0)
in run C. For runs A and E (thick dashed lines), we take
advantage of the stationarity of the flow and consider instead
〈u〉x,t (z), the long-time temporal-average of 〈u〉x , normalized
by its peak-to-peak difference. Note that we do not temporally
average the density.

We first consider the velocity profiles. All 〈u〉x exhibit the
canonical profile of an exchange flow in closed systems: it is
approximately antisymmetric about z̃ = 0, with a maximum
at z̃ = z̃+(>0) and a minimum at z̃ = z̃−(<0). The maximum
and the minimum 〈u〉x occur at about the same distance from
the tube axis, i.e., z̃+ ≈ −̃z−.

The excellent coincidence between the instantaneous ve-
locity profiles at the selected times in run C (thin lines) and the
time-averaged profiles of runs A and E (thick dashed lines) is
readily apparent in Fig. 5(a) and 5(b). 〈u〉x at t̃ = 28.1 and 39.2
and 〈u〉x,t in run A all exhibit a gradual variation of its gradient
with z and extrema at z̃∗ ≡ ( z̃+ − z̃−)/2 ≈ 0.30, consistent
with laminar flows at larger θ reported in Ref. [21]. Similarly,
〈u〉x at t̃ = 30.9 and 43.0 and 〈u〉x,t in run E exhibit a linear
dependence on z̃ in the region |̃z| � 0.3 with the extrema at
z̃∗ = 0.37 − 0.38, consistent with uniformly turbulent flows
at other (θ,At) reported elsewhere (e.g., Ref. [21]). Between
these two states, z̃∗ evolves in a ramp-cliff pattern similar to
that of �U [Fig. 4(c)].
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FIG. 4. Temporal evolution of (a) �U , (b) 〈w2〉1/2
x (0,t), (c) the transverse separation between the extrema of 〈u〉x , (d) − ∂〈ρ̃〉x/∂z̃|0, and (e)

the instantaneous Richardson number, Ri [Eq. (14)], in run C. The three ramp-cliff cycles (and the beginning of the fourth) are numbered at the
top. t̃

i

a (i = 1,2,3,...) corresponds to the arrival of relatively unmixed fluid that initiates the ramp phase (solid line); t̃
i

b, t̃
i

c, and t̃
i

d correspond
to the onset of instability (dash-dotted), the onset of the breakdown of billows (dashed), and the local minima in �U (dotted). t̃

1
d coincides

with t̃
2
a . The oblique, solid line after t̃

i

a in (a) depicts the theoretical acceleration of a “free-fall” [Sec. III B3, Eq. (9)]. The horizontal line in
(b) depicts the threshold wc = 0.12 cm s−1 [Eq. (2)]. Horizontal lines in (c) depict z̃∗ in laminar flows (2̃z∗ = 0.60) and in uniformly turbulent
flows (2̃z∗ = 0.76).

Like those of 〈u〉x/�U , the transverse profile of the density
contrast, 〈ρ̃〉x − 〈ρ̃〉x(0,t), in run C at the end of relaminariza-
tion phases and during the turbulence decay phase resemble
that in permanently laminar and uniformly turbulent flows,
respectively. The difference in 〈ρ̃〉x − 〈ρ̃〉x(0,t) between the
upper and lower layers was large (� 0.8) in laminar states
[Fig. 5(c)] but was subsequently eroded to near-zero during
the turbulent decay phase [Fig. 5(d)]. The coincidence of
the profiles in Fig. 5(c) illustrates the reestablishment of the
stratification during each ramp phase [cf. Fig. 4(d)].

3. Characteristic scales of the ramp-cliff cycle

To validate our physical understanding of the dominant
processes that control the laminar-turbulent alternation, we

consider here the characteristic scale of the four phases of a
ramp-cliff cycle (Sec. III B1):

(1) Flow relaminarization and acceleration (the ramp)
(2) The growth of the KH instability
(3) Flow deceleration (the cliff) and
(4) The turbulent decay phase.

Specifically, we define an acceleration scale for the ramp phase
and the time scale for the duration of the KH billow growth,
the duration of the cliff phase, and the arrival of the current of
unmixed fluid that initiates the next cycle.

We first consider the ramp phase. For simplicity, we assume
that viscosity is negligible, that the density is uniform in each
layer, and that the flow is two-layered, laminar, and parallel.
With these assumptions, the upper (lower) current may be
approximated as a “free rise” (“free fall”) governed by the
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FIG. 5. (Color online) Transverse profiles of 〈u〉x(z,t)/�U (t) and
〈ρ̃〉x(z,t) − 〈ρ̃〉x(0,t) at the end of a relaminarization phase [(a), (c)]
and during the subsequent turbulence decay phase [(b), (d)] in run C.
t̃ = 28.1 [solid blue line (a), (c)], 30.9 [solid blue line (b), (d)], 39.2
[dotted red line (a), (c)], 43.0 [dotted red line (b), (d)]. Thick dashed
lines represent the corresponding profiles in permanently laminar [run
A (a), (c)] and uniformly turbulent flows [run E (b), (d)]; 〈u〉x was
temporally averaged over 120 � t � 199 s (run A) and 25 � t < 107
s (run E); t = 199 s (c) and t = 106 s (d).

balance between the inertial acceleration and the local density
contrast:

d

dt
[〈u〉x( z̃+(t),t)] = − d

dt
[〈u〉x( z̃−(t),t)] (7)

� g cos θ

( 〈ρ〉−x − 〈ρ〉+x
〈ρ〉−x + 〈ρ〉+x

)
, (8)

where 〈ρ〉−x (t) and 〈ρ〉+x (t) are the density of the denser (hence
z < 0) current and lighter (z > 0) current, respectively. To
calculate the theoretical acceleration during a ramp phase, we
approximate 〈ρ〉−x (t) and 〈ρ〉+(t) by 〈ρ〉x( z̃−) and 〈ρ〉x( z̃+),
respectively, and take a temporal average over the ramp phase.
Then, Eqs. (7) and (8) reduce to

d�U

dt
� 2g cos θ

[ 〈ρ〉x( z̃−) − 〈ρ〉x( z̃+)

〈ρ〉x( z̃−) + 〈ρ〉x( z̃+)

]
, (9)

where the overbar denotes the temporal average from t̃
i
a to t̃

i
b

for the ith cycle. Applying the density measurements to Eq. (9)
yields d�U/dt � 1.6 ± 0.1 cm s−2 (± standard deviation)
for cycles 1–3 [oblique solid lines, Fig. 4(a)]. The prediction
agrees to within an order of magnitude with the acceleration
during the early stages of the flow relaminarization phase; the
consistent overestimation is likely to be due to viscous effects.

The growth rate of KH billows is typically governed by
the shear that gives rise to the instability, whose characteristic
time may be calculated directly from the measurements of the

local shear at the onset of instability as

τs =
(

∂〈u〉x
∂z

∣∣∣∣
0

)−1

. (10)

In run C, ∂〈u〉x/∂z|0 = 10.0, 16.0, and 20.5 s−1 at t̃
1
b, t̃

2
b,

and t̃
3
b, respectively. These values correspond to τs = (0.01

to 0.02)τN . In contrast, the observed growth period of the
billows, taken as the period between the onset of instability
(dash-dotted lines, Fig. 4) and the subsequent breakdown of
KH billows (dashed lines), ranged between (0.9 to 3.2)τN in
the three cycles. This extension of the billow growth period
by a factor of 60 to 150 beyond the time scale of the shear is
attributed to a stabilizing effect of the confinement and of the
viscosity.

The duration of the cliff is expected to be governed by
the turbulent mixing that follows the breakdown of the KH
billows. The time scale of the latter may be calculated as

τm = d

(〈w2〉x)1/2(z = 0)
, (11)

where the overbar denotes a temporal average during each
cliff, starting at by the onset of the breakdown of KH billows
(dashed lines) and ending at the subsequent local minimum
in �U (dotted lines). For the turbulent bursts in cycles 2 and
3, τm = (0.58,0.67)τN . These values are in good agreement
with the observed duration, (̃t 2

d − t̃
2
c ,̃t

3
d − t̃

3
c) = (0.8,1.6)τN .

Similarly, the cliffs lasted for 1.1τm and 2.0τm in runs B and
D, respectively (not shown). These results indicate that τm is
an adequate characterization of the duration of the cliff.

Finally, we consider the duration of the turbulent decay
phase that follows the cliff. Recall that this decay phase is
terminated by the passage of a local gravity current of relatively
unmixed fluid through the imaging region (Sec. III B1). We
believe that these transient gravity currents originate in the
undisturbed regions beyond the macroscopic flow fronts,
then propagate upstream during a temporary weakening of
turbulence in their vicinity (see Ref. [22]). The path length of
this transient current head from its origin to the imaging region
may be approximated as x � Vf t , where the speed of the
macroscopic flow fronts, Vf , is approximated by its asymptotic
(long-time) value. This value is interpolated from previous [20]
measurements to be 1.24 cm s−1 for run C (Table I). The time
required for the gravity current to travel this distance is

τ̃g(t) = τg(t)

τN

= Vf

ug

t̃, (12)

where ug is the propagation speed of a gravity current
head. ug may be approximated by the local maximum in
u(x,z,t) at x corresponding to the middle of the measurement
region [cf. Fig. 2(b)], which yields ug/Vt = 2.7 and 2.5 for

the gravity current that arrives at t̃
3
a and t̃

4
a , respectively.

Applying these values to Eq. (12) yields τ̃g (̃t 3
a) = 8.0 and

τ̃g (̃t 4
a) = 11.6. These values overestimate the duration of the

turbulence decay phases in cycles 2 and 3 by a factor of
3 and 9, respectively (̃t 3

a − t̃
2
d = 2.7; t̃

4
a − t̃

3
d = 1.3). This

overestimation is attributed largely to an underestimation of
ug: contrary to the assumption of fixed speed, the pure fluid
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YUKIE TANINO, FRÉDÉRIC MOISY, AND JEAN-PIERRE HULIN PHYSICAL REVIEW E 85, 066308 (2012)

current is expected to have decelerated over time due to
viscosity.

C. Richardson and Reynolds numbers at the onset of instability

Finally, we examine the extent to which the onset of
instability in laminar-turbulent cycles may be predicted from
the local Reynolds and gradient Richardson numbers. The
instantaneous Reynolds number is calculated as

Re(t) = �U (t)
d

ν
. (13)

The instantaneous gradient Richardson number is defined here
as

Ri(t) = −g sin θ

〈ρ〉x |0
∂〈ρ〉x
∂z

∣∣∣∣
0

(
∂〈u〉x
∂z

∣∣∣∣
0

)−2

, (14)

where 〈ρ〉x |0(t) is taken as the mean 〈ρ〉x in the region z̃−/2 <

z̃ < z̃+/2.
While Eq. (14) does not preclude the computation of Ri

under nonlaminar conditions, gradients of spatially averaged
parameters do not capture the rapidly fluctuating velocity and
density fields characteristic of turbulent states. ∂〈ρ〉x/∂z|0 and
Ri in turbulent states are displayed in Fig. 4(d) and 4(e) for the
purpose of qualitative comparison only.

1. Richardson and Reynolds numbers

During flow relaminarization, both shear and stratification
strengthen [Fig. 4(a) and 4(d)]. Combined, the growth of shear
dominates, such that Ri first decreases rapidly to ≈ 0.01, then
decays very slowly so that is is nearly constant at values
ranging from 5 × 10−3 to 8 × 10−3 at the onset of instability
[Fig. 4(e)]. In this section we examine more closely the
variations of Ri and Re during relaminarization and up to
the onset of instability.

Figure 6 displays the temporal evolution of Re(t) and Ri(t)
during each relaminarization phase in runs B, C, and D (thin
solid lines). Each relaminarization phase ends with the onset
of instability (solid markers). Clearly, Re increases and Ri
decreases during relaminarization. Moreover, the Ri-Re curves
at different At are indistinguishable, possibly due to their
narrow range. In the discussion that follows, the data from
the five relaminarization phases depicted in Fig. 6 are treated
collectively.

Re and Ri at the onset of instability, denoted by Rei and Rii ,
vary from 2200 to 3100 and from 4.5 × 10−3 to 7.8 × 10−3,
respectively. These Rii are one order of magnitude smaller
than the near-constant threshold of about 0.20 predicted by
the neutral stability curve of Defina et al. [17] for Rei > 2000.
A similar disagreement with the theory has been reported in
stratified shear flows generated in a Thorpe tilting tank at
At ranging from 2.5 × 10−3 to 17.5 × 10−3, of which two
are depicted in Fig. 6 (◦,
) [17]. Furthermore, Ref. [17]
reports Rei ranging from 1290 to as high as 5340 (not
shown). In this context, we interpret the variation in Rei in the
present experiments not as a manifestation of experimental
uncertainty, but as a salient property of strongly confined
stratified shear flows that are considered in Ref. [17] and the
present study.

0 1000 2000 3000 4000

10
−2

10
−1

Re(t)

Ri(t)

At = 2.45 × 10−3, run B
2.55 × 10−3, run C
4.0 × 10−3, run D

2.5 × 10−3, Ref. 17
7.5 × 10−3, Ref. 17

FIG. 6. (Color online) (Re,Ri) at the onset of instability in runs
B (�), C (•), and D (�). The thick red line is the least-squares
best-fit power function to all five points. Thin solid lines depict the
evolution of Re and Ri during each relaminarization phase. The thick
dashed line depicts run A (t = 120–199 s), in which the flow remained
laminar. Open markers depict (Rei ,Rii) in inclined rectangular tubes
at At = 2.5 × 10−3 (◦) and 7.5 × 10−3 (
) reported by Defina et al.
(Ref. [17], θ = 80◦ to 88.4◦), where Rii was calculated taking sin θ =
0.99 and Rec was estimated as 2ReDLS

i , where ReDLS
i is the Reynolds

number as defined in Ref. [17]. Thick gray lines are the corresponding
least-squares best-fit power functions.

By definition, Ri varies as (∂〈u〉x/∂z|0)−2 [Eq. (14)]. If
the decay in Rii simply reflects the concurrent increase in
Reynolds number, with negligible contribution from variations
in stratification, the Re dependence of Rii will be Rii ∝ Re−2

i

approximately. While the present data span a narrow range
of Rei , they are consistent with such a power law; a least-
squares fit is of the form Rii ∝ Re−1.7±0.2

i (thick red line).
Similarly, the best-fit exponent to the data of Defina et al. [17]
is −2.04 ± 0.02 (standard error).

Interestingly, despite their resemblance, the instability that
terminated the relaminarization shown for run B (�) did
not develop into a turbulent burst unlike the other four
relaminarization phases shown in Fig. 6, suggesting that the
onset of a turbulent burst is controlled by properties other than
Ri and Re.

2. Criterion for the onset of instability

Figure 6 also compares Rii in runs B–D with Ri in run A,
in which the flow exhibited long waves but did not develop
into KH billows (thick dashed line). Ri oscillated between
2.4 × 10−3 and 8.4 × 10−3, indicating that the flow remained
laminar at Richardson numbers below Rii at which instability
first appeared at larger At. Thus a single Ri does not distinguish
flows that remain laminar from those which subsequently
exhibit elevated 〈w2〉1/2

x (0,t). Combined with results presented
in Secs. III B1 and III B2, this suggests that stratification does
not directly control the onset of instability.

Instead, Fig. 6 and the ramp-cliff evolution of �U shown
in Fig. 4(a) suggest that the instability is controlled primarily
by the instantaneous Re. The Reynolds number immediately
prior to the onset of instability ranges from Rei = 2200 to
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3100 in runs B–D, while Re oscillates between 1500 and
2300 in run A. Like the Ri-Re trajectories (Sec. III C1), Rei

does not exhibit a dependence on At. Therefore, despite some
overlap, the two classes are largely segregated in Re, and an
approximate threshold can be defined at Re = 2200–2300. The
delay of instability to Rei as high as 3100 in three of the five
relaminarization (ramp) phases indicates that this threshold is a
necessary, but insufficient, condition for the onset of instability
under the experimental conditions considered presently.

As discussed in Sec. I, in many flow configurations there is
a critical Reynolds number below which the flow is stable to
all Richardson numbers and the stability is determined by the
Reynolds number. In this framework, the threshold identified
here may be interpreted as this critical Reynolds number at the
limit of Ri approaching 0. The one-order-of-magnitude differ-
ence between the critical Re in the present flow configuration
and that of Defina et al. (Re = 150) is attributed to the radial
confinement in the present configuration. No-slip boundaries
stabilize the flow [29], hence we expect the onset of instability
in the present experiments to be delayed to higher Reynolds
numbers (or lower Richardson numbers).

IV. CONCLUSIONS

Lock-exchange flows in a circular tube inclined at θ = 45◦
exhibit two distinct states at At = 2.45 × 10−3 to 4.0 × 10−3:
parallel, laminar flow and turbulent flow characterized by
intense transverse fluctuations. During each laminar-turbulent
cycle, the flow accelerates as it relaminarizes and then
decelerates rapidly with the breakdown of Kelvin-Helmholtz

billows. Accordingly, each cycle is associated with a ramp-cliff
variation in the peak streamwise velocity.

The coevolution of transverse stratification, shear, and
transverse rms velocity suggests that, while the density contrast
at the propagating fronts drives the exchange flow, transverse
stratification does not directly control the onset of instability
within the range of conditions considered in the present study.
Instead, the onset of instability appears to be controlled by the
Reynolds number. The present data suggest that a necessary
criterion for the onset of instability is for Re to exceed
2200–2300, below which a ramp-cliff, laminar-turbulent cycle
does not develop. Interestingly, this threshold is the same
order of magnitude as the Reynolds number (=2300) at which
intermittent turbulence emerges in uniform pipe flows [28].

To the authors’ knowledge, sustained alternation between
turbulent and laminar states has not been documented pre-
viously in stratified shear flows. One interesting question
that emerges from the present study is whether the onset
of instability in each cycle is controlled locally, or if it is
synchronized over the entire length of the exchange flow.
Further insights require concurrent measurements at a scale
comparable to the tube length.
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